
On the Notion of Substitution†
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. . . on ne dit pas par exemple : 〈〈 Ta cousine n’a pas encore
voyagé en Afrique 〉〉, mais : 〈〈 Elle n’y a encore pas voyagé,
ta cousine, en Afrique 〉〉, on commence par énoncer les signes
grammaticaux abstraits, le 〈〈 résumé algébrique 〉〉 de la pensée,
puis on emplit cette forme vide avec des désignations de choses
et de faits précis.

Raymond Queneau

Abstract

We consider a concept of substitutive structure, called “logos”, in order to study simple substitu-
tion, independently of formal or programming languages. We provide a definition of simultaneous
substitution in an arbitrary logos and use it to prove a completeness theorem expressing that the
equational properties of the usual substitution can be proved from the logos axioms only.
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1 Introduction

We will investigate here the notion of substitution in an abstract way, independently
of formal or programming languages. We will not define it explicitly, but axiomatize it
instead. The idea is to single out the essential features of the operation of performing
a substitution of a piece of text for a symbol, in a text, in order to define a concept of
substitutive structure, hereafter called logos, that deserves to be studied for its own
sake. Thus, although the substitution will not be left at an informal level but made
explicit, nevertheless it will not be explicitly defined since it will be considered as a
primitive notion, much like the epsilon relation in set theory.

A logos is a set of terms with an infinite supply of variables. Nothing particular
is assumed concerning the internal structure of these terms except that they may
contain at most a finite number of variables. A variable by itself is a term supposed
to contain no other variable than itself.

An operation —intended to formalize substitution— transforms a variable, and a
pair of terms into a term, in such a way that the set of variables in the resulting
term can be determined from the variables in the input. Furthermore, substitution
axioms indicate what happens when the first term of the pair is the variable, or doesn’t
contain the variable, how to change the variables —which is similar to α-conversion—

†Part of the material of this paper —mainly the proof of the completeness theorem— is already contained in [3].
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2 On the notion of substitution

and how to compute two successive substitutions.

After the introduction and a description of the axioms, we give some examples
and properties that follow from the axioms, then we proceed to define a notion of
simultaneous substitution and prove a completeness theorem that makes precise and
justifies the intuition that formulas true for the usual substitution can be proved from
the logos axioms only.

The study of the abstract notion of substitution was initiated in the twenties by
Curry as a part of what he called “prelogic” and culminated in the fifties (see for
example [4], [5] and [6]). On the other hand, the idea to work with explicit substitu-
tion, which is widespread nowadays, originated mainly in relation with the problem
of bound variables in the frameworks of the λ-calculus and computing systems. The
main differences between these approaches and the one scrutinised here is, on the
one hand, that we are not concerned with the notion of bound variable, and, on the
other hand, that we rely on axiomatisation and not on definitional or computational
aspects. Thus our notion of substitution is explicit, but only implicitely defined1.

2 The logos concept

A logos L is a structure 〈TerL, VL, vlL, subL〉, satisfying the following conditions:

• TerL is a non-empty class whose elements are called terms and will be denoted
by the letters M , N , P, . . .;

• VL is an infinite subclass of TerL of which elements will be called variables and
will be denoted by the letters x, y, z, . . .;

• vlL is a function from TerL to the finite subsets of VL, and vlL(M) is the set of
variables of M ;

• subL is a function from VL × TerL ×TerL to TerL, and subL(〈x,M,N〉) is the
result of the substitution of N for x in M ; it will be denoted by M [x := N ].

The subscript L will generally be omitted if the context allows it.
In short:

L = 〈Ter, V, vl, sub〉;
V ⊆ Ter, and|V | is infinite;

vl : Ter → Pω(V ); sub : V × Ter×Ter → Ter.

Moreover, L must verify the:

Axioms

Variables

1. vl(x) = {x}.
2. If x ∈ vl(M), then vl(M [x := N ]) = (vl(M) \ {x}) ∪ vl(N).

1The logoi were introduced some time ago in [1], where an argument connecting substitution and category theory

was presented. The structures discussed here are the same except that we will limit ourselves to logoi without types

and that the axioms are slightly different.
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Substitution

3. If y /∈ vl(M), then M [x := y][y := x] = M .
4. If x �= y and x /∈ vl(P ), then M [x := N ][y := P ] = M [y := P ][x := N [y := P ]].
5. x[x := M ] = M .
6. If x /∈ vl(M), then M [x := N ] = M .

Remarks. The concept of logos can be extended to structures with type restrictions:
see [1].

Axiom 1 is so deeply rooted in the structure of the logoi and will be so often used
in the sequel that we will generally omit mentioning it.

Axiom 3 allows the change of variables. Its condition may be weakened, by the
proof of proposition 3.1.2, to y /∈ vl(M) \ {x}.

The following example shows that axiom 3 is independent from the other axioms.
Consider an infinite set of variables and two non variable symbols f and g and call
“terms” expressions of the form Hx, where H is a possibly empty sequence of fs
and/or gs, and let x be its sole variable, i.e. vl(Hx) = {x}. Let γ(H) denote the
result of replacing the fs in H by g, and define Hz[x := H ′y] as γ(H)H ′y if z = x,
and Hz otherwise. Then all the axioms are verified, except 3, because fx[x := y][y :=
x] = gx �= fx.

Axiom 4, which is the fundamental axiom of substitution, does not depend on
M . However one may weaken it, to a form easier to check, by adding the condition
x ∈ vl(M) and y ∈ vl(M) ∪ vl(N). Indeed, in case x /∈ vl(M) and x /∈ vl(P ), we
have x /∈ vl(M [y := P ]), by axiom 2. Therefore, by axiom 6, M [x := N ][y := P ] =
M [y := P ] = M [y := P ][x := N [y := P ]]. And in case x ∈ vl(M), y /∈ vl(M)
and y /∈ vl(N), we have y /∈ vl(M [x := N ]), by axiom 2. Therefore, by axiom 6,
M [x := N ][y := P ] = M [x := N ] = M [y := P ][x := N [y := P ]].

The requirement that the variables of a logos form an infinite set, but that the
variables in a term be finite in number, is made to guarantee that there is a sufficiently
large amount of fresh variables outside a term or a given finite set of terms. This
requirement is not easily axiomatisable in a simple and appealing way because it
involves the concept of finite set. If one wants to axiomatise a notion of logos without
resorting to this concept, one can reinforce it by adding axioms to the effect that,
for each M1, . . . ,Mn, there exists a variable x such that x /∈ vl(M1) ∪ . . . ∪ vl(Mn).
Taking axiom 1 into account, this entails that, for each M1, . . . ,Mn and m, there
are distinct variables x1, . . . , xm such that x1, . . . , xm /∈ U = vl(M1) ∪ . . . ∪ vl(Mn);
because if x1, . . . , xm−1 /∈ U , then there exists a variable xm /∈ U ∪ {x1, . . . , xm−1} =
U ∪ vl(x1) ∪ . . . ∪ vl(xm−1). Another interesting possibility arises when one simply
drops the requirement that the set of variables be infinite, without imposing at the
same time the existence of fresh variables. However, we will not go along these paths
here as they don’t concern the most familiar examples of logoi; they would also affect
the other axioms and complicate significantly the end of the paper.

It follows easily from axioms 1 and 2 that either there is, for each n > 0, a term
with exactly n distinct variables or that every term has no more than one variable.
Combined with the fact that a logos may have “constants”, i.e. terms without vari-
ables, we are thus left with four major alternatives concerning the cardinalities of the
vl(M). It was shown in [1] that a logos with types in which the terms have exactly
one variable is essentially a category.
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2.1 Examples

Logoi of substitution. It will hardly be a surprise that the terms of a language with
ordinary substitution form a logos. One starts with an infinite set of variables and a
set of symbols for n-ary operations φn. The terms are defined by:

• variables are terms;
• if M1, . . . ,Mn ∈ Ter, then φn(M1, . . . ,Mn) ∈ Ter.

One defines also vl and sub inductively:

• vl(x) = {x};
• vl(φn(M1, . . . ,Mn)) = vl(M1) ∪ . . . ∪ vl(Mn);
• x[x := M ] = M ;
• y[x := M ] = y, if y �= x;
• φn(M1, . . . ,Mn) [x := N ] = φn(M1[x := N ], . . . ,Mn[x := N ]).

This includes the case of the constants: φ0[x := N ] = φ0.

Set abstracts. The following example illustrates generalisations of the logos of sub-
stitution when terms can contain bound variables.

In addition to the binary relation symbol ε, the parentheses, and the usual logical
symbols ¬, ∧, ∨, →, ↔, ∀, ∃, there is an abstract formation operator { | } and
a countably infinite set of variables. Terms are expressions, made up from these
symbols, defined inductively (together with the notion of formula) as follows:

• variables are terms;
• if P and Q are terms P ε Q is an atomic formula;
• if A, B are formulas and x is a variable, then ¬A, (A ∧ B), (A ∨ B), (A → B),

(A↔ B), ∀xA and ∃xA are formulas and {x | A } is a term.

The variable binding operators are ∀, ∃ and { | }. If the bound variables are
“eliminated” by a method like Bourbaki’s squares, then we can define Q[x := P ]
(simultaneously with A[x := P ]) in the natural inductive way.

We can of course restrict the collection of terms to any subcollection closed under
substitution (see for example [2]).

The completeness result below entails that we can handle such cases as if the terms
had the same structure as in the first example.

Logoi of finite sequences and trees. The set of finite sequences of elements of a set
with an infinite subset of “variables”, endowed with the evident substitution opera-
tion, is a logos.

This generalises in a natural way to trees with finite branches and leafs labelled with
constants (non variables) and a finite set of variables. In these last logoi a variable
can have infinitely many “occurrences” in a term.

The logoi of finite sets. Another example of logos arises when the finite subsets of
an infinite set are considered as terms, the variables being the unit subsets. vl(M) is
then nothing else than the set of singletons included in M . M [x := N ] is (M \x)∪N ,
if x ∈ vl(M) and M if x /∈ vl(M).
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Sets. Let A be an infinite set of atoms. The variables are the elements of A, and
the other terms are the hereditarily finite well-founded sets over A. This is a logos if
one defines inductively vl(x) = {x}, x[x := N ] = N , y[x := N ] = y for y �= x; and, if
M is not a variable, vl(M) =

⋃{ vl(N) | N ∈ M }, and M [x := N ] = {P [x := N ] |
P ∈M }.

This example generalises to non well-founded sets, if one replaces e.g. the founda-
tion axiom by the antifoundation axiom called AFA —extended so as to allow the
existence of atoms—, thus opening the way to non well-founded languages.

3 Simultaneous substitution
Proposition 3.1
1. Renaming the variables: If y /∈ vl(M), M [x := N ] = M [x := y][y := N ].
2.M [x := x] = M .

Proof.
1. Let us suppose that y /∈ vl(M) and let z /∈ vl(M)∪vl(N)∪{x, y}. We have, on the
one hand,
M [x := N ] = M [x := z][z := x][x := N ] (by axiom 3)
= M [x := z][x := N ][z := N ] (by axioms 4 and 5)
= M [x := z][z := N ]. (by axioms 2 and 6)

And, on the other hand,
M [x := y][y := N ] = M [x := z][z := x][x := y][y := N ] (by axiom 3)
= M [x := z][x := y][z := y][y := N ] (by axioms 4 and 5)
= M [x := z][z := y][y := N ] (by axioms 2 and 6)
= M [x := z][y := N ][z := N ] (by axioms 4 and 5)
= M [x := z][z := N ]. (by axioms 2 and 6)

2. Even though one deduces immediately M [x := x] = M from 1 and axiom 3, one
can still prove it more simply as follows. If y /∈ vl(M) and y �= x, then
M [x := x] = M [x := y][y := x][x := x] (by axiom 3)
= M [x := y][x := x][y := x] (by axioms 4 and 5)
= M [x := y][y := x] (by axioms 2 and 6)
= M . (by axiom 3)

The sequence of terms N1, . . . , Nn is free for the sequence of variables x1, . . . , xn

if and only if these variables are distinct and xj /∈ vl(Ni), if 1 ≤ i < j ≤ n. This
definition is intended to provide conditions for a sequence of substitutions
[x1 := N1] . . . [xn := Nn] to be considered as a simultaneous substitution of the Nis
for the xis.

The sequence of variables x′1, . . . , x
′
n is suitable for the sequence x1, . . . , xn, M ,

N1, . . . , Nn if and only if they are not in vl(M); and N1, . . . , Nn is free for x′1, . . . , x
′
n,

and x′1, . . . , x
′
n is free for x1, . . . , xn. The variables in a suitable sequence are intended

to be used as fresh variables enabling simultaneous substitution, even when a sequence
of terms is not free for the corresponding sequence of variables.
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We observe that (for 1 ≤ i1 < . . . < ik ≤ n) if N1, . . . , Nn is free for x1, . . . , xn,
then Ni1 , . . . , Nik

is free for xi1 , . . . , xik
as well; and if x1, . . . , xn is suitable for

x′1, . . . , x
′
n,M,N1, . . . , Nn, then xi1 , . . . , xik

is suitable for x′i1 , . . . , x
′
ik

, M,Ni1 , . . . , Nik
.

We also note that if x′1, . . . , x
′
n is free for x1, . . . , xn, then xi �= x′j , if 1 ≤ j < i ≤ n.

For convenience, let us define vlxM (N) as being vl(N) if x ∈ vl(M) and otherwise
the empty set.

Proposition 3.2
1. If N1, . . . , Nn is free for x1, . . . , xn, then

vl(M [x1 := N1] . . . [xn := Nn]) =
(vl(M) \ {x1, . . . , xn}) ∪ vlx1M (N1) ∪ . . . ∪ vlxnM (Nn).

In particular, vl(M [x := N ]) = (vl(M) \ {x}) ∪ vlxM (N).
2. Generalisation of proposition 3.1.1: if x′1, . . . , x

′
n is suitable for

x1, . . . , xn,M,N1, . . . , Nn, and if N1, . . . , Nn is free for x1, . . . , xn, then

M [x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn] = M [x1 := N1] . . . [xn := Nn].

Proof. The two parts of the proposition are established by induction on n.
1. We suppose thatN1, . . . , Nn+1 is free for x1, . . . , xn+1, which means thatN1, . . . , Nn

is free for x1, . . . , xn and that xn+1 /∈ vl(N1) ∪ . . . ∪ vl(Nn) ∪ {x1, . . . , xn}. Thus, by
inductive hypothesis, xn+1 ∈ vl(M [x1 := N1] . . . [xn := Nn]) if and only if xn+1 ∈
vl(M); hence vlxn+1M [x1:=N1]...[xn:=Nn](Nn+1) = vlxn+1M (Nn+1).

We thus obtain:
vl(M [x1 := N1] . . . [xn := Nn][xn+1 := Nn+1])
= (vl(M [x1 := N1] . . . [xn := Nn]) \ {xn+1}) ∪ vlxn+1M (Nn+1) (by axioms 2 and 6)
= (((vl(M) \ {x1, . . . , xn}) ∪ vlx1M (N1) ∪ . . . ∪ vlxnM (Nn))
\{xn+1}) ∪ vlxn+1M (Nn+1) (by inductive hypothesis)
= (vl(M) \ {x1, . . . , xn+1}) ∪ vlx1M (N1) ∪ . . . ∪ vlxn+1M (Nn+1).

2. We have:
M [x1 := x′1] . . . [xn := x′n][xn+1 := x′n+1][x

′
1 := N1]

= M [x1 := x′1][x
′
1 := N1][x2 := x′2] . . . [xn+1 := x′n+1] (by axioms 4 and 6)

= M [x1 := N1][x2 := x′2] . . . [xn+1 := x′n+1]. (by proposition 3.1.1)
If 2 ≤ i ≤ n+ 1, then, by 1,

x′i /∈ (vl(M) \ {x1}) ∪ vlx1M (N1) = vl(M [x1 := N1]). Hence x′2, . . . , x
′
n+1 is suitable

for x2, . . . , xn+1,M [x1 := N1], N2, . . . , Nn, and, by inductive hypothesis,
M [x1 := N1][x2 := x′2] . . . [xn+1 := x′n+1][x

′
2 := N2] . . . [x′n+1 := Nn+1] =

M [x1 := N1][x2 := N2] . . . [xn+1 := Nn+1].

We now show that the simultaneous substitution is definable in every logos.
Then we establish the properties that we will use in the proof of the completeness
theorem. In order to define simultaneous substitution properly, we first show the

Lemma 3.3
If both sequences of variables x′1, . . . , x

′
n and x′′1 , . . . , x

′′
n are suitable for x1, . . . , xn,

M , N1, . . . , Nn, then
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M [x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn] =
M [x1 := x′′1 ] . . . [xn := x′′n][x′′1 := N1] . . . [x′′n := Nn].

Proof. Let us choose a sequence of variables x∗1, . . . , x
∗
n that is suitable for x1, . . . , xn,

M , N1, . . . , Nn and distinct from the x′1, . . . , x
′
n, x

′′
1 , . . . , x

′′
n.

It is clear that

• x∗1, . . . , x∗n is suitable for x1, . . . , xn, M , x′1, . . . , x
′
n, by axiom 1;

• x′1, . . . , x′n is suitable for x∗1, . . . , x
∗
n, M [x1 := x∗1] . . . [xn := x∗n], N1, . . . , Nn, be-

cause, if 1 ≤ i ≤ n, x′i /∈ vl(M [x1 := x∗1] . . . [xn := x∗n]) ⊆ vl(M)∪ {x∗1, . . . , x∗n}, by
proposition 3.2.1.

Therefore, by proposition 3.2.2:
M [x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn] =
M [x1 := x∗1] . . . [xn := x∗n][x∗1 := x′1] . . . [x

∗
n := x′n]

[x′1 := N1] . . . [x′n := Nn] =
M [x1 := x∗1] . . . [xn := x∗n][x∗1 := N1] . . . [x∗n := Nn].
In the same way,
M [x1 := x′′1 ] . . . [xn := x′′n][x′′1 := N1] . . . [x′′n := Nn] =
M [x1 := x∗1] . . . [xn := x∗n][x∗1 := N1] . . . [x∗n := Nn].

We are now in a position to give the definition of simultaneous substitution.
If n ≥ 1 and the sequence of variables x′1, . . . , x

′
n is suitable for x1, . . . , xn, M ,

N1, . . . , Nn,
M [x1 := N1, . . . , xn := Nn]

is, by definition, the term M [x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn].
This definition is legitimate because, on the one hand, it is always possible to choose

a sequence of variables x′1, . . . , x
′
n that is suitable and whose variables are outside a

given finite set; and, on the other hand, lemma 3.3 shows that the definition does not
depend on the particular choice of the sequence x′1, . . . , x

′
n.

Let us notice that

• if n = 0, M [ ] = M ;
• if n = 1, then, since any (sequence of one) term is clearly free for any (sequence of

one) variable, it follows from proposition 3.1.1 that the simultaneous substitution
of N for x is nothing else than the previous [x := N ]. Therefore, our notational
conventions are fortunately consistent.

If a number n is specified or can be inferred from the context, then the notation �X
may be used to denote X1, . . . , Xn; and the notation [�x := �N ] may be used to denote
[x1 := N1, . . . , xn := Nn].

Proposition 3.4
1. If the sequence of terms N1, . . . , Nn is free for x1, . . . , xn, then

M [�x := �N ] = M [x1 := N1] . . . [xn := Nn].

2. vl(M [�x := �N ]) = vl(M) \ {x1, . . . , xn} ∪ vlx1M (N1) ∪ . . . ∪ vlxnM (Nn).
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3.M [�x := �x] = M .
4. If y /∈ vl(M) \ {x1, . . . , xn}, then

M [�x := �N ][y := P ] = M [x1 := N1[y := P ], . . . , xn := Nn[y := P ]].

Proof.
1. This statement is a reformulation of proposition 3.2.2.

2. If x′1, . . . , x
′
n is suitable for x1, . . . , xn, M , N1, . . . , Nn then:

vl(M [�x := �N ]) = vl(M [�x := �x′][�x′ := �N ]) (by 1)
= (vl(M [�x := �x′]) \ {x′1, . . . , x′n}) ∪ vlx′

1M [�x:=�x′](N1) ∪ . . . ∪ vlx′
nM [�x:=�x′](Nn).
(by proposition 3.2)

However:
vl(M [�x := �x′]) = (vl(M) \ {x1, . . . , xn}) ∪ vlx1M (x′1) ∪ . . . ∪ vlxnM (x′n).

(by proposition 3.2)
Thus vlx′

i
M [�x:=�x′](Ni) = vlxiM (Ni), if 1 ≤ i ≤ n.

Consequently,
vl(M [�x := �N ]) = vl(M [�x := �x′][�x′ := �N ]) =
(((vl(M) \ {x1, . . . , xn}) ∪ vlx1M (x′1) ∪ . . . ∪ vlxnM (x′n))
\{x′1, . . . , x′n}) ∪ vlx1M (N1) ∪ . . . ∪ vlxnM (Nn) =
(vl(M) \ {x1, . . . , xn}) ∪ vlx1M (N1) ∪ . . . ∪ vlxnM (Nn).

3. Since x1, . . . , xn is free for x1, . . . , xn if they are distinct, we have, by 1 and propo-
sition 3.1.2, M [�x := �x] = M [x1 := x1] . . . [xn := xn] = M .

4. Let x′1, . . . , x
′
n be a sequence of variables suitable for x1, . . . , xn, M , N1, . . . , Nn and

for x1, . . . , xn, M , N1[y := P ], . . . , Nn[y := P ]; and whose variables are distinct from
y and not in vl(P ). By hypothesis and proposition 3.2.1, y /∈ vl(M [x1 := x′1] . . . [xn :=
x′n]). Hence we have:
M [�x := �N ][y := P ] =
M [x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn][y := P ] =
M [x1 := x′1] . . . [xn := x′n][y := P ][x′1 := N1[y := P ]] . . . [x′n := Nn[y := P ]]

(by axiom 4)
= M [x1 := x′1] . . . [xn := x′n][x′1 := N1[y := P ]] . . . [x′n := Nn[y := P ]] (by axiom 6)
= M [x1 := N1[y := P ], . . . , xn := Nn[y := P ]].

3.1 The intuitive simultaneous substitution

The result of the intuitive simultaneous substitution in a substitution logos ofN1, . . . , Nn

for x1, . . . , xn in M , denoted here by M [N1/x1, . . . , Nn/xn], can be defined as follows:

• xi[ �N/�x] = Ni, if 1 ≤ i ≤ n;
• x[ �N/�x] = x, if x /∈ {x1, . . . , xn};
• φm(M1, . . . ,Mm)[ �N/�x] = φm(M1[ �N/�x], . . . ,Mm[ �N/�x]).
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Proposition 3.5
In the substitution logoi, one has M [ �N/�x] = M [�x := �N ].

Proof. By induction on the length of the terms:

• xi[ �N/�x] = Ni = xi[�x := �N ], if 1 ≤ i ≤ n, by axiom 5;
• x[ �N/�x] = x = x[�x := �N ], if x /∈ {x1, . . . , xn}, by axiom 6;
• Let x′1, . . . , x

′
n be suitable for x1, . . . , xn, φ

m(M1, . . . ,Mm), �N . Then it is also
suitable for �x,Mi, �N if 1 ≤ i ≤ m.
Hence:
φm(M1, . . . ,Mm)[ �N/�x] =φm(M1[ �N/�x], . . . ,Mm[ �N/�x]) =
φm(M1[�x := �N ], . . . ,Mm[�x := �N ]) (by inductive hypothesis)
= φm(M1[x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn], . . . ,
Mm[x1 := x′1] . . . [xn := x′n][x′1 := N1] . . . [x′n := Nn]) =
φm(M1, . . . ,Mm)[�x := �N ].

4 Completeness

4.1 The logos language

The language of the logoi contains a denumerable set of variables, a ternary
operation symbol Sub, the binary relation symbol ∈vl and the usual logical connectives
=, ¬, ∧, ∨, → ↔, ∀, ∃.

The concepts of term and of formula are defined as usual. Terms of the form
Sub(S, T,R) will be denoted by T (S := R).

A valuation α of the variables of the language to the terms of a logos L extends
naturally by induction to the terms of the language by interpreting T (S := R) as the
result of an unconditioned substitution:

α(T (S := R)) = α(T )[α(S) := α(R)], if α(S) is a variable; and
α(T (S := R)) = α(T ) else.

The satisfaction of the atomic formulas can now be defined as:

L |=α T ∈vl R if and only if α(T ) ∈ vl(α(R)),
L |=α T = R if and only if α(T ) = α(R).

A formula is valid in a logos if, interpreting the logical connectives as usual, it is
satisfied by any valuation in that logos.

We will actually consider only some kind of terms and of formulas, namely the
“simple terms”, the “conditions” and the “conditional equations”, which we define as
follows:

• a condition is a formula in which the symbol Sub does not occur and where the
quantifiers are restricted to the formulas of the form v ∈vl v —conditions are thus
built up from atomic formulas of the form v = w, v ∈vl w, according to the syntax
of propositional logic and the rule: if A is a condition, then ∀v (v ∈vl v → A) and
∃v (v ∈vl v ∧A) are also conditions;

• a simple term is either a variable or a term of the form T (v := R), where v is
a variable and T,R simple terms—thus every simple term has the form uσ, for a



10 On the notion of substitution

variable u and a suffix constituted of a, possibly empty, sequence σ of (v := R),
with simple terms R;

• an equation is an expression of the form T = S, where T and S are simple terms;
• a conditional equation is a formula of the form C → E, where C is a condition

and E an equation.

This definition of conditional equation is intended to express the notion of essential
property of substitution, and contrasts it with the contingent or the accidental ones.
For example, the axioms of substitution are all conditional equations, but a statement
concerning the number of terms or the maximum number of variables in the terms is
not a conditional equation. The completeness theorem, which states that the axioms
of logoi entail exactly the conditional equations valid in the substitution logoi, enables
us, for example, when we are working in first order logic, to assume simply that the
terms form a logos, without worrying about their internal structure.

The sentence “v is a variable” is expressed by the condition v ∈vl v. A sentence
like “w has exactly three variables distinct from u and v” can also be expressed as
a condition. On the other hand, formulas like “Sub(u,w, v) = Sub(u,w, v′)” cannot
be expressed as a condition, as will be seen in proposition 5.1.2. It will also be a
consequence of the completeness theorem that the formula Sub(v, u, w) = u → v �∈vl

u ∨ v = w, which is valid in the substitution logoi but not in every logos, cannot be
expressed as a conditional equation.

4.2 The completeness theorem

Theorem 4.1
A conditional equation is valid in every logos if and only if it is valid in every substi-
tution logos.

Proof. We take the proof from [3]. A bijective function F between a finite set of
terms of the logos S and a finite set of terms of the logos L is a partial isomorphism
between S and L if and only if

• any variable of a term in the domain of F is in the domain, and any variable of a
term in the range of F is in the range;

• M ∈ vlS(N) if and only if F (M) ∈ vlL(F (N)) for M , N in the domain of F .

We see that

• for M in the domain of F , M is a variable if and only if F (M) is a variable,
because M ∈ vlS(M) iff F (M) ∈ vlL(F (M));

• if x is a variable of S not in the domain of F and y is a variable of L not in
the range of F , then the extension of F obtained by associating x with y is still
a partial isomorphism between S and L, because x ∈ vlS(x), y ∈ vlL(y), and
for all M in the domain of F , x /∈ vlS(M), y /∈ vlL(F (M)), M �∈ vlS(x) and
F (M) �∈ vlL(y).

Therefore, a back-and-forth argument shows that, if C is a condition then

S |=α C if and only ifL |=β C,
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if there is a partial isomorphism F whose domain includes the images under α of the
free variables in C and such that β(v) = F (α(v)), for v free in C.

Let now X be a finite set of terms of a logos L including all the variables belonging
to a term in X. To each term M of X that is not a variable, we injectively associate a
functional symbol φM of a substitution logos S whose arity is the number of variables
of M , and we define a bijection ν... between the variables in X and a finite set of
variables of S. Let us moreover, for convenience, fix a strict order ≺ on the variables
in the range of ν. The function F of range X defined by

• F (νx) = x;
• F (φM (νx1 , . . . , νxn)) = M ,

where νx1 ≺ . . . ≺ νxn
and vlL(M) = {x1, . . . , xn},

is a partial isomorphism between S and L.
The crucial fact that the terms in a substitution logos have a unique construction

from the functional symbols and the variables, allows one to extend F by induction
to a function F̂ defined for all terms in S containing the φM and the variables in the
range of ν:

F̂ (φM (M1, . . . ,Mn)) = M [x1 := F̂ (M1), . . . , xn := F̂ (Mn)],

where F (φM (νx1 , . . . , νxn
)) = M .

We note that this agrees with the definition of F (φM (νx1 , . . . , νxn
)), by proposi-

tion 3.4.3, and that the domain of F̂ is closed under substitution.
One shows by induction on the terms of S that:

F̂ (M [νy := N ]) = F̂ (M)[y := F̂ (N)]

as follows:

• F̂ (νy[νy := N ]) = F̂ (N) = y[y := F̂ (N)] = F̂ (νy)[y := F̂ (N)] (by axiom 5);

• F̂ (νx[νy := N ]) = F̂ (νx) = F̂ (νx)[y := F̂ (N)], if x �= y (by axioms 1 and 6);
• if F (φP (νx1 , . . . , νxn

)) = P , then:
F̂ (φP (M1, . . . ,Mn)[νy := N ]) =
F̂ (φP (M1[νy := N ], . . . ,Mn[νy := N ])) =
P [x1 := F̂ (M1[νy := N ]), . . . , xn := F̂ (Mn[νy := N ])] =
P [x1 := F̂ (M1)[y := F̂ (N)], . . . , xn := F̂ (Mn)[y := F̂ (N)]]

(by inductive hypothesis)
= P [x1 := F̂ (M1), . . . , xn := F̂ (Mn)][y := F̂ (N)]

(by proposition 3.4.4, since vl(P ) = {x1, . . . , xn})
= F̂ (φP (M1, . . . ,Mn))[y := F̂ (N)].

Let us suppose finally that C → E is valid in S and let β be a valuation to the
terms of a logos L that makes C true. Let F be —as above— a partial isomorphism
between a substitution logos S and L, whose range includes the range of β. Let also
α be a valuation in S such that F (α(v)) = β(v), for the variables v occurring free in
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C → E. It was seen that C is true in S for the valuation α. Since C → E is valid in
S by assumption, E is true in S for α and thus it remains to show that E is true in
L for β.
This is done by showing inductively that F̂ (α(T )) = β(T ), for all simple terms “gen-
erated” by the free variables of C → E, as follows. We suppose that α(v) is a variable
of S, the other situation being trivial2.
We have, by inductive hypothesis:
F̂ (α(T (v := R)) = F̂ (α(T )[α(v) := α(R)]) = F̂ (α(T )[νβ(v) := α(R)]) =
β(T )[β(v) := β(R)] = β(T (v := R)).

Corollary 4.2
Let LC be the union of a denumerable set of variables and a denumerable set of
constants, and let LC∗ be the logos of the finite sequences of elements of LC. A
conditional equation is valid in every logos if and only if it is valid in LC∗.

Proof. Let’s assume that C → R = T is valid in LC∗, and that α is a valuation
in a substitution logos making C true. Let us associate to each function symbol φn

occurring in a term of the image under α of a variable occurring free in C → E a
distinct constant φnpol in L —its “polish notation”— and let us further translate
each of these terms in the logos LC∗ as follows:

• xpol ≡ x;
• φn(N1, . . . , Nm)pol ≡ φnpolN1

pol . . . Nm
pol,

where we have supposed w.l.o.g. that the variables in the domain of . . . pol belong to
the substitution logos.

The valuation associating α(v)pol to each v free in C → E makes C true in LC∗.
By assumption, it follows that it also makes R = T true in LC∗. Thus R = T is true
in the substitution logos relatively to the valuation α. Hence it is valid in every logos,
by the theorem.

This result would be false if LC comprised only variables, as it happens e.g. on
my computer where the replacement of any character in a text is permitted. Indeed,
in that case the “commutative property”, “v is the sole variable in u and u′” →
u (v := u′) = u′ (v := u), is valid in this logos, but not in every substitution logos.
However, we have:

Corollary 4.3
Let L∗ be the logos of the finite sequences of elements of a denumerable set of variables
L. A conditional equation without quantifiers is valid in every logos if and only if it
is valid in L∗.

Proof. Let us assume that C → R = T is valid in L∗, and that C is true with respect
to the valuation α in LC∗. We associate to each constant a occurring in a term α(v),
for v a free variable in C → R = T , a distinct variable xa in L. We then translate
these α(v) into L∗ by replacing the a by xa.

A valuation, associating the translation of α(v) to v, makes C true in L∗, because
C is quantifier-free. It follows that it also makes R = T true in L∗. Hence R = T

2It is at this point that we need the restriction to the simple terms.
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is true in LC∗ relatively to α. Therefore C → R = T is valid in every logos, by
corollary 4.2.

5 Properties of substitution

Proposition 5.1
1. The formula v ∈vl T is equivalent to conditions, if T is a simple term.
2. Formulas of the form T = S, or even v = T , are generally not equivalent to
conditions.

Proof.
1. Using proposition 3.2.1, we can prove this by induction on the length of simple
terms because v ∈vl T (w := S) is equivalent to
(v ∈vl T ∧ ¬v = w) ∨ (v ∈vl S ∧ w ∈vl T ).

2. The first half of the proof of the theorem shows that if a condition is satisfied in a
logos, then it is satisfied in a substitution logos.

Therefore v (w := w′) = v (w := w′′) is not equivalent to a condition because the
formula v (w := w′) = v (w := w′′) ∧ w ∈vl v ∧ ¬w′ = w′′, though never satisfiable in
a substitution logos, is satisfied in the logos of finite sets by a valuation α such that
α(v) = {x, y}, α(w) = {x}, α(w′) = {x} and α(w′′) = {x, y}, where x �= y.

Even v = v′ (w := w′) is not equivalent to a condition because the formula v =
v′ (w := w′) ∧ v ∈vl v ∧ ¬v′ ∈vl v

′, which is not satisfiable in any substitution logos,
is again satisfied in the logos of finite sets by a valuation α verifying α(v) = {x},
α(v′) = {x, y}, α(w) = {y} and α(w′) = {x}, for x �= y.

As a consequence of proposition 5.1.1, we note that the notions “ �N is free for
�x ” and “�x′ is suitable for �x,M, �N ” are expressible as conditions —for any simple
terms M, �N . Therefore many properties of the simultaneous substitution can be
translated as conditional equations and thus, by proposition 3.5, easily checked via
the substitution logoi.

5.1 Substitutive properties

We conclude by mentioning two remarkable kinds of properties. The first one is
constituted by the properties of the substitution suffix alone. They can be expressed
by conditional equations C → vσ = vτ such that v doesn’t occur free in C, nor in σ,
τ . Axiom 4, for example, can be written as such a suffix equation:

v ∈vl v ∧ v′ ∈vl v
′ ∧ v �= v′ ∧ v �∈vl w

′ →
u[v := w][v′ := w′] = u[v′ := w′][v := w[v′ := w′]]

However, when naturally translated in the logos language, the three other axioms of
substitution are not equations of this sort:

v ∈vl v ∧ w ∈vl w ∧ w �∈vl u→ u[v := w][w := v] = u,

v ∈vl v → v[v := w] = w,

v ∈vl v ∧ v �∈vl u → u[v := w] = u.
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In the expression of suitability, the properties involving simultaneous substitution,
that, at first sight, seem to concern the suffix only, contain hidden conditions to the
effect that some variables are not in the term in which the substitutions are performed.
In order to take such properties into account, we relax the restriction that v cannot
occur free in C, and we thus define a substitutive equation as a conditional equation
of the form

D ∧ w1 /∈ v ∧ . . . ∧ wn /∈ v → vσ = vτ,

where the free occurrences of v in the condition are all indicated, i.e. v doesn’t occur
free in D, σ, τ , and v is not one of the variables w1, . . . , wn.

Thus, sinceD∧w1 /∈ v∧. . .∧wn /∈ v doesn’t mention v, except for the specification of
fresh variables, a substitutive equation may also be seen as a description of a property
of the substitution suffix —a “substitutive property”— in a somewhat generalized
sense. Of the four substitution axioms, the third is now the only one that is not a
substitutive property.

Our last proposition states that a substitutive property holds if and only if it holds
for the variables.

Proposition 5.2
A substitutive equation C → vσ = vτ is valid in every logos if and only if the
conditional equation C ∧ v ∈vl v → vσ = vτ is valid in every logos.

Proof. By the theorem, this follows from the fact that the result is true for the
substitution logoi: such a condition on v is obviously verified by the subterms of a
term verifying it.

5.1.1 Examples
Using proposition 5.2, the following substitutive properties are easily seen to hold in
every logos:

• M [x := y][y := x] = M [y := x] —this property of the suffix entails axiom 3 (with
axiom 6).

• M [x1 := N1, . . . , xn := Nn] = M [xπ(1) := Nπ(1), . . . , xπ(n) := Nπ(n)], for every
permutation π of {1, . . . , n}.

• If y1, . . . , ym /∈ vl(M), then

M [x1 := N1, . . . , xn := Nn, y1 := P1, . . . , ym := Pm] = M [x1 := N1, . . . , xn := Nn].

• A sequence of substitutions reduces to a simultaneous substitution. Let Mσ =
M [x1 := N1] . . . [xn := Nn] and put Hn = Nn and Hj = Nj [xj+1 := Nj+1] . . .
[xn := Nn], if j < n. Then

Mσ = M [xi1 := Hi1 , . . . , xik
:= Hik

],

for 1 ≤ i1 < . . . < ik ≤ n, xip �= xj if j < ip, and {xi1 , . . . , xik
} = {x1, . . . , xn}.
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