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Abstract

Single-track circuit codes are circuit codes with codewords of length n such that all the n tracks which correspond
to the n distinct coordinates of the codewords are cyclic shifts of the �rst track. These codes simul taneously generalise
single-track Gray codes and ordinary circuit codes. They are useful in angular quantisation applications in which
error detecting and/or correcting capabilities are needed. A parameter, k, called the spread of the code, measures the
strength of this error control capability. We consider the existence of single-track circuit codes for small lengths n � 17
and spreads k � 6, constructing some optimal and many good examples. We then give a general construction method
for single-track circuit codes which makes use of ordinary circuit codes. We use this construction to construct examples
of codes with 360 and 1000 codewords which are of practical importance. We also use the construction to prove a general
result on the existence of single-track circuit codes for general spreads.
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I. Introduction

A length n Gray code is simply a cyclic list of distinct binary n-tuples, called the codewords, with the
property that any two adjacent codewords di�er in exactly one component. A common use of Gray codes
is in reducing quantisation errors in various types of analogue-to-digital conversion systems [11], [12]. They
have also found applications in many other areas of coding and computing science | see the introduction to
[18] for a list of references.
Spread k circuit codes are a generalisation of Gray codes: they can be thought of as being Gray codes

having additional error-detecting capability. For k � 1, a spread k code is de�ned to be a Gray code in which
two words of the code either lie at most k � 1 positions apart in the list of codewords or di�er in at least
k components. Thus a spread 1 code is just a Gray code. Spread 2 codes are more commonly known as
snake-in-the-box codes. Circuit codes have a long history (see [1] and the references cited there), and many
optimal codes and general constructions for families of codes are known: these results are summarised in
Section III below.
As an example of the use of circuit codes in analogue-to-digital conversion, a length n, spread k circuit

code C can be used to record the absolute angular positions of a rotating wheel by encoding (e.g. optically)
the codewords of C in sectors on n concentrically arranged tracks. Then n reading heads, mounted radially
across the tracks su�ce to recover the codewords. The number of codewords in C determines the accuracy
with which angles can be resolved. Quantisation errors are minimised by using a Gray encoding while errors
resulting from equipment malfunction can be dealt with using the spread capability of the code: any error of
weight r < k either results in an angle precisely r sectors away from the correct sector or leads to a word W
that does not lie in C (so that the error is detectable). In the latter case, if 2r < k, then the wordW 0 in C that
is closest to W in Hamming distance is in turn at most distance r from the correct codeword. The resulting
angular error is at most r sectors. In this way, errors of weight up to bk�1

2
c can be `partially corrected'.

As resolution and error-correcting capability increase, so must the code length and number of concentric
tracks n. The end result is that when high resolution and/or error-tolerant codes are needed, encoders with
large physical dimensions must be used. This poses problems for the design of small-scale or high-speed
devices. Single-track Gray codes were proposed in [10] and further explored in [9], [18] as a way of overcoming
these problems. If a length n single-track Gray code is used in the quantisation application above, then the
bits of any codeword can be obtained solely from a single track, the n reading heads being spaced around that
single track at some �xed relative positions. Thus the physical dimensions of an encoder can be much reduced
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over those of one using a traditional Gray code. One of the main contributions of [10], [9] was to show that for
most resolutions of practical interest, the use of single-track Gray codes does not entail a signi�cant increase
in the code length n. Thus practical single-track encoders can be realised using almost the same number of
reading heads as is needed for their multi-track counterparts. For example, a length 9 single-track code with
360 codewords was reported in [9], and no Gray code with 360 codewords can have length less than this. So
a one-degree resolution code can be realised using just a single track and the minimum of 9 reading heads.
Single-track Gray codes reduce quantisation errors but do not provide any means for error-correction or

error-detection. It is therefore very natural to ask for single-track versions of spread k circuit codes. If it
is possible to attain a particular resolution using a spread k single-track circuit code without signi�cantly
increasing the length n over that of a spread k standard circuit code, then once again we would be able to
realise spread k single-track encoders using almost the same number of reading heads as for the usual spread
k multi-track encoders. There already exist bounds limiting the number of codewords in a spread k circuit
code (see Section III for a summary of these) and of course, a spread k single-track circuit code is also a
single-track Gray code, so the necessary conditions of [10] apply to the parameters of such a code. Thus the
possible number of codewords in a spread k single-track circuit code is already limited.
In this paper we address both the important practical question of �nding spread k single-track circuit codes

of a particular resolution (where the objective is to minimise the code length n) and the theoretical question
of �nding, for �xed n and k, length n, spread k single-track circuit codes of the highest possible resolution.
As well as reporting many good codes for small parameters n; k of practical interest, we give a exible
construction for spread k single-track circuit codes that achieves high resolutions with reasonable lengths n.
We then use this construction to describe families of good codes.
In fact, our construction uses an extension of the methods introduced in [10]. In essence, we take a length

n, spread k circuit code and embed its codewords in longer codewords to obtain a spread k single-track circuit
code whose length is slightly greater than n. The extra components that we add in our embedding are used
to guarantee that the resulting code is single-track. So from good spread k circuit codes, we can construct
good spread k single-track circuit codes.
As particular examples of our construction methods we report length 12, spread 2 and length 15, spread

4 single-track codes with 360 codewords and construct a length 20, spread 2 single-track code with 1000
codewords. This last code is optimal in the sense that no spread 2 single-track code with 1000 codewords can
have length less than 20.
We also construct, for every even k, a large family of spread k single-track codes. Our main result here is:
Theorem 1: Let k � 2 be even and let P (n; k) denote the maximum period of a length n; spread k circuit

code. Then there exists an (n; nt; k)-STCC for every n > max(12; k
3

2
� k2 + k + 2) and every even t in the

range

k � t � P (n� kb
q
2(n� k � 2)=kc � 2k; k):

Similar families can also be obtained for odd k using the techniques of our paper.
Our paper is organised as follows. In Section II we introduce some basic notation and give formal de�nitions

for the codes that we consider. We also give a characterisation of spread k circuit codes and single-track
circuit codes in terms of their coordinate sequences. In Section III, we derive simple necessary conditions on
the parameters of a single-track circuit code. We also give some upper bounds on the number of codewords
in a length n, spread k single-track circuit code. These are based on the bounds for general circuit codes
that already exist in the literature. In Section IV we report the results of a computer search for single-track
circuit codes with small lengths and spreads. In the Sections V and VI, we give our construction for spread
k single-track circuit codes and then in Section VII, some re�nements of this construction method with some
detailed examples. We use our method to obtain families of even spread single-track circuit codes in Section
VIII. Finally, we close by proposing a number of open problems and areas for future research.

II. Coordinate Sequences

We begin with some de�nitions and notations. Suppose n � 1 and k � n. For binary n-tuples W1;W2,
the usual Hamming distance between W1 and W2 is denoted by dH(W1;W2). We also use C to denote a list



W0; : : : ;Wp�1 of p binary n-tuples. We are interested in lists in which all n-tuples are di�erent and adjacent
n-tuples di�er in exactly one position, i.e. have Hamming distance 1. Such a list corresponds to a path of
vertices in the n-dimensional binary cube. If in addition the �rst and last n-tuple of C di�er in exactly one
position, then we say that C is a cyclic path.

De�nition 2: Let C be a cyclic path consisting of p binary n-tuples W0;W1; : : : ;Wp�1. Then C is said to
be a length n, period p cyclic Gray code with codewords W0;W1; : : : ;Wp�1:
For Wi;Wj in a cyclic path C, we de�ne

dC(Wi;Wj) = minf(i� j) mod p; (j � i) mod pg :

Thus dC represents the distance in the cyclic path C between codewords.
De�nition 3: A length n, period p, spread k circuit code (or (n; p; k)-CC) is a cyclic path C of p binary

n-tuples W0;W1; : : : ;Wp�1 with the property that for all 0 � i; j < p,

dH(Wi;Wj) < k ) dC(Wi;Wj) < k: (1)
It is clear from the above de�nition that an (n; p; k)-CC is also a (n; p; k0)-CC for every 1 � k0 � k.

Moreover, an (n; p; 1)-CC is simply a length n, period p cyclic Gray code: it is easy to see that when k = 1,
condition (1) simply states that the codewords are distinct.

De�nition 4: Let C be a cyclic path consisting of p binary n-tuples W0;W1; : : : ;Wp�1: Write
Wi = [w0

i ; w
1
i ; : : : ; w

n�1
i ]. We de�ne component sequence j of C, denoted Cj, to be the binary periodic

sequence
wj
0; w

j
1; : : : ; w

j
p�1

consisting of component j of each of the codewords of C (0 � j < n).
We can now give a formal de�nition of single-track circuit codes.
De�nition 5: Let C be a (n; p; k)-CC with component sequences Cj, 0 � j < n. Then C is said to be a

length n, period p, spread k single-track circuit code, (or (n; p; k)-STCC) if sequence Cj is a cyclic shift of
sequence C0 for each 1 � j < n.
We will �nd it convenient to work with the coordinate sequences of these codes [11]:
De�nition 6: Let C be a cyclic path consisting of p binary n-tuplesW0;W1; : : : ;Wp�1. Let si (0 � i < p�2)

denote the unique component in which Wi and Wi+1 di�er and let sp�1 denotes the unique component in
which wp�1 and w0 di�er. So 0 � si < n for each i. The sequence s with terms

s0; s1; : : : ; sp�1

is called the (cyclic) coordinate sequence of C.
It is clear that, given the �rst n-tuple W0 and the coordinate sequence s = s0; s1; : : : ; sp�2 of a cyclic

path, then the path itself can easily be reconstructed: we simply begin with W0 and generate subsequent
codewords by changing components according to the terms of the coordinate sequence. In fact, any choice
[w0; w1; : : : ; wn�1] of the �rst codeword W results in a cyclic path C(W ) which has coordinate sequence s.
Moreover, component sequence j of C([w0; w1; : : : ; wn�1]) is the complement of component sequence j of
C([0; 0; : : : ; 0]) if wj = 1.
We have the following results characterising coordinate sequences of (n; p; k)-CCs and (n; p; k)-STCCs:
Theorem 7: Let C be a cyclic path of p binary n-tuples with coordinate sequence s = s0; s1; : : : ; sp�1. Then

C is an (n; p; k)-CC if and only if:
i) Every symbol j, with 0 � j < n, occurs an even number of times in s.
ii) Every subsequence si; si+1; : : : ; si+r�1 of s, with k � r � p� k and subscripts taken modulo p, contains at
least k symbols with an odd number of occurrences each.

Lemma 8: If s = s0; s1; : : : ; sp�1 is the coordinate sequence of an (n; p; k)-STCC then, s satis�es properties
i) and ii) in Theorem 7 and:
iii) For each symbol j with 1 � j < n, the positions where symbol j occurs in s are a cyclic shift of the
positions where symbol 0 occurs in s.
Conversely, if s is any sequence satisfying properties i),ii) and iii) above, then there exists a choice for the
�rst codeword W such that the resulting cyclic path is an (n; p; k)-STCC.
The proofs of these two results follow closely the proofs of Theorem 2 and Lemma 3 of [10] and are omitted.



III. Necessary Conditions and Bounds on STCCs

We can now derive some necessary conditions on the period of (n; p; k)-STCCs. A �rst condition follows
form Theorem 7 and Lemma 8, by using a simple counting argument as in the proof of [10, Lemma 4]:

Lemma 9: Suppose there exists an (n; p; k)-STCC. Then p is an even multiple of n and 2n � p � 2n.
Furthermore, if P (n; k) denotes the maximum possible period p of an (n; p; k)-CC then, P (n; k) is certainly

also an upper-bound for the maximum period of an (n; p; k)-STCC. We therefore now give a brief summary of
what is known about P (n; k). This information will be helpful in proving the optimality of some of the small
codes constructed in the next section, as well as for judging the performance of our later general construction.
Mostly this information is in the form of upper bounds, though the exact value of P (n; k) is known for a
variety of small parameters.
We mentioned already that spread 1 circuit codes are cyclic Gray codes, so P (n; 1) = 2n for every n [10,

Lemma 11].
For spread 2 codes, the best upper bounds are to be found in a series of papers [5], [8], [15], [16], [19], [21]

with the best bound for large n being [22]:

P (n; 2) � 2n�1
�
1�

1

89n1=2
+O(

1

n
)

�
:

The exact value of P (n; 2) is known only for n � 7 (the values are 4,6,8,14 and 26 for n = 2,3,4,5 and 6
respectively [3] and 48 for n = 7 [14]) while the best general construction methods known at the moment [1]
show that:

P (n; 2) >
77

256
� 2n for all n:

A table of the highest known periods for spread 2 circuit codes of length n � 20 is also given in [1].
For spreads k � 3, the known results are much less comprehensive. For a number of small values of n and

k, P (n; k) is known exactly [12], [4], [17]. The best possible codes are also known when k is large compared
to n: it is shown in [6], [20] that

P (n; k) = 2n for n < d3k
2
e+ 2;

P (d3k
2
e+ 2; k) = 4k + 4 for k odd;

P (d3k
2
e+ 2; k) = 4k + 6 for k even;

P (d3k
2
e+ 3; k) = 4k + 8 for k � 9 odd.

The following upper bounds on P (n; k) for general n and k can be found in [2]:

P (n; 2t+ 1) �
2n�n

t

�
� 2

�n�1
t�1
� for n > 2t+ 1 (2)

and

P (n; 2t+ 2) �
2n � 2Q(n)�n
t

�
� 2

�n�1
t�1
� for n > 2t+ 2 (3)

where Q(n) is a polynomial in n of degree t+ 1 with 1=(t + 1)! as leading coe�cient. This latter bound was
improved, roughly by a factor of 2, in [7]. Lower bounds on P (n; k) can be obtained from the constructions
in [13], [20], the actual bounds being rather complicated to state. What is more important are the tables of
code parameters given in [13], [4] and the updated table in [17].

IV. High Period STCCs for Small Parameters

We consider the construction of (n; p; k)-STCCs with lengths n up to 17 and spreads k up to 6. For each
pair (n; k), we concentrate on �nding a code with period as high as possible. However, the method described
in this section can be adapted to produce single-track codes of period less than this highest period, as long as
the period satis�es the conditions of Lemma 9. This is an important point for the practical use of single-track



circuit codes, since it is usually desired to use a code of a speci�ed resolution in a particular application. The
results of this section are summarised by the data presented in Table 1.
A spread 1 circuit code is of course a Gray code. For n � 16, many good (and several optimal) single-track

Gray codes were reported in [9, Table I]. Using exactly the same construction method, we have also obtained
an optimal length 17, period 131070 single-track Gray code.
We now concentrate on circuit codes for spreads k � 2. For every n, there is a trivial (n; 2n; n)-STCC in

which the code has �rst codeword [0; 0; : : : ; 0] and coordinate sequence

0; 1; 2; : : : ; n� 1; 0; 1; : : : ; n� 1:

From the upper bounds presented in Section III and the conditions of Lemma 9, these codes are in fact optimal
(n; 2n; k)-CCs for every k large enough to satisfy n < d3k

2
e + 2. Using the tables of optimal circuit codes in

[13], [4], it is possible to show that these codes are optimal for some other values of n and k too.
When k is small relative to n, it is possible to construct codes with signi�cantly higher periods than those

given by the trivial codes. In [17], a construction method for single-track circuit codes generalising the
approach taken in [9] was given. This construction yielded 19 single-track circuit codes (with spreads k � 3)
that are superior to the best previously known circuit codes. This is a reection of the weakness of existing
constructions for circuit codes rather than an inherent superiority of STCCs. We used the same method to
construct spread 2 single-track circuit codes for 6 � n � 17. While not surpassing the best known spread 2
codes, the single-track codes that we found are competitive with them. The periods that we obtained can be
found in Table 1 below.
To illustrate our contention that the methods discussed above can be modi�ed to give codes with periods

that are of practical importance, we give in Appendix A the coordinate sequences for a (12; 360; 2)-STCC
and a (15; 360; 4)-STCC. These were found using the same computer programs as those used to generate the
high-period codes reported above.

Spread
Length 1 2 3 4 5 6

2 4� 4� { { { {
3 6� 6� 6� { { {
4 8� 8� 8� 8� { {
5 30� 10� 10� 10� 10� {
6 60� 24� 12� 12� 12� 12�

7 126� 42� 14� 14� 14� 14�

8 240 80 16 16� 16� 16�

9 504� 162 54 18 18� 18�

10 960 320 80 20 20� 20�

11 2046� 594 154 22 22 22�

12 3960 960 288 96 24 24
13 8190� 1898 442 182 26 26
14 16128 3528 700 280 28 28
15 32730 6630 1280 450 210 30
16 65504 12512 2176 672 288 32
17 131070� 22406 3842 1088 476 204

TABLE I

Number of codewords in best known length n, spread k single-track circuit codes. Asterisk denotes a

single-track circuit code known to be optimal.



V. Constructing STCCs from Base Coordinate Sequences

In this section we give a general method for constructing coordinate sequences of spread k STCCs. We
begin by introducing a little more notation.

De�nition 10: Let b = b0; b1; : : : ; bt�1 be a sequence with t terms from 0; 1; : : : ; n� 1. Then the occurrence
vector for b,

e(b) = [e0; e1; : : : ; en�1];

is the vector with ej equal to the number of occurrences of symbol j in b. Notice that
Pn�1

j=0 ej = t.
De�nition 11: Let b = b0; b1; : : : ; bt�1 be a sequence with terms from 0; 1; : : : ; n � 1 and with occurrence

vector e(b). Then b is called a spread k base coordinate sequence if b has the following properties:
i) Every subsequence bi; : : : ; bi+r�1 of b, with r � k and 0 � i < i + r � 1 < t, contains at least k symbols
with an odd number of occurrences each.
ii) For some integer �, 0 � � < k, the � symbols v0; v1; : : : ; v��1 at the beginning of b and the k � � symbols
v�; v�+1; : : : ; vk�1 at the end of b are all di�erent, and e(b) satis�es:

evi = 1; evi�1 = � � � = evi�k = 0; 0 � i < �;
evi = 1; evi+1 = � � � = evi+k = 0; � � i < k:

(subscripts modulo n).
iii)

Pn�1
j=0 ej = t is even.

iv) For every � with k+1 � � � n� (k+1), there exist k distinct integers l0; l1; : : : ; lk�1 with 0 � li < t such
that eli = eli+� = 0 and eli+1 + eli+2 + � � �+ eli+��1 is odd (subscripts being reduced modulo n).
Note that property i) in De�nition 11 implies that every interval bi; : : : ; bi+r�1 of b with r � k must contain
r distinct symbols.

Construction 12: Suppose b is a sequence with t terms from 0; 1; : : : ; n � 1. For 0 � j � n � 1, let the
sequence b(j) be de�ned by

b(j) = b0 � j; b1 � j; : : : ; bt�1 � j

where terms are taken modulo n. We construct the sequence s of length nt as

s = b; b(1); : : : ; b(n� 1);

i.e. by concatenating the sequences b(j) for 0 � j < n. We refer to b(j) as block j of sequence s.
Theorem 13: Let b be a spread k base coordinate sequence with t terms from 0; 1; : : : ; n � 1, and let s be

obtained from b according to Construction 12. Then s is the coordinate sequence of an (n; nt; k)-STCC.
Proof: The proof is very similar to that of [10, Theorem 8] and once again the following observation is

crucial to each of the steps of our proof: from the de�nition of b(j), for every i; j and �, symbol i occurs in
the same positions in block j as symbol i� � does in block j + � (here and from now on we work modulo n
with symbols and block numbers). It follows from this that symbol i� j occurs ei times in block j.
We �rst show that s has the cyclic shift property of Lemma 8. Choosing � = i, the above observation shows

that symbol i occurs in the same positions in block j as symbol 0 does in block j + i. That the positions
where symbol i occurs in s are just a shift of the positions where symbol 0 occurs is then obvious.
Thus we are left to check that s has properties i) and ii) in Theorem 7. Again by our observation above

(with � = �j), symbol i plays the same role in block j as symbol i + j does in block 0. Symbol i therefore
occurs ei+j times in block j and

Pn�1
j=0 ei+j = t times in s. So, by property iii) in De�nition 11, s has property

i) in Theorem 7. For property ii), it is enough to show that, for every k � r � nt � k, all the length r
subsequences si; si+1; : : : ; si+r�1 of s contain at least k distinct symbols with an odd number of occurrences
each. We split the argument into a number of cases, depending on the number of boundaries between blocks
that our subsequence si; si+1; : : : ; si+r�1 covers. In what follows, we refer to the � symbols that begin any
block and the k � � symbols that end any block as being special terms. A key point in our proof is that
if v is a special term at the end of a block j, then v does not occur at all in any of the k following blocks
j +1; j +2; : : : ; j + k. Likewise, if v is a special term at the beginning of block j, then v does not occur at all



in any of the k preceding blocks j � 1; j � 2; : : : ; j � k. These facts follow from our crucial observation and
property ii) in De�nition 11.
Suppose �rst that the subsequence is contained entirely within some block j. Because block j is obtained

by subtracting j (modulo n) from each term of the spread k base coordinate sequence b, it follows trivially
from property i) in De�nition 11, that every subsequence of block j contains at least k symbols with an odd
number of occurrences each.
Suppose now that the subsequence covers just one boundary between two blocks, say block j and block j+1.

From the above observation and the fact that b has property ii) in De�nition 11, it is easily seen that the k��
symbols v�� j; : : : ; vk�1� j occur as the last terms of block j and the � symbols v0� (j+1); : : : ; v��1� (j+1)
occur as the �rst terms of block j + 1, but that none of these k symbols occur anywhere else in the blocks j
and j + 1. If the subsequence includes all of these k special terms, it clearly has the required property that
it contains k symbols with an odd number of occurrences each. Suppose then that the subsequence does not
contain all the special terms in block j. Then it certainly contains no symbols from block j except some
special terms. In turn, the special terms of block j that the subsequence does contain do not appear in block
j+1. Using these symbols together with the fact that property i) in De�nition 11 also holds for the sequence
b(j + 1), it follows that the subsequence does contain at least k symbols with an odd number of occurrences
each. A similar argument applies in the case where the subsequence does not contain all the special terms in
block j + 1.
Suppose now that the subsequence covers exactly � boundaries between blocks, where � � k. We apply a

similar argument to that used in the previous paragraph. The subsequence includes terms from just � + 1
consecutive blocks, say blocks j; j+1; : : : ; j+�. If the subsequence contains the last k�� terms of block j and
the �rst � terms of block j + �, then it follows from the key point about special terms that the subsequence
contains at least k distinct symbols (v� � j; : : : ; vk�1 � j and v0 � (j + �); : : : ; v��1 � (j + �)) with an odd
number of occurrences each. Suppose then that the subsequence does not contain all of these k special terms.
Suppose it does not contain all the special terms at the end of block j and consider the k � � special terms
at the end of block j + 1. These are all contained within the subsequence, but it is easy to see (using the key
point about special terms) that they occur just once each in the subsequence. Likewise, if the subsequence
does not contain all of the � special terms at the beginning of block j + �, then the � special terms at the
beginning of block j + �� 1 occur just once each in the subsequence. So by considering special terms at the
end of blocks j and j + 1 and at the beginning of blocks j + � and j + �� 1, we can �nd k distinct symbols
that occur exactly once each in the subsequence.
Suppose now that the subsequence covers exactly � boundaries between blocks, where k+1 � � � n�(k+1).

Assume that the �rst boundary covered is between block j and block j + 1, so that the last one is between
block j+ �� 1 and block j+ �. From property iv) in De�nition 11, there exist k intervals eli ; eli+1; : : : ; eli+� in
the occurrence vector for b that both begin and end with zeroes and have odd sum. Again using our crucial
observation, for each i, symbol li � j occurs eli times in block j, eli+1 times in block j + 1 and so on. Since
eli = eli+� = 0 and the subsequence contains every term of the blocks j + 1; : : : ; j + � � 1, we see that the
subsequence contains symbol li � j an odd number of times. So it contains at least k symbols with an odd
number of occurrences each.
Finally suppose that the subsequence si; si+1; : : : ; si+r�1 covers at least n�k boundaries between blocks. The

complementary subsequence si+r; si+r+1; : : : ; si�1 is then of length at least k and covers at most k boundaries
between blocks. Since we have already established that such a subsequence contains at least k symbols with
an odd number of occurrences each and since every symbol occurs t (an even number) of times in all of s,
we conclude that si; si+1; : : : ; si+r�1 must also contain at least k symbols with an odd number of occurrences
each. 2

VI. A Construction for Base Coordinate Sequences

We begin by showing how to construct occurrence vectors satisfying some of the properties of De�nition
11. This construction uses a generalisation of the idea behind [10, Construction 9].



Construction 14: Let k � 1 be �xed. Suppose m � k, r � 1 and n satis�es

mr + k + 2 � n � 2mr + k + 2

We choose r� 1 integer vectors f1; f2; : : : ; fr�1 of length m� k, each vector having components whose sum is
even (when m = k, each vector is empty and has sum zero). We also choose one integer vector fr of length
n� (mr+ k+1) having components whose sum is odd. Finally, we construct the vector e = [e0; e1; : : : ; en�1]
of length n as

e = [1; 0; : : : ; 0; f1; 0; : : : ; 0; f2; : : : ; 0; : : : ; 0; fr�1; 0; : : : ; 0; fr; 0; : : : ; 0]

where k zeros precede fj, 1 � j � r; and m zeros follow fr. Notice that the vector e contains at least m+ kr
zeros.

Lemma 15: The vectors e of Construction 14 have properties iii) and iv) in De�nition 11.
Proof: Suppose vector e is obtained according to Construction 14. That e has even sum is clear from the

even-sum/odd-sum property of the vectors fj. So property iii) of De�nition 11 holds. We further claim that,
for every � with k + 1 � � � n� (k + 1), there exist k intervals eli ; eli+1; : : : ; eli+� of e(b); 0 � i � k � 1; that
satisfy eli = eli+� = 0 and eli+1 + eli+2 + � � � + eli+��1 odd.
Consider �rst the intervals in which eli is one of the m zeros following fr and eli+� is one of the kr zeros

that precede the fj's. By inspection it can be seen that these intervals account for k valid intervals for each �
with k+1 � � � mr+1, and for k� i valid intervals for each � =mr+1+ i with 1 � i � k�1. Interchanging
the roles of starting and ending zeros in the above argument, it is also easy to see that e has k valid intervals
for each � with n� (mr + 1) � � � n� (k + 1), and k � i valid intervals for each � = n� (mr + 1 + i) with
1 � i � k � 1.
So we certainly have k intervals of the required type for every �, except possibly for � with mr + 2 � � �

n� (mr + 2): For these cases, we write � = mr + 1 + i with 1 � i � k � 1 (as n� (mr + 2) � mr + k) and
obtain k � i valid intervals from the �rst set of intervals and at least i valid intervals from the second set of
intervals. It follows that e does contain k valid intervals for every � with k+1 � � � n� (k+1) and, therefore,
that e has property iv) in De�nition 11. 2

The above construction can be used in a variety of di�erent ways as an ingredient to produce spread k single-
track circuit codes from spread k circuit codes. Next we will describe in full detail the most straightforward
of these methods and give a detailed example. In the next section, we will go on to discuss some re�nements
of our method, illustrating with examples.

Theorem 16: Let k � 1 be �xed and suppose that an (s; t; k)-CC with s � k exists. Then there exist
(n; nt; k)-STCCs of length n = m + k(r + 1) + s for every choice of r � max(1; bk

2
c) and m � k +min(2; r)

satisfying:
mr + 2k + 3 � n = m+ k(r + 1) + s � 2mr + k + 2:

Proof: In view of Theorem 13, we only need to construct a spread k base coordinate sequence with t
terms from 0; 1; : : : ; n�1. From the speci�cation of parameters in the theorem above, it follows that n satis�es
mr + 2k + 3 � n � 2mr + k + 2 and therefore that m, r and n ful�l the conditions of Construction 14. So
we take e to be a vector of length n, obtained according to Construction 14 and thus satisfying properties iii)
and iv) in De�nition 11 (by Lemma 15).
Because n� (mr + k + 1) � k + 2, the vector fr in e has length at least k + 2. Also, since m � k + 2 for

r � 2, each vector fi, 1 � i � r � 1; has length at least 2. For each j with 1 � j � r, we denote by pj the
position of the initial component of fj in e and by qj the position of the �nal component of fj in e. We now
distinguish two cases depending on the parity of k. We consider in detail the case where k is odd and give a
sketch for the case where k is even.
Consider k odd. We recall that e0 = 1 and specify that, for k > 1; the vector e has additional 1's in

positions pr and qr and in positions p1; p2; : : : ; pg; q1; q2; : : : ; qg where g = bk
2
c � 1 : this is possible because

r � max(bk
2
c; 1) guarantees that g � r� 1 and because from the previous paragraph the fj all have length at

least 2. Thus, a total of k 1's and m+kr 0's are assigned to e; with each of the 1's either followed or preceded
by k zeros. This leaves n�m� kr � k = s as yet unspeci�ed entries in e of which at least k lie in the vector
fr. We label all these unspeci�ed entries by ev0 ; ev1 ; : : : ; evs�1 , where v0 < v1 < � � � < vs�1.



Now let a be the coordinate sequence of an (s; t; k)-CC with s � k (and consequently t � 2k). We assume
that a is on symbols 0; 1; : : : ; s� 1. Every symbol occurs an even number of times in a, and the last k terms
of a are all distinct (otherwise a fails to satisfy condition ii) of Lemma 7). By permuting the symbols of a if
necessary, we can arrange that the last k terms of a are

at�k = s� k; at�k+1 = s� k + 1; : : : ; at�1 = s� 1:

We then derive a new sequence d from a by deleting these last k terms and replacing every occurrence of
symbol j in a by symbol vj. From the fact that a is the coordinate sequence of a circuit code, we can deduce
that the occurrence vector for d has odd values in positions vs�k; vs�k+1; : : : ; vs�1 and even values in all the
positions v0; v1; : : : ; vs�k�1. We now modify d by appending symbol 0 and, if k > 1; by prepending symbols
p1; : : : ; pg and pr and appending symbols q1; : : : ; qg; and qr: The result is our �nal sequence b with t terms.
It is not hard to see from the modi�cations to a that the occurrence vector for b equals a vector e from

Construction 14 with some valid choice for the vectors f1; f2; : : : ; fr: in particular, fr has odd sum because fr
contains an odd number of odd entries (in positions vs�k; vs�k+1; : : : ; vs�1) and, if k > 1; a 1 in positions pr
and qr; while each vector fi, 1 � i � r � 1; either contains exactly two odd entries (two 1's) or no odd entry
at all and so has even sum. So b and e(b) have properties iii) and iv) in De�nition 11. That the sequence b
has property ii) is also clear. Finally, property i) holds for b because of the way in which b was derived from
a (itself the coordinate sequence of a spread k circuit code), namely, by deleting the last k symbols from a
and appending and prepending k symbols that appear nowhere else in b. Thus b is a spread k base coordinate
sequence with t terms.
When k is even, a very similar procedure applies. Here we specify that in addition to e0 = 1 the vector e

always has a 1 in position pr (but not necessarily in position qr) and in positions p1; p2; : : : ; pg; q1; q2; : : : ; qg:
We label the unspeci�ed entries in e again by ev0 ; ev1 ; : : : ; evs�1 and perform the same operation of deleting the
last k terms of the coordinate sequence a of an (s; t; k)-CC (with possibly permuted symbols) and mapping
the terms of the resulting sequence into the symbols v0; v1; : : : ; vs�1 to obtain a new sequence d. In this case,
vector fr always contains a 1 (in position pr) and an even number of additional odd entries (in positions
vs�k; vs�k+1; : : : ; vs�1), so that its sum is still odd. Finally, we modify d by prepending the symbols p1; : : : ; pg
and pr and appending the symbols 0; q1; : : : ; qg to d to obtain the sequence b, a spread k base coordinate
sequence with t terms. 2

Example 1: We know that a trivial (3; 6; 2)-CC with coordinate sequence a = 0; 1; 2; 0; 1; 2 exists. The
parameter set s = 3, t = 6, k = 2, n = 10; r = 1 and m = 3 satis�es the conditions of Theorem 16. We follow
through the details of the proof of this theorem, �rst using Construction 14 to get

e = [1; 0; 0; f1; 0; 0; 0];

where f1 has length n�(mr+k+1) = 4 and odd sum. The proof in the even case tells us that e should have a
1 in position p1 = 3 and that symbols e4; e5 and e6 are as yet unspeci�ed. Then for d, we obtain the sequence
4; 5; 6; 4 and �nally for b, the spread 2 base coordinate sequence 3; 4; 5; 6; 4; 0. Notice that the corresponding
occurrence vector equals

e(b) = [1; 0; 0; 1; 2; 1; 1; 0; 0; 0]:

So there exists a (10; 60; 2)-STCC whose coordinate sequence is

3; 4; 5; 6; 4; 0; 2; 3; 4; 5; 3; 9;

1; 2; 3; 4; 2; 8; 0; 1; 2; 3; 1; 7;

9; 0; 1; 2; 0; 6; 8; 9; 0; 1; 9; 5;

7; 8; 9; 0; 8; 4; 6; 7; 8; 9; 7; 3;

5; 6; 7; 8; 6; 2; 4; 5; 6; 7; 5; 1:

VII. Refinements of the Construction Method for STCCs

The proof of Theorem 16 contains the kernel of a general technique for obtaining spread k single-track
circuit codes: use a vector e from Construction 14 as a template to control the way that symbols from a short



length s; period t circuit code a are embedded in the symbols of a larger length n; period nt single-track
circuit code. However, if we want to achieve a particular �nal period nt, then it may be quite di�cult to �nd
a suitable coordinate sequence a. The key variant of the technique in the above proof that we introduce now
is the use of truncated coordinate sequences of circuit codes.
Suppose a = a0; : : : ; al�1 is the coordinate sequence of an (s; l; k)-CC (necessarily, l is even and every symbol

0; 1; : : : s � 1 occurs an even number of times in a). Now suppose t � l is even and consider the truncated
coordinate sequence

a0 = a0; a1; : : : ; at�1�k;

with t � k terms. From condition ii) in Theorem 7, it follows that the number of symbols occurring an odd
number of times in a0 is at least k and has the same parity as k.
We choose parameters r � max(bk=2c; 1) and m � k +min(2; r) so that

mr + k + 2 � n = m+ k(r + 1) + s � 2mr + k + 2:

We then take a vector e of length n from Construction 14. As in the proof of Theorem 16, our aim is to map
the symbols of a0 into the unspeci�ed positions in e so that all the vectors fi, 1 � i � r � 1, have even sum
and so that fr has odd sum. Recall that we denote by pj and qj the �rst and last positions of the vectors fj;
1 � j � r; in e and write g = bk

2
c � 1.

Suppose k is even. We set epr = 1 and ep1 = � � � = epg = eq1 = � � � = eqg = 1 and let 2h denote the number

of symbols occurring an odd number of times in a0. We arbitrarily place these 2h symbols into h � k
2
pairs,

which we call even-occurrence pairs. We can achieve our aim by ensuring that the two symbols of each of
these h pairs are always mapped together into a single vector fj: By simple counting of positions in e, it is
not hard to show that we can do this so long as the number h of even-occurrence pairs satis�es

h � (r � 1)b jfij
2
c+ b jfrj�1

2
c � (k

2
� 1);

where jfij and jfrj denote the lengths of the vectors fi and fr, respectively. In particular if jfij = m � k is
even, then there is always enough space in e to assign the h even-occurrence pairs.
Similarly, when k is odd, we set epr = eqr = 1 and ep1 = � � � = epg = eq1 = � � � = eqg = 1 and let 2h + 1

denote the number of symbols occurring an odd number of times in a0: Then it is not hard to see we can
ensure that, for each of the h even-occurrence pairs, the two symbols are mapped together into a single vector
fj (and that the last symbol occurring an odd number of times is mapped into fr), provided that m � k is
even (i.e. that m and k have the same parity) and that jfrj � 3.
As in the proof of Theorem 16, we let d denote the new sequence obtained after mapping the symbols of a

into the free positions in e. We prepend the symbols p1; : : : ; pg and pr and append the symbols 0; q1; : : : ; qg
(and qr when k is odd) to d to obtain a sequence b which, as can be veri�ed by essentially the same steps as
in the proof of Theorem 16, is a spread k base coordinate sequence. The code resulting after an application
of Construction 12 is an (n; nt; k)-STCC.
We illustrate the procedure described above by the following examples.
Example 2: We aim to construct a (20; 1000; 2)-STCC. From Section III, there is no (10; 1000; 2)-STCC and

so, using Lemma 9, the smallest possible length n for which a period nt = 1000, spread k = 2 single-track
circuit code can exist is n = 20 (implying t = 50). In this sense, this code is optimal.
We take n = 20, t = 50, m = 4, r = 2 and s = 10. These parameters certainly satisfy mr+4 � n � 2mr+4

and n = m+ 2(r + 1) + s Our vector e from Construction 14 then has the form

[1; 0; 0; f1; 0; 0; f2; 0; 0; 0; 0]

where f1 has length m� k = 2 and f2 has length n� (mr+ k+1) = 9 and begins with a 1 at position p2 = 7
(since k = 2 is even). In the notation of the proof of Theorem 16, we have

l0 = 3; l1 = 4; l2 = 8; l3 = 9; l4 = 10; : : : ; l9 = 15:



From Example 1 we know that there exists a (10; 60; 2)-STCC with period l = 60 (larger than t = 50) which
of course represents a valid choice for a (10; 60; 2)-CC. The �rst t� k = 48 terms of the coordinate sequence
of this code are:

a0 = 3; 4; 5; 6; 4; 0; 2; 3; 4; 5; 3; 9;

1; 2; 3; 4; 2; 8; 0; 1; 2; 3; 1; 7;

9; 0; 1; 2; 0; 6; 8; 9; 0; 1; 9; 5;

7; 8; 9; 0; 8; 4; 6; 7; 8; 9; 7; 3;

with occurrence vector
e(a0) = [6; 5; 5; 6; 5; 3; 3; 4; 5; 6]:

The 6 symbols in a0 with an odd number of occurrences can be placed in 3 even-occurrence pairs: the pairs
of symbols we take are:

f1; 2g; f4; 5g; f6; 8g:

Now we have to map these even-occurrence pairs and the remaining symbols onto the symbols li so that each
even-occurrence pair is mapped onto a pair of symbols both lying in a single fj. The mapping we choose is
as follows

1; 2 ! 8; 9;

4; 5 ! 10; 11;

6; 8 ! 12; 13;

0; 3; 7; 9 ! 3; 4; 14; 15:

Applying this mapping to the symbols of a0 gives us the sequence d:

d = 4; 10; 11; 12; 10; 3; 9; 4; 10; 11; 4; 15

8; 9; 4; 10; 9; 13; 3; 8; 9; 4; 8; 14;

15; 3; 8; 9; 3; 12; 13; 15; 3; 8; 15; 11;

14; 13; 15; 3; 13; 10; 12; 14; 13; 15; 14; 4:

Finally, to obtain our spread 2 base coordinate sequence b with t = 50 terms, we prepend p2 = 7 and append
0 to d:

b = 7; 4; 10; 11; 12; 10; 3; 9; 4; 10; 11; 4;

15; 8; 9; 4; 10; 9; 13; 3; 8; 9; 4; 8; 14;

15; 3; 8; 9; 3; 12; 13; 15; 3; 8; 15; 11; 14;

13; 15; 3; 13; 10; 12; 14; 13; 15; 14; 4; 0:

Notice that the occurrence vector of b is

e(b) = [1; 0; 0; 6; 6; 0; 0; 1; 5; 5; 5; 3; 3; 5; 4; 6; 0; 0; 0; 0]

in accordance with the properties of e required in Construction 14. Thus, using b in Construction 12 results
in a (20; 1000; 2)-STCC.

Example 3: We aim to construct a spread k = 3 single-track circuit code with nt = 360 codewords and
with length n as small as possible. The best we can do with the method in this section is to construct an
(18; 360; 3)-STCC. Recall that Appendix A gives the coordinate sequence of a (15; 360; 4)-STCC which is also
a (15; 360; 3)-STCC, so that the code in this example is not optimal. Nevertheless, the example illustrates
how high spread single-track circuit codes with reasonable lengths can be constructed.



Thus, we want to choose parameters s; n; r and m (with the same parity as k) satisfying mr + k + 2 �
n = m+ k(r+1) + s � 2mr+ k+2 with the properties that t = 360=n is an even integer as large as possible
and that an (s; l; k)-CC with l � t exists. Clearly, the aim of maximising t (or equivalently, of minimising the
length n) conicts with that of �nding an (s; l; k)-CC: as n decreases, so does the maximum value of s over
all choices of m and r, while l � t increases.
We try each divisor of 360 for n in turn. The smallest for which our method is successful is n = 18 (yielding

t = 20) and the choice m = 5, r = 1 maximises the value of s at s = 7. There exists a (7; 24; 3)-CC with
coordinate sequence

a = 6; 5; 4; 3; 6; 2; 1; 5; 6; 3; 0; 2; 6; 5; 4; 3; 6; 2; 1; 5; 6; 3; 0; 2;

so we can take l = 24 and have l � t. We then take the �rst t� k = 17 terms of this sequence to obtain:

a0 = 6; 5; 4; 3; 6; 2; 1; 5; 6; 3; 0; 2; 6; 5; 4; 3; 6

with occurrence vector e(a0) = [1; 1; 2; 3; 2; 3; 5].
According to Construction 14, our �nal sequence b should have occurrence vector [1; 0; 0; 0; f1; 0; 0; 0; 0; 0],

in which f1 is a vector of length n� (mr + k + 1) = 9 beginning with a 1 in position p1 = 4 and ending with
a 1 in position q1 = 12 (as k = 3 is odd). Positions 5; 6; 7; 8; 9; 10 and 11 remain unspeci�ed in e(b). We need
to map the symbols of a0 into these symbols so that the vectors fj of e(b) have the appropriate parity. In this
example, we have just one vector f1, and we can use the mapping

0; 1; 2; 3; 4; 5; 6 ! 5; 6; 7; 8; 9; 10; 11:

Applying this mapping to a0 gives us the sequence d:

d = 11; 10; 9; 8; 11; 7; 6; 10; 11; 8; 5; 7; 11; 10; 9; 8; 11:

Finally, to obtain our spread 3 base coordinate sequence with t = 20 terms, we prepend 4 and append 0 and
12 to d:

b = 4; 11; 10; 9; 8; 11; 7; 6; 10; 11; 8; 5; 7; 11; 10; 9; 8; 11; 0; 12:

VIII. A Family of Even Spread STCCs

Example 2 shows how a family of single-track circuit codes with a exible range of parameters can be
obtained: by truncating the best known length 10, spread 2 circuit code (which has 340 codewords, [17]), we
obtain (20; 20t; 2)-STCCs for every even t with 2 � t � 340, the maximum period nt here being 6800. We now
prove Theorem 1, a general result of this type for even spread codes. A similar result can also be obtained
for odd spread codes.

Proof: (of Theorem 1) Let k � 2 be even and let m � max(4; k
2

2
) be the unique multiple of k (same

parity as k) such that
2

km(m� k) + k + 2 < n � 2

km(m+ k) + k + 2:

Note that this implies n > max(12; k
3

2
� k2 + k + 2):

We start by considering the case where n satis�es

2

km(m� k) + k + 2 < n < 2

km
2 + k + 2: (4)

In this case it is easy to verify that kb
p
2(n� k � 2)=kc = 2m�k. Thus, in view of Theorem 13 we need only

construct spread k base coordinate sequences with t terms for every even t satisfying k � t � P (n�2m�k; k).
By choosing r = m

k in Construction 14, we obtain a vector e of length n, with r � bk
2
c and m � k + 2; for

every n in the range above. After placing the additional 1's, this vector contains m+ kr = 2m 0's and k 1's,
and so has n� 2m� k unspeci�ed positions. The lower bound on m and the lower bound on n in (4) ensure
that n� 2m� k > 0: Now we take a to be the coordinate sequence of a length n� 2m� k, spread k circuit
code with P (n � 2m � k; k) codewords. Let a0 denote the length t � k truncated version of a: We use a0 in
the procedure described in the section above to produce our base coordinate sequence b: because m has the



same parity as k, we can always map the symbols of a0 onto the unspeci�ed symbols in e whilst ensuring that
the sum of the components of each fj has the correct parity. Finally, using b in Construction 12, we obtain a
code with the required parameters.
The case where n satis�es

2

km
2 + k + 2 � n � 2

km(m+ k) + k + 2 (5)

is dealt with analogously after noting that kb
p
2(n� k � 2)=kc = 2m for every n in this range. We simply

choose r = m+k
k and follow the same sequence of steps as in the �rst case above. This time, we need spread

k base coordinate sequences with t terms for every even t satisfying k � t � P (n� 2m� 2k; k). The vector e
has m+ kr+ k = 2m+ 2k �xed positions and n� 2m� 2k unspeci�ed positions, so that the lower bound on
m and the lower bound on n in (5) ensure that n� 2m� 2k > 0: 2

The next corollary follows immediately from the result of [1] that P (n; 2) > 77

256
� 2n for all n.

Corollary 17: Suppose n � 13. Then there exists an (n; nt; 2)-STCC for every even t with

2 � t �
77

212
� 2n�2b

p
n�4c + 2:

For certain lengths n the bound of the corollary can be improved slightly by using odd values of m, choosing
r = (m� 1)=2 or r = (m+ 1)=2 and using Theorem 16. We omit the details.

IX. Conclusions and Open Problems

We have pointed out the potential advantages of using single-track circuit codes in certain types of analogue-
to-digital conversion application. We have shown that this advantage can be realised in practice, by exhibiting
many optimal and good single-track codes for small parameters n and k. We have also signi�cantly generalised
the methods introduced in [10] to give exible constructions for spread k single-track codes that allow us to
achieve our aim of �nding codes with a speci�ed resolution for a reasonable length n. We have illustrated our
methods with a number of example codes having 360 and 1000 codewords.
It is worth noting that all the (n; nt; k)-STCCs constructed in this paper have the property that, given any

particular codeword, the n cyclic shifts of that codeword are distinct and appear at equally spaced intervals
throughout the code: that this is so is a consequence of the use of base coordinate sequences and necklaces
to construct codes. So all our codes can be regarded as being composed of a code on necklaces concatenated
with appropriate cyclic shifts of those necklaces (c.f. the constructions of [9], [17], [18]). In fact our general
constructions for base coordinate sequences can be regarded as being a way of transforming a `standard'
circuit code into a code on necklaces by embedding many zero coordinates into the codewords. Since necklace
methods have also been very successful in constructing good circuit codes for small parameters [17] and
optimal and near-optimal single-track Gray codes [9], [18], it might be expected that these methods could also
be harnessed to construct general families of good single-track circuit codes. A useful starting point would be
to attempt to adapt the recursive constructions of [9], [18] for single-track Gray codes to produce STCCs.
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Appendix A

We give the �rst codewords and coordinate sequences for a (12; 360; 2)-STCC and a (15; 360; 4)-STCC.
These codes were found using a generalisation of [9, Theorem 4].

(12; 360; 2)-STCC:
W0 = [000000110011]

s = 6; 7; 8; 11; 5; 8; 2; 3; 4; 5; 1; 0; 10; 3; 11; 2; 10; 0; 11; 8; 3; 1; 6; 3; 11; 5; 9; 11; 4; 8;
5; 6; 7; 10; 4; 7; 1; 2; 3; 4; 0; 11; 9; 2; 10; 1; 9; 11; 10; 7; 2; 0; 5; 2; 10; 4; 8; 10; 3; 7;
4; 5; 6; 9; 3; 6; 0; 1; 2; 3; 11; 10; 8; 1; 9; 0; 8; 10; 9; 6; 1; 11; 4; 1; 9; 3; 7; 9; 2; 6;
3; 4; 5; 8; 2; 5; 11; 0; 1; 2; 10; 9; 7; 0; 8; 11; 7; 9; 8; 5; 0; 10; 3; 0; 8; 2; 6; 8; 1; 5;
2; 3; 4; 7; 1; 4; 10; 11; 0; 1; 9; 8; 6; 11; 7; 10; 6; 8; 7; 4; 11; 9; 2; 11; 7; 1; 5; 7; 0; 4;
1; 2; 3; 6; 0; 3; 9; 10; 11; 0; 8; 7; 5; 10; 6; 9; 5; 7; 6; 3; 10; 8; 1; 10; 6; 0; 4; 6; 11; 3;
0; 1; 2; 5; 11; 2; 8; 9; 10; 11; 7; 6; 4; 9; 5; 8; 4; 6; 5; 2; 9; 7; 0; 9; 5; 11; 3; 5; 10; 2;
11; 0; 1; 4; 10; 1; 7; 8; 9; 10; 6; 5; 3; 8; 4; 7; 3; 5; 4; 1; 8; 6; 11; 8; 4; 10; 2; 4; 9; 1;
10; 11; 0; 3; 9; 0; 6; 7; 8; 9; 5; 4; 2; 7; 3; 6; 2; 4; 3; 0; 7; 5; 10; 7; 3; 9; 1; 3; 8; 0;
9; 10; 11; 2; 8; 11; 5; 6; 7; 8; 4; 3; 1; 6; 2; 5; 1; 3; 2; 11; 6; 4; 9; 6; 2; 8; 0; 2; 7; 11;
8; 9; 10; 1; 7; 10; 4; 5; 6; 7; 3; 2; 0; 5; 1; 4; 0; 2; 1; 10; 5; 3; 8; 5; 1; 7; 11; 1; 6; 10;
7; 8; 9; 0; 6; 9; 3; 4; 5; 6; 2; 1; 11; 4; 0; 3; 11; 1; 0; 9; 4; 2; 7; 4; 0; 6; 10; 0; 5; 9

(15; 360; 4)-STCC:
W0 = [000011011100101]

s = 14; 12; 8; 10; 9; 11; 3; 12; 1; 7; 4; 9; 6; 14; 8; 1; 5; 13; 4; 12; 7; 14; 9; 10;
13; 11; 7; 9; 8; 10; 2; 11; 0; 6; 3; 8; 5; 13; 7; 0; 4; 12; 3; 11; 6; 13; 8; 9;
12; 10; 6; 8; 7; 9; 1; 10; 14; 5; 2; 7; 4; 12; 6; 14; 3; 11; 2; 10; 5; 12; 7; 8;
11; 9; 5; 7; 6; 8; 0; 9; 13; 4; 1; 6; 3; 11; 5; 13; 2; 10; 1; 9; 4; 11; 6; 7;
10; 8; 4; 6; 5; 7; 14; 8; 12; 3; 0; 5; 2; 10; 4; 12; 1; 9; 0; 8; 3; 10; 5; 6;
9; 7; 3; 5; 4; 6; 13; 7; 11; 2; 14; 4; 1; 9; 3; 11; 0; 8; 14; 7; 2; 9; 4; 5;
8; 6; 2; 4; 3; 5; 12; 6; 10; 1; 13; 3; 0; 8; 2; 10; 14; 7; 13; 6; 1; 8; 3; 4;
7; 5; 1; 3; 2; 4; 11; 5; 9; 0; 12; 2; 14; 7; 1; 9; 13; 6; 12; 5; 0; 7; 2; 3;
6; 4; 0; 2; 1; 3; 10; 4; 8; 14; 11; 1; 13; 6; 0; 8; 12; 5; 11; 4; 14; 6; 1; 2;
5; 3; 14; 1; 0; 2; 9; 3; 7; 13; 10; 0; 12; 5; 14; 7; 11; 4; 10; 3; 13; 5; 0; 1;
4; 2; 13; 0; 14; 1; 8; 2; 6; 12; 9; 14; 11; 4; 13; 6; 10; 3; 9; 2; 12; 4; 14; 0;
3; 1; 12; 14; 13; 0; 7; 1; 5; 11; 8; 13; 10; 3; 12; 5; 9; 2; 8; 1; 11; 3; 13; 14;
2; 0; 11; 13; 12; 14; 6; 0; 4; 10; 7; 12; 9; 2; 11; 4; 8; 1; 7; 0; 10; 2; 12; 13;
1; 14; 10; 12; 11; 13; 5; 14; 3; 9; 6; 11; 8; 1; 10; 3; 7; 0; 6; 14; 9; 1; 11; 12;
0; 13; 9; 11; 10; 12; 4; 13; 2; 8; 5; 10; 7; 0; 9; 2; 6; 14; 5; 13; 8; 0; 10; 11


