
acmqueue | may-june 1

web services

B
ased in Vancouver, Canada, Hootsuite is the most
widely used SaaS (software as a service) platform
for managing social media. Since its humble
beginnings in 2008, Hootsuite has grown into a
billion-dollar company with more than 15 million

users around the globe.
As Hootsuite evolved over the years, so did the

technology stack. A key change was moving from LAMP
(Linux, Apache, MySQL, PHP) to microservices. A shift
to microservices didn’t come without its challenges,
however. In this roundtable chat, we discuss how Scala and
Lightbend (which offers a reactive application development
platform) were an essential part of a successful transition.
The exchange includes Jonas Bonér, CTO of Lightbend;
Terry Coatta, CTO of Marine Learning Systems; Edward
Steel, senior Scala developer at Hootsuite; Yanik Berube,
lead software developer at Hootsuite; and Ken Britton,
senior director of software development at Hootsuite.

TERRY COATTA I’m curious about the original set of
problems Hootsuite was looking to address in the switch to
microservices. Can you provide some detail?
EDWARD STEEL Mostly, it had to do with our ability to
send out notifications to user mobile devices whenever

1 of 17
TEXT
ONLY

Hootsuite
In Pursuit of Reactive Systems

A discussion
with
Edward Steel,
Yanik Berube,
Jonas Bonér,
Ken Britton,
and Terry
Coatta

case study

acmqueue | may-june 2

web services

something relevant happened on Twitter. By the time
we started having some concerns about how we were
handling that, we were already servicing several hundreds
of thousands of users, each with individual subscriptions
tailored to their own specific interests. What was needed
was something that could stay connected to Twitter’s
streaming endpoints.
TC I gather that at about the same time you were making
this move, you also took steps to move from PHP to Scala.
What drove that?
ES Initially, it had a lot to do with learning about all the
success some other organizations had experienced with
Scala. This was after Twitter had decided to go with Scala,
for example, and that obviously lent a lot of legitimacy to
it. Also, the first team here to work with Scala came from
quite a varied background. We had some people who were
lobbying for a more strongly typed functional language—
something on the order of Haskell—and then there were
some others with Clojure and Java experience. In taking all
that into account, I guess Scala just seemed to check most
of the boxes.
JONAS BONÉR What would you say was the principal
benefit you saw with Scala? Was it the functional nature
of the language itself? Or did it have more to do with the
libraries available within that ecosystem?
ES The language itself was the biggest part of it. The main
advocate here for Scala was working on a Blackberry
client at the time, so he had a lot of JVM (Java virtual
machine) knowledge and yet also had become frustrated
with Java itself. I guess he was just looking for a better way.
Another aspect of our thinking had to do with building a

2 of 17

acmqueue | may-june 3

web services

distributed system that could take advantage of Akka as an
available library. That was a big part of the decision as well.

In fact, I think we were able to use some actors right
from the start. That was with a very early version of Akka,
but it still offered a lot of compelling features we found
useful.
JB Were you already thinking in terms of microservices
back then, even before that took off as a buzzword? Or
were you more drawn by reactive principles having to
do with things like a share-nothing architecture, strong
isolation, and loose coupling?
ES Microservices were always in the back of our minds.
We already had some batch processes written in PHP
that were starting to run jobs at that point. That sort of
worked, but it was far from an ideal way of doing things.
So I think we’d already started to develop an appetite for
a system on which we could build a few services, with the
thought being that perhaps we could then move toward a
service-oriented architecture. The idea of microservices
wasn’t something that came up until a little later, and that
was probably influenced by some of the buzz around the
industry at the time.
TC You’ve already mentioned Akka a couple of times, so can
you speak to how that fits in here?
ES At that time, at least, the main appeal of the Akka
system for the JVM was that it provided people beyond
the Erlang community with access to the actor model. The
thing about actors is that they’re both message based and
highly resilient—which is to say that even when they crash,
they can typically be brought back in a useful way. This
probably explains why Erlang has so often been used to

3 of 17

acmqueue | may-june 4

web services

develop resilient telecommunications systems. Whenever
you’re talking about distributed systems or some system
where you expect to fire a lot of messages around, you can
expect the actor model to really shine.
YANIK BERUBE Just in terms of where this fits into our
current infrastructure, we should note that all our
microservices are powered by Akka. Internally, we have a
server-type library that handles requests and responses
via Akka, and we also have at least one, if not more, back-
end services that use sets of actors to accomplish work at
certain intervals of time.
TC One of the things that comes to mind when I think of
the Erlang actor system, beyond the independence you’ve
already mentioned, is that it’s quite fine-grained. So I
wonder, given your focus on notifications to user mobile
devices, whether you might actually require an actor per
user just to deal with that?
ES In our case, no. But symptoms of that definitely showed
up as we were first building our system. When we were
starting out, we learned more about how we should be
building the system, as well as about how actors really
ought to work. At first, we definitely fell into the trap of
putting too much logic into single actors—for example, by
putting recovery logic into each actor instead of relying on
the supervision hierarchy, which would have allowed us to
code less defensively. It turns out it’s best just to embrace
the “let it crash” philosophy, since that actually offers a lot
of robustness.

We also learned the model really shines whenever
you separate concerns into single-purpose actors.
Besides helping to clarify the design, it opens up a lot of

4 of 17

W
henever
you’re
talking
about
distrib-

uted systems
or some system
where you
expect to fire
a lot of messages
around, you
can expect the
actor model to
really shine.

—Edward Steel

acmqueue | may-june 5

web services

opportunities in terms of scalability and configuration
flexibility at the point of deployment.
JB This applies to microservices as well. That is, there are
plenty of opinions about what even defines a microservice.
What does that term mean to you? And how does that map
conceptually to how you view actors?
YB Internally, we’re still trying to define what a
microservice is and what the scale of that ought to be.
Today, most of our services focus on accomplishing just
one set of highly related tasks. Our goal is to have each of
these services own some part of our domain model. Data
services, for example, would each control their own data,
and nothing else would have access to that. To get to that
data, you would have to go through the data service itself.

Then we would also have functional services, which
are the services that essentially glue business logic onto
the data part of the logic. But in terms of the size of these
things, I’d say we’re still trying to figure that out, and we
haven’t come up with any hard and fast rules so far.
JB I’m guessing each of your microservices owns its own
data store. If so—with these things being stateful—how are
you then able to ensure resilience across outages?
ES Each of these services absolutely owns its own data.
When it comes to replacing parts of the monolithic system,
it generally comes down to dealing with a table or a
couple of related tables from the LAMP MySQL database.
Generally speaking, the space is pretty minimal in terms
of the services that need to be accounted for. It’s basically
just a matter of retrieving and creating data.
YB I’d say we make fairly heterogeneous use of various

5 of 17

acmqueue | may-june 6

web services

technologies for data storage. And, yes, we do come from
a LAMP stack, so there’s still a heavy reliance on MySQL,
but we also make use of MongoDB and other data-storage
technologies.

The services typically each encapsulate some area
of the data. In theory, at least, they’re each supposed to
own their data and rely on data storage dedicated only to
them. So, we’ve recently started looking into storing a bit
more data within the services themselves for reasons of
efficiency and performance.
TC To be clear, then, there’s some separate data-access
layer from which the services are able to pull in whatever
information they need to manipulate?
ES Yes, but you won’t see more than one service accessing
the same data store.
JB How do you manage this in terms of rolling out updates?
Do you have some mechanism for deploying updates,
as well as for taking them down and rolling back? Also,
are these services isolated? If so, how did you manage
to accomplish that? And, if not, what are you doing to
minimize downtime?
YB Right now, every service uses a broker/worker
infrastructure. No service can access another service
without going through a pool of brokers that then will
redistribute requests to multiple workers. This gives us
the ability to scale by putting more workers behind the
brokers. Then, when it comes to deployment, we can
do rolling deploys across the target servers for those
workers. In this way we’re able to deploy the newest
version of a service gradually without affecting the user

6 of 17

acmqueue | may-june 7

web services

experience or the experience of any other services that
need to make use of that service as it’s being redeployed.
ES Another thing we’ve recently pulled over from the
LAMP side that has proved to be useful for frequent
rollouts is feature flagging. That’s obviously something
that was a lot easier back when we just were working
with a bunch of web servers, since we had a central place
for handling it. But recently we migrated those same
capabilities to HashiCorp’s Consul to give ourselves a
distributed, strongly consistent store, and that now lets us
deploy code on the Scala side with things switched off.
JB Looking back to when you were doing this along with
everything else required to maintain a monolith, what do
you see as the biggest benefits of having made the move to
microservices?
ES In terms of what it takes to scale a team, I think it has
proved to be much easier to have well-defined boundaries
within the system, since that means you can work with
people who have only a general idea of how the overall
product works but augment that with a strong, in-depth
knowledge of the specific services they’re personally
responsible for.

I also think the microservices approach gives us a little
more control operationally. It becomes much easier to
scale and replace specific parts of the system as those
needs arise.
YB One clear example of this is the data service my team
has been working on. It’s a very high-volume service in
terms of the amount of data we store, and we knew it
would be challenging to scale that, given the storage

7 of 17

acmqueue | may-june 8

web services

technology we’re using. The ability to isolate all that
data behind a data service makes it a lot easier for us to
implement the necessary changes. Basically, this just gives
us a lot more control over what it takes to change the
persistent technology we’re using in the background. So I
certainly see this as a big win.

S
ome of the benefits of moving over to the reactive
microservice model supported by the Lightbend
stack surfaced almost immediately as the
Hootsuite engineering team started discovering
opportunities for scaling down on the underlying

physical and virtual infrastructure they had run previously
on their LAMP stack (where there had been a process for
each request). Accordingly, it soon became apparent that
operations under the reactive microservices model were
going to put much less strain on their resources.

In fact, if anything, the engineers at Hootsuite quickly
learned that by continuing to employ some of the practices
that had made sense with a LAMP stack, they would actually
be denying themselves many of the benefits available by
relying to a greater degree on the Lightbend stack. For
example, they found there was a real advantage to making
greater use of the model classes supported by the Lightbend
stack, since those classes come equipped with data-layer
knowledge that can prove to be quite useful in a dynamic
web-oriented system.

Similarly, they learned that by using individual actors
to run substantial portions of their system instead of

8 of 17

acmqueue | may-june 9

web services

decomposing those components into groups of actors, they
had been unwittingly depriving themselves of some of the
features Akka offers for tuning parts of the system separately,
parallelizing them, and then distributing work efficiently
among a number of different actors capable of sharing the
load.

And then there were also a few other things they learned…

TC So far, we’ve talked only about general issues. Now
I would like to hear about some of your more specific
engineering challenges.
JB One thing I’d like to know is whether you’re mostly doing
reactive scaling, predictive scaling, or some combination of
the two to optimize for your hardware.
YB For now at least, our loads don’t really change a lot. Or
perhaps what I should say is that they change throughout
the day, but predictably so from one day to the next.
And the way we’ve designed our services to run behind
brokers means we’re able just to spin off more workers as
necessary. In combination with some great tooling from
AWS (Amazon Web Services), we’re able to adapt quickly to
changing workloads.
ES One thing we did decide to do was to build a framework
using ZeroMQ to enable process communication between
our various PHP systems. But then we saw later that we
could have just as easily pulled all that into Akka.
TC And I’m assuming, with Akka, it would have been easier
for you to achieve your goal of adhering to the actor
paradigm, while also taking advantage of better recovery
mechanisms and finer-grained control.

9 of 17

acmqueue | may-june 10

web services

ES Yes, but I think the key is that because of our ability
to change the characteristics of actors by how we
configure them, we’ve been able to adapt this core
framework to all types of payloads and traffic profiles
for the various services. We can say, “This service is using
a blocking database,” at which point a large thread pool
will be supplied. If the service happens to be handling two
different kinds of jobs, we can separate them into different
execution tracks.

More recently, we’ve also had a fair amount of success
using circuit breakers in situations where we’ve had a
number of progressive timeouts as a consequence of
some third party getting involved. But now we can just cut
the connection and carry on. Much of this comes for free
just because of all the tools Akka provides. We’ve learned
that we can take much better advantage of those tools by
keeping our designs as simple as possible.
JB Something I also find very interesting is that Akka and
Erlang appear to be the only platforms or libraries that
put an emphasis on embracing and managing failure—
which is to say they’re basically designed for resilience.
The best way to get the fullest benefit of that is if they’re
part of your application from day 1. That way, you can fully
embrace failure right at the core of your architecture.

But, with that being said, how did this newfound
embrace of failure work out in practice for those of your
developers who had come from other environments with
very different mindsets? Was this something they were
able to accept and start feeling natural about in fairly
short order?

10 of 17

acmqueue | may-june 11

web services

YB For some, it actually required a pretty substantial
mindset shift. But I think Akka—or at least the actor
model—makes it easier to understand the benefits of that,
since you have to be fairly explicit about how you handle
failures as a supervisor. That is, as an actor that spins off
other actors, you must have rules in place as to what ought
to happen should one of your child actors end up failing.
But, yes, people had to be educated about that. And even
then, it still took a bit of getting used to.

Now, as new developers come in, we see them resort to
the more traditional patterns of handling exceptions. But
once you get some exposure to how much saner it is just
to leave that to the supervisor hierarchy, there’s generally
no turning back. Your code just becomes a lot simpler that
way, meaning you can turn your focus instead to figuring
out what each actor ought to be responsible for.
TC Talking about actor frameworks in the abstract is one
thing, but what does this look like once the rubber actually
hits the road? For example, how do you deal with failure
cases?
YB You can just let the actor fail, which means it will
essentially die, with a notification of that then being sent
off to the supervisor. Then the supervisor can decide,
based on the severity or the nature of the failure, how to
deal with the situation—whether that means spinning off
a new actor or simply ignoring the failure. If it seems the
problem is something the system actually ought to be able
to handle, it will just use a new actor essentially to send
the same message again.

But the point is that the actor model allows you to focus
all the logic related to the handling of specific failure cases

11 of 17

acmqueue | may-june 12

web services

in one place. Because actor systems are hierarchies, one
possibility is that you’ll end up deciding the problem isn’t
really the original actor’s responsibility but instead should
be handled by that actor’s supervisor. That’s because the
logic behind the creation of these hierarchies determines
not only where the processing is to be done, but also where
the failures are to be handled—which is not only a natural
way to organize code, but also an approach that very
clearly separates concerns.
JB I think that really hits the nail on the head. It comes
down to distinguishing between what we call errors—which
are things that the user is responsible for dealing with—
and failures. This creates a model that is easier to reason
about, rather than littering your code with try/catch
statements wherever failures might happen—since failures
can, and will, happen anywhere in a distributed system.
YB One of the fantastic lessons that’s come out of all this
is that it has allowed me to start thinking about how the
system actually works in terms of handling failures and
dealing with the external agents we communicate with via
messages. Basically, I started to think about how we should
handle the communication between services around the
way we handle failures. So now that’s something we always
think about.

The reality is that any time we talk to external services,
we should expect some failures. They’re just going to
happen. This means we shouldn’t be banking on some
external service responding in a short amount of time.
We want to explicitly set timeouts. Then if we see that the
service is starting to fail very quickly or with some high

12 of 17

I
started to
think about
how we should
handle the
communica-

tion between
services around
the way we
handle failures.
So now that’s
something
we always
think about.

—Yanik Berube

acmqueue | may-june 13

web services

frequency, we’ll know it’s time to trip a circuit breaker
to ease the pressure on that service and not have those
failures echo across all services. I have to say that came as
a bonus benefit I certainly wasn’t expecting when we first
started working with Akka.

P
roviding for greater efficiency in the utilization
of system resources by resorting to a distributed
microservices architecture is one thing. But
to what degree is that liable to end up shifting
additional burdens to your programmers? After

all, coding for asynchronous distributed systems has long
been considered ground that only the most highly trained Jedi
should dare to tread.

What can be done to ease the transition to a reactive
microservices environment for programmers more
accustomed to working within the confines of synchronous
environments? Won’t all the assumptions they typically
make regarding the state of resources be regularly violated?
And how to get a large team of coders up the concurrency
learning curve in reasonably short order?

Here’s what the Hootsuite team learned…

TC Let’s talk a little about the impact the move to
microservices has had on your developers. In particular,
I would think this means you’re throwing a lot more
asynchrony at them than most developers are accustomed
to. I imagine they probably also have a lot more data
consistency issues to worry about now.
YB Although the asynchrony problem hasn’t been fully

13 of 17

acmqueue | may-june 14

web services

addressed, Scala Futures (data structures used to retrieve
the results of concurrent operations) actually make it
really easy to work with asynchronous computation. I
mean, it still takes some time to adjust to the fact that
anything and everything can and will fail. But, with Scala
Futures, it’s actually quite easy for relatively uninitiated
programmers to learn how to express themselves in an
asynchronous world.
ES If you’re coming at this from the perspective of thread-
based concurrency, it’s going to seem much scarier for a lot
of use cases than if you’re coming at it from a Futures point
of view. Also, when you’re working directly inside actors,
even though messages are flying around asynchronously
and the system is doing a thousand things at the same
time, you’re insulated from what it takes to synchronize
any state modifications, since an actor will process only
one message at a time.
KEN BRITTON I’ve noticed when developers first start
writing Scala, they end up with these deeply nested,
control-flow-style programs. You see a lot of that in
imperative languages, but there’s no penalty for it. In a
strongly typed functional language, however, it’s much
more difficult to line up your types through a complex
hierarchy. Developers learn quickly that they’re better
served by writing small function blocks and then
composing programs out of those.

Akka takes this one step further by encouraging you
to break up your logic with messages. I’ve observed a
common evolution pattern where developers will start
off with these very bulky, complex actors, only to discover
later that they could have instead piped a Future to their

14 of 17

acmqueue | may-june 15

web services

own actor or any other actor. In fact, I’ve witnessed a
number of aha moments where developers hit upon the
realization that these tools actually encourage them to
build smaller composable units of software.
JB That matches my experience as well. Actors are very
object oriented, and they encapsulate state and behavior—
all of which I think of as mapping well to a traditional
approach. Futures, on the other hand, lend themselves to
functional thinking—with all these small, stateless, one-off
things you can compose easily. But have you found you can
actually make these things derived from two very different
universes work well together? Do you blend them or keep
them separate?
YB We’ve used them together in parallel, and I think they
work well that way. Ken mentioned this idea of generating
Futures and then piping them either to yourself as an actor
or to some other actors. I think that pattern works quite
well. It’s both simple and elegant.
ES I have to admit I stumbled over that mental shift a bit
early on. But, yes, I’d say we’ve been able to blend actors
and Futures successfully for the most part.
JB Do you feel that certain types of problems lend
themselves better to one or the other?
ES In our simpler services, the routing of a request to
the code is all actor based, and then the actual business
logic is generally written as calls to other things that
produce Futures. I suppose that when you’re thinking about
infrastructure and piping things around, it’s very natural to
think of that in terms of actors. Business logic, on the other
hand, perhaps maps a little more readily to the functional
point of view.

15 of 17

I
’ve witnessed
a number of
aha moments
where
developers

hit upon the
realization that
these tools
actually
encourage them
to build smaller
composable
units of sofware.

—Ken Britton

acmqueue | may-june 16

web services

KB We’re also finding that a rich object-oriented model
is helpful in our messaging. For example, we’ve started
defining richer success and failure messages containing
enough detail to let an actor know exactly how to
respond. So, now our message hierarchy has expanded
to encapsulate a lot of information, which we think nicely
aligns object-oriented concepts with the actor model.
TC One thing that occurred to me as you talked about
your environment is that it seems you’ve moved not only
from a monolithic architecture, but also, in some sense,
from a monolithic technology to a much wider array of
technologies. So I wonder if you now find it more difficult
to operate in that environment, as well as to train people
to work in it. Whereas before maybe it was sufficient just
to find some new hires that were proficient in PHP, now
you’ve got ZeroMQ and actors and Futures and any number
of other things for them to wrap their heads around.
Without question, your environment has become more
complex. But is it now in some respects also actually an
easier place in which to operate?
YB I think the act of dividing the logic into a lot of different
self-contained services has made it easier at some level
to reason about how the system works. But we’re not
finished yet. There’s still plenty of work to do and lots of
challenging areas to continue reasoning about.

And, yes, of course, the environment has become a bit
more complex. I have to agree with that. But the benefits
outweigh the drawbacks of rolling in all this technology,
since we now have more layers of abstraction to take
advantage of. We have teams that are generally aware
of the big picture but are mostly focused on just a few

16 of 17

acmqueue | may-june 17

web services

microservices they understand really well. That’s an
approach that will have huge benefits for our operations
as we scale them moving forward.
KB It has become apparent how critical frameworks
and standards are for development teams when using
microservices. People often mistake the flexibility
microservices provide with a requirement to use different
technologies for each service. Like all development teams,
we still need to keep the number of technologies we use to
a minimum so we can easily train new people, maintain our
code, support moves between teams, and the like.

We’ve also seen a trend toward smaller services. Our
initial microservices were actually more like loosely
coupled macroservices. Over time, though, we’ve pushed
more of the deployment, runtime, and so forth into shared
libraries, tooling, and the like. This ensures the services are
focused on logic rather than plumbing, while also sticking
to team standards.
Copyright © 2017 held by owner/author. Publication rights licensed to ACM.

CONTENTS2

17 of 17

