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Users of SPICE have used two methods to simulate transmission lines: use one of SPICE's built in transmission line 
models or use a series of lumped component sub-circuit approximations. Neither method has been completely satisfactory. 
Neither method directly addresses the fact that some of the line parameters are functions of frequency. 
 
SPICE has two transmission-line components: T, the lossless transmission-line component; and O, the lossy transmission-
line component. The lossless line simulates only delay and characteristic impedance. For the lossy line; you must enter the 
primary line parameters, but at this time it is not possible to have all four primary parameters non-zero at the same time. 
Furthermore, it is only good at a single frequency or at best a narrow band of frequencies because real line parameters are 
functions of frequency and the ones in the O component are constants. 
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Figure 1. Primary line parameters. 



 
Lumped-circuit modeling uses a series of lumped-element subsections as shown in Figure 1. Each line parameter is 
multiplied by the length of the section. The fact that the line parameters are dependent on frequency is emphasized by the 
subscript of ω. Frequency dependence has been modeled by replacing some components with a parallel ensemble of 
tuned components with staggered center frequencies (not shown in the figure). Usually, only the variation resistance is 
modeled.  
 
Finally, the two-way delay (time from source to load and back again) of each sub-circuit must be short with respect to the 
rise times of the signal. For example, if the rise time was 50 ns, the delay of the lumped component sub-circuit should be 
less than about 10 ns, which for typical twisted pair cable is the delay of about three feet. A 1000-foot line would require 
approximately 300 lumped-component sub-circuits! 
 
There is a better way, one which requires only about two-dozen components, regardless of the length or bandwidth of the 
transmission line. We will call it the Telegrapher's Method and the sub-circuit we create to implement it will be called the 
Telegrapher's Model or TM. By the end of this article, we will have a SPICE sub-circuit that will implement the 
Telegrapher’s method with full frequency dependence and will be as easy to use as the built-in components. 

 
The TM two-port model 
Figure 2 depicts a two-port equivalent circuit model of the solutions of the Telegrapher's Model. By using Thévenin and 
Norton equivalents, many different depictions are possible. This particular depiction will be called the canonical two-port. 
 
In this model, P1, P2, Z1 and Z2 are frequency dependent and will be implemented with Laplace components. P1, P2 
(propagation functions) account for loss, delay, dispersion and anything that happens to the signal in transit. The Z1, Z2 
(the characteristic impedances) and the voltage doublers A1 and A2 account for the interaction of the transmission line 
with the external environment. As drawn, Z1 and Z2 would be implemented with a "G" component (a voltage dependent 
current source) and P1 and P2 would be implemented with an "E" component (a voltage dependent voltage source). The 
term "Laplace component" will be used to mean either the G or E components with the Laplace option.  
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Figure 2. Canonical two-port representation of the solutions of the Telegrapher's Equations 
 
Let's examine this model to if it at least qualitatively behaves as we would expect. We know that if a transmission line is 
perfectly matched at the load then there will be no reflections from the load. A perfect match means Zo = Z2ω. Zo and Z2ω 
form a voltage divider which divides exactly by 2.  
 
Let's start with the node Vfo. That voltage is doubled by A2 and then the voltage divider divides it by 2, so we know that 
Vo = Vfo. The inputs of difference amplifier D1 see Vfo on one input and Vo on the other. These signals exactly cancel so 
the output of D1 is zero and there is no reflection. Since the output of D1 is zero, the output of P1 and the output of A1 is 
also zero. Let's move our focus back to the node Vi. Since Vbo (the output of P1) is zero, the output of D2 is just Vi. The 
output of P2 (Vfo) is just Fω x Vfi and we have already determined that Vo is exactly equal to Vfo so we know now that 
Vo/Vi = Fω. Fω is just the transfer function of a perfectly terminated transmission line. That works. 
 
What if we now let Zi = Z1ω, let Zo become infinite (open), and let Vg be a 1-V step?  This configuration, called series 
termination, is often used to drive logic when there is a single transmitter and a single load. Initially all nodes including the 
output of A1 are zero. Vg generates a one-volt step. Zi and Z1ω form and exact divide by two divider so Vi is a ½-V step. 
D2 sees this ½-V step on its positive input and zero on its negative input, so its output it also a ½-V step. This is input to 
Fω which accounts for delay, dispersion and attenuation. 
 



Just for this case, let’s suppose that Fω is just a pure 150-ns delay without dispersion or attenuation. So, 150 ns after the 
input step occurs, a ½-V step comes out of P2 at node Vfo. It gets doubled to 1 V. There is no divider, so the load sees a 
1-V step even as the input is a ½-V step. D1 sees Vo (a 1-V step) at its positive input and Vfo (½-V step) at its negative 
input, so its output is a ½-Vstep. P1 delays that by another 150 ns, at which time its output, Vbo, produces a ½-V step.  
 
This is doubled to a 1-V step by A1. Vi rises from ½ V to 1 V. D2 now sees 1 V at its positive input and ½  V at its negative 
input, so it produces ½ V. But it was already producing ½ V, so nothing changes at the output of D2 so there are no more 
events. The reflection from the load was absorbed by the matched impedance at the source side. To recap, we see the 
input rise from zero to ½ V. 150 ns later we see the output rise to 1 V. Finally, 150 ns after that, the input rises to 1 V and 
then nothing else happens. This all agrees with experience. 
 
But what about the doublers? Transmission lines are just wire and plastic. There are no amplifiers in there. Suppose there 
was an ideal, lossless 50-ohm transmission line with a 2-V, 50-ohm source and a 50-ohm load. Zi, Z1, Z2 and Zo all have 
1 volt across them and they all dissipate 20 mW for a total of 80 mW. But, the source is only providing 40 mW. How can 
this two-port be accurate?  It does not even conserve energy. 
 
Is the two port accurate? The answer is yes and no. The two-port only promises to model the transmission line's effect on 
the external circuit. It makes no promise that there is anything like the model inside the transmission line. The model 
absorbs and generates energy from nowhere, but that is OK because energy is conserved in the external circuit. Yes, it is 
an accurate model of the transmission line's effect on the rest of the circuit, by which we mean the voltages and currents 
at the two ends of the model are the same as an actual transmission line. 
 

The telegrapher's equations 
In the circuit of Figure 2, the P1 and P2 are just voltage-dependent voltage sources and could be replaced with a SPICE E 
component. Impedance, like Z1 or Z2 can be thought of as a component that adjusts its pass current as a function of the 
voltage across it. In other words, impedance can be thought of as a voltage-dependent current source. Z1 and Z2 can be 
implemented with a G component that has its output connected to its input. This circuit, as drawn could be directly 
simulated, if we only knew Z(s) and F(s). 
 
Fortunately, that problem was formulated and solved in the late 19th century by Oliver Heaviside. The equations are 
derived from the incremental model in Figure 1 by mathematically letting the length of each segment approach zero. That 
produces a second order differential equation that can be solved. The solutions for Z and F are: 



 

1a.  
 

1b. 

(Rω + sLω )  (Gω + sCω )√γ(s)  = 

  
 
 

1c.  
 
1d. x = length of the transmission line. 
 
(Refer to Reference 1 or 2 to see how these functions are derived.) 
 

Rω, Lω, Gω, and Cω are the previously defined primary parameters of the transmission line. We would now be finished, 

except that the primary parameters are (possibly) functions of frequency. 
 
 

Understanding the solution to the telegrapher's equations 
Z(s) is called the characteristic impedance. It has an explicit frequency dependence caused by the "s" term and an implicit 
frequency dependence indicated by the ω subscripts on Rω, Lω, Cω and Gω which means each of the parameters is 
(potentially) also a function of frequency. There are several definitions of characteristic impedance that are all equivalent: 
 
1. It is the impedance seen looking into an infinite length of transmission line.  



 
2. It is the impedance that must be used to terminate the line to avoid reflections. 
 
3. It is the impedance seen looking into a finite length of transmission line that is terminated at the other end by its 
characteristic impedance. So if I have 1000 feet of 50-ohm coax and terminate it with 50 ohms at the load and measure 
the impedance at the source end, it will be 50 ohms. 
 
Fω is called the transmission or propagation function. If the transmission line is terminated by its characteristic 
impendence, then the ratio of its output voltage to its input voltage is F(s). i.e. (Vo/Vi) = F(s). If F(s) and Vi are known, then 
Vo = F x Vi. The form of F may not be familiar. Clearly, it is a function of length (x), but it may look unusual. γ(s) (also 
known as the "propagation constant" even though it is not a constant) is a square root of a complex number, and so, in 
general, γ(s) is also a complex number. For convenience let α(s) and β(s) be the real and imaginary parts of γ(s), i.e.  
 

2a.  
  
where α and β are purely real. Now we can rewrite:   
 

2b.  
 
The e-xα term is just the exponential of a real number. As x gets larger, e-xα gets smaller, which means as the transmission 
line gets longer, the attenuation increases. e-xα accounts for the loss in the transmission line. The loss is xα with α being 
the loss in nepers per unit length ( 1 neper = 8.67 dBs). 
 
The e-xjβ term is the exponential of a purely imaginary number and is equal to cos(-xβ) +  j sin(-xβ). This simply means that 
the phase shift between input and output is xβ in radians per unit length. Obviously, the longer the transmission line the 
greater the phase shift. A phase shift of xβ is equivalent to a delay at a particular frequency of d = xβ/ω which increases 
proportionately to length as the transmission line gets longer (just what we would expect). 
 



In the next part of this article we will show how to put frequency dependence into the solutions of the Telegrapher's 
Equations and then in the last part we will pull it all together into an easy to use sub-circuit. 
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Resources 
1. Linear Technology Corporation LT Spice IV download available with a very generous license. 
 http://www.linear.com/designtools/software/ltspice.jsp 
2. Yahoo user's group 
 http://tech.groups.yahoo.com/group/LTspice/ 
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