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Abstract

Since Bitcoin was launched in 2009, several new cryptocurrencies have
been initiated with variations to Bitcoin’s original design. Although
Bitcoin still remains the most prominent actor in the market, some
technical problems have been raised to the design of the protocol. The
objective of this thesis is to determine whether the newer cryptocurrencies
handle the technical problems of Bitcoin, or if they also suffer from
the same issues. Instead of evaluating several cryptocurrencies for this
comparison, the cryptocurrency Ethereum has been chosen as a proxy
for the others. Ethereum was started in 2014, is widely backed in the
community and is second in line to Bitcoin when it comes to market
capitalization.

As a basis for the comparative analysis a rigorous study of the Bitcoin
and Ethereum protocols have been performed, and parallel descriptions
of the systems have been devised. Three technical problem have shaped
the focus of the analysis: computational waste, concentration of power
and ambiguity of transactions. Real world statistical data has been
gathered and synthesized to enlighten the findings in the comparison.
The main result of the comparison is that both systems suffer from the
same problems to a certain degree, due to the fact that they utilize the
same consensus mechanism. However, Ethereum utilizes several newer
techniques to try and reduce the severity of these problems compared to
Bitcoin, with varying degrees of success.





Sammendrag

Bitcoin ble startet i 2009, siden da har flere nye kryptovalutaer har
blitt lansert i markedet med variasjoner til Bitcoin sitt originale design.
Flere tekniske problemer har blitt senere påpekt ved Bitcoin protokollen.
Til tross for disse problemene forblir Bitcoin den mest fremtredende
aktøren på markedet. Formålet med denne oppgaven er gjennomføre
en sammenlignende analyse for å avgjøre om disse nye kryptovalutaene
håndterer de kjente tekniske problemene ved Bitcoin – eller om de også
stever med de samme utfordringene. I stedet for å vurdere flere ulike
kryptovalutaer, brukes kryptovalutaen Ethereum som en stedfortreder for
de andre. Ethereum ble startet opp i 2014, og har siden det mottatt mye
støtte fra miljøet, i tillegg til å være nest etter Bitcoin i markedsverdi.

Det har blitt gjennomført et grundig studie av både Bitcoin og
Ethereums protokoller som en del av denne oppgaven, paralelle beskriv-
elser av systemene er presentert som et grunnlag for sammenligningen.
Tre veldefinerte tekniske problemer for Bitcoin har formet fokuset for
analysen: bortkastet beregningskraft, konsentrasjon av makt og tvety-
dighet i transaksjoner. Tilgjengelig data fra de aktuelle systemene har
blitt samlet inn og komponert for å belyse funnene fra sammenligningen.
Hovedresultatet fra oppgaven er at begge systemene lider av de samme
tekniske problemene i varierende grad, grunnet at de begge anvender den
samme typen konsensusmekanisme. Ethereum bruker imidlertid flere nye
teknikker for å forsøke å redusere effekten av problemene sammenlignet
med Bitcoin, med varierende grad av suksess.
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Chapter1Introduction

Traditionally, financial systems are based on physical money and digital credit. In
the world of online transactions the only way of exchanging value is by utilizing
trusted third parties, such as banks or intermediate payment systems – for instance,
PayPal 1 – to relay the transaction. A weakness of these kinds of online systems is
that you have to trust the mediating third party to act in your interest. Even fiat
currencies, i.e. the physical money system, have their weaknesses – trust needs to be
placed in the institution issuing such currencies, that they will not act in ways that
may cause unreasonable levels of inflation or financial crises.

Cryptocurrencies provide an alternate solution to the existing systems. By
utilizing a peer-to-peer transaction system – where identities and ownership can be
validated using cryptographic means – the users of the system do not have to rely on
trust in third parties to exchange value online. Most cryptocurrencies mint their own
coin to create value within the system. This is an essential part of their functionality
that decouples the value in the cryptocurrency from any fiat currency that relies on
governments or organizations for issuance. It also means that cryptocurrencies can
be exchanged globally – independently of what currency is native to a region.

When Bitcoin [Nak08] emerged in 2009 it was just a small group of early adopters
that saw the potential in the technology and made use of it [NBF+16]. Since then a
growing ecosystem of different cryptocurrencies has emerged. It becomes increasingly
interesting to notice the differences and challenges of the several systems as they
grow in popularity and value.

1.1 Previous work

Although Bitcoin is considered the first successful attempt at creating a digital
currency, it is not the first attempt. The idea has been around since the early

1www.paypal.com

1



2 1. INTRODUCTION

nineties, with several variations and implementations. One of the earliest commercial
attempts at a digital currency was a company called DigiCash, founded by Chaum
[NBF+16]. DigiCash uses protocols building on a cryptographic scheme Chaum had
developed – and patented – that allowed user-to-merchant transactions to be verified
anonymously. However, transactions between users were not possible. DigiCash
was implemented by some merchants and banks [Cha92], but did not gain enough
traction commercially to survive in the market in the long run [NBF+16].

Two other notable systems are Dai’s b-money [Dai98] and Back’s Hashcash [B+02].
These systems are notable because they introduce key components of the Bitcoin
system, and are referenced by Nakamoto in the original Bitcoin paper. The main
ideas from these systems form the foundation of the blockchain and the consensus
algorithm for Bitcoin.

Dai[Dai98] discusses the general idea of a digital cash system – b-money – where
transactions are being broadcast to everyone, and the users of the system are
responsible for verification and keeping track of balances in a distributed manner.
The system Dai describes is a general idea – not an actual implementation – but this
might have sparked the idea of Bitcoin’s blockchain, as it is referenced by Nakamoto
in the original Bitcoin paper.

Back [B+02] introduced Hashcash, and implemented a computational proof of
work – called a cost function – for a service. The original implementation of this
idea was a throttling mechanism for e-mail spam. A similar idea had been presented
earlier by Dwork and Naor [DN92]. By including a computationally costly proof of
work in an email, the receiver of the mail could be reasonably sure that the email
had not been generated on a large scale – like spam emails. Other uses of this cost
function were also discussed, for example, as a tool for mitigating SYN-flooding
attacks on web servers; a common denial of service attack targeting the TCP protocol
[SKR+11]. This proof of work principle is used as a key component in Bitcoin, and
as we will see later, is vital for the system functionality.

1.2 Research Objective

Over the years, Bitcoin has been thoroughly reviewed, and technical issues for the
system have been identified, Micali [Mic16] summarizes them as three technical
problems:

Technical Problem 1: Computational Waste Large amounts of computation
and energy is wasted in the validation process of Bitcoin. This is because nodes
– i.e. Bitcoin system participants – are investing in expensive hardware to get an
advantage when competing to receive rewards for validating the transactions of
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peers. Combined with the dynamic adjustment of the difficulty of the validation
process to fit the expected time of ten minutes between each set of transactions,
it creates a situation where unnecessarily large amounts of computation are
expended.

Technical Problem 2: Concentration of Power The validation is concentrated
in a few centrally organized groups, and not spread out in the distributed manner
as it was intended. For the validation process to be profitable for nodes in the
peer-to-peer network regarding costs related to the process, nodes join together
and split rewards received from successful validation. In a group like this, the
cost of specialized validation equipment and power expenses is split between
the nodes in the group, and any reward for a successful validation is shared
with the others. This defeats the original purpose of Bitcoin, which is to be
distributed.

Technical Problem 3: Ambiguity Because of the underlying architecture of Bit-
coin, transactions take time to process. Knowing exactly when a transaction
can be trusted or not is subject to variance, causing the validity of the transac-
tions to remain ambiguous for a period of time after they have been relayed to
the network.

The main research objective of this thesis is to determine if the later cryptocur-
rencies have avoided the known problems of Bitcoin, by performing a comparative
analysis of Bitcoin and Ethereum.

Newer cryptocurrencies have the advantage of the knowledge of the problems of
Bitcoin before development; comparing these cryptocurrencies to Bitcoin therefore
seems like the natural choice when reviewing how well these challenges are being
met and handled by the newcomers. Rather than try to answer this by examining
multiple instances of cryptocurrencies the main focus has been put on Ethereum.

There are several reasons for choosing Ethereum as a proxy for the other cryp-
tocurrencies. Firstly, the currency is relatively recent, Ethereum was launched the
summer of 2015, the developers of the system will likely be aware of the current re-
search in the field. Secondly, the system is explicitly aimed at fixing the shortcomings
of Bitcoin [Whaa], which means that we can assume they have had these problems
in mind when designing the protocol. Lastly, although Bitcoin is still the biggest of
the cryptocurrencies in terms of adoption and value, Ethereum comes next in line as
the second most popular alternative and is widely backed in the community. To give
a quantifiable measure of the two systems, the website coinmarketcap.com values
the current (30. May 2017) Bitcoin market capitalization as being over 32 billion
US dollars. Ethereum comes next with over 20 billion US dollars [Cry]. However,
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it should be noted that these values are highly volatile and subject to change on a
daily basis.

1.3 Methodology and Outline

As a methodology for this thesis consists of deriving parallel technical descriptions
for Bitcoin and Ethereum to detail both systems in a scientifically rigorous manner
to accurately compare and contrast them. Importantly, while Bitcoin has recently
been described well in the literature, information on Ethereum is dispersed over
online wikis, blogs, and forums, subject to edits and changes by the different authors
sporadically – making the task of detailing Ethereum non-trivial.

Furthermore, the technical problems of Bitcoin have been elaborated in terms
of the protocol detail, and Ethereum has been analyzed to evaluate whether it
exhibits the same problems. The two descriptions are placed in contrast to each
other, highlighting their similarities and differences. The comparative analysis will
also include data available from the live systems when this is appropriate. This data
has been gathered and synthesized to enlighten the discussion and to determine if
the findings from the comparison align with the data.

An outline of the contents of the thesis is included below.

Chapter 2: Theory Cryptographic primitives, data structures and other technical
aspects that are essential to both Bitcoin and Ethereum.

Chapter 3: Bitcoin An in-depth description of the Bitcoin protocol and technical
features.

Chapter 4: Ethereum An in-depth description of the Ethereum protocol and
technical details as a contrast to Bitcoin functionality.

Chapter 5: Comparison and Discussion From what we have learned in Chap-
ter 3 and 4; a comparative analysis of Ethereum and Bitcoin in terms of the
technical problems discussed, enlightened by the statistical data gathered.

Chapter 6: Conclusion Summary and concluding remarks.



Chapter2Theory
This chapter discusses fundamental cryptographic primitives and schemes, as well as
specific data structures and their properties that are used both within Bitcoin and
Ethereum.

2.1 Cryptographic Primitives

Cryptographic primitives are the building blocks of any secure information sys-
tem. For distributed cryptocurrencies, the cryptographic primitives are essential
for the functionality of the currency. A cryptographic primitive is an algorithm –
usually following a standard established by a trusted institution – that performs
a cryptographic function. This section describes the functionality of the relevant
cryptographic primitives for Bitcoin and Ethereum.

2.1.1 Hash Functions

Hash functions, in general, take data of any length as input and transform the data
according to a deterministic mathematical function h. Depending on what kind
of properties that are desirable for the output, there exist a variety of different
families of hash functions to suit most applications. For instance, a hash function
to be used for indexing data in an array will need to produce a fixed length output
from the input data that can be used indicate where the data is stored. Utilizing
hash functions for indexing is a typical operation, and such hash functions can be
constructed simply. A cryptographic hash function, on the other hand, has higher
requirements.

Cryptographic Hash Functions

Stinson [Sti05] formally defines a hash function h : X 7→ Y like so: Let x ∈ X, and
define y = h(x). For a cryptographic hash function it should only be possible to
calculate y by applying function h to x.

5



6 2. THEORY

A secure hash function must be resistant to the following three properties, i.e.
the following three problems should be difficult to solve for the given hash function
h [Sti05].

Preimage Resistance For hash function h and an element y ∈ Y it should be
infeasible to find x ∈ X such that h(x) = y. This property is also known as
the one-way property.

Second Preimage Resistance For hash function h and an element y ∈ Y it should
be infeasible to find x′ ∈ X such that x′ 6= x and h(x′) = h(x).

Collision Resistance For hash function h it should be infeasible to find x, x′ ∈ X

such that x′ 6= x and h(x′) = h(x).

In addition to these three, other typical properties for cryptographic hash functions
are listed next. These are – as we will see later – especially interesting in the context
of distributed cryptocurrencies.

Uniform hashing distribution The hashing distribution should be uniformly dis-
tributed. The distribution of hash values should be approximately the same
as selecting a random value from the output space. Hash functions that have
this property can be utilized as pseudo-random number generators because the
output will be difficult to distinguish from random.

Efficiency Computing h(x) should be a computationally efficient operation. This is
true for most cryptographic hashes, but we will see that for some scenarios,
hash functions that are deliberately slow are more appropriate.

Output size The size of the output must be of such a length that it is computa-
tionally infeasible to brute force a pre-image of a hash. That is if the output
size is too small a list of possible input/output pairs can be generated to find
pre-images, which breaks the first requirement for cryptographic hashes.

Designing secure hash functions is far from easy, and through the years there has
been a slow evolution of cryptographic hashing functions as flaws or weaknesses in
previous functions have been found [HS05]. Because of the difficulty in designing
secure hash functions, there are several standards of hash functions. The National
Institute of Standards and Technology (NIST) is a measurement laboratory founded
in the US [NIS]. NIST, among other things, is responsible for the standardization of
cryptographic algorithms – including the most commonly used cryptographic hash
algorithms. Table 2.1 gives a general overview of this evolution up till today. The
first four algorithms were developed by NSA, while SHA-3, was the winner of an
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Table 2.1: Evolution of Standardized Hash Functions
Family Year Functions Output size Deprecated
MDx [Riv92] 1990’s MD2, MD4, MD5 128-bit Deprecated
SHA
(SHA-0) [PUB95]

1993 SHA-0 160-bit Deprecated

SHA-1 [PUB95] 1995 SHA-1
(fix on SHA-0)

160-bit Deprecated

SHA-2 [Dan13] 2001
SHA-256, SHA-512
(plus truncated
versions)

224-bit, 512-bit
(plus truncated
versions)

SHA3 [PUB14] 2012 SHA3-224, SHA3-256,
SHA3-384, SHA3-512

224-bit, 256-bit,
384-bit, 512-bit

international competition – the hash function was originally named Keccak. SHA3 is
the standardized version of Keccak, and they differ slightly in implementation.

2.1.2 Hash Chains

The general idea of a hash chain is that by consecutively applying a one-way hash
function to some data, the same data can be used as a secret over several passes
without revealing the content. An example of a hash chain of size four looks like this:

h(h(h(h(data)))) = h4(data)

Practical applications of hash chains are Lamport’s one-time password [Lam81].
This scheme allows the same shared secret to be reused consecutively by using is as
a root in a hash chain. Once the chain has been generated a new one-time password
is determined by starting at the end of the chain, and moving backward. Once a
password has been used it is removed from the chain and is never used again, in
this way no information is disclosed by knowing previous passwords. Additionally,
in 1997 Rivest and Shamir [RS97] proposed a micropayment system utilizing hash
chains to verify payments.

An adapted form of hash chains can also be used as a secure timestamp server
for data, Haber and Stornetta [HS91] discusses this use of hash chains. In secure
timestamp servers, more data can be added to the hash chain over time, creating an
immutable structure of the previous data. Figure 2.1 shows how such a use can be
structured, where T denotes a timestamp, H a hash value. By evaluating the hash
value in the chain assurance that the previous timestamps have not been tampered
with is provided, because changing a timestamp would require finding collisions for all
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Figure 2.1: An example of a hash chain with timestamping.

the subsequent hashes. Other data could also be included along with the timestamps,
creating assurance of the creation time and integrity of the data.

.

2.1.3 Digital Signatures

In the world of cryptography there are two paradigms: symmetric and asymmetric
key cryptography [DH76]. Symmetric key cryptography is based on the idea that
the communicating parties have a shared secret, a key, that can be used to secure
communication. Symmetric key cryptography is efficient but based on trust between
the communicating parties that neither will disclose the key to others. Asymmetric
cryptography removes this need for trust in the other party by providing keys in
pairs: public and private keys. The private key is secret and only known to the owner
of the key, while the public key is publicly announced to anyone. The keys are related
to each other in such a way that the public key can encrypt, the private key can
decrypt – the public key alone will not enable decryption. Asymmetric cryptography
is commonly called public key cryptography.

Public key cryptography is based on different domains of mathematical functions,
the second column in Table 2.2 lists some of these. Typically, the functions are
based on a mathematical problem that is easy to solve when given all the relevant
information, but computationally hard to solve with only parts of it. In terms of
cryptography the principal part of that information will usually constitute the secret
private key.

Digital signatures have their foundation in the public key cryptography: Public
keys can be used authenticate digital signatures, while private keys can be used to
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digitally sign outgoing messages. A good digital signature will provide assurance of
a message’s authenticity and integrity for anyone holding the sender’s public key,
without disclosing any information about the related private key. Several different
digital signature algorithms exist. NIST specifies the DSS [Gal13], a collection of
three standardised digital signature algorithms. Table 2.2 gives an overview of these,
their relevant parameters and mathematical basis. All digital signature schemes
define three algorithms:

Key generation algorithm The key generation algorithm is the initial phase. This
step typically takes a random number of a fixed size – the private key – and
performs a mathematical function on the random number to produce the public
key.

Signature algorithm The signing algorithm takes as input the message to be signed
and the signer’s private key and outputs a signature that can be appended to
the original message.

Verification algorithm The verification algorithm takes three variables as input:
a message, the signature appended to the message and the sender’s public key.
The algorithm outputs true, if both the signature matches the sender’s public
key and the message has not been tampered with, false otherwise.

The security in a digital signature relies on the hardness of the underlying
mathematical problem. In addition to the details of the digital signature algorithms,
DSS defines rigid guidelines on the size of the domain parameters and keys for
implementations. Because signatures are based on different mathematical problems,
the recommended parameter length differs between the different algorithms. For
instance Elliptic Curve Digital Signature Algorithm (ECDSA) has a significantly
smaller key size than Digital Signature Algorithm (DSA) for the same level of security
[BR12].

2.2 Data Structures

A data structure is a method of organizing data, usually with the goal of structuring
them such that operations can be performed efficiently on the data. There exists a
variety of different data structures – designed for different purposes – where each has
its advantages and disadvantages. The data structure most suited to your system
depends on what kind of operations you wish to perform on the data subsequently.
Primitive data structures are for instance arrays, trees, stacks, and queues. Some
specific data structures are used in Bitcoin and Ethereum; the next section will give
the reader an overview of these.
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Table 2.2: Overview of the three algorithms specified in the DSS [Gal13]
Algorithm Mathematical basis Domain parameters Private key Public key Signature

Digital Signature
Algorithm (DSA)

Discrete logarithm
problem

Per message secret k,
primes p and q,
generator g

x y (r, s)

Rivest-Shamir-
Adleman-DSA
(RSA-DSA)

Integer factorization
problem

Modulus n n, d n, e s

Elliptic Curve
DSA (ECDSA)

Discrete logarithm
problem for
elliptical curves

per message secret k,
curve parameters,
base point G,
order n of base
point G, cofactor h

d Q (r, s)

2.2.1 Merkle Trees

A Merkle tree [Mer82] is a binary tree, where the leaf nodes are hashes of original
data, and all parent nodes are hashes of its two children. This is similar to a hash
chain, except that for each new hash data is combined with the next node on the
same level, halving the number of hashes for each level in the tree. The root of the
tree is called the Merkle root or root hash of the tree. The root hash represents a
hash of all the data combined in the tree. Figure 2.2 shows how each parent node is
assembled and hashed from the data in the child nodes. In the figure h(x) denotes a
hash function. The yellow fields show the original values as leaf nodes, the blue box –
the root of the tree – is called the root hash, and represents the hash of all the values
stored in the tree.

The Merkle tree is efficient when checking the integrity of data in the leaf nodes.
By storing the data in a tree structure, a validator only needs to check one branch of
the tree to validate the data in the leaf node. This means that for any dataset of
size n the lookup time for data is logarithmic.

.

2.2.2 Patricia Tree

A Patricia tree is a binary radix tree [Mor68]. The tree is constructed by dividing
data according to common prefix and storing each prefix only once. A binary Patricia
tree means that each parent node may have at most have two children. Data stored
in a Patricia tree is read by accumulating data from traversing the branches of the
tree from beginning to the end node. Figure 2.3 shows a simple implementation of a
Patricia tree, where each new node adds to the final value. The tree is constructed
from four data values, which can be seen in the box to the left. The yellow nodes
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Figure 2.2: A block diagram showing the structure of a Merkle tree.

show how the tree can be traversed to find the data value "ape". The dollar sign
denotes a terminating node.

2.2.3 Merkle Patricia Trees

The Merkle Patricia Tree is a data structure that is used extensively in Ethereum.
The structure is a combination of the functionality of a classic Merkle tree such as
the one described in Section 2.2.1, and a Patricia tree in Section 2.2.2. This results
in a data structure with the same properties for integrity checking data stored in
the structure that is gained with the Merkle tree, but with optimizations for storage,
insertion, and deletion from the Patricia tree.

The Merkle Patricia Tree is specified by the developers of Ethereum [Woo14]
[Pat]. The Design Rationale document [Des] states that the design is influenced by
original thoughts from the Bitcoin forum [Ult]. The properties of the Merkle Patricia
Tree are listed below:

Logarithmic time Lookups, updates, deletions, and insertions are done in loga-
rithmic time.

Bounded tree depth Unlike the regular Merkle Tree there is an upper limit to
the depth of the Merkle Patricia tree that is independent of the values stored
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Figure 2.3: A simple Patricia tree.

in the tree.

Unique root-mapping The root of the tree is uniquely mapped to the data stored
in the tree, i.e., changing any value in the tree influences the value of the root.
Unlike the Merkle Tree, the order of insertion is irrelevant to the computation
of the root.

All data added to the Merkle Patricia Tree is hashed and indexed in the format
[key, value]. The key is the hash of the data, and the value is the actual data. The
keys become the traversal keys – that works similarly to the Patricia tree – the data
values are stored wholly in the leaves of the tree. This works by the use of three
types of nodes:

The [key, value] node is the standard leaf node, and stores the referenced data.
The value is the data, and the key is the remainder of the traversal key (if
there is a remainder). The traversal key is the hash of the data value stored
in the leaf node. The hash provides integrity for the data value and prevents
tampering with the data in the tree as long as the root hash remains intact.

An extension node is an intermediary node that holds intermediary key fragments
that are shared by more than one child leaf node. An extension node is always
followed up by a branch node. The extension node is also in the format [key,
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value] where the key represents the intermediary fragment the key traverses, and
the value holds a hash of the child branch node. This hash has two functions:
firstly, to reference the next node to look up, and secondly to provide integrity
for the child node.

The branch node is an array of size 17, where each position in the array references
one hex encoded character in the key of a branching leaf node. The 17th
position references a terminating leaf node value. If the branch has a child
that is not a leaf node, i.e. it branches to either an extension node or another
branch node – as is often the case – the hash of the child is stored in the array.
This hash provides the same two properties as the hashes in the extension node:
referencing the child and providing integrity for the child.

Figure 2.4 visualizes the concept with four data values. The blue nodes are regular
[key, value] nodes, the purple node is an extension node, and the yellow nodes are
branch nodes. For the sake of illustration, the keys have been set to simple hex values
that illustrate the properties of the different node types. Note that in a real Merkle
Patricia Tree the keys are created by cryptographically hashing the data values that
are stored, and this is essential to the security of the tree.

The root hash will always be an accumulation of the hashes of all the extension
and branch node hashes. The extension and branch nodes only exist on the basis
of the leaf nodes which contain the actual data values, and they are constructed
from the keys of the data values. Since the keys are hashes of the data values the
value in a leaf node cannot be changed without altering the entire structure and
corresponding root node. As such the hashes work as cryptographic integrity checks,
and as hash pointers to other nodes.
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Figure 2.4: A Merkle Patricia tree containing four data values.



Chapter3Bitcoin
Bitcoin’s original intent – as it is described by Nakamoto [Nak08] – was to be a peer-
to-peer electronic cash system, in other words a system where nodes can exchange
value in a distributed manner without relying on trusted third parties to forward
transactions. Today we know Bitcoin as a decentralized cryptocurrency. No central
authority distributes the currency or validates the transactions. That responsibility
falls solely to the users of the system. To operate correctly, thousands of users need
to agree on all transactions happening everywhere at the same time. This can be a
challenge, but Bitcoin is living proof that it is practically possible. This chapter will
start by defining some terms used in Bitcoin, followed by a detailed description of
the functional aspects of Bitcoin. Finally, a discussion about the current state of the
Bitcoin system and security considerations.

3.1 Definitions

We begin this chapter by discussing some of the terms used to describe the original
intents of Bitcoin: value, trust, and distributed consensus.

3.1.1 What is Value?

Bitcoin has its own coin that is valuable, the currency is created as a part of the
system and is only tradeable within the system. The Merriam-Webster dictionary
defines value:

Definition 3.1. Value "a fair return or equivalent in goods, services, or money
for something exchanged."

For something to have value, there needs to be a consensus that it is possible for
it to be exchanged in return for goods, services or money. If someone is willing to
trade for the item in question, it has value.

15
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In itself the currency minted in Bitcoin is useless, but the moment someone is
willing to trade a coin in the system in return of some good, service or money in the
physical world, the coins get real world value. To illustrate this fact, the first Bitcoin
transaction in return for an actual service was a payment for pizza in 2010. The
pizza was bought for the neat price of 10,000 bitcoins 1 – a value roughly translating
to 22 million USD at the current exchange rate.

The main purpose of the Bitcoin protocol is to enforce the general rules of
exchanging value, that we recognize from the physical world. They can be summarized
like so:

Authenticated transactions You can only spend value that is yours.

No Double Spends You can only spend value once - once it is exchanged, it
belongs to someone else.

The Bitcoin system is distributed, decentralized and does not rely on any trusted
third party to function – it is sometimes referred to as trustless because of this
property [NBF+16].

3.1.2 What is Trust?

The Merriam-Webster dictionary defines trust as

Definition 3.2. Trust

(a) "Assured reliance on the character, ability, strength, or truth of someone or
something.

(b) One in which confidence is placed."

In Bitcoin confidence is placed in the mathematical problems underlying the
cryptography, allowing nodes with no preconditions to interact in a trustworthy
manner.

3.1.3 Distributed Consensus Problem

For a cryptocurrency to be distributed it has to find a solution to the distributed
consensus problem. The distributed consensus problem is a classic problem from the
field of computer science. Narayan et al. [NBF+16] defines it like so:

1https://bitcointalk.org/index.php?topic=137.0
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Definition 3.3. Distributed Consensus Problem: "There are n nodes that
each have an input value. Some of these nodes are faulty or malicious. A distributed
consensus protocol has the following two properties:

– It must terminate with all honest nodes in agreement on the value.

– The value must have been generated by an honest node."

The distributed consensus problem is not a trivial problem to solve. In fact,
two known impossibility proofs: The Byzantine Generals problem [LSP82] and
Fisher-Lynch-Paterson [FLP85], prove the impossibility of this problem for certain
models.

3.2 What is Bitcoin?

The Bitcoin system itself is effectively a set of rules – a protocol – that all the
nodes in a peer-to-peer network have to abide by. The rules of the protocol are
enforced by using techniques from cryptography. These rules allow the users of the
system to validate the legitimacy and ownership of the cash that is being spent in
transactions without having to trust the source of the transaction data. If anyone
tries to deviate from the protocol by including transactions that are illegal – e.g.
double spending – the other users in the network can detect illegal transactions by
checking the cryptographic proofs. If the checks return false, the transaction will be
discarded, and it will be as if it never happened. As long as more than half of the
users that are validating and agreeing on the transactions are acting by the rules,
one can be assured that the system is operating as desired [Nak08].

The original white paper [Nak08] by Satoshi Nakamoto describes the functionality
of the system on a high level. However, there is a score of subtleties of the system
that Nakamoto’s paper does not cover. The reference point for users that want to
take part in the network is, therefore, a canonical implementation of a computer
program called bitcoind – or the bitcoin daemon. Interestingly, the name Satoshi
Nakamoto is a pseudonym for the unknown actor who designed Bitcoin. The true
identity of Nakamoto remains unknown to the public to this day [NBF+16]. For the
first few years after deploying Bitcoin, Nakamoto was still participating in mailing
lists and forums discussing the functionality and future of Bitcoin. However, after
the system became increasingly popular, Nakamoto went underground and has not
been a part of the development of the system since – the reasons for this remain
unknown.
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3.2.1 bitcoind

The daemon program bitcoind runs as a background process. Each instance of this
daemon is called a Bitcoin node and is a participant in the network. As mentioned,
the first version of bitcoind was created by Nakamoto in 2009 [NBF+16]. Over the
years – after Nakamoto disappeared – the task of updating and maintaining the
daemon has fallen to the Bitcoin Core developers [Bita]. Documentation for the
technical details are available through a wiki page [Bitb] which is maintained by the
community.

The community can take part in the process of improving Bitcoin through a
so-called Bitcoin Improvement Proposals (BIPs). By describing functionality or ideas
for Bitcoin in BIPs they can be included in new versions of the protocol. However,
it is up to the nodes in the system if they want to accept these changes or not –
should a change be introduced that a significant part of the network does not want
to accept, the system could fork causing different versions of the system to exist at
the same time, and potentially having severe consequences for the system. Because
of this risk, there are two classes of updates for the protocol:

Soft Fork A soft fork is a change in the protocol that enforces stricter rules than
the ones already in existence. Anyone who still abides by the old rules will
therefore still accept the data that have been produced in accordance with the
protocol, but data created by people that have not updated their version may
not be accepted by everyone.

Hard Fork A hard fork is a change in the protocol that changes some rule completely.
That means that any data produced in accordance with the new protocol would
be illegal in the old protocol, and vice versa.

Because of the risk of network splits, changes to the protocol are not always easy
to implement because they require a majority to agree to the change. Changes that
require hard forks are especially difficult because they effectively split the network
until everyone has updated their program. An unforeseen effect of this is that the
implementation of Bitcoin that is in use today still has a lot of quirks from the
original implementation that are hard to fix, because of the risk related to the
process of forking the blockchain. An example of this is a bug in one of the scripts,
CHECKMULTISIG, that unexpectedly removes a data value every time it executes –
making it so programmers have to add a dummy value into the script in the correct
place for it to run correctly. The Bitcoin wiki 2 contains an extensive list of "protocol
housekeeping" and bug fixes that are not changed for this reason.

2https://en.bitcoin.it/wiki/Hardfork_Wishlist
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Figure 3.1: Diagram showing the relation between keys and addresses in Bitcoin.

3.3 Addresses and Keys

In Bitcoin, value is related to an address. A new address can be generated by anyone
by executing the ECDSA (see Section 2.1.3) key generation, producing a public and
private key pair. Figure 3.1 shows this process. In the figure, the squares represent
data, and the circles represent actions. The green boxes are keys; the blue boxes are
addresses. The ECDSA domain parameters are the same for all ECDSA signatures.
The curve used in ECDSA is called Secp256k1 and is not a NIST standard, but
defined by Standards for Efficient Cryptography (SEC) [Qu99]. The address is a
number that is derived from the ECDSA public key by hashing the key twice, using
first SHA256 and then RIPEMD. RIPEMD is another European standard hashing
algorithm, producing a 160-bit output [DBP96]. By holding the private key that is
related to an address you control the value. The address can then be published in
order for other users to transfer value to your address in exchange for goods and
services, much in the same way as when paying for it with regular cash.

The design rationale for choosing these specific cryptographic primitives in the
Bitcoin implementation are not known, but because they are fundamental to the
security of the system, we can assume they have not been chosen lightly. Possible
justifications to utilizing hashing twice may be in the case of future vulnerabilities
becoming evident in the hashing functions, and attempting to mitigate some in-
formation leakage [GCR16]. By utilizing two hashing functions, the possibility of
both breaking at the same time is less probable. Additionally, the RIPEMD hashing
function output is of size 160-bit, requiring less storage than SHA256. An influencing
reason for choosing a non-NISTs standard for the curve parameters may be that
NIST has earlier been accused of designing an intentional trap-door in one of their
cryptographic standards [BLN16].
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3.4 Transactions

To transfer value between two addresses a transaction must be generated. Each
transaction has at least one input and one output. An input is a reference to an
output from a previous transaction that links a value to an address. Section 3.4.1
discusses the details of this referencing scheme. In Bitcoin, there is no store of value
that is yours, like you would have an account of money in your bank. Rather, the
value you own is the sum of all Unspent Transaction Output (UTXO) to addresses
that you control the private keys to. Nakamoto [Nak08] defines UTXO, i.e. electronic
coin, as follows:

Definition 3.4. "An electronic coin is a chain of digital signatures."

The UTXO can, therefore, be thought of as your coins – that you are free to
spend. To spend the coins, you simply have to construct a transaction where you
reference the coins from a previous transaction that were sent to an address you
control.

A well-formed transaction references an UTXO, as an input, cryptographically
signs it, and outputs one or more new UTXOs that are now associated with the
address(es) of the receiver. The sum of values in the input has to be larger than, or
equal to, the sum of outputs e.g. you cannot spend more coins than you own. The
transaction format is specified in the Bitcoin protocol, and has the following fields:

Version Number The only available version number is currently 1.

Input Count The total number of inputs, must be at least 1.

List of Inputs A list input items with their associated data.

Output Count The total number of outputs, must be at least one.

List of Outputs A list output items with their associated data.

Block Lock Time The earliest time the transaction can be processed by the net-
work.

One transaction will spend the entire amount that is stored in the referenced
input addresses. Most of the time the amount that you want to spend is not the
same value you have in one address, therefore more addresses can be combined as
inputs, and the outputs can be split up so that some output is returned to an address
you control – in the same way you receive change when spending physical cash.
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3.4.1 Inputs, Outputs and Scripts

Bitcoin specifies a stack based scripting language, Script, that is used when processing
a transaction. The scripting language has a variety of arithmetic and logic instructions,
as well as cryptographic functions for hashing and signing. Scripts are a part of
the transaction inputs and outputs and specify the cryptographic details for the
transaction. The whole execution process is shown in Figure 3.2 for reference.

A transaction input is a fulfillment of the conditions specified in the UTXO that is
being claimed in the transaction, and is added to the list of inputs in the transaction
see the input list of transaction 2 in Figure 3.2 for reference. Each item in the input
list section of the transaction contains the following fields:

Previous Transaction Hash A double SHA256 hash of the previous transaction
that output the value to be spent in this transaction. This is a pointer to the
transaction that redeems the UTXO that is to be spent in this transaction. In
Figure 3.2 the upper dotted line shows this reference.

Previous Transaction Output Index The index of the output in the transaction
output list of the transaction referenced in the first field. In Figure 3.2 the
lower dotted line shows this reference.

Transaction Input Script Length The length of the following script to be used
in this transaction.

Script The input script that is executed in this transaction.

Sequence Number Not currently used except to disable block lock time in a
transaction [Seq].

The data received up to this point is actually enough to redeem the value in the
transaction. However, the transaction also needs to specify the conditions under
which the UTXO from this transaction can be spent in the future. The conditions
reference to where the output section of the transaction becomes relevant. Each item
in the output list of the transaction contains the following fields:

Value The number of coins that this output references.

Transaction Output Script Length The length of the following script.

Transaction Output Script The output script that is to be executed when this
output is referenced in the next transaction e.g. when the receiver of this output
wants to spend the value. Transaction 1 in Figure 3.2 is the previous UTXO
referenced, and is referenced with the input of Transaction 2. Transaction 2
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also needs to include new outputs defining the conditions for the next time the
same coins will be spent.

Transaction Execution

When a transaction executes, it combines the script of the previous UTXO with
an input script on the execution stack. Figure 3.2 shows this process in the yellow
box. The execution script is assembled from a previous transaction in the blockchain
– Transaction 1 in the figure, and the new input script in the new transaction –
Transaction 2 in the figure, the blue boxes in Figure 3.2. If the execution of the
combined script runs without error, the transaction is considered valid. The resulting
transaction output in Transaction 2 can then be redeemed by the receiver at some
later time, according to the specifics in the new output script. The green box in the
figure references some other UTXO that also has been consumed in this transaction,
i.e. more than one UTXO was spent in this transaction.

Bitcoin Scripts

Bitcoin scripts can be versatile because of the general scripting language. However,
the versatile functionality is rarely utilized in real transactions. Of all executed
in Bitcoin, 99.9% [NBF+16] are of the same type: scriptSig and scriptPubKey.
The script, scriptPubKey is an output script saying that anyone who can sign the
transaction using the private key related to the address specified in the script, can
spend this specific UTXO. The script, scriptSig is simply the corresponding digital
signature to that address. During transaction execution the two scripts are combined
(see Figure 3.2). For combined script to run to completion the signature in the input
script must match the public key specified in the output script.

The only real limitation of Script compared to other programming languages
is that it does not include any instructions for creating loops in the code. This
limitation is intentional, to prevent malicious users from creating infinite loops in
the scripts when other nodes execute them.

Transaction Validation

After a transaction is formed, it is relayed to the other nodes in the network for
validation in a peer-to-peer manner. Each new transaction has to be linked to a
previous transaction where the value of the previous transaction stays the same, but
the ownership of the value is changed. Effectively, this means that transactions are
linked together in a chain of transactions, from the value that was created to the
latest transaction made. How the value is created, i.e. how the coin is minted, will
be discussed in section 3.5.2.



3.4. TRANSACTIONS 23

Figure 3.2: Diagram showing the execution of a script in Bitcoin.
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To check if a transaction is valid, the digital signatures related to all previous
transactions involving the value you wish to check need to be validated. In other
words, all the scripts from the inception of the value to the script you wish to validate,
need to execute successfully.

Additionally, the validation process needs to check that the transaction has not
already been spent in some previous transaction e.g. that one UTXO has been signed
for in more than one transaction. This is double spending and means that you are
spending the same value in different transactions. In the analogy of physical cash,
for instance, this means that you would spend some cash buying groceries and then
spend the same cash again buying new clothes. This is of course illegal, as it would
cause the money to lose its value.

For any node to be able to check if a coin has been spent already, implies that
all nodes need to keep track of all transactions that has happened in the network.
Since transactions can be relayed from any node at any time and any position in
the network, this is not trivial – and is an instance of the decentralized consensus
problem from section 3.1.3. Bitcoin solves this problem by utilizing a blockchain.

3.5 The Blockchain

This section describes the dynamics of the Bitcoin blockchain: how it is assembled,
validated and agreed upon.

The blockchain is a data structure. Bitcoin uses this data structure to create
an ordered immutable ledger of transactions, so that all nodes can agree on which
transactions happened at what time and in what order. The blockchain is assembled
from blocks of structured data, with a header and body format. The blocks are
chained together by using hashes in the header as pointers to previous blocks. Figure
3.3 shows this structure. The blockchain is immutable because changing data in an
early block would require a chain reaction of changes in the pointers in all following
block hash pointers.

3.5.1 Bitcoin Block Structure

Figure 3.4 shows the general structure of a Bitcoin block. In the figure, the green
boxes constitute the block header. There are nine fields in the block in addition to
the transaction list. The fields are described below.

Magic number A hard coded 32-bit preamble for every new block, the value is
always 0xD9B4BEF9.
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Figure 3.3: General structure of a blockchain.

Block size The number of remaining bytes in the block. The maximum block size
is hard coded to be 1MB in the current version of Bitcoin.

Version Version number of the blockchain protocol.

Hash of Previous block The header of the previous block is hashed, and the hash
is stored in this field. This field is both a pointer to the previous block and a
security mechanism of Bitcoin. This will be discussed further in section 3.5.2.

Hash of Merkle Root A Merkle Tree is constructed from the transactions in the
Transaction list part of the block, the root of this tree is hashed, and works as
a cryptographic proof of the integrity of the transaction list. Merkle trees were
discussed in Section 2.2.1 for more details.

Time A time stamp for when this block was assembled.

Bits This field is relevant for the consensus algorithm for Bitcoin. It will be discussed
in Section 3.5.2, when Hash of previous block is described.

Nonce A random number. This field is relevant for the consensus algorithm for
Bitcoin. It will be discussed further in Section 3.5.2.

Transaction counter The number of transactions in the transaction list.

Transaction list This is the data section of the block. All transactions that have
been relayed by the network since the last block will be put in this list.

The blockchain forms an ordering of transactions so that double spends can be
detected as long as everyone adheres to the same chain. By listening for transactions
incoming on the peer-to-peer network, anyone can assemble a block according to this
structure, and validate that the transactions included are well formed and do not
double spend.
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Figure 3.4: Block diagram of a Bitcoin block.

Unfortunately, the problem of propagation delays and "which block came first" will
occur if blocks could be created at random and relayed to the network by arbitrary
nodes. Section 3.5.2 discusses the details of what is known as mining, and how
this process allows the network to come to consensus on one canonical blockchain,
independently of any nodes subjective view of the network state.

3.5.2 Mining

Mining is the process of validating transactions and assembling blocks in Bitcoin.
Mining can be done by any node in the network with the necessary amount of
computing power and energy. Each new block that is created awards the miner –
the person who assembled the block – a fresh batch of newly minted coins. This is
how new coins are minted in the system (this procedure will be discussed further
in Section 3.5.2). The idea behind mining is that some nodes in the system will be
incentivized to perform the task of validating the transactions in the blockchain in
return of monetary rewards.
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Proof of Work

For the network to be able to reach a consensus to which block should be appended
to the blockchain a method commonly known as proof of work is used. The idea is
that a block needs to include proof that some level of computational work has been
done to create the block to be considered valid. This idea has been around for a
while in other types of systems; both Back[B+02] and Dwork et. al. [DN92] discusses
its use in different systems. In Bitcoin the proof of work scheme has two purposes:

1. The time it takes to create a proof of work allows the newest blocks to circulate
the network so that all nodes are aware of the most recent state. The algorithm
is designed to adjust the difficulty of the proof so that it takes approximately
10 minutes to create each new block.

2. Computing a proof of work is computationally expensive, thereby making
attempts at disrupting the system by flooding the network with false blocks
very expensive. This is argued as a security property of the system.

Minting Procedure and Incentives

In Section 3.4 we discussed how value is exchanged in Bitcoin as a chain of signatures,
from the inception of the coin to the current transaction. However, we omitted the
procedure of creating new coins. The process of minting new coins is actually "baked"
into the mining process and adds incentive to nodes to volunteer to perform this
task.

We know that all transactions have at least one input and one output. The
exception to this is the first transaction in a new block – called the Coinbase
transaction. This transaction has an arbitrary input and a UTXO that can be
redeemed with the miners signature. The exact amount of UTXO the miner is
rewarded for mining is hard coded into the Bitcoin protocol according to the following
model.

The model is a geometrically decreasing series on the block height and a block
reward, where the original block reward of 50 coins is halved every 210 000 blocks.
Figure 3.5 graphs this function. Figure 3.6 shows the effect of this on the total supply
of coins in the system. As is evident from the figure, the total supply of coins tends
to an upper cap of 21 million coins.

As is apparent from 3.5, the value of the coinbase transaction is decreasing
towards zero over time. To keep the incentive for mining, transaction fees are
introduced. Transaction fees are defined as the value left over from a transaction
input after subtracting the outputs. Transaction fees are voluntary, but so is including
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Figure 3.5: Graph of the decreasing block reward as a function of block number.

Figure 3.6: Graph of the total supply of coins as a function of block number.
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a transaction in a block, a miner might choose to ignore transactions without fees.
This process is subject to market supply and demand. As coinbase rewards go down
over time, it is assumed that this will balance out and that transactions fees will
provide miners with enough incentive to keep mining. However, how this will work
out is yet to be known.

Hashcash Algorithm

The mining algorithm Bitcoin uses is called Hashcash and is derived from Back’s
Hashcash algorithm [B+02]. The idea behind the algorithm is that the miner needs
to assemble a block in such a way that the hash of the block header is the solution
to a partial pre-image of a hash, i.e. the hash digest that is produced by hashing
the header needs to be below a well defined numerical value. The hashing algorithm
used is the NIST standard SHA256. The header is actually hashed twice to be a
valid block, where the difficulty is a numerical value that needs to be bigger than the
resulting hash value:

difficulty > h(h(BlockHeader))
From the properties of cryptographical hash functions (see Section 2.1.1), it is
infeasible to find such a value – except to try and brute force the output, which is
exactly what the miners do. Of course, the block header has a certain structure, so
all values cannot be changed at random. Two fields can be changed during mining,
without breaking the structure:

1. 32-bit Nonce This field in the block header, and is typically the first field
that is brute forced.

2. Coinbase data The input section of the coinbase transaction can hold any
arbitrary data. This works as an extra Nonce because changing the data in
the coinbase transaction has ripple effects on the Merkle Tree root. Changing
the value in the coinbase transaction involves re-computing the Merkle tree –
this is typically done after running out of potential Nonce values because it is
a more computationally expensive process.

The level of difficulty of the hash is updated every 2016 blocks. This is done by
evaluating the timestamps of the previous blocks, comparing them to the goal time
of two weeks per 2016 blocks (approximately 10 minutes between each block) and
adjusting the difficulty accordingly. Let Dnew be the new block difficulty, Dcurrent
the current difficult. Tcurrent and Tcurrent−2016 denotes the timestamp in the block
header of the block of the specified height. Ttarget is the ideal time of 10 minutes
between each block that is the target of the system.

Dnew = Dcurrent ∗
Tcurrent − Tcurrent−2016

Ttarget
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Figure 3.7: Example of a fork in the blockchain.

Nakamoto Consensus

The consensus protocol of Bitcoin has been dubbed Nakamoto Consensus after the
original idea from Satoshi Nakamoto [Nak08]. The Nakamoto consensus is a strategy
of operation that makes it so, if most nodes adhere to it, the biggest reward that can
be gained for a node is achieved by staying with this strategy. From game theory
this is known as a Nash equilibrium [OR94].

The strategy can be summed up in a simple sentence: The longest chain wins.
Meaning that if a node is presented with more than one block that is not part of
the same chain – a fork in the blockchain – the recommended course of action is to
stay with the chain that has the most blocks. If any fork has the same amount of
blocks, the block with the highest difficulty wins e.g. the block hashes to the lowest
value. Figure 3.7 illustrates this process. The two blocks <Block 2> are valid blocks
with the same parent, at this point in time a fork has happened. The other miners
will have to decide upon one of the two blocks to extend. Once <Block 3> has been
mined the longest chain will be decided and the other miners will switch to this chain
in the fork.

Because of the probabilistic nature of the Hashcash algorithm, the nodes will
converge to one consistent blockchain when following this rule, as the event of
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two blocks being created within the same window of time consequently diminishes
exponentially.

This kind of consensus is called eventual consensus [NBF+16] because blocks
cannot be trusted before one can be sure that it is a part of the longest chain.
There is a possibility of blocks that have been created according to protocol may not
be included in the blockchain, because other blocks were created at effectively the
same time. The probability of a block not becoming a part of the main chain falls
exponentially with the number of blocks that are subsequently added on top of the
block in question.

The rule of thumb used in Bitcoin is that after six children blocks have been
added, the block is considered confirmed. With a block time of 10 minutes, a block
is considered confirmed in the blockchain after 60 minutes [Nak08].

Block Validation

When a miner receives a block from a peer, the following points needs to be validated
(not necessarily in this order). If any of the points to not hold the block is discarded
and is not considered a part of the blockchain.

Transaction structure Transactions are well formed with valid signatures.

Transaction chain No double spends; the UTXO has not been spent already.

Coinbase and transaction fees Coinbase transaction outputs correct value and
transaction fees are in line with the transaction inputs.

Proof of Work The block hashes to a value below the difficulty target.

Nakamoto consensus The previous block was the last block in the longest chain.

Blocks that are well formed, but indecisive about which chain is the longest are saved
until the tie is broken.

It is important to note that the validity of a block is a subjective matter for
the nodes in the system, because the chain of transactions may vary depending on
which block they receive first. However, if the nodes follow the Nakamoto consensus
protocol, their subjective view of the blockchain will eventually converge to the
canonical view of the network.
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3.6 Bitcoin at Scale

Since 2009 the Bitcoin community has evolved as more miners and transactors have
joined the system. Some of the consequences of this evolution will be discussed in
this section.

3.6.1 The Growing Blockchain

As is the nature of the blockchain, the size is continuously expanding to include more
blocks. As a measure to control the growth a hard coded maximum limit of the block
size is set to be 1MB. Controversy exists around this block size limit [Bloa] – many
believe it should not be so stringent as it is today – but as we have learned, making
such a change would require a hard fork of the system and is therefore not that easy
to achieve. Additionally, in Section 4.6.3 we discuss increasing the block size and the
implications this has on the level of security for the consensus protocol.

Even with the hard limit of 1MB per block the size of the blockchain today
amounts to over 100GB 3 – and it will keep growing. This is more storage than the
average personal computer has to spare, meaning that for most people wanting to
run a full validating node e.g. a node with the entire blockchain downloaded, they
will have to buy dedicated hardware for storage. This development was predicted
by Nakamoto in the design phase of Bitcoin, which is why the original white paper
[Nak08] specifies how so-called Light nodes could operate, these are further described
in Section 3.6.2.

Figure 3.8 shows this development since 2009; the data is collected from block-
hain.info, an online blockchain explorer. The reason the size remained near zero
the first few years is due to the fact some time passed by before the system picked
up a substantial amount of users to generate transactions. Figure 3.9 shows this
development. Evidently, on average since late 2016, blocks are reaching the maximum
block size.

3.6.2 Light Nodes

A Light Node is a node that does not store the entire blockchain. Light nodes make
using Bitcoin more versatile, as they can be implemented in devices with fewer
hardware requirements – such as smart phones and tablets. Light nodes allow for
transactions to be generated and verified "on-the-fly" by utilizing Simplified Payment
Verification (SPV), instead of the standard method described in the previous sections.

An SPV process involves querying full nodes for blocks from the longest chain.
When the transaction in question is included in the block, the Merkle tree can be

3https://blockchain.info/charts/blocks-size
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Figure 3.8: Graph of the total blockchain size since the beginning of 2009.

Figure 3.9: Graph of 7 day average block sizes since the beginning of 2009.
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used to verify that the transaction is a part of the block. Consequently, light nodes
have to trust that the majority of the full nodes honestly validate the transactions in
the blocks – as they are not able to prove this for themselves without downloading
the entire blockchain. As long as this assumption holds, the longest chain will include
only valid transactions. They can be proved to be a part of the blockchain by showing
the Merkle tree branch including the given transaction.

3.6.3 ASICs

Recall from Section 3.5.2, to mine a valid block the miner needs to find a partial pre-
image to a hash, where the time it takes to produce the proof is directly proportional
to the amount of hashing power you control. As Bitcoin has become increasingly
popular and valuable, creating new blocks and earning coins has become a business
for serious miners. There is a continuous race to be in possession of the fastest
hardware that can run the Hashcash algorithm, so the likelihood of producing blocks
is higher. The design of specialized hardware units, so-called Application-specific
Integrated Circuits (ASICs), has sped up the hashing process by several magnitudes
– making it infeasible with the difficulty level today for regular CPUs to produce new
blocks [NBF+16].

ASIC hashing rigs are usually set up in data farms, running full time to validate
transactions and produce new blocks. The level of energy these data farms consume for
the sake of reaching consensus in the blockchain has caused concern in the community.
Micali [Mic16] raises the computational wastefulness of the mining process as one
of the main technical problems with Bitcoin. Narayanan et al. [NBF+16] roughly
estimates the energy consumption of mining in the orders of a few hundred Mega
Watts, which is comparable to the energy consumption of a medium-sized country.

3.6.4 Mining Pools

Mining pools are organized Bitcoin mining nodes that mine towards a common block
and then split the reward after mining a successful node. The organizations are
completely outside of the Bitcoin protocol. Mining pools typically have a lot of
miners trying to solve the proof of work for a block together, and an operator that is
in charge of paying out rewards when successful blocks have been found. A mining
pool known as SlushPool claims to be the first mining pool [Homb] and has been
around since December 2010 – less than two years after the first Bitcoin block was
mined.

Why do miners wish to join mining pools? There are three main reasons for
this. First of all, even though the reward for mining a successful block is enough
to incentivize nodes to mine, the probability of being the one who finds a block is
like winning the lottery – with diminishing odds as the network difficulty goes up.
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Statistically, the variance of getting a reward is high. A miner could start mining,
and it might take years before actually receiving a block reward unless she gets very
lucky. By joining a mining pool, the probability of finding a valid block in the pool
goes up, and the reward goes down – because you have to split the reward with the
other pool members – but the expected return over time remains the same. E.g.
joining a mining pool lowers the variance of the return of reward, giving the miner a
more steady income.

Secondly, with the event of ASICs taking over the mining market, miners have
to initially invest in extra hardware to mine. This development has made mining
pools even more lucrative because the risk of being unlucky and waiting years to get
a reward is reduced, helping to pay off on the initial investment.

Lastly, miners that are a part of a mining pool only handle the mining process –
not the validation – meaning that they do not have to store the entire blockchain
more than once in the pool. With the size of the blockchain expanding every year.
This means that for nodes that are a part of a mining pool, investing in extra storage
is not necessary.

Centralization

The effect mining pools have on the network topology is interesting, and some would
say contradictory to the original intents of having a decentralized system. A mining
pool is a centralized unit of miners that put their trust in the pool operator to behave
honestly and return rewards to the miners when a block has been mined. Should the
network operator behave dishonestly, this might not be apparent to the miners in
the pool.

Figure 3.10 shows the distribution of hash rate among the different pools in the
network. It is evident that the control of the network is distributed among a few
factions of mining pools. This natural tendency towards centralization is the second
of Micali’s technical problems for Bitcoin [Mic16].

3.7 Security of Bitcoin

This chapter concerns the security assumptions of Bitcoin and potential attacks.
The security of Bitcoin is based on the cryptography that enforces transactions and
that the nodes correctly validate the given cryptographic proofs. Additionally, the
assumption of the proof of work consensus mechanism is that the majority of the
hashing power in the network is controlled by honest nodes – so that the blockchain
cannot be rewritten by a malicious actor. If a malicious actor controls more than
half of the hashing power in the network, this person can perform what is known as
a 51% attack.
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Figure 3.10: Pie chart showing an estimate of the current hash rate of the Bitcoin
mining pools over the last seven days (28. May 2017).

3.7.1 51% Attack

A 51% attack is the most serious attack at Bitcoin because it makes it possible for
the attacker to double spend coins by reverting transactions. Should such an attack
be made, it would undermine the value of Bitcoin, causing people to lose trust in
the system and possibly refusing to trade for the currency. Nakamoto described this
attack in the original white paper [Nak08].

Consider the following scenario: A transaction is added to the blockchain in
return of some service. The appropriate six-block-confirmation time has passed, and
the service is exchanged. Afterwards, a malicious node that controls 51% or more
of the total networks hashing power would be able to rewrite the block proofs of
the last six blocks – excluding the transaction paying for the service – making it so
the value was never exchanged, and the coins can be used again by the attacker, e.g.
double spent.

The 51% attack is possible because, in time, the majority of the hashing power
will always tend towards the longest chain. The rewritten blocks do not include any
illegal transactions, so this is hard to detect by other nodes. The attack exploits the
ambiguity of the eventual blockchain consensus. Micali [Mic16] lists this as the third
technical problem with Bitcoin: No transactions can be guaranteed at any point in
the blockchain, should the network be overpowered by an actor controlling significant
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hashing power the blockchain can be rewritten.

The situation where one node controls such an amount of hashing power is
considered unlikely. That more than half of the nodes are honest is the security
assumption Bitcoin is based on. However, with the event of mining pools that operate
as centralized units and control large portions of the hashing power, this might not
be as unlikely as originally thought.

3.7.2 Selfish Mining Attack

The selfish mining attack was first described by Eyal et al. [ES14]. Eyal et al. state
that for miners of substantial mining power the general Nakamoto Consensus is not
the most profitable strategy. This attack involves miners using a different strategy
to increase their total block rewards. The idea behind the attack is to strategically
withhold blocks in a separate chain as long as the separate chain stays ahead of the
main chain. Say, a pool of miners finds a valid block, B0. Instead of announcing
it to the network immediately the miners withhold the block. In secret, they will
keep mining for the next block, B1 – getting a head start on the block from the
rest of the network. If an honest miner finds a different B0 – before the selfish pool
finds the next block – then the selfish pool announces their block, creating a fork,
but with still a greater chance of winning the fork against the other block since half
the network will be mining on either block in the fork. As long as the selfish pool
monitors the main chain so that it does not get ahead the attack is more profitable
to the selfish miners. The attack is more effective the bigger the mining pool is, and
makes the efforts of the honest miners wasteful.
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Ethereum received startup funding in 2014 as a crowd-funded development project,
marketed as an improved protocol to Bitcoin. The value proposal in contrast with
Bitcoin is that Ethereum aims to be something more than just a cryptocurrency:
By allowing functionality for defining and executing so-called smart contracts on its
blockchain, the idea is that Ethereum should function as a platform. Users of the
system should be able to design decentralized applications as a second layer on top
of Ethereum – Ethereum should be a Global Virtual Machine accessible to anyone.
To facilitate this functionality, Ethereum provides a stateful blockchain with storage
capabilities and a Turing-complete scripting language. This chapter will go through
the technical details of Ethereum as a parallel description to the previous chapter of
Bitcoin.

4.1 What is Ethereum?

The Ethereum System is founded and developed by The Ethereum Foundation. The
Ethereum Foundation is in charge of developing the specifications for the Ethereum
protocol, as well as several types of open-source clients that can operate the protocol
– the most popular of these; the Geth node.

Similarly to Bitcoin, system specifications exist in various forms. For Ethereum
the main sources of information are the Ethereum White Paper [But13], and the
Ethereum Yellow Paper [Woo14] – a formal technical specification of the protocol.
Additionally, continuous updates from the development team are posted on the
Ethereum blog [Pro] and details on technical aspects and discussions are available
on GitHub [Homa].

The Ethereum Foundation launched the system in May 2015, but the project
was far from finished at that point. The developers are in close contact with the
community to continue improving the protocol and provide tools for accessing the
system. With the intention of avoiding splits in the community about the direction

39
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of Ethereum some planned development milestones have been published [Gup15].
These are essentially hard forks that the whole system has to agree to perform:

Olypmic: May 2015 Ethereum proof of concept. This was the first testing phase,
no value transferred from this blockchain to the next.

Frontier: July 2015 First real version. A simple implementation of the protocol,
with command line client interface.

Homestead: March 2016 Current version of Ethereum. There may still be more
versions following up before the last two milestones.

Metropolis: TBA This version is identified by a full-featured user interface for
non-technical users.

Serenity: TBA The final version of the system. This includes a major change in
the consensus algorithm. A lot of research is currently being done on the topic
of consensus algorithms.

4.2 World State

Ethereum has a stateful blockchain, in contrast to Bitcoins stateless blockchain. This
implies that in Bitcoin keeping track of the state of who owns coins in the system
is encouraged; it is not strictly necessary for block generation and validation. In
Ethereum however, keeping track of the state of each account is strictly necessary to
be able to mine new blocks. In Ethereum this concept is called the World State. The
world state of Ethereum is a Merkle Patricia Tree (see Section 2.2.3) of data objects,
called Accounts. Each new transaction that is generated in Ethereum triggers a State
Transition Function, that is applied to the current state and deterministically updates
the state of the system [Woo14]. When nodes in Ethereum come to consensus on
the blockchain, the updated World State is what they agree upon. Additionally,
Ethereum mints its own currency – Ether – which has intrinsic value in the system.

4.2.1 Accounts

Accounts are stateful objects. Transactions to and from accounts cause the states of
the accounts to change. For instance, a regular transfer of funds would cause the
balance of an account to update, changing the state of the account.

There are two types of accounts that are defined by how they are created and
how they are controlled:
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Externally Owned Accounts Externally owned accounts are owned by external
actors and controlled by private keys (much in the same way as Bitcoin
addresses). The external actors are typically human users of the system.

Contract Accounts Contract accounts are autonomous agents that are controlled
by the program code that they are initialized with. They can be interacted
with by creating transactions through Externally Owned Accounts.

A contract account can be created for holding some value in deposit while a
physical exchange is happening in the real word. As an example: Alice wants to ship
some goods to Bob in return of payment. Bob does not trust Alice, and does not
want to send the money directly to her without seeing the goods first – Alice does
not trust Bob to pay once he has received the goods, and will not send the goods
before payment has been proven. There is no mutual trust. In this situation, Bob
can prove that he has the money by transferring it to a specific contract account
that has been programmed for this purpose, where the money will be locked until
the goods are received. When the goods have been received, both Alice and Bob will
send new transactions to the contract indicating that the money should be forwarded.
Unless they both send this transaction the money will stay locked down. To mitigate
the problem of Bob maliciously refusing to forward the money, the contract could be
expanded to include a trusted third party to mediate the conflict.

The generic account state object is composed of four fields and is identified by
a 160-bit number called an Address. Depending on what type of account we are
dealing with the data fields in the account will have different values and properties.
In general, they can be described like this [Woo14]:

nonce A counter that is incremented based on the number of transactions sent and
contracts created by the account.

balance The value owned by this account.

storageRoot The root hash of the Merkle Patricia Tree that constitutes the storage
of the account.

codeHash A hash of the code that specifies how the account should operate. This
is empty if the account is an externally owned account type.

Cryptographic Primitives of Ethereum

There are two significant cryptographic primitives for Ethereum: The hash function
and the digital signature (see Section 2.1). Ethereum utilizes the non-standard SHA3
version, Keccak, for its hashing operations. The same security properties for SHA3
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Figure 4.1: Address and key generation for externally owned contracts.

applies for Keccack, but there are some implementational differences. The digital
signature of choice is the same ECDSA curve that Bitcoin utilizes, Secp256k1 [Qu99],
probably with the same reasoning (see Section 3.3).

4.2.2 Externally Owned Accounts

An externally owned account can be generated by anyone. A private, public key pair
for an externally owned account is generated using ECDSA key generation, and the
account address is then derived from the output public key. The private key needs to
be protected because whoever holds the private key controls the funds in the account.
Externally owned accounts are identified by their address – where the address is the
last 160 bits of a hash of the public key [Woo14]:

Address = (h(publicKey))Bits[96:255]

Figure 4.1 depicts the procedure of generating a public key – a new account – as
a function of a random 256-bit number. The random number constitutes the private
key. ECDSA key generation is the basis for creating an address with a corresponding
private signature key. The address equals the rightmost 160-bits of the public key.
The private key controls the account. All transactions from this account will need to
be signed by the corresponding private key related to that address.

4.2.3 Contract Accounts

A contract account is created by executing a contract creation transaction from
an externally owned account [But13]. The contract creation transaction specifies
program code for the new account. This code controls the behavior of the contract in
future transactions. Contract accounts can be thought of as autonomous agents that
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Figure 4.2: Contract account creation.

come alive when they are interacted with through other transactions. The contract
has read/write access to the storage of its own account and can utilize this access if
the initial code has been constructed appropriately. However, the code the contract
been initialized with is immutable after the contract has been created. Contracts
can also produce new contracts if this is defined in the initial code.

A since a contract account is controlled by the implicit code in the contract
account, it does not have any associated private or public keys. With no public key
to derive an address from, the contract account address is generated as the rightmost
160 bits of the hash value derived from the sending accounts address and nonce
[Woo14]:

Addresscontract = (h(Addresssender,Noncesender))Bits[96:255]

Figure 4.2 shows how a contract account is created. Unlike an externally owned
account, there are no keys that control the value in a contract account, the contract
code does this autonomously. The contract creation transaction is in turn generated
by an externally owned account.

4.3 Transactions and Messages

Ethereum differentiates between two types of communication: Transactions and
Messages. These two classes exist because of the nature of the different types of
accounts available in the system.

4.3.1 Transactions

Generating transactions is how external actors – nodes in the network – interact with
the blockchain. Transactions are assembled by external actors and then propagated
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to the other nodes in the network in a peer-to-peer fashion. Transactions may
be subject to malicious behavior from other nodes. For this reason, transactions
need to be signed by the external actor wishing to execute the transaction with the
corresponding private key to the account the transaction originates from. This is
much the same procedure as we know from Bitcoin, except the signature provided is
not for spending a UTXO, but rather to authorize a state transition on an externally
owned account. Note that in Bitcoin the entire value in a Bitcoin address needs to
be spent in a transaction, this is not necessary for Ethereum. It is perfectly fine to
spend only a fraction of the value in an Ethereum account.

Transaction Structure

A well formed transaction contains the following fields [Woo14]:

nonce The nonce is a value that is equal to the total number of transactions sent
from the sender’s account.

gasPrice The price per computational step (see Section 4.4.3 for details).

gasLimit The maximum accumulated price for all the computation this transaction
will invoke (see Section 4.4.3 for details).

to Recipient account address.

value The amount of Ether to be transferred to the recipient’s address.

v, r, s The values r and s represent the ECDSA signature for this specific transaction,
signed by the sender’s account. the value v is the ’recovery id’ of the curve –
the value is either 27 or 28.

data/init For transactions that execute code this field is used. If the transaction
creates a new contract account, the init field is utilized, and it will contain
the initial code for the contract. If the transaction interacts with an already
established contract account, the data field is used and contains input data to
the contract.

4.3.2 Messages

Messages are different from transactions. They are communication spawned by
contract code execution e.g. they originate from a contract account. A message
is always created as an effect of a transaction calling the contract. Messages are
therefore not signed, as contracts have no keys to sign with. More importantly,
messages do not need to be signed because they are never relayed on the network
and only exist as a part of the Ethereum execution environment, as a consequence
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program code executing. Figure 4.3 is an example of how messages and transactions
are passed between accounts in the Ethereum execution environment. As is evident
from the figure, all transactions need to originate from an externally owned account.
Messages are passed from contract accounts, and in-between contract accounts, only
as a result of an initial transaction triggering code in a contract account.

Message Structure

A message is constructed from the following information [Woo14].

sender The contract address that spawned the message.

transaction originator The address of the externally owned account that called
the sender contract code execution.

recipient The address of the recipient of the message.

code account to be executed The account whose code should be executed, usu-
ally the same as the recipient code.

startGas Available gas for this message call (see Section 4.4.3 for details).

value Value transferred in this message.

gasPrice The price per computational step (see Section 4.4.3 for details).

data Optional input data relevant to the message call.

depth of execution stack Present depth of execution stack.

4.4 Ethereum Virtual Machine (EVM)

The EVM is the execution environment of Ethereum. All full nodes in Ethereum run
the same instance of the EVM, and the transactions that are input to the virtual
machine changes the state of the system deterministically, so everyone has the same
updated state of the system. Every full node has to execute the program code invoked
from each transaction. This implies a high level of redundant computation, but this
is also what ensures trust in the system.

The EVM is sometimes referred to as a Global Singleton Machine. Where a
singleton is the only instance of its kind. Ethereum is of course in the physical sense
distributed in a network, but the virtual machine it embodies is, in fact, the same
instance. Figure 4.4 is a visualization of this. The externally owned accounts are
at the edge of the network and are where inputs – transactions – are generated by
external actors. Contract accounts can be interacted with through transactions, and
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Figure 4.3: Types of communication passed between different types of accounts.

they can, in turn, interact with each other through messages. The EVM is run by
all the nodes on the network and is a global virtual machine in that sense. Figure
4.4 visualizes how the virtual machine is spread out over nodes in the network in a
peer-to-peer fashion, that are operating on the same set of account objects. These
account objects can interact with each other through messages and transactions, and
the nodes can control the accounts using corresponding private keys.

4.4.1 Ethereum Virtual Machine Programming

A low-level, stack-based byte code language – EVM code – mandates the behaviour
of the EVM. The EVM code is a Turing complete object-oriented programming
language [But13]. The account objects have their own code and storage that can be
accessed through message calls, e.g. transactions from externally owned accounts
and messages from contract accounts.

The specifics for programming in Ethereum are out of scope for this thesis. It is
enough to know that there are capabilities for creating a variety of applications as a
second layer to Ethereum. Contract accounts have implicit storage capabilities that
can be accessed through code, and Application Binary Interfaces can be defined for
interaction between with contracts already on the blockchain, creating a powerful
environment for programmers.
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Figure 4.4: A visualization of the EVM, adapted from Woods figure ??.

There exist several high-level languages that compile down to EVM code. They
have been created for ease of programming. Serpent [Wik15] – a python like language
– and Solidity [Sol] – which is inspired by JavaScript, are instances of programming
languages that compile down to EVM code.

4.4.2 The Halting Problem

The halting problem is a classic problem from computer science, first described
by Alan Turing [Tur37]. It states that it is impossible to make an algorithm that
can determine for some input whether an arbitrary Turing-complete program will
terminate at some point, or run forever.

Since every full node in Ethereum has to run the program code invoked by a
transaction, this exposes a serious problem in the architecture; a program with
an infinite loop would effectively shut down all the nodes in the system if it were
executed.
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Because there is a real possibility of a node generating code that runs forever –
either by mistake or malicious intent – we know from the halting problem that there
is no way to verify if this will happen before execution. To prevent this situation
Ethereum utilizes gas as a measure, which is the topic of the next section. On a side
note, Bitcoin prevents this problem by having a non-Turing complete programming
language, where there are no loops. This strictly limits the utility of the scripts, but
also effectively mitigates the problem.

4.4.3 Gas

Gas is to Ethereum, what fuel is to a car. Ironically, it is commonly referred to as
cryptofuel in the community [Acc], in line with this analogy. The general idea of gas
is that every computational step that a miner has to perform to run the code in a
transaction has a cost, a gasPrice, that the transaction originator has to pay to the
miner.

Upon initiation of the transaction a gasLimit, is set. The gasLimit is the total
amount of value that this transaction is allowed to consume. Over the course of the
execution, this buffer is tapped into for every computation that is performed, until
the transaction is complete.

Should the transaction complete without draining the buffer, the remaining gas
is returned to the transaction originator. Should the transaction run out of gas, an
error is returned, and whatever changes the transaction code invoked are rolled back.
The gas consumed, however, still goes to the miner.

This approach effectively halts any infinite loops in the code because the code will,
at some point, always run out of gas during execution. It also mitigates attempts
at attacking the system by relaying transactions with big loops, because they will
be expensive for the attacker. However, there is a potential weakness in the system
related to using gas as a solution for the halting problem, Section 4.8.1 discusses this
further.

The gas that is consumed becomes a transaction fee to the miner. Because the
mining fee is directly related to the complexity of the computation, miners are not
de-incentivized from mining large programs, even though they take longer to verify,
because the fee reward will be higher.

The gasPrice is not a fixed Ether value, even though the price is paid in Ether.
This is because the price of Ether is subject to fluctuation when it is sold on the free
market; one Ether today may be worth twice as much in a year. What is expected
to be a fair gasPrice is therefore up to the users and miners of transactions, like
in Bitcoin with transaction fees, a miner is free to ignore a transaction with too
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low gasPrice. However, the total execution cost of the transaction will always be
proportional to the level of computation required [Acc].

4.5 Transaction Execution

Formally, a valid transaction is what causes the state of the EVM to change – only
valid transactions can can inflict such a change [Woo14]. What needs to be agreed
upon, to find a common world state for all the nodes in the network, is which
transactions and in what order, they are to be executed.

In Bitcoin transactions that were considered invalid were simply not included in
the blockchain, as a result of the validation process. Ethereum, however, includes
all well-formed transactions in the blockchain, but changes to the system state may
be reverted during transaction execution if they result in errors in the EVM. A
well-formed transaction has the structure described in section 4.3.1 and need to pass
an initial validation phase to be considered well-formed [Woo14]:

– The nonce is correct, e.g. valid to the senders current nonce.

– The signature corresponds to the public key of the sender’s account.

– The gasLimit is larger than the gasPrice

– The sender’s account contains at least the gasLimit.

If these checks hold the transaction is considered valid and included in the
blockchain.

Once the transaction is added to the blockchain there are two possible outcomes
from execution in the EVM:

1. The transaction runs to completion: Fees are transferred to the miner,
remaining gas refunded to the sender and changes are saved.

2. The transaction completes with errors: This happens if the sender does
not have enough balance, or the code execution has errors or runs out of gas. In
this case, all changes are reverted, but the miner still gets the fees accumulated
from execution and the transaction is included in the block.
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4.6 The Ethereum Blockchain and Mining

Ethereum runs its own blockchain with no reference to Bitcoin apart from similarities
in the design. This has offered the potential for configuring the blockchain differently
than Bitcoin. The main differences are:

Block time Ethereum’s block time targets 13 seconds in between each block
[Woo14].

Block size Ethereum has no upper cap for the size of blocks. A fluctuating value –
gasLimit – is used to limit high increase levels in gas expenditure in between
blocks, but does not limit the size [Woo14].

Optimizations Several header fields for optimizing execution and verification
[Woo14].

Similarly to Bitcoin, Ethereum’s mining is based on a proof of work mining
scheme. This implies that nodes in the network perform the task of validating blocks
generated by other nodes, as well as constructing new blocks. However, a different
consensus protocol and different mining algorithm are used compared to Bitcoin.
The rationale and process of this will be discussed in the following sections.

4.6.1 Block Structure

As a reference for the following sections, a fully constructed block is shown in figure
4.5. The block has a header/body structure, similarly to Bitcoin, but the header
is more extensive. The pink box wraps around the fields in the block header. The
green boxes are regular hashes; the yellow boxes are hashes of root nodes of Merkle
Patricia Trees. The fields of the block are defined in the yellow paper [Woo14] and
described in the following.

parentHash The hash of the previous, e.g. parent, blocks header.

ommersHash The hash of the ommers portion of the block (the last section of the
block).

beneficiary The account address of the miner that receives rewards.

stateRoot A hash of the root node of the Merkle Patricia tree that populates all
the accounts in Ethereum. This hash is cryptographic proof of the entirety of
the state of the system.
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transactionsRoot A hash of the root of the Merkle Patricia Tree populated with
the transaction data in the transaction portion of this block. This is similar to
the Merkle tree root of Bitcoin, but the structure of the tree is different (see
section 2.2.3).

receiptsRoot A hash of the root of a Merkle Patricia Tree populated with receipts
of the transactions in the block. The receipts are generated automatically
during transaction execution in the form of execution logs if this has been
configured in the contracts.

logsBloom A Bloom filter [Blo70] – a cryptographic tool for proving non-existence
of data in a data set – for logging data in the receipts.

difficulty An integer representing the current difficulty of this block.

number The block height, e.g. the number of blocks since the first block; block 0.

gasLimit The maximum allowed gas expenditure for this block. This value fluctuates
deterministically based on the expenditure in previous blocks: If blocks with
high gas consumption are created, the value for the subsequent blocks increase.
Equally, if the gas expenditure is low, the value will decrease.

gasUsed The total amount of gas spent in the transactions in this block. This value
is transferred to the miner of the block.

timestamp A reasonable timestamp for the creation time of this block.

extraData Arbitrary data of maximum 32 bytes.

mixHash Hash value that is necessary for the Ethereum Proof of Work algorithm.

nonce Nonce value that is necessary for the Ethereum Proof of Work function.

Transaction list A list of all transactions included in this block.

Ommer list A list of all new ommers found by the miner of this block (see Section
4.6.4 for details on ommers).

4.6.2 Ethash: The Ethereum Mining algorithm

The Proof of Work mining algorithm of choice for Ethereum is called Ethash. Ethash
is a derivative of the Hashimoto algorithm [Dry14] and the Dagger algorithm [But].
The algorithm is designed to be ASIC resistant e.g. to make it difficult – or at least
un-profitable – to produce ASICs to increase the level of mining performance [Etha].

Similarly to Bitcoin’s Hashcash algorithm, the end goal of the algorithm is to
brute-force a partial pre-image of a hash of a block header, so that it meets the target
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Figure 4.5: Diagram of an Ethereum Block.

below a certain difficulty. However, the algorithm is more complex than the simple
"hash twice" of Bitcoin: The Ethash algorithm

·e70:online[] uses data collected from the blockchain as a seed value in a pseudo-
random generator to assemble a data set. The data set is a Directed Acyclic Graph
(DAG) that takes 1GB of storage once assembled. The algorithm for finding a valid
proof of work includes, not only changing a nonce value but also fetching pieces of
data from the DAG for each try in a pseudo-random way. Every 30000 blocks this
data set is recalculated.

The rationale behind this algorithm is that the most costly operation in the
algorithm is not the hashing function, but rather the I/O operation – input/output
operation – of reading from memory [Etha]. Because most regular personal computers
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are already optimized for I/O operations, it should be increasingly hard or expensive
to create hardware that would speed up the mining process considerably [Dry14].

Additionally, the construction of the DAG is made in such a way that light clients
– e.g. verifying, but not mining, clients – only need to store a 1MB cache of the
DAG when they are verifying block headers. They can use this cache to compute
the necessary nodes in the graph when verifying the block header, without having to
store the whole data set.

4.6.3 Adapting the Consensus Protocol

As we know from our Bitcoin reference in section 3.5.2, the consensus protocol is the
prescribed method for how the nodes in the network come to agreement on which
blocks are valid/accepted and which blocks are not. The Bitcoin consensus protocol
– Nakamoto consensus – is the simple strategy saying that The longest chain wins
(see section 3.5.2). This protocol assumes that propagation delay in the network is
negligible, compared to the time it takes to produce a valid proof of work [Nak08].
For the configuration in Bitcoin with a block time 10 minutes between each block,
this may hold. However, according to research by Sompolinsky and Zohar [SZ13]
changing factors relating to propagation time in the network may impact the security
of the protocol. Ethereum has a different configuration than Bitcoin, with 13 seconds
block times and unlimited block sizes, to facilitate this Ethereum uses a different
consensus protocol. This section aims to explain the rationale behind the design of
this protocol.

Sompolinsky and Zohar explain that for each new block that is created there is
a window of time from the time that block was successfully created, to the time it
takes for that block to propagate to the other nodes in the system. In this window of
time, all the other nodes are essentially working on forking the blockchain or wasting
their mining efforts, because a new block is already imminent. The bigger portion
of the time the system stays in this vulnerable state, the weaker the security of the
protocol. Two factors directly influence this state:

Block creation rate Assuming the propagation time to other nodes is more or less
fixed, shortening the period of time between each block will increase time in
the vulnerable state. For each new block, a fixed portion of time will be spent
propagating the blocks, if blocks are created more rapidly this portion of time
will be relatively bigger for each new block. Figure 4.6 shows this relation. The
block time is divided into two periods; the red portion is the period before
the block reaches the other nodes. The upper sequence shows a longer period
between each block, by increasing the block creation rate in the lower sequence
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– while the propagation time remains the same – more time overall will be spent
in the vulnerable state.

Block size Assuming a fixed block creation rate, the time to propagate a new
block to other nodes is defined by the size of the block. Increasing the size of
the block will lengthen the propagation time, causing the block propagation
window to become bigger relatively to the block time. Figure 4.7 shows this
relation. The block time is divided into two periods; the red portion is the
period before the block reaches the other nodes. By increasing the block size
in the lower sequence, the propagation time increases causing the relative time
spent propagating blocks in each block period to increase.

While Somopolinsky and Zohar’s model is based on a network topology where
two sets of nodes of equal hashing power need to propagate the blocks in between,
Buterin [But13] makes an important note regarding the centralization of mining
nodes of unequal hashing power, that might further strengthen this argument: Nodes
that are more centralized in the network will have shorter propagation times for
blocks they create, and will, therefore, be more likely to create blocks that are added
to the main chain in the long run, because they spend less time waiting for blocks
mined by other nodes. If these centralized nodes also have a larger hash rate than
other nodes, this bias increases even more, making it very difficult for other nodes to
mine on the main chain.

4.6.4 GHOST

To facilitate the differences from Bitcoin without impeding the security of the protocol,
Ethereum uses a different approach for reaching consensus than Bitcoin: The Greedy
Heaviest Observed Sub-Tree (GHOST) protocol. The protocol was first described
by Sompolinsky and Zohar [SZ13], and has been modified slightly in the Ethereum
implementation for practical reasons.

The Greedy Heaviest Observed Sub-Tree (GHOST) protocol is a variation to
the Nakamoto consensus where the general block selection strategy is no longer the
longest chain wins, but rather the heaviest sub-tree wins [SZ13]. The heaviest sub-tree
is the tree that has the most combined computational work performed – not only on
the main chain, but including valid computational work performed on closely related
forks as well.

The chain selection algorithm works as follows this: From a given block height, if
there occurs a split in the blockchain the sub-tree – e.g. the descendant blocks from
the parent the split occurred at – with the most blocks generated is the one that
should be selected – not just the longest chain. In the Nakamoto consensus these
blocks that were deemed valid, but a part of the selected longest chain are commonly
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Figure 4.6: Significance of shorter block times.

Figure 4.7: Significance of larger block size.

called stale blocks. In Ethereum the stale blocks are referred to as Ommers – the
gender neutral term for an aunt or uncle – and are rewarded fractions of the block
reward that the miners of blocks on the main chain receive [Woo14].

Figure 4.8 shows the distinction between Nakamoto consensus and GHOST
consensus: The green boxes denote two separate subtrees A and B, of depth 4 and
3. The purple box is an Ommer block e.g. a stale block. In this scenario, according
to the Nakamoto consensus protocol, Subtree A would be the valid chain e.g. the
longest chain. However, in the GHOST protocol Subtree B is considered the heaviest
sub-tree and therefore the correct block to be mining from is either of the lowest
blocks in Subtree B. Depending on which of B3 or B3’ gets a child first, one of them
will become an ommer as new blocks are mined. Ethereum limits the depth of the
heaviest-sub tree to a maximum of six ancestors, and a maximum of two ommers
included in each block. The ommer has to be a direct child of an ancestor to be
considered valid [Woo14] – e.g. in the analogy of family relations, "cousins" are not
allowed.

The rationale behind this branch selection strategy is that in networks with high
latency an honest miner – e.g. a miner compliant to the common strategy – would
typically continue to mine on a block even after another valid block has appeared
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Figure 4.8: Example of GHOST consensus protocol.
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because the block takes time to propagate. If the miner produces a valid block before
the block reaches her side of the network – instead of wasting the computational effort
of that miner – the work that was done on both blocks is added up in the branch
selection strategy. This means that even poorly connected miners can contribute to
the security of the blockchain by mining blocks that are off the main chain in the
long run.

Sompolinsky and Zohar, the creators of the protocol, state that by utilizing
this protocol the threshold of hashing power needed to perform the 51% attack in
Nakamoto consensus protocol, remains the same even with high network propagation
delays.

4.6.5 Minting Procedure

As is the case for all cryptocurrencies there needs to be consensus in the community
that the coins minted in the system have value. For Bitcoin, this consensus evolved as
more people gradually saw the potential in the currency. For Ethereum the process
has been a bit different.

In the months before the Genesis block – e.g. the very first block – of Ethereum
was mined, there was a pre-sale of Ether. Approximately 72 million Ether was
sold in exchange for Bitcoins, launching the first state of the system so that initial
stakeholders already had value in the system. By linking the value of Ether up to
Bitcoins value system, the developers created an expectation of what Ether was
worth.

After the initial pre-sale, a general minting rule was set in place. For each new
block mined, the miner of said block gets 5 Ether. However, unlike Bitcoin, Ethereum
has no upper cap on its Ether supply – the reward is not decreasing over time.
Additionally, miners of ommer blocks get fractional rewards of this value. This value
is created in addition to the mint of 5 Ether. Each new block therefore adds 5 Ether,
plus whatever ommer block rewards are included.

For each ommer that is included in a block, the miner of that ommer gets 7/8 of
the block reward. The miner of the block that is included in the main chain gets the
full block reward plus, an additional 1/32 of the block reward per ommer included.
The miner of the included block also gets whatever fees have been accumulated
during execution.

Figure 4.9 shows the growth of the general Ether supply since the pre-sale in
July 2015. The data is collected from etherscan.io an online blockchain explorer for
Ethereum. The growth of Ether follows an approximately linear model that grows
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Figure 4.9: The growth of Ether since the project was started in July 2015.

monotonically. The supply growth is subject to small variations as the ommer rate
changes, which depend on the state of the network in the future.

It was expected that this model for minting Ethereum would change with the
future version updates, according to the Ethereum release plan [Gup15]. In fact, a
final model for the minting procedure was expected to be included in the Homestead
hard fork, but this model is yet to be published. The consequences this will have for
the currency is unknown.

4.6.6 Block Validation

When a block has been constructed and mined correctly it is relayed to the other
nodes in the network. Upon receiving the block, it needs to be validated. The block
validation procedure evaluates the following points [Woo14].

Validate Ommers ommer validation includes checking the ancestry of the ommer
– that it is indeed an ommer and not, for instance, a cousin – and that the
header is correct e.g. the proof of work it correct.

Validate transactions All transactions structure and signatures must be valid.

Apply block reward and fees The miner of the block gets the whole block reward,
ommer reward and transaction fees. Ommers receive ommer rewards.
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Verify the state The Merkle Patricia Tree roots for the system state should be
correct; this includes executing all transactions in the block and updating the
trees.

Verify block nonce The block Proof of Work needs to be correct.

4.7 Scaling Ethereum

Since Ethereum is newer than Bitcoin it has yet to reach the same level of adoption.
However, with no fixed limitations for block sizes, and 40x faster block rate from
Bitcoin it should seem that Ethereum would quickly face a scalability problem
regarding the overall size of the blockchain. Indeed, if nodes were required to store
the entire blockchain to be able to mine efficiently, this would pose a problem.
According to this recent forum discussion [Whab], the size of the full blockchain has
already surpassed 140GB since the launch in 2015. However, not every node needs
to store the whole blockchain in Ethereum. Only so-called archive nodes store the
complete blockchain. Because of the stateful protocol Ethereum utilizes, keeping
track of the entire blockchain is not necessary for validation – like it is in Bitcoin.
By keeping track of a reasonable portion of the last blocks, the world state tree of
the longest chain can be verified without needing to store the rest of the blockchain.
Partial storage occurs after what is commonly called State Tree Pruning, and severely
cuts down the storage necessary to be a full mining node. Depending on which client
implemented the current size can be limited to less than 30GB [blob].

4.7.1 Light Clients

Light client support for Ethereum is currently underway, but not yet released [Lig].
The current proposal is to have a sub-protocol in Ethereum for light clients so they
can verify transactions without keeping track of the blockchain. This is possible
because Merkle Patricia Trees allow for simple verification by requesting branches of
the tree from other full nodes (see Section 2.2.3). As discussed in section 4.6.2, the
mining algorithm also supports verification of light nodes.

Regarding security of the light clients, it seems that in Ethereum one would be
less dependent on trusting other verifying nodes, compared to Bitcoin. Because of
the verification of the state tree in the block header any transaction could be verified
directly by the light node by requesting the correct branch in the state tree. Double
spending can, therefore, be detected by light clients without having to store the
entire blockchain as they would need in Bitcoin.
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Figure 4.10: The current pool distribution in Ethereum the last seven days (28.
May 2017).

4.7.2 Status on Mining

The current status on mining Ethereum is that GPU mining is profitable, and ASICs
are not prominent in the community [doc]. However, despite the measures taken in
Ethereum’s protocol to dissuade miners from forming mining pools the community
has formed into a structure much like Bitcoins. Figure 4.10 shows this development,
the data is collected from etherscan.io.

4.8 Security

Being blockchain based – and thus relying on an eventual consensus mechanism for
agreement on transactions – like Bitcoin also Ethereum is susceptible to the 51%
attack and is, therefore, relying on a majority of honest miners. Additionally, two
other known attacks are discussed in this section.

4.8.1 The Long Range Attack

The Long Range Attack [But14] is an adapted version of the 51% attack that can be
quite serious for Ethereum. The Long Range attack increases the efficiency of the
51% attack by utilizing the Turing-complete programming capabilities of the system
to slow down other validating nodes.
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The idea of the attack is that a malicious actor can force other miners to execute
computationally exhaustive contract programs on the main chain. The programs can
include computational trap-doors, making them easy to execute for the attacker, but
hard for the other nodes. By pretending to execute these contracts in real blocks,
but instead running the trap-door function, the attacker can get a head start on
mining. This attack is costly on the main chain in terms of gas, but the main point
is that the attacker can mine new blocks on a fork further down the blockchain and
essentially rewrite the blockchain while the other nodes are stuck executing these
transactions – hence the name of the attack.

4.8.2 Uncle Mining

Another weakness that has been discussed that is Ethereum-specific is called Uncle
Mining – or Ommer Mining in line with our terminology in this thesis. The attack
is described by Sergio Lerner on his blog [Ler]. This attack resembles the Selfish
Mining Attack because it is a change of strategy that increases the profit of the miner
– as such it does not break the security of the system, but might cause problems in
the network in terms of stability and efficiency.

The uncle mining attack involves withholding valid blocks until the blocks have
become ommers. Interestingly, Lerner demonstrates that under certain assumptions
this strategy is more profitable both for the deviant miner and the honest miners
– this is because both ommers and valid blocks are rewarded for ommer inclusion.
However, the general quality of the network goes down, causing network latency and
eventually dropping the hash rate.

4.8.3 Security of Programming in Ethereum

Another security aspect of Ethereum should be noted. By having an environment for
contract creation, users can program their own smart contracts and decentralized
applications. Because of this Ethereum opens up a much larger attack surface.
Essentially, Ethereum contracts are subject to all the same problems that regular
computer programs suffer from when it comes to program coding. This includes code
bugs, logic faults, implementation errors, and so forth that could be exploited for
malicious intent by other nodes in the network.

Security issues related to this is off-protocol for Ethereum, but for non-technical
users, this may appear a subtle difference. In fact, the world has already seen an
instance of an Ethereum contract code being maliciously exploited. It is known as
the Decentralized Autonomous Organization (DAO), and described by Buterin in
this blog [But16]. The DAO was a smart contract implemented in Ethereum with
an unintentional loop hole in the contract code. The loop hole was exploited by a
malicious actor, causing the people that had invested in the DAO to lose a significant
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amount of their investment. Interestingly, the DAO contract did exactly what it was
programmed to do – but the general understanding of the code among the users was
different.

The DAO caused controversy about the legitimacy of the exploited loop hole;
whether the "code was law" or the intent of the contract was the most important. The
result of this dispute was a vote where all nodes could participate, resulting in a hard
fork initiated by the Ethereum foundation that reverted the changes caused by the
attacker. However, a large portion of the party voting against this hard fork refused
to conform to the change – resulting in a permanent network split in the blockchain.
As a result, there are currently two forks of Ethereum that are being mined and used
today, by two different communities: Ethereum and Ethereum Classic [Ethb]. The
future development of the Ethereum Classic project is unpredictable. The current
situation is that both Ethereum and Ethereum Classic is considered valuable on the
exchange market, admittedly at different prices. Incidentally, anyone who originally
had value in the system before the split now has value in both systems, because the
two systems are effectively copies of each other up until the point of the fork.



Chapter5Comparison and Discussion

Chapter 3 and Chapter 4 have provided a thorough technical description of Bitcoin
and Ethereum. As was described in the introduction of this thesis, the primary goal
of this thesis is to perform a comparative analysis of Bitcoin and Ethereum in light
of how they relate to the three technical problems of Bitcoin: Computational Waste,
Concentration of Power and Ambiguity, and determine whether Ethereum suffers
from the same problems as Bitcoin. The comparison will be the topic of this chapter.

Additionally, we highlight two points of comparison that are added to this chapter
at the end: Scalability and Security. They do not relate to the original problems
defined by Micali [Mic16], but have nonetheless been raised as potential issues for
cryptocurrencies in general, and have therefore been included in this thesis.

The nature of decentralized cryptocurrencies is that every transaction and block
that is published is available to every node in the system. Both Bitcoin and Ethereum
have live blockchains that have been running for several years, and the data accumu-
lated is accessible to the public. Open web applications provide statistical information
derived from the public blockchains. In addition to the technical discussion statistical
data gathered from the blockchains is synthesized to enlighten the discussion and
help determine if the assumptions made in the technical comparison align with what
is happening in the networks.

An important note is that the information gathered from the network is constantly
evolving. Many of the points made in this chapter only constitute a snapshot image
of the situation today, which are subject to change daily. The web applications used
for data collection are etherscan.io for Ethereum and blockchain.info for Bitcoin.

5.1 Comparative Summary

To give a basis for the following discussion, Table 5.1 gives an overview of the most
relevant technical similarities and differences between in two systems. The first three
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Table 5.1: Summary of relevant technical differences

Bitcoin Ethereum
Maximum block size 1MB Flexible limit
Target block time 10 min 13 sec
State Stateless Stateful
Consensus mechanism Proof of work Proof of work
Consensus protocol Nakamoto consensus GHOST
Mining algorithm Hashcash Ethash

rows are related to the configurations of the blockchain. Importantly, Ethereum
utilizes a smaller block time than Bitcoin and has no fixed block size. Additionally,
Ethereum’s blockchain is stateful, while Bitcoin is not.

The last three rows concern the methods for reaching distributed consensus. Both
systems utilize a proof of work consensus mechanism – which creates a common
ground for discussion. However, the consensus protocol and algorithm used in Bitcoin
and Ethereum is different. Recall the details of this, from Sections 4.6.4 and 3.5.2.

5.2 Computational Waste

The first technical problem listed for Bitcoin is the computational waste of the proof
of work protocol. Waste is unprofitable spending – spending for no purpose. The
general amount of computation power necessary from Bitcoin miners today is several
times that of the top 500 supercomputers in the world [Mic16].

5.2.1 What Level of Energy Consumption Can We Expect
Anyway?

Obviously, running an equivalent of a financial system is bound to have some costs.
Questions that arise when considering how wasteful Bitcoin or Ethereum is are:

Is the existing system in use today less expensive? What does the current
financial industry consume in terms of energy? When considering how much
energy is put into running banks worldwide today the cost of Bitcoin might
not be as expensive comparably.

Can the same task be done in another way with less overhead? Certainly,
trusted third party systems like PayPal and Visa provide similar services as a
cryptocurrency. At what level of energy consumption they operate is difficult
to measure.
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Drilling down, the consensus mechanisms in both systems serve two purposes:
First, to solve the decentralized consensus problem (see section 3.1.3). Second, to
mint new coins in the system. Strictly speaking, this process involves performing the
following tasks in a distributed manner:

1. Verifying the blockchain.

2. Creating new blocks.

3. Minting new coins.

Point one and two are tasks where the computation, in general, does not have to be
costly. Point three, however, may be another matter: Because cryptocurrencies mint
their own coins, there are some arguments for that process being, if not wasteful, at
least expensive. For instance, historically, gold was considered valuable because it is
hard to find and heavy – and therefore rare and difficult to steal. If a cryptocurrency
was inexpensive to mint, would it still be considered valuable? Is the value of the
cryptocurrency somehow linked to the expenditure of energy per unit? Section 5.2.4
looks more closely into this matter.

5.2.2 The Technical Differences and Similarities

The proof of work protocol constitutes the consensus mechanism of both Bitcoin and
Ethereum. Arguably, the proof of work protocol is inherently wasteful because it
involves an expensive cost function which is at the root of the mechanism. Therefore
the purpose of this chapter is to establish how wasteful the implementation of the
protocols are when compared.

There are several factors that can influence the energy consumption; typically
what kind of hardware is being used, how much cooling is needed, the hashing
algorithm and so forth. Quantifying the exact – or even estimating – the energy
needed to mine is not an easy task. As a general mode of comparison, we use the
hash rate of the network, e.g. how many hashes per second is performed overall in
the network. This gives an estimate of how much mining is being done in either
system, which should be roughly proportional to the consumed energy in either of
the systems.

Looking back at what we have learned from the previous chapters, there are two
parts of the consensus mechanism: the consensus protocol and the mining algorithm.
We will start by comparing the mining algorithms.



66 5. COMPARISON AND DISCUSSION

Hashcash versus Ethash

Hashcash and Ethash are the mining algorithms for, respectively, Bitcoin and
Ethereum. For both systems, the end goal of both algorithms is to find a par-
tial pre-image of a hash function. There is an upper bound to the expected time it
should take to solve this challenge, so depending on the hash rate in the system, the
difficulty of the pre-image is adjusted. Which factors influence the hash rate, and
how Ethereum and Bitcoin compare are discussed in the following.

The Algorithm Construction The Hashcash algorithm was not constructed for
any other purpose than as a cost function [B+02]. Ethash, however, was
designed years after Hashcash and – having observed the weaknesses of the
Hashcash – was therefore designed to be resistant to improvements in hardware.
The bottle neck for the Hashcash algorithm is the hashing function. In Ethash
the bottleneck is I/O operations, which most personal computers are already
specialized for (see Section 4.6.2 for more detail).

Hardware Improvements Utilizing special hardware – e.g. ASICs or Graphical
Processing Unit (GPU) mining – will increase the network hash rate. Because
of the ASIC resistant property of Ethash, the network hash rate in Ethereum
should, therefore, be significantly lower when compared to Hashcash.

Mining Participation The more nodes participating in mining, the higher the
hash rate overall in the network will be. This holds for both algorithms.

Nakamoto Consensus vs GHOST

The Nakamoto Consensus is the consensus algorithm of Bitcoin. Recall from Section
3.5.2, the Nakamoto consensus rewards only blocks that are a part of the longest
chain, thereby disregarding any computation performed that results in stale blocks.
Comparably, Ethereum’s GHOST protocol rewards both blocks that are a part of
the main chain and ommer blocks and weighs their combined computational effort
when picking a leg in the fork.

Consequently, Ethereum’s consensus algorithm better utilizes the computation of
all the nodes in the network, compared to Bitcoin’s consensus algorithm, by wasting
less computation when the blockchain forks.

5.2.3 Quantifying the Difference

By comparing Figure 5.1 and Figure 5.2 there is an obvious gap in hash rate between
the two systems. They both have an increase in hash rate over the last few years,
but while Bitcoin is operating on approximately 4,5 million TH/s, Ethereum only
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Figure 5.1: The historical hash rate of Bitcoin.

Figure 5.2: The historical hash rate of Ethereum.
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Figure 5.3: An estimate of the level of adoption for Bitcoin and Ethereum.

amounts to about 30 TH/s. Simply comparing the situation as of now, Ethereum
has a considerably lower hash rate than Bitcoin. However, influencing factors in this
comparison need to be mentioned:

Period of operation While Bitcoin has been operational since 2009 i.e. eight years,
Ethereum has only been around since the summer of 2015, i.e. two years. While
it is not entirely fair to compare the two in terms of years of operation – because
there has been a great increase in interest for blockchain technology since 2009
– it should be mentioned that due to developments in the following two points,
Ethereum might not come out of this comparison as well after a few more years
of operation.

Hardware development Although Ethash has been designed to be ASIC resistant,
other attempts at creating resistant algorithms have proved unsuccessful over
time, and specialized equipment has been developed (Scrypt – the mining
algorithm of LiteCoin – is an example of this). To put the effects of this
equipment in perspective the first Bitcoin ASIC miners were manufactured in
2013 – from Figure 5.1 it is clear that this was when the hash rate started to
take off.

Level of adoption Bitcoin is better known than Ethereum, primarily because it
has been around longer. We know that the hash rate increases with the number
of active miners. The hash rate might be higher because of this factor. Figure
5.3 gives an estimate of the level of adoption for Bitcoin and Ethereum. The
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data is based on the number of accounts for Ethereum1, and the number of
downloaded clients for Bitcoin2. Users can, of course, have several accounts in
Ethereum, and several Bitcoin clients so this is, in general, a rough estimate.

5.2.4 Value for Effort

By observing the four graphs in Figures 5.1, 5.2, 5.4 and 5.5, it may appear that
there is a correlation between the market value of the currency, and the network hash
rate. There are two scenarios for this relation that seem equally likely: Either the
community perceives a higher value of the currency because of the effort to create the
currency increases, or the hash rate goes up because more people invest in mining
when the value goes up.

If the first case holds true, i.e. the value of the currency increases because the
network hashing power goes up, this might indicate that the value of the currency is
linked to the computational effort put into the system – that this is how the value
of the currency is created. If this is the case, the computational waste is, in fact, a
critical factor in the cryptocurrency, because without the waste people might not
perceive the currency as being valuable – and therefore not willing to trade for it.

However, if it is the other way around, the increased difficulty of the system simply
serves to slow down the blocks and the added computational effort performed by all
the nodes not winning the race for creating new blocks is wasted. The assumption is
then that the price of the currency is based solely on other social and economical
factors (for instance market supply and demand).

What Is the Relation?

To try and find a more substantial answer to the question of whether the price of
cryptocurrencies is linked to the network hash rate we have combined the statistical
data from the market value and the hash rate, y = hashrate

USD , Figures 5.6 and 5.7
illustrate this. Importantly, note that the y-axis of the Bitcoin graph has been
adjusted after December 2013 to provide some readability for the early values. For
reference it was around December 2013 ASICs became prominent in the mining
community, causing a spike in the general network hash rate.

What we might expect to see from these graphs, should the hypothesis be that:
"the price of the currency is linked to the computational waste" hold, more or less a
straight line, where k is a constant:

hash rate
USD = k

1https://etherscan.io/chart/address
2https://blockchain.info/charts/my-wallet-n-users
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Figure 5.4: The historical market price for Bitcoin.

Figure 5.5: The historical market price of Ethereum.
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Figure 5.6: The Bitcoin relation for number of hashes per USD.

Figure 5.7: The Ethereum relation for number of hashes per USD.

However, from the graphs it becomes apparent that the value is influenced by more
than this. In the case of Bitcoin, there are shorter periods where the graph is close to
straight: {Jan-12, Jan-13}, {Feb-15, Mar-16} and {Mar-16, Apr-17}, but even these
periods are volatile. For Ethereum it is hard to find any pattern at all. This might
be due to the short period of operation, or that there is not a strong link between
the value of the currency and the computational effort.
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5.3 Concentration of Power

The second technical problem relates to the tendency towards organizing into groups
– mining pools – over time. Miners join mining pools for several reasons:

Lower variance on income The primary reason for miners to join mining pools
is the high variance of expected returns from mining. Mining is essentially a
lottery where the reward is high when you win, but you receive nothing before
you win. In a mining pool, miners collaborate to find a block and then share
the reward. The miners are rewarded according to their level of hashing power,
so the overall reward becomes approximately the same for each miner over
time, but the income is less volatile.

Size of blockchain Most mining pools are organized by a mining operator that
performs the task of assembling blocks, meaning that the miners do not have
to store the entire blockchain on their devices, but only focus on solving the
block. There are instances of pools with different structures as well, such as
p2p pools [P2P]. P2p pools have no operators, but share rewards.

Mining equipment Specialized mining equipment can be expensive to buy and
run. In mining pools, miners can split the costs of mining, i.e. buying ASICs,
renting space for the hardware, costs of electricity.

5.3.1 Why Are Mining Pools a Problem?

Why is the concentration of power considered a problem in a blockchain based
cryptocurrency? Most of the factors relate to what the original intentions of Bitcoin
and Ethereum were, and that the system no longer aligns with this vision.

No longer a distributed system One of the main value proposals for cryptocur-
rencies is the distributed property of the system. When mining pools control
large portions of the network, this property is no longer as prevalent.

Trust The blockchain is supposed to be validated by all mining nodes so that
no trust is necessary between the nodes. In centralized mining pools, only
the pool operator performs this task, leaving us with what is, in essence, an
expensive trusted third party model, where the miners trust their operators to
act honestly.

Fairness Nodes that are clustered together in a mining pool have a greater chance
of producing blocks that become a part of the main chain simply because the
propagation time is smaller in the cluster. Section 4.6.3 discusses this effect.
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Impact on security Concentration of power makes some attacks feasible for proof
of work schemes. For instance, acquiring 50% hashing power in the network
may be considered infeasible for one actor, but in a network where two or three
mining pools control >50% of the computational power between the pools, this
may be a matter of negotiation between the pools.

5.3.2 The Technical Differences and Similarities

Since both Ethereum and Bitcoin rely on block rewards from successful proof of
work for minting their intrinsic currency, they both are both subject to this problem.
Factors that influence the severity of concentration of power, where Ethereum and
Bitcoin differ, are:

Stateful blockchain Ethereum full mining nodes do not need to store the entire
blockchain to validate transactions – like they do in Bitcoin. This implies that
the hardware storage cost of mining independently is the same as in a mining
pool.

Consensus protocol Arguably, Ethereum’s GHOST protocol handles the effects
of centralization better than Bitcoin. By rewarding ommer blocks as well as
blocks on the main chain, the positive networks effects from being a part of a
mining pool are not as prevalent. This reduces the advantage in mining for
clustered nodes on the main chain.

Overall hash rate As the difficulty increases, the more difficult the blocks are to
find and the lower the expectancy is for finding a valid block. In other words,
the expected time in between each block reward becomes longer when the
difficulty goes up. Bitcoin has a high hash rate, meaning miners might tend
more heavily to mining pools.

Quantifying the Difference

To quantify the levels of centralization in Bitcoin and Ethereum, we can measure the
size of mining pools that are currently active. Unfortunately, we have little access to
historical data in this development, and the pools are prone to daily change. The
data available is based on the number of blocks accepted to the main chain, and the
addresses they are relayed from.

Interestingly, even though in theory Ethereum has some theoretical advantages
over Bitcoin when comparing the technical aspects of the protocols regarding central-
ization – the degree of centralization for Ethereum is higher than for Bitcoin. This
is apparent from looking at the mining pool distribution charts in Figures 5.8 and
5.9. Recall from Section 3.7.1 that when more than half of the network hash rate is
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Figure 5.8: The current pool distribution in Ethereum the last seven days (28.
May 2017, repeated figure from Chapter 4).

Figure 5.9: The current pool distribution in Bitcoin the last seven days (28. May
2017, repeated figure from Chapter 3)
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controlled by a malicious actor, the blockchain is no longer secure. In Ethereum only
three pools would have to collaborate to achieve this. Comparably in Bitcoin, where
five pools would have to collaborate.

Effects of High Variance

The primary reason for miners to join mining pools instead of mining independently
is the high variance related to mining rewards. When the hash rate reaches as high
levels as seen in Bitcoin today, the expected waiting time for return on investment
might be years if one is not part of a mining pool [NBF+16]. In fact, in Bitcoin
mining pools are almost the only way for mining to be profitable today: Because
the market value changes rapidly and hardware improvements make the competition
harder – with a years waiting time the original investment might be obsolete before
miners get any return.

5.3.3 Security Issues With Large Mining Pools

Over the course of time, at least for Bitcoin, there has been periods when one pool
has been close and even reached >50% of the hashing power in the system [NBF+16].
An interesting counter-effect to this situation has been a culture among miners to
migrate to smaller pools when one pool has become too big and to encourage others
to do the same [Min]. This is, of course, voluntary for miners, but it seems many
choose to follow this pattern.

The incentive for doing leaving large mining pools is that one pool having that
high level of control over the blockchain may cause users to lose trust in the security
of the system – we already know that double spending attacks are feasible for miners
controlling more than half of the hashing power. However, even though the blocks
are being relayed by different pools, we know very little about the operators of the
pools. It is possible that one operator may, in fact, control several pools.

5.4 Ambiguity of Transactions

The last technical problem relates to the time users have to spend waiting for
transactions to be confirmed. The general rule of thumb for a transaction to be
considered finalized in Bitcoin is to wait until six consecutive blocks have been added
after the block that included the transaction is added to the blockchain.

The exact number of block confirmations required for Ethereum for the same level
of security as Bitcoin is not a trivial question, due to the difference in block time and
consensus protocol. Buterin [OnS] discusses the matter with no final answer to the
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Table 5.2: Average confirmation time of transactions over the last year.

Bitcoin average 56.2 minutes
Ethereum average 1.4 minutes

question, a discussion on Ethereum stack exchange 3 puts the exact number of blocks
in the range of 5-500 blocks depending on the value exchanged. For consistency, we
will assume that the general rule for Bitcoin also holds for Ethereum, but with a
note that this might impact the level of security for the transaction.

As is evident from Figures 5.10 and 5.11, and Table 5.2. Ethereum’s transac-
tions are finalized after comparably short time to Bitcoin – assuming a six block
confirmation time. This is because of the different block time configuration of
Ethereum.

5.5 Scalability

An additional problem that has been discussed for Bitcoin in several instances is the
scalability of the system. There are two key issues with the scalability of Bitcoin:

The size of the blockchain Recall that for Bitcoin miners to be able to vali-
date that transactions are not double spending, they need to store the entire
blockchain. This means that the necessary storage space for Bitcoin is continu-
ously growing, forcing miners to invest in storage.

The maximum blocksize The 1MB maximum size of the blocks puts an upper
cap on the number of transactions that can be processed by the miners. When
compared to other payment systems, for instance, Visa, this cap is much too
low. Putting this in perspective, Narayan et al. [NBF+16] estimates that
Visa processes about 2000 transactions per second. Comparably, Bitcoin at
maximum capacity can only process about seven transactions per second.

What makes scalability worse is that the second problem influences the first. Disre-
garding the security implications of increasing the maximum block size (see Section
4.6.3) – such an action would also severely increase the growth of the blockchain.

Ethereum handles both these problems efficiently in three ways: Firstly, (recall
from Section 4.7) due to Ethereum’s stateful blockchain, mining nodes can validate
and mine successfully without downloading the entire blockchain. Only a few archive

3https://ethereum.stackexchange.com/questions/319/what-number-of-confirmations-is-
considered-secure-in-ethereum
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Figure 5.10: Ethereums daily average confirmation time of transactions over the
last year.

Figure 5.11: Bitcoins daily average confirmation time of transactions over the last
year.
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nodes store the entire blockchain for future reference, but storing some few hundreds
of the last blocks in the chain is sufficient for validation and consensus. This is not
possible for Bitcoin because all previous transactions need to be known to recognize
attempts at double spends. Secondly, the size of Ethereum blocks is flexible, meaning
that in periods of high usage the blocks will accommodate the increase. Finally, with
the 13 second block time of Ethereum the size of the blocks need not be as large,
compared to Bitcoin, to accommodate more transactions overall.

5.6 Security

From what we have seen in Chapter 3 and 4 both Bitcoin and Ethereum are susceptible
to the 51% attack, although the attack would be incredibly expensive in terms of
the hash rate required to execute the attack. Determining which is more secure
regarding how expensive the 51% attack is to execute is hard because we are not
aware of how much one hash operation costs in either system. However, in terms of
the general order of hash rate in either system, achieving 51% as a single person can
be considered infeasible.

Should mining pools be taken into consideration, the feasibility of the 51% attack
might, in fact, be a question of negotiation between pool operators. From Section
5.3.2 we know that this would only require three pools to cooperate in Ethereum, and
five in Bitcoin e.g. Ethereum is more vulnerable. However, as mentioned in Section
5.3.2 the mining pool distribution is subject to change daily, and the snapshot image
presented does not capture this.

Additionally, Ethereum is vulnerable to the long range attack (see section 4.8.1.
This attack requires a lot of value in the system to execute but exposes a threat
of anyone rewriting the blockchain – which undermines the purpose of the system.
Because of these factors, Bitcoin might be considered more secure than Ethereum.

Less serious attacks which do not break the system, but influence the profitability
and fairness of the mining process, include the selfish mining attack (see Section
3.7.2) for Bitcoin and uncle mining (see Section 4.8.2) for Ethereum. Quantifying
whether one of these provides a more significant advantage than the other is out
of scope for the thesis, but it is sufficient to say that neither Bitcoin or Ethereum
provides a perfect solution.
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To conclude this thesis we include a summary of the thesis and proposals to future
work.

6.1 Summary

The main research objective of this thesis is to give a picture of how well newer
cryptocurrencies handle known issues with Bitcoin. Instead of focusing on several
different cryptocurrencies Ethereum has been chosen as the candidate for comparison
and acts as a proxy the others.

To perform the comparison, a parallel basis for the technical functionality of both
systems have been established. Chapter 3 provides an in-depth explanation of the
different aspects of Bitcoin and lays the groundwork for the technical problems that
are the basis for the comparative analysis. Chapter 4 provides a detailed description
of Ethereum’s functionality, with a focus on the factors that relate directly to the
technical problems of Bitcoin. Chapter 5 examines the information laid out in the
previous chapter and analyzes the significance of these likenesses and differences in
light of the known problems of Bitcoin. The analysis is enlightened by statistical data
collected from the blockchains of Bitcoin and Ethereum, to enlighten the discussion.

The thesis has found that because both systems are based on the proof of work
consensus mechanism, they both suffer to some extent from the same problems.
Ethereum has taken measures to minimize some of the negative sides of proof of work,
which has so far proven effective in the case of computational waste (see Section
5.2) and ambiguity of transactions (see Section 5.4) – but less effective in the case of
concentration of power (see Section 5.3). However, it is important to remember that
Ethereum has only been around about a third of the time that Bitcoin has. While
the adoption for Ethereum has happened faster than for Bitcoin, because blockchain
technology has become widely popular, the problems that have arisen for Bitcoin
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took time to emerge – for Ethereum other significant problems could emerge over
time as the system evolves.

6.2 Future research

Over the last few years, a score of new kinds of cryptocurrencies has been launched.
As a proposal for future work within this space of research conducted in this thesis an
important task will be to categorize these types of currencies. Although Ethereum is
used as a proxy for them in this thesis, they can differ widely in scope, functionality,
and design. Establishing some common ground for the different systems will be a
good starting point for finding their weaknesses and strengths for future deployments.

Additionally, proposals to different types of consensus mechanisms have been
introduced for other cryptocurrencies recently. The consensus mechanism is the key
source of security for the blockchain and the weakness of Bitcoin and Ethereum. It
is important that the security and functionality of these are established on a formal
level.
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