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ABSTRACT 

 

Visual tracking is the task of estimating the path of a target object in each frame of the video. Various tracking approaches are developed for tracking 
the position of the target. However, the tracker may fail to find the correct position, if the appearance of the target is similar to the background. This 

paper proposes a background normalization technique based on the textural pattern analysis to verify the matching of the features for the target region 

analysis. In this work, a novel model of background clustering is presented by using Multi-Weighted Chain Prediction (MWCP) algorithm for the 
uneven background. A Neighborhood Differential Binary Pattern (NDBP) is proposed to extract the texture for suppressing the shadow pixels in the 

image frame. From this equalized frame of the given video, the frame is split into several grids. From the grid format frame, the histogram features of 

the targeted frame are extracted, and each grid in that frame is classified. The Multi-Grid Weighted Classifier (MGWC) algorithm is used to find the 
matching of the grids to separate the background and foreground. This type of visual tracking system is robust over the sudden illumination changes 

and dynamic background. The experimental result proves that the proposed approach yields better precision, recall and F-score performance than the 

existing tracking approaches.   
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INTRODUCTION 

 

In the real-time application, most of the research works focus in 

the visual tracking system (1), (2), (3), (4), (5), (6). It is mainly 

used in the application such as robotics, visual surveillance (7), 

Human-to-Machine Interface (HMI) (8), video editing (9), 

motion control (10), (5), (11), (12), and activity recognition (6) to 

extract the target status. There are number of visual tracking 

systems to identify the targeted region from the frame of a given 

video. But, the tracking performance can be affected by the 

sudden illumination changes (13), shadowing effect and uneven 

background. In the moving object detection system, it suffers 

from the change in the dynamic background and presence of 

shadow effect in the video frames. Due to this, there occurs 

misclassification in the tracking of targeted region. It results in 

the false detection of moving objects. To rectify this problem, the 

researchers developed many techniques such as K-Means 

clustering, Fuzzy C-Means, etc. to detect and eliminate the 

shadow from frames. These techniques are used to segment both 

the foreground and background from each frame. Then, they 

remove or suppress shadow region and track the target. In these 

methods, the segmentation is based on the static background of 

the surveillance area. 

 

Motivation 

 

The features play a significant role in the object recognition. But, 

the features are defined and combined manually in many online 

visual tracking systems (14), (15), (16), (17), (18), (19), (20). 

However, these methods yield satisfactory results on the 

individual datasets, the feature representations limit the tracking 

performance. The normalized cross correlation will be 

discriminative during the favorable lighting conditions. But, it is 

ineffective if the object moves under the shadow. This requires 

better learning mechanisms for capturing the effective change in 

the appearance with respect to time. The state-of-the-art 

approaches focus on the extraction of local binary patterns (21), 

Haar-like features (17), (22), (23), histograms (4), (24), HOG 

descriptors (19), and covariance descriptors (25). However, these 

approaches require the learning techniques to improve the 

representative capabilities. The texture is a property that defines 

a way for changing the color in the neighborhood of the pixels 

(26). The texture for the target object and background having the 

same color is different. The Local Binary Patterns (LBP) is a 

simple description operator for the local texture (26), (27). Due to 

the low computational complexity and better ability for coding 

the details, the LBP is widely used in object tracking (28), (29). 

 

Proposed work 

 

This paper proposes a background normalization technique based 

on the textural pattern analysis. In the texture-based system, the 

texture patterns are extracted to verify the feature matching for 

the target region analysis. In this work, a novel model of 

background clustering is presented by using MWCP algorithm. 

Here, the NDBP is also proposed to extract the texture of the 

frame for suppressing shadow pixels present in the frame. This is 

done by estimating lowest intensity present in that frame and 

predict the area by using DBP method and enhance the pixel to 

suppress shadow region. From this equalized frame of the given 

video, we split the frame into several grids. From that grid format 

frame, we extract the histogram features of the targeted frame and 
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classify each grid in that frame. The MGWC algorithm is used to 

find the matching of the grids. The matching grid is considered as 

the tracked region, and a binary label is provided to the matched 

grid to separate the background and foreground. This type of 

visual tracking system is robust over the sudden illumination 

changes and dynamic background by using the texture pattern 

analysis. 

 

Organization of the paper 

 

The remaining sections in the paper are structured as follows: 

Section II describes a brief overview of the current research works 

related to the video segmentation and target tracking approaches. 

Section III explains the proposed video segmentation approach 

including the median filtering, MWCP, NDBP and MGWC 

algorithms. Section IV presents the performance analysis 

including the dataset description, comparative analysis with the 

existing tracking approaches and tracking analysis. Section V 

includes the conclusion and future scope of the proposed video 

segmentation approach.  

 

RELATED WORK 

 

Babaee et al. (30) proposed an approach for tracking the 

superpixels associated within each box in the multi-view video 

sequences. A flow graph was constructed, and both the visual and 

geometric cues were combined in the global optimization 

framework. Hence, the segmentation, reconstruction, and 

tracking of the target objects in the video were performed 

simultaneously. Wang et al. (31) introduced an accurate method 

for recovering the individual trajectory of each active colloid. A 

level set method was applied for the segmentation of the 

individual colloid. The trajectories of the colloids were recovered 

concurrently as vertices on the weighted graph. Liwicki et al. (32) 

developed a Kernel Slow Feature Analysis framework for the 

temporal-based video segmentation and target tracking. The 

proposed approach improved the tracking setup while combining 

with the online learning tracking system. Xiaojun et al. (33) 

presented an enhanced active contour model algorithm for 

tracking the moving objects. From the detection result of the 

frame difference, the coarse contour of the moving target was 

found out, and convergence of the contour was performed to 

achieve tracking of the moving object. Drayer and Brox (34) 

introduced an approach for the object segmentation in videos that 

combines the frame-level object detection with the object 

tracking and motion segmentation concepts. An accurate and 

temporally consistent segmentation of each object was provided. 

The performance was reduced due to the missing annotation of 

static objects and labeling of different objects as a moving object. 

Khoreva et al. (35) suggested an approach for video segmentation 

by focusing on the superpixel. Keuper and Brox (36) addressed 

the problems in the segmentation of temporally consistent 

boundary and hierarchical video segmentation. The temporally 

consistent boundaries were the key components for the 

assignment of temporally consistent region. The proposed 

method was independent of the optical flow computation or 

previously learned motion models. The segmentation quality was 

lower than the quality obtained with the multiscale approach. 

Spina and Falcão (37) applied spatiotemporal superpixel-graph 

for interactive video segmentation. The segmentation of the 

second frame was refined by limiting the delineation on the pixel-

graph within the expected boundary region of the object. 

However, the weight computation process was slow and 

expensive. Jiang et al. (38) presented a novel framework for the 

spatiotemporal segmentation of the video sequence. An iterative 

optimization scheme was introduced through the independent 

initialization of the segmentation maps for each frame. The 

proposed framework produced unsatisfactory segmentation 

results due to the difficulty in handling the problems of a large 

number of occlusions or out-of-view. Cao et al. (37) proposed an 

object-level method for extracting the foreground object in the 

video. The proposed method guaranteed the continuity of 

segmentation result and exhibited better performance even during 

the fast motion and presence of occlusion. 

 

Li et al. (39) introduced an efficient approach for video 

segmentation while reducing the effect of data noises and 

corruptions. The proposed approach suffered from the low 

segmentation quality due to the sensitivity to the noise and 

corruptions. Chen et al. (40) proposed a novel approach for the 

segmentation of a moving object in the video by using the point 

trajectories. A graph-based segmentation was introduced by 

adopting the local and global motion information encoded by the 

trajectories of the tracked dense point. However, this approach 

does not work well for the object without distinct motions from 

the background in various scenes. Delibasis et al. (41) presented 

a novel algorithm for the accurate segmentation of foreground in 

the video sequences. The proposed method was capable of 

handling the sudden changes in the light obtained from the natural 

and artificial light sources. Gangapure et al. (42) proposed a novel 

framework for the segmentation of causal video using the 

superseeds and graph matching. Finally, the watershed algorithm 

was applied to achieve final video segmentation. Wang et al. (43) 

presented a semi-supervised approach for the segmentation of 

semantic video object with respect to the variations in the shape, 

appearance, and presence of an obstruction in the video. This 

approach was highly sensitive to the motion accuracy. 

Abdelwahab et al. (44) proposed a method for the segmentation 

of video object by using the motion of superpixel centroids. After 

the segmentation of each object, the foreground objects, and the 

background were distinguished by using the clustering results. 

Husain et al. (45) developed an approach for the segmentation of 

Three-Dimensional (3D) point clouds into the geometric surfaces 

by using adaptive surface models. An adaptive mechanism was 

included for the construction and removal of the segments. But, 

the segment overlapping between the consecutive frames is to be 

reduced. Molina-Giraldo et al. (46) proposed a video 

segmentation framework for detecting the moving objects in a 

scene. A tuned K-means technique was used for grouping the 

pixels as static or moving objects. The proposed framework was 

tested to classify the people and abandoned objects. However, it 

does not support the actualization of the background model. Li et 

al. (47) presented a single Convolutional Neural Network (CNN) 

based tracking algorithm for the effective online learning of the 

feature representations of the target object. Razavi et al. (48) 

introduced a texture-based target representation and suggested an 

improved mean shift tracking algorithm by using the modified 

Interlaced Derivative Pattern (IDP) that considers the three-

dimensional dependencies between the pixels. To overcome the 

existing issues, video segmentation based on the background 

normalization and target pattern analysis is proposed. 

 

PROPOSED METHOD 

 

Target matching is the analysis of the movement of a particular 

target object. The previous target tracking algorithms use 

template matching. It finds the correlation between the present 

frame and target. Highest matching of the region in the matrix is 

determined as a matching region. But, it does not retrieve the 

proper results. If a specific region is segmented, the segmented 

region is compared with the target by using the structural 

information and intensity variations of the target.  

 

Previously, the Histogram of Gradient (HOG) features and 

convoluted Gabor features are used for connecting the features. 

The frame is divided into grids according to the size of the target. 
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The matching of the feature in the grid is determined as a region 

matching. Previously, a maximum number of features are 

obtained from the Gabor, correlated values, and sparse 

representations. In a football match video, the face of the players 

can be tracked. But, there exist background variations in each 

frame. In the existing works, the target is fixed at the first frame, 

and it is not updated at the next frames. The structure of the target 

varies with the progress of the frames. As the position of the target 

changes in each frame, the existing works cannot retrieve the 

target properly due to the improper matching of the structures. 

Hence, there is a need to update the position of the target for 

achieving better tracking performance. 

 

 
 

Figure.1 Overall flow diagram of the proposed background normalization and texture pattern based video segmentation approach 

 

In our proposed work, the patterns are used for the target 

matching analysis. The matching of the extracted patterns with 

the target patterns is verified by using a simple classifier. The 

classifier determines the likelihood of the extracted patterns and 

target patterns. The patterns are extracted grid-by-grid. The size 

of the grid corresponds to the size of the target to obtain the 

relevant tracking results. The weight value of each grid is 

estimated. But, the weight value changes in each frame. So, the 

weight values are to be updated properly along with the target. If 

a target is tracked, the tracking region is updated as a target.  

 

This paper proposes a video segmentation approach based on the 

background normalization and textural pattern analysis. Initially, 

the video frame is preprocessed. The MWCP algorithm is applied 

for the background clustering. Then, the NDBP patterns are 

extracted to suppress the shadow pixels in the frame. The video 

frame is split into several grids and pixel weight of each grid is 

estimated. The connecting components are extracted. The video 

data is preprocessed, and training features are applied. The 

MGWC algorithm is applied for finding the matching of the grids. 

A binary label is assigned to the matched grid and blob is 

extracted for tracking the target. Figure.1 shows the overall flow 

diagram of the proposed background normalization and texture 

pattern-based video segmentation approach for visual tracking. 

 

Median filtering 

 

The input image is preprocessed for removing the noise present 

in the image by using a median filter. The median filtering is a 

non-linear approach used for removing the noise such as salt and 

pepper noise from the images while preserving the edges. This 

filter moves through the entire image in a pixel-by-pixel manner 

and replaces each pixel value with the median value of the 

neighboring pixels. In this technique, the window is formed based 

on the neighboring patterns, then its median value is calculated 

by sorting all pixels. Also, the size of window is initialized as 

3 × 3, and it is projected over the rows and columns of the matrix. 

Finally, the pixel values are sorted based on the variation in the 

neighboring pixels. If the sorted value lies within the specified 

range, the denoised frame is obtained based on the filtering 

coefficient. If the sorted values of the window matrix for varying 

direction ‘𝜃’ of the neighborhood values is greater than the 

median value, the neighborhood pixels are updated. From this 

filtering algorithm, we retrieve the pre-processed video frame for 

both message frame and cover frame. 

 

Algorithm 1: Median Filtering Algorithm  

Input: Testing Frame – Y  

Output: Denoised Frame – Y 

i, j –  Row and Column iteration respectively. 

Step 1: Initialize window size (3×3) 

Step 2: Project window over image matrix as, T = Y(i − 1: i + 1, j − 1: j + 1); 
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Step 3: Initialize filtering coefficient 𝐶 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇)   
Step 4: Check neighboring pixel variation 

Step 5: S = sort (T); 

Step 6: if 𝑆(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑) == {0 & 255} 

Step 7:  Y(i, j) = C; 

Step 8: end if 

Step 9: if {𝑆𝜃} > 𝐶 

Step 10:  Y(i, j) = Y(i, j-1); 

Step 11: end if 

 

The median values are extracted, and the noisy conditions of the 

neighborhood regions are checked based on the specified range 0 

to 255. If the neighborhood regions are noisy, the median value is 

replaced in the center pixel. If the noisy level is in the different 

range with respect to the center pixel, the pixel value of the 

nearest neighborhood is replaced in the center pixel. The same 

variable ‘Y’ is used for both input and denoised frame for 

updating the noise removal in the input frame. If a separate 

variable is used, the noise is removed in the output frame and not 

removed in the input frame. The previous noise remains as such. 

If it is compared with the nearest neighborhood, there is a 

possibility of a noisy pixel to be a noise-free pixel. Hence, the 

noise removal is performed in the input frame. The performance 

of the median filter is compared with the Gaussian filter and 

average filter. Figure.2 shows the initial frame of the cup, 

basketball, and David datasets, which are obtained from this (49). 

Figure.3 illustrates the comparison between the filtered results of 

cup, basketball and David datasets obtained from the (a) average 

filter, (b) Gaussian filter and (c) median filter. 

   

Figure.2 Initial frame of cup, basketball and David datasets 

 

   

  
 

   

   
(a) (b) (c) 

Figure.3 Comparison between the filtered results of cup, basketball and David datasets obtained from the (a) average filter, (b) Gaussian 

filter and (c) median filter 
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MWCP 

 

The camera tilts with the movement of the target. Hence, there is 

variation in the background region. The MWCP algorithm is used 

for removing the uneven background and eliminating the 

irrelevant data corresponding to the target. An image frame may 

contain multiple regions that are relevant to the target. The 

regions having same intensities and patterns with respect to the 

target are grouped, and the irrelevant regions are removed. It is 

termed as background clustering. The irrelevant regions are 

considered as background. Only the relevant data is retrieved as 

a cluster from the image frame. The remaining data is formed as 

a separate cluster.  

 

The input frame ‘Y’ is applied as an input to the MWCP 

algorithm. The background and foreground regions are extracted 

as separate clusters, and the clustering index is obtained for the 

regions. The Linear of Gradient (LOG) distribution is obtained by 

using the Gaussian Kernel ‘G’. As the Gaussian Kernel has zero 

mean and equal variance, it is used. The input frame and target 

image are convoluted with the LOG distribution to obtain the 

patterns clearly and likelihood for the efficient separation of the 

background and foreground regions. Otherwise, the background 

region may be similar to the foreground region. The matching 

regions in the frame are extracted as template regions. The 

template regions having maximum likelihood value are extracted. 

The information about the likelihood regions in the frame is 

collected, and index of the likelihood regions is given as a 

matched index. If the likelihood is not equal to zero, it is a cluster. 

If the likelihood value is equal to zero, it is considered as a 

background. Otherwise, it is a foreground region. The cluster 

index is assigned to each region. Each likelihood region is framed 

as a cluster for dividing each region in the frame using the index. 

 

Algorithm 2: Multi-Weighted Chain Prediction (MWCP) 

Input: Input Frames ‘Y’, Target image ‘T’ 

Output: Cluster Region index ‘CI’ 

Step 1: Initialize LOG distribution.  

𝐷(𝑥, 𝑦, 𝜎2) = 𝐷(𝑥, 𝑦) × 𝜎2∇2𝐺(𝑥, 𝑦, 𝜎2); 

Where, x and y are row and column size of the frames. 

Step 2: Update Initial frame with distribution  

𝑌(𝑥, 𝑦) = 𝑌(𝑥, 𝑦) ∗ 𝐷̅𝑥,𝑦  

𝑇(𝑥, 𝑦) = 𝑇(𝑥, 𝑦) ∗ 𝐷̅𝑥,𝑦  

Step 3: Estimate template region of image 

𝑇𝑒(𝑥, 𝑦) =  
∑(𝑌(𝑥,𝑦)×𝑇(𝑥,𝑦))−(𝑌̅×𝑇̅)

√(∑ 𝑌(𝑥,𝑦)2−𝑌̅2)×(∑ 𝑇(𝑥,𝑦)2−𝑇̅2)
  

Step 4: Extract Likelihood value  

𝐿𝑥𝑦 = {
𝑌(𝑥, 𝑦),          𝐼𝑓 𝑇𝑒(𝑥, 𝑦) > 𝑌̅
0,                    𝐸𝑙𝑠𝑒                    

  

Step 5: Estimate Matched index, 

𝑀 = 𝑖𝑑𝑥(𝐿! = 0)  

Step 6: Update Target, 

𝑇(𝑥, 𝑦) = 𝐼(𝑀 == 1)  

Step 7: Extract Cluster index and repeat the steps from 2 to 6 until ‘i’ number of frames is reached. 

𝐶𝐼𝑖 = 𝑖𝑑𝑥(𝐼(𝑀 == 1))  

Where ‘i’ – number of frames. 

 

NDBP 

 

The shadow elimination is obtained along with the feature 

extraction. Due to the illumination changes, the spot with 

darkness corresponding to the structure of the target is considered 

as a shadow region. The intensity of the shadow region is same as 

the intensity of the target. The intensity of the shadow region can 

be black or gray shade. This shadow region is eliminated. The 

NDBP is used to suppress the shadow region in the image frame. 

Then, the patterns or features are extracted from the frame. The 

target is determined based on the matching of the patterns with 

the target. After clustering, the MWCP patterns 𝑃1 are retrieved 

by projecting the cluster index 𝐶𝐼𝑖 to the image frame. For each 

30° and 45°, the 5×5 matrix is initialized to extract separate 

patterns. The difference in the pixel values of the center and 

neighboring pixels at the various angles is checked, and four-level 

pattern with neighborhood variation is determined. The rules are 

framed, and magnitude of the patterns is estimated. By 

convoluting the magnitude and rules, the final patterns are 

obtained. The distance between the neighborhood pixels is 

obtained as a 3×3 matrix. The function 𝑓1(𝑔𝑝1~𝑔𝑐) is like a LBP. 

The texture pattern is obtained by adding the LBP and 

pattern 𝑃𝑡1. The feature vector ‘F’ is obtained based on the 

histogram of the texture patterns. The feature vector is used for 

the matching and applied for the classification process. 

 

Algorithm 3: Neighborhood Differential Binary Pattern (NDBP) 

Input: MWCP Pattern, ‘𝑷𝟏’, Boundary Matrix, ‘𝑰𝒃’ 

Output: Texture Pattern, ‘𝑷𝟐’ 

Step 1: Initialize 5×5 window matrix 

Step 2: Project the window over MWCP pattern 

For i = 3 to (Row size)-2 

For j = 3 to (Column size)-2 

Step 3:       Temp = Y ((i-1 to i+1), (j-1 to j+1)) 

Step 4:          Check the difference in pixel from the center of temp and its neighboring pixel at the angles of 0°, 30°, 45°, 60°, 

90°, 120°, 135°, 180°. 

if temp (2,3)>=med && temp (2,4)>=med 
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          Igc=1; 

          elseif temp (2,3)<med && temp (2,4)>=med 

             Igc=2; 

          elseif temp (2,3)<med && temp (2,4)<med 

             Igc=3; 

          elseif temp (2,3)>=med && temp (2,4)<med 

             Igc=4; 

          end if 

Step 5: 𝑚𝑎𝑔1 = √
𝑑𝑜𝑢𝑏𝑙𝑒 (((𝑡𝑒𝑚𝑝1(3,4) − 𝑡𝑒𝑚𝑝1(3,3))

2
)) +

((𝑡𝑒𝑚𝑝1(2,3) − 𝑡𝑒𝑚𝑝1(3,3))
2

)
  

𝑃𝑡1(𝑖, 𝑗) = 𝑚𝑎𝑔1 ∗ 𝐼𝑔𝑐  

End loop ‘j’ 

End loop ‘i’ 

Step 6: Difference with center pixel and neighbor pixel 

𝑓1(𝑔𝑝1~𝑔𝑐) = {
1 𝑔𝑝1~𝑔𝑐 ≥ 0

0 𝑒𝑙𝑠𝑒
}

𝑝1=3×3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
  

𝑃2 = 𝑓1(𝑔𝑝1~𝑔𝑐) + 𝑃𝑡1   

Where, 𝑔𝑝1 – neighbourhood pixel at 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 

Step 7: Feature vector, ‘F’ 

𝐹 = {𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑃2)} 

 

MGWC 

 

The target is applied as a training feature. The matching of the 

training features in each grid is verified based on the Kernel rule 

formation. As the Euclidean distance based calculation does not 

provide the exact matching results due to the slight variations in 

the features, it is not used in our work. Hence, we have estimated 

the limitations of the labels and formed as rules. It estimates the 

likelihood of the patterns or features in the grid based on the 

limitations. Finally, the target region is extracted.  

 

Algorithm 4: Multi-Grid Weighted Classifier (MGWC) 

Input: Feature of that frame ‘F’, Target pattern ‘TP’ 

Output: Class Label, ‘C’ 

Step 1: Initialize number of labels, ‘n’ and L = 1; 

Step 2: 𝑀 = max(𝐹); //Estimate the maximum feature value  

Step 3: 𝑁 = mean(𝐹);   //Estimate the average feature value  

Step 4: 𝐿𝑡 = {1 𝑡𝑜
1

𝑛
 𝑡𝑜 𝑀} // Find the limitation of subdivided labels ‘n’ 

Step 5: 𝑅 = 𝐹(𝑀 − 𝑁) ∗ 𝐿𝑡; // Form the rules from given data with corresponding limits. 

Step 6:  for (t = 1 to n)    //’i’ Column size of Dataset Feature 

Step 7:   ρ =  F−1TP(t) 

Step 8:   K = 𝑅−1∅(t)   // Kernel Function for ∅(x) linear to nonlinear mapping parameter. 

Step 9:   for (i = 1 to size (Lt)) 

Step 10:   Tri = Ki +  ρi =  R−1∅(i) + ρi       //Training Feature with some neighboring link parameter ρij 

Step 11:   end for i 

Step 12:  V𝑡(𝑇𝑟) =
1

(2𝜋)
𝑛
2

1

𝑑
 ∑ 𝑒

[−
(𝑇𝑟𝑡−𝐹𝑡)−1(𝑇𝑟𝑡−𝑅𝑗)

2𝜎2 ]
𝑑
𝑖=1   //Probability distribution on feature set ‘Tr’ with Kernel for neighboring 

features 

Step 14: 𝐶𝑡 =  {
𝐿,    𝐼𝑓 𝑉𝑡(𝑇𝑟) > 𝑇𝑟𝑡

0,      𝐸𝑙𝑠𝑒                   
  

Step 15:  L = L + 1;  // Increment label ‘L’ 

Step 16: end for ‘t’ 

 
TABLE 1 SYMBOLS AND DESCRIPTIONS USED IN OUR PROPOSED WORK 

 
Symbols Descriptions 

C Filtering coefficient 

𝑆𝜃 ‘𝑆’ is the sorted value of window matrix for varying of ‘𝜃’ direction of neighborhood values 

𝜎 Standard Deviation of Gaussian distribution 

𝑌̅ Convoluted Frames 

𝑇̅ Convoluted Target 

Igc 4-level pattern with neighborhood variation 

𝑚𝑎𝑔1 Magnitude of Pattern 

ρ Probability of Feature set 

ρi Probability of ‘ith’ Feature vector 

V𝑡(𝑇𝑟) Probability distribution vector of training feature set ‘Tr’ with Kernel for neighboring features 

𝑑 Number of feature attributes 

𝑇𝑟𝑡 Training feature set for ‘t’ number of attributes 
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𝐹𝑡 Feature Vector for ‘t’ number of attributes 

𝑅𝑗 Rules for ‘j’ individual cluster 

𝐶𝑡 Classified Result 

 

The features are applied as an input to the MGWC algorithm. The 

number of labels ‘n’ are initialized, and maximum feature value 

and average feature values are estimated. The limitation of the 

subdivided labels ‘n’ is found out. The rules are formed from the 

background value of the given data with the corresponding limits. 

The rule is estimated based on the difference between the 

maximum and average feature values and limitation. The 

probability of the feature set is obtained. The probability 

distribution vector of the training feature set ‘Tr’ with Kernel for 

neighboring features is obtained based on the training feature set 

for‘t’ number of attributes, the feature vector for ‘t’ number of 

attributes and rules for ‘j’ individual cluster. The label of the 

vectors in the regions are obtained. These regions are the 

likelihood regions of the present feature and target. The region 

having maximum likelihood value is obtained as a labeled result. 

The target is saved and updated as a new target for the next frame. 

This process continues up to the last frame. Table 1 illustrates the 

symbols and descriptions used in our proposed work. 

 

PERFORMANCE ANALYSIS 

Dataset description 

 

The experiments are conducted on the benchmark datasets such 

as visual tracker dataset (45)(45)(45)(53), tracking dataset (46), 

PETS dataset (50)(50)(50)(55), Klein tracking dataset (51) and 

VOT2013 Challenge Benchmark (52) for validating the proposed 

approach. The visual tracker benchmark contains 100 sequences 

that are obtained from the recent literature and includes the results 

obtained from 50 test sequences and 29 trackers. The tracking 

dataset contains 77 sequences of different lengths. The PETS 

dataset comprises videos for the object detection and tracking, 

detection and understanding of the human behavior for 

discriminating the abnormal events. The Klein dataset includes 

nine test sequences with a total of 5485 frames. The smallest 

rectangle containing whole target object in each frame is marked 

manually. The VOT2013 challenge benchmark includes 16 short 

video sequences that show various objects in the challenging 

backgrounds. The sequences are chosen from a large pool of 

sequences based on the clustering methodology of the visual 

features of the object and background. The sequences are 

interpreted by the VOT committee using axis-aligned bounding 

boxes.  

 

Comparison results on the VOT2013 benchmark 

 

Two metrics such as accuracy and robustness are used to evaluate 

the tracking performance in the VOT2013 Challenge Benchmark 

(49). The accuracy is defined as the average of the overlap ratios 

in each sequence over the valid frames and robustness is defined 

as the average number of failures over 15 runs. The proposed 

Background Normalization and Texture Pattern-based (BNTP) 

Video Tracking approach is compared with the Deep Track (47), 

DeepTrack_BMVC (53) and DeepTrack_ACCV (53). 

 

The evaluation of the tracking results is performed based on the 

Tracking Precision (TP) and Tracking Success Rate (TSR). The 

TP is the percentage of the frames whose estimated location lies 

within the given distance-threshold to the ground truth. The TSR 

is the percentage of the frames whose overlapping score is larger 

than an overlapping-threshold. The overlapping score 𝛩(𝑦𝑛, 𝑦∗) 

between the estimated location of the frame and the ground truth. 

The overlapping score is calculated by using the following 

formula 

𝛩(𝑦𝑛 , 𝑦∗) =
𝑎𝑟𝑒𝑎 (𝑟(𝑦𝑛)∩𝑟(𝑦∗))

𝑎𝑟𝑒𝑎 (𝑟(𝑦𝑛)∪𝑟(𝑦∗))
              (1) 

 

Where 𝑦𝑛 is the motion state, 𝑦∗ is motion state of the target 

object in the current frame, r (y) is the region defined by y, ∩ 

denotes the intersection operation and ∪ represents the union 

operations. 

 
TABLE 2 PRECISION SCORE OF THE DEEPTRACK AND PROPOSED BNTP APPROACH ON THE VOT2013 BENCHMARK 

 
Precision Score 

Dataset BMVC ACCV DeepTrack BNTP 

Basketball 0.4 0.47 0.82 0.87 

Boy 1 1 1 1 

Car 1 1 1 1 

David 0.96 0.79 1 1 

Doll 0.98 0.99 0.96 0.99 

 
TABLE 3 SUCCESS RATE OF THE DEEPTRACK AND PROPOSED BNTP APPROACH ON THE VOT2013 BENCHMARK 

 
Success Rate  

Dataset BMVC ACCV DeepTrack BNTP 

Basketball 0.03 0.12 0.39 0.42 

Boy 0.86 0.95 0.93 0.94 

Car 0.84 0.99 1 1 

David 0.89 0.74 0.76 0.91 

Doll 0.91 0.94 0.86 0.95 

 

Table 2 illustrates the precision score of the Deep Track and 

proposed BNTP approach on the VOT2013 benchmark. Table 3 

shows the success rate of the Deep Track and proposed BNTP 

approach on the VOT2013 benchmark. For the basketball and 

David dataset, the Deep Track yields higher precision than the 

Deeptrack_ MVC and Deeptrack_ ACCV. The proposed 

approach uses the texture patterns to determine the likelihood of 

the extracted patterns and target patterns. Hence, it yields accurate 

target matching results over the sudden illumination changes and 

dynamic background. Our proposed approach achieves higher 

precision and success rate than the Deep Track approaches for all 

datasets. The best performance on the VOT2013 benchmark 

denotes the superiority of the proposed approach.  

 

Table 4 shows the comparative analysis of the average robustness 

score for the TPGR tracker (25), Deep Track tracker and proposed 

BNTP approach. As the accuracy is calculated based on the re-

initialization conditions, it is not comparable directly. The Deep 
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Track outperforms the TPGR tracker in the robustness evaluation, 

with a clear performance gap. The DeepTrack requires one-third 

of re-initialization than the TPGR tracker (47). We observe that 

the DeepTrack is more robust than the TPGR tracker and 

proposed BNTP. Table 5 depicts the average accuracy score for 

the TPGR tracker, DeepTrack tracker and proposed BNTP 

approach. From the table, we found out that the proposed BNTP 

achieves higher average accuracy than the TPGR and DeepTrack 

trackers.

 
TABLE 4 COMPARATIVE ANALYSIS OF AVERAGE ROBUSTNESS SCORE FOR TPGR TRACKER, DEEPTRACK TRACKER AND 

PROPOSED BNTP APPROACH 

 
Average Robustness Score 

Dataset TPGR DeepTrack BNTP 

Car 0.3 0.4 0.35 

David 0.27 0.2 0.153 

Gym 2.9 0.5 0.19 

Hand 1.87 0.4 0.107 

Sunshade 0.14 0.035 0.027 

 
TABLE 5 AVERAGE ACCURACY SCORE FOR TPGR TRACKER, DEEPTRACK TRACKER AND PROPOSED BNTP APPROACH 

 
Average Accuracy Score  

Dataset TPGR DeepTrack BNTP 

Car 0.43 0.58 0.63 

David 0.58 0.52 0.61 

Gym 0.55 0.48 0.59 

Hand 0.55 0.54 0.56 

Sunshade 0.69 0.71 0.73 

 

Precision, recall and F-score analysis 

 

The proposed BNTP approach is compared with the Uniform 

Interlaced Derivative Patterns (UIDP) for object tracking (48), 

Scale And Orientation Adaptive Mean Shift Tracking (SOAMST) 

(54), Multi-Task Tracking (MTT) (55), adaptive Kalman filter 

combined with Mean Shift (KMS) (56) and Distribution Fields 

for Tracking (DFT) (57). Table 6 illustrates the characteristics of 

the datasets. Imaging for the cup sequence is done with a motion 

camera. The precision, recall and F-score metrics are used for 

evaluating the tracking methods (58), (48). 

 

Table 7 illustrates the comparison result of the precision, recall, 

and F-score for the cup, basketball, and Bird-2. Figure.4 depicts 

the precision, recall, and F-score plots of the proposed BNTP and 

existing approaches for the cup, basketball, and bird2 datasets. 

The proposed BNTP approach yields average precision of 0.9633, 

average recall of 0.9066 and average F-score of 0.9346. The 

precision, recall, and F-score performance of the proposed BNTP 

approach are better than the existing approaches.

 
TABLE 6 CHARACTERISTICS OF DATASETS 

 
Sequence Name Image Information 

Cup 

 

Number of frames: 630 

Size of Frame: 240 × 320 

Characteristics: Scale Variation (SV), 

Motion Camera (MC), Background 

Clutter (BC) and Fast Motion (FM) 
Database name: BoBot 

Basketball 

 

Number of frames: 725 

Size of Frame: 432 × 576 

Characteristics: Illumination Variation 

(IV), Occlusion (OCC), Deformation 

(DEF), OPR, Out Plane Rotation (OPR), 
Background Clutter (BC)  

Database name: Kwon-VTD 
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Bird 

 

Number of frames: 99 

Size of Frame: 400 × 720 

Characteristics: Occlusion (OCC), 
Deformation (DEF), Fast Motion (FM), 

In-Plane Rotation (IPR), Out Plane 

Rotation (OPR)  
Database name: Wang 

TABLE 7 COMPARISON RESULT OF THE PRECISION, RECALL AND F-SCORE FOR CUP, BASKETBALL AND BIRD-2 

DATASETS 

  
Metrics MTT KMS DFT SOAMST UIDP BNTP 

Cup Precision 0.48 0.63 0.8 0.93 0.945 0.96 

Recall 0.4 0.52 0.7 0.87 0.9 0.93 

F-Score 0.44 0.57 0.75 0.9 0.92 0.944 

Basketball  Precision 0.68 0.5 0.6 0.8 0.97 0.98 

Recall 0.6 0.36 0.5 0.73 0.91 0.92 

F-Score 0.64 0.42 0.55 0.76 0.94 0.95 

Bird-2 Precision 0.72 0.64 0.68 0.81 0.95 0.95 

Recall 0.66 0.55 0.62 0.73 0.83 0.87 

F-Score 0.69 0.59 0.65 0.77 0.89 0.91 
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Figure.4 Precision, recall and F-score plots of the proposed BNTP and existing approaches for the cup, basketball, and bird2 datasets

Tracking results 

 
Figure.5 shows the tracking results of our proposed approach on the cup and David. From the figure, we observe that the proposed 

approach yields better tracking performance in frame 2, frame 35, frame 75 and frame 99. 

 
Frame 2 Frame 35 Frame 75 Frame 99 

    
    

    

Figure.5 Tracking results of our proposed approach on the cup and David in different frames 

 

CONCLUSION AND FUTURE WORK 

 

This paper presented a visual tracking approach based on the 

background normalization and texture pattern analysis. The 

MWCP algorithm performed clustering of the regions having 

same intensities and patterns corresponding to the target. The 

clustering regions are considered as foreground and the remaining 

irrelevant regions are considered as background. Due to the 

background normalization, the uneven background is removed. In 

our proposed work, the patterns are used for the target matching 

analysis. The classifier determines the likelihood of the extracted 

patterns and target patterns. Hence, our proposed approach 

achieves better tracking performance even during the variations 

in the background and illumination intensity. The proposed 

approach is compared with the DeepTrack approaches, BMVC, 

ACCV, TPGR tracker, UIDP, SOAMST, MTT, KMS and DFT. 

From the comparative analysis, we conclude that the proposed 

approach achieves higher precision and success rate than the 

DeepTrack approaches. The proposed BNTP achieves higher 

average accuracy than the TPGR and DeepTrack trackers. The 

proposed BNTP approach achieves better precision, recall and F-

score performance than the existing approaches. In future, we can 

present this type of video segmentation system to predict the 

abnormal activities of the targeted person. 
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