
This low-cost auxiliary processor is based on commercially available

microprocessors. Its parallel capabilities enhance the peformance of small computer

systems in vector and associative operations.

A Vector Processor Based on
One-Bit Microprocessors

Wayne M. Loucks, Martin SneIgrove, and Safwat G. Zaky

University of Toronto

The parallel processing capabilities of an associative
processor are attractive to many applications. Operations
like searching and sorting are inherently parallel, since
they can be regarded as a sequence of basic operations
-such as compare, shift, and mark-performed in paral-
lel on a large number of operands. Many organizations
have been proposed for associative processors.t-3 Of
these, the word-parallel, bit-serial type has received the
most attention, since it requires much simpler hardware
than fully parallel schemes.

Because associative processors are hardware-intensive,
they tend to be economically viable only in large systems.
However, we have designed an associative processor meant
for relatively small applications. Based on an array of com-
mercially available microprocessors, it is a word-parallel,
bit-serial machine that stores and processes data in the form
of vectors consisting of fixed numbers of elements. We
have dubbed the machine Vastor, for vector associative
store-Toronto.

The microprocessor we selected for Vastor-the Motor-
ola MC14500B-consists of a one-bit-wide processing ele-
ment. Although it has been marketed as an industrial con-
trol unit, its architecture is well suited to the requirements
of Vastor. We chose it primarily because of its simplicity
and suitability for parallel operation.

Vastor is intended to be a special-purpose processor at-
tached to a conventional minicomputer or to a high-per-
formance (68000- or Z8000-based) microprocessor system.
We will refer to this mini- or microcomputer as the host. In
such a system, Vastor would handle those parts of the
workload that can benefit from its associative and vector
capabilities. Use of associative processors in this manner
has been suggested by many authors,4 as have many ap-
plications.s Vastor, however, represents an associative
structure and an implementation that are economically
viable in a small system. We have constructed and tested a
prototype.

The main design constraints were low cost and modular-
ity. These required use of readily available components and
simple internal communication and control. Furthermore,
Vastor could not be allowed to overload the computer to

which it is attached. Modularity required simple and easily
expandable backplane interconnections between modules.
We also sought to make Vastor’s components and struc-
ture suited to integration.

The Vastor processor (Figure 1) consists of two main
components, the processing array and the controller The

Figure 1. The Vastof processor.

February 1982 0272.1732182/0200-0053SOO.75 @ 1’982 I E E E

Figure 2. Control and data paths.

processing array contains all storage and processing
elements, or PEs. The controller translates high-level com-
mands received from a scalar machine-the host- into se-
quences of control signals for the processing array. The
control signals drive all PEs of the array in parallel.
However, each PE operates on its own data stream. This is
a single instruction stream/multiple data stream, or SIMD,
structure.3

Here we present a practical implementation of the array
and its controller and describe input/output transfers bet-
ween the array and the host computer. Algorithms that can
be implememted on vector-oriented machines such as
Vastor are available in the literature.j-’

Machine structure

The organization of the Vastor array is illustrated in
Figure 2. The storage section in the array consists of a
256-word memory with a word length of several kilobits.
A dedicated processing cell C is provided for each
memory word M . Words are grouped into phrases of
eight each for convenience during I/O transfers. Opera-
tions are performed on vectors of data elements (Figure
3); the elements of a given vector occupy the same bit posi-
tion in all words. While the number of bits per element is
the same for all elements of a given vector, it can vary
from one vector to another. A one-bit-wide PE is a part of
every word. The shift-register, or SH, provides the main
mechanism for data transfer among Vastor words, as well
as between the array and the outside world.

Figure 3. Data organization in the Vastor array.

Vastor is an SIMD machine because opcode lines are
shared by all cells, as shown in Figure 2. Each cell contains
a storage element, which can be used to mark individual
words. The I/O structure enables the host to read from
and write to marked words in the memory. The selectivity
afforded by the mark bits allows Vastor to serve as a
content-addressable memory for the host machine. Each
cell can also perform logical and arithmetic operations
on its memory. These operations are under the control of
the mark bit. Therefore, one can operate in parallel on
all data elements that satisfy some arbitrary condition.
These features give Vastor the properties of an associative
processor.

One could leave all words selected and use Vastor as an
array of processors. Vastor’s I/O structure alIows large

quantities of data to be transferred to and from the host
machine via the parallel port shown at the right of Figure
2. The I/O data transfer rate ranges from 0.5 to eight
megabits per second. Each cell C can perform data
manipulation operations on its corresponding memory
word M. Interprocessor communication within the array
enables handling of data organized in the form of a one-
dimensional array, h e n c e the word vector in the
machine’s name. Associative operations can therefore be
seen as a particular case of array processing in which a

preliminary computation is used to select data in certain
cells for either further processing or output to the host
machine.

Vastor operations are essentially word-parallel and bit-
serial. The major differences between Vastor and other
serial machines, such as Staran, stem from the pragmatic
considerations of component cost and backplane com-
plexity. Staran’s memory is multidimensional. That is,
data can be accessed either by row (horizontally) or by
column (vertically) in a memory array of 256 rows by 256
columns. These two modes of access involve Staran’s
relatively complex flip interconnection network. A flip
network is not required by Vastor.

Vastor uses 256 conventional 1024 x l-bit random-ac-
cess memories, all driven by the same address lines (see
Figure 2). Operations can be performed only on columns
of memory. This makes it a vertical* computer, similar to ’
that proposed by $hooman.* The design of the I/O struc-
ture compensates for the resulting difficulty in communi-
cating with the horizontal host machine.

*Computer memory can be regarded as a twodimensional array of bits
whose rows are data words. A horizontal computer (the most common
type) operates on rows of that array; a vertical computer operates on
columns.

When the number of elements in a data vector is greater
than the number of words in memory, operations can be
carried out on subvectors of 256 elements each. (Shoo-
man also makes this compromise.)

Figure 4. One word of the storage and processing array.

Figure 5. The phrase structure.

Interconnection considerations heavily influenced de-
velopment of the Vastor structure. The array has been
designed to use only daisy-chained and bused connections
between circuit boards. This allows new boards to be
added at any time to increase the size of the array, with
only minimal modifications to the existing backplane.
The structure is also well suited to large-scale integration
because of the small number of interconnections required
between modules.

The main effect of the restriction on backplane com-
plexity is to limit the choice of interword and associative
facilities. Hence, interword communication is via a shift
register (Figure 3), which involves a daisy-chain connec-
tion between circuit boards for both data and control in-
formation. Moreover, a single bused connection common
to all words of the array (the responders bus in Figure 2)
combined with an analog-to-digital converter (not
shown) provide limited-accuracy.associative testing.

The structure of Vastor can be discussed in terms of
three separate features: intraword storage and computa-
tion, interword communication, and associative testing
capabilities.

Intraword facilities. Figure 4 shows the components of
a Vastor word: two kinds of storage, a one-bit processor,
and one bit of a shift register.

The working store, or WK, in Figure 4 is a random-ac-
cess memory. Data are taken from and returned to this
memory during computation. The BK, or backing store,
is a serial memory. Its contents are swapped with the con-
tents of the working store in syllables containing 256 bits
each. One more bit of storage is available for each word in
its part of the shift register, or SH. This bit can be used for’
temporary storage of operands. The intraword facilities
can be expanded by using line B of Figure 4.

The one-bit PE with which Vastor has been imple-
mented is Motorola’s MCl45OOB industrial control unit.
It performs a limited set of primitive operations on exter-
nal data and on a one-bit internal accumulator called the
RR, or result register. Another internal register, the out-
put enable, or OEN, contains a mask that is used to enable
selective write-back into either the working or the backing
store. The collection of the OEN registers in all words
constitutes the output enable vector.

Interword communication. The SH is the primary me-
dium for interword communication. It is the only ma-
chine feature that assigns any order to the words. SH is
divided into eight-bit segments, as shown in Figure 5.
Each segment has two parallel bidirectional ports, A and
B. The B port is connected to one phrase of eight Vastor
words. The A ports of all segments are connected to form
an eight-bit I/O bus.

Two multiplexers, CIRC and SHMODE, connect the
serial inputs of the segments of SH to any of a number of
sources. This allows data transfer between the shifter and
Vastor words to take place in one of the following four
modes.

Mode I: Vastor to shifter; parallel mode through the
B port. In this mode, the data source can be the PE,
the WK, or the BK (see Figure 4).
Mode 2: Vastor to shifter; serial mode through the SI
port. In this mode, up to eight bits of data can be

loaded from any word of a phrase into the shifter seg-
ment. This operation takes place in parallel for all
phrases.
Mode 3: Shifter to Vastor; parallel mode. Vastor
words can be loaded in parallel from port B of the SH
via the PE.
Mode 4: Shifter to Vastor; serial mode. Eight bits of
data can be moved serially from a shifter segment to
any word in the corresponding phrase. This is ac-
complished via the OEN and the ability to circulate
data within each of the eight-bit segments of the SH.

In the two serial modes (2 and 4 above), only one word
of each phrase is involved in data transfer. This reduces
the parallelism in the array by a factor of eight. However,
the serial modes are necessary to simplify byte-oriented
data transfer between Vastor and the host machine.

Associative tests. All Vastor operations can leave a
result in register RR of the PE of each word. Contribu-
tions from all RR registers are summed, in an analog
fashion, onto a single line. This simple scheme obtains a
limited-accuracy estimate of the number of responders S,
i.e., the number of words in which RR = 1. The most use-
ful values for this number are zero, one, and more than .
one. A simple analog-to-digital converter extracts this in-
formation from the analog sum.

Examples of vector operations

The two example vector operations given below illustrate
the capabilities of the Vastor array. The first is a vector
addition; the second is an associative search for the largest
element of a vector.

Let A and B be two vectors residing in the Vastor array
(Figure 6). A third vector, R, represents the arithmetic
sum of A and B and must be obtained. Information re-
garding vectors A and B is stored in a table in the con-
troller. The table stores such relevant parameters for each
vector as starting address in the array, number of ele-
ments, and number of bits.

The add operation begins when the host computer
sends a high-level command specifying the operands A
and Band the function to be performed. The host com-
puter need not specify such details as the addresses of the
operands, the number of elements, or the element
lengths. Operands are identified by pointers into the
operand table, which is stored in the controller. When the
operation is complete, the controller returns to the host
the value of the pointer corresponding to the result vector
R.

Addition is bit-serial and word-parallel The sequence
of operations is given in Figure 7. As indicated in Figure 7,
control of the sequence of operations and address calcula-
tions is exercised in the controller, while vector operations
are performed in the array. The optional masking opera-
tion at the beginning of the sequence disables those words
of the array for which the mask contains zeroes. This dis-
abling process might be needed when the vectors involved
contain a number of elements that is lower than the
number of Vastor words. The mask used in such opera-
tions is set up when vectors A and B are created.

INSTRUCTIONS
-

CLOCC

OEN 0

ENABLE

C

,

,

,

,

,

0

,

i ;

’ I
’ I
1 I

Figure 6. An example of data vectors in the working store.

An implementation of the binary search algorithm5 for
positive or unsigned integers is given in Figure 8. In this
case, the elements of the vector are scanned, starting with
the MSB. A one-bit-wide vector TEMP masks out the
words that have been rejected at any stage of the search.
The associative sum S is usedt to determine the first bit
position in which one elementof TEMP contains a one

while all other elements contain zeroes. At the end of the
search, TEMP contains one(s) in the word(s) containing
the largest element(s).

The above examples illustrate operation on short vec-
tors where all bits of a given element are contiguous in a
field of one Vastor word. When there are more elements
in a vector than words in the array, the vector can be

Figure 7. Implementation of vector addition. Figure 6. Search for the largest element.

broken into several subvectors, each of which is operated
on independently. It is also possible for the elements of a
vector to occupy two or more noncontiguous fields in a
word. In thiscase, the controller repeats the operations on
the different fields of the vector.

The controller

The controller reduces the control overhead incurred by
the host in driving Vastor. To keep the Vastor array con-
tinuously active, 50 control bits are needed every micro-
second. This represents a control bandwidth of 50 bits per
microsecond, which is too high to be supported directly
by the host. It exceeds, for example, the bandwidth of an
entire PDP-11 Unibus. Hence, it must be reduced to a
level that does not prevent the host from performing
operations not related to Vastor.

This has been achieved with the organization shown in
Figure 9. The controller receives high-level commands
from the host machine, and these require a much lower
control bandwidth. These commands are then translated
into the sequences of control signals needed to drive the
Vastor array.

The buffer memory. The buffer memory is divided into
16 separate task control blocks. These blocks are filled by
the microprocessor and interpreted by the microcontrol-
ler. Whenever the microcontroller finishes a task, it inter-
rupts the microprocessor to request the address of the
next control block. Task control blocks contain up to 26
bytes of information, including starting and loop control
information for the microcode of the microcontroller. It
also includes specifications for the operands in the Vastor
array.

The complexity of the commands interpreted by the
controller is represented by the examples given in the
previous section. We chose a hierarchical approach to
support such operations. Each level in the hierarchy
reduces the bandwidth required of the next higher level.
Furthermore, interpretation of high-level commands is
reIatively simple, a result of the use of well defined inter-
faces between various levels.

The controller consists of three distinct units. A micro-
controller performs low-level looping control operations,
a buffer memory is a communications medium, and a mi-
croprocessor is responsible for both interpreting high-
level commands received from the host and for space allo-
cation within the Vastor array. As such, the micro-
processor performs functions similar to those of the inter-
preter in ECAM*; the microcontroller corresponds to the
iteration control logic. The three subsystems of Vastor’s
controller are discussed briefly below.

The microcontroller. The purpose of the microcon-
troller is to remove some of the redundancy at its output
(the array control lines) in order to reduce the bandwidth
required at its input. Its sophistication, and therefore its
cost, can be selected to provide almost any desired band-
width at its input. We chose to implement a device that ex-
ecutes sequences of microcode stored in an internal read-
only memory and that has primitive branching and loop-
ing capability. Input commands to the microcontroller
come from the buffer memory that, in turn, is filled by the
microprocessor.

Linear microcode sequencing considerably reduces the
control bandwidth. Hence, it was adopted as the main se-
quencing mechanism in the microcontroller. The starting
address for a given microcode sequence is loaded from the
buffer memory. Data can be made to appear in the Vastor
array in fields of consecutive locations. Therefore, fur-
ther compression of the control information is obtained
with a simple loop counter/index register. This counter is

decremented and tested to control microprogram loops.
It also serves as an index register and modifies the ad-
dresses transmitted by the controller to the array memory.

Control bandwidth is further compressed by introduc-
ing a data-dependent branch. The associative sum of
responders is compared to a reference in the microcode.
One of two branch addresses is then selected from thebuf-
fer memory.

Figure 9. Controller hierarchy.

Figure 10. Alternative modes for l/O transfers: (a) one bit;
(b) n bits; (c) one byte.

The microprocessor. Controller algorithms repre-
sented by one control block in the buffer memory take
from one to several hundred microseconds to complete
and to interrupt the microprocessor. These interrupts are
usually quite simple to service, but would be uneconom-
ically frequent for the host machine. The microprocessor
is therefore included to provide further compression of
the control bandwidth. It simplifies the interfacing hard-
ware by translating high-level operations into sequences
of microcontroller tasks.

In addition to sequencing control, the microprocessor
handles storage management. This includes allocating
and freeing fields of storage, garbage collection, transfer-
ring variables between the working store and the backing
store, allowing the widths of elements (e. g., integers) to
expand and contract, and segmenting vectors that are
longer than the Vastor array into manageable components.

Input/output

Data transfer between Vastor and the host machine is
generally difficult because of the incompatibility of the
addressable units in the two machines. While a host ma-
chine generally obtains all bits of a single element of a vec-
tor with one reference to its memory, Vastor obtains one
bit of each element. The transposition required to match
the two machines is the source of the difficulty.

Table 1 gives an estimate of Vastor’s performance in
this area. The execution times are for a number of opera-
tions on 256-element vectors; each element is 16 bits wide
(times are based on the current implementation). It uses a
processing element, the ICU, which runs at a one-micro-
second cycle time. The times required to perform the same
operations in a PDP-11/45 minicomputer are given for
comparison; Vastor is an order of magnitude faster at ex-
ecuting tasks that involve parallel operations on all
elements of a vector. However, Vastor takes much more
time on operations such as sum reduction (adding all
elements of a vector). In this case, Vastor’s performance
is limited by its interword communication facilities.

The boolean vector is the simplest type to transfer Vastor’s performance on sum reduction improves sub-
because it is only one bit wide (Figure lOa). To transfer stantially on much longer vectors because many elements
such a vector from the host into the Vastor array, its of the vector can be stored in the same word of the array.
elements are shifted serially by bit into the SH. This is Hence, part of the addition can be carried out in parallel.
followed by a parallel-mode transfer from SH to a col- For example, for a 2560-element vector, sum reduction
umn of WK (mode 3 of interword communication). If ele- requires only an additional 1440 psec on Vastor (compare
ments of the boolean vector are packed into bytes in the this to the 256-element case), for a total of 6816 psec. The
host machine-as is the case in some versions of time required on a PDP-1 1/45 increases tenfold, to 3840
APL-SH can be loaded serially by byte through its A psec.

port. In thecurrent implementation, data rates for the bit-
serial and byte-serial modes are one megabit per second
and one megabyte per second, respectively.

Consider the case in which data is so presented to
Vastor that some number of consecutive bits must be
loaded into a single word (Figure 10b) This can be
achieved by first loading register RR of the ICU from the
CONST line (Figure 4) and then storing the content of RR
in the enabled word. Due to that two-step sequence and to
the fact that only one word is enabled at a time, the trans-
fer rate is limited to 500 kilobits per second.

The phrase structure can be used to increase the trans-
fer rate of byte-organized data, as shown in Figure IOc.
This corresponds to mode 4. The data rate achievable in
thiscase is 2.5 megabits per second. In this approach, con-
secutive words from the host machine are not loaded into
consecutive words of Vastor. Rather, they are loaded into
the same relative positions in consecutive phrases. A
sentence structure consisting of two phrases per sentence
also exists; it can be used for l&bit-wide I/O transfers.

Performance in application areas

Vastor’s primary application is as an auxiliary pro-
cessor in small computer systems. It would enhance the
performance of such a system in vector and associative
operations. A second and equally important potential ap-
plication comes from the fact that Vastor can be regarded
as a collection of one-bit-wide controllers driven in paral-
lel by a host computer.

Vastor as an associative processor. Vector and
associative operations are common in the operating sys-
tem software of a computer. Symbol table manipulation
and file management are two examples. Also, computer
languages such as APL and Snobol are based upon the
organization and manipulation of data in the form ofvec-
torst”or character strings.' A Vastor processor is ideal for
such tasks and hence can relieve the host computer of a
considerable load.

Table I.
Performance comparison: Vastor vs. POP-1 1/45.

OPERATION RESULT VASTOR
EXECUTION TIME (pSEC)

pap-11/45*

COMPARE .

ADDITION ’

MARK LARGEST
ELEMENT

VECTORt 4 /.&EC/BIT l 16 BITS=64 3225pSECIWORD * 256 WORDS=825.6

VECTOR lOpSEC/BlT l 16 BITS=160 1.9 pSEC/WORD l 256 WORDS=486.4

V E C T O R 3 /&EC/BIT + 16 BITS=48 2.5 j&EC/WORD l 256WOROS =640

COMPARE
TO SCALAR

VECTOR 3 /&EC/BIT l 16 BITS=48 2.5 pSEC/WORD l 256 WOROS=640

SUM REDUCTION SCALAR 336 pSEC/BlT l 16 BITS=5376 1.5 /&EC/WORD l 256WORDS=384

*WITH BIPOLAR MEMORV
tVECTOR OPERATIONS INVOLVE 256-ELEMENT VECTOR WITH 16 BITS PER ELEMENT

At Vastor’s present stage of development, it is difficult
to accurately estimate the performance gain it would pro-
vide when added to a minicomputer system. While the
data in Table 1 indicate a considerable gain, it will be par-
tially offset by the overhead of transferring data between
Vastor and its host. This overhead is expected to be of the
same order as that involved in transferring data between
the main memory of a computer and a disk tile. There-
fore, Vastor is most suited for use in applications in which
a number of vector operations must be performed before
a given vector is returned to the host machine.

Vastor as an industrial controller. A stand-alone
ICU-the PE in the Vastor array-has applications in
process control and monitoring. Vastor might be used in
situations in which a number of ICUs performing similar
tasks are interfaced to a common host. In such a case,
Vastor represents an organized way of performing l/O
and control functions. Each ICU is capable of controlling
and sampling data from an external device, at data rates
on the order of a few kHz. Status information and data
such as minimum values, maximum values, averages, set-
points, and enabling bits for each device can be kept in the
corresponding working storage. The main limitation to
this approach is that it requires synchronized data trans-
fer between the ICUs and the various devices.

Physical characteristics

In the prototype system, 16 Vastor words are housed on
a single 8 x 1 l-inch circuit board. Thus, a full implemen-
tation of the array-256 words-requires 16 boards. Two
more boards would be needed to house the controller.*
The component cost, in small quantities, is about $2000.
A minimal implementation of the machine requires three
boards, one array board plus the two controller boards.
The component cost is about $600. This minimal machine
can be expanded in steps of 16 words, or one array board
at a time. The incremental component cost is under $ 1 0 0
Since only bused and daisy-chained connnections are
needed between circuit boards, expansion of backplane
wiring is simple.

*In theprototypesystem, thecontroller~asemulated by usinga5pecialin-
terface to a PDP-I f/34.

Conclusions

Vastor represents a trade-off between the capabilities
and costs of the interword communication facilities in an
associative processor. The result of this trade-off is a
processor that allows a nontrivial associative processing
capability to be incorporated in small-scale minicomputer
systems. The communication hardware provided in the
Vastor array enables data transfer among the words in the
array without requiring costly and complicated hard-
ware. It also results in simple backplane interconnections
between different modules. The modular structure of
Vastor allows its capabilities to be expanded easily and
economically.

Some limitations of thecurrent implementation are due
to the slowness of the ICU. A faster and more powerful
one-bit-wide PE could increase performance consider-
ably, without requiring architectural changes. In fact, the
low number of interconnections makes the structure well
suited to integration. The possibilities include implemen-
tation of an array of one-bit processors and processors
and memory on a single chip. Another possibility, which
we are currently investigating, is a table-driven PE made
of memory only.

Other limitations of Vastor, such as the difficulty of re-
ordering a vector, are more fundamental. Performance
of such operations at high speed will require a more com-
plex, and hence more costly, interword communication
scheme. H

Acknowledgment

This work was partially supported by the Natural
Sciences and Engineering Research Council of Canada,
under Research Grant A8994.

References
I. B . Parhami, “Associative Memories and Processors: An

Overview and Selected Bibliography,” Proc. /EEE, Vol.
61, No. 6, .lune 1973, pp. 722-730.

2.

3.

4.

5.

6.

7.

8

9.

IO.

W. Shooman, “Parallel Computing with Vertical Data,”
A FIPS Cot& Proc., Vol. 18, 1960 EJCC, pp. 11 l-l 15.

S. S. Yau and H. S. Fung, “Associative Processor Archi-
tecture-A Survey,” Computing Surueys, Vol. 9, No. 1,
Mar. 1977, pp. 3-27.

A. Kaplan, “A Search Memory Subsystem for a General-
Purpose Computer,” AFIPS Conf. Proc., Vol. 24, 1963
FJCC, pp. 193-200.

C. C. Foster, Content Addressable Paralie! Processors,
Van Nostrand Reinhold Co., New York, 1976.

G. Baudet and D. Stevenson, “Optimal Sorting Algo-
rithms for Parallel Computers,” IEEE Trans. Compufers,
Vol. C-27, No. 1, Jan. 1978, pp. 84-87.

A. Mukhophadhyay, “Hardware Algorithms for Nonnu-
merit Computation,” Proc. 5th Ann. Symp. Computer
Architecture, Apr. 1978, pp. 8-16.

CI. A. Anderson and R. Y. Kain, “A Content-Addressed
Memory Designed for Data Base Applications,” Proc.
1976 Ini’i Conf. Parallel Processing, New York, $916, pp.
191-195.

W. M. Loucks and W. M. Snelgrove, “Vaslor I978, “Uni-
versity of Toronto Computer Engineering Report 13, To-
ronto, Ontario, Canada, June 1978.

L. D. Grey, A Course in APL 360 with Applications, Addi-
son-Wesley, Reading, Mass., 1973.

Wayne M. Loucks is a research associate in
the Department of Electrical Engineering,
University of Toronto, Ontario, Canada.
He is currently involved in the develop-
ment of a local-area computer network.
His main interests are computer architec-
ture, muhiprocessors, microprocessor ap-
plications, and computer communica-
tions.

A member of the IEEE and the ACM,
Loucks received the BASc in 1975 from the University of
Waterloo, Ontario, Canada, and the MASc and PhD from the
University of Toronto in 1977 and 1980, respectively.

Loucks’ address is Dept. of Electrical Engineering, University
of Toronto, 35 St. George St., Toronto, Ontario M5S lA4.

Mar!in Snelgrove is a lecturer at the Uni-
versity of Toronto. His research interests
include electronic circuits and filters, CAD
for circuits, multiprocessor systems, and
VLSI.

He obtained BASc and MASc degrees
from the University of Toronto in 1975
and 1977, respectively, and is currently
completing a doctorate. He is a member of
the IEEE and of the Association of Pro-

of Ontario.

Safwat G. Zaky is an associate professor in
the Department of Electrical Engineering,
University of Toronto. His research in-
terests are in computer architecture, hard-
ware, and communications. Prior to join-
ing the University of Toronto, he was with
Bell Northern Research, Bramalea, On-
tario, Canada, where he worked on ap-
plications of electro- and magneto-optics
in telephone switching.

Caky holds a BSc in electrical engineering and a BSc in
mathematics, both from Cairo University. He obtained his
MASc and PhD degrees in electrical engineering from the
University of Toronto. He is a member of the IEEE and of the
Association of Professional Engineers of Ontario.

IEEE MICRO

