
In Time Series Prediction. Forecasting the Future and Understanding the Past, Eds. by A.Weigend and N. Gershenfeld, SFI Studies in the Sciences of Complexity, Proc. Vol XVII,Addison-Wesley, 1994.Time Series Prediction by Using a ConnectionistNetwork with Internal Delay LinesEric A. WanDepartment of Electrical EngineeringStanford UniversityStanford, CA 94305-4055e-mail: wan@isl.stanford.eduAbstractA neural network architecture, which models synapses as Finite ImpulseResponse(FIR) linear �lters, is discussed for use in time series prediction. Analysis andmethodology are detailed in the context of the Santa Fe Institute Time SeriesPrediction Competition. Results of the competition show that the FIR networkperformed remarkably well on a chaotic laser intensity time series.1 IntroductionThe goal of time series prediction or forecasting can be stated succinctly as follows: given asequence y(1); y(2); : : : y(N) up to time N , �nd the continuation y(N + 1); y(N +2)::: Theseries may arise from the sampling of a continuous time system, and be either stochastic ordeterministic in origin. The standard prediction approach involves constructing an underly-ing model which gives rise to the observed sequence. In the oldest and most studied method,which dates back to Yule [1], a linear autoregression (AR) is �t to the data:y(k) = TXn=1 a(n)y(k � n) + e(k) = ŷ(k) + e(k): (1)This AR model forms y(k) as a weighted sum of past values of the sequence. The single stepprediction for y(k) is given by ŷ(k). The error term e(k) = y(k)� ŷ(k) is often assumed tobe a white noise process for analysis in a stochastic framework.More modern techniques employ nonlinear prediction schemes. In this paper, neuralnetworks are used to extend the linear model. The basic form y(k) = ŷ(k)+ e(k) is retained;however, the estimate ŷ(k) is taken as the output N of a neural network driven by pastvalues of the sequence. This is written as:y(k) = ŷ(k) + e(k) = N [y(k � 1); y(k � 2); :::y(k� T )] + e(k): (2)1



Note this model is equally applicable for both scalar and vector sequences.The use of this nonlinear autoregression can be motivated as follows. First, TakensTheorem [2, 3] implies that for a wide class of deterministic systems, there exists a dif-feomorphism (one-to-one di�erential mapping) between a �nite window of the time series[y(k� 1); y(k� 2); :::y(k� T )] and the underlying state of the dynamics system which givesrise to the time series. This implies that there exists, in theory, a nonlinear autoregressionof the form y(k) = g[y(k � 1); y(k � 2); :::y(k � T )], which models the series exactly (as-suming no noise). The neural network thus forms an approximation to the ideal functiong(�). Furthermore, it has been shown [4, 5, 6] that a feedforward neural network N with anarbitrary number of neurons is capable of approximating any uniformly continuous function.These arguments provide the basic motivation for the use of neural networks in time seriesprediction.The use of neural networks for time series prediction is not new. Previous work includesthat of Werbos[7, 8], Lapedes [9], and Weigend et al [10] to cite just a few. The connectionistentries in the SFI Competition attest to the success and signi�cance of networks in the�eld. In this paper, we focus on a method for achieving the nonlinear autoregression byuse of a Finite Impulse Response (FIR) network [11, 12]. We start by reviewing the FIRnetwork structure and presenting its adaptation algorithm called temporal backpropagation.We then discuss the use of the network in a prediction con�guration. The results of the SFICompetition are then presented with step by step explanations on how the speci�c predictionswere accomplished. We conclude by re-evaluating our original prediction model of Eq. 2 andpropose various classes of network schemes for both autoregressive and state-space models.2 FIR Network Model
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variable coe�cients wli;j called weights, which represent the synaptic connectivity betweenneuron i in the previous layer and neuron j in layer l. The output of a neuron, xl+1j , issimplistically taken to be a sigmoid function1 of the weighted sum of its inputs:xl+1j = f  Xi wli;jxli! : (3)A bias input to the neuron is achieved by �xing xl0 to 1. The network structure is completelyde�ned by taking x0i to be the external inputs, and xLi to be the �nal outputs of the network.Training of the network can be accomplished using the familiar backpropagation algorithm[15].The model of the feedforward network described above forms a complex mapping fromthe input of the �rst layer to the output of the last layer. Nevertheless, for a �xed set ofweights, it is a static mapping; there are no internal dynamics. A modi�cation of the basicneuron is accomplished by replacing each static synaptic weight by an FIR linear �lter2. ByFIR we mean that for an input excitation of �nite duration, the output of the �lter will alsobe of �nite duration. The most basic FIR �lter can be modeled with a tapped delay line asillustrated in Fig. 2. For this �lter, the output y(k) corresponds to a weighted sum of pastdelayed values of the input: y(k) = TXn=0w(n)x(k � n): (4)Note that this corresponds to the moving average component of a simple AutoregressiveMoving Average (ARMA) model [16, 17]. The FIR �lter, in fact, was one of the �rstbasic adaptive elements ever studied [21]. From a biological perspective, the synaptic �lterrepresents a Markov model of signal transmission corresponding to the processes of axonaltransport, synaptic modulation, and charge dissipation in the cell membrane [18, 19, 20].
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xli(k) = hxli(k); xli(k � 1); ::xli(k � T l)i denotes the vector of delayed states along the synaptic�lter. This allows us to express the operation of a �lter by a vector dot product wli;j � xli(k),where time relations are now implicit in the notation. The output xl+1j (k) of a neuron inlayer l at time k is now taken as the sigmoid function of the sum of all �lter outputs whichfeed the neuron (Fig. 3): xl+1j (k) = f  Xi wli;j � xli(k)! : (5)Note the striking similarities in appearance between these equations and those of the staticmodel (Eq. 3) along with their associated �gures. Notationally, scalars are replaced byvectors and multiplications by vector products. The convolution operation of the synapseis implicit in the de�nition. As we will see, these simple analogies carry through whencomparing standard backpropagation for static networks to temporal backpropagation forFIR networks.
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q-1 q-1Figure 4: Time-Delay Neural Network: All node outputs in a given layer are bu�ered over severaltime steps. The outputs and the bu�ered states are then fed fully connected to the next layer.This structure is functionally equivalent to an FIR network.single output neuron and two neurons at each hidden layer. All connections are made bysecond order (two tap) synapses. Thus while there are only 10 synapses in the network,there are actually a total of 30 variable �lter coe�cients. Starting at the last layer, each tapdelay is interpreted as a \virtual neuron" whose input is delayed the appropriate number oftime steps. A tap delay is then \removed" by replicating the previous layers of the networkand delaying the input to the network accordingly (Fig. 5b). The process in then continuedbackward through each layer until all delays have been removed. The �nal unfolded networkis shown in Figure 5c.This method produces an equivalent constrained static structure where the time depen-dencies have been made external to the network itself. Notice that whereas there wereinitially 30 �lter coe�cients, the equivalent unfolded structure now has 150 static synapses.This can be seen as a result of redundancies in the static weights. In fact, the size of theequivalent static network grows geometrically with the number of layers and tap delays (seeTable 1). In light of this, one can view an FIR network as a compact representation of a largerstatic network with imposed symmetries. These symmetries force the network to subdividethe input pattern into local overlapping regions. Each region is identically processed withthe results being successively combined through subsequent layers in the network. This is incontrast to a fully connected network which may attempt to analyze the scene all at once.Similar locally symmetric constraints have been motivated for use in pattern classi�cationusing \shared weight" networks [23, 24]. 5
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Figure 5: An FIR network with 2nd order taps for all connections is unfolded into a constrainedstatic network. The original structure has 30 variable �lter coe�cients while the resulting networkhas 150 static synapses. Table 1: FIR Network vs. Static EquivalentNetwork Variable StaticDimension Parameters EquivalentNodesy Orderz2�2�2�1 2:2:2 30 1505�5�5�5 10:10:10 605 36,3553�3�3 9:9 180 9903�3�3�3 9:9:9 270 9,9903n 9n�1 (n� 1)90 10n � 10y Number of Inputs � Hidden Neurons � Outputs. z Order of FIR synapses in each layer.The relative size of the FIR network to the equivalent static structure is compared. As can be seen, thestatic network grows geometrically in size with the FIR time network.3 Adaptation: Temporal BackpropagationGiven an input sequence x(k), the network produces the output sequence y(k) = N [W;x(k)],where W represents the set of all �lter coe�cients in the network. For now, assume that ateach instant in time a desired output d(k) is provided to the network (we will reformulatethis in terms of time series prediction in the next section ). De�ne the instantaneous errore2(k) = jjd(k)�N [W;x(k)]jj2 as the squared Euclidean distance between the network outputand the desired output. The objective of training corresponds to minimizing over W thecost function: C = KXk=1 e2(k); (6)6



where the sum is taken over all K points in the training sequence. Regularization terms (e.g.constraints on W ) are not considered in this paper. The most straight forward method forminimizing C is stochastic gradient descent. Synaptic �lters are updated at each incrementof time according to: wlij(k + 1) = wlij(k)� � @e2(k)@wlij(k) ; (7)where � controls the learning rate.The most obvious way to obtain the gradient terms involves �rst unfolding the structureinto its static equivalent, and then applying standard backpropagation. Unfortunately, thisleads to an overall algorithm with very undesirable characteristics. Backpropagation appliedto a static network �nds the gradient terms associated with each weights in the network.Since the constrained network contains \duplicated" weights, individual gradient terms mustlater be carefully recombined to �nd the total gradient for each unique �lter coe�cient. Lo-cally distributed processing is lost as global bookkeeping becomes necessary to keep trackof all terms; no simple recurrent formula is possible. These drawbacks are identical for theTDNN structure.3A more attractive algorithm can be derived if we approach the problem from a slightlydi�erent perspective. The gradient of the cost function with respect to a synaptic �lter isexpanded as follows: @C@wlij =Xk @C@sl+1j (k) � @sl+1j (k)@wlij ; (8)where sl+1j (k) = Piwli;j � xli(k) is the input to neuron j prior to the sigmoid. We mayinterpret @C=@sl+1j (k) as the change in the total squared error over all time, due to a changeat the input of a neuron at a single instant in time. Note that we are not expressing thetotal gradient in the traditional way as the sum of instantaneous gradients. Using this newexpansion, the following stochastic algorithm is formed:wlij(k + 1) = wlij(k)� � @C@sl+1j (k) � @sl+1j (k)@wlij : (9)A complete derivation of the individual terms in this equation is provided in Appendix A.The �nal algorithm, called temporal backpropagation can be summarized as follows:wlij(k + 1) = wlij(k)� ��l+1j (k) � xli(k) (10)�lj(k) = 8>>><>>>: �2ej(k)f 0(sLj (k)) l = Lf 0(slj(k)) � Nl+1Xm=1 �l+1m (k) �wljm 1 � l � L� 1;3TDNN's are typically used for classi�cation in a batch mode adaptation. Training consists of fullybu�ering the states until the entire pattern of interest is captured and then using backpropagation thoughmultiple \time-shifted" versions of the network. This can be shown to be equivalent to using a similarunfolded network as above. 7



where ej(k) is the error at an output node, f 0() is the derivative of the sigmoid function,and �lm(k) � h�lm(k) �lm(k + 1) : : : �lm(k + T l�1)i is a vector of propagated gradient terms.We immediately observe that these equations are seen as the vector generalization of thefamiliar backpropagation algorithm. In fact, by replacing the vectors x, w, and � by scalars,the above equations reduce to precisely the standard backpropagation algorithm for staticnetworks. Di�erences in the temporal version are a matter of implicit time relations and�ltering operations. To calculate �lj(k) for a given neuron we �lter the �'s from the nextlayer backwards through the FIR synapses for which the given neuron feeds (see Fig. 6).Thus �'s are formed not by simply taking weighted sums, but by backward �ltering. Foreach new input and desired response vector, the forward �lters are incremented one timestep and the backward �lters one time step. The weights are then adapted on-line at eachtime increment.
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The �rst term on the right hand side of this equation is independent of the estimator, andhence the optimal network map N �c is immediately seen to be,N �c = E[y(k)jyT1 (k)]; (15)i.e. the conditional mean of y(k) given y(k � 1) through y(k � T ), which is what we wouldhave expected. Again we should emphasize that this only motivates the use of training a net-work predictor in this fashion. We cannot conclude that adaptation will necessarily achievethe optimum for a give structure and training sequence. Issues concerning biased estimatorsin the context of network learning are presented in [28].Once the network is trained, long-term iterated prediction is achieved by taking theestimate ŷ(k) and feeding it back as input to the network:ŷ(k) = Nq[ŷ(k � 1)]: (16)This closed-loop system is illustrated in Fig. 7b. Equation 16 can be iterated forward intime to achieve predictions as far into the future as desired. Note, for a linear system, theroots of the regression coe�cients must be monitored to insure that the closed loop systemremains stable. For the neural network, however, the closed loop response will always havebounded output stability due to the sigmoids which limit the dynamic range of the networkoutput.Since training was based on only single step predictions, the accuracy of the long term it-erated predictions can not be guaranteed in advance. One might even question the soundnessof training open-loop when the �nal system is to be run closed-loop. In fact, equation-erroradaptation for even a linear autoregression su�ers from convergence to a biased closed-loopsolution (i.e. � = ��+ bias, where �� corresponds to the optimal set of closed loop autoregres-sion parameters.) [26, 29]. An alternative con�guration which adapts the closed loop systemdirectly might seem more prudent. Such a set up is referred to as output-error adaptation.For the linear case, the method results in a estimator that is not biased. Paradoxically,however, the linear predictor may converge to a local minimum [30, 31, 32]. Furthermore,the adaptation algorithms themselves becomes more complicated and less reliable due tothe feedback. As a consequence, we will not consider the output-error approach with neuralnetworks in this paper.4.1 Results of the SFI CompetitionThe plot in Figure 8 shows the chaotic intensity pulsations of an NH3 laser 6 distributedas part of The Santa Fe Institute Time Series Prediction and Analysis Competition. For thelaser data, only 1000 samples of the sequence were provided. The goal was to predict thenext 100 samples. During the course of the competition, the physical background of the dataset, as well as the 100 point continuation, was withheld to avoid biasing the �nal predictionresults.6\Measurements were made on an 81.5-micron 14NH3 cw (FIR) laser, pumped optically by the P(13)line of an N20 laser via the vibrational aQ(8,7) NH3 transition" - U. Huebner [33].10



Chaotic intensity pulsations in a single-mode far infrared NH3 laser
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Figure 8: 1100 time points of chaotic laser dataTable 2: Normalized sum squared error prediction measuresDuration Single-Step Pred. nSSE Iterated Pred. nSSE100-1000 0.00044 -900-1000 0.00070 0.00261001-1050 0.00061 0.00611001-1100 0.02300 0.05511001-1100y - 0.0273y Prediction submitted for competition (75 iterations plus 25 smoothed values).The 100 step prediction achieved using an FIR network is shown in Figure 9 along withthe actual series continuation for comparison (the last 25 point of the prediction necessitatedadditional smoothing as will be explained under Long Term Behavior). It is important toemphasize that this prediction was made based on only the past 1000 samples. True valuesof the series for time past 1000 were not provided to the network nor were they even availablewhen the predictions were submitted. As can be seen, the prediction is remarkably accuratewith only a slight eventual phase degradation. A prediction based on a 25th order linearautoregression is also shown to emphasize the di�erences from traditional linear methods.Other submissions to the competition included methods of k-d trees, piecewise linear inter-polation, low-pass embedding, SVD, nearest neighbors, Wiener �lters, as well as standardrecurrent and feedforward neural networks. The corresponding predictions may be foundin this volume. As reported by this competition, the FIR network outperformed all othermethods on this data set. While this is clearly just one example, these initial results areextremely encouraging. In the next sections we report on details concerning performancemeasures, selection of network parameters, training, testing, and postcompetition analysis.Performance measure: A measure of �t is given by the normalized sum squared error:nSSE = 1�2N NXk=1(y(k)� ŷ(k))2; (17)11
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1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100Figure 9: Time series predictions: (a) Iterated neural network prediction (�rst 75 points). Theprediction is based only on the supplied 1000 points. Dashed line corresponds to actual seriescontinuation. (b) 100 point iterated prediction based on a 25th order linear autoregression.Regression coe�cients were solved using a standard least squares method.where y(k) is the true value of the sequence, ŷ(k) is the prediction, and �2 is the variance ofthe true sequence over the prediction duration, N . A value of nSSE = 1 thus correspondsto predicting the unconditional mean. Table 4.1 summarizes various nSSE values for bothsingle-step and iterated predictions within the training set and for the continuation.Selection of network dimensions: The FIR network used in the competition was a three layernetwork with 1x12x12x1 nodes and 25:5:5 taps per layer. Selection of these dimensions werebased mostly on trial and error along with various heuristics. Since the �rst layer in thenetwork acts as a bank of linear �lters, selection of the �lter order was motivated from lineartechniques. As seen in Figure 10, the single step error residuals using linear AR predictorsshow negligible improvement for order greater than 15, while the autocorrelation indicatessubstantial correlation out to roughly a delay of 60. Candidate networks evaluated included10, 50, and 100 order �lters in the �rst layer with a varying number of units in the hiddenlayers. Attempts to perform analysis on the individual �lters for the �nal converged networkdid not prove illuminating. In general, selection of dimensions for neural networks remainsa di�cult problem in need of further research.Training and cross validation: For training purposes, the data was scaled to zero mean andvariance 1.0. Initial weight values of the network were chosen randomly and then scaledto keep equal variance at each neuron output. The learning rate � was nominally set at0:01 (this was selected heuristically and then varied during the course of training). Actual12
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(a) (b)Figure 10: (a) Single step prediction errors using linear AR(N) �lters. (b) Autocorrelation oflaser data.training occurred on the �rst 900 points of the series with the remaining 100 used for crossvalidation. A training run typically took over night on a Sun SPARC2 system and requiredseveral thousand passes through the training set (attempts to optimize training time werenot actively pursued). Both the single step prediction error and the closed loop iteratedprediction were monitored for the withheld 100 points. No over�tting was observed for thesingle step error; the larger the network the better the response. However, a larger networkwith a lower single step error often had a worse iterated prediction. Since the true taskinvolved long term prediction, the iterated performance measure was ultimately used toevaluate the candidate networks. It was clear from the nature of the data that predictingdownward intensity collapses would be the most important and di�cult aspect of the seriesto learn. Since the withheld data contained no such features, iterated predictions startingnear the point 550 were run to determine how well the network predicted the known collapseat point 600.After the competition, the same network structure was retrained with di�erent startingweights to access the sensitivity to initial conditions. Three out of four trials resulted inconvergence to equivalent predictions.
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probably have a heart attack over this.) We speculate that this was necessary to accuratelymodel the occurrence of a signal collapse from only two such examples in the training set. Ina sense, we were forced to deal with learning what appears statistically to be an outlier. Onemust also realize that for this nonlinear system, the degrees of freedom do not corresponddirectly to the number of free parameters. We are really trying to �t a function whichis constrained by the network topology. Issues concerning e�ective degrees of freedom arediscussed in [38].One consequence of the large number of parameters can be seen in the extended longterm iterated prediction (Figure 11). Due to the excessive number of degrees of freedom, thesignal eventually becomes corrupted and displays a noisy behavior. While a smaller network(or the addition of weight regularization) prevented this phenomena, such networks wereunable to accurately predict the location of the intensity collapse. Note that the predictionstill has bounded output stability due to the limiting sigmoids within the network.Because of the eventual signal corruption, only the �rst 75 points of the actual iteratednetwork prediction were submitted to the competition. This location corresponds to a fewtime steps after the detected intensity collapse and was chosen based on visual inspection ofwhere the iterated prediction deteriorated. Since after an intensity collapse, the true seriestends to display a simple slow growing oscillation, the remaining 25 points were selected byadjoining a similar sequence taken from the training set.Error predictions: For the laser data, an estimate of the uncertainty of the prediction wasalso submitted. It was assumed that the true observed sequence, y(k), was derived from anindependent Gaussian process with a mean corresponding to the prediction ŷ(k) and variance�̂(k)2. Thus the standard deviations �̂(k) determine error bars for each prediction value. Ameasure of the probability that the observed sequence was generated by the Gaussian modelis given as the negative average log-Likelihood:nalL = � 1N NXk=1 log0@ 1q2��̂(k)2 Z y(k)+0:5y(k)�0:5 exp�(� � ŷ(k))22�̂(k)2 d�1A : (18)(See [34] for full explanation of likelihood measure). In order to estimate �̂(k)2, we averagedthe known iterated squared prediction errors starting at time count 400 through 550 (i.e.150 separate iterated predictions were used). It clearly would have been more desirable tobase these estimates on segments of data outside the actual training set; however, due to thelimited data supplied, this was not possible. The error bars found using the above approachare shown with the prediction in Fig. 12, and correspond to nalL = 1:51. (The actual errorbars submitted were scaled to much smaller values due to a missinterpretation of the per-formance measure, nalL = 3:5.) Alternative Bayesian methods for estimating uncertaintieshave been suggested by MacKay [35, 36] and Skilling [37].Additional predictions: The complete 10000 point series continuation was provided after thecompetition. Fig. 13 shows various iterated predictions starting at di�erent locations withinthe series. The original network (trained on only the �rst 1000 points) is used. While thereis often noticeable performance degradation, the network is still surprisingly accurate atpredicting the occurrence of intensity collapses.14
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5 New Directions and ConclusionsIn this paper we have focused on the basic autoregressive model; however, it should be clearthat the general methodology presented may be easily extended to other con�gurations. Themost trivial extension is to the nonlinear Autoregressive Moving \Average":y(k) = N [y(k � 1); y(k � 2):::y(k � T ); e(k � 1); e(k � 2)::e(k � T2)] + e(k); (19)where N may be an FIR network, a standard feedforward network, or any variety of networktopologies. The ARMA model is most applicable for single-step prediction where we canadditionally regress the network equations on past known prediction error residuals. Both theneural network AR and ARMA models, however, are extrapolated from rather old methodsof linear di�erence equations. A more modern approach draws from state-space theory [39].In the linear case the predictor corresponds to a Kalman Estimator [40]. Extending to neuralnetworks yields the set of equations :x(k) = N1[x(k � 1); e(k � 1)] (20)y(k) = N2[x(k)] + e(k); (21)where x(k) corresponds to a vector of internal states which govern the dynamic system andmust be learned by the network. This construct may form a more compact representationthan that capable in an ARMA model and exhibit signi�cantly di�erent characteristics.Together, the ARMA and state-space models form a taxonomy of possible neural networkprediction schemes. Such schemes must be investigated as the �eld of neural networksmatures.From this paper, we can conclude that an FIR network constitutes a powerful tool foruse in time series prediction. The SFI Competition provided a forum in which the networkwas impartially benchmarked against a variety of other methods. While this was only oneconcrete example, we feel strongly that FIR networks, and neural networks in general, mustbe seriously considered when approaching any new time series problem.Appendix A: Derivation of Temporal BackpropagationProvided here is a complete derivation of the temporal backpropagation algorithm. We wishto minimize the cost function C = Pk e2(k) (i.e. the sum of the instantaneous squarederrors). The gradient of the cost function with respect to a synaptic �lter is expanded usingthe chain rule: @C@wlij =Xk @C@sl+1j (k) � @sl+1j (k)@wlij ; (22)where sl+1j (k) =Xi sl+1i;j (k) =Xi wli;j � xli(k) (23)speci�es the input to neuron j in layer l at time k. Note this expansion di�ers from thetraditional approach of writing the total gradient as the sum of instantaneous gradients:@C=@sl+1j (k) � @sl+1j (k)=@wlij 6= @e2(k)=@wlij : Only the sums over all k are equivalent.17



From Eq. 22 a stochastic algorithm is formed:wlij(k + 1) = wlij(k)� � @C@sl+1j (k) � @sl+1j (k)@Wlij : (24)From Eq. 23 it follows immediately that @sl+1j (k)=@wlij = xli(k) for all layers in thenetwork. De�ning @C=@slj(k) � �lj(k) allows us to rewrite Eq. 24 in the more familiarnotational form wlij(k + 1) = wlij(k)� ��l+1j (k) � xli(k): (25)To show this holds for all layers in the network, an explicit formula for �lj(k) must be found.Starting with the output layer, we have simply�Lj (k) � @C@sLj (k) = @e2(k)@sLj (k) = �2ej(k)f 0(sLj (k)): (26)where ej(k) is the error at an output node. For a hidden layer, we again use the chain rule,expanding over all time and all Nl+1 inputs sl+1(k) in the next layer:�lj(k) � @C@slj(k)= Nl+1Xm=1Xt @C@sl+1m (t) @sl+1m (t)@slj(k)= Nl+1Xm=1Xt �l+1m (t)@sl+1m (t)@slj(k)= f 0(slj(k))Nl+1Xm=1Xt �l+1m (t)@sl+1jm (t)@xlj(k) : (27)But recall sl+1jm (t) = T lXk0=0wljm(k0)xlj(t� k0): (28)Thus @sl+1jm (t)@xlj(k) = ( wljm(t� k) for 0 � t� k � T l0 otherwise (29)which now yields �lj(k) = f 0(lj(k))Nl+1Xm=1 T l+kXt=k �l+1m (t)wljm(t� k)= f 0(slj(k))Nl+1Xm=1 T lXn=0 �l+1m (k + n)wljm(n)= f 0(slj(k)) � Nl+1Xm=1 �l+1m (k) �wljm; (30)18



where we have de�ned�lm(k) = h�lm(k); �lm(k + 1); ::�lm(k + T l�1)i : (31)Summarizing, the complete adaptation algorithm can be expressed as follows:wlij(k + 1) = wlij(k)� ��l+1j (k) � xli(k) (32)�lj(k) = 8>>><>>>: �2ej(k)f 0(sLj (k)) l = Lf 0(slj(k)) � Nl+1Xm=1 �l+1m (k) �wljm 1 � l � L� 1: (33)A Causality Condition: Careful inspection of the above equations reveals that the calcula-tions for the �lj(k)'s are, in fact, noncausal. The source of this noncausal �ltering can beseen by considering the de�nition of �lj(k) = @C=@slj(k). Since it takes time for the outputof any internal neuron to completely propagate through the network, the change in the totalerror due to a change in an internal state is a function of future values within the network.Since the network is FIR, only a �nite number of future values must be considered, and asimple reindexing allows us to rewrite the algorithm is a causal form:wL�1�nij (k+1)=wL�1�nij (k)���L�nj (k�nT )�xL�1�ni (k�nT ) (34)�L�nj (k�nT ) =8>>>>><>>>>>:�2ej(k)f 0(sLj (k)) n = 0f 0(sL�nj (k�nT ))�Nl+1Xm=1 �L+1�nm (k�nT ) �wL�njm 1 � n � L� 1: (35)While less aesthetically pleasing than the earlier equations, they di�er only in termsof a change of indices. These equations are implemented by propagating the delta termsbackward continuously without delay. However, by de�nition this forces the internal valuesof deltas to be shifted in time. Thus one must bu�er the states x(k) appropriately to formthe proper terms for adaptation. Added storage delays are necessary only for the statesx(k). The backward propagation of the delta terms require no additional delay and is stillsymmetric to the forward propagation. The net e�ect of this is to delay the actual gradientupdate by a few time steps. This may result in a slightly di�erent convergence rate andmisadjustment as in the analogous linear Delayed LMS algorithm [41, 42].For simplicity we have assumed that the order of each synaptic �lter, T , was the samein each layer. This is clearly not necessary. For the general case, let T lij be the order of thesynaptic �lter connecting neuron i in layer l to neuron j in the next layer. Then in Eq. 34and 35 we simply replace nT by PL�1l=L�nmaxijfT lijg. The basic rule is that the time shiftfor the delta associated with a given neuron must be made equal to the total number of tapdelays along the longest path to the output of the network.19
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