Q redhat

I oS Il

Filesystem Labeling in
SELinux

By James Morris

Abstract

With NSA Security-Enhanced Linux now integrated into the
2.6 kernel and making its way into distributions, an
increasing number of people likely will be installing
SELinux and experimenting with it. Given this increasing
user base, this article takes a closer look at filesystem
labeling under SELinux. This is an intermediate-level
article, though a brief review of some SELinux concepts is
provided in the next section.

November 2004

Reprinted with permission of Linux Journal
Resources for this article: www.linuxjournal.com/article/7689

Table of Contents
SELinux Overview
Access Control Decisions
Extended Attributes

EA Security Labeling
Evolution of SELinux Filesystem Labeling
File Creation

Labeling Behaviors
Mountpoint Labeling
Future Work

Backup and Restoration

0 00O 0T B WWNDDND

Copyright © 2004 Red Hat, Inc. Red Hat, Red Hat Linux, the Red Hat Shadowman logo, and the products listed are trademarks or registered trademarks of Red Hat, Inc. in
the US and other countries. Linux is a registered trademark of Linus Torvalds. WHP0009US 11/04

SELinux Overview: Labeling and Access Control

In SELinux, important objects, such as tasks, inodes and files are assigned a security context, a label that
encapsulates the security attributes associated with an object. Under standard SELinux, this label is a colon-
separated ASCII string composed of values for identity, role and type.

These labels are assigned by a kernel component called the security server, using rules loaded into the
security policy database. The security context label on my workstation' getc/shadow file is:

system u: obj ect _r: shadow_t

where system_u and object_r are generic identity and role values used for files. shadow _t is the type of the
file, an attribute that determines how the file can be accessed. A process, for example, would be labeled like
this:

root:staff r:staff t

The SELinux identity here is root, assigned by SELinux as a more permanent form of identity than the
standard UNIX identity. The role is staff_r, indicating that the process has all of the permissions assigned to
that role. The type assigned to the process is staff_t. For a process, the type attribute indicates how it is
allowed to access objects and interact with other processes. The type attribute of a process often is referred to
as a domain.

Access Control Decisions

SELinux uses these security context labels to make access control decisions between processes and objects,
but how does this happen? SELinux has hooks located at strategic points within the core kernel code, such as
the point where a file is about to be read by a user. These hooks allow SELinux to break out of the normal flow
of the kernel to request extended access control decisions. Access control decisions usually are made
between a process (for example, cat) and an object (for example, /etc/shadow) for a specific permission
(read).

Decision requests are sent to the access vector cache (AVC), which passes requests through to the security
server for interpretation. The security server consults the security policy database and determines a result,
which is cached in the AVC and returned to the SELinux hook.

The SELinux hook then allows the flow to continue or return EACCES, depending on the decision result.
Security context labels assigned to processes and objects are used to make these access control decisions.

The illustration below shows a simplified view of this process.

granted/denied SELinux Hooks

A

Security Server =
core kernel flow = m = =

= =3 continue flow
or return EACCESS

Security Policy
Database

Filesystem Labeling in SELinux 2

The following code demonstrates how security context labels are used on a real system, as seen by a user:

$id -z
root:staff r:staff t

$ cat /etc/shadow
cat: /etc/shadow. Perm ssion denied

The audit log records the following:

avc: denied { read } for pid=13653 exe=/bin/cat
nane=shadow dev=hda6 i no=1361441 scontext=root:staff r:staff _t
t cont ext =syst em u: obj ect _r:shadow t tclass=file

Translation: the cat program, labeled with the security contextroot : staff _r: staff _t, was denied
permission to read a file | abel ed syst em u: obj ect _r: shadow t.

SELinux knows nothing about the meaning of cat or /etc/shadow. It is concerned only with their respective
security context labels, the class of the target object (in this case, it's a file) and the permission being
requested.

An important aspect of SELinux design is that labels encapsulate all security attributes of an object, and they
are interpreted only by the security server in the kernel and by libselinux in user space. The rest of the kernel
code and user space merely pass labels around as opaque data. New security attributes can be added to
labels without having to recompile applications or redesign core SELinux code.

Extended Attributes

On a typical Linux disk-based filesystem, each file is identified uniquely by an inode containing critical
metadata for the file, including UNIX ownership and access control information. When the kernel references a
file, its inode is read from disk into memory. A standard UNIX permission check simply uses the information
present within the inode. SELinux extends standard UNIX security and uses security context labels to make
extended access control decisions.

Linux implements Extended Attributes, also called EAs or xattrs. These are name/value pairs associated with
files as an extension to normal inode-based attributes. EAs allow functionality to be added to filesystems in a
standardized way so that interfaces to the attributes are filesystem-independent. Examples of EA functionality
are access control lists (ACLs), storage of character-set metadata alongside file data and SELinux security
context labeling.

EAs are stored within namespaces, allowing different classes of EAs to be managed separately. ACLs are
stored in the system.posix_acl_access and system.posix_acl_default namespaces. SELinux security context
labels are stored in the security.selinux namespace. See attr(5) for more information on EAs under Linux.

EA Security Labeling

EAs can be managed manually with the getfattr(1) and setfattr(1) utilities. For example, to view the SELinux
security context label of a file:

$ getfattr -n security.selinux /tnmp/foo
getfattr: Renoving |leading '/' from absol ute path nanes

Filesystem Labeling in SELinux

file: tnp/foo
security.selinux="root:object r:sysadmtnp_t\000

Notice the specification of the EA security namespace. A wrapper utility called getfilecon(1) is provided for use
with SELinux. It saves you from having to specify the EA namespace, and it has a cleaner output.

The use of text-based labels ensures that meaningful, human-readable security attributes are stored along
with the file data. These labels can be preserved or translated if the filesystem is mounted on a different
system, possibly with a different security policy. A counter example is the way the owner of a file is stored as a
numeric UID in the file's inode. The UID typically is mapped to a meaningful value by way of /etc/passwd; it
may not have the same meaning on a different system.

For a filesystem to support SELinux security context labels, it needs EA support and a handler for the EA
security namespace. Such filesystems currently include ext3, ext2, XFS and ReiserFS; the last uses an
external patch. In addition, the devpts filesystem has a dummy security handler that allows EA-based access
to the in-kernel labels of ptys.

So, when are files labeled? During an SELinux system installation, the setfiles(8) utility typically is used to
label all of the files in filesystems that support EA security labeling. Package management tools such as RPM
also may label files during installation, while system administrators often need to set security contexts
manually with chcon(1) or setfilecon(1).

Evolution of SELinux Filesystem Labeling

The first release of SELinux in 2000 used a different mechanism for labeling filesystems than is used by the
extended attributes approach discussed in this article. Persistent security IDs (PSIDs), integer representations
of security context labels, were stored in an unused field of the ext2 inode. Mapping files on each filesystem
were used by SELinux to look up a file' PPSID by inode and then to map the PSID to a security context label.

This approach had the disadvantage of needing to modify each filesystem separately to support PSIDs. Thus,
it was not a good general solution for extended security in the upstream kernel.

With the LSM Project, a generalized access control framework was implemented for the Linux kernel. As no
filesystem-specific hooks are used in LSM, SELinux moved away from the modified filesystem approach and
stored PSIDs in a normal file next to the mapping files. This allowed SELinux to be used purely as an LSM
application with no kernel patching. It also allowed labeling to work for more filesystems, but it was not optimal
in terms of performance and consistency. Accessing files from within the kernel remains generally problematic.

As part of the process of merging SELinux into the mainline kernel, with more feedback from the community,
SELinux moved to the current filesystem labeling model based on extended attributes. Extended attributes
provide applications with a standard API, eliminating the need for custom system calls to manipulate security
labels, while filesystems also can be used similarly by other security modules, even on the same filesystem,
using the separation provided by EA namespaces.

File Creation

When a file is created, a matching rule in the security policy typically describes how to assign a label based on
the security contexts of the parent directory and the current task. Here' san example:

$id -2z

Filesystem Labeling in SELinux 4

root:staff r:
$1ls -dz /tnp
dr wxr wxr wt + r oo
$ touch /tnp/he
$ getfilecon /t
/tp/hello

staff _t

t root systemu:object r:tnp_t /tnp
Ilo
nmp/ hel | o

root:object r:staff _tnp_t
In this case, the security policy contains a rule that states files created by staff_t in a directory labeled tmp_t
must be labeled with the type staff_tmp_t. If there is no explicit rule, files are labeled with the context of the
parent directory.

Privileged applications can override the above-stated rule by writing a security context to /
proc/self/attr/fscreate. This security context then is used to label any newly created files. The setfscreatecon(3)
library function encapsulates this operation.

Unlabeled files may exist if a filesystem has not been labeled properly before use or if files are created on a
filesystem when SELinux is not enabled. In case of the latter, the SELinux kernel internally assigns a default
context to unlabeled files for AVC calls, but it does not attempt to relabel them on disk. To restore a security
context label manually, use restorecon(8).

An fsck-like utility is being developed for managing the scenario where unlabeled files have been created. To
be run on boot, this utility will ensure that all files are labeled correctly before the system enters multiuser
mode.

Labeling Behaviors

In the preceding section, we discussed file labeling for filesystems that both support EAs on disk and have
handlers for the EA security namespace. When such a filesystem is mounted normally, it is said to use xattr
labeling behavior.

When a filesystem is initialized by SELinux, such as when it is being mounted, a log message is generated
that reads:

SELi nux: initialized (dev hda6, type ext3), uses xattr
The uses xat t r clause means the filesystem uses the xattr labeling behavior described above.

Many filesystems do not support EAs, and of those that do, not all have security namespace handlers. For on-
disk filesystems, it may be that nobody has done the coding work yet or that EAs simply don' take sense for
legacy filesystems such as vfat.

A proliferation of pseudo-filesystems have developed under Linux. Filesystems are becoming an increasingly
favored user-kernel APl mechanism. The most obvious of these is procfs, which is an interface between user
space and various kernel components. Due to the long history of procfs, it has accumulated a lot of cruft, and
new user-kernel filesystem APIls are encouraged to be implemented by way of separate filesystems. These

filesystems are kernel resident and have no intrinsic EA support. Examples include usbfs, sysfs and selinuxfs.

Such non-EA cases are managed with a variety of labeling behaviors, according to rules in the security policy
for each filesystem type.

The transition SIDs labeling behavior is used for devpts, tmpfs and shmfs filesystems. Files in these
filesystems are labeled on demand in the kernel, based on the security contexts of the current task and a

Filesystem Labeling in SELinux 5

security context specified for the filesystem in policy.

devpts is a special-case transition SIDs filesystem. It provides EA API access to ptys by way of a dummy EA
security handler. Privileged applications, such as sshd, use this feature to relabel ptys, overriding the transition
SID labels.

The task SIDs labeling behavior simply labels the file with the same security context as the current task. It is
used for pipes and sockets created in the pipefs and sockfs filesystems, respectively.

The genfs_contexts labeling behavior is used for filesystems unsuited to xattr, transition SIDs and task SIDs
labeling. In the security policy, security context labels are assigned to filesystem/pathname pairs. The purpose
of the pathname component is to allow finer-grained labeling of the filesystem. This feature is important for
procfs in particular, which is a jumble of readable and writable kernel data, including the syscitl interface.

Most non-EA filesystems use genfs_contexts labeling, usually with the entire filesystem set to a single security
context. Common examples include sysfs, vfat, nfs and usbdevfs.

Mountpoint Labeling

A new feature included with the 2.6.3 kernel is mountpoint labeling, also referred to as context mounts. The
main purpose of this is to allow the security context of an entire filesystem to be specified by using a mount
option. Mountpoint labeling can be applied to any type of filesystem and overrides its normal labeling behavior.

A specific use of mountpoint labeling is to allow different NFS mounts to be labeled separately at mount time.
It also is useful for general ad hoc mounting of filesystems that do not support EA security labeling and for
mounting EA-labeled filesystems labeled elsewhere. The latter may be important in forensic work, for
example.

Legacy filesystems with no labels also may need to be mounted under an SELinux-enabled OS. Even though
the filesystem type supports EA security labeling, we may not want to add persistent security context labels to
these filesystems. Mountpoint labeling allows us to assign kernel-resident labels that are not written to disk.

As mountpoint labeling is a new feature and is not widely documented, let' sliscuss it in a little more detail.
When SELinux is enabled in the kernel, three new mount options are provided for mountpoint labeling:

- context: causes every file on the filesystem, and the filesystem itself, to be labeled with the specified
security context. The /proc/self/attr/fscreate APl discussed above is ignored for the filesystem. This
overrides existing labeling behavior, changing it to mountpoint labeling. Filesystem labels are read-only to
the user with this option, although policy-specified labeling transitions still operate on filesystems with EA
security labeling support.

- fscontext: sets the label of the aggregate filesystem (that is, the filesystem itself) to the specified security
context. This allows finer-grained control of filesystems by allowing their labels to be set on a per-mount
basis rather than on a per-fs type basis specified in a policy. As the context option also implements this
functionality, the two options cannot be used together. This option works only for filesystems with EA
security labeling support. Aggregate filesystem security contexts are used for access control decisions
made during file creation within a specific filesystem, mounting and unmounting of filesystems, accessing
filesystem attributes and relabeling the filesystem itself.

Filesystem Labeling in SELinux 6

- defcontext: sets the default security context for unlabeled files, instead of the value specified in the policy.
As with the fscontext option, it works only for filesystems with EA labeling support and is not valid if context
has been specified, as it too implements this functionality.

In the kernel, SELinux parses and strips out the security mount options during mount(2), passing normal
options through to filesystem-specific code. Normal filesystems do not need to be aware of the security
options, thus, they do not need to be modified. This is possible because most filesystems use text name/value
pairs for mount options, which SELinux is able to manipulate easily.

Filesystems with binary mount option data, including NFS, SMBFS, AFS and Coda, need to be handled as
special cases. Of these, only NFSv3 is supported at this stage of SELinux development.

Here' san example of how the context option operates, as it is likely to be the most widely used of the three
mount options. A floppy disk with log files has arrived on our desk, and we' dike to mount it on our SELinux
box and run some log analysis software on it. Due to the way policy is configured, these files need to be
labeled system_u:object_r:var_log_t for the log analysis software to work properly. Mounting in this fashion
also can help provide a sandbox for the data on the floppy, allowing SELinux to protect the OS and the
contents of the floppy from each other.

Let' smount the disk:

$ mount -v -t vfat

-0 context=system u:object _r:var_log t
[dev/fdO /mt/fl oppy

/dev/fd0 on /mmt/fl oppy type vfat
(cont ext =system u: object _r:var_log t)

What does the audit log say?
SELi nux: initialized (dev fdO, type vfat), uses nountpoint |abeling

This message looks promising. Next, we verify that the files on the disk are labeled as expected. Normally,
you would use getfilecon(1), but getfattr(1) has more explicit error messages:

$ getfattr -n security.selinux /mt/floppy/access_| og
/mt/fl oppy/access_|l og: security.selinux: Operation not supported

What is going on here? An Is -Z also shows that the file has a null security context:

$1s -Z /mt/fl oppy/access_| og
-rWXr-xr-x+ root root (null)
/mt/fl oppy/access_| og

The vfat filesystem on the floppy does not have EA support, and its security context labeling occurs purely
within the kernel. It turns out that this in-kernel labeling is working correctly, but the user-space tools are not
able to view the labels in the EA API. This is a limitation of the current EA implementation that has yet to be
resolved elegantly.

However, there's a sneaky way to see what the labels on the files are by using the audit log, which always
records the security context of a target object when logging an access message.

The use of getfattr(1) caused the following audit record to be generated:

avc: denied { getattr } for pid=12354 exe=/usr/bin/getfattr

Filesystem Labeling in SELinux 7

pat h=/ mt/ f| oppy/ access_| og dev=fd0 i no=132 scontext=root:staff r:staff t
tcont ext =system u: object r:var _log t tclass=file

So, the file is labeled correctly (system_u:object_r:var_log_t), per the context mount option passed to the
mount command.

Future Work

Although it is possible to assign security context labels to NFS mounted filesystems, they operate only locally
for access control decisions within the kernel. No labels are transmitted across the network with files. Work
has been advancing in this area, with SELinux-specific modifications being made to the NFSv2/v3 protocols
and code. Further down the track, NFSv4 integration is expected to involve labeling over the wire by way of
named attributes, which are part of the more extensible NFSv4 specification. This would allow both the NFS
client and server to implement SELinux security for networked files. Support for other networked filesystems
also would be useful, as would interoperability with Trusted BSD' sSELinux port.

Backup and Restoration

One of the many tasks that change for system administrators using SELinux is backup and restoration. When
creating an archive, how will the security context labels be preserved within the archive? The answer is to use
the highly flexible star(1) utility, which has extended attribute support.

To manipulate archives with security context labels, use the xattr option. When creating archives, you also
need to specify the exustar format. For example:

$ star -xattr -H=exustar -c -f cups-log.star /var/log/cups
creates an archive of the /var/log/cups directory, retaining security context labels on the files.
To extract, simply use the xattr option:

$ star -xattr -x -f cups-log.star
$ Is -Z var/log/cups/

-TWr--r--+ root sys system u: object _r:cupsd_log t
error_Ilog
-rWwr--r--+ root sys system u: object r:cupsd log t

error_log.1

As you can see, the security context labels have been preserved.

James Morris (jmorris@redhat.com) is a kernel hacker from Sydney, Australia, currently working for Red Hat
in Boston. He is a kernel maintainer of SELinux, Networking and the Crypto API; an LSM developer and an
Emeritus Netfilter Core Team member.

Filesystem Labeling in SELinux

