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∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+ ∂
∂z

[

h(z) ∂w
∂z

]

= aeλw

6.2.2. Equations of the Form a1
∂
∂x

(

eλ1w ∂w
∂x

)

+a2
∂
∂y

(

eλ2w ∂w
∂y

)

+a3
∂
∂y

(

eλ2w ∂w
∂y

)

= beβw 416

6.3. Three-Dimensional Equations Involving Arbitrary Functions
6.3.1. Heat and Mass Transfer Equations of the Form ∂

∂x

[

f1(x) ∂w
∂x

]

+ ∂
∂y

[

f2(y) ∂w
∂y

]

+
∂
∂z

[

f3(z) ∂w
∂z

]

= g(w)
6.3.2. Heat and Mass Transfer Equations with Complicating Factors
6.3.3. Other Equations

6.4. Equations with n Independent Variables
6.4.1. Equations of the Form ∂

∂x1

[

f1(x1) ∂w
∂x1

]

+· · ·+ ∂
∂xn

[

fn(xn) ∂w
∂xn

]

= g(x1, . . . ,xn,w)
6.4.2. Other Equations

7. Equations Involving Mixed Derivatives and Some Other Equations

7.1. Equations Linear in the Mixed Derivative
7.1.1. Calogero Equation
7.1.2. Khokhlov–Zabolotskaya Equation
7.1.3. Equation of Unsteady Transonic Gas Flows
7.1.4. Equations of the Form ∂w

∂y
∂2w
∂x∂y

− ∂w
∂x

∂2w
∂y2 = F

(

x, y, ∂w
∂x

, ∂w
∂y

)

7.1.5. Other Equations with Two Independent Variables
7.1.6. Other Equations with Three Independent Variables

7.2. Equations Quadratic in the Highest Derivatives
7.2.1. Equations of the Form ∂2w

∂x2
∂2w
∂y2 = F (x, y)

7.2.2. Monge–Ampère equation
(

∂2w
∂x∂y

)2 − ∂2w
∂x2

∂2w
∂y2 = F (x, y)

7.2.3. Equations of the Form
(

∂2w
∂x∂y

)2 − ∂2w
∂x2

∂2w
∂y2 = F

(

x, y,w, ∂w
∂x

, ∂w
∂y

)
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7.2.4. Equations of the Form
(

∂2w
∂x∂y

)2 = f (x, y) ∂2w
∂x2

∂2w
∂y2 + g(x, y)

7.2.5. Other Equations

7.3. Bellman Type Equations and Related Equations
7.3.1. Equations with Quadratic Nonlinearities
7.3.2. Equations with Power-Law Nonlinearities

8. SecondOrder Equations of General Form
8.1. Equations Involving the First Derivative in t

8.1.1. Equations of the Form ∂w
∂t

= F
(

w, ∂w
∂x

, ∂2w
∂x2

)

8.1.2. Equations of the Form ∂w
∂t

= F
(

t,w, ∂w
∂x

, ∂2w
∂x2

)

8.1.3. Equations of the Form ∂w
∂t

= F
(

x,w, ∂w
∂x

, ∂2w
∂x2

)

8.1.4. Equations of the Form ∂w
∂t

= F
(

x, t,w, ∂w
∂x

, ∂2w
∂x2

)

8.1.5. Equations of the Form F
(

x, t,w, ∂w
∂t

, ∂w
∂x

, ∂2w
∂x2

)

= 0
8.1.6. Equations with Three Independent Variables

8.2. Equations Involving Two or More Second Derivatives
8.2.1. Equations of the Form ∂2w

∂t2 = F
(

w, ∂w
∂x

, ∂2w
∂x2

)

8.2.2. Equations of the Form ∂2w
∂t2 = F

(

x, t,w, ∂w
∂x

, ∂w
∂t

, ∂2w
∂x2

)

8.2.3. Equations Linear in the Mixed Derivative
8.2.4. Equations with Two Independent Variables, Nonlinear in Two or More Highest

Derivatives
8.2.5. Equations with n Independent Variables

9. ThirdOrder Equations
9.1. Equations Involving the First Derivative in t

9.1.1. Korteweg–de Vries Equation ∂w
∂t

+ a ∂3w
∂x3 + bw ∂w

∂x
= 0

9.1.2. Cylindrical, Spherical, and Modified Korteweg–de Vries Equations
9.1.3. Generalized Korteweg–de Vries Equation ∂w

∂t
+ a ∂3w

∂x3 + f (w) ∂w
∂x

= 0
9.1.4. Equations Reducible to the Korteweg–de Vries Equation
9.1.5. Equations of the Form ∂w

∂t
+ a ∂3w

∂x3 + f
(

w, ∂w
∂x

)

= 0
9.1.6. Equations of the Form ∂w

∂t
+ a ∂3w

∂x3 + F
(

x, t,w, ∂w
∂x

)

= 0
9.1.7. Burgers–Korteweg–de Vries Equation and Other Equations

9.2. Equations Involving the Second Derivative in t
9.2.1. Equations with Quadratic Nonlinearities
9.2.2. Other Equations

9.3. Hydrodynamic Boundary Layer Equations
9.3.1. Steady Hydrodynamic Boundary Layer Equations for a Newtonian Fluid
9.3.2. Steady Boundary Layer Equations for Non-Newtonian Fluids
9.3.3. Unsteady Boundary Layer Equations for a Newtonian Fluid
9.3.4. Unsteady Boundary Layer Equations for Non-Newtonian Fluids
9.3.5. Related Equations

9.4. Equations of Motion of Ideal Fluid (Euler Equations)
9.4.1. Stationary Equations
9.4.2. Nonstationary Equations

9.5. Other Third-Order Nonlinear Equations
9.5.1. Equations Involving Second-Order Mixed Derivatives
9.5.2. Equations Involving Third-Order Mixed Derivatives
9.5.3. Equations Involving ∂3w

∂x3 and ∂3w
∂y3
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10. FourthOrder Equations

10.1. Equations Involving the First Derivative in t
10.1.1. Equations of the Form ∂w

∂t
= a ∂4w

∂x4 + F
(

x, t,w, ∂w
∂x

)

10.1.2. Other Equations

10.2. Equations Involving the Second Derivative in t
10.2.1. Boussinesq Equation and Its Modifications
10.2.2. Equations with Quadratic Nonlinearities
10.2.3. Other Equations

10.3. Equations Involving Mixed Derivatives
10.3.1. Kadomtsev–Petviashvili Equation
10.3.2. Stationary Hydrodynamic Equations (Navier–Stokes Equations)
10.3.3. Nonstationary Hydrodynamic Equations (Navier–Stokes equations)
10.3.4. Other Equations

11. Equations of Higher Orders

11.1. Equations Involving the First Derivative in t and Linear in the Highest Derivative
11.1.1. Fifth-Order Equations
11.1.2. Equations of the Form ∂w

∂t
= a ∂nw

∂xn + f (x, t,w)
11.1.3. Equations of the Form ∂w

∂t
= a ∂nw

∂xn + f (w) ∂w
∂x

11.1.4. Equations of the Form ∂w
∂t

= a ∂nw
∂xn + f (x, t,w) ∂w

∂x
+ g(x, t,w)

11.1.5. Equations of the Form ∂w
∂t

= a ∂nw
∂xn + F

(

x, t,w, ∂w
∂x

)

11.1.6. Equations of the Form ∂w
∂t

= a ∂nw
∂xn + F

(

x, t,w, ∂w
∂x

, . . . , ∂n−1w
∂xn−1

)

11.1.7. Equations of the Form ∂w
∂t

= aw ∂nw
∂xn + f (x, t,w) ∂w

∂x
+ g(x, t,w)

11.1.8. Other Equations

11.2. General Form Equations Involving the First Derivative in t
11.2.1. Equations of the Form ∂w

∂t
= F

(

w, ∂w
∂x

, . . . , ∂nw
∂xn

)

11.2.2. Equations of the Form ∂w
∂t

= F
(

t,w, ∂w
∂x

, . . . , ∂nw
∂xn

)

11.2.3. Equations of the Form ∂w
∂t

= F
(

x,w, ∂w
∂x

, . . . , ∂nw
∂xn

)

11.2.4. Equations of the Form ∂w
∂t

= F
(

x, t,w, ∂w
∂x

, . . . , ∂nw
∂xn

)

11.3. Equations Involving the Second Derivative in t
11.3.1. Equations of the Form ∂2w

∂t2 = a ∂nw
∂xn + f (x, t,w)

11.3.2. Equations of the Form ∂2w
∂t2 = a ∂nw

∂xn + F
(

x, t,w, ∂w
∂x

)

11.3.3. Equations of the Form ∂2w
∂t2 = a ∂nw

∂xn + F
(

x, t,w, ∂w
∂x

, . . . , ∂n−1w
∂xn−1

)

11.3.4. Equations of the Form ∂2w
∂t2 = aw ∂nw

∂xn + f (x, t,w) ∂w
∂x

+ g(x, t,w)
11.3.5. Equations of the Form ∂2w

∂t2 = F
(

x, t,w, ∂w
∂x

, . . . , ∂nw
∂xn

)

11.4. Other Equations
11.4.1. Equations Involving Mixed Derivatives
11.4.2. Equations Involving ∂nw

∂xn and ∂mw
∂ym
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FOREWORD

Nonlinear partial differential equations are encountered in various fields of mathematics,physics,
chemistry, and biology, and numerous applications.

Exact (closed-form) solutions of differential equations play an important role in the proper
understanding of qualitative features of many phenomena and processes in various areas of natural
science. Exact solutions of nonlinear equations graphically demonstrate and allow unraveling
the mechanisms of many complex nonlinear phenomena such as spatial localization of transfer
processes, multiplicity or absence steady states under various conditions, existence of peaking
regimes and many others. Furthermore, simple solutions are often used in teaching many courses
as specific examples illustrating basic tenets of a theory that admit mathematical formulation.

Even those special exact solutions that do not have a clear physical meaning can be used as
“test problems” to verify the consistency and estimate errors of various numerical, asymptotic, and
approximate analytical methods. Exact solutions can serve as a basis for perfecting and testing
computer algebra software packages for solving differential equations. It is significant that many
equations of physics, chemistry, and biology contain empirical parameters or empirical functions.
Exact solutions allow researchers to design and run experiments, by creating appropriate natural
conditions, to determine these parameters or functions.

This book contains more than 1600 nonlinear mathematical physics equations and nonlinear
partial differential equations and their solutions. A large number of new exact solutions to nonlinear
equations are described. Equations of parabolic, hyperbolic, elliptic, mixed, and general types are
discussed. Second-, third-, fourth-, and higher-order nonlinear equations are considered. The book
presents exact solutions to equations of heat and mass transfer, wave theory, nonlinear mechanics,
hydrodynamics, gas dynamics, plasticity theory, nonlinear acoustics, combustion theory, nonlinear
optics, theoretical physics, differential geometry, control theory, chemical engineering sciences,
biology, and other fields.

Special attention is paid to general-form equations that depend on arbitrary functions; exact
solutions of such equations are of principal value for testing numerical and approximate methods.
Almost all other equations contain one or more arbitrary parameters (in fact, this book deals with
whole families of partial differential equations), which can be fixed by the reader at will. In total,
the handbook contains significantly more nonlinear PDE’s and exact solutions than any other book
currently available.

The supplement of the book presents exact analytical methods for solving nonlinear mathemati-
cal physics equations. When selecting the material, the authors have given a pronounced preference
to practical aspects of the matter; that is, to methods that allow effectively “constructing” exact
solutions. Apart from the classical methods, the book also describes wide-range methods that have
been greatly developed over the last decade (the nonclassical and direct methods for symmetry
reductions, the differential constraints method, the method of generalized separation of variables,
and others). For the reader’s better understanding of the methods, numerous examples of solv-
ing specific differential equations and systems of differential equations are given throughout the
book.

For the convenience of a wide audience with different mathematical backgrounds, the authors
tried to do their best, wherever possible, to avoid special terminology. Therefore, some of the
methods are outlined in a schematic and somewhat simplified manner, with necessary references
made to books where these methods are considered in more detail. Many sections were written so
that they could be read independently from each other. This allows the reader to quickly get to the
heart of the matter.

The handbook consists of chapters, sections, and subsections. Equations and formulas are
numbered separately in each subsection. The equations within subsections are arranged in increasing
order of complexity. The extensive table of contents provides rapid access to the desired equations.
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Separate parts of the book may be used by lecturers of universities and colleges for practical
courses and lectures on nonlinear mathematical physics equations for graduate and postgraduate
students. Furthermore, the books may be used as a database of test problems for numerical and
approximate methods for solving nonlinear partial differential equations.

We would like to express our deep gratitude to Alexei Zhurov for fruitful discussions and
valuable remarks.

The authors hope that this book will be helpful for a wide range of scientists, university teachers,
engineers, and students engaged in the fields of mathematics, physics, mechanics, control, chemistry,
and engineering sciences.

Andrei D. Polyanin
Valentin F. Zaitsev
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SOME NOTATIONS AND REMARKS

Latin Characters
C1,C2, . . . are arbitrary constants;

r, ϕ, z cylindrical coordinates, r =
√

x2 + y2 and x = r cosϕ, y = r sinϕ;
r, θ, ϕ spherical coordinates,r =

√

x2 +y2 +z2 andx=r sin θ cosϕ, y = sin θ sinϕ, z =r cos θ;
t time (t ≥ 0);
w unknown function (dependent variable);

x, y, z space (Cartesian) coordinates;
x1, . . . ,xn Cartesian coordinates in n-dimensional space.

Greek Characters
∆ Laplace operator; in two-dimensional case, ∆ = ∂2

∂x2 + ∂2

∂y2 ;

in three-dimensional case, ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ; in n-dimensional case, ∆ =
n
∑

k=1

∂2

∂x2
k

;

∆∆ biharmonic operator; in two-dimensional case, ∆∆ = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4 .

Brief Notation for Derivatives

wx =
∂w

∂x
, wt =

∂w

∂t
, wxx =

∂2w

∂x2 , wxt =
∂2w

∂x∂t
, wtt =

∂2w

∂t2
, . . . (partial derivatives);

f ′

x =
df

dx
, f ′′

xx =
d2f

dx2 , f ′′′

xxx =
d3f

dx3 , f ′′′′

xxxx =
d4f

dx4 , f (n)
x =

dnf

dxn
(derivatives for f = f (x)).

Brief Notation for Differential Operators

∂x =
∂

∂x
, ∂y =

∂

∂y
, ∂t =

∂

∂t
, ∂w =

∂

∂w
(differential operators in x, y, t, and w);

Dx =
∂

∂x
+ wx

∂

∂w
+ wxx

∂

∂wx

+ wxt

∂

∂wt

+ · · · (total differential operator in x);

Dt =
∂

∂t
+ wt

∂

∂w
+ wxt

∂

∂wx

+ wtt

∂

∂wt

+ · · · (total differential operator in t).

In the last two relations, w is assumed to be dependent on x and t, w = w(x, t).

Remarks
1. The book presents solutions of the following types:

(a) expressible in terms of elementary functions explicitly, implicitly, or parametrically;
(b) expressible in terms of elementary functions and integrals of elementary functions;
(c) expressible in terms of elementary functions, functions involved in the equation (if the equation

contains arbitrary functions), and integrals of the equation functions and/or other elementary
functions;

(d) expressible in terms of ordinary differential equations or finite systems of ordinary differential
equations;

(e) expressible in terms of solutions to nonlinear equations that can be reduced to linear partial
differential equations or linear integral equations.
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2. The book also deals with solutions described by equations with fewer new variables than
those in the original equations. An expression that solves an equations in three independent variables
and is determined by an equation in two independent variables will be called a two-dimensional
solution.

3. As a rule, the book does not present simple solutions that depend on only one of the variables
involved in the original equation.

4. Equations are numbered separately in each subsection. When referencing a particular equa-
tion, we use a notation like 3.1.2.5, which implies equation 5 from Subsection 3.1.2.

5. If a formula or a solution contains an expression like
f (x)
a − 2

, it is often not stated that the
assumption a ≠ 2 is implied.

6. Though incomplete, very simple and graphical classification of solutions by their appearance
is used in the book. For equations in two independent variables, x and t, and one unknown, w, the
solution name and structure are as follows (x and t in the solutions below can be swapped):

No. Solution name Solution structure

1 Traveling-wave solution∗ w = F (z), z = αx + βt, αβ ≠ 0
2 Additive separable solution w = ϕ(x) + ψ(t)

3 Multiplicative separable solution w = ϕ(x)ψ(t)

4 Self-similar solution∗∗ w = tαF (z), z = xtβ

5 Generalized self-similar solution w = ϕ(t)F (z), z = xψ(t)

6 Generalized traveling-wave solution w = F (z), z = ϕ(t)x + ψ(t)

7 Generalized separable solution w = ϕ1(x)ψ1(t) + · · · + ϕn(x)ψn(t)

8 Functional separable solution w = F (z), z = ϕ1(x)ψ1(t) + · · · + ϕn(x)ψn(t)

∗ For uniformity of presentation, we also use this term in the cases where the variable t plays the role of a spatial coordinate.
∗∗ Sometimes, a solution of the form w = t̄αF (z), z = x̄t̄β , where x̄ = x+C1 and t̄ = t+C2 , will also be called a self-similar
solution.

7. The present book does not consider first-order nonlinear partial differential equations. For
these equations, see Kamke (1965), Rhee, Aris, and Amundson (1986, 1989), and Polyanin, Zaitsev,
and Moussiaux (2002).

8. ODE and PDE are conventional abbreviations for ordinary differential equation and partial
differential equation, respectively.
���

This symbol indicates references to literature sources whenever:

(a) at least one of the solutions was obtained in the cited source (even though the solution contained
“correctable” misprints in signs or coefficients);

(b) the cited source provides further information on the equation in question and their solutions.
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Chapter 1

Parabolic Equations
with One Space Variable

1.1. Equations with Power-Law Nonlinearities

1.1.1. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + bw + cw2

1.
∂w

∂t
= a

∂2w

∂x2
+ bw2.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C2
1w(C1x + C2,C2

1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution (λ is an arbitrary constant):

w = w(z), z = x + λt,

where the function w(z) is determined by the autonomous ordinary differential equation

aw′′

zz − λw′

z + bw2 = 0.

3◦. Self-similar solution:
w = t−1u(ξ), ξ = xt−1/2,

where the function u(ξ) is determined by the ordinary differential equation

au′′ξξ + 1
2 ξu

′

ξ + u + bu2 = 0.

2.
∂w

∂t
=

∂2w

∂x2
+ aw(1 – w).

Fisher equation. This equation arises in heat and mass transfer, combustion theory, biology, and
ecology. For example, it describes the mass transfer in a two-component medium at rest with a
volume chemical reaction of quasi-first order. The kinetic function f (w) = aw(1 − w) models also
an autocatalytic chain reaction in combustion theory.

This is a special case of equation 1.1.3.2 with m = 2.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w(
�
x + C1, t + C2),

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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2 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

2◦. Traveling-wave solutions (C is an arbitrary constant):

w(x, t) =
[

1 + C exp
(

− 5
6at � 1

6

√

6ax
)]−2,

w(x, t) =
[

−1 + C exp
(

− 5
6 at � 1

6

√

6ax
)]−2,

w(x, t) =
1 + 2C exp

(

− 5
6at � 1

6

√

−6ax
)

[

1 + C exp
(

− 5
6 at � 1

6

√

−6ax
)]2 .

3◦. Traveling-wave solutions:

w(x, t) = � ξ2ϕ(ξ), ξ = C1 exp
( 1

6

√

6a x + 5
6at

)

,

where the function ϕ(ξ) is defined implicitly by

ξ =
∫

dϕ
√ � (4ϕ3 − 1)

− C2,

and C1 and C2 are arbitrary constants. For the upper sign, the inversion of this relation corresponds
to the classical Weierstrass elliptic function, ϕ(ξ) = ℘(ξ + C3, 0, 1).

4◦. The substitution U = 1 − w leads to an equation of the similar form

∂U

∂t
=
∂2U

∂x2 − aU (1 − U ).
���

References: M. J. Ablowitz and A. Zeppetella (1978), V. G. Danilov, V. P. Maslov, and K. A. Volosov (1995).

1.1.2. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + b0 + b1w + b2w

2 + b3w
3

1.
∂w

∂t
= a

∂2w

∂x2
– bw3.

This is a special case of equation 1.1.2.5 with b0 = b1 = b2 = 0.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w( � C1x + C2,C2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:

w(x, t) = �
√

2a
b

2C1x + C2

C1x2 + C2x + 6aC1t + C3
.

3◦. Traveling-wave solution (λ is an arbitrary constant):

w = w(z), z = x + λt,

where the function w(z) is determined by the autonomous ordinary differential equation

aw′′

zz − λw′

z − bw3 = 0.

4◦. Self-similar solution:
w = t−1/2u(ξ), ξ = xt−1/2,

where the function u(ξ) is determined by the ordinary differential equation

au′′ξξ + 1
2 ξu

′

ξ + 1
2u − bu3 = 0.���

Reference: P. A. Clarkson and E. L. Mansfield (1994).
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 3

2.
∂w

∂t
=

∂2w

∂x2
+ aw – bw3.

This is a special case of equation 1.1.2.5 with b0 = b2 = 0.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = � w( � x + C1, t + C2),

where C1 and C2 are arbitrary constants, are also solutions of the equation (the signs are chosen
arbitrarily).

2◦. Solutions with a > 0 and b > 0:

w =
√

a

b

C1 exp
( 1

2

√

2ax
)

− C2 exp
(

− 1
2

√

2ax
)

C1 exp
( 1

2

√

2a x
)

+ C2 exp
(

− 1
2

√

2ax
)

+ C3 exp
(

− 3
2at

) ,

w =
√

a

b

[

2C1 exp
(√

2ax
)

+ C2 exp
( 1

2

√

2ax − 3
2 at

)

C1 exp
(
√

2ax
)

+ C2 exp
( 1

2

√

2ax − 3
2at

)

+ C3
− 1

]

,

where C1, C2, and C3 are arbitrary constants.

3◦. Solution with a < 0 and b > 0:

w =
√

|a|
b

sin
( 1

2
√

2|a|x + C1
)

cos
( 1

2
√

2|a|x + C1
)

+ C2 exp
(

− 3
2at

) ,

where C1 and C2 are arbitrary constants.

4◦. Solution with a > 0 (generalizes the first solution of Item 2◦):

w =
[

C1 exp
( 1

2

√

2ax + 3
2at

)

− C2 exp
(

− 1
2

√

2ax + 3
2 at

)]

U (z),

z = C1 exp
( 1

2

√

2ax + 3
2 at

)

+ C2 exp
(

− 1
2

√

2ax + 3
2at

)

+ C3,

where C1, C2, and C3 are arbitrary constants, and the function U = U (z) is determined by the
autonomous ordinary differential equation aU ′′

zz = 2bU 3 (whose solution can be written out in
implicit form).

5◦. Solution with a < 0 (generalizes the solution of Item 3◦):

w = exp
( 3

2 at
)

sin
( 1

2

√

2|a|x + C1
)

V (ξ),

ξ = exp
( 3

2 at
)

cos
( 1

2

√

2|a|x + C1
)

+ C2,

whereC1 andC2 are arbitrary constants, and the functionV = V (ξ) is determined by the autonomous
ordinary differential equation aV ′′

ξξ = −2bV 3 (whose solution can be written out in implicit form).

6◦. See also equation 1.1.3.2 with m = 3.���
References: F. Cariello and M. Tabor (1989), M. C. Nucci and P. A. Clarkson (1992).

3.
∂w

∂t
= a

∂2w

∂x2
– bw3 – cw2.

This is a special case of equation 1.1.2.5 with b1 = b0 = 0.

1◦. Traveling-wave solutions:

w(x, t) =
(

ct �
√

b

2a
x + C

)−1

,

where C is an arbitrary constant.
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4 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

2◦. Solutions:

w(x, t) = k
√

2a
b

1
F

∂F

∂x
,

where

F = C1

(

x + kc
√

2a
b
t

)

+ C2 exp
(

−
kc
√

2ab
x +

c2

2b
t

)

+ C3, k = � 1,

and C1, C2, and C3 are arbitrary constants.

3◦. Solutions:

w(x, t) = k
√

2a
b

1
F

∂F

∂x
−
c

b
,

where

F = C1 exp
(

kc
√

2ab
x −

c2

2b
t

)

+ C2

(

kc
√

2ab
x +

c2

b
t

)

exp
(

kc
√

2ab
x −

c2

2b
t

)

+ C3, k = � 1.

4.
∂w

∂t
=

∂2w

∂x2
– w(1 – w)(a – w).

Fitzhugh–Nagumoequation. This equation arises in population genetics and models the transmission
of nerve impulses.

1◦. There are three stationary solutions: w = wk, where w1 = 0, w2 = 1, and w3 = a. The linear
stability analysis shows that

if −1 ≤ a < 0: the solutions w = a, w = 1 are stable, w = 0 is unstable;
if 0 < a < 1: the solutions w = 0, w = 1 are stable, w = a is unstable.

There is a stationary nonhomogeneous solution that can be represented in implicit form (A and
B are arbitrary constants):

∫

dw
√

1
4w

4 − 1
3 (a + 1)w3 + 1

2aw
2 +A

= � x +B.

2◦. Traveling-wave solutions (A, B, and C are arbitrary constants):

w(x, t) =
1

1 +A exp
[� 1

2

√

2x + 1
2 (2a − 1)t

] ,

w(x, t) =
a

1 +A exp
[� 1

2

√

2a x + 1
2a(2 − a)t

] ,

w(x, t) =
A exp

[ � 1
2

√

2 (1 − a)x + 1
2 (1 − a2)t

]

+ a
A exp

[ � 1
2

√

2 (1 − a)x + 1
2 (1 − a2)t

]

+ 1
,

w(x, t) = 1
2 + 1

2 tanh
[� 1

4

√

2x + 1
4 (1 − 2a)t +A

]

,

w(x, t) = 1
2 a + 1

2 a tanh
[ � 1

4

√

2ax + 1
4a(a − 2)t +A

]

,

w(x, t) = 1
2 (1 + a) + 1

2 (1 − a) tanh
[ � 1

4

√

2 (1 − a)x + 1
4 (1 − a2)t +A

]

,

w(x, t) =
2a

(1 + a) − (1 − a) tanh
[ � 1

4

√

2 (1 − a)x + 1
4 (1 − a2)t +A

] ,

w(x, t) = 1
2 + 1

2 coth
[� 1

4

√

2x + 1
4 (1 − 2a)t +A

]

,

w(x, t) = 1
2 a + 1

2 a coth
[ � 1

4

√

2ax + 1
4a(a − 2)t +A

]

,

w(x, t) = 1
2 (1 + a) + 1

2 (1 − a) coth
[ � 1

4

√

2 (1 − a)x + 1
4 (1 − a2)t +A

]

,

w(x, t) =
2a

(1 + a) − (1 − a) coth
[ � 1

4

√

2 (1 − a)x + 1
4 (1 − a2)t +A

] .
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 5

3◦. “Two-phase” solution:

w(x, t) =
A exp(z1) + aB exp(z2)
A exp(z1) +B exp(z2) + C

,

z1 = 	 √

2
2 x +

( 1
2 − a

)

t, z2 = 	 √

2
2 ax + a

( 1
2a − 1

)

t,

where A, B, and C are arbitrary constants.

4◦. The solutions of Item 2◦ are special cases of the traveling-wave solution

w(x, t) = w(ξ), ξ = x + λt,

where λ is an arbitrary constant, and the function w(ξ) is determined by the autonomous ordinary
differential equation

w′′

ξξ − λw′

ξ = w(1 − w)(a − w).

The substitution w′

ξ = λy(w) leads to an Abel equation of the second kind:

yy′w − y = λ−2[aw − (a + 1)w2 + w3].

The general solution of this equation with a = −1 and λ = 	 3
√

2
can be found in Polyanin and Zaitsev

(2003).

5◦. Let us give two transformations that preserve the form of the original equation.
The substitution u = 1 − w leads to an equation of the similar form with parameter a1 = 1 − a:

∂u

∂t
=
∂2u

∂x2 − u(1 − u)(1 − a − u).

The transformation
v(z, τ ) = 1 −

1
a
w(x, t), τ = a2t, z = ax

leads to an equation of the similar form with parameter a2 = 1 − a−1:

∂v

∂τ
=
∂2v

∂z2 − v(1 − v)
(

1 −
1
a

− v
)

.

Therefore, if w = w(x, t; a) is a solution of the equation in question, then the functions

w1 = 1 − w
(

x, t; 1 − a
)

,

w2 = a − aw
(

ax, a2t; 1 − a−1)

are also solutions of the equation. The abovesaid allows us to “multiply” exact solutions.

6◦. See also Example 1 in Subsection S.7.2.
��
References for equation 1.1.2.4: T. Kawahara and M. Tanaka (1983), M. C. Nucci and P. A. Clarkson (1992), N. H. Ibrag-

imov (1994), V. F. Zaitsev and A. D. Polyanin (1996).

5.
∂w

∂t
= a

∂2w

∂x2
+ b0 + b1w + b2w

2 + b3w
3.

1◦. Solutions are given by

w(x, t) =
β

F

∂F

∂x
+ λ, β = 	

√

−
2a
b3

, (1)

where λ is any of the roots of the cubic equation

b3λ
3 + b2λ

2 + b1λ + b0 = 0 (2)

and the specific form of F = F (x, t) depends on the equation coefficients.

Page 5

© 2004 by Chapman & Hall/CRC



6 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

Introduce the notation

p1 = −3a, p2 = β(b2 + 3b3λ), q1 = −
β

2a
(b2 + 3b3λ), q2 = −

1
2a

(3b3λ
2 + 2b2λ + b1). (3)

Four cases are possible.

1.1. For q2 ≠ 0 and q2
1 ≠ 4q2, we have

F (x, t) = C1 exp(k1x + s1t) + C2 exp(k2x + s2t) + C3,

kn = − 1
2 q1 � 1

2

√

q2
1 − 4q2, sn = −k2

np1 − knp2,
(4)

where C1, C2, and C3 are arbitrary constants; n = 1, 2.

1.2. For q2 ≠ 0 and q2
1 = 4q2, we have

F (x, t) = C1 exp(kx + s1t) + C2(kx + s2t) exp(kx + s1t) + C3,
k = − 1

2 q1, s1 = − 1
4 p1q

2
1 + 1

2 p2q1, s2 = − 1
2 p1q

2
1 + 1

2 p2q1.

1.3. For q2 = 0 and q1 ≠ 0,

F (x, t) = C1(x − p2t) + C2 exp[−q1x + q1(p2 − p1q1)t] + C3.

1.4. For q2 = q1 = 0,

F (x, t) = C1(x − p2t)2 + C2(x − p2t) − 2C1p1t + C3.

Example. Let
a = 1, b0 = 0, b1w + b2w

2 + b3w
3 = −bw(w − λ1)(w − λ2).

By formulas (1)–(4) with λ = 0, one can obtain the solution

w(x, t) =
C1λ1 exp(z1) + C2λ2 exp(z2)
C1 exp(z1) + C2 exp(z2) + C3

,

where
z1 =  1

2

√

2b λ1x + 1
2 bλ1(λ1 − 2λ2)t,

z2 =  1
2

√

2b λ2x + 1
2 bλ2(λ2 − 2λ1)t.

2◦. There is a traveling-wave solution, w = w(x + γt).���
References: V. G. Danilov and P. Yu. Sybochev (1991), N. A. Kudryashov (1993), P. A. Clarkson and E. L. Mansfield

(1994).

1.1.3. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (w)

1.
∂w

∂t
= a

∂2w

∂x2
+ bwk.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C2
1w( � Ck−1

1 x + C2,C2k−2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation

aw′′

zz − λw′

z + bwk = 0.

3◦. Self-similar solution:
w = t

1
1−k u(ξ), ξ =

x
√

t
,

where the function u(ξ) is determined by the ordinary differential equation

au′′ξξ +
1
2
ξu′ξ +

1
k − 1

u + buk = 0.
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 7

2.
∂w

∂t
=

∂2w

∂x2
+ aw + bwm.

Kolmogorov–Petrovskii–Piskunov equation. This equation arises in heat and mass transfer, combus-
tion theory, biology, and ecology.

1◦. Traveling-wave solutions:

w(x, t) =
[

β + C exp(λt � µx)
]

2
1−m , (1)

w(x, t) =
[

−β + C exp(λt � µx)
]

2
1−m , (2)

where C is an arbitrary constant and the parameters λ, µ, and β are given by

λ =
a(1 −m)(m + 3)

2(m + 1)
, µ =

√

a(1 −m)2

2(m + 1)
, β =

√

−
b

a
.

2◦. Solutions (1) and (2) are special cases of a wider class of solutions, the class of traveling-wave
solutions:

w = w(z), z = � µx + λt.

These are determined by the autonomous equation

µ2w′′

zz − λw′

z + aw + bwm = 0. (3)

For

µ =

√

a(m + 3)2

2(m + 1)
, λ = µ2 (m ≠ � 1, m ≠ −3)

the solution of equation (3) can be represented in parametric form as

z =
m + 3
m − 1

ln f (ζ), w = ζ
[

f (ζ)
]

2
m−1 ,

where the function f (ζ) is given by

f (ζ) = �
∫

[

C1 −
4b

a(m − 1)2 ζ
m+1

]−1/2

dζ + C2,

and C1 and C2 are arbitrary constants.

3◦. By the change of variable U (w) = µ2λ−1w′

z, equation (3) can be reduced to an Abel equation of
the second kind:

UU ′

w − U = a1w + b1w
m, a1 = −aµ2λ−2, b1 = −bµ2λ−2.

The books by Polyanin and Zaitsev (1995, 2003) present exact solutions of this equation for some
values of m and a1 (b1 is any).���

References: P. Kaliappan (1984), V. G. Danilov, V. P. Maslov, and K. A. Volosov (1995), V. F. Zaitsev and A. D. Polyanin
(1996).

3.
∂w

∂t
=

∂2w

∂x2
+ aw + bwm + cw2m–1.

This equation arises in heat and mass transfer, combustion theory, biology, and ecology.
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8 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

1◦. Traveling-wave solutions:

w(x, t) =
[

β + C exp(λt + µx)
]

1
1−m , (1)

where C is an arbitrary constant and the parameters β, λ, and µ are determined by the system of
algebraic equations

aβ2 + bβ + c = 0, (2)
µ2 − (1 −m)λ + a(1 −m)2 = 0, (3)

µ2 − λ + (1 −m)[2a + (b/β)
]

= 0. (4)

The quadratic equation (2) forβ can be solved independently. In the general case, system (2)–(4)
gives four sets of the parameters, which generate four exact solutions of the original equation.���

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

2◦. Solution (1) is a special case of a wider class of traveling-wave solutions,

w = w(z), z = x + σt,
that are determined by the autonomous equation

w′′

zz − σw′

z + aw + bwm + cw2m−1 = 0. (5)

The substitution U (w) = w′

z brings (5) to the Abel equation

UU ′

w − σU + aw + bwm + cw2m−1 = 0,

whose general solutions for some m (no constraints are imposed on a, b, and c) can be found in the
books by Polyanin and Zaitsev (1995, 2003).

3◦. The substitution
u = w1−m

leads to an equation with quadratic nonlinearity:

u
∂u

∂t
= u

∂2u

∂x2 +
m

1 −m

( ∂u

∂x

)2
+ a(1 −m)u2 + b(1 −m)u + c(1 −m). (6)

Solution (1) corresponds to a particular solution of (6) that has the form u = β +C exp(ωt+µx).
For a = 0, equation (6) has also other traveling-wave solutions:

u(x, t) = (1 −m)
(

bt �
√

−
c

m
x

)

+ C.

4.
∂w

∂t
=

∂2w

∂x2
+ awm–1 + bmwm – mb2w2m–1.

Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation

w′′

zz − λw′

z + awm−1 + bmwm −mb2w2m−1 = 0. (1)
For λ = 1, it can be shown that a one-parameter family of solutions to equation (1) satisfies the

first-order equation
w′

z = w − bwm +
a

mb
. (2)

Integrating (2) yields a solution in implicit form (A is any):
∫

dw

a +mbw −mb2wm
=

1
mb

z +A. (3)

In the special case a = 0, it follows from (3) that

w(z) =
{

C exp
[

(1 −m)z
]

+ b
}

1
1−m ,

where C is an arbitrary constant.
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 9

1.1.4. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ � 1(bx + ct)k + � 2w

n.

This is a special case of equation 1.6.1.2 with f (z,w) = s1z
k + s2w

n.

2.
∂w

∂t
= a

∂2w

∂x2
+ � (w + bx + ct)k.

This is a special case of equation 1.6.1.2 with f (z,w) = s(w + z)k.

3.
∂w

∂t
= a

∂2w

∂x2
+ � (bx + ct)kwn.

This is a special case of equation 1.6.1.2 with f (z,w) = szkwn.

4.
∂w

∂t
= a

∂2w

∂x2
+ btnxmwk.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C2n+m+2w(Ck−1x,C2k−2t),

where C is an arbitrary constant, is also a solution of the equation.

2◦. Self-similar solution:

w = t
2n+m+2
2(1−k) u(ξ), ξ =

x
√

t
,

where the function u = u(ξ) is determined by the ordinary differential equation

au′′ξξ +
1
2
ξu′ξ +

2n +m + 2
2(k − 1)

u + bξmuk = 0.

5.
∂w

∂t
= a

∂2w

∂x2
+ � ebx+ctwn.

This is a special case of equation 1.6.1.2 with f (z,w) = sezwn.

1.1.5. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (w) ∂w

∂x
+ g(w)

1.
∂w

∂t
= a

∂2w

∂x2
+ b

∂w

∂x
+ cw + k1w

n1 + k2w
n2 .

This is a special case of equation 1.6.2.3 with f (t) = b. On passing from t, x to the new variables
t, z = x + bt, one arrives at the simpler equation

∂w

∂t
= a

∂2w

∂z2 + cw + k1w
n1 + k2w

n2 ,

special cases of which are discussed in Subsections 1.1.1 to 1.1.3.

2.
∂w

∂t
=

∂2w

∂x2
+ w

∂w

∂x
.

Burgers equation. It is used for describing wave processes in gas dynamics, hydrodynamics, and
acoustics.
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10 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C1x + C1C2t + C3,C2
1 t + C4) + C2,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x, t) =
A − x
B + t

,

w(x, t) = λ +
2

x + λt +A
,

w(x, t) =
4x + 2A

x2 +Ax + 2t +B
,

w(x, t) =
6(x2 + 2t +A)

x3 + 6xt + 3Ax +B
,

w(x, t) =
2λ

1 +A exp(−λ2t − λx)
,

w(x, t) = −λ +A
exp

[

A(x − λt)] −B
exp

[

A(x − λt)
]

+B
,

w(x, t) = −λ + 2A tanh
[

A(x − λt) +B
]

,

w(x, t) =
λ

λ2t +A

[

2 tanh
(

λx +B
λ2t +A

)

− λx −B
]

,

w(x, t) = −λ + 2A tan
[

A(λt − x) +B
]

,

w(x, t) =
2λ cos(λx +A)

B exp(λ2t) + sin(λx +A)
,

w(x, t) =
2A

√

π(t + λ)
exp

[

−
(x +B)2

4(t + λ)

][

A erf
(

x +B
2
√

t + λ

)

+ C
]−1

,

where A, B, C, and λ are arbitrary constants, and erf z ≡
2
√

π

∫ z

0
exp(−ξ2) dξ is the error function

(also called the probability integral).

3◦. Other solutions can be obtained using the following formula (Hopf–Cole transformation):

w(x, t) =
2
u

∂u

∂x
, (1)

where u = u(x, t) is a solution of the linear heat equation
∂u

∂t
=
∂2u

∂x2 . (2)

For details about this equation, see the books Tikhonov and Samarskii (1990) and Polyanin (2002).���
References: E. Hopf (1950), J. Cole (1951).

Remark. The transformation (1) and equation 1.6.3.2, which is a generalized Burgers equation,
were encountered much earlier in Fortsyth (1906).

4◦. Cauchy problem. Initial condition:

w = f (x) at t = 0, −∞ < x <∞.

Solution:
w(x, t) = 2

∂

∂x
lnF (x, t),

where

F (x, t) =
1
√

4πt

∫

∞

−∞
exp

[

−
(x − ξ)2

4t
−

1
2

∫ ξ

0
f (ξ′) dξ′

]

dξ.
���

Reference: E. Hopf (1950).
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 11

5◦. The Burgers equation is connected with the linear heat equation (2) by the Bäcklund transfor-
mation

∂u

∂x
−

1
2
uw = 0,

∂u

∂t
−

1
2
∂(uw)
∂x

= 0.���
References for equation 1.1.5.2: J. M. Burgers (1948), O. V. Rudenko and C. I. Soluyan (1975), N. H. Ibragimov (1994),

V. F. Zaitsev and A. D. Polyanin (1996).

3.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
.

Unnormalized Burgers equation. The scaling of the independent variables x =
a

b
z, t =

a

b2 τ leads to
an equation of the form 1.1.5.2:

∂w

∂τ
=
∂2w

∂z2 + w
∂w

∂z
.

4.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
+ c.

The transformation
w = u(z, t) + ct, z = x + 1

2 bct
2,

leads to the Burgers equation 1.1.5.3:

∂u

∂t
= a

∂2u

∂z2 + bu
∂u

∂z
.

5.
∂w

∂t
+ σw

∂w

∂x
= a

∂2w

∂x2
+ bw.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

x − C1σe
bt + C2, t + C3

)

+ Cbebt,
where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation

aw′′

zz − σww′

z − λw′

z + bw = 0.

3◦. Degenerate solution:

w(x, t) =
b(x + C1)

σ(1 + C2e−bt)
.

6.
∂w

∂t
+ σw

∂w

∂x
= a

∂2w

∂x2
+ b1w + b0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

x − C1σe
b1t + C2, t + C3

)

+ Cb1e
b1t,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. The transformation
w = u(z, t) −

b0

b1
, z = x + σ

b0

b1
t,

leads to a simpler equation of the form 1.1.5.5:

∂u

∂t
+ σu

∂u

∂z
= a

∂2u

∂z2 + b1u.
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12 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

7.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
+

b2

9a
w(w – k)(w + k).

Solution:

w =
k(−1 + C1e

4λx)
1 + C1e4λx + C2e2λx+bkλt , λ =

bk

12a
,

where C1 and C2 are arbitrary constants.���
Private communication: K. A. Volosov (2000).

8.
∂w

∂t
+ σw

∂w

∂x
= a

∂2w

∂x2
+ b0 + b1w + b2w

2 + b3w
3.

Solutions of the equation are given by

w(x, t) =
β

z

∂z

∂x
+ λ. (1)

Here, β and λ are any of the roots of the respective quadratic and cubic equations

b3β
2 + σβ + 2a = 0,

b3λ
3 + b2λ

2 + b1λ + b0 = 0,

and the specific form of z = z(x, t) depends on the equation coefficients.

1◦. Case b3 ≠ 0. Introduce the notation:

p1 = −βσ − 3a, p2 = λσ + βb2 + 3βλb3,

q1 = −
βb2 + 3βλb3

βσ + 2a
, q2 = −

3b3λ
2 + 2b2λ + b1

βσ + 2a
.

Four cases are possible.
1.1. For q2 ≠ 0 and q2

1 ≠ 4q2, we have

z(x, t) = C1 exp(k1x + s1t) + C2 exp(k2x + s2t) + C3,

kn = − 1
2 q1 � 1

2

√

q2
1 − 4q2, sn = −k2

np1 − knp2,

where C1, C2, and C3 are arbitrary constants; n = 1, 2.
1.2. For q2 ≠ 0 and q2

1 = 4q2,

z(x, t) = C1 exp(kx + s1t) + C2(kx + s2t) exp(kx + s1t) + C3,
k = − 1

2 q1, s1 = − 1
4 p1q

2
1 + 1

2 p2q1, s2 = − 1
2 p1q

2
1 + 1

2 p2q1.

1.3. For q2 = 0 and q1 ≠ 0,

z(x, t) = C1(x − p2t) + C2 exp[−q1x + q1(p2 − p1q1)t] + C3.

1.4. For q2 = q1 = 0,

z(x, t) = C1(x − p2t)2 + C2(x − p2t) − 2C1p1t + C3.

2◦. Case b3 = 0 and b2 ≠ 0. Solutions are given by (1) with

β = −
2a
σ

, z(x, t) = C1 + C2 exp
[

Ax +A
(

b1σ

2b2
+

2ab2

σ

)

t

]

, A =
σ(b1 + 2b2λ)

2ab2
,

where λ is a root of the quadratic equation b2λ
2 + b1λ + b0 = 0.

3◦. Case b3 = b2 = 0. See equations 1.1.5.4–1.1.5.6.���
Reference: N. A. Kudryashov (1993).
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 13

9.
∂w

∂t
= a

∂2w

∂x2
+ bwm ∂w

∂x
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w
(

Cm1 x + C2, C2m
1 t + C3

)

,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, t) =
[

C exp
(

−
λm

a
z

)

+
b

λ(m + 1)

]−1/m

, z = x + λt,

where C and λ are arbitrary constants. A wider family of traveling-wave solutions is presented in
1.6.3.7 for f (w) = bwm.

3◦. There is a self-similar solution of the form

w(ξ, t) = |t|−
1

2m ϕ(ξ), ξ = x|t|−
1
2 .

1.1.6. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (x, t, w) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � wk.

This is a special case of equation 1.6.2.1 with f (w) = swk .

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−bt,

where the function w(z) is determined by the ordinary differential equation

aw′′

zz + bzw′

z + swk = 0.

2.
∂w

∂t
= a

∂2w

∂x2
+ btn ∂w

∂x
+ cw + k1w

m1 + k2w
m2 .

This is a special case of equation 1.6.2.3 with f (t) = btn. On passing from t, x to the new variables

t, z = x +
b

n + 1
tn+1, one arrives at the simpler equation

∂w

∂t
= a

∂2w

∂z2 + cw + k1w
m1 + k2w

m2 ,

special cases of which are discussed in Subsections 1.1.1 to 1.1.3.

3.
∂w

∂t
+

k

t
w + bw

∂w

∂x
= a

∂2w

∂x2
.

Modified Burgers equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w(C1x + C2,C2
1 t),

w2 = w(x − bC3t
1−k, t) + C3(1 − k)t−k if k ≠ 1,

w3 = w(x − bC3 ln |t|, t) + C3t
−1 if k = 1,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.
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14 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

2◦. Degenerate solution linear in x:

w(x, t) =
(1 − k)x + C1

C2tk + bt
if k ≠ 1,

w(x, t) =
x + C1

t(C2 + b ln |t|)
if k = 1,

where C1 and C2 are arbitrary constants.

3◦. Self-similar solution:
w(x, t) = u(z)t−1/2, z = xt−1/2,

where the function u = u(z) is determined by the ordinary differential equation

au′′zz +
( 1

2 z − bu
)

u′z +
( 1

2 − k
)

u = 0.

4.
∂w

∂t
+ bw

∂w

∂x
= a

[

1
x

∂

∂x

(

x
∂w

∂x

)

–
w

x2

]

.

Cylindrical Burgers equation. The variable x plays the role of the radial coordinate.
Solution:

w(x, t) = −
2a
b

1
θ

∂θ

∂x
,

where the function θ = θ(x, t) satisfies the linear heat equation with axial symmetry
∂θ

∂t
=
a

x

∂

∂x

(

x
∂θ

∂x

)

.
�� 

Reference: S. Nerney, E. J. Schmahl, and Z. E. Musielak (1996).

5.
∂w

∂t
+ bw

∂w

∂x
= a

∂2w

∂x2
+ cxk ∂w

∂x
+ ckxk–1w.

Solution:
w(x, t) = −

2a
b

1
θ

∂θ

∂x
,

where the function θ = θ(x, t) satisfies the linear equation

∂θ

∂t
= a

∂2θ

∂x2 + cxk
∂θ

∂x
.

6.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
+ c(x + ! t)k.

This is a special case of equation 1.6.3.2 with f (x, t) = c(x + st)k.

7.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
+ cxk + ! tn.

This is a special case of equation 1.6.3.2 with f (x, t) = cxk + stn.

8.
∂w

∂t
= a

∂2w

∂x2
+ (bx + cwk)

∂w

∂x
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−bt,

where the function w(z) is determined by the ordinary differential equation

aw′′

zz + (bz + cwk)w′

z = 0.
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 15

9.
∂w

∂t
= a

∂2w

∂x2
+ (bwm + ct + " )

∂w

∂x
.

This is a special case of equation 1.6.3.11 with f (w) = bwm, g(t) = ct + s, and h(w) = 0.
On passing from t, x to the new variables t, z = x + 1

2 ct
2 + st, we obtain an equation of the form

1.1.5.9:
∂w

∂t
= a

∂2w

∂z2 + bwm
∂w

∂z
.

10.
∂w

∂t
= a

∂2w

∂x2
+ (bwm + ctk)

∂w

∂x
.

This is a special case of equation 1.6.3.11 with f (w) = bwm, g(t) = ctk, and h(w) = 0.
On passing from t, x to the new variables t, z = x +

c

k + 1
tk+1, we obtain an equation of the

form 1.1.5.9:
∂w

∂t
= a

∂2w

∂z2 + bwm
∂w

∂z
.

11.
∂w

∂t
= a

∂2w

∂x2
+ " 1(bx + ct)kwn ∂w

∂x
+ " 2(bx + ct)pwq .

This is a special case of equation 1.6.3.13 with f (z,w) = s1z
kwn and g(z,w) = s2z

pwq .

1.1.7. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + b

(
∂w
∂x

)2
+ f (x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

.

1◦. Solutions:
w(x) =

a

b
ln |Ax +B| + C,

w(x, t) = A2bt # Ax +B,

w(x, t) = −
(x +A)2

4bt
−
a

2b
ln t +B,

w(x, t) =
a

b
ln |x2 + 2at +Ax +B| + C,

w(x, t) =
a

b
ln |x3 + 6axt +Ax +B| + C,

w(x, t) =
a

b
ln |x4 + 12ax2t + 12a2t2 +A| +B,

w(x, t) = −
a2λ2

b
t +

a

b
ln |cos(λx + A)| + B,

where A, B, C, and λ are arbitrary constants.

2◦. The substitution
w(x, t) =

a

b
ln |u(x, t)|

leads to the linear heat equation
∂u

∂t
= a

∂2u

∂x2 .

For details about this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

Page 15

© 2004 by Chapman & Hall/CRC



16 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

2.
∂w

∂t
= a

∂2w

∂x2
+ a

(

∂w

∂x

)2

+ b.

The substitution u = ew leads to the constant coefficient linear equation

∂u

∂t
= a

∂2u

∂x2 + bu.

3.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + $ .

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( % x + C1, t + C2) + C3e
ct,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solution quadratic in x:

w(x, t) =
c(x + C2)2

C1e−ct − 4b
−

2a
C1
ect ln |C1e

−ct − 4b| + C3e
ct −

s

c
.

4.
∂w

∂t
=

∂2w

∂x2
+

(

∂w

∂x

)2

+ aw2.

1◦. Solutions for a < 0:

w(x, t) = C1 exp
(

−at % x√−a
)

,

w(x, t) =
1

C1 − at
+

C2

(C1 − at)2 exp
(

−at % x√−a
)

,

where C1 and C2 are arbitrary constants. The first formula represents a multiplicative separable
solution and the second one, a generalized separable solution.

2◦. Generalized separable solution for a < 0:

w(x, t) = ϕ(t) + ψ(t)
[

A exp
(

x
√

−a
)

+B exp
(

−x
√

−a
)]

,

where A and B are arbitrary constants, and the functions ϕ(t) and ψ(t) are determined by the
autonomous system of first-order ordinary differential equations

ϕ′

t = a
(

ϕ2 + 4ABψ2), (1)
ψ′

t = a(2ϕ − 1)ψ. (2)

Dividing equation (1) by (2) termwise yields the first-order equation (2ϕ − 1)ψϕ′

ψ = ϕ2 + 4ABψ2.

3◦. Generalized separable solution for a > 0:

w(x, t) = ϕ(t) + ψ(t) cos
(

x
√

a + C
)

,

where C is an arbitrary constant, and the functions ϕ(t) and ψ(t) are determined by the autonomous
system of first-order ordinary differential equations

ϕ′

t = a
(

ϕ2 + ψ2), (3)
ψ′

t = a(2ϕ − 1)ψ. (4)

Dividing equation (3) by (4) termwise yields a first-order equation.&�'
References: V. A. Galaktionov and S. A. Posashkov (1989), V. F. Zaitsev and A. D. Polyanin (1996).

Page 16

© 2004 by Chapman & Hall/CRC



1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 17

5.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ bcw2 + ( w + k.

1◦. Generalized separable solution for c < 0:

w(x, t) = ϕ(t) + ψ(t) exp
( )
x
√

−c
)

, (1)

where the functions ϕ(t) and ψ(t) are determined by the autonomous system of first-order ordinary
differential equations

ϕ′

t = bcϕ2 + sϕ + k, (2)
ψ′

t = (2bcϕ + s − ac)ψ. (3)

The solution of system (2), (3) is given by

ϕ(t) = λ +
2bcλ + s

C1 exp
[

−(2bcλ + s)t
]

− bc
,

ψ(t) =
C1C2 exp

[

−(2bcλ + s + ac)t
]

{

C1 exp
[

−(2bcλ + s)t
]

− bc
}2 ,

where C1 and C2 are arbitrary constants and λ = λ1 and λ = λ2 are roots of the quadratic equation

bcλ2 + sλ + k = 0.

2◦. For more complicated generalized separable solutions that involve hyperbolic and trigonometric
functions of x, see equation 1.6.6.2 with f , g, h = const.*�+

References: V. A. Galaktionov and S. A. Posashkov (1989), V. F. Zaitsev and A. D. Polyanin (1996).

6.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw2 + ( tnw + ktm.

This is a special case of equation 1.6.6.2 with f = const, g = stn, and h = ktm.

1.1.8. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= a

∂2w

∂x2
+ a

(

∂w

∂x

)2

+ b
∂w

∂x
+ c.

The substitution u = ew leads to the constant coefficient linear equation

∂u

∂t
= a

∂2u

∂x2 + b
∂u

∂x
+ cu.

2.
∂w

∂t
= a

∂2w

∂x2
+ a

(

∂w

∂x

)2

+ btn ∂w

∂x
+ ctm.

This is a special case of equation 1.6.5.4 with f (x, t) = btn and g(x, t) = ctm.
The substitution u = ew leads to the linear equation

∂u

∂t
= a

∂2u

∂x2 + btn
∂u

∂x
+ ctmu.

3.
∂w

∂t
= a

∂2w

∂x2
+ btn

(

∂w

∂x

)2

+ ctmw + ( tk.

This is a special case of equation 1.6.6.1 with f (t) = btn, g(t) = ctm, and h(t) = stk.
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18 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

4.
∂w

∂t
= a

∂2w

∂x2
+ beλt

(

∂w

∂x

)2

+ ceµtw + , eνt.

This is a special case of equation 1.6.6.1 with f (t) = beλt, g(t) = ceµt, and h(t) = seνt.

5.
∂w

∂t
=

∂2w

∂x2
+

a

w

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = a/w.
The substitution

u =

{ 1
a + 1

wa+1 if a ≠ −1,

ln |w| if a = −1
leads to the constant coefficient linear equation ∂tu = ∂xxu.

6.
∂w

∂t
=

∂2w

∂x2
+ awk

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = awk. For k = 0, see equation 1.1.7.1, and for
k = −1, see equation 1.1.8.5.

The substitution

u =
∫

exp
(

a

k + 1
wk+1

)

dw

leads to the constant coefficient linear equation ∂tu = ∂xxu.

7.
∂w

∂t
=

∂2w

∂x2
+ awm

(

∂w

∂x

)2

+ (bx + ct + , )
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = awm, g(t) = b, and h(t) = ct + s.

1.1.9. Equations of the Form ∂w
∂t

= awk ∂2w
∂x2 + f

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= aw

∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−2
1 C2w(C1x + C3,C2t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) =
x2 +Ax +B
C − 2at

,

where A, B, and C are arbitrary constants.

3◦. Traveling-wave solution in implicit form:

ak2
∫

dw

λ ln |w| + C1
= kx + λt + C2,

where C1, C2, k, and λ are arbitrary constants.

4◦. For other exact solutions, see equation 1.1.9.18 with m = 1, Items 5◦ to 8◦.
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 19

2.
∂w

∂t
= aw

∂2w

∂x2
+ b.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:
w(x, t) = Ax +B + bt,

w(x, t) =
x2 +Ax +B
C − 2at

−
b

4a
(C − 2at),

where A, B, and C are arbitrary constants. The first solution is degenerate and the second one is a
generalized separable solution.

3◦. Traveling-wave solution:
w = w(z), z = kx + λt,

where k and λ are arbitrary constants, and the function w(z) is determined by the autonomous
ordinary differential equation

ak2ww′′

zz − λw′

z + b = 0.

4◦. Self-similar solution:
w = tU (ξ), ξ = x/t,

where the function U (ξ) is determined by the autonomous ordinary differential equation

aUU ′′

ξξ + ξU ′

ξ − U + b = 0.

3.
∂w

∂t
= aw

∂2w

∂x2
+ bw + c.

1◦. Generalized separable solutions:

w(x, t) = Aebtx +Bebt −
c

b
,

w(x, t) =
b(x +A)2 −Bce−bt − 2act + C

Bbe−bt − 2a
,

where A, B, and C are arbitrary constants (the first solution is degenerate).

2◦. Traveling-wave solution:
w = w(z), z = kx + λt,

where k and λ are arbitrary constants, and the function w(z) is determined by the autonomous
ordinary differential equation

ak2ww′′

zz − λw′

z + bw + c = 0.

4.
∂w

∂t
= aw

∂2w

∂x2
+ cw2 + kw + - .

This is a special case of equation 1.1.9.9 with b = 0..�/
Reference: V. A. Galaktionov and S. A. Posashkov (1989).

5.
∂w

∂t
= aw

∂2w

∂x2
+ bw2 + (ct + d)w + - t + k.

This is a special case of equation 1.6.9.3 with f (t) = ct + d and g(t) = st + k.
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20 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

6.
∂w

∂t
= aw

∂2w

∂x2
+ b

∂w

∂x
+ (ct + d)w + pt + k.

This is a special case of equation 1.6.10.2 with f (t) ≡ 0, g(t) = b, h(t) = ct + d, and s(t) = pt + k.

7.
∂w

∂t
= aw

∂2w

∂x2
–

2
3

a

(

∂w

∂x

)2

+ b.

Generalized separable solution:

w(x, t) =
1
a

[

3Ax3 + f2(t)x2 + f1(t)x + f0(t)
]

,

where A is an arbitrary constant and the functions f2(t), f1(t), and f0(t) are determined by the
system of ordinary differential equations

f ′

2 = 6Af1 − 2
3 f

2
2 ,

f ′

1 = 18Af0 − 2
3 f1f2,

f ′

0 = 2f0f2 − 2
3 f

2
1 + ab.

The general solution of this system with A ≠ 0 has the form

f2(t) = 3
∫

ϕ(t) dt + 3B, f1(t) =
1
A

[
∫

ϕ(t) dt +B
]2

+
1

2A
ϕ(t),

f0(t) =
1

9A2

[
∫

ϕ(t) dt +B
]3

+
1

6A2 ϕ(t)
[
∫

ϕ(t) dt +B
]

+
1

36A2 ϕ
′

t(t),

where the function ϕ(t) is defined implicitly by
∫

(C1 + 72A2abϕ − 8ϕ3)−1/2 dϕ = 0 t + C2,

and B, C1, and C2 are arbitrary constants.1�2
Reference: J. R. King (1993), V. A. Galaktionov (1995).

8.
∂w

∂t
= aw

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ c
∂w

∂x
+ pw + q.

This is a special case of equation 1.6.10.2 with f (t) = b, g(t) = c, h(t) = p, and s(t) = q.

9.
∂w

∂t
= aw

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw2 + kw + 3 .

1◦. Generalized separable solutions involving an exponential of x:

w(x, t) = ϕ(t) + ψ(t) exp( 0 λx), λ =
(

−c
a + b

)1/2

, (1)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations

ϕ′

t = cϕ2 + kϕ + s, (2)
ψ′

t = (aλ2ϕ + 2cϕ + k)ψ. (3)

Integrating (2) yields
∫

dϕ

cϕ2 + kϕ + s

= t + C1.

On computing the integral, one can find ϕ = ϕ(t) in explicit form. The solution of equation (3) is
expressed in terms of ϕ(t) as

ψ(t) = C2 exp
[
∫

(aλ2ϕ + 2cϕ + k) dt
]

,

where C1 and C2 are arbitrary constants.
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 21

2◦. There are also generalized separable solutions that involve hyperbolic and trigonometric func-
tions (A is an arbitrary constant):

w(x, t) = ϕ(t) + ψ(t) cosh(λx +A), λ =
(

−c
a + b

)1/2

;

w(x, t) = ϕ(t) + ψ(t) sinh(λx +A), λ =
(

−c
a + b

)1/2

;

w(x, t) = ϕ(t) + ψ(t) cos(λx +A), λ =
(

c

a + b

)1/2

.

The functions ϕ = ϕ(t) and ψ = ψ(t) are determined by autonomous systems of first-order ordinary
differential equations (these systems can be reduced to a single first-order equation each).

For details about these solutions, see Items 2◦ to 4◦ of equation 1.6.10.1 with f (t) = k and
g(t) = s.4�5

Reference: V. A. Galaktionov and S. A. Posashkov (1989).

10.
∂w

∂t
= aw2 ∂2w

∂x2
.

The substitution w = 1/v leads to an equation of the form 1.1.10.3:
∂v

∂t
= a

∂

∂x

(

1
v2
∂v

∂x

)

.

Therefore the solutions of the original equation are expressed via solutions of the linear heat equation
∂u

∂t
= a

∂2u

∂y2

by the relations

w =
∂u

∂y
, x = u.

The variable y should be eliminated to obtain w = w(x, t) in explicit form.4�5
Reference: N. H. Ibragimov (1985).

11.
∂w

∂t
= aw2 ∂2w

∂x2
+ bw2.

1◦. Suppose w(x, t) is a solution of this equation. Then the function
w1 = C2

1w(C−1
1 x + C2,C2

1 t + C3),
where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. The transformationw = 1/u, τ = at leads to an equation of the form 1.1.11.2:
∂u

∂t
=
∂

∂x

(

1
u2

∂u

∂x

)

−
b

a
.

12.
∂w

∂t
= aw2 ∂2w

∂x2
+ bw–1.

This is a special case of equation 1.1.9.19 with m = 2 and b = −1.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions
w1 = C−1

1 w( 6 C2
1x + C2,C2

1 t + C3),
where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solutions:

w(x, t) = 6
[

C1(x + C2)2 + C3 exp(2aC1t) −
b

aC1

]1/2

,

where C1, C2, and C3 are arbitrary constants.
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22 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

13.
∂w

∂t
= aw2 ∂2w

∂x2
+ bw + cw–1.

Functional separable solutions:

w(x, t) = 7
[

bC1e
2bt(x + C2)2 + C3F (t) + 2cF (t)

∫

dt

F (t)

]1/2

, F (t) = exp
(

aC1e
2bt + 2bt

)

,

where C1, C2, and C3 are arbitrary constants.

14.
∂w

∂t
= aw3 ∂2w

∂x2
.

This is a special case of equation 1.1.9.18 with m = 3.
Functional separable solution:

w(x, t) = a−1/3[3Ax3 + f2(t)x2 + f1(t)x + f0(t)
]1/3.

Here,

f2(t) = 3
∫

ϕ(t) dt + 3B, f1(t) =
1
A

[
∫

ϕ(t) dt +B
]2

+
1

2A
ϕ(t),

f0(t) =
1

9A2

[
∫

ϕ(t) dt +B
]3

+
1

6A2 ϕ(t)
[
∫

ϕ(t) dt +B
]

+
1

36A2 ϕ
′

t(t),

where the function ϕ(t) is defined implicitly by
∫

(C1 − 8ϕ3)−1/2 dϕ = 7 t + C2,

and A, B, C1, and C2 are arbitrary constants. Setting C1 = 0 in the last relation, one obtains the
function ϕ in explicit form: ϕ = − 1

2 (t + C2)−2.8�9
Reference: G. A. Rudykh and E. I. Semenov (1999).

15.
∂w

∂t
= aw3 ∂2w

∂x2
+ bw–2.

This is a special case of equation 1.1.9.19 with m = 3 and b = −2.
The substitution w = u1/3 leads to an equation of the form 1.1.9.7:

∂u

∂t
= au

∂2u

∂x2 −
2
3
a

(

∂u

∂x

)2

+ 3b.

Therefore the equation in question has a generalized separable solution of the form

w(x, t) = a−1/3[3Ax3 + f2(t)x2 + f1(t)x + f0(t)
]1/3.

16.
∂w

∂t
= aw4 ∂2w

∂x2
+ bw + cw–1.

Functional separable solutions:

w(x, t) = 7 √

ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations

ϕ′

t = 1
2 aϕ(4ϕχ − ψ2) + 2bϕ,

ψ′

t = 1
2 aψ(4ϕχ − ψ2) + 2bψ,

χ′

t = 1
2 aχ(4ϕχ − ψ2) + 2bχ + 2c.

It follows from the first two equations that ϕ = Cψ, where C is an arbitrary constant.
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1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 23

17.
∂w

∂t
= aw4 ∂2w

∂x2
+ bxmw5.

This is a special case of equation 1.6.11.1 with f (x) = bxm.

18.
∂w

∂t
= awm ∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−2/m
1 C

1/m
2 w(C1x + C3,C2t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x) = Ax +B,

w(x, t) = ( : βx + βλt +A)1/m, β =
mλ

a(1 −m)
,

w(x, t) =
[

m(x −A)2

2a(2 −m)(B − t)

]1/m

,

w(x, t) =
[

A|t +B|
m
m−2 +

m

2a(m − 2)
(x + C)2

t +B

]1/m

,

w(x, t) =
[

(x +A)2

ϕ(t)
+B(x +A)m|ϕ(t)|

m(m−3)
2

]1/m

, ϕ(t) = C +
2a(m − 2)

m
t,

where A, B, C, and λ are arbitrary constants (the first solution is degenerate).

3◦. Traveling-wave solution in implicit form:
∫

dw

λw1−m + C1
=
βx + λt + C2

aβ2(1 −m)
,

where C1, C2, β, and λ are arbitrary constants. To λ = 0 there corresponds a stationary solution,
and to C1 = 0 there corresponds the second solution in Item 2◦.

4◦. Multiplicative separable solution:

w(x, t) = (λt +A)−1/mf (x),

where λ is an arbitrary constant, and the function f = f (x) is determined by the autonomous ordinary
differential equation amf ′′

xx + λf 1−m = 0 (its solution can be written out in implicit form).

5◦. Self-similar solution:
w = w(z), z =

x
√

t
,

where the function w(z) is determined by the ordinary differential equation 2awmw′′

zzzw
′

z = 0.

6◦. Self-similar solution of a more general form:

w = tβU (ζ), ζ = xt−
mβ+1

2 ,

where β is an arbitrary constant, and the functionU =U (ζ) is determined by the ordinary differential
equation

aUmU ′′

ζζ = βU − 1
2 (mβ + 1)ζU ′

ζ .

This equation is generalized homogeneous, and, hence, its order can be reduced.
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24 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

7◦. Generalized self-similar solution:

w = e−2λtϕ(ξ), ξ = xeλmt,
where λ is an arbitrary constant, and the functionϕ = ϕ(ξ) is determined by the ordinary differential
equation

aϕmϕ′′

ξξ = λmξϕ′

ξ − 2λϕ.
This equation is generalized homogeneous, and, hence, its order can be reduced.

8◦. Solution:
w = (At +B)−1/mψ(u), u = x + k ln(At +B),

whereA,B, and k are arbitrary constants, and the functionψ =ψ(u) is determined by the autonomous
ordinary differential equation

aψmψ′′

uu = Akψ′

u −
A

m
ψ.

9◦. The substitution u = w1−m leads to the equation
∂u

∂t
= a

∂

∂x

(

u
m

1−m
∂u

∂x

)

,

which is considered in Subsection 1.1.10.

19.
∂w

∂t
= awm ∂2w

∂x2
+ bwk.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C2
1w( ; Ck−m−1

1 x + C2,C2k−2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solutions:
w = w(z), z = kx + λt,

where k and λ are arbitrary constants, and the function w(z) is determined by the autonomous
ordinary differential equation

awmw′′

zz − λw′

z + bwk = 0.

3◦. Self-similar solution for k ≠ 1:

w = t
1

1−k u(ξ), ξ = xt
k−m−1
2(1−k) ,

where the function u(ξ) is determined by the ordinary differential equation

aumu′′ξξ +
m − k + 1
2(1 − k)

ξu′ξ + buk −
1

1 − k
u = 0.

4◦. For m ≠ 1, the substitution u = w1−m leads to the equation
∂u

∂t
= a

∂

∂x

(

u
m

1−m
∂u

∂x

)

+ b(1 −m)u
k−m
1−m ,

which is considered Subsection 1.1.11.

5◦. For k = 1, the transformation

w(x, t) = ebtU (x, τ ), τ =
1
bm

ebmt + const,

leads to an equation of the form 1.1.9.18:

∂U

∂τ
= aUm

∂2U

∂x2 .

20.
∂w

∂t
= awm ∂2w

∂x2
+ bxtn ∂w

∂x
+ ctkw.

This is a special case of equation 1.6.11.4 with f (t) = btn and g(t) = ctk.
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1.1.10. Equations of the Form ∂w
∂t

= a ∂
∂x

(
wm ∂w

∂x

)

I Equations of this form admit traveling-wave solutions w = w(kx + λt).

1.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

.

This is a special case of equation 1.1.10.7 with m = 1.

1◦. Solutions:
w(x, t) = C1x + aC2

1 t + C2,

w(x, t) = −
(x + C1)2

6a(t + C2)
+

C3

|t + C2|1/3 ,

w(x, t) =
(x + C1)2

C2 − 6at
+ C3|x + C1|1/2|C2 − 6at|−5/8,

where C1, C2, and C3 are arbitrary constants.<�=
References: D. Zwillinger (1989), A. D. Polyanin and V. F. Zaitsev (2002).

2◦. Traveling-wave solution in implicit form:
w − C2 ln |w + C2| = C1x + aC2

1 t + C3.

3◦. Solution in parametric form:

x = (6at + C1)ξ + C2ξ
2 + C3,

w = −(6at + C1)ξ2 − 2C2ξ
3.

4◦. Solution in parametric form:
x = tf (ξ) + g(ξ),
w = tf ′

ξ(ξ) + g′ξ(ξ),
where the functions f = f (ξ) and g(ξ) are determined by the system of ordinary differential equations

(f ′

ξ)
2 − ff ′′

ξξ = af ′′′

ξξξ, (1)
f ′

ξg
′

ξ − fg′′ξξ = ag′′′ξξξ. (2)

The order of equation (1) can be reduced by two. Suppose a solution of equation (1) is known.
Equation (2) is linear in g and has two linearly independent particular solutions

g1 = 1, g2 = f (ξ).
The second particular solution follows from the comparison of (1) and (2). The general solution of
equation (1) can be represented in the form (see Polyanin and Zaitsev, 2003):

g(ξ) = C1 + C2f + C3

(

f

∫

ψ dξ −
∫

fψ dξ

)

,

f = f (ξ), ψ =
1

(f ′

ξ)2 exp
(

−
1
a

∫

f dξ

)

.
(3)

It is not difficult to verify that equation (1) has the following particular solutions:

f (ξ) = 6a(ξ + C)−1,

f (ξ) = Ceλξ − aλ,
(4)

where C and λ are arbitrary constants. One can see, taking into account (1) and (3), that the first
solution in (4) leads to the solution of Item 3◦. Substituting the second relation of (4) into (1), we
obtain another solution.

Remark. The above solution was obtained, with the help of the Mises transformation, from a
solution of the hydrodynamic boundary layer equation (see 9.3.1.1, Items 5◦ and 7◦).<�=

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5◦. For other solutions, see Items 4◦ to 9◦ of equation 1.1.10.7 with m = 1.
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2.
∂w

∂t
= a

∂

∂x

(

1
w

∂w

∂x

)

.

This is a special case of equation 1.1.10.7 with m = −1.
Solutions:

w(x, y) = (C1x − aC2
1 t + C2)−1,

w(x, y) = (2at + C1)(x + C2)−2,

w(x, y) =
2a(t + C1)

(x + C2)2 + C3(t + C1)2 ,

w(x, y) =
C2

1
C2 + C3 exp(aC2t − C1x)

,

w(x, y) =
C2

1
at + C2

[

C3 exp
(

−
C1x

at + C2

)

− 1 +
C1x

at + C2

]−1

,

w(x, y) =
2aC2

1 t + C2

sinh2(C1x + C3)
,

w(x, y) =
C2 − 2aC2

1 t

cosh2(C1x + C3)
,

w(x, y) =
2aC2

1 t + C2

cos2(C1x + C3)
,

where C1, C2, and C3 are arbitrary constants.>�?
References: V. V. Pukhnachov (1987), S. N. Aristov (1999).

3.
∂w

∂t
= a

∂

∂x

(

w–2 ∂w

∂x

)

.

This is a special case of equation 1.1.10.7 with m = −2.

1◦. Solutions:
w(x, t) = @ (2C1x − 2aC2

1 t + C2)−1/2,

w(x, t) = @
√

2at
x

[

ln
(

C1

x2t

)]−1/2

,

w(x, t) = @
[

C1(x + C2)2

2a
+ C3 exp(C1t)

]−1/2

,

where C1, C2, and C3 are arbitrary constants. The first solution is of the traveling-wave type, the
second is self-similar, and the third is a functional separable solution.

2◦. Introduce a new unknown z = z(x, t) by w =
∂z

∂x
and then integrate the resulting equation with

respect to x to obtain
∂z

∂t
= a

(

∂z

∂x

)−2
∂2z

∂x2 . (1)

By the hodograph transformation
x = u, z = y, (2)

equation (1) can be reduced to a linear heat equation for u = u(y, t):

∂u

∂t
= a

∂2u

∂y2 . (3)

Transformation (2) means that the dependent variable z is taken to be the independent variable, and
the independent variable x, the dependent one.
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Solutionsw =w(x, t) of the original equation are expressed via solutions u = u(y, t) of the linear
equation (3) according to

w =
(

∂u

∂y

)−1

, x = u(y, t). (4)

The variable y should be eliminated from (4) to obtain w = w(x, t) in explicit form.

3◦. The transformation

x̄ =
∫ x

x0

w(y, t) dy + a
∫ t

t0

[

w−2(x, τ )
∂w

∂x
(x, τ )

]

x=x0

dτ , t̄ = t − t0, w̄(x̄, t̄) =
1

w(x, t)
, (5)

where x0 and t0 are any numbers, leads to the linear equation

∂w̄

∂t̄
= a

∂2w̄

∂x̄2 .

The inversion of transformation (5) is given by

x =
∫ x̄

x̄0

w̄(x′, t̄) dx′ +
∫ t̄

t̄0

(

∂w̄(x̄, t′)
∂x̄

)

x̄=x̄0

dt′, t = t̄ − t̄0, w(x, t) =
1

w̄(x̄, t̄)
.

A�B
References: M. L. Storm (1951), G. W. Bluman and S. Kumei (1980), A. Munier, J. R. Burgan, J. Gutierres, E. Fijalkow,

and M. R. Feix (1981), N. H. Ibragimov (1985).

4.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

.

This is a special case of equation 1.1.10.7 with m = −4/3 (the equation admits more invariant
solutions than for m ≠ −4/3).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 =
|A1B2 −A2B1|3/2C

−3/4
1

(A2x +B2)3 w

(

A1x +B1

A2x +B2
, C1t + C2

)

,

where A1, A2, B1, B2, C1, and C2 are arbitrary constants (A1B2 − A2B1 ≠ 0), is also a solution of
the equation.A�B

References: L. V. Ovsiannikov (1959, 1982).

2◦. Solutions:
w(x, t) = ( C 2C1x − 3aC2

1 t + C2)−3/4,

w(x, t) = (at + C1)3/4[(x + C2)(C3x + C2C3 + 1)]−3/2,

w(x, t) = ( C 2C1x
3 + C2x

4 − 3aC2
1x

4t)−3/4,

w(x, t) =
[

(x + C1)2

a(t + C2)
+ C3(t + C2)2

]−3/4

,

w(x, t) =
[

(x + C1)2

a(t + C2)
+ C3(t + C2)2(x + C1)4

]−3/4

,

where C1, C2, and C3 are arbitrary constants. The first solution is of the traveling-wave type, the
second is a solution in multiplicative separable form, and the other are functional separable solutions.

3◦. Functional separable solution:

w(x, t) =
[

ϕ4(t)x4 + ϕ3(t)x3 + ϕ2(t)x2 + ϕ1(t)x + ϕ0(t)
]−3/4,
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where the functions ϕk = ϕk(t) are determined by the system of ordinary differential equations

ϕ′

0 = −a 3
4ϕ

2
1 + 2aϕ0ϕ2,

ϕ′

1 = −aϕ1ϕ2 + 6aϕ0ϕ3,

ϕ′

2 = −aϕ2
2 + 3

2aϕ1ϕ3 + 12aϕ0ϕ4,
ϕ′

3 = −aϕ2ϕ3 + 6aϕ1ϕ4,

ϕ′

4 = − 3
4aϕ

2
3 + 2aϕ2ϕ4.

The prime denotes a derivative with respect to t.D�E
References: V. A. Galaktionov (1995), G. A. Rudykh and E. I. Semenov (1998).

4◦. There are exact solutions of the following forms:

w(x, t) = x−3F (y), y = t −
1
x

;

w(x, t) = x−3G(z), z =
tx2

(x + 1)2 .
D�E

Reference: N. H. Ibragimov (1994).

5◦. For other solutions, see equation 1.1.10.7 with m = −4/3.

5.
∂w

∂t
= a

∂

∂x

(

w–2/3 ∂w

∂x

)

.

This is a special case of equation 1.1.10.7 with m = −2/3.

1◦. Solution:
w = (C − 4at)3/2[(C − 4at)3/2 − x2]−3/2.

2◦. The transformation
t = τ , x = v, w = 1/u,

where ∂v
∂ξ

= u, leads to an equation of the form 1.1.10.4:

∂u

∂τ
= a

∂

∂ξ

(

u−4/3 ∂u

∂ξ

)

.
D�E

References: A. Munier, J. R. Burgan, J. Gutierres, E. Fijalkow, and M. R. Feix (1981), J. R. Burgan, A. Munier,
M. R. Feix, and E. Fijalkow (1984), I. Sh. Akhatov, R. K. Gazizov, and N. H. Ibragimov (1989), N. H. Ibragimov (1994).

6.
∂w

∂t
= a

∂

∂x

(

w–3/2 ∂w

∂x

)

.

1◦. Functional separable solution:

w(x, t) = a2/3[3Ax3 + f2(t)x2 + f1(t)x + f0(t)
]−2/3.

Here,

f2(t) = 3
∫

ϕ(t) dt + 3B, f1(t) =
1
A

[
∫

ϕ(t) dt +B
]2

+
1

2A
ϕ(t),

f0(t) =
1

9A2

[
∫

ϕ(t) dt +B
]3

+
1

6A2 ϕ(t)
[
∫

ϕ(t) dt +B
]

+
1

36A2 ϕ
′

t(t),

where the function ϕ(t) is defined implicitly by
∫

(C1 − 8ϕ3)−1/2 dϕ = F t + C2,

and A, B, C1, and C2 are arbitrary constants. Setting C1 = 0 in this relation, we find ϕ in explicit
form: ϕ = − 1

2 (t + C2)−2.

2◦. For other solutions, see equation 1.1.10.7 with m = −3/2.
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7.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

.

This equation often occurs in nonlinear problems of heat and mass transfer, combustion the-
ory, and flows in porous media. For example, it describes unsteady heat transfer in a qui-
escent medium with the heat diffusivity being a power-law function of temperature. For m =
1, −1, −2, −4/3, −2/3, −3/2, see also equations 1.1.7.1 to 1.1.7.6.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C2x + C3,Cm1 C
2
2 t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:*

w(x) = (Ax +B)
1

m+1 ,

w(x, t) = ( G kx + kλt +A)1/m, k=λm/a,

w(x, t) =
[

m(x −A)2

2a(m + 2)(B − t)

]

1
m

,

w(x, t) =
[

A|t +B|−
m
m+2 −

m

2a(m + 2)
(x + C)2

t +B

]

1
m

,

w(x, t) =
[

m(x +A)2

ϕ(t)
+B|x +A|

m
m+1 |ϕ(t)|−

m(2m+3)
2(m+1)2

]

1
m

, ϕ(t) = C − 2a(m + 2)t,

where A, B, C, and λ are arbitrary constants. The third solution for B > 0 and the fourth solution
for B < 0 correspond to blow-up regimes (the solution increases without bound on a finite time
interval).

Example. A solution satisfying the initial and boundary conditions

w = 0 at t = 0 (x > 0),

w = kt1/m at x = 0 (t > 0),

is given by

w(x, t) =
{
k(t − x/λ)1/m for 0 ≤ x ≤ λt,
0 for x > λt,

where λ =
√
akm/m.H�I

References: Ya. B. Zel’dovich and A. S. Kompaneets (1950), G. I. Barenblatt (1952), A. A. Samarskii, V. A. Galaktionov,
S. P. Kurdyumov, and A. P. Mikhailov (1995), G. A. Rudykh and E. I. Semenov (1998).

3◦. Traveling-wave solutions:
w = w(z), z = G x + λt,

where the function w(z) is defined implicitly by

a

∫

wm dw

λw + C1
= C2 + z,

and λ, C1, and C2 are arbitrary constants. To λ = 0 there corresponds a stationary solution, and to
C1 = 0 there corresponds the second solution in Item 2◦.

* For the sake of brevity, here and henceforth, exact solutions of nonlinear equations are given only for the domain of
their spatial localization, where w J 0.
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4◦. Multiplicative separable solution:

w(x, t) = (λt +A)−1/mf (x), (1)

where the function f = f (x) is defined implicitly by
∫

fm df
√

C1 − bfm+2
= K x + C2, b =

2λ
am(m + 2)

,

and λ, C1, and C2 are arbitrary constants.

5◦. Self-similar solution:

w = w(z), z =
x
√

t
(0 ≤ x <∞),

where the function w(z) is determined by the ordinary differential equation

2a
(

wmw′

z

)

′

z
+ zw′

z = 0. (2)

Solution of this sort usually describe situations where the unknown function assumes constant
values at the initial and boundary conditions.

To the particular solution of equation (2) withw(z) = k2z
2/m there corresponds the third solution

in Item 2◦.
Fujita (1952) obtained the general solution of equation (2) for m = −1 and m = −2; see also the

book by Lykov (1967).
With the boundary conditions

w = 1 at z = 0, w = 0 at z =∞

the solution of equation (2) is localized and has the structure

w =

{

(1 − Z)1/m P (1 − Z, m)
P (1, m)

for 0 ≤ Z ≤ 1,

0 for 1 ≤ Z <∞,

where

Z =
z

z0
, z2

0 =
2a

mP (1, m)
, P (ξ, m) =

∞
∑

k=0

bkξ
k,

b0 = 1, b1 = − 1
2 [m(m + 1)]−1, . . . ; see Samarskii and Sobol’ (1963).

6◦. Self-similar solution:

w = t−
1

m+2 F (ξ), ξ = xt−
1

m+2 (0 ≤ x <∞).

Here, the function F = F (ξ) is determined by the first-order ordinary differential equation

a(m + 2)FmF ′

ξ + ξF = C, (3)

where C is an arbitrary constant.
ToC = 0 in (3) there corresponds the fourth solution in Item 2◦, which describes the propagation

of a thermal wave coming from a plane source. For details, see the book by Zel’dovich and Raiser
(1966).

Performing the change of variable ϕ = Fm in equation (3), one obtains

ϕ′

ξ = αϕ−1/m − βξ, (4)

where α = mC
a(m+2) and β = m

a(m+2) . The books by Polyanin and Zaitsev (1995, 2003) present general
solutions of equation (4) for m = −1 and m = 1.
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7◦. Self-similar solution of a more general form:

w = tβg(ζ), ζ = xt−
mβ+1

2 , β is any.

Here, the function g = g(ζ) is determined by the ordinary differential equation

G′′

ζζ = A1ζG
− m
m+1 G′

ζ +A2G
1

m+1 , G = gm+1, (5)

whereA1 = −(mβ + 1)/(2a) andA2 = β(m+ 1)/a. This equation is homogeneous, and, therefore, its
order can be reduced (and then it can be transformed to an Abel equation of the second kind). Exact
analytical solutions of equation (5) for various values of m can be found in Polyanin and Zaitsev
(2003).

8◦. Generalized self-similar solution:

w = e−2λtϕ(u), u = xeλmt, λ is any,

where the function ϕ = ϕ(u) is determined by the ordinary differential equation

a(ϕmϕ′

u)′u = λmuϕ′

u − 2λϕ. (6)

This equation is homogeneous, and, hence, its order can be reduced (and then it can be transformed
to an Abel equation of the second kind). The substitution Φ = ϕm+1 brings (6) to an equation that
coincides, up to notation, with (5).

9◦. Solution:
w = (t +A)−1/mψ(u), u = x + b ln(t +A), A, b are any,

where the function ψ = ψ(u) is determined by the autonomous ordinary differential equation

a(ψmψ′

u)′u = bψ′

u − ψ/m. (7)

Introduce the new dependent variable p(ψ) =
a

b
ψmψ′

u. Taking into account the identity
d

du
=

b

a
ψ−mp

d

dψ
, we arrive at an Abel equation of the second kind:

pp′ψ = p − sψm+1, s = a/(mb2).

The general solutions of this equation withm = −3, −2, − 3
2 , −1 can be found in Polyanin and Zaitsev

(2003).

10◦+. Unsteady point source solution with a = 1:

w(x, t) =







At−1/(m+2)
(

η2
0 −

x2

t2/(m+2)

)1/m

for |x| ≤ η0t
1/(m+2),

0 for |x| > η0t
1/(m+2),

where

A =
[

m

2(m + 2)

]1/m

, η0 =
[

Γ(1/m + 3/2)
A
√

π Γ(1/m + 1)
E0

]m/(m+2)

, Γ(z) =
∫

∞

0
e−ξξz−1 dξ,

with Γ(z) being the gamma function.
The above solution satisfies the initial condition

w(x, 0) = E0δ(x),

where δ(x) is the Dirac delta function, and the condition of conservation of energy
∫

∞

−∞
w(x, t) dx = E0 > 0.

L�M
Reference: A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).
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11◦. The transformation

˜t = t − t0, x̃ =
∫ x

x0

w(y, t) dy + a
∫ t

t0

[

wm(x, τ )
∂w

∂x
(x, τ )

]

x=x0

dτ , w̃(x̃, ˜t) =
1

w(x, t)

takes a nonzero solution w(x, t) of the original equation to a solution w̃(x̃, ˜t) of a similar equation

∂w̃

∂˜t
= a

∂

∂x̃

(

w̃−m−2 ∂w̃

∂x̃

)

.
N�O

References for equation 1.1.10.7: L. V. Ovsiannikov (1959, 1962, 1982), N. H. Ibragimov (1994), A. A. Samarskii,
V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

1.1.11. Equations of the Form ∂w
∂t

= a ∂
∂x

(
wm ∂w

∂x

)
+ bwk

I Equations of this form admit traveling-wave solutions w = w(kx + λt).

1.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ b.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C−1
1 w( P C1x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solutions linear and quadratic in x:

w(x, t) = C1x + (aC2
1 + b)t + C2,

w(x, t) = −
(x + C2)2

6a(t + C1)
+ C3|t + C1|−1/3 +

3
4
b(t + C1),

where C1, C2, and C3 are arbitrary constants. The first solution is degenerate.

3◦. Traveling-wave solution in implicit form:

a

∫

u du

au2 − C1u + b
= − ln | P x + C1t + C2| + C3, u =

w

P x + C1t + C2
.

4◦. For other solutions, see equation 1.1.11.11 with m = 1 and k = 0.

2.
∂w

∂t
=

∂

∂x

(

w–2 ∂w

∂x

)

+ b.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C1w( P C1x + C2,C−1
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. The transformation

x = −
2
bu

∂u

∂y
, w(x, t) = −

b

2

[

∂

∂y

(

1
u

∂u

∂y

)]−1

(1)

leads to the equation

∂

∂y

(

Φ
∂Ψ

∂y

)

= 0, where Φ =
[

∂

∂y

(

1
u

∂u

∂y

)]−1

, Ψ =
1
u

(

∂u

∂t
−
∂2u

∂y2

)

.

It follows that any solution u = u(x, t) of the linear heat equation

∂u

∂t
−
∂2u

∂y2 = 0 (2)

generates a solution (1) of the original nonlinear equation.N�O
Reference: V. A. Dorodnitsyn and S. R. Svirshchevskii (1983).
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3.
∂w

∂t
= a

∂

∂x

(

w–2 ∂w

∂x

)

– bw3.

Functional separable solutions:

w(x, t) = Q
[

C1(x + C2)2 + C3 exp(2aC1t) −
b

aC1

]−1/2

,

where C1, C2, and C3 are arbitrary constants.

4.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ bw–1/3.

1◦. For ab > 0, the transformation

w(x, t) = exp( Q 3λx)z(ξ, t), ξ =
1

2λ
exp( Q 2λx), λ =

(

b

3a

)1/2

,

leads to a simpler equation of the form 1.1.10.4:
∂z

∂t
= a

∂

∂ξ

(

z−4/3 ∂z

∂ξ

)

. (1)
R�S

References: N. H. Ibragimov (1994), A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

2◦. For ab < 0, the transformation

w(x, t) =
z(ξ, t)

cos3(λx)
, ξ =

1
λ

tan(λx), λ =
(

−
b

3a

)1/2

,

also leads to equation 1.1.10.4.

3◦. Multiplicative separable solution:

w(x, t) = (t + C)3/4u(x),

whereC is an arbitrary constant, and the functionu =u(x) is determined by the autonomous ordinary
differential equation

a(u−4/3u′x)′x + bu−1/3 − 3
4u = 0.

4◦. See also equation 1.1.12.6 with b = c = 0.

5.
∂w

∂t
= a

∂

∂x

(

w–3/2 ∂w

∂x

)

+ bw5/2.

1◦. Functional separable solution:

w(x, t) = a2/3[3Ax3 + f2(t)x2 + f1(t)x + f0(t)
]−2/3.

Here,

f2(t) = 3
∫

ϕ(t) dt + 3B, f1(t) =
1
A

[
∫

ϕ(t) dt +B
]2

+
1

2A
ϕ(t),

f0(t) =
1

9A2

[
∫

ϕ(t) dt +B
]3

+
1

6A2 ϕ(t)
[
∫

ϕ(t) dt +B
]

+
1

36A2 ϕ
′

t(t),

where the function ϕ(t) is defined implicitly by
∫

(C1 − 108A2abϕ − 8ϕ3)−1/2 dϕ = t + C2,

and A, B, C1, and C2 are arbitrary constants.

2◦. For other solutions, see equations 1.1.11.9 and 1.1.11.11 with m = −3/2.

3◦. The substitution w = u−2/3 leads to an equation of the form 1.1.9.7:

∂u

∂t
= au

∂2u

∂x2 −
2
3
a

(

∂u

∂x

)2

−
3
2
b.
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6.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ cw7/3.

This is a special case of equation 1.1.12.5 with b = 0. See also equation 1.1.11.11 with m = −4/3
and k = 7/3.

7.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bw.

1◦. Solutions:

w(x, t) = ebt(Ax +B)
1

m+1 ,

w(x, t) = ebt
( T

λm

a
x +

λ2

ab
ebmt +A

)

1
m

,

w(x, t) = ebt
[

bm2(x −A)2

2a(m + 2)(B − ebmt)

]

1
m

,

w(x, t) =
[

A exp
(

2bmt
m + 2

)

−
bm2(x +B)2

2a(m + 2)

]

1
m

,

w(x, t) = ebt
[

A|ebmt +B|−
m
m+2 −

bm2

2a(m + 2)
(x + C)2

ebmt +B

]

1
m

,

where A, B, C, and λ are arbitrary constants.

2◦. By the transformation

w(x, t) = ebtv(x, τ ), τ =
1
bm

ebmt + const

the original equation can be reduced to an equation of the form 1.1.10.7:
∂v

∂τ
= a

∂

∂x

(

vm
∂v

∂x

)

.

3◦. See also equation 1.1.11.11 with k = 1.U�V
Reference: L. K. Martinson and K. B. Pavlov (1972).

8.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bwm+1.

1◦. Multiplicative separable solution (a = b = 1, m > 0):

w(x, t) =















[

2(m + 1)
m(m + 2)

cos2(πx/L)
(t0 − t)

]1/m

for |x| ≤
L

2
,

0 for |x| >
L

2
,

(1)

where L = 2π(m + 1)1/2/m. Solution (1) describes a blow-up regime that exists on a limited time
interval t W [0, t0). The solution is localized in the interval |x| < L/2.U�V

References: N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov and A. A. Samarskii (1976), A. A. Samarskii,
V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

2◦. Multiplicative separable solution:

w(x, t) =
(

Aeµx +Be−µx +D
mλt + C

)1/m

,

B =
λ2(m + 1)2

4b2A(m + 2)2 , D = −
λ(m + 1)
b(m + 2)

, µ = m

√

−
b

a(m + 1)
,

where A, C, and λ are arbitrary constants, ab(m + 1) < 0.
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3◦. Multiplicative separable solution (C and λ are arbitrary constants):

w(x, t) = (mλt + C)−1/mϕ(x),

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

a(ϕmϕ′

x)′x + bϕm+1 + λϕ = 0. (2)

Equation (2) has the following solution in implicit form:
∫

ϕm
[

A −
2λ

a(m + 2)
ϕm+2 −

b

a(m + 1)
ϕ2m+2

]−1/2

dϕ = X x +B,

where A and B are arbitrary constants.

4◦. Functional separable solution [it is assumed that ab(m + 1) < 0]:

w(x, t) =
[

f (t) + g(t)eλx
]1/m, λ = X m

√

−b
a(m + 1)

,

where the functions f = f (t) and g = g(t) are determined by the autonomous system of ordinary
differential equations

f ′

t = bmf 2, g′t =
bm(m + 2)
m + 1

fg.

Integrating yields

f (t) = (C1 − bmt)−1, g(t) = C2(C1 − bmt)−
m+2
m+1 ,

where C1 and C2 are arbitrary constants.

5◦. Functional separable solution (A and B are arbitrary constants):

w(x, t) =
[

f (t) + g(t)(Aeλx +Be−λx)
]1/m, λ = m

√

−b
a(m + 1)

, (3)

where the functions f = f (t) and g = g(t) are determined by the autonomous system of ordinary
differential equations

f ′

t = bmf 2 +
4bmAB
m + 1

g2, g′t =
bm(m + 2)
m + 1

fg. (4)

On eliminating t from this system, one obtains a homogeneous first-order equation:

f ′

g =
m + 1
m + 2

f

g
+

4AB
m + 2

g

f
. (5)

The substitution ζ = f/g leads to a separable equation. Integrating yields the solution of equation (5)
in the form

f = X g(4AB + C1g
− 2
m+2

)

1
2 , C1 is any.

Substituting this expression into the second equation of system (4), one obtains a separable equation
for g = g(t).

6◦. The functional separable solutions

w(x, t) =
[

f (t) + g(t) cosh(λx)
]1/m,

w(x, t) =
[

f (t) + g(t) sinh(λx)
]1/m

are special cases of formula (3) with A = 1
2 , B = 1

2 and A = 1
2 , B = − 1

2 , respectively.
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7◦. Functional separable solution [it is assumed that ab(m + 1) > 0]:

w(x, t) =
[

f (t) + g(t) cos(λx + C)
]1/m, λ = m

√

b

a(m + 1)
,

where the functions f = f (t) and g = g(t) are determined by the autonomous system of ordinary
differential equations

f ′

t = bmf 2 +
bm

m + 1
g2, g′t =

bm(m + 2)
m + 1

fg,

which coincides with system (4) for AB = 1
4 .Y�Z

References for equation 1.1.11.8: M. Bertsch, R. Kersner, and L. A. Peletier (1985), V. A. Galaktionov and S. A. Posash-
kov (1989), V. F. Zaitsev and A. D. Polyanin (1996).

9.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bw1–m.

This is a special case of equation 1.1.11.11 with k = 1 − m.
Functional separable solution:

w(x, t) =
[

1
F

(x +A)2 +B|F |−
m
m+2 −

bm2

4a(m + 1)
F

]1/m

,

F = F (t) = C −
2a(m + 2)

m
t,

where A, B, and C are arbitrary constants.Y�Z
Reference: R. Kersner (1978).

10.
∂w

∂t
= a

∂

∂x

(

w2n ∂w

∂x

)

+ bw1–n.

This is a special case of equation 1.1.11.11 with m = 2n and k = 1 − n.
Generalized traveling-wave solution:

w(x, t) =
[ [

x + C1
√

C2 − kt
−

bn2

3a(n + 1)
(C2 − kt)

]1/n

, k =
2a(n + 1)

n
,

where C1 and C2 are arbitrary constants.

11.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bwk.

This is a special case of equation 1.6.15.2 with f (w) = awm and g(w) = bwk. For b = 0, see
Subsection 1.1.10.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w(

[
Ck−m−1

1 x + C2,C2k−2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. A space-homogeneous solution and a stationary solution are given by (the latter is written out
in implicit form):

w(t) =

{

[

(1 − k)bt + C
]

1
1−k if k ≠ 1,

Cebt if k = 1,
∫

wm
[

A −
2b

a(m + k + 1)
wm+k+1

]−1/2

dw =
[
x +B,

where A, B, and C are arbitrary constants.
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3◦. Traveling-wave solutions:
w = w(z), z = \ x + λt,

where the function w(z) is determined by the autonomous ordinary differential equation

a(wmw′

z)′z − λw′

z + bwk = 0. (1)

The substitution
u(w) =

a

λ
wmw′

z

brings (1) to the Abel equation
uu′w − u = −abλ−2wm+k . (2)

The book by Polyanin and Zaitsev (2003) presents exact solutions of equation (2) with m + k =
−2, −1, − 1

2 , 0, 1.

4◦. Self-similar solution for k ≠ 1:

w = t
1

1−k u(ξ), ξ = xt
k−m−1
2(1−k) ,

where the function u(ξ) is determined by the ordinary differential equation

a(umu′ξ)
′

ξ +
m − k + 1
2(1 − k)

ξu′ξ + buk −
1

1 − k
u = 0.

]�^
Reference: V. A. Dorodnitsyn (1982).

1.1.12. Equations of the Form
∂w
∂t

= a ∂
∂x

(
wm ∂w

∂x

)
+ bw + c1w

k1 + c2w
k2 + c3w

k3

I Equations of this form admit traveling-wave solutions w = w(kx + λt).

1.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ bw + c.

For c = 0, see equation 1.1.11.7.
Generalized separable solutions linear and quadratic in x:

w(x, t) = C1xe
bt + C2e

bt +
aC2

1
b
e2bt −

c

b
,

w(x, t) =
bebt(x + C2)2

ϕ(t)
+ C3

ebt

ϕ1/3(t)
+

cebt

ϕ1/3(t)

∫

e−btϕ1/3(t)dt, ϕ(t) = C1 − 6aebt,

where C1, C2, and C3 are arbitrary constants. The first solution is degenerate.

2.
∂w

∂t
= a

∂

∂x

(

w–2 ∂w

∂x

)

– bw – cw3.

Functional separable solutions for b ≠ 0:

w(x, t) = \
[

bC1e
2bt(x + C2)2 + C3F (t) + 2cF (t)

∫

dt

F (t)

]−1/2

, F (t) = exp
(

aC1e
2bt + 2bt

)

,

where C1, C2, and C3 are arbitrary constants.
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3.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ bw–1/3 + cw.

1◦. Multiplicative separable solutions:

w(x, t) = ect
(

Aekx +Be−kx)−3 if b/(3a) = k2 > 0,

w(x, t) = ect
[

A cos(kx) +B sin(kx)
]−3 if b/(3a) = −k2 < 0,

where A and B are arbitrary constants.
2◦. The transformation

w = ectu(x, τ ), τ = −
3
4c
e− 4

3 ct + const

leads to a simpler equation of the form 1.1.11.4:
∂u

∂τ
= a

∂

∂x

(

u−4/3 ∂u

∂x

)

+ bu−1/3.

4.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ bw + cw5/3.

Functional separable solution:

w(x, t) =
[

ϕ(t)x2 + ψ(t)x + χ(t)
]−3/2,

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations

ϕ′

t = 1
2 aϕ(4ϕχ − ψ2) − 2

3 bϕ,

ψ′

t = 1
2 aψ(4ϕχ − ψ2) − 2

3 bψ,

χ′

t = 1
2 aχ(4ϕχ − ψ2) − 2

3 bχ − 2
3 c.

It follows from the first two equations that ϕ = Cψ, where C is an arbitrary constant.

5.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ bw + cw7/3.

Functional separable solution:

w(x, t) =
[

ϕ4(t)x4 + ϕ3(t)x3 + ϕ2(t)x2 + ϕ1(t)x + ϕ0(t)
]−3/4,

where the functions ϕk = ϕk(t) are determined by the system of ordinary differential equations
ϕ′

0 = − 3
4aϕ

2
1 + 2aϕ0ϕ2 − 4

3 bϕ0 − 4
3 c,

ϕ′

1 = −aϕ1ϕ2 + 6aϕ0ϕ3 − 4
3 bϕ1,

ϕ′

2 = −aϕ2
2 + 3

2aϕ1ϕ3 + 12aϕ0ϕ4 − 4
3 bϕ2,

ϕ′

3 = −aϕ2ϕ3 + 6aϕ1ϕ4 − 4
3 bϕ3,

ϕ′

4 = − 3
4aϕ

2
3 + 2aϕ2ϕ4 − 4

3 bϕ4.
The prime denotes a derivative with respect to t._�`

Reference: V. A. Galaktionov (1995).

6.
∂w

∂t
=

∂

∂x

(

w–4/3 ∂w

∂x

)

– aw–1/3 + bw7/3 + cw.

The substitution u = w−4/3 leads to an equation with quadratic nonlinearity:

∂u

∂t
= u

∂2u

∂x2 −
3
4

(

∂u

∂x

)2

+
4
3
(

au2 − cu − b
)

.

1◦. For a = 1, there is a solution of the form
u = ϕ1(t) + ϕ2(t) cos(kx) + ϕ3(t) sin(kx) + ϕ4(t) cos(2kx) + ϕ5(t) sin(2kx), k = 2 × 3−1/2,

where the functions ϕn = ϕn(t) are determined by the system of first-order ordinary differential
equations (not written out here).
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2◦. For a = −1, there is a solution of the form

u = ϕ1(t) + ϕ2(t) cosh(kx) + ϕ3(t) sinh(kx) + ϕ4(t) cosh(2kx) + ϕ5(t) sinh(2kx), k = 2 × 3−1/2.a�b
Reference: V. A. Galaktionov (1995).

7.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bwm+1 + cw.

1◦. Multiplicative separable solutions:

w(x, t) = ect
[

A cos(kx) +B sin(kx)
]

1
m+1 if b(m + 1)/a = k2 > 0,

w(x, t) = ect
[

A exp(kx) +B exp(−kx)
]

1
m+1 if b(m + 1)/a = −k2 < 0,

where A and B are arbitrary constants.

2◦. The transformation
w = ectu(x, τ ), τ =

1
cm

ecmt + const

leads to a simpler equation of the form 1.1.11.8:

∂u

∂τ
= a

∂

∂x

(

um
∂u

∂x

)

+ bum+1.

Special case. Multiplicative separable solution for m = −1:

w = A exp
(
ct −

b

2a
x

2 + Bx
)

,

where A and B are arbitrary constants.

8.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ b + cw–m.

Functional separable solution:

w =
[

c(m + 1)t −
b(m + 1)

2a
x2 + C1x + C2

]

1
m+1

,

where C1 and C2 are arbitrary constants.

9.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bw + cw1–m.

1◦. Generalized traveling-wave solution:

w(x, t) =
(

C1e
bmtx +

a

bm2 e
2bmt + C2e

bmt −
c

b

)1/m

,

where C1 and C2 are arbitrary constants.

2◦. For a more complicated solution, see 1.6.13.4 with f (t) = b and g(t) = c.a�b
Reference: V. A. Galaktionov and S. A. Posashkov (1989).

10.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bw1+m + cw + c w1–m.

This is a special case of equation 1.6.13.5 with f (t) = c and g(t) = s.
The substitution u = wm leads to an equation of the form 1.1.9.9:

∂u

∂t
= au

∂2u

∂x2 +
a

m

(

∂u

∂x

)2

+ bmu2 + cmu + sm.
a�b

Reference: V. A. Galaktionov and S. A. Posashkov (1989).
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11.
∂w

∂t
= a

∂

∂x

(

w2n ∂w

∂x

)

+ bw + cw1–n.

Generalized traveling-wave solutions:

w(x, t) =
[

ϕ(t)( d x + C1) + cnϕ(t)
∫

dt

ϕ(t)

]1/n

, ϕ(t) =
[

C2e
−2bnt −

a(n + 1)
bn2

]−1/2

,

where C1 and C2 are arbitrary constants.

12.
∂w

∂t
= a

∂

∂x

(

wn ∂w

∂x

)

+ bw + ck + bkwn+1 + cw–n.

Functional separable solutions:

w(x, t) =
{

exp
[

b(n + 1)t
][

C1 cos
(

x
√

λ
)

+ C2 sin
(

x
√

λ
)]

−
c

b

}

1
n+1

if λ > 0,

w(x, t) =
{

exp
[

b(n + 1)t
][

C1 cosh
(

x
√

|λ|
)

+ C2 sinh
(

x
√

|λ|
)]

−
c

b

}

1
n+1

if λ < 0,

where C1 and C2 are arbitrary constants and λ =
bk

a
(n + 1).e�f

Reference: V. A. Galaktionov (1994).

1.1.13. Equations of the Form ∂w
∂t

= ∂
∂x

[
f (w) ∂w

∂x

]
+ g(w)

I Equations of this form admit traveling-wave solutions w = w(kx + λt).

1.
∂w

∂t
=

∂

∂x

[

(aw2 + bw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = aw2 + bw.
Solutions:

w(x, t) = d √

2C1x + 2aC2
1 t + C2 −

b

a
,

w(x, t) = d x + C1
√

C2 − 4at
−
b

2a
,

where C1 and C2 are arbitrary constants. The first solution is of the traveling-wave type and the
second one is self-similar.

2.
∂w

∂t
=

∂

∂x

(

a

w2 + b2

∂w

∂x

)

.

This is a special case of equation 1.6.15.1 with f (w) = a(w2 + b2)−1.

1◦. Solutions (A and B are arbitrary constants):

w(x) = b tan(Ax +B),

w(x, t) = d bx(A − 2ab−2t − x2)−1/2,

w(x, t) = Ab exp(ab−2t − x)
{

1 −A2 exp
[

2(ab−2t − x)
]}−1/2.

2◦. Traveling-wave solution in implicit form:

λ(kx + λt) +B =
ak2

A2 + b2

[

ln |w +A| −
1
2

ln(w2 + b2) +
A

b
arctan

w

b

]

,

where A, B, k, and λ are arbitrary constants.
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3◦. The substitution

w =
bu

√

1 − u2
(1)

leads to the equation
∂u

∂t
=
a

b2

[

(1 − u2)
∂2u

∂x2 + u
(

∂u

∂x

)2]

, (2)

which is a special case of 8.1.2.12 with F (t, ξ, η) = ab−2(ξ − η). Equation (2) has multiplicative
separable solutions

u =
Aeλx +Be−λx
√

4AB + Ce−kt
, k =

2aλ2

b2 ;

u =
A sin(λx) +B cos(λx)
√

A2 +B2 + Cekt
, k =

2aλ2

b2 ,
(3)

where A, B, C, and λ are arbitrary constants. Formulas (1) and (3) provide two solutions of the
original equation.g�h

Reference: P. W. Doyle and P. J. Vassiliou (1998); see also Example 10 in Subsection S.5.3.

4◦. Solution:

w = b tan
( i

1
2
z

i
a

b2 t + C
)

,

z = x2 cos−2
( i

1
2
z − arctan

(

ψ(z)
)

i
a

b2 t + C
)

,

whereC is an arbitrary constant and the functionψ = ψ(z) is determined by the ordinary differential
equation

ψ′

z =
1
2

(1 + ψ2)
( i

1 −
ψ

z

)

.

Here the function z = z(x, t) is defined implicitly.

5◦. Solution:

w = b tan
(

ϕ(z) + arctan
(

ψ(z)
)

+
C

2
ln
at

b2

)

,

z =
b2x2

at
cos−2

(

ϕ(z) +
C

2
ln
at

b2

)

,

where C is an arbitrary constant and the functions ϕ(z) and ψ(z) are determined by the system of
ordinary differential equations

ϕ′

z =
ψ

2z
, ψ′

z =
1
2

(1 + ψ2)
(

C

2
−
ψ

2
−
ψ

z

)

.

Here the function z = z(x, t) is defined implicitly.g�h
References: I. Sh. Akhatov, R. K. Gazizov, and N. H. Ibragimov (1989), N. H. Ibragimov (1994).

3.
∂w

∂t
=

∂

∂x

[

(aw2n + bwn)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = aw2n + bwn.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,C2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.
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2◦. Traveling-wave solution:

w(x, t) =
( j

√

2C1nx + 2aC2
1nt + C2 −

b

a

)1/n

,

where C1 and C2 are arbitrary constants.

3◦. Self-similar solution:

w(x, t) =
[ j

x + C1
√

C2 − kt
−

b

a(n + 1)

]1/n

, k =
2a(n + 1)

n
.

4.
∂w

∂t
=

∂

∂x

[

(aw2n + bwn)
∂w

∂x

]

+ cw1–n.

Generalized traveling-wave solution:

w(x, t) =
[ j

x + C1
√

C2 − kt
−

cn2

3a(n + 1)
(C2 − kt) −

b

a(n + 1)

]1/n

, k =
2a(n + 1)

n
,

where C1 and C2 are arbitrary constants.

5.
∂w

∂t
=

∂

∂x

[

(aw2n + bwn)
∂w

∂x

]

+ cw + k w1–n.

Generalized traveling-wave solutions:

w(x, t) =
[

ϕ(t)(
j
x + C1) +

b

n
ϕ(t)

∫

ϕ(t) dt + snϕ(t)
∫

dt

ϕ(t)

]1/n

,

ϕ(t) =
[

C2e
−2cnt −

a(n + 1)
cn2

]−1/2

,

where C1 and C2 are arbitrary constants.

1.1.14. Equations of the Form ∂w
∂t

= ∂
∂x

[
f (w) ∂w

∂x

]
+ g

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ bxmw–1/3.

For m = 0, see equation 1.1.11.4. For m ≠ 0, the original equation can be reduced to a simpler
equation 1.1.10.4 that corresponds to the case b = 0 [see equation 1.6.13.1 with f (x) = bxm].

2.
∂w

∂t
= a

∂

∂x

(

w–2 ∂w

∂x

)

+ b
∂w

∂x
+ cw.

This is a special case of equation 1.6.13.8 with m = −2, f (t) = b, and g(t) = c.
The transformation (A and B are arbitrary constants)

w(x, t) = ectu(z, τ ), z = x + bt +A, τ = B −
1
2c
e−2ct

leads to an equation of the form 1.1.10.3:

∂u

∂τ
= a

∂

∂z

(

u−2 ∂u

∂z

)

.

l�m
Reference: V. A. Dorodnitsyn and S. R. Svirshchevskii (1983); the case b = 0 was treated.
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3.
∂w

∂t
=

∂

∂x

[

a

(w + b)2

∂w

∂x

]

+ c
∂w

∂x
.

The transformation
u(z, t) = w(x, t) + b, z = x + ct

leads to an equation of the form 1.1.10.3:
∂u

∂t
= a

∂

∂z

(

u−2 ∂u

∂z

)

.

4.
∂w

∂t
+ aw

∂w

∂x
= b

∂

∂x

(

w
∂w

∂x

)

.

This is a special case of equation 1.1.14.16 with n = 1.
Degenerate solution linear in x:

w(x, t) =
ax + b ln |t + C1| + C2

a2(t + C1)
,

where C1 and C2 are arbitrary constants.

5.
∂w

∂t
+ aw

∂w

∂x
= b

∂

∂x

(

w2 ∂w

∂x

)

.

This is a special case of equation 1.1.14.16 with n = 2.

1◦. Traveling-wave solution in implicit form:

2b
∫

w2 dw

aw2 + 2λw + C1
= x + λt + C2,

where C1, C2, and λ are arbitrary constants.

2◦. Degenerate solution linear in x:

w(x, t) = (x + C1)f (t).

Here,C1 is an arbitrary constant, and the function f = f (t) is determined by the ordinary differential
equation

f ′

t + af 2 = 2bf 3,
whose solution can be represented in implicit form:

1
af

+
2b
a2 ln

∣

∣

∣

∣

2bf − a
f

∣

∣

∣

∣

= t + C2.

6.
∂w

∂t
+ aw

∂w

∂x
=

∂

∂x

[

(bw2 + cw)
∂w

∂x

]

.

1◦. Degenerate solution linear in x:

w(x, t) = f (t)x + g(t),

where the functions f = f (t) and g = g(t) are determined by the system of ordinary differential
equations

f ′

t + af 2 = 2bf 3,

g′t + afg = 2bf 2g + cf 2.
The solution of the first equation can be found in 1.1.14.5, Item 2◦. The second equation is easy to
integrate, since it is linear in g.

2◦. Traveling-wave solution in implicit form:

2
∫

bw2 + cw
aw2 + 2λw + C1

dw = x + λt + C2,

where C1, C2, and λ are arbitrary constants.
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7.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ btnw.

This is a special case of equation 1.6.13.2 with f (t) = btn.

8.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ beλtw.

This is a special case of equation 1.6.13.2 with f (t) = beλt.

9.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ btnw1–m.

This is a special case of equation 1.6.13.3 with f (t) = btn.

10.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ beλtw1–m.

This is a special case of equation 1.6.13.3 with f (t) = beλt.

11.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ btnw + ctkw1–m.

This is a special case of equation 1.6.13.4 with f (t) = btn and g(t) = ctk.

12.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ beλtw + ceµtw1–m.

This is a special case of equation 1.6.13.4 with f (t) = beλt and g(t) = ceµt.

13.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bw1+m + ctnw + n tkw1–m.

This is a special case of equation 1.6.13.5 with f (t) = ctn and g(t) = stk.

14.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bxnw1+m.

This is a special case of equation 1.6.13.6 with f (x) = bxn.

15.
∂w

∂t
= a

∂

∂x

(

wn ∂w

∂x

)

– bx
∂w

∂x
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( o Cn1 x + C2e

bt, t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Generalized traveling-wave solutions:

w(x, t) =
( o x + C1e

bt
)2/n

[

C2e
2bt +

a(n + 2)
bn

]−1/n

,

where C1 and C2 are arbitrary constants.

3◦. Generalized traveling-wave solutions:

w = w(z), z = o x + Cebt,

where C is an arbitrary constant and the function w(z) is determined by the ordinary differential
equation

a(wnw′

z)′z − bzw′

z = 0.
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16.
∂w

∂t
+ aw

∂w

∂x
= b

∂

∂x

(

wn ∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(C1−n
1 x + C2,C2−n

1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution in implicit form:

2b
∫

wn dw

aw2 + 2λw + C1
= x + λt + C2,

where C1, C2, and λ are arbitrary constants.

3◦. Self-similar solution for n ≠ 2:

w(x, t) = u(z)t1/(n−2), z = xt−(n−1)/(n−2),

where the function u = u(z) is determined by the ordinary differential equation

bunu′′zz + 2bnun−1(u′z)2 −
(

au −
n − 1
n − 2

z

)

u′z −
1

n − 2
u = 0.

17.
∂w

∂t
= a

∂

∂x

(

wn ∂w

∂x

)

+ (bwn + c)
∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
[

C2 − x
b(t + C1)

+
a ln |t + C1|
b2n(t + C1)

−
c

b

]1/n

,

where C1 and C2 are arbitrary constants.

18.
∂w

∂t
=

∂

∂x

(

wn ∂w

∂x

)

+ awn ∂2w

∂x2
+ bwn–1

(

∂w

∂x

)2

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(C2x + C3,Cn1 C
2
2 t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Functional separable solution for b = 1
3n(a − 2) − a − 1:

w(x, t) =
[

n

3
∑

k=0

ϕk(t)xk
]1/n

.

Here,

ϕ3(t) = A, ϕ2(t) =
∫

ψ(t) dt +B, ϕ1(t) =
1

3A

[
∫

ψ(t) dt +B
]2

+
1

2Aβn
ψ(t),

ϕ0(t) =
1

27A2

[
∫

ψ(t) dt +B
]3

+
1

6A2βn
ψ(t)

[
∫

ψ(t) dt +B
]

+
1

12A2β2n2 ψ
′

t(t),

where the function ψ = ψ(t) is defined implicitly by
∫

(

C1 − 8
3βnψ

3)−1/2
dψ = C2 + t,

A, B, C1, and C2 are arbitrary constants, β = a + 1; A ≠ 0, n ≠ 0, a > −1.p�q
Reference: G. A. Rudykh and E. I. Semenov (1998).
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3◦. Functional separable solution for b = 1
4n(a − 3) − a − 1:

w(x, t) =
[

n

4
∑

k=0

ϕk(t)xk
]1/n

.

Here, the functions ϕk = ϕk(t) are determined by the system of ordinary differential equations

ϕ′

0 = − 3
4βϕ

2
1 + 2βϕ2ϕ0,

ϕ′

1 = −βϕ1ϕ2 + 6βϕ3ϕ0,

ϕ′

2 = −βϕ2
2 + 3

2βϕ1ϕ3 + 12βϕ4ϕ0,
ϕ′

3 = −βϕ2ϕ3 + 6βϕ1ϕ4,

ϕ′

4 = − 3
4βϕ

2
3 + 2βϕ2ϕ4,

where β = n(a + 1); the prime denotes a derivative with respect to t.r�s
Reference: G. A. Rudykh and E. I. Semenov (1998).

4◦. There are exact solutions of the following forms:

w(x, t) = F (z), z = Ax +Bt;

w(x, t) = (At +B)−1/nG(x);

w(x, t) = tβH(ξ), ξ = xt−
βn+1

2 ;

w(x, t) = e−2tU (η), η = xent;

w(x, t) = (At +B)−1/nV (ζ), ζ = x + C ln(At +B),

where A, B, C, and β are arbitrary constants. The first solution is of the traveling-wave type, the
second is a solution in multiplicative separable form, and the third is self-similar.

19.
∂w

∂t
=

∂

∂x

[

(

aw2n + bwn
) ∂w

∂x

]

+ (cwn + t )
∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
[

ϕ(t)x + (st + C1)ϕ(t) +
b

n
ϕ(t)

∫

ϕ(t) dt
]1/n

,

where C1 is an arbitrary constant and the function ϕ(t) is determined by the first-order separable
ordinary differential equation

ϕ′

t =
a(n + 1)

n
ϕ3 + cϕ2.

1.1.15. Other Equations

1.
∂w

∂t
= (aw2 + bw4)

∂2w

∂x2
.

This is a special case of equation 1.6.16.3 with f (w) = aw2 + bw4.

1◦. Self-similar solutions:

w(x, t) = u
[

(x + C1)2

2a(t + C2)
−
a

b

]1/2

,

where C1 and C2 are arbitrary constants.
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2◦. Functional separable solutions:

w(x, t) = v
[

ϕ(t)(x2 + C1x + C2) −
a

b

]1/2

,

where C1 and C2 are arbitrary constants, and the function ϕ(t) is determined by the first-order
separable equation

ϕ′

t = −2aϕ2 + 1
2 b(4C2 − C2

1 )ϕ3,

whose solution can be written out in implicit form.

2.
∂w

∂t
= (aw2 + bw4)

∂2w

∂x2
+ cw + kw–1.

Functional separable solutions:

w(x, t) = v √

ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations

ϕ′

t = 1
2 bϕ(4ϕχ − ψ2) + 2cϕ,

ψ′

t = 1
2 bψ(4ϕχ − ψ2) + 2cψ,

χ′

t = 1
2 (bχ + a)(4ϕχ − ψ2) + 2cχ + 2k.

It follows from the first two equations that ϕ = Cψ, where C is an arbitrary constant.
Remark. The above remains true if the equation coefficients are arbitrary functions of time:

a = a(t), b = b(t), c = c(t), and k = k(t).

3.
∂w

∂t
= ax4–kwk ∂2w

∂x2
.

This is a special case of equation 1.6.16.4 with f (u) = auk.
The transformation

w(x, t) = xu(z, t), z = 1/x
leads to a simpler equation of the form 1.1.9.18:

∂u

∂t
= auk

∂2u

∂z2 .

4.
∂w

∂t
= axnwk ∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(C2x,Ck1 C
2−n
2 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. The substitution u = w1−k leads to an equation of the form 1.1.15.6:

∂u

∂t
= axn

∂

∂x

(

u
k

1−k
∂u

∂x

)

.

3◦. The transformation
w(x, t) = xu(z, t), z = 1/x

leads to an equation of the similar form

∂u

∂t
= az4−n−kuk

∂2u

∂z2 .
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5.
∂w

∂t
= ax

3m+4
m+1

∂

∂x

(

wm ∂w

∂x

)

.

This is a special case of equation 1.1.15.6.
The transformation

w(x, t) = x
1

m+1 u(z, t), z =
1
x

leads to a simpler equation of the form 1.1.10.7:

∂u

∂t
= a

∂

∂z

(

um
∂u

∂z

)

.

6.
∂w

∂t
= axn ∂

∂x

(

wm ∂w

∂x

)

.

This equation occurs in nonlinear problems of heat and mass transfer and is a special case of equation
1.6.17.16 with f (w) = awm. For n = 0, see equation 1.1.10.7.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C2x,Cm1 C
2−n
2 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x) = (Ax +B)
1

m+1 ,

w(x, t) = k(λt +A)−
1
m x

2−n
m , k =

[

mλ

a(n − 2)(2 +m − n − nm)

]

1
m

,

w(x, t) = t(1−n)β
[

mβ

a(2 − n)
(

xtβ
)2−n +A

]

1
m

, β =
1

nm + n −m − 2
,

w(x, t) = exp(−λt)
[

λ

a
(m + 1)2x

m
m+1 exp(λmt) +A

]

1
m

, n =
m + 2
m + 1

,

where A, B, and λ are arbitrary constants.

3◦. Multiplicative separable solution:

w(x, t) = (λt +A)−1/mf (x),

where the function f = f (x) is expressed via solutions to the Emden–Fowler equation

F ′′

xx +
λ(m + 1)
am

x−nF
1

m+1 = 0, F = fm+1. (1)

To the power-law particular solution of this equation there corresponds the second solution of
the original equation in Item 1◦.

The order of equation (1) can be reduced; the equation is analyzed in detail in Polyanin and
Zaitsev (2003), where its exact solutions for 26 different pairs of values of the parameters n and m
are presented.

4◦. Self-similar solution for n ≠ −2:

w = w(z), z = xt
1
n−2 ,

where the function w(z) is determined by the ordinary differential equation

a(2 − n)
(

wmw′

z

)

′

z
+ z1−nw′

z = 0. (2)

The book by Zaitsev and Polyanin (1993) presents the general solution of equation (2) form = −1
and any n.

Page 48

© 2004 by Chapman & Hall/CRC



1.1. EQUATIONS WITH POWER-LAW NONLINEARITIES 49

5◦. Self-similar solution:

w = tαg(ζ), ζ = xtβ , β =
mα + 1
n − 2

, α is any,

where the function g(ζ) is determined by the ordinary differential equation

aζn
(

gmg′ζ
)

′

ζ
= βζg′ζ + αg. (3)

This equation is homogeneous, and, hence, its order can be reduced (thereafter it can be transformed
to an Abel equation of the second kind).

In the special case

α =
1 − n

nm + n −m − 2
, β =

1
nm + n −m − 2

,

a first integral of equation (3) is given by
agmg′ζ = βζ1−ng + C. (4)

To C = 0 in (4) there corresponds the third solution in Item 1◦.
In the general case, the change of variable G = gm+1 brings (3) to the equation

G′′

ζζ = A1ζ
1−nG− m

m+1G′

ζ +A2ζ
−nG

1
m+1 , (5)

whereA1 = β/a and A2 = α(m + 1)/a. Exact analytical solutions of equation (5) for various values
of the parameters n and m can be found in the books by Polyanin and Zaitsev (1995, 2003).

6◦. Generalized self-similar solution:
w = eλ(n−2)tϕ(u), u = xeλmt, λ is any,

where the function ϕ(u) is determined by the ordinary differential equation
aun(ϕmϕ′

u)′u = λmuϕ′

u + λ(n − 2)ϕ. (6)
This equation is homogeneous, so its order can be reduced (thereafter it can be transformed to an
Abel equation of the second kind).

In the special case n =
m + 2
m + 1

, equation (6) has the first integral

aϕmϕ′

u = λmu− 1
m+1 ϕ + C.

To C = 0 there corresponds the last solution in Item 1◦.
In the general case, the change of variable Φ = ϕm+1 brings (6) to an equation that coincides, up

to notation, with (5).

7◦. For n = 2, there are solutions of the form
w = w(ξ), ξ = ln |x| − λt,

which are defined implicitly by

a(m + 1)
∫

wm dw

awm+1 − λ(m + 1)w + C1
= ξ + C2,

whereλ,C1, andC2 are arbitrary constants. To the special caseC1 = 0 there corresponds the solution

w(x, t) =
[

λ(m + 1)
a

+ C |x|
m
m+1 exp

(

−
mλ

m + 1
t

)]

1
m

,

where C is an arbitrary constant.

8◦. The transformation
w(x, t) = x

1
m+1 u(z, t), z =

1
x

leads to an equation of the similar form
∂u

∂t
= az

4+3m−n−nm
m+1

∂

∂z

(

um
∂u

∂z

)

.w�x
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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7.
∂w

∂t
=

∂

∂x

[(

ax + b

cw + k

)2 ∂w

∂x

]

.

The substitution u =
cw + k
ax + b

(c ≠ 0) leads to an equation of the form 1.1.10.3:

∂u

∂t
=
∂

∂x

(

u−2 ∂u

∂x

)

.

y�z
Reference: A. Munier, J. R. Burgan, J. Gutierres, E. Fijalkow, and M. R. Feix (1981).

8.
∂w

∂t
= a

∂

∂x

(

xnwm ∂w

∂x

)

.

This is a special case of equation 1.6.17.5 with f (x) = axn.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C2x,Cm1 C
2−n
2 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Let m ≠ −1 and 2m − 2n − nm + 3 ≠ 0. The transformation

w(x, t) = x
1−n
m+1 u(ξ, t), ξ = x

2m−2n−nm+3
m+1

leads to an equation of the similar form

∂u

∂t
= A

∂

∂ξ

(

ξ
3m−3n−2nm+4
2m−2n−nm+3 um

∂u

∂ξ

)

, (1)

where A = a
(

2m − 2n − nm + 3
m + 1

)2

.

3◦. In the special case n =
3m + 4
2m + 3

, the transformed equation is very simple and coincides, up to
notation, with equation 1.1.10.7:

∂u

∂t
= A

∂

∂ξ

(

um
∂u

∂ξ

)

.

4◦. In the special case of n = 2 and m = −2, the transformed equation becomes

∂u

∂t
= A

∂

∂ξ

(

u−2 ∂u

∂ξ

)

,

so it coincides with equation 1.1.10.3 (which can further be reduced to the linear heat equation).y�z
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

9.
∂w

∂t
=

a

xn

∂

∂x

(

xnwm ∂w

∂x

)

.

This equation occurs in nonlinear problems of heat and mass transfer. For n = 0, see equation
1.1.10.7. To n = 1 there correspond two-dimensional problems with axial symmetry, and to n = 2
there correspond spherically symmetric problems. Equation with n = 5 are encountered in the theory
of static turbulence.
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Solutions:

w(x) =
(

Ax1−n +B
)

1
m+1 ,

w(x, t) =
(

mx2

A − kt

)

1
m

, k = 2a(nm +m + 2),

w(x, t) =
(

A|kt +B|−
m(n+1)
nm+m+2 −

mx2

kt +B

)

1
m

, k = 2a(nm +m + 2),

w(x, t) =
[

A exp
(

−
4aλ
m

t

)

+ λx2
]

1
m

, n = −
m + 2
m

,

where A, B, and λ are arbitrary constants.{�|
References: Ya. B. Zel’dovich and A. S. Kompaneets (1950), G. I. Barenblatt (1952, 1989), Ya. B. Zel’dovich and

Yu. P. Raiser (1966), L. I. Sedov (1993), A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

10.
∂w

∂t
= k(ax2 + bx + c)mw4–2m ∂2w

∂x2
.

This is a special case of equation 1.6.16.5 with f (u) = ku−2m.
1◦. The transformation

w(x, t) = u(z, t)
√

ax2 + bx + c, z =
∫

dx

ax2 + bx + c
(1)

leads to the equation
∂u

∂t
= ku4−2m ∂

2u

∂z2 + k(ac − 1
4 b

2)u5−2m, (2)

which has a traveling-wave solutionu =u(z+λt) and a multiplicative separable solutionu = f (t)g(z).
Using the change of variable ϕ = u2m−3, one obtains from (2) an equation of the form 1.1.11.8,

∂ϕ

∂t
= k

∂

∂z

(

ϕn
∂ϕ

∂z

)

+ pϕn+1,

n =
4 − 2m
2m − 3

, p = k(2m − 3)(ac − 1
4 b

2),

which admits a wide class of exact solutions.
2◦. By the transformation

w(x, t) =
[

v(ξ, t)
]

1
2m+3 , ξ =

∫

dx

(ax2 + bx + c)m
, (3)

the original equation can be reduced to equation 1.6.17.5:
∂v

∂t
=
∂

∂ξ

[

F (ξ)v
4−2m
2m−3

∂v

∂ξ

]

, (4)

where the function F (ξ) is defined parametrically by

F (ξ) =
k

(ax2 + bx + c)m
, ξ =

∫

dx

(ax2 + bx + c)m
. (5)

Note some special cases of equation (4) where the function F = F (ξ) can be written out in
explicit form:

∂v

∂t
= k

∂

∂ξ

(

cos2 ξ

v2
∂v

∂ξ

)

, m = 1, a = 1, b = 0, c = 1;

∂v

∂t
= k

∂

∂ξ

(

cosh2 ξ

v2
∂v

∂ξ

)

, m = 1, a = −1, b = 0, c = 1;

∂v

∂t
= k

∂

∂ξ

(

ξ−3/2

cos ξ
∂v

∂ξ

)

, m =
1
2

, a = −1, b = 0, c = 1.{�|
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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1.2. Equations with Exponential Nonlinearities

1.2.1. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + b0 + b1e

λw + b2e
2λw

1.
∂w

∂t
= a

∂2w

∂x2
+ beλw.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( } Cλ1 x + C2,C2λ
1 t + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution (k and β are arbitrary constants):

w = w(z), z = kx + βt,
where the function w(z) is determined by the autonomous ordinary differential equation

ak2w′′

zz − βw′

z + beλw = 0.

3◦. Solution:
w = u(ξ) −

1
λ

ln t, ξ =
x
√

t
,

where the function u(ξ) is determined by the ordinary differential equation

au′′ξξ +
1
2
ξu′ξ +

1
λ

+ beλu = 0.~��
References: N. H. Ibragimov (1994), A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

2.
∂w

∂t
=

∂2w

∂x2
+ a + beλw .

This equation occurs in heat and mass transfer and combustion theory.

1◦. Traveling-wave solutions:

w(x, t) = −
2
λ

ln
[

β + C exp
( } µx − 1

2 aλt
)]

,

w(x, t) = −
2
λ

ln
[

−β + C exp
( } µx − 1

2 aλt
)]

,
β =

√

−
b

a
, µ =

√

aλ

2
,

where C is an arbitrary constant.

2◦. The solutions of Item 1◦ are special cases of the traveling-wave solutions

w = w(z), z = } µx + σt,
that satisfy the autonomous equation

µ2w′′

zz − σw′

z + a + beλw = 0. (1)

For
µ =

√

1
2 aλ, σ = µ2,

the general solution of equation (1) can be written out in parametric form as

z = 2
∫

f ′

τ (τ ) dτ
f (τ )

[

λτf (τ ) + 2
] + C1, w =

2
λ

ln |f (τ )|,

where the function f (τ ) is defined by

f (τ ) =
C2 − 2 ln

∣

∣τ +
√

τ 2 + k
∣

∣

λ
√

τ 2 + k
, k =

4b
aλ2 ,

and C1 and C2 are arbitrary constants.~��
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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3.
∂w

∂t
=

∂2w

∂x2
+ a + beλw + ce2λw.

Equations of this form are encountered in problems of heat and mass transfer and combustion theory.

1◦. Traveling-wave solutions for a ≠ 0:

w(x, t) = −
1
λ

ln
[

β + C exp( � µx − aλt)
]

, µ =
1
β

√

−cλ, (1)

whereC is an arbitrary constant and the parameterβ is determined by solving the quadratic equation

aβ2 + bβ + c = 0.

2◦. Traveling-wave solutions for a = 0:

w(x, t) = −
1
λ

ln
( � √−cλ x − bλt + C

)

. (2)

3◦. The substitution u = e−λw leads to an equation with quadratic nonlinearity:

u
∂u

∂t
= u

∂2u

∂x2 −
(

∂u

∂x

)2

− aλu2 − bλu − cλ.

The particular solution u = β + C exp(λt + µx) of this equation generates a solution (1).

4◦. Solutions (1) and (2) are special cases of a wider class of traveling-wave solutionsw =w(x+σt).���
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

1.2.2. Equations of the Form ∂w
∂t

= a ∂
∂x

(
eλw ∂w

∂x

)
+ f (w)

1.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

.

This equation governs unsteady heat transfer in a quiescent medium in the case where the thermal
diffusivity is exponentially dependent on temperature.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,C3t + C4) +
1
λ

ln
C3

C2
1

,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x, t) =
2
λ

ln
( � x +A
√

B − 2at

)

,

w(x, t) = −
1
λ

ln
(

C − 2aλµt
)

+
1
λ

ln
(

λµx2 +Ax +B
)

,

where A, B, C, and µ are arbitrary constants. The first solution is self-similar and the second one
is an additive separable solution.

3◦. Traveling-wave solution in implicit form:

x + βt + C1 = a
∫

eλw dw

βw + C2
.

4◦. Self-similar solution:
w = w(y), y = x/

√

t,
where the function w(y) is determined by the ordinary differential equation

a(eλww′

y)′y + 1
2 yw

′

y = 0.
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5◦. Solution:
w(x, t) = U (ξ) + 2kt, ξ = xe−kλt,

where k is an arbitrary constant, and the functionU =U (ξ) is determined by the ordinary differential
equation

2k − kλξU ′

ξ = a(eλUU ′

ξ)
′

ξ.

6◦. Solution:
w(x, t) = F (ζ) −

1
λ

ln t, ζ = x + β ln t,

where β is an arbitrary constant, and the function F = F (ζ) is determined by the first-order ordinary
differential equation (C is an arbitrary constant)

−ζ + βλF = aλeλFF ′

ζ + C.

7◦. Solution:
w(x, t) = G(θ) −

2b + 1
λ

ln t, θ = xtb,

where b is an arbitrary constant, and the functionG =G(θ) is determined by the ordinary differential
equation

−
2b + 1
λ

+ bθG′

θ = (aeλGG′

θ)′θ.

8◦. The substitution ϕ = eλw leads to an equation of the form 1.1.9.1:

∂ϕ

∂t
= aϕ

∂2ϕ

∂x2 .���
References: L. V. Ovsiannikov (1959, 1982), N. H. Ibragimov (1994), A. A. Samarskii, V. A. Galaktionov, S. P. Kur-

dyumov, and A. P. Mikhailov (1995).

2.
∂w

∂t
= a

∂

∂x

(

ew ∂w

∂x

)

+ b.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x + C2, t + C3) − 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solutions:

w(x, t) = ln |C1x + C2| + bt + C3,

w(x, t) = 2 ln | � x + C1| − ln
(

C2e
−bt −

2a
b

)

.

The first solution is degenerate.

3◦. The transformation
w = bt + u(x, τ ), τ =

1
b
ebt + const

leads to an equation of the form 1.2.2.1:

∂u

∂τ
= a

∂

∂x

(

eu
∂u

∂x

)

.

3.
∂w

∂t
=

∂

∂x

(

ew ∂w

∂x

)

– a2ew.

Solutions:

w(x, t) = ln
∣

∣

∣

∣

� a exp[2( � ax +B)] + 2 exp( � ax +B) +A
2a2(t + C)

∣

∣

∣

∣ � ax −B,

where A, B, and C are arbitrary constants.
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4.
∂w

∂t
= a

∂

∂x

(

ew ∂w

∂x

)

– bew.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( � x + C1,C2t + C3) + lnC2,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solution:

w(x, t) = u(x) − ln(aC1t + C2),

where C1 and C2 are arbitrary constants, and the function u = u(x) is determined by the ordinary
differential equation

u′′xx + (u′x)2 + C1e
−u −

b

a
= 0.

Integrating yields the general solution in implicit form:
∫

(

C3e
−2u − 2C1e

−u +
b

a

)−1/2

du = � x + C4.

The integral is computable, so the solution can be rewritten in explicit form (if a = 1 and b > 0, see
1.2.2.3 for a solution).

3◦. The substitution u = ew leads to an equation of the form 1.1.9.9:

∂u

∂t
= au

∂2u

∂x2 − bu2.

5.
∂w

∂t
=

∂

∂x

(

ew ∂w

∂x

)

+ aew + b, a ≠ 0, b ≠ 0.

1◦. Additive separable solution for a = k2 > 0:

w(x, t) = ln
[

C1 cos(kx) + C2 sin(kx)
]

+ bt + C3,

where C1, C2, and C3 are arbitrary constants.

2◦. Additive separable solution for a = −k2 < 0:

w(x, t) = ln
[

C1 cosh(kx) + C2 sinh(kx)
]

+ bt + C3.

3◦. The transformation
w = bt + u(x, τ ), τ =

1
b
ebt + const

leads to an equation of the form 1.2.2.4:

∂u

∂τ
=
∂

∂x

(

eu
∂u

∂x

)

+ aeu.

6.
∂w

∂t
= a

∂

∂x

(

ew ∂w

∂x

)

+ beλw.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( � Cλ−1
1 x + C2,C2λ

1 t + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Solution for λ ≠ 0:

w(x, t) = u(z) −
1
λ

ln t, z = 2 lnx +
1 − λ
λ

ln t,

where the function u = u(z) is determined by the ordinary differential equation

2aλe−z[2(euu′z)′z − euu′z
]

+ bλeλu = (1 − λ)u′z − 1.
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7.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ b + ce–λw.

Functional separable solution:

w =
1
λ

ln
(

cλt −
bλ

2a
x2 + C1x + C2

)

,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ beλw + c + � e–λw.

This is a special case of equation 1.6.14.4 with f (t) = c and g(t) = s.
Functional separable solutions:

w =
1
λ

ln
{

eαt
[

C1 cos(x
√

β ) + C2 sin(x
√

β )
]

+ γ
}

if abλ > 0,

w =
1
λ

ln
{

eαt
[

C1 cosh(x
√

−β ) + C2 sinh(x
√

−β )
]

+ γ
}

if abλ < 0.

Here, C1 and C2 are arbitrary constants and

α = λ(bγ + c), β = bλ/a,

where γ = γ1,2 are roots of the quadratic equation bγ2 + cγ + s = 0.���
Reference: V. A. Galaktionov and S. A. Posashkov (1989).

1.2.3. Equations of the Form ∂w
∂t

= ∂
∂x

[
f (w) ∂w

∂x

]
+ g(w)

1.
∂w

∂t
= a

∂

∂x

(

weλw ∂w

∂x

)

.

Traveling-wave solution:

w(x, t) =
1
λ

ln
(

C1x +
a

λ
C2

1 t + C2

)

,

where C1 and C2 are arbitrary constants.���
Reference: A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

2.
∂w

∂t
= a

∂

∂x

(

weλw ∂w

∂x

)

+ b.

Generalized traveling-wave solution:

w(x, t) =
1
λ

ln
(

C1e
bλtx +

aC2
1

bλ2 e
2bλt + C2e

bλt

)

,

where C1 and C2 are arbitrary constants.

3.
∂w

∂t
= a

∂

∂x

(

wew ∂w

∂x

)

+ b(w + 2).

Functional separable solution:

w(x, t) = ln
[

C1e
2bt −

b

2a
(x + C2)2

]

,

where C1 and C2 are arbitrary constants.
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4.
∂w

∂t
= a

∂

∂x

(

weλw ∂w

∂x

)

+ be–λw.

Traveling-wave solution:

w(x, t) =
1
λ

ln
[

C1x +
(

aC2
1

λ
+ bλ

)

t + C2

]

,

where C1 and C2 are arbitrary constants.

5.
∂w

∂t
= a

∂

∂x

(

weλw ∂w

∂x

)

+ b + ce–λw.

Generalized traveling-wave solution:

w(x, t) =
1
λ

ln
(

C1e
bλtx +

aC2
1

bλ2 e
2bλt + C2e

bλt −
c

b

)

,

where C1 and C2 are arbitrary constants.

6.
∂w

∂t
=

∂

∂x

[

(

aweλw + beλw
) ∂w

∂x

]

+ b + ce–λw.

The substitution w = u − b/a leads to an equation of the form 1.2.3.5:

∂u

∂t
= ae−bλ/a ∂

∂x

(

ueλu
∂u

∂x

)

+ b + cebλ/ae−λu.

7.
∂w

∂t
=

∂

∂x

[

(

ae2λw + bweλw
) ∂w

∂x

]

.

Self-similar solutions:

w(x, t) =
1
λ

ln
( �

x + C1
√

C2 − 2at
−
b

aλ

)

,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
=

∂

∂x

[

(

ae2λw + bweλw
) ∂w

∂x

]

+ c.

Generalized traveling-wave solutions:

w(x, t) =
1
λ

ln
[�
ϕ(t)x + C1ϕ(t) +

b

λ
ϕ(t)

∫

ϕ(t) dt
]

, ϕ(t) =
(

C2e
−2cλt −

a

cλ

)−1/2

,

where C1 and C2 are arbitrary constants.

9.
∂w

∂t
= a

∂

∂x

[

wn exp
(

λwn
) ∂w

∂x

]

+ bw1–n.

Generalized traveling-wave solutions:

w(x, t) =
(

1
λ

ln z
)1/n

, z = C1e
bnλtx +

aC2
1

bn2λ2 e
2bnλt + C2e

bnλt,

where C1 and C2 are arbitrary constants.
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1.2.4. Other Equations Explicitly Independent of x and t

1.
∂w

∂t
=

∂2w

∂x2
+ β

∂w

∂x
+ a + beλw + ce2λw.

On passing from t, x to the new variables t, z = x + βt, one arrives at a simpler equation of the form
1.2.1.3:

∂w

∂t
=
∂2w

∂z2 + a + beλw + ce2λw.

2.
∂w

∂t
= a

∂2w

∂x2
+ beλw ∂w

∂x
.

This is a special case of equation 1.6.3.7 with f (w) = beλw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,C2
1 t + C3) +

1
λ

lnC1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Apart from the traveling wave w = w(x + λt), there is also an exact solution of the form

w = ϕ(ξ) −
1

2λ
ln t, ξ =

x
√

t
.

3.
∂w

∂t
=

∂2w

∂x2
+ aeλw

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = aeλw.
The substitution

u =
∫

exp
(

a

λ
eλw

)

dw

leads to the linear heat equation ∂tu = ∂xxu.

4.
∂w

∂t
+ aw

∂w

∂x
= b

∂

∂x

(

eλw ∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

eC1x +
a

λ
C1e

C1t + C2, eC1t + C3

)

−
1
λ
C1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution in implicit form:

2b
∫

eλw dw

aw2 + 2βw + C1
= x + βt + C2,

where C1, C2, and β are arbitrary constants.

3◦. Solution:
w(x, t) = u(z) +

1
λ

ln t, z =
x

t
−
a

λ
ln t,

where the function u = u(z) is determined by the ordinary differential equation
(

au − z −
a

λ

)

u′z +
1
λ

= b(eλuu′z)′z.
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5.
∂w

∂t
= aeλw ∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x + C2,C3t + C4) +
1
λ

ln
C3

C2
1

,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, t) =
1
λ

ln
[

C2 exp
(

C1

ak2 z

)

+
β

C1

]

, z = kx + βt,

where C1, C2, k, and β are arbitrary constants.

3◦. Additive separable solutions:

w(x, t) =
1
λ

ln
[

cos2(C2x + C3)
2C2

2 (at + C1)

]

,

w(x, t) =
1
λ

ln
[

sinh2(C2x + C3)
2C2

2 (at + C1)

]

,

w(x, t) =
1
λ

ln
[

cosh2(C2x + C3)
2C2

2 (C1 − at)

]

,

where C1, C2, and C3 are arbitrary constants; note that ln(A/B) = ln |A| − ln |B| for AB > 0.

4◦. Self-similar solution:
w = w(y), y = x/

√

t,

where the function w(y) is determined by the ordinary differential equation

aeλww′′

yy + 1
2 yw

′

y = 0.

5◦. Solution:
w(x, t) = U (ξ) + 2kt, ξ = xe−kλt,

where k is an arbitrary constant, and the functionU =U (ξ) is determined by the ordinary differential
equation

2k − kλξU ′

ξ = aeλUU ′′

ξξ.

6◦. Solution:

w(x, t) = F (ζ) −
1
λ

ln t, ζ = x + β ln t,

where β is an arbitrary constant, and the function F = F (ζ) is determined by the autonomous
ordinary differential equation

βλF ′

ζ − 1 = aλeλFF ′′

ζζ .

7◦. Solution:

w(x, t) = G(θ) −
2b + 1
λ

ln t, θ = xtb,

where b is an arbitrary constant, and the functionG =G(θ) is determined by the ordinary differential
equation

−
2b + 1
λ

+ bθG′

θ = aeλGG′′

θθ.
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6.
∂w

∂t
= aew ∂2w

∂x2
+ beλw.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( � Cλ−1
1 x + C2,C2λ

1 t + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution:
w = w(ξ), ξ = kx + βt,

where k and β are arbitrary constants, and the function w(ξ) is determined by the autonomous
ordinary differential equation

ak2eww′′

ξξ − βw′

ξ + beλw = 0.

3◦. Solution for λ ≠ 0:

w(x, t) = u(z) −
1
λ

ln t, z = 2 lnx +
1 − λ
λ

ln t,

where the function u = u(z) is determined by the ordinary differential equation

2aλeu−z(2u′′zz − u′z
)

+ bλeλu = (1 − λ)u′z − 1.

4◦. Additive separable solution for λ = 1:

w(x, t) = − ln(kt + C) + ϕ(x),

where the function ϕ(x) is determined by the autonomous ordinary differential equation

aϕ′′

xx + b + ke−ϕ = 0.

5◦. Additive separable solutions for λ = 0:

w(x, t) = ln
[

b

2C2
2

cos2(C2x + C3)
a − C1e−bt

]

,

w(x, t) = ln
[

b

2C2
2

sinh2(C2x + C3)
a − C1e−bt

]

,

w(x, t) = ln
[

b

2C2
2

cosh2(C2x + C3)
C1e−bt − a

]

,

where C1, C2, and C3 are arbitrary constants; note that ln(A/B) = ln |A| − ln |B| for AB > 0.

7.
∂w

∂t
=

∂

∂x

[

(

ae2w + bwew
) ∂w

∂x

]

+
(

cew + � ) ∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = ln
[

ϕ(t)x + (st + C1)ϕ(t) + bϕ(t)
∫

ϕ(t) dt
]

,

where C1 is an arbitrary constant, and the function ϕ(t) is determined by the first-order separable
ordinary differential equation

ϕ′

t = aϕ3 + cϕ2,

whose general solution can be written out in implicit form.
In special cases, we have

ϕ(t) = (C2 − 2at)−1/2 if c = 0,

ϕ(t) = (C2 − ct)−1 if a = 0.
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1.2.5. Equations Explicitly Dependent on x and/or t

1.
∂w

∂t
= a

∂2w

∂x2
+ ceλw+bx+ct.

This is a special case of equation 1.6.1.2 with f (z,w) = cez+λw.

2.
∂w

∂t
= a

∂2w

∂x2
+ aλ

(

∂w

∂x

)2

+ beβx+µt–λw .

This is a special case of equation 1.6.4.9 with f (x, t) ≡ 0 and g(x, t) = beβx+µt.

3.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ btn.

This is a special case of equation 1.6.14.1 with f (t) = btn.

4.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ beµt.

This is a special case of equation 1.6.14.1 with f (t) = beµt.

5.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ beλw + ceµt.

This is a special case of equation 1.6.14.4 with f (t) = ceµt and g(t) = 0.

6.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ btne–λw.

This is a special case of equation 1.6.14.2 with f (t) = 0 and g(t) = btn.

7.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ be–λw+µt.

This is a special case of equation 1.6.14.2 with f (t) = 0 and g(t) = beµt.

8.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ beµt + ce–λw+νt.

This is a special case of equation 1.6.14.2 with f (t) = beµt and g(t) = ceνt.

9.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ (bx + c)eλw.

Additive separable solution:

w = −
1
λ

ln(λt + C) + ϕ(x),

where C is an arbitrary constant and the function ϕ(x) is determined by the second-order linear
ordinary differential equation

aψ′′

xx + λ(bx + c)ψ + λ = 0, ψ = eλϕ.

10.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ beλw+µx.

Additive separable solution:

w = −
1
λ

ln(λt + C) + ϕ(x),

where C is an arbitrary constant and the function ϕ(x) is determined by the second-order linear
ordinary differential equation

aψ′′

xx + λbeµxψ + λ = 0, ψ = eλϕ.
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11.
∂w

∂t
= a

∂

∂x

(

xneλw ∂w

∂x

)

.

This is a special case of equation 1.6.17.12 with f (x) = axn.

12.
∂w

∂t
= a

∂

∂x

(

eλw+µx ∂w

∂x

)

.

This is a special case of equation 1.6.17.12 with f (x) = aeµx.

1.3. Equations with Hyperbolic Nonlinearities
1.3.1. Equations Involving Hyperbolic Cosine

1.
∂w

∂t
= a

∂2w

∂x2
+ b coshk(λw).

This is a special case of equation 1.6.1.1 with f (w) = b coshk(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β coshk(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β coshk(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � coshk(λw).

This is a special case of equation 1.6.2.1 with f (w) = s coshk(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b coshk(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b coshk(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b coshk(λw)

(

∂w

∂x

)2

+ c coshk(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b coshk(λw), g(t) = 0, and h(t) = c coshk(βt).

6.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ 2b cosh(λw) + c coshk(βt).

This is a special case of equation 1.6.14.4 with f (t) = c coshk(βt) and g(t) = b.

7.
∂w

∂t
= a

∂

∂x

[

cosh2(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a cosh2(βw).
Self-similar solutions:

w(x, t) =
1
β

arcsinh
( �

x + C1
√

C2 − 2at

)

,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂

∂x

[

coshk(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a coshk(βw).

Page 62

© 2004 by Chapman & Hall/CRC



1.3. EQUATIONS WITH HYPERBOLIC NONLINEARITIES 63

1.3.2. Equations Involving Hyperbolic Sine

1.
∂w

∂t
= a

∂2w

∂x2
+ b sinhk(λw).

This is a special case of equation 1.6.1.1 with f (w) = b sinhk(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β sinhk(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β sinhk(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � sinhk(λw).

This is a special case of equation 1.6.2.1 with f (w) = s sinhk(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b sinhk(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b sinhk(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b sinhk(λw)

(

∂w

∂x

)2

+ c sinhk(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b sinhk(λw), g(t) = 0, and h(t) = c sinhk(βt).

6.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ 2b sinh(λw) + c sinhk(βt).

This is a special case of equation 1.6.14.4 with f (t) = c sinhk(βt) and g(t) = −b.

7.
∂w

∂t
= a

∂

∂x

[

sinh2(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a sinh2(βw).
Self-similar solutions:

w(x, t) =
1
β

arccosh
( �

x + C1
√

C2 − 2at

)

,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂

∂x

[

sinhk(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a sinhk(βw).

1.3.3. Equations Involving Hyperbolic Tangent

1.
∂w

∂t
= a

∂2w

∂x2
+ b tanhk(λw).

This is a special case of equation 1.6.1.1 with f (w) = b tanhk(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β tanhk(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β tanhk(z + λw).
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3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � tanhk(λw).

This is a special case of equation 1.6.2.1 with f (w) = s tanhk(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b tanhk(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b tanhk(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b tanhk(λw)

(

∂w

∂x

)2

+ c tanhk(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b tanhk(λw), g(t) = 0, and h(t) = c tanhk(βt).

6.
∂w

∂t
= a

∂

∂x

[

tanhk(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a tanhk(βw).

1.3.4. Equations Involving Hyperbolic Cotangent

1.
∂w

∂t
= a

∂2w

∂x2
+ b cothk(λw).

This is a special case of equation 1.6.1.1 with f (w) = b cothk(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β cothk(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β cothk(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � cothk(λw).

This is a special case of equation 1.6.2.1 with f (w) = s cothk(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b cothk(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b cothk(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b cothk(λw)

(

∂w

∂x

)2

+ c cothk(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b cothk(λw), g(t) = 0, and h(t) = c cothk(βt).

6.
∂w

∂t
= a

∂

∂x

[

cothk(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a cothk(βw).

1.4. Equations with Logarithmic Nonlinearities

1.4.1. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ b ln w.

This is a special case of equation 1.6.1.1 with f (w) = b lnw.
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2.
∂w

∂t
=

∂2w

∂x2
+ aw ln w.

This is a special case of equation 1.6.1.1 with f (w) = aw lnw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = exp(C1e
at)w( � x + C2, t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solutions:

w(x, t) = exp
(

Aeatx +
A2

a
e2at +Beat

)

,

w(x, t) = exp
[ 1

2 − 1
4 a(x +A)2 +Beat

]

,

w(x, t) = exp
[

−
a(x +A)2

4(1 +Be−at)
+

1
2B

eat ln(1 +Be−at) + Ceat
]

,

where A, B, and C are arbitrary constants.���
References: V. A. Dorodnitsyn (1979, 1982), A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov

(1995).

3◦. Multiplicative separable solution:

w(x, t) = exp
[

Aeat + f (x)
]

, (1)

where the function f (x) is defined implicitly by
∫

(

Be−2f − af + 1
2 a

)−1/2
df = � x + C. (2)

Relations (1) and (2) involve three arbitrary constants, A, B, and C.

4◦. There are more complicated solutions of the form

w(x, t) = exp
[

Aeat + f (x + bt)
]

,

where the function f (ξ) is determined by the autonomous ordinary differential equation

f ′′

ξξ + (f ′

ξ)
2 − bf ′

ξ + af = 0.

3.
∂w

∂t
=

∂2w

∂x2
+ aw ln w + bw.

The substitution w = e−b/au leads to an equation of the form 1.4.1.2:

∂u

∂t
=
∂2u

∂x2 + au lnu.

4.
∂w

∂t
=

∂2w

∂x2
+ aw ln w + (bx + c)w.

This is a special case of equations 1.6.1.5 and 1.6.1.7.

5.
∂w

∂t
=

∂2w

∂x2
+ aw ln w + (bx + ct + k)w.

This is a special case of equation 1.6.1.7.

6.
∂w

∂t
=

∂2w

∂x2
+ aw ln w + (bx2 + cx + k)w.

This is a special case of equation 1.6.1.9.
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7.
∂w

∂t
=

∂2w

∂x2
+ a(w + b) ln2(w + b).

1◦. The substitution w = eu − b leads to an equation of the form 1.1.7.4:

∂u

∂t
=
∂2u

∂x2 +
(

∂u

∂x

)2

+ au2. (1)

2◦. Solutions of equation (1) for a < 0:

u(x, t) = C1 exp
(

−at � x√−a
)

,

u(x, t) =
1

C1 − at
+

C2

(C1 − at)2 exp
(

−at � x√−a
)

,

where C1 and C2 are arbitrary constants. The first solution is a traveling-wave solution and the
second one is a generalized separable solution.

3◦. Equation (1) has also generalized separable solutions of the following forms:

u(x, t) = ϕ(t) + ψ(t)
[

A exp(x
√

−a ) +A exp(x
√

−a )
]

if a < 0,

u(x, t) = ϕ(t) + ψ(t)
[

A sin(x
√

a ) +A cos(x
√

a )
]

if a > 0.

For details, see 1.1.4.4.���
References: V. A. Galaktionov and S. A. Posashkov (1989), A. D. Polyanin and V. F. Zaitsev (2002).

8.
∂w

∂t
=

∂2w

∂x2
+ (1 + kw)

[

a ln2(1 + kw) + b ln(1 + kw) + c
]

.

This is a special case of equation 1.6.1.10.���
Reference: V. A. Galaktionov and S. A. Posashkov (1989).

1.4.2. Other Equations

1.
∂w

∂t
=

∂2w

∂x2
+ a

∂w

∂x
+ bw ln w.

On passing from t, x to the new variables t, z = x + at, one obtains a simpler solution of the form
1.4.1.2:

∂w

∂t
=
∂2w

∂z2 + bw lnw.

2.
∂w

∂t
= a

∂2w

∂x2
+ bt

∂w

∂x
+ cw ln w.

This is a special case of equation 1.6.2.6 with f (t) = 0, g(t) = bt, h(t) = c, and p(t) = s(t) = 0.

3.
∂w

∂t
= a

∂2w

∂x2
+ bx

∂w

∂x
+ cw ln w.

This is a special case of equation 1.6.2.6 with f (t) = b, g(t) = 0, h(t) = c, and p(t) = s(t) = 0.

4.
∂w

∂t
=

a

xk

∂

∂x

(

xk ∂w

∂x

)

+ bw ln w.

The values k = 1 and k = 2 correspond to problems with axial and central symmetry, respectively.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = exp(C1e
bt)w( � x, t + C2),

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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2◦. Functional separable solution:

w(x, t) = exp
[

−
bx2

4a(1 +Ae−bt)
+Bebt +

1
2A

(k + 1)ebt ln(1 +Ae−bt)
]

,

where A and B are arbitrary constants.���
Reference: A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

3◦. Multiplicative separable solution:

w(x, t) = exp
(

Aebt
)

θ(x),

where A is an arbitrary constant and the function θ(x) is determined by the second-order ordinary
differential equation

a

xk
d

dx

(

xk
dθ

dx

)

+ bθ ln θ = 0.

5.
∂w

∂t
= a

∂2w

∂x2
+ (b ln w + c)

∂w

∂x
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = eC1w(x + bC1t + C2, t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, t) = exp
[

C1 exp
(

−
b

a
x + b2C2t

)

+ 1 − aC2 −
c

b

]

,

where C1 and C2 are arbitrary constants.

3◦. Generalized traveling-wave solution:

w(x, t) = exp
[

C1 − x
b(t + C2)

+
a

b2
ln |t + C2|
t + C2

−
c

b

]

.

6.
∂w

∂t
=

∂2w

∂x2
+ a lnk(bw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = a lnk(bw).

7.
∂w

∂t
=

∂

∂x

[

(a ln w + b)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a lnw + b.
1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,C2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x, t) = exp
( �

√

2C1x + 2aC2
1 t + C2 −

b

a

)

,

w(x, t) = exp
(

C2

�
x

√

C1 − 2at
−
a + b
a

)

,

where C1 and C2 are arbitrary constants. The first solution represents a traveling wave and the
second one is self-similar.

Page 67

© 2004 by Chapman & Hall/CRC



68 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

8.
∂w

∂t
=

∂

∂x

[

(a ln w + b)
∂w

∂x

]

+ cw.

Generalized traveling-wave solution:

w(x, t) = exp
[

C2 � x
√

C1 − 2at
−
c

3a
(C1 − 2at) −

a + b
a

]

,

where C1 and C2 are arbitrary constants.

9.
∂w

∂t
=

∂

∂x

[

(a ln w + b)
∂w

∂x

]

+ cw ln w + � w.

Generalized traveling-wave solution:

w(x, t) = exp
[

ϕ(t)(C1 � x) + (a + b)ϕ(t)
∫

ϕ(t) dt + sϕ(t)
∫

dt

ϕ(t)

]

,

ϕ(t) =
(

C2e
−2ct −

a

c

)−1/2

,

where C1 and C2 are arbitrary constants.

1.5. Equations with Trigonometric Nonlinearities
1.5.1. Equations Involving Cosine

1.
∂w

∂t
= a

∂2w

∂x2
+ b cosk(λw).

This is a special case of equation 1.6.1.1 with f (w) = b cosk(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β cosk(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β cosk(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � cosk(λw).

This is a special case of equation 1.6.2.1 with f (w) = s cosk(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b cosk(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b cosk(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b cosk(λw)

(

∂w

∂x

)2

+ c cosk(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b cosk(λw), g(t) = 0, and h(t) = c cosk(βt).

6.
∂w

∂t
= a cos2(λw + β)

∂2w

∂x2
.

The substitution u = tan(λw + β) leads to an equation of the form 1.1.13.2:

∂u

∂t
= a

∂

∂x

(

1
u2 + 1

∂u

∂x

)

.
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7.
∂w

∂t
= a

∂

∂x

[

cos2(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a cos2(βw).
Self-similar solutions:

w(x, t) =
1
β

arcsin
�
x + C1

√

2at + C2
,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂

∂x

[

cosk(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a cosk(βw).

1.5.2. Equations Involving Sine

1.
∂w

∂t
= a

∂2w

∂x2
+ b sink(λw).

This is a special case of equation 1.6.1.1 with f (w) = b sink(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β sink(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β sink(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ � sink(λw).

This is a special case of equation 1.6.2.1 with f (w) = s sink(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b sink(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b sink(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b sink(λw)

(

∂w

∂x

)2

+ c sink(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b sink(λw), g(t) = 0, and h(t) = c sink(βt).

6.
∂w

∂t
= a sin2(λw)

∂2w

∂x2
.

The substitution u = cot(λw) leads to an equation of the form 1.1.13.2:
∂u

∂t
= a

∂

∂x

(

1
u2 + 1

∂u

∂x

)

.

7.
∂w

∂t
= a

∂

∂x

[

sin2(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a sin2(βw).
Self-similar solutions:

w(x, t) =
1
β

arccos
�
x + C1

√

2at + C2
,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂

∂x

[

sink(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a sink(βw).
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1.5.3. Equations Involving Tangent

1.
∂w

∂t
= a

∂2w

∂x2
+ b tank(λw).

This is a special case of equation 1.6.1.1 with f (w) = b tank(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β tank(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β tank(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+   tank(λw).

This is a special case of equation 1.6.2.1 with f (w) = s tank(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b tank(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b tank(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b tank(λw)

(

∂w

∂x

)2

+ c tank(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b tank(λw), g(t) = 0, and h(t) = c tank(βt).

6.
∂w

∂t
= a

∂

∂x

[

tank(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a tank(βw).

1.5.4. Equations Involving Cotangent

1.
∂w

∂t
= a

∂2w

∂x2
+ b cotk(λw).

This is a special case of equation 1.6.1.1 with f (w) = b cotk(λw).

2.
∂w

∂t
= a

∂2w

∂x2
+ β cotk(λw + bx + ct).

This is a special case of equation 1.6.1.2 with f (z,w) = β cotk(z + λw).

3.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+   cotk(λw).

This is a special case of equation 1.6.2.1 with f (w) = s cotk(λw).

4.
∂w

∂t
=

∂2w

∂x2
+ b cotk(λw)

(

∂w

∂x

)2

.

This is a special case of equation 1.6.6.8 with f (w) = b cotk(λw).

5.
∂w

∂t
=

∂2w

∂x2
+ b cotk(λw)

(

∂w

∂x

)2

+ c cotk(βt)
∂w

∂x
.

This is a special case of equation 1.6.6.10 with f (w) = b cotk(λw), g(t) = 0, and h(t) = c cotk(βt).

6.
∂w

∂t
= a

∂

∂x

[

cotk(βw)
∂w

∂x

]

.

This is a special case of equation 1.6.15.1 with f (w) = a cotk(βw).
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1.5.5. Equations Involving Inverse Trigonometric Functions

1.
∂w

∂t
=

∂

∂x

(

eλ arctan w

1 + w2

∂w

∂x

)

.

Solution in parametric form:

w = tan
(

ϕ(z) + arctan
(

2zϕ′

z

)

−
1
λ

ln t
)

,

x2 = z cos2
(

ϕ(z) +
1
λ

ln t
)

,

where z is the parameter and the function ϕ = ϕ(z) is determined by the first-order ordinary
differential equation (C is an arbitrary constant)

ϕ′

z =
1
2z

tan
(

1
λ

ln
C − z

2
− ϕ

)

−
1

λ(C − z)
.

¡�¢
Reference: I. Sh. Akhatov, R. K. Gazizov, and N. H. Ibragimov (1989).

2.
∂w

∂t
=

[(

∂w

∂x

)2

+ 1
]–1

exp
[

k arctan
(

∂w

∂x

)]

∂2w

∂x2
, k ≠ 0.

Solution:
w2 = u(z) − x2, z = t exp

[

−k arctan(x/w)
]

,

where the function u(z) is determined by the ordinary differential equation

2k2z2uu′′zz − k2z(3zu′z − 2u)u′z − 4u2 − 1
2 (k2z2u′z

2 + 4u2)u′z exp
[

k arctan
( 1

2 kzu
−1u′z

)]

= 0.

1.6. Equations Involving Arbitrary Functions

1.6.1. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ f (w).

Kolmogorov–Petrovskii–Piskunov equation. Equations of this form are often encountered in various
problems of heat and mass transfer (with f being the rate of a volume chemical reaction), combustion
theory, biology, and ecology. For f = f (w) having power-law, exponential, or logarithmic form, see
Subsections 1.1.1 to 1.1.3, equations 1.2.1.1 to 1.2.1.3, or equations 1.4.1.2, 1.4.1.3, 1.4.1.7, and
1.4.1.8, respectively.

1◦. The equation has an implicit nonstationary solution independent of the space variable:
∫

dw

f (w)
= t + C, C is an arbitrary constant.

2◦. Stationary solution in implicit form:

∫
[

C1 −
2
a

∫

f (w) dw
]−1/2

dw = C2 £ x.

3◦. Traveling-wave solutions:
w = w(z), z = £ x + λt,
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where λ is an arbitrary constant. The function w = w(z) is determined by the autonomous ordinary
differential equation

aw′′

zz − λw′

z + f (w) = 0. (1)

The transformation
ξ = (λ/a)z, U (w) = w′

ξ

brings (1) to the Abel equation
UU ′

w − U + aλ−2f (w) = 0. (2)

The book by Polyanin and Zaitsev (2003) presents a considerable number of solutions to
equation (2) for various f = f (w).

4◦. Subsection S.5.2 (e.g., see Example 1) presents an exact solution of this equation with f (w)
defined parametrically.

2.
∂w

∂t
= a

∂2w

∂x2
+ f (bx + ct, w).

Solution:
w = w(ξ), ξ = bx + ct,

where the function w(ξ) is determined by the ordinary differential equation

ab2w′′

ξξ − cw′

ξ + f (ξ,w) = 0.

3.
∂w

∂t
= a

∂2w

∂x2
+

1
t
f

(

x
√

t
, w

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(Cx,C2t),

where C is an arbitrary constant, is also a solution of the equation.

2◦. The transformation
τ = ln t, ξ =

x
√

t

leads to the equation
∂w

∂τ
= a

∂2w

∂ξ2 +
1
2
ξ
∂w

∂ξ
+ f (ξ, w),

which admits exact solutions of the form w = w(ξ).

4.
∂w

∂t
= a

∂2w

∂x2
+ bw ln w + f (t)w.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = exp
(

C1e
bt

)

w
( ¤
x + C2, t

)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Generalized traveling-wave solution:

w(x, t) = exp
[

Aebtx +Bebt +
a

b
A2e2bt + ebt

∫

e−btf (t) dt
]

,

where A and B are arbitrary constants.
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3◦. Functional separable solution:

w(x, t) = exp
[

ϕ(t)x2 + ψ(t)
]

.

Here, the functions ϕ(t) and ψ(t) are given by

ϕ(t) =
bebt

A − 4aebt
, ψ(t) = Bebt + ebt

∫

e−bt[2aϕ(t) + f (t)
]

dt,

where A and B are arbitrary constants.

4◦. There are also functional separable solutions of the more general form

w(x, t) = exp
[

ϕ2(t)x2 + ϕ1(t)x + ϕ0(t)
]

,

where the functions ϕ2(t), ϕ1(t), and ϕ0(t) are determined by a system of ordinary differential
equations (see equation 1.6.1.9) that can be integrated.

5◦. Solution:

w(x, t) = exp
[

Aebt + ebt
∫

e−btf (t) dt + Φ(x + λt)
]

,

where A and λ are arbitrary constants, and the function Φ = Φ(z) is determined by the autonomous
ordinary differential equation

aΦ′′

zz + a(Φ′

z)2 − λΦ′

z + bΦ = 0,

the order of which can be reduced by one.

6◦. The substitution

w(x, t) = exp
[

ebt
∫

e−btf (t) dt
]

u(x, t)

leads to a simpler equation of the form 1.4.1.2:

∂u

∂t
= a

∂2u

∂x2 + bu lnu.

5.
∂w

∂t
= a

∂2w

∂x2
+ bw ln w +

[

f (x) + g(t)
]

w.

1◦. Multiplicative separable solution:

w(x, t) = exp
[

Cebt + ebt
∫

e−btg(t) dt
]

ϕ(x),

where C is an arbitrary constant, and the function ϕ(t) is determined by the ordinary differential
equation

aϕ′′

xx + bϕ lnϕ + f (x)ϕ = 0.

2◦. With the substitution

w(x, t) = exp
[

ebt
∫

e−btg(t) dt
]

u(x, t)

one arrives at the simpler equation

∂u

∂t
= a

∂2u

∂x2 + bu lnu + f (x)u.
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6.
∂w

∂t
= a

∂2w

∂x2
+ f (t)w ln w + g(t)w.

1◦. Generalized traveling-wave solution:

w(x, t) = exp
[

Φ(t)x + Ψ(t)
]

,

where the functions Φ(t) and Ψ(t) are given by

Φ(t) = AeF , Ψ(t) = BeF + eF
∫

e−F (aA2e2F + g) dt, F =
∫

f dt,

and A and B are arbitrary constants.

2◦. Functional separable solution:

w(x, t) = exp
[

ϕ(t)x2 + ψ(t)
]

,

where the functions ϕ(t) and ψ(t) are given by

ϕ(t) = eF
(

A − 4a
∫

eF dt

)−1

, F =
∫

f dt,

ψ(t) = BeF + eF
∫

e−F (2aϕ + g) dt,

and A and B are arbitrary constants.

3◦. There are also functional separable solutions of the more general form

w(x, t) = exp
[

ϕ2(t)x2 + ϕ1(t)x + ϕ0(t)
]

,

where the functions ϕ2(t), ϕ1(t), and ϕ0(t) are determined by a system of ordinary differential
equations (see equation 1.6.1.9), which can be integrated.¥�¦

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

7.
∂w

∂t
= a

∂2w

∂x2
+ f (t)w ln w +

[

g(t)x + h(t)
]

w.

1◦. Generalized traveling-wave solution:

w(x, t) = exp
[

ϕ(t)x + ψ(t)
]

,

where the functions ϕ(t) and ψ(t) are given by

ϕ(t) = AeF + eF
∫

e−F g dt, F =
∫

f dt,

ψ(t) = BeF + eF
∫

e−F (aϕ2 + h) dt,

and A and B are arbitrary constants.

2◦. There are also functional separable solutions of the form

w(x, t) = exp
[

ϕ2(t)x2 + ϕ1(t)x + ϕ0(t)
]

,

where the functions ϕ2(t), ϕ1(t), and ϕ0(t) are determined by a system of ordinary differential
equations (see equation 1.6.1.9), which can be integrated.¥�¦

Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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8.
∂w

∂t
= a

∂2w

∂x2
+ f (x)w ln w +

[

bf (x)t + g(x)
]

w.

Multiplicative separable solution:

w(x, t) = e−bt exp
[

ϕ(x)
]

,

where the function ϕ(x) is determined by the ordinary differential equation

aϕ′′

xx + a(ϕ′

x)2 + f (x)ϕ + g(x) + b = 0.

For f , g = const, this equation can be reduced by the substitution u(ϕ) = (ϕ′

x)2 to a first-order
linear equation.§�¨

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

9.
∂w

∂t
= a

∂2w

∂x2
+ f (t)w ln w +

[

g(t)x2 + h(t)x + © (t)
]

w.

Functional separable solution:

w(x, t) = exp
[

ϕ2(t)x2 + ϕ1(t)x + ϕ0(t)
]

,

where the functions ϕn(t) (n = 1, 2, 3) are determined by the system of first-order ordinary differ-
ential equations with variable coefficients

ϕ′

2 = 4aϕ2
2 + fϕ2 + g, (1)

ϕ′

1 = 4aϕ2ϕ1 + fϕ1 + h, (2)
ϕ′

0 = fϕ0 + aϕ2
1 + 2aϕ2 + s. (3)

Here, the arguments of the functions f , g, h, and s are not specified, and the prime denotes a
derivative with respect to t.

Equation (1) for ϕ2 = ϕ2(t) is a Riccati equation, so it can be reduced to a second-order linear
equation. The books by Kamke (1977), Polyanin and Zaitsev (2003) present a large number of
solutions to this equation for various f and g.

Given a solution of equation (1), the solutions of equations (2) and (3) can be constructed
successively, due to the linearity of each of them in the unknown.

10.
∂w

∂t
= a

∂2w

∂x2
+ (bw + c)

[

k ln2(bw + c) + f (t) ln(bw + c) + g(t)
]

.

The substitution
bw + c = expu, u = u(x, t)

leads to an equation of the form 1.6.6.2:

∂u

∂t
= a

∂2u

∂x2 + a
(

∂u

∂x

)2

+ bku2 + bf (t)u + bg(t),

which has exponential and sinusoidal solutions with respect to x.

1.6.2. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (x, t) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ (bx + c)

∂w

∂x
+ f (w).

This equation governs unsteady mass transfer with a volume chemical reaction in an inhomogeneous
fluid flow.
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1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−bt,

where the function w(z) is determined by the ordinary differential equation

aw′′

zz + (bz + c)w′

z + f (w) = 0.

2.
∂w

∂t
=

a

xn

∂

∂x

(

xn ∂w

∂x

)

+ f (t)w ln w.

This equation can be rewritten as

∂w

∂t
= a

∂2w

∂x2 +
an

x

∂w

∂x
+ f (t)w lnw.

Functional separable solution:

w(x, t) = exp
[

ϕ(t)x2 + ψ(t)
]

,

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients

ϕ′

t = 4aϕ2 + fϕ,
ψ′

t = 2a(n + 1)ϕ + fψ;

the arguments of the functions f and g are not specified. Integrating the first equation and then the
second, we obtain

ϕ(t) = eF
(

A − 4a
∫

eF dt

)−1

, F =
∫

f dt,

ψ(t) = BeF + 2a(n + 1)eF
∫

ϕe−F dt,

where A and B are arbitrary constants.

3.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

∂w

∂x
+ g(w).

On passing from t, x to the new variables t, z = x +
∫

f (t) dt, one obtains a simpler equation

∂w

∂t
= a

∂2w

∂z2 + g(w),

which has a traveling-wave solution w = w(kz + λt).

4.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

∂w

∂x
+ g(t, w).

On passing from t, x to the new variables t, z = x +
∫

f (t) dt, one obtains a simpler equation

∂w

∂t
= a

∂2w

∂z2 + g(t,w).
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5.
∂w

∂t
= a

∂2w

∂x2
+ f (x)

∂w

∂x
+ bw ln w +

[

g(x) + h(t)
]

w.

Multiplicative separable solution:

w(x, t) = exp
[

Cebt + ebt
∫

e−bth(t) dt
]

ϕ(x),

where C is an arbitrary constant, and the function ϕ(t) is determined by the ordinary differential
equation

aϕ′′

xx + f (x)ϕ′

x + bϕ lnϕ + g(x)ϕ = 0.

6.
∂w

∂t
= a

∂2w

∂x2
+

[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w ln w +

[

xp(t) + ª (t)
]

w.

1◦. Generalized traveling-wave solution:

w(x, t) = exp
[

xϕ(t) + ψ(t)
]

,

where the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients

ϕ′

t =
[

f (t) + h(t)
]

ϕ + p(t), (1)

ψ′

t = h(t)ψ + aϕ2 + g(t)ϕ + s(t). (2)

Integrating (1) and then (2), we obtain (C1 and C2 are arbitrary constants)

ϕ(t) = C1E(t) +E(t)
∫

p(t)
E(t)

dt, E(t) = exp
[
∫

f (t) dt +
∫

h(t) dt
]

,

ψ(t) = C2H(t) +H(t)
∫

aϕ2(t) + g(t)ϕ(t) + s(t)
H(t)

dt, H(t) = exp
[
∫

h(t) dt
]

.

2◦. See equation 1.6.2.7 with r(t) = 0.

7.
∂w

∂t
= a

∂2w

∂x2
+

[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w ln w +

[

x2r(t) + xp(t) + ª (t)
]

w.

Functional separable solution:

w(x, t) = exp
[

x2ϕ(t) + xψ(t) + χ(t)
]

,

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of first-order
ordinary differential equations with variable coefficients

ϕ′

t = 4aϕ2 + (2f + h)ϕ + r, (1)
ψ′

t = (4aϕ + f + h)ψ + 2gϕ + p, (2)
χ′

t = hχ + 2aϕ + aψ2 + gψ + s. (3)

For r ≡ 0, equation (1) is a Bernoulli equation, so it is easy to integrate. In the general case,
equation (1) forϕ =ϕ(t) is a Riccati equation, so it can be reduced to a second-order linear equation.
The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a large number of solutions to
the Riccati equation for various f , h, and r. With equation (1) solved, the solutions of equations (2)
and (3) can be obtained with ease, since these are linear in their unknowns ψ = ψ(t) and χ = χ(t).
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8.
∂w

∂t
= a

∂2w

∂x2
+

[

xf (t) +
g(t)
x

]

∂w

∂x
+ h(t)w ln w +

[

x2p(t) + « (t)
]

w.

Functional separable solution:

w(x, t) = exp
[

ϕ(t)x2 + ψ(t)
]

,

where the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients

ϕ′

t = 4aϕ2 + (2f + h)ϕ + p, (1)
ψ′

t = hψ + 2(a + g)ϕ + s. (2)

For p ≡ 0, equation (1) is a Bernoulli equation, so it is easy to integrate. In the general case,
equation (1) forϕ =ϕ(t) is a Riccati equation, so it can be reduced to a second-order linear equation.
The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a large number of solutions
to the Riccati equation for various f , h, and r. With equation (1) solved, the solution of the linear
equation (2) can be obtained with ease.¬�

Reference: A. D. Polyanin (2002).

1.6.3. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f (x, t, w) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
+ f (t).

The transformation

w = u(z, t) +
∫ t

t0

f (τ ) dτ , z = x + b
∫ t

t0

(t − τ )f (τ ) dτ ,

where t0 is any number, leads to the Burgers equation 1.1.5.3:

∂u

∂t
= a

∂2u

∂x2 + bu
∂u

∂x
.

2.
∂w

∂t
= a

∂2w

∂x2
+ bw

∂w

∂x
+ f (x, t).

Let us substitute
w =

∂u

∂x
and then integrate the resulting equation with respect to x to arrive at an equation of the form 1.6.4.3:

∂u

∂t
= a

∂2u

∂x2 +
b

2

(

∂u

∂x

)2

+ F (x, t),

where F (x, t) =
∫

f (x, t) dx + g(t) with g(t) being an arbitrary function.¬�
Reference: A. R. Fortsyth (1906).

3.
∂w

∂t
+ bw

∂w

∂x
= a

∂2w

∂x2
+

∂

∂x

[

f (x, t)w
]

.

Solution:
w(x, t) = −

2a
b

1
θ

∂θ

∂x
,

where the function θ = θ(x, t) satisfies the linear equation

∂θ

∂t
= a

∂2θ

∂x2 + f (x, t)
∂θ

∂x
.
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4.
∂w

∂t
= a

∂2w

∂x2
+

[

bw + f (t)
] ∂w

∂x
+ g(t).

The transformation

w = u(z, t) +
∫ t

t0

g(τ ) dτ , z = x +
∫ t

t0

f (τ ) dτ + b
∫ t

t0

(t − τ )g(τ ) dτ ,

where t0 is any number, leads to the Burgers equation 1.1.5.3:

∂u

∂t
= a

∂2u

∂x2 + bu
∂u

∂x
.

5.
∂w

∂t
+ f (t)w

∂w

∂x
= a

∂2w

∂x2
+ g(t)w + h(t).

Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

x + ψ(t), t
)

+ ϕ(t), ϕ(t) = C exp
[
∫

g(t) dt
]

, ψ(t) = −
∫

f (t)ϕ(t) dt,

where C is an arbitrary constant, is also a solution of the equation.
Remark. This remains true if the equation coefficient a is an arbitrary function of time, a = a(t).
.

6.
∂w

∂t
= a

∂2w

∂x2
+

[

f (t) ln w + g(t)
] ∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = exp
{

ϕ(t)(x + C1) + ϕ(t)
∫

[

aϕ(t) + g(t)
]

dt

}

, ϕ(t) = −
[
∫

f (t) dt + C2

]−1

,

where C1 and C2 are arbitrary constants.

7.
∂w

∂t
= a

∂2w

∂x2
+ f (w)

∂w

∂x
.

Traveling-wave solution:
w = w(z), z = x + λt

are defined implicitly by

a

∫

dw

λw − F (w) +A
= z +B, F (w) =

∫

f (w) dw,

where A and B are arbitrary constants.

8.
∂w

∂t
= a

∂2w

∂x2
+ f (w)

∂w

∂x
+ g(w).

Traveling-wave solution:
w = w(z), z = x + λt,

where the function w = w(z) is determined by the second-order autonomous ordinary differential
equation

aw′′

zz +
[

f (w) − λ
]

w′

z + g(w) = 0,

which can be reduced with the change of variable w′

z = u(w) to a first-order equation. For exact
solutions of the above ordinary differential equation with various f (w) and g(w), see Polyanin and
Zaitsev (2003).
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9.
∂w

∂t
= a

∂2w

∂x2
+

[

f (w) + bx
] ∂w

∂x
+ g(w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−bt,

where the function w(z) is determined by the ordinary differential equation

aw′′

zz +
[

f (w) + bz
]

w′

z + g(w) = 0.

10.
∂w

∂t
= a

∂2w

∂x2
+

[

f (w) + g(t)
] ∂w

∂x
.

On passing from t, x to the new variables t, z = x +
∫

g(t) dt, we obtain an equation of the form

1.6.3.7:
∂w

∂t
= a

∂2w

∂z2 + f (w)
∂w

∂z
.

11.
∂w

∂t
= a

∂2w

∂x2
+

[

f (w) + g(t)
] ∂w

∂x
+ h(w).

On passing from t, x to the new variables t, z = x +
∫

g(t) dt, one obtains a simpler equation of the

form 1.6.3.8:
∂w

∂t
= a

∂2w

∂z2 + f (w)
∂w

∂z
+ h(w).

12.
∂w

∂t
= a

∂2w

∂x2
+

[

f (w) + g(t) + bx
] ∂w

∂x
+ h(w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + Ce−bt, t),

where C is an arbitrary constant, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + Ce−bt + e−bt
∫

ebtg(t) dt,

where the function w(z) is determined by the ordinary differential equation

aw′′

zz +
[

f (w) + bz
]

w′

z + h(w) = 0.

13.
∂w

∂t
= a

∂2w

∂x2
+ f (bx + ct, w)

∂w

∂x
+ g(bx + ct, w).

Solution:
w = w(ξ), ξ = bx + ct,

where the function w(ξ) is determined by the ordinary differential equation

ab2w′′

ξξ +
[

bf (ξ,w) − c
]

w′

ξ + g(ξ,w) = 0.
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1.6.4. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + b

(
∂w
∂x

)2
+ f (x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ f (x) + g(t).

This is a special case of equation 1.6.4.3.
Additive separable solution:

w(x, t) = At +B +
∫

g(t) dt + ϕ(x).

Here,A andB are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

aϕ′′

xx + b
(

ϕ′

x)2 + f (x) −A = 0,

which can be reduced, with the change of variable ϕ′

x =
a

b

ψ′

x

ψ
, to a second-order linear equation:

ψ′′

xx + ba−2[f (x) −A
]

ψ = 0.

2.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ f (t)x2 + g(t)x + h(t).

This is a special case of equation 1.6.4.3.
Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients

ϕ′

t = 4bϕ2 + f , (1)
ψ′

t = 4bϕψ + g, (2)
χ′

t = 2aϕ + bψ2 + h. (3)

Equation (1) for ϕ is a Riccati equation. In the special case f = const, it can be easily integrated
by separation of variables. Having determinedϕ, one finds the solutions of equation (2) and then (3),
which are linear in the unknowns ψ and χ, respectively.

3.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ f (x, t).

The substitution u = exp
(

b

a
w

)

leads to a linear equation for u = u(x, t):

∂u

∂t
= a

∂2u

∂x2 +
b

a
f (x, t)u.

4.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + f (t).

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( ® x + C1, t) + C2e
ct,

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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2◦. Generalized separable solution quadratic in x:

w(x, t) =
c(x + C2)2

C1e−ct − 4b
−

2a
C1
ect ln |C1e

−ct − 4b| + C3e
ct + ect

∫

e−ctf (t) dt.

3◦. Solution:
w(x, t) = Aect + ect

∫

e−ctf (t) dt + Θ(ξ), ξ = x + λt,

where A and λ are arbitrary constants, and the function Θ(ξ) is determined by the autonomous
ordinary differential equation

aΘ′′

ξξ + b
(

Θ
′

ξ

)2 − λΘ′

ξ + cΘ = 0.

4◦. The substitution
w = U (x, t) + ect

∫

e−ctf (t) dt

leads to the simpler equation

∂U

∂t
= a

∂2U

∂x2 + b
(

∂U

∂x

)2

+ cU .

¯�°
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + f (x).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t + C1) + C2e
ct,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:
w(x, t) = Aect + ϕ(x),

where A is an arbitrary constant and the function ϕ(x) is determined by the ordinary differential
equation

aϕ′′

xx + b(ϕ′

x)2 + cϕ + f (x) = 0.

6.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + f (x) + g(t).

Additive separable solution:

w(x, t) = ϕ(x) +Aect + ect
∫

e−ctg(t) dt,

where A is an arbitrary constant and the function ϕ(x) is determined by the ordinary differential
equation

aϕ′′

xx + b(ϕ′

x)2 + cϕ + f (x) = 0.

7.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ g(t)w + h(t).

This is a special case of equation 1.6.6.1 with f (t) = b.

8.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw2 + f (t)w + g(t).

This is a special case of equation 1.6.6.2.
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9.
∂w

∂t
= a

∂2w

∂x2
+ aλ

(

∂w

∂x

)2

+ f (x, t) + g(x, t)e–λw.

The substitution u = exp(λw) leads to the linear equation

∂u

∂t
= a

∂2u

∂x2 + λf (x, t)u + λg(x, t).

10.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+
1
t
f

(

x
√

t
, w

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(Cx,C2t),

where C is an arbitrary constant, is also a solution of the equation.

2◦. The transformation τ = ln t, ξ = xt−1/2 leads to the equation

∂w

∂τ
= a

∂2w

∂ξ2 + b
(

∂w

∂ξ

)2

+
1
2
ξ
∂w

∂ξ
+ f (ξ,w),

which admits an exact solution of the form w = w(ξ).

3◦. In the special case f = f (ξ), there is also a exact solution of the form w = Cτ + ϕ(ξ), where C
is an arbitrary constant, and the function ϕ(ξ) is determined by the ordinary differential equation

aϕ′′

ξξ + b(ϕ′

ξ)
2 + 1

2 ξϕ
′

ξ + f (ξ) − C = 0.

1.6.5. Equations of the Form
∂w
∂t

= a∂2w
∂x2 + b

(
∂w
∂x

)2
+ f (x, t, w) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ f (x)
∂w

∂x
+ kw + g(x) + h(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Cekt,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = ϕ(x) + Cekt + ekt
∫

e−kth(t) dt,

where the function ϕ(x) is determined by the ordinary differential equation

aϕ′′

xx + b(ϕ′

x)2 + f (x)ϕ′

x + kϕ + g(x) = 0.

2.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ f (t)
∂w

∂x
+ cw2 + g(t)w + h(t).

This is a special case of equation 1.6.6.5.

3.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw
∂w

∂x
+ kw2 + f (t)w + g(t).

There are generalized separable solutions of the form

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ = λ1,2 are roots of the quadratic equation bλ2 + cλ + k = 0.
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4.
∂w

∂t
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ f (x, t)
∂w

∂x
+ g(x, t).

The substitution u = exp
(

b

a
w

)

leads to the linear equation

∂u

∂t
= a

∂2u

∂x2 + f (x, t)
∂u

∂x
+
b

a
g(x, t)u.

5.
∂w

∂t
= a

∂2w

∂x2
+ aλ

(

∂w

∂x

)2

+ f (x, t)
∂w

∂x
+ g(x, t) + h(x, t)e–λw.

The substitution u = exp(λw) leads to the linear equation

∂u

∂t
= a

∂2u

∂x2 + f (x, t)
∂u

∂x
+ λg(x, t)u + λh(x, t).

1.6.6. Equations of the Form
∂w
∂t

= a∂2w
∂x2 + f (x, t, w)

(
∂w
∂x

)2
+ g(x, t, w) ∂w

∂x
+ h(x, t, w)

1.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ g(t)w + h(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( ± x + C1, t) + C2 exp
[
∫

g(t) dt
]

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients

ϕ′

t = 4fϕ2 + gϕ, (1)
ψ′

t = (4fϕ + g)ψ, (2)
χ′

t = gχ + 2aϕ + fψ2 + h. (3)

Equation (1) is a Bernoulli equation for ϕ, so it can be readily integrated. Having determinedϕ,
we can obtain the solutions of equation (2) and then (3), which are linear in the unknowns ψ and χ,
respectively. Finally, we have

ϕ = eG
(

A1 − 4
∫

eGf dt

)−1

, G =
∫

g dt,

ψ = A2 exp
[
∫

(4fϕ + g) dt
]

,

χ = A3e
G + eG

∫

e−G(2aϕ + fψ2 + h) dt,

(4)

where A1, A2, and A3 are arbitrary constants.
To the limit passage A1 →∞ in (4) there corresponds a degenerate solution with ϕ ≡ 0.²�³
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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2.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ bf (t)w2 + g(t)w + h(t).

1◦. Generalized separable solution quadratic in :

w(x, t) = ϕ(t) + ψ(t) exp
( ´
x
√

−b
)

, b < 0, (1)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients (the arguments of f , g, and h are not indicated)

ϕ′

t = bfϕ2 + gϕ + h, (2)
ψ′

t = (2bfϕ + g − ab)ψ. (3)

Equation (2) is a Riccati equation for ϕ = ϕ(t), so it can be reduced to a second-order linear
equation. The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a large number of
solutions to this equation for various f , g, and h.

Given a solution of (2), one can solve the linear equation (3) for ψ = ψ(t) to obtain

ψ(t) = C exp
[

−abt +
∫

(2bfϕ + g) dt
]

, (4)

where C is an arbitrary constant.
Note two special integrable cases of equation (2).
Solution of equation (2) with h ≡ 0:

ϕ(t) = eG
(

C1 − b
∫

feG dt

)−1

, G =
∫

g dt,

where C1 is an arbitrary constant.
If the functions f , g, and h are proportional,

g = αf , h = βf (α, β = const),

then the solution of (2) is given by
∫

dϕ

bϕ2 + αϕ + β
=

∫

f dt + C2, (5)

where C2 is an arbitrary constant. On integrating the left-hand side of equation (5) and solving for
ϕ, one can find ϕ = ϕ(t) in explicit form.

2◦. Generalized separable solution of a more general form:

w(x, t) = ϕ(t) + ψ(t)
[

A exp
(

x
√

−b
)

+ B exp
(

−x
√

−b
)]

, b < 0, (6)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients

ϕ′

t = bf
(

ϕ2 + 4ABψ2) + gϕ + h, (7)
ψ′

t = 2bfϕψ + gψ − abψ. (8)

Solving (8) for ϕ to express it in terms of ψ and then substituting the resulting expression
into (7), one arrives at a second-order nonlinear equation for ψ (if f , g, h = const, this equation is
autonomous and, hence, its order can be reduced).

Note two special cases of solution (6) where the exponentials combine to form hyperbolic
functions:

w(x, t) = ϕ(t) + ψ(t) cosh
(

x
√

−b
)

, A = 1
2 , B = 1

2 ,

w(x, t) = ϕ(t) + ψ(t) sinh
(

x
√

−b
)

, A = 1
2 , B = − 1

2 .
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3◦. Generalized separable solution (c is an arbitrary constant):

w(x, t) = ϕ(t) + ψ(t) cos
(

x
√

b + c
)

, b > 0, (9)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients

ϕ′

t = bf
(

ϕ2 + ψ2) + gϕ + h, (10)
ψ′

t = 2bfϕψ + gψ − abψ. (11)

Solving (11) for ϕ to express it in terms of ψ and then substituting the resulting expression
into (10), one arrives at a second-order nonlinear equation for ψ (if f , g, h = const, this equation is
autonomous and, hence, its order can be reduced).µ�¶

References: V. A. Galaktionov and S. A. Posashkov (1989, the case f , g,h = const was considered), V. F. Zaitsev and
A. D. Polyanin (1996).

3.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ bf (t)w
∂w

∂x
+ cf (t)w2 + g(t)w + h(t).

There are generalized separable solutions of the form

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ = λ1,2 are roots of the quadratic equation λ2 + bλ + c = 0.

4.
∂w

∂t
= a

∂2w

∂x2
+ f (x)

(

∂w

∂x

)2

+ g(x)
∂w

∂x
+ bw + h(x) + p(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Cebt,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = ϕ(x) + Cebt + ebt
∫

e−btp(t) dt,

where the function ϕ(x) is determined by the ordinary differential equation

aϕ′′

xx + f (x)(ϕ′

x)2 + g(x)ϕ′

x + bϕ + h(x) = 0.

5.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ g(t)
∂w

∂x
+ bf (t)w2 + h(t)w + p(t).

On passing from t, x to the new variables t, z = x +
∫

g(t) dt, one arrives at an equation of the form

1.6.6.2:
∂w

∂t
= a

∂2w

∂z2 + f (t)
(

∂w

∂z

)2

+ bf (t)w2 + h(t)w + p(t).

6.
∂w

∂t
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+
[

g1(t)x + g0(t)
] ∂w

∂x
+ h(t)w + p(t)x2 + q(t)x + · (t).

Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),
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where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients

ϕ′

t = 4fϕ2 + (2g1 + h)ϕ + p, (1)
ψ′

t = (4fϕ + g1 + h)ψ + 2g0ϕ + q, (2)
χ′

t = hχ + 2aϕ + fψ2 + g0ψ + s. (3)

Equation (1) is a Riccati equation for ϕ = ϕ(t) and, hence, can be reduced to a second-order
linear equation. For solution of such equations, see Kamke (1977) and Polyanin and Zaitsev (2003).
In the special case p ≡ 0, (1) is a Bernoulli equation, so it can be readily integrated.

Given a solution of (1), equations (2) and (3) can be easily solved, since these are linear in their
respective unknowns ψ and χ.

7.
∂w

∂t
= a

∂2w

∂x2
– ak

1
w

(

∂w

∂x

)2

+ f (x, t)
∂w

∂x
+ g(x, t)w + h(x, t)wk.

The substitution u = w1−k leads to the linear equation

∂u

∂t
= a

∂2u

∂x2 + f (x, t)
∂u

∂x
+ (1 − k)g(x, t)u + (1 − k)h(x, t).

8.
∂w

∂t
=

∂2w

∂x2
+ f (w)

(

∂w

∂x

)2

.

The substitution

u =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads to the linear heat equation for u = u(x, t):

∂u

∂t
=
∂2u

∂x2 .

9.
∂w

∂t
=

∂2w

∂x2
+ f (w)

(

∂w

∂x

)2

+ g(x)
∂w

∂x
.

The substitution

u =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads to a linear equation for u = u(x, t):

∂u

∂t
=
∂2u

∂x2 + g(x)
∂u

∂x
.

Some exact solutions of this equation, for arbitrary g, can be found in Polyanin (2002).

10.
∂w

∂t
=

∂2w

∂x2
+ f (w)

(

∂w

∂x

)2

+
[

xg(t) + h(t)
] ∂w

∂x
.

The substitution

u =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads to a linear equation for u = u(x, t):

∂u

∂t
=
∂2u

∂x2 +
[

xg(t) + h(t)
]∂u

∂x
.

This equation can be reduced to the linear heat equation (see Polyanin, 2002).
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11.
∂w

∂t
=

∂2w

∂x2
+ f (w)

(

∂w

∂x

)2

+ g(x, t)
∂w

∂x
.

The substitution

u =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads to the linear equation
∂u

∂t
=
∂2u

∂x2 + g(x, t)
∂u

∂x
.

12.
∂w

∂t
= a

∂2w

∂x2
+ f (w)

(

∂w

∂x

)2

+ g(w)
∂w

∂x
+ h(w).

Traveling-wave solution:
w = w(z), z = x + λt,

where the function w = w(z) is determined by the autonomous ordinary differential equation

aw′′

zz + f (w)(w′

z)2 + [g(w) − λ]w′

z + h(w) = 0. (1)

The substitution w′

z = u(w) leads to the first-order equation

auu′w + f (w)u2 + [g(w) − λ]u + h(w) = 0. (2)

For exact solutions of the ordinary differential equations (1) and (2) for various f (w), g(w), and
h(w), see the book by Polyanin and Zaitsev (2003).

Note that in the special case h ≡ 0, equation (2) becomes linear and, hence, can be readily
integrated.

1.6.7. Equations of the Form ∂w
∂t

= a∂2w
∂x2 + f

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= a

∂2w

∂x2
+ f (x)

(

∂w

∂x

)k

+ g(x)
∂w

∂x
+ bw + h(x) + p(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Cebt,
where C is an arbitrary constant, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = ϕ(x) + Cebt + ebt
∫

e−btp(t) dt,

where the function ϕ(x) is determined by the second-order ordinary differential equation

aϕ′′

xx + f (x)(ϕ′

x)k + g(x)ϕ′

x + bϕ + h(x) = 0.

2.
∂w

∂t
= a

∂2w

∂x2
+ f

(

x,
∂w

∂x

)

+ bw + g(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Cebt,
where C is an arbitrary constant, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = ϕ(x) + Cebt + ebt
∫

e−btg(t) dt,

where the function ϕ(x) is determined by the second-order ordinary differential equation

aϕ′′

xx + f (x, ϕ′

x) + bϕ = 0.
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3.
∂w

∂t
= a

∂2w

∂x2
+ wf

(

t,
1
w

∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x + C2, t),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = A exp
[

λx + aλ2t +
∫

f (t,λ) dt
]

,

where A and λ are arbitrary constants.

1.6.8. Equations of the Form ∂w
∂t

= f (x, t) ∂2w
∂x2 + g

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= (ax2 + b)

∂2w

∂x2
+ ax

∂w

∂x
+ f (w).

The substitution z =
∫

dx
√

ax2 + b
leads to an equation of the form 1.6.1.1:

∂w

∂t
=
∂2w

∂z2 + f (w).

2.
∂w

∂t
=

f (t)
xn

∂

∂x

(

xn ∂w

∂x

)

+ g(t)w ln w.

This equation can be rewritten in the form

∂w

∂t
= f (t)

∂2w

∂x2 +
nf (t)
x

∂w

∂x
+ g(t)w lnw.

Functional separable solution:

w(x, t) = exp
[

ϕ(t)x2 + ψ(t)
]

,

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients

ϕ′

t = 4fϕ2 + gϕ,
ψ′

t = 2(n + 1)fϕ + gψ;

the arguments of f and g are omitted. Successively integrating, one obtains

ϕ(t) = eG
(

A − 4
∫

feGdt

)−1

, G =
∫

g dt,

ψ(t) = BeG + 2(n + 1)eG
∫

fϕe−Gdt,

where A and B are arbitrary constants.
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3.
∂w

∂t
= f (t)

∂2w

∂x2
+

[

xg(t) +
h(t)
x

]

∂w

∂x
+ ¸ (t)w ln w +

[

x2p(t) + q(t)
]

w.

Functional separable solution:

w(x, t) = exp
[

ϕ(t)x2 + ψ(t)
]

,

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients

ϕ′

t = 4fϕ2 + (2g + s)ϕ + p, (1)
ψ′

t = sψ + 2(f + h)ϕ + q. (2)

For p ≡ 0, equation (1) is a Bernoulli equation and, hence, can be easily integrated. In the
general case, (1) is a Riccati equation for ϕ = ϕ(t), so it can be reduced to a second-order linear
equation. The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a considerable
number of solutions to this equation for various f , g, s, and p. Having solved equation (1), one can
find ψ = ψ(t) from the linear equation (2).

4.
∂w

∂t
= f (t)

∂

∂x

(

eλx ∂w

∂x

)

+ g(t)w ln w + h(t)w.

Functional separable solution:

w(x, t) = exp
[

ϕ(t)e−λx + ψ(t)
]

,

where the functions ϕ(t) and ψ(t) are determined by the ordinary differential equations

ϕ′

t = λ2f (t)ϕ2 + g(t)ϕ,
ψ′

t = g(t)ψ + h(t).

Integrating yields

ϕ(t) = G(t)
[

A − λ2
∫

f (t)G(t) dt
]−1

, G(t) = exp
[
∫

g(t) dt
]

,

ψ(t) = BG(t) +G(t)
∫

h(t)
G(t)

dt,

where A and B are arbitrary constants.

5.
∂w

∂t
=

∂

∂x

[

f (x)
∂w

∂x

]

+ aw ln w.

This equation can be rewritten in the form

∂w

∂t
= f (x)

∂2w

∂x2 + f ′

x(x)
∂w

∂x
+ aw lnw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = exp(C1e
at)w(x, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = exp(Ceat)ϕ(x),

where C is an arbitrary constant, and the function ϕ(t) is determined by the ordinary differential
equation

(fϕ′

x)′x + aϕ lnϕ = 0.
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6.
∂w

∂t
=

∂

∂x

[

f (x)
∂w

∂x

]

+ aw ln w +
[

g(x) + h(t)
]

w.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = exp(Ceat)w(x, t),

where C is an arbitrary constant, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = exp
[

Ceat + eat
∫

e−ath(t) dt
]

ϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

(fϕ′

x)′x + aϕ lnϕ + g(x)ϕ = 0.

7.
∂w

∂t
= f (x)

∂2w

∂x2
+ g(x)

∂w

∂x
+ aw ln w +

[

h(x) + ¹ (t)
]

w.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = exp(Ceat)w(x, t),

where C is an arbitrary constant, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = exp
[

Ceat + eat
∫

e−at
s(t) dt

]

ϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

f (x)ϕ′′

xx + g(x)ϕ′

x + aϕ lnϕ + h(x)ϕ = 0.

8.
∂w

∂t
= f (x)

∂2w

∂x2
+ g(x)

(

∂w

∂x

)2

+ h(x)
∂w

∂x
+ aw + p(x) + q(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Ceat,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = ϕ(x) + Ceat + eat
∫

e−atq(t) dt,

where the function ϕ(x) is determined by the ordinary differential equation

f (x)ϕ′′

xx + g(x)(ϕ′

x)2 + h(x)ϕ′

x + aϕ + p(x) = 0.

9.
∂w

∂t
= f (x)

∂2w

∂x2
+ g(x)

(

∂w

∂x

)k

+ h(x)
∂w

∂x
+ aw + p(x) + q(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Ceat,
where C is an arbitrary constant, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = ϕ(x) + Ceat + eat
∫

e−atq(t) dt,

where the function ϕ(x) is determined by the ordinary differential equation

f (x)ϕ′′

xx + g(x)(ϕ′

x)k + h(x)ϕ′

x + aϕ + p(x) = 0.
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10.
∂w

∂t
= f (x)

∂2w

∂x2
+ g

(

x,
∂w

∂x

)

+ aw + h(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function
w1 = w(x, t) + Ceat,

where C is an arbitrary constant, is also a solution of the equation.
2◦. Additive separable solution:

w(x, t) = ϕ(x) + Ceat + eat
∫

e−ath(t) dt,

where the function ϕ(x) is determined by the ordinary differential equation
f (x)ϕ′′

xx + g(x, ϕ′

x) + aϕ = 0.

1.6.9. Equations of the Form ∂w
∂t

= aw ∂2w
∂x2 + f (x, t, w) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= aw

∂2w

∂x2
+ f (x)w + bx + c.

Generalized separable solution:

w(x, t) = (bx + c)t +Ax +B −
1
a

∫ x

x0

(x − ξ)f (ξ) dξ,

where A, B, and x0 are arbitrary constants.

2.
∂w

∂t
= aw

∂2w

∂x2
+ f (t)w + g(t).

1◦. Degenerate solution linear in x:

w(x, t) = F (t)(Ax +B) + F (t)
∫

g(t)
F (t)

dt, F (t) = exp
[
∫

f (t) dt
]

,

where A and B are arbitrary constants.
2◦. Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)(x2 +Ax +B) + ϕ(t)
∫

g(t)
ϕ(t)

dt,

ϕ(t) = F (t)
[

C − 2a
∫

F (t) dt
]−1

, F (t) = exp
[
∫

f (t) dt
]

,

where A, B, and C are arbitrary constants.

3.
∂w

∂t
= aw

∂2w

∂x2
+ cw2 + f (t)w + g(t).

This is a special case of equation 1.6.10.1 with b = 0.

4.
∂w

∂t
= aw

∂2w

∂x2
– ak2w2 + f (x)w + b1 sinh(kx) + b2 cosh(kx).

Generalized separable solution:
w(x, t) = t

[

b1 sinh(kx) + b2 cosh(kx)
]

+ ϕ(x).
Here, the function ϕ(x) is determined by the linear nonhomogeneous ordinary differential equation
with constant coefficients

aϕ′′

xx − ak2ϕ + f (x) = 0,
whose general solution is given by

ϕ(x) = C1 sinh(kx) + C2 cosh(kx) −
1
ak

∫ x

x0

f (ξ) sinh
[

k(x − ξ)
]

dξ,

where A, B, and x0 are arbitrary constants.
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5.
∂w

∂t
= aw

∂2w

∂x2
+ ak2w2 + f (x)w + b1 sin(kx) + b2 cos(kx).

Generalized separable solution:

w(x, t) = t
[

b1 sin(kx) + b2 cos(kx)
]

+ ϕ(x).

Here, the function ϕ(x) is determined by the linear nonhomogeneous ordinary differential equation
with constant coefficients

aϕ′′

xx + ak2ϕ + f (x) = 0,
whose general solution is given by

ϕ(x) = C1 sin(kx) + C2 cos(kx) −
1
ak

∫ x

x0

f (ξ) sin
[

k(x − ξ)
]

dξ,

where A, B, and x0 are arbitrary constants.

6.
∂w

∂t
= aw

∂2w

∂x2
+ f (t)

∂w

∂x
+ g(t)w.

The transformation

w(x, t) = G(t)u(z, τ ), z = x +
∫

f (t) dt, τ =
∫

G(t) dt, G(t) = exp
[
∫

g(t) dt
]

leads to a simpler equation of the form 1.1.9.1:

∂u

∂τ
= au

∂2u

∂z2 .

7.
∂w

∂t
= aw

∂2w

∂x2
+ f (t)

∂w

∂x
+ g(t)w + h(t).

This is a special case of equation 1.6.10.5.

8.
∂w

∂t
= aw

∂2w

∂x2
+ xf (t)

∂w

∂x
+ g(t)w.

The transformation

w(x, t) = G(t)u(z, τ ), z = xF (t), τ =
∫

F 2(t)G(t) dt,

where the functions F (t) and G(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.1.9.1:

∂u

∂τ
= au

∂2u

∂z2 .

9.
∂w

∂t
= aw

∂2w

∂x2
+

[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w.

The transformation

w(x, t) = H(t)u(z, τ ), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

F 2(t)H(t) dt,

where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to a simpler equation of the form 1.1.9.1:

∂u

∂τ
= au

∂2u

∂z2 .
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10.
∂w

∂t
= aw

∂2w

∂x2
+ f (x)w

∂w

∂x
+ g(t)w + h(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t), ψ(t), and Θ(x) are determined by the system of ordinary differential
equations

ϕ′

t = Cϕ2 + g(t)ϕ,

ψ′

t =
[

Cϕ + g(t)
]

ψ + h(t),

aΘ′′

xx + f (x)Θ′

x = C,
where C is an arbitrary constant. Integrating successively, one obtains

ϕ(t) = G(t)
[

A1 − C
∫

G(t) dt
]−1

, G(t) = exp
[
∫

g(t) dt
]

,

ψ(t) = A2ϕ(t) + ϕ(t)
∫

h(t)
ϕ(t)

dt,

Θ(x) = B1

∫

dx

F (x)
+B2 +

C

a

∫
[
∫

F (x) dx
]

dx

F (x)
, F (x) = exp

[

1
a

∫

f (x) dx
]

,

where A1, A2, B1, and B2 are arbitrary constants.

11.
∂w

∂t
= aw

∂2w

∂x2
+ f (x)w

∂w

∂x
+ g(x)w2 + h(t)w.

Multiplicative separable solution:

w(x, t) = ϕ(x)H(t)
[

A −B
∫

H(t) dt
]−1

, H(t) = exp
[
∫

h(t) dt
]

.

Here, A and B are arbitrary constants, and the function ϕ(x) is determined by the second-order
linear ordinary differential equation

aϕ′′

xx + f (x)ϕ′

x + g(x)ϕ = B.

For exact solutions of this equation with various f (x) and g(x), see Kamke (1977) and Polyanin and
Zaitsev (2003).

1.6.10. Equations of the Form
∂w
∂t

= (aw + b) ∂2w
∂x2 + f (x, t, w)

(
∂w
∂x

)2
+ g(x, t, w) ∂w

∂x
+ h(x, t, w)

1.
∂w

∂t
= aw

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw2 + f (t)w + g(t).

1◦. Generalized separable solution quadratic in involving an exponential of x:

w(x, t) = ϕ(t) + ψ(t) exp( º λx), λ =
(

−c
a + b

)1/2

, (1)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients (the arguments of f and g are not indicated)

ϕ′

t = cϕ2 + fϕ + g, (2)
ψ′

t = (aλ2ϕ + 2cϕ + f )ψ. (3)
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Equation (2) is a Riccati equation for ϕ = ϕ(t), so it can be reduced to a second-order linear
equation. The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a large number of
solutions to this equation for various f and g.

In particular, for g ≡ 0, equation (2) is a Bernoulli equation, which is easy to integrate. In another
special case, f , g = const, a particular solution of (2) is a number, ϕ = ϕ0, which is a root of the
quadratic equation cϕ2

0 + fϕ0 + g = 0. The substitution u = ϕ − ϕ0 leads to a Bernoulli equation.
Given a solution of (2), the solution of equation (3) can be obtained in the form

ψ(t) = C exp
[
∫

(aλ2ϕ + 2cϕ + f ) dt
]

, (4)

where C is an arbitrary constant.

2◦. Generalized separable solution involving hyperbolic cosine (A is an arbitrary constant):

w(x, t) = ϕ(t) + ψ(t) cosh(λx +A), λ =
(

−c
a + b

)1/2

, (5)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients (the arguments of f and g are not specified)

ϕ′

t = cϕ2 − bλ2ψ2 + fϕ + g, (6)
ψ′

t = (aλ2ϕ + 2cϕ + f )ψ. (7)

Solving equation (7) forϕ to express it in terms ofψand then substituting the resulting expression
into (6), one arrives at a second-order nonlinear equation for ψ, which is autonomous if f , g = const
and, hence, its order can be reduced.

3◦. Generalized separable solution involving hyperbolic sine (A is an arbitrary constant):

w(x, t) = ϕ(t) + ψ(t) sinh(λx +A), λ =
(

−c
a + b

)1/2

,

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations

ϕ′

t = cϕ2 + bλ2ψ2 + fϕ + g,

ψ′

t = (aλ2ϕ + 2cϕ + f )ψ.

4◦. Generalized separable solution involving a trigonometric function (A is an arbitrary constant):

w(x, t) = ϕ(t) + ψ(t) cos(λx +A), λ =
(

c

a + b

)1/2

, (8)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations

ϕ′

t = cϕ2 + bλ2ψ2 + fϕ + g, (9)
ψ′

t = (−aλ2ϕ + 2cϕ + f )ψ. (10)

Solving equation (10) for ϕ to express it in terms of ψ and substituting the resulting expression
into (9), one arrives at a second-order nonlinear equation for ψ, which is autonomous if f , g = const
and, hence, its order can be reduced.»�¼

References: V. A. Galaktionov (1995), V. F. Zaitsev and A. D. Polyanin (1996).
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2.
∂w

∂t
= aw

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ g(t)
∂w

∂x
+ h(t)w + ½ (t).

Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients (the arguments of f , g, h, and s are not specified)

ϕ′

t = 2(2f + a)ϕ2 + hϕ, (1)
ψ′

t = (4fϕ + 2aϕ + h)ψ + 2gϕ, (2)
χ′

t = (2aϕ + h)χ + fψ2 + gψ + s. (3)

Equation (1) is a Bernoulli equation for ϕ = ϕ(t), so it is easy to integrate. After that, equation
(2) and then (3) can be solved with ease, since both are linear in their respective unknowns ψ and χ.¾�¿

References: V. A. Galaktionov (1995), V. F. Zaitsev and A. D. Polyanin (1996).

3.
∂w

∂t
= aw

∂2w

∂x2
+ f (x)

(

∂w

∂x

)2

+ g(x)w
∂w

∂x
+ h(x)w2 + p(t)w.

Multiplicative separable solution:
w(x, t) = ϕ(x)ψ(t),

where ϕ(x) and ψ(t) are determined by the following system of ordinary differential equations (C
is an arbitrary constant):

aϕϕ′′

xx + f (x)(ϕ′

x)2 + g(x)ϕϕ′

x + h(x)ϕ2 = Cϕ, (1)
ψ′

t = Cψ2 + p(t)ψ. (2)

The general solution of equation (2) is given by

ψ(t) = P (t)
[

A − C
∫

P (t) dt
]−1

, P (t) = exp
[
∫

p(t) dt
]

,

whereA is an arbitrary constant. In the special case f ≡ 0, equation (1) can be reduced, on dividing
it by ϕ, to a second-order linear equation; for exact solutions of this equation with various g(x) and
h(x), see Kamke (1997) and Polyanin and Zaitsev (2003).

4.
∂w

∂t
= (aw + b)

∂2w

∂x2
+ c

(

∂w

∂x

)2

+ f (t)
∂w

∂x
+ kw2 + g(t)w + h(t).

The transformation

u(z, t) = w(x, t) +
b

a
, z = x +

∫

f (t) dt

leads to an equation of the form 1.6.10.2 for u = u(z, t).

5.
∂w

∂t
= (aw+b)

∂2w

∂x2
+f (t)

(

∂w

∂x

)2

+
[

g1(t)x+g0(x)
] ∂w

∂x
+h(t)w+p2(t)x2 +p1(t)x+p0(t).

There is a generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functionsϕ(t),ψ(t), andχ(t) are determined by a system of first-order ordinary differential
equations with variable coefficients, which is not written out here.
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1.6.11. Equations of the Form ∂w
∂t

= awm ∂2w
∂x2 + f (x, t) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= aw4 ∂2w

∂x2
+ f (x)w5.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,C4
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Supposeu=u(x) is a nontrivial solution of the second-order linear ordinary differential equation

au′′xx + f (x)u = 0. (1)

Then the transformation
ξ =

∫

dx

u2 , z =
w

u

simplifies the original equation bringing it to the form

∂z

∂t
= az4 ∂

2z

∂ξ2 .

Using the change of variable v = z−3, we obtain an equation of the form 1.1.10.4:

∂v

∂t
= a

∂

∂ξ

(

v−4/3 ∂v

∂ξ

)

.

3◦. Multiplicative separable solution:

w(x, t) = (4λt + C)−1/4g(x),

where C and λ are arbitrary constants, and the function g = g(x) is determined by Yermakov’s
equation

ag′′xx + f (x)g + λg−3 = 0. (2)

Given a particular solution, u = u(x), of the linear equation (1), the general solution of the
nonlinear equation (2) can be expressed as (e.g., see Polyanin and Zaitsev, 2003)

Ag2 = −
λ

a
u2 + u2

(

B +A
∫

dx

u2

)2

,

where A and B are arbitrary constants (A ≠ 0).À�Á
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

2.
∂w

∂t
= awm ∂2w

∂x2
+ f (t)w.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( Â Cm1 x + C2, t),

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. The transformation

w(x, t) = F (t)u(x, τ ), τ =
∫

Fm(t) dt, F (t) = exp
[
∫

f (t) dt
]

,

leads to a simpler equation of the form 1.1.9.18:

∂u

∂τ
= aum

∂2u

∂x2 .
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3.
∂w

∂t
= awm ∂2w

∂x2
+ f (x)wm+1.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,Cm1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution (C and λ are arbitrary constants):

w(x, t) = (mλt + C)−1/mϕ(x),

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

aϕmϕ′′

xx + f (x)ϕm+1 + λϕ = 0.

4.
∂w

∂t
= awm ∂2w

∂x2
+ xf (t)

∂w

∂x
+ g(t)w.

The transformation

w(x, t) = u(z, τ )G(t), z = xF (t), τ =
∫

F 2(t)Gm(t) dt,

where the functions F (t) and G(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.1.9.18:

∂u

∂τ
= aum

∂2u

∂z2 .Ã�Ä
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

5.
∂w

∂t
= awm ∂2w

∂x2
+

[

f (t)x + g(t)
] ∂w

∂x
+ h(t)w.

The transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

F 2(t)Hm(t) dt,

where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to a simpler equation of the form 1.1.9.18:

∂u

∂τ
= aum

∂2u

∂z2 .

1.6.12. Equations of the Form ∂w
∂t

=a ∂
∂x

(
w ∂w

∂x

)
+f (x, t) ∂w

∂x
+g(x, t, w)

1.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ f (t).

Generalized separable solutions linear and quadratic in x:

w(x, t) = C1x + aC2
1 t + C2 +

∫

f (t) dt,

w(x, t) = −
(x + C2)2

6a(t + C1)
+ C3(t + C1)−1/3 + (t + C1)−1/3

∫

(t + C1)1/3f (t) dt,

where C1, C2, and C3 are arbitrary constants. The first solution is degenerate.
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2.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ f (t)w + g(t).

This is a special case of equation 1.6.13.4 with m = 1.

3.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ bw2 + f (t)w + g(t).

This is a special case of equation 1.6.13.5 with m = 1.

4.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ f (x)w2.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,C1t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w = (λt + C)−1ϕ(x),

whereλ andC are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

a(ϕϕ′

x)′x + f (x)ϕ2 + λϕ = 0.

5.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ f (t)
∂w

∂x
+ g(t)w.

This is a special case of equation 1.6.13.8 with m = 1.
The transformation

w(x, t) = G(t)u(z, τ ), z = x +
∫

f (t) dt, τ =
∫

G(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.1.10.1:

∂u

∂t
= a

∂

∂z

(

u
∂u

∂z

)

.

6.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+ xf (t)
∂w

∂x
+ g(t)w.

The transformation

w(t,x) = u(z, τ )G(t), z = xF (t), τ =
∫

F 2(t)G(t) dt,

where the functions F (t) and G(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.1.10.1:

∂u

∂τ
= a

∂

∂z

(

u
∂u

∂z

)

.

7.
∂w

∂t
= a

∂

∂x

(

w
∂w

∂x

)

+
[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w.

This is a special case of equation 1.6.13.10 with m = 1.
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1.6.13. Equations of the Form ∂w
∂t

=a ∂
∂x

(
wm∂w

∂x

)
+f (x, t)∂w

∂x
+g(x, t,w)

1.
∂w

∂t
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ f (x)w–1/3.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,C−4/3
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. The substitution w = v−3 leads to an equation of the form 1.6.11.1:

∂v

∂t
= av4 ∂

2v

∂x2 − 1
3 f (x)v5.

3◦. Suppose u = u(x) is any nontrivial particular solution of the second-order linear ordinary
differential equation

au′′xx − 1
3 f (x)u = 0.

The transformation
ξ = Å

∫

dx

u2 , z = wu3

simplifies the original equation, bringing it to equation 1.1.10.4:

∂z

∂t
= a

∂

∂ξ

(

z−4/3 ∂z

∂ξ

)

.
Æ�Ç

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

2.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ f (t)w.

The transformation

w(x, t) = u(x, τ )F (t), τ =
∫

Fm(t) dt, F (t) = exp
[
∫

f (t) dt
]

,

leads to a simpler equation of the form 1.1.10.7:

∂u

∂τ
= a

∂

∂x

(

um
∂u

∂x

)

.

If m = −1 or m = −2, see 1.1.10.2 or 1.1.10.3 for solutions of this equation.

3.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ f (t)w1–m.

The substitution u = wm leads to an equation of the form 1.6.10.2:

∂u

∂t
= au

∂2u

∂x2 +
a

m

(

∂u

∂x

)2

+mf (t),

which admits a generalized separable solution of the form u = ϕ(t)x2 + ψ(t)x + χ(t).

4.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ f (t)w + g(t)w1–m.

The substitution u = wm leads to an equation of the form 1.6.10.2:

∂u

∂t
= au

∂2u

∂x2 +
a

m

(

∂u

∂x

)2

+mf (t)u +mg(t),

which admits a generalized separable solution of the form u = ϕ(t)x2 + ψ(t)x + χ(t).Æ�Ç
References: V. A. Galaktionov (1995), V. F. Zaitsev and A. D. Polyanin (1996).
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5.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ bw1+m + f (t)w + g(t)w1–m.

For b = 0, see equation 1.6.13.4:
The substitution u = wm leads to an equation of the form 1.6.10.1:

∂u

∂t
= au

∂2u

∂x2 +
a

m

(

∂u

∂x

)2

+ bmu2 +mf (t)u +mg(t),

which admits generalized separable solutions of the following forms:

u(x, t) = ϕ(t) + ψ(t) exp( È λx),
u(x, t) = ϕ(t) + ψ(t) cosh(λx + C),
u(x, t) = ϕ(t) + ψ(t) sinh(λx + C),
u(x, t) = ϕ(t) + ψ(t) cos(λx + C),

where the functions ϕ(t) and ψ(t) are determined by systems of appropriate first-order ordinary
differential equations, the parameter λ is a root of a quadratic equation, and C is an arbitrary
constant.É�Ê

References: V. A. Galaktionov (1995), V. F. Zaitsev and A. D. Polyanin (1996).

6.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ f (x)w1+m.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,Cm1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w = (λmt + C)−1/mϕ(x),

where λ and C are arbitrary constants, and the function ϕ(x) is determined by the equation

aψ′′

xx + (m + 1)f (x)ψ + λ(m + 1)ψ
1

m+1 = 0, ψ = ϕm+1.

The book by Polyanin and Zaitsev (2003) presents exact solutions of this equation for various f (x).

7.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ g(x)wm+1 + f (t)w.

Multiplicative separable solution:
w = ϕ(x)ψ(t),

where the functions ϕ = ϕ(x) and ψ = ψ(t) are determined by the ordinary differential equations
(C1 is an arbitrary constant)

a(ϕmϕ′

x)′x + g(x)ϕm+1 + C1ϕ = 0,

ψ′

t − f (t)ψ + C1ψ
m+1 = 0.

The general solution of the second equation is given by (C2 is an arbitrary constant)

ψ(t) = eF
(

C2 +mC1

∫

emF dt

)−1/m

, F =
∫

f (t) dt.
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8.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ f (t)
∂w

∂x
+ g(t)w.

The transformation

w(x, t) = u(z, τ )G(t), z = x +
∫

f (t) dt, τ =
∫

Gm(t) dt, G(t) = exp
[
∫

g(t)dt
]

,

leads to a simpler equation of the form 1.1.10.7:

∂u

∂τ
= a

∂

∂z

(

um
∂u

∂z

)

.

9.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+ xf (t)
∂w

∂x
+ g(t)w.

The transformation

w(t,x) = u(z, τ )G(t), z = xF (t), τ =
∫

F 2(t)Gm(t) dt,

where the functions F (t) and G(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.1.10.7:

∂u

∂τ
= a

∂

∂z

(

um
∂u

∂z

)

.

In the special casem = −2, this equation can be transformed to the linear heat equation (see 1.1.10.3).Ë�Ì
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

10.
∂w

∂t
= a

∂

∂x

(

wm ∂w

∂x

)

+
[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w.

The transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

F 2(t)Hm(t) dt,

where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to a simpler equation of the form 1.1.10.7:

∂u

∂τ
= a

∂

∂z

(

um
∂u

∂z

)

.

If m = −1 or m = −2, see 1.1.10.2 or 1.1.10.3 for solutions of this equation.Ë�Ì
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

1.6.14. Equations of the Form ∂w
∂t

= a ∂
∂x

(
eλw ∂w

∂x

)
+ f (x, t, w)

1.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ f (t).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x + C2, t) −
2
λ

ln |C1|,

where C1 and C2 are arbitrary constants, is also a solution of the equation.
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2◦. The transformation

w(x, t) = u(x, τ ) + F (t), τ =
∫

exp
[

λF (t)
]

dt, F (t) =
∫

f (t) dt,

leads to a simpler equation of the form 1.2.2.1:
∂u

∂τ
= a

∂

∂x

(

eλu
∂u

∂x

)

.

2.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ f (t) + g(t)e–λw.

The substitution u = eλw leads to an equation of the form 1.6.9.2:
∂u

∂t
= au

∂2u

∂x2 + λf (t)u + λg(t).

This equation admits a generalized separable solution of the form u = ϕ(t)x2 + ψ(t)x + χ(t).

3.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ f (x) + (bx + c)e–λw.

The substitution u = eλw leads to an equation of the form 1.6.9.1:
∂u

∂t
= au

∂2u

∂x2 + λf (x)u + λ(bx + c).

This equation admits a generalized separable solution of the form u = λ(bx + c)t + ϕ(x).

4.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ beλw + f (t) + g(t)e–λw.

For b = 0, see equation 1.6.14.2.
The substitution u = eλw leads to an equation of the form 1.6.10.1:

∂u

∂t
= au

∂2u

∂x2 + bu2 + λf (t)u + λg(t).

This equation admits generalized separable solutions of the following forms:
u(x, t) = ϕ(t) + ψ(t) exp( Í µx),
u(x, t) = ϕ(t) + ψ(t) cosh(µx + C),
u(x, t) = ϕ(t) + ψ(t) sinh(µx + C),
u(x, t) = ϕ(t) + ψ(t) cos(µx + C),

where the functions ϕ(t) and ψ(t) are determined by systems of appropriate first-order ordinary
differential equations, µ is a root of a quadratic equation, and C is an arbitrary constant.Î�Ï

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

5.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ f (x)eλw.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x,C1t + C2) +
1
λ

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.
2◦. Additive separable solution:

w = −
1
λ

ln(λt + C) + ϕ(x),

where λ and C are arbitrary constants, and the function ϕ(x) is determined by the second-order
linear ordinary differential equation

aψ′′

xx + λf (x)ψ + λ = 0, ψ = eλϕ.Î�Ï
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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6.
∂w

∂t
= a

∂

∂x

(

eλw ∂w

∂x

)

+ g(x)eλw + f (t).

Additive separable solution:
w = ϕ(x) + ψ(t),

where the functions ϕ = ϕ(x) and ψ = ψ(t) are determined by the ordinary differential equations
(C1 is an arbitrary constant)

a(eλϕϕ′

x)′x + g(x)eλϕ + C1 = 0, (1)
ψ′

t − f (t) + C1e
λψ = 0. (2)

Equation (1) can be reduced, with the change of variable U = eλϕ, to the linear equation aU ′′

xx +
λg(x)U + λC1 = 0. The general solution of equation (2) is given by (C2 is an arbitrary constant)

ψ(t) = F −
1
λ

ln
(

C2 + λC1

∫

eλF dt

)

, F =
∫

f (t) dt.

1.6.15. Equations of the Form ∂w
∂t

= ∂
∂x

[
f (w) ∂w

∂x

]
+ g

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

.

This equation is frequently encountered in nonlinear problems of heat and mass transfer (with f being
the thermal diffusivity or diffusion coefficient) and the theory of flows through porous media. For
f (w) = awm, see Subsection 1.1.10; for f (w) = eλw, see equation 1.2.2.1; and for f (w) = a lnw + b,
see equation 1.4.2.7.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,C2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution in implicit form:

k2
∫

f (w) dw
λw + C1

= kx + λt + C2, (1)

where C1, C2, k, and λ are arbitrary constants. To λ = 0 there corresponds a stationary solution.

3◦. Self-similar solution:

w = w(z), z =
x
√

t
(0 ≤ x <∞),

where the function w(z) is determined by the ordinary differential equation
[

f (w)w′

z

]

′

z
+ 1

2 zw
′

z = 0. (2)

Solutions of this form usually correspond to constant w in the initial and boundary conditions
for the original partial differential equation (w0, w1 = const):

w = w0 at t = 0 (initial condition),
w = w1 at x = 0 (boundary condition),
w → w0 as x→∞ (boundary condition).

Then the boundary conditions for the ordinary differential equation (2) are as follows:

w = w1 at z = 0, w → w0 as z →∞. (3)

For f (w) = aw−1, f (w) = aw−2, and f (w) = (αw2 + βw + γ)−1, the general solutions of (2) were
obtained by Fujita (1952); see also the book by Lykov (1967).
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TABLE 1
Solutions equation 1.6.15.1 for various f = f (w), where z = xt−1/2.

No. Function f = f (w) Solution z = z(w) Conditions

1
n

2
wn −

n

2(n + 1)
w2n 1 − wn n > 0

2
n

2(n + 1)
[

(1 − w)n−1 − (1 − w)2n]

(1 − w)n n > 0

3
n

2(1 − n)
w−2n −

n

2
w−n

w−n − 1 0 < n < 1

4 1
2 sin2( 1

2πw
)

cos
( 1

2πw
)

5 1
8 sin(πw)

[

πw + sin(πw)
]

cos2( 1
2πw

)

6 1
16 sin2(πw)

[

5 + cos(πw)
]

cos3( 1
2πw

)

7 1
2 cos

( 1
2πw

)[

cos
( 1

2πw
)

+ 1
2πw − 1

]

1 − sin( 1
2πw)

8
w arccosw + 1

2
√

1 − w2
−

1
2

arccosw

9
π − 2(1 − w) arcsin(1 − w)

4
√

2w − w2
−

1
2 arcsin(1 − w)

10
w arcsinw

4
√

1 − w2
+

1
4
w2 √

1 − w2

11 1
2 (1 − lnw) − lnw

4◦. We now describe a simple method for finding an f (w) such that equation (2) admits an exact
solution. To this end, we integrate equation (2) with respect to z and then apply the hodograph
transformation (where w is regarded as the independent variable and z as the dependent one) to
obtain

f (w) = −
1
2
z′w

(
∫

z dw +A
)

, A is an arbitrary constant. (4)

Substituting a specific expression z = z(w) for z on the right-hand side of relation (4), one obtains a
one-parameter family of functions f (w) for which z = z(w) solves equation (2). The explicit form
of w = w(z) is obtained by the inversion of z = z(w).

The method just outlined was devised by Philip (1960); he obtained a large number of exact
solutions to the original equation for various f = f (w). Some of his results, those corresponding to
a problem with the initial and boundary conditions of (3) with w0 = 0 and w1 = 1, are listed below
in Table 1. All solutions are written out in implicit form, z = z(w), and are valid within the range of
their spatial localization 0 ≤ w ≤ 1.

5◦. There is another way to find an f (w) for which equation (2) admits exact solutions. By direct
substitution, one can verify that equation (2) is satisfied by

w = φ′z , f (w) =
s + φ − zφ′z

2φ′′zz
, (5)

where φ = φ(z) is an arbitrary function, and s is an arbitrary constant. Expressions (5) define a
parametric representation of f = f (w); the explicit representation is obtained by eliminating z.

For example, assuming in (5) that

φ(z) = w0z +
1
λ

(w0 − w1)e−λz (λ > 0, w1 > w0),

Page 105

© 2004 by Chapman & Hall/CRC



106 PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE

and eliminating z, one obtains

f (w) =
A

w − w0
+B + C ln(w − w0), w = w0 + (w1 − w0)e−λz,

whereA = − 1
2 sλ−1, B = 1

2λ
−2

[

1 + ln(w1 −w0)
]

, and C = − 1
2λ

−2. Note that this solution satisfies the
boundary conditions of (3). Likewise, one can construct other f (w).

6◦. Here is one more method for constructing an f (w) for which equation (2) admits exact solutions.
Suppose w̄ = w̄(z) is a solution of equation (2) with an f (w). Then w̄ = w̄(z) is also a solution of
the more complicated equation [F (w)w′

z

]

′

z
+ 1

2 zw
′

z = 0 with

F (w) = f (w) +Ag(w) (A is an arbitrary constant), (6)

where the function g = g(w) is defined parametrically by

g(w) =
1
w̄′

z

, w = w̄(z). (7)

For example, the function w̄ = bz2/m, where b is some constant, is a particular solution of
equation (2) if f (w) is a power-law function, f (w) = awm. It follows from (6) and (7) that w̄ is also

a solution of equation (2) with f (w) = awm +Aw
m−2

2 .
For the first solution presented in Table 1, the method outlined gives the following one-parameter

family of functions:

f (w) =
n

2
wn −

n

2(n + 1)
w2n +Awn−1,

for which z = 1 − wn is a solution of equation.

7◦. The transformation

t̄ = t − t0, x̄ =
∫ x

x0

w(y, t) dy +
∫ t

t0

f
(

w(x0, τ )
)

[

∂w

∂x
(x, τ )

]

x=x0

dτ , w̄(x̄, t̄) =
1

w(x, t)
(8)

takes a nonzero solution w(x, t) of the original equation to a solution w̄(x̄, t̄) of a similar equation,

∂w̄

∂t̄
=
∂

∂x̄

[

f̄(w̄)
∂w̄

∂x̄

]

, f̄ (w) =
1
w2 f

(

1
w

)

. (9)

In the special case of power-law dependence, f (w) = awm, transformation (8) leads to equa-
tion (9) where f̄ (w) = aw−m−2.

8◦. The equation in question is represented in conservative form, i.e., in the form of a conservation
law.

Another conservation law:

∂

∂t
(xw) +

∂

∂x

[

F (w) − xf (w)
∂w

∂x

]

= 0,

where F (w) =
∫

f (w) dw.

9◦. For f (w) = a(w2 + b)−1, see equation 1.1.13.2 and Subsection S.5.3 (Example 10).Ð�Ñ
References for equation 1.6.15.1: L. V. Ovsiannikov (1959, 1962, 1982), V. A. Dorodnitsyn and S. R. Svirshchevskii

(1983), W. Strampp (1982), J. R. Burgan, A. Munier, M. R. Feix, and E. Fijalkow (1984), A. A. Samarskii, V. A. Galaktionov,
S. P. Kurdyumov, and A. P. Mikhailov (1995), N. H. Ibragimov (1994), V. F. Zaitsev and A. D. Polyanin (1996), P. W. Doyle
and P. J. Vassiliou (1998).
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2.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+ g(w).

This equation governs unsteady heat conduction in a quiescent medium in the case where the thermal
diffusivity and the rate of reaction are arbitrary functions of temperature.

1◦. Traveling-wave solutions:
w = w(z), z = Ò x + λt,

where the function w(z) is determined by the autonomous ordinary differential equation
[f (w)w′

z]′z − λw′

z + g(w) = 0. (1)
The substitution

y(w) =
1
λ
f (w)w′

z

brings (1) to an Abel equation of the second kind:
yy′w − y = ϕ(w), where ϕ(w) = −λ−2f (w)g(w). (2)

The book by Polyanin and Zaitsev (2003) present a considerable number of solutions to equation (2)
for various ϕ = ϕ(w).

2◦. Let the function f = f (w) be arbitrary and let g = g(w) be defined by

g(w) =
A

f (w)
+B,

where A and B are some numbers. In this case, there is a functional separable solution, which is
defined implicitly by

∫

f (w) dw = At −
1
2
Bx2 + C1x + C2,

where C1 and C2 are arbitrary constants.Ó�Ô
Reference: V. A. Galaktionov (1994).

3◦. Let now g = g(w) be arbitrary and let f = f (w) be defined by

f (w) =
A1A2w +B

g(w)
+
A2A3

g(w)

∫

Z dw, (3)

Z = −A2

∫

dw

g(w)
, (4)

where A1, A2, and A3 are some numbers. Then there are generalized traveling-wave solutions of
the form

w = w(Z), Z =
Ò x + C2
√

2A3t + C1
−
A1

A3
−
A2

3A3
(2A3t + C1),

where the functionw(Z) is determined by the inversion of (4), andC1 andC2 are arbitrary constants.

4◦. Let g = g(w) be arbitrary and let f = f (w) be defined by

f (w) =
1

g(w)

(

A1w +A3

∫

Z dw

)

exp
[

−A4

∫

dw

g(w)

]

, (5)

Z =
1
A4

exp
[

−A4

∫

dw

g(w)

]

−
A2

A4
, (6)

where A1, A2, A3, and A4 are some numbers (A4 ≠ 0). In this case, there are generalized traveling-
wave solutions of the form

w = w(Z), Z = ϕ(t)x + ψ(t),
where the function w(Z) is determined by the inversion of (6),

ϕ(t) = Ò
(

C1e
2A4t −

A3

A4

)−1/2

, ψ(t) = −ϕ(t)
[

A1

∫

ϕ(t) dt +A2

∫

dt

ϕ(t)
+ C2

]

,

and C1 and C2 are arbitrary constants.Ó�Ô
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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5◦. Let the functions f (w) and g(w) be as follows:

f (w) = ϕ′(w), g(w) =
aϕ(w) + b
ϕ′(w)

+ c[aϕ(w) + b],

where ϕ(w) is an arbitrary function and a, b, and c are any numbers (the prime denotes a derivative
with respect to w). Then there are functional separable solutions defined implicitly by

ϕ(w) = eat
[

C1 cos(x
√

ac ) + C2 sin(x
√

ac )
]

−
b

a
if ac > 0,

ϕ(w) = eat
[

C1 cosh(x
√

−ac ) + C2 sinh(x
√

−ac )
]

−
b

a
if ac < 0,

and C1 and C2 are arbitrary constants.Õ�Ö
Reference: V. A. Galaktionov (1994).

6◦. Let f (w) and g(w) be as follows:

f (w) = wϕ′

w(w), g(w) = a
[

w + 2
ϕ(w)
ϕ′

w(w)

]

,

where ϕ(w) is an arbitrary function and a is any number. Then there are functional separable
solutions defined implicitly by

ϕ(w) = C1e
2at − 1

2 a(x + C2)2,

where C1 and C2 are arbitrary constants.Õ�Ö
Reference: V. A. Galaktionov (1994).

7◦. Group classification of solutions to the equation in question was carried out by Dorodnitsyn
(1979, 1982); see also Dorodnitsyn and Svirshchevskii (1983), Galaktionov, Dorodnitsyn, Elenin,
Kurdyumov, and Samarskii (1986), and Ibragimov (1994). As a result, only a limited number of
equations were extracted that possess symmetries other than translations.

8◦. If f = dF (w)/dw and g = aF (w) + bw + c, where F (w) is an arbitrary function, and a, b, and c
are arbitrary constants, then there is a conservation law

[

e−btp(x)w
]

t
+

{

e−bt[p(x)xF (w) − p(x)(F (w))x + ϕ(x)
]}

x
= 0.

Here,

p(x) =







C1 sin(
√

ax) + C2 cos(
√

ax) if a > 0,
C1e

√

−ax + C2e
−
√

−ax if a < 0,
C1x + C2 if a = 0,

where ϕ′

x = cp(x); C1 and C2 are arbitrary constants.Õ�Ö
References: V. A. Dorodnitsyn (1979), V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Elenin, S. P. Kurdyumov, and

A. A. Samarskii (1986).

9◦. For specific equations of this form, see Subsections 1.1.1 to 1.1.3, 1.1.11 to 1.1.13, 1.2.1 to 1.2.3,
and 1.4.1.

3.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+
g(t)
f (w)

+ h(x).

Functional separable solution in implicit form:
∫

f (w) dw =
∫

g(t) dt −
∫ x

x0

(x − ξ)h(ξ) dξ + C1x + C2,

where C1 and C2 are arbitrary constants, and x0 is any number.
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4.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

– (ax + b)
∂w

∂x
.

This equation governs unsteady heat and mass transfer in an inhomogeneous fluid flow in the cases
where the thermal diffusivity is arbitrarily dependent on temperature.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1e
at, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
at,

where the function w(z) is determined by the ordinary differential equation

[f (w)w′

z]′z − (az + b)w′

z = 0.

3◦. Functional separable solution in implicit form:
∫

f (w) dw = C1e
−at(ax + b) + C2.

4◦. On passing from t, x to the new variables

τ =
1

2a
(

1 − e−2at), ζ = e−at
(

x +
b

a

)

,

one obtains a simpler equation of the form 1.6.15.1 for w(ζ, τ ):

∂w

∂τ
=
∂

∂ζ

[

f (w)
∂w

∂ζ

]

.

5.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+ g(w)
∂w

∂x
.

1◦. Traveling-wave solution in implicit form:

k2
∫

f (w) dw
λw − kG(w) + C1

= kx + λt + C2, G(w) =
∫

g(w) dw,

where C1, C2, k, and λ are arbitrary constants.

2◦. The transformation

dz = w dx +
[

f (w)wx +G(w)
]

dt, dτ = dt, u = 1/w
(

dz = zx dx + zt dt
)

leads to an equation of the similar form

∂u

∂τ
=
∂

∂z

[

Φ(u)
∂u

∂z

]

+ Ψ(u)
∂u

∂z
,

where

Φ(u) =
1
u2 f

(

1
u

)

, Ψ(u) =
1
u
g

(

1
u

)

−G
(

1
u

)

, G(w) =
∫

g(w) dw.

Example. For f (w) = a and g(w) = bw, the original equation is an unnormalized Burgers equation 1.1.5.3. The above
transformation brings it to the solvable equation

∂u

∂τ
=
∂

∂z

(
a

u2
∂u

∂z

)
+

b

2u2
∂u

∂z
.

×�Ø
Reference: A. S. Fokas and Y. C. Yortsos (1982).
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3◦. Let f (w) and g(w) be defined as

f (w) = Z ′

w

(

A1w +A3

∫

Z dw

)

, g(w) = A2 +A4Z,

where
Z = Z(w) (1)

is a prescribed function (chosen arbitrarily). Then the original equation has the following generalized
traveling-wave solution:

w = w(Z), Z = ϕ(t)x + (A2t + C1)ϕ(t) +A1ϕ(t)
∫

ϕ(t) dt,

where C1 is an arbitrary constant, the function w(Z) is determined by the inversion of (1), and the
function ϕ(t) is determined by the first-order separable ordinary differential equation

ϕ′

t = A3ϕ
3 +A4ϕ

2, (2)

whose general solution can be written out in implicit form.
In special cases, solutions of equation (2) are given by

ϕ(t) = (C2 − 2A3t)−1/2 if A4 = 0,

ϕ(t) = (C2 −A4t)−1 if A3 = 0.
4◦. Conservation law:

Dt(w) +Dx

[

−f (w)wx −G(w)
]

= 0, G(w) =
∫

g(w) dw.

6.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+ g(t)
∂w

∂x
.

This equation governs unsteady heat conduction in a moving medium in the case where the thermal
diffusivity is arbitrarily dependent on temperature.

On passing from t, x to the new variables t, z = x +
∫

g(t) dt, one obtains a simpler equation of

the form 1.6.15.1:
∂w

∂t
=
∂

∂z

[

f (w)
∂w

∂z

]

.

7.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+ xg(t)
∂w

∂x
.

On passing from t, x to the new variables (A and B are arbitrary constants)

τ =
∫

G2(t) dt +A, z = xG(t), where G(t) = B exp
[
∫

g(t) dt
]

,

one obtains a simpler equation of the form 1.6.15.1 for w(τ , z):
∂w

∂τ
=
∂

∂z

[

f (w)
∂w

∂z

]

.

8.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+
[

xg(t) + h(t)
] ∂w

∂x
.

The transformation

w = U (z, τ ), z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

G2(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.6.15.1:
∂U

∂τ
=
∂

∂z

[

f (U )
∂U

∂z

]

.
Ù�Ú

Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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9.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+ g(w)
∂w

∂x
+ h(w).

For g ≡ const, this equation governs unsteady heat conduction in a medium moving at a constant
velocity in the case where the thermal diffusivity and the reaction rate are arbitrary functions of
temperature.

Traveling-wave solution:
w = w(z), z = x + λt,

where the function w(z) is determined by the autonomous ordinary differential equation
[f (w)w′

z]′z + [g(w) − λ]w′

z + h(w) = 0. (1)
The substitution y(w) = f (w)w′

z brings (1) to the Abel equation
yy′w + [g(w) − λ]y + f (w)g(w) = 0. (2)

The books by Polyanin and Zaitsev (1995, 2003) present a large number of exact solutions to
equation (2) for various f (w), g(w), and h(w).

10.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+
[

ax + g(w)
] ∂w

∂x
+ h(w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function
w1 = w(x + C1e

−at, t + C2),
where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:
w = w(z), z = x + C1e

−at,
where the function w(z) is determined by the ordinary differential equation

[f (w)w′

z]′z + [az + g(w)]w′

z + h(w) = 0.

1.6.16. Equations of the Form ∂w
∂t

= f (x, w) ∂2w
∂x2

1.
∂w

∂t
= f (x)wm ∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function
w1 = C1w(x,Cm1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:
w(x, t) = (mλt + C)−1/mϕ(x),

where C and λ are arbitrary constants, and the function ϕ = ϕ(x) is determined by the generalized
Emden–Fowler equation

ϕ′′

xx + λ
[

f (x)
]−1
ϕ1−m = 0. (1)

For m = 1, a solution of equation (1) is given by

ϕ(x) = −λ
∫ x

x0

(x − ξ)
f (ξ)

dξ +Ax +B,

where A, B, and x0 are arbitrary constants.
The books by Polyanin and Zaitsev (1995, 2003) present a large number of solutions to equa-

tion (1) for various f (x).

3◦. The transformation u = w/x, ξ = 1/x leads to an equation of the similar form
∂u

∂t
= F (ξ)um

∂2u

∂ξ2 , F (ξ) = ξ4−mf (1/ξ).
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2.
∂w

∂t
=

f (x)
aw + b

∂2w

∂x2
.

Generalized separable solution linear in t:

w(x, t) =
1
a

[

ϕ(x)t + ψ(x) − b
]

,

where the functions ϕ(x) and ψ(x) are determined by the system of ordinary differential equations

f (x)ϕ′′

xx − ϕ2 = 0,
f (x)ψ′′

xx − ϕψ = 0.

The first equation can be treated independently from the second. The second equation has a particular
solution ψ(x) = ϕ(x), so its general solution is given by

ψ(x) = C1ϕ(x) + C2ϕ(x)
∫

dx

ϕ2(x)
,

where C1 and C2 are arbitrary constants.

3.
∂w

∂t
= f (w)

∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x + C2,C2
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution in implicit form:

k2
∫

dw

λF (w) + C1
= kx + λt + C2, F (w) =

∫

dw

f (w)
,

where C1, C2, k, and λ are arbitrary constants.

3◦. Self-similar solution:
w = U (z), z =

x + C1
√

C2t + C3
,

where C1, C2, and C3 are arbitrary constants, and the function U (z) is determined by the ordinary
differential equation

f (U )U ′′

zz + 1
2C2zU

′

z = 0.

4◦. The substitution u =
∫

dw

f (w)
leads to an equation of the form 1.6.15.1:

∂u

∂t
=
∂

∂x

[

F (u)
∂u

∂x

]

,

where the function F is defined parametrically as

F (u) = f (w), u =
∫

dw

f (w)
.

To obtain F = F (u) in explicit form, one should eliminate w from the two relations.

5◦. Conservation laws:
Dt(u) +Dx(−wx) = 0,

Dt(xu) +Dx(w − xwx) = 0,

where Dt = ∂
∂t

, Dx = ∂
∂x

; wx is the partial derivative of w with respect to x; and u is defined in
Item 4◦.
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4.
∂w

∂t
= x4f

(

w

x

)

∂2w

∂x2
.

The transformation u = w/x, ξ = 1/x leads to a simpler equation of the form 1.6.16.3:

∂u

∂t
= f (u)

∂2u

∂ξ2 .

5.
∂w

∂t
= w4f

(

w
√

ax2 + bx + c

)

∂2w

∂x2
.

With the transformation

w(x, t) = u(z, t)
√

ax2 + bx + c, z =
∫

dx

ax2 + bx + c
one arrives at the simpler equation

∂u

∂t
= u4f (u)

∂2u

∂z2 + (ac − 1
4 b

2)u5f (u),

which has a traveling-wave solution u = u(z + λt).Û�Ü
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

1.6.17. Equations of the Form ∂w
∂t

= f (x, t, w) ∂2w
∂x2 + g

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= f (t)

∂2w

∂x2
+ w

(

∂w

∂x

)2

– aw3.

1◦. Multiplicative separable solutions for a > 0:

w(x, t) = C exp
[ Ý
x
√

a + a
∫

f (t) dt
]

,

where C is an arbitrary constant.

2◦. Multiplicative separable solution for a > 0:

w(x, t) =
(

C1e
x
√

a + C2e
−x

√

a
)

eF
(

C3 + 8aC1C2

∫

e2F dt

)−1/2

, F = a
∫

f (t) dt,

where C1, C2, and C3 are arbitrary constants.

3◦. Multiplicative separable solution for a < 0:

w(x, t) =
[

C1 sin
(

x
√

|a|
)

+ C2 cos
(

x
√

|a|
)]

eF
[

C3 + 2a(C2
1 + C2

2 )
∫

e2F dt

]−1/2

,

where F = a
∫

f (t) dt; C1, C2, and C3 are arbitrary constants.

2.
∂w

∂t
= f (t)

∂

∂x

(

w
∂w

∂x

)

+ g(t)w + h2(t)x2 + h1(t)x + h0(t).

Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of ordinary
differential equations

ϕ′

t = 6f (t)ϕ2 + g(t)ϕ + h2(t),
ψ′

t = 6f (t)ϕψ + g(t)ψ + h1(t),

χ′

t = 2f (t)ϕχ + f (t)ψ2 + g(t)χ + h0(t).
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3.
∂w

∂t
+ f (t)w

∂w

∂x
= g(t)

∂

∂x

(

w
∂w

∂x

)

.

Degenerate solution linear in x:

w(x, t) =
1

F (t)

[

x +
∫

g(t)
F (t)

dt + C1

]

, F (t) =
∫

f (t) dt + C2,

where C1 and C2 are arbitrary constants.

4.
∂w

∂t
+ f (t)w

∂w

∂x
= g(t)

∂

∂x

(

w2 ∂w

∂x

)

.

Degenerate solution linear in x:
w(x, t) = (x + C1)ϕ(t),

where the function ϕ = ϕ(t) is determined by the ordinary differential equation

ϕ′

t = 2g(t)ϕ3 − f (t)ϕ2.

5.
∂w

∂t
=

∂

∂x

[

f (x)wm ∂w

∂x

]

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,Cm1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = (mλt + C)−1/mϕ(x),

where C and λ are arbitrary constants, and the function ϕ = ϕ(x) is determined by the ordinary
differential equation

[f (x)ϕmϕ′

x]′x + λϕ = 0. (1)

The transformation
z =

∫

dx

f (x)
, Φ = ϕm+1

brings (1) to the generalized Emden–Fowler equation

Φ
′′

zz + F (z)Φ
1

m+1 = 0, (2)

where the function F = F (z) is defined parametrically by

F = λ(m + 1)f (x), z =
∫

dx

f (x)
.

The book by Polyanin and Zaitsev (2003, Sections 2.3 and 2.7) presents a large number of
solutions to equation (2) for various F = F (z).

3◦. The transformation

w(x, t) =
[

ψ(x)
]

1
m+1 u(ξ, t), ξ = −

∫

[

ψ(x)
]

m+2
m+1 dx, ψ(x) =

∫

dx

f (x)
,

leads to an equation of the similar form

∂u

∂t
=
∂

∂ξ

[

F (ξ)um
∂u

∂ξ

]

,

where the function F = F (ξ) is defined parametrically by

F = f (x)[ψ(x)
]

3m+4
m+1 , ξ = −

∫

[

ψ(x)
]

m+2
m+1 dx, ψ(x) =

∫

dx

f (x)
.
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6.
∂w

∂t
= f (x)wm ∂2w

∂x2
+ g(x)wm+1.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,Cm1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution (C and λ are arbitrary constants):

w(x, t) = (mλt + C)−1/mϕ(x),

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

f (x)ϕmϕ′′

xx + g(x)ϕm+1 + λϕ = 0. (1)

In the special case of f (x) = axn and g(x) = bxk, equation (1) becomes

ϕ′′

xx + (b/a)xk−nϕ + (λ/a)x−nϕ1−m = 0. (2)

The books by Polyanin and Zaitsev (1995, 2003) present a large number of solutions to equa-
tion (2) for various values of n, m, and k.

7.
∂w

∂t
= f (t)

∂

∂x

(

wm ∂w

∂x

)

+ g(t)w1–m.

Functional separable solution:

w(x, t) =
[

ϕ(t)x2 + ψ(t)
]1/m,

where the functions ϕ = ϕ(x) and ψ = ψ(x) are determined by the system of first-order ordinary
differential equations

ϕ′

t =
2(m + 2)

m
fϕ2, ψ′

t = 2fϕψ +mg.

Integrating yields

ϕ =
1
F

, ψ = F− m
m+2

(

A +m
∫

gF
m
m+2 dt

)

,

F = B −
2(m + 2)

m

∫

f dt,

where A and B are arbitrary constants.Þ�ß
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

8.
∂w

∂t
=

∂

∂x

[

f (x)wm ∂w

∂x

]

+ g(x)wm+1.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,Cm1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution (C and λ are arbitrary constants):

w(x, t) = (mλt + C)−1/mϕ(x),

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

[f (x)ϕmϕ′

x]′x + g(x)ϕm+1 + λϕ = 0. (1)
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The transformation

z =
∫

dx

f (x)
, Φ = ϕm+1

brings (1) to the equation

Φ
′′

zz + F (z)Φ
1

m+1 +G(z)Φ = 0, (2)

where the functions F = F (z) and G = G(z) are defined parametrically by
{

F = λ(m + 1)f (x),

z =
∫

dx

f (x)
,

{

G = (m + 1)f (x)g(x),

z =
∫

dx

f (x)
.

In the special case of f (x) = axn and g(x) = bxk, equation (2) becomes

Φ
′′

zz +Az
n

1−n Φ
1

m+1 +Bz
n+k
1−n Φ = 0, n ≠ 1, (3)

where A = λa(m + 1)
[

a(1 − n)
]

n
1−n and B = ab(m + 1)

[

a(1 − n)
]

n+k
1−n .

The books by Polyanin and Zaitsev (1995, 2003) present a large number of solutions to equa-
tion (3) for various values of n, m, and k.à�á

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

9.
∂w

∂t
= f (t)

∂

∂x

(

wm ∂w

∂x

)

+ g(t)
∂w

∂x
+ h(t)w.

The transformation

w(x, t) = u(z, τ ) exp
[
∫

h(t) dt
]

, z = x +
∫

g(t) dt, τ =
∫

f (t) exp
[

m

∫

h(t)dt
]

dt

leads to a simpler equation of the form 1.1.10.7:

∂u

∂τ
=
∂

∂z

(

um
∂u

∂z

)

.

10.
∂w

∂t
= f (t)

∂

∂x

(

wm ∂w

∂x

)

+
[

xg(t) + h(t)
] ∂w

∂x
+ â (t)w.

The transformation

w(x, t) = u(z, τ )S(t), z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

f (t)G2(t)Sm(t) dt,

where the functions S(t) and G(t) are given by

S(t) = exp
[
∫

s(t) dt
]

, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.1.10.7:

∂u

∂τ
=
∂

∂z

(

um
∂u

∂z

)

.

à�á
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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11.
∂w

∂t
= xkf (t)

∂

∂x

(

wm ∂w

∂x

)

+ xg(t)
∂w

∂x
+ h(t)w.

The transformation

w(t,x) = u(z, τ )H(t), z = xG(t), τ =
∫

f (t)G2−k(t)Hm(t) dt,

where the functionsG(t) and H(t) are given by

G(t) = exp
[
∫

g(t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to a simpler equation of the form 1.1.15.6:

∂u

∂τ
= zk

∂

∂z

(

um
∂u

∂z

)

.

ã�ä
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

12.
∂w

∂t
=

∂

∂x

[

f (x)eβw ∂w

∂x

]

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x,C1t + C2) +
1
β

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = −
1
β

ln(βt + C) +
1
β

ln
[
∫

A − βx
f (x)

dx +B
]

,

where A, B, and C are arbitrary constants.

13.
∂w

∂t
=

∂

∂x

[

f (x)eβw ∂w

∂x

]

+ g(x)eβw.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x,C1t + C2) +
1
β

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = −
1
β

ln(βt + C) + ϕ(x),

where β and C are arbitrary constants, and the function ϕ(x) is determined by the second-order
linear ordinary differential equation

[f (x)ψ′

x]′x + βg(x)ψ + β = 0, ψ = eβϕ.
ã�ä

Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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14.
∂w

∂t
=

∂

∂x

{

[

f2(t)w2n + f1(t)wn
] ∂w

∂x

}

+ g1(t)w + g2(t)w1–n.

Generalized traveling-wave solution:

w(x, t) =
[

ϕ(t)x + ψ(t)
]1/n,

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations

ϕ′

t =
(n + 1)
n

f2(t)ϕ3 + ng1(t)ϕ,

ψ′

t =
(n + 1)
n

f2(t)ϕ2ψ + ng1(t)ψ +
1
n
f1(t)ϕ2 + ng2(t),

which is easy to integrate (the first equation is a Bernoulli equation and the second one is linear
in ψ).

15.
∂w

∂t
= f (w)

∂2w

∂x2
+

[

ax + g(w)
] ∂w

∂x
+ h(w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−at, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−at,

where the function w(z) is determined by the ordinary differential equation

f (w)w′′

zz + [az + g(w)]w′

z + h(w) = 0.

16.
∂w

∂t
= x1–n ∂

∂x

[

f (w)
∂w

∂x

]

.

Nonlinear problems of the diffusion boundary layer, defined by equation 1.6.19.2, are reducible to
equations of this form. For n = 1, see equation 1.6.15.1, and for f (w) = awm, see equation 1.1.15.6.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x,Cn+1
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Self-similar solution for n ≠ −1:

w = w(z), z = xt−
1
n+1 (0 ≤ x <∞),

where the function w(z) is determined by the ordinary differential equation

(n + 1)[f (w)w′

z]′z + znw′

z = 0, (1)

which is often accompanied by the boundary conditions of (3) in 1.6.15.1.
The general solution of equation (1) with f (w) = a(w + b)−1 and arbitrary n can be found in

Zaitsev and Polyanin (1993).
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3◦. We now describe a simple way to find functions f (w) for which equation (1) admits exact
solutions. Let us integrate (1) with respect to z and then apply the hodograph transformation (with
w regarded as the independent variable and z as the dependent one) to obtain

f (w) = −
1

n + 1
z′w

(
∫

zn dw +A
)

, A is any. (2)

Substituting a specific z = z(w) for z on the right-hand side of (2), one obtains a one-parameter
family of functions f (w) for which z = z(w) solves equation (1). An explicit form of the solution,
w = w(z), is determined by the inversion of z = z(w).

For example, setting z = (1 − w)k, one obtains from (2) the corresponding f (w):

f (w) = A(1 − w)k−1 −
k

(n + 1)(nk + 1)
(1 − w)k(n+1), A is any.

4◦. There is another way to construct f (w) for which equation (1) admits exact solutions. It involves
the following. Let w̄ = w̄(z) be a solution of equation (1) with some function f (w). Then w̄ = w̄(z)
is also a solution of the more complicated equation (n + 1)[F (w)w′

z]′z + znw′

z = 0 with

F (w) = f (w) +Ag(w) (A is any), (3)

where the function g = g(w) is defined parametrically by

g(w) =
1
w̄′

z

, w = w̄(z). (4)

For example, if f (w) is a power-law function of w, f (w) = awm, then w̄ = bz
n+1
m is a solution

of equation (1), with b being a constant. It follows from (3) and (4) that w̄ is also a solution of

equation (1) with f (w) = awm +Aw
m−n−1
n+1 .

5◦. For n = −1, there is an exact solution of the form

w = w(ξ), ξ = ln |x| + λt,

where the function w(ξ) is defined implicitly by
∫

f (w) dw
λw + F (w) + C1

= ξ + C2, F (w) =
∫

f (w) dw,

where λ, C1, and C2 are arbitrary constants. To λ = 0 there corresponds a stationary solution.å�æ
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

17.
∂w

∂t
=

1
xn

∂

∂x

[

xnf (w)
∂w

∂x

]

+ g(w).

This is a nonlinear equation of heat and mass transfer in the radial symmetric case (n = 1 corresponds
to a plane problem and n = 2 to a spatial one).

1◦. Let f (w) and g(w) be defined by

f (w) = wϕ′

w(w), g(w) = a(n + 1)w + 2a
ϕ(w)
ϕ′

w(w)
,

where ϕ(w) is an arbitrary function. In this case, there is a functional separable solution defined
implicitly by

ϕ(w) = Ce2at − 1
2ax

2,

where C is an arbitrary constant.å�æ
Reference: V. A. Galaktionov (1994).
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2◦. Let f (w) and g(w) be defined as follows:

f (w) = aϕ− n+1
2 ϕ′

∫

ϕ
n+1

2 dw, g(w) = b
ϕ

ϕ′
,

where ϕ = ϕ(w) is an arbitrary function. In this case, there is a functional separable solution defined
implicitly by

ϕ(w) =
bx2

Ce−bt − 4a
,

where C is an arbitrary constant.

18.
∂w

∂t
= f (t)ϕ(w)

∂2w

∂x2
+

[

xg(t) + h(t)
] ∂w

∂x
.

The transformation

z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

f (t)G2(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.6.16.3:

∂w

∂τ
= ϕ(w)

∂2w

∂z2 .

19.
∂w

∂t
= f (t)

∂

∂x

[

ϕ(w)
∂w

∂x

]

+
[

xg(t) + h(t)
] ∂w

∂x
.

The transformation

z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

f (t)G2(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 1.6.15.1:

∂w

∂τ
=
∂

∂z

[

ϕ(w)
∂w

∂z

]

.

ç�è
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

20.
∂w

∂t
=

∂2

∂x2

[

f (x, w)
]

+
g(t)

fw(x, w)
+ h(x).

Here, fw is the partial derivative of f with respect to w.
Functional separable solution in implicit form:

f (x,w) =
∫

g(t) dt −
∫ x

x0

(x − ξ)h(ξ) dξ + C1x + C2,

where C1 and C2 are arbitrary constants, and x0 is any number.

1.6.18. Equations of the Form ∂w
∂t

=f
(
x, w, ∂w

∂x

)
∂2w
∂x2 + g

(
x, t, w, ∂w

∂x

)

1.
∂w

∂t
= a

(

∂w

∂x

)k ∂2w

∂x2
+

[

f (t)x + g(t)
] ∂w

∂x
+ h(t)w.

With the transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

F k+2(t)Hk(t) dt,
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where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

one arrives at the simpler equation

∂u

∂τ
= a

(

∂u

∂x

)k
∂2u

∂z2 .

See equation 1.6.18.3, the special case 1.

2.
∂w

∂t
= f (x)

(

∂w

∂x

)k ∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x,Ck1 t + C2) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = At +B + ϕ(x),

where the function ϕ(x) is given by

ϕ(x) =
∫

[

A(k + 1)
∫

dx

f (x)
+ C1

]

1
k+1

dx + C2 if k ≠ −1,

ϕ(x) = C1

∫

exp
[

A

∫

dx

f (x)

]

dx + C2 if k = −1,

A, B, C1, and C2 are arbitrary constants.

3◦. Solution:
w(x, t) = (Akt +B)−1/k

Θ(x) + C,
whereA, B, and C are arbitrary constants, and the function Θ(x) is determined by the second-order
ordinary differential equation

f (x)
(

Θ
′

x

)k
Θ

′′

xx +AΘ = 0.

3.
∂w

∂t
= f

(

∂w

∂x

)

∂2w

∂x2
.

This equation occurs in the nonlinear theory of flows in porous media; it governs also the motion of
a nonlinear viscoplastic medium.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−1
1 w(C1x + C2,C2

1 t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = At +B + ϕ(z), z = kx + λt, (1)

where A, B, k, and λ are arbitrary constants, and the function ϕ(z) is determined by the ordinary
differential equation

k2f
(

kϕ′

z)ϕ′′

zz = λϕ′

z +A. (2)
The general solution of equation (2) can be rewritten in parametric form as

ϕ = k
∫

uf (u) du
λu +Ak

+ C1, z = k2
∫

f (u) du
λu +Ak

+ C2, (3)

where C1 and C2 are arbitrary constants,
Relations (1) and (3) define a traveling-wave solution forA = 0 and an additive separable solution

for λ = 0.
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3◦. Self-similar solution:
w(x, t) =

√

tΘ(ξ), ξ =
x
√

t
,

where the function Θ(ξ) is determined by the ordinary differential equation

2f
(

Θ
′

ξ

)

Θ
′′

ξξ + ξΘ′

ξ − Θ = 0.

4◦. The substitution u(x, t) =
∂w

∂x
leads to an equation of the form 1.6.15.1:

∂u

∂t
=
∂

∂x

[

f (u)
∂u

∂x

]

.

5◦. The hodograph transformation

x̄ = w(x, t), w̄(x̄, t) = x

leads to an equation of the similar form

∂w̄

∂t
= f̄

(

∂w̄

∂x̄

)

∂2w̄

∂x̄2 , f̄ (z) =
1
z2 f

(

1
z

)

.

6◦. The transformation

t̄ = αt + γ1, x̄ = β1x + β2w + γ2, w̄ = β3x + β4w + γ3,

where α, the βi, and the γi are arbitrary constants such that α ≠ 0 and β1β4 − β2β3 ≠ 0, takes the
original equation to an equation with the same form. We have

f̄ (w̄x̄) =
1
α

(β1 + β2wx)2f (wx), wx =
β1w̄x̄ − β3

β4 − β2w̄x̄
,

where the subscripts x and x̄ denote the corresponding partial derivatives.
Special case 1. Equation

∂w

∂t
= a

(
∂w

∂x

)k
∂2w

∂x2 , k ≠ 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(C2x + C3,Ck
1 C

k+2
2 t + C4) + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = (t + C1)−1/k

u(x) + C2,

where C1 and C2 are arbitrary constants, and u(x) is determined by the ordinary differential equation ak(u′

x)ku′′xx + u = 0,
the general solution of which can be written out in the implicit form as

∫ (
C3 −

k + 2
2ak

u
2
)− 1

k+2
du = x + C4.

Special case 2. Equation
∂w

∂t
=

a

w2
x + b2

∂2w

∂x2 , wx =
∂w

∂x
.

1. Solution:
w(x, t) = é √

C1 − b2(x + C2)2 − 2at + C3,

where C1, C2, and C3 are arbitrary constants.

2. Solution:

w = bx tan
( é 1

2
z − arctan

(
ψ(z)

) é a

b2 t + C
)

,

z = x2 cos−2
( é 1

2
z − arctan

(
ψ(z)

) é a

b2 t + C
)

,
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where C is an arbitrary constant, and the function ψ = ψ(z) is determined by the ordinary differential equation

ψ
′

z =
1
2

(1 + ψ2)
( ê

1 −
ψ

z

)
.

The function z = z(x, t) in the solution is defined implicitly.

3. Solution:

w = bx tan
(
ϕ(z) +

C

2
ln
at

b2

)
,

z =
b2x2

at
cos−2

(
ϕ(z) +

C

2
ln
at

b2

)
,

where C is an arbitrary constant, and the functions ϕ(z) and ψ(z) are determined by the system of ordinary differential
equations

ϕ
′

z =
ψ

2z
, ψ

′

z =
1
2

(1 + ψ2)
(
C

2
−
ψ

2
−
ψ

z

)
.

The function z = z(x, t) in the solution is defined implicitly.

Special case 3. Equation
∂w

∂t
= k exp

(
∂w

∂x

)
∂2w

∂x2 .

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x + C2,C2

1e
C3 t + C4) + C3x + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Solution:

w(x, t) = 2A arctan
(
x + B
A

)
− (x + B) ln

∣∣∣∣
kt + C

(x + B)2 + A2

∣∣∣∣ − (2 + ln 2)x + D,

where A, B, C, and D are arbitrary constants.ë�ì
References for equation 1.6.18.3: E. V. Lenskii (1966), I. Sh. Akhatov, R. K. Gazizov, and N. H. Ibragimov (1989),

N. H. Ibragimov (1994).

4.
∂w

∂t
= f (x)g(w)h(wx)

∂2w

∂x2
, wx =

∂w

∂x
.

The hodograph transformation, according to which x is taken to be the independent variable and w
the dependent one,

x = u, w = y,

leads to a similar equation for u = u(y, t):

∂u

∂t
= g(y)f (u)h(uy)

∂2u

∂y2 , where h(z) = z−2h(1/z).

5.
∂w

∂t

∂2w

∂x2
= f

(

t,
∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x + C2, t) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. The Euler transformation

w(x, t) + u(ξ, η) = xξ, x =
∂u

∂ξ
, t = η

leads to the linear equation
∂u

∂η
= −f (η, ξ)

∂2u

∂ξ2 ;

for details, see Subsection S.2.3 (Example 7).
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1.6.19. Nonlinear Equations of the Thermal (Diffusion) Boundary
Layer

1. f (x)
∂w

∂x
+ g(x)y

∂w

∂y
=

∂

∂y

[

ϕ(w)
∂w

∂y

]

.

This equation is encountered in nonlinear problems of the steady diffusion boundary layer (mass
exchange between drops or bubbles and a flow); the coordinates x and y are reckoned along and
normal to the interphase surface, respectively.

The transformation (A and B are arbitrary constants)

t =
∫

h2(x)
f (x)

dx +A, z = yh(x), where h(x) = B exp
[

−
∫

g(x)
f (x)

dx

]

,

leads to a simpler equation of the form 1.6.15.1:

∂w

∂t
=
∂

∂z

[

ϕ(w)
∂w

∂z

]

.

í�î
References: A. D. Polyanin (1980, 1982), V. F. Zaitsev and A. D. Polyanin (1996).

2. f (x)yn–1 ∂w

∂x
+ g(x)yn ∂w

∂y
=

∂

∂y

[

ϕ(w)
∂w

∂y

]

.

This equation is encountered in nonlinear problems of the steady diffusion boundary layer (mass
exchange between solid particles, drops, or bubbles and the ambient medium; convective diffusion
to a flat plate and that in liquid films); the coordinates x and y are reckoned along and normal to the
body surface, respectively. The value n = 2 corresponds to a solid particle and n = 1, to a drop or a
bubble.

The transformation (A and B are arbitrary constants)

t =
∫

hn+1(x)
f (x)

dx +A, z = yh(x), where h(x) = B exp
[

−
∫

g(x)
f (x)

dx

]

,

leads to a simpler equation of the form 1.6.17.16:

∂w

∂t
= z1−n ∂

∂z

[

ϕ(w)
∂w

∂z

]

.

í�î
References: Yu. P. Gupalo, A. D. Polyanin, and Yu. S. Ryazantsev (1985), V. F. Zaitsev and A. D. Polyanin (1996).

3. f

(

y
√

x

)

∂w

∂x
+

1
√

x
g

(

y
√

x

)

∂w

∂y
=

∂

∂y

[

ϕ(w)
∂w

∂y

]

.

This is a generalization of the linear equation of the thermal boundary layer on a flat plate.

1◦. Self-similar solution:
w = w(ξ), ξ =

y
√

x
, (1)

where the function w(ξ) is determined by the ordinary differential equation

[ϕ(w)w′

ξ]
′

ξ +
[ 1

2 ξf (ξ) − g(ξ)
]

w′

ξ = 0. (2)

2◦. Solving the original partial differential equation with simple boundary conditions of the first
kind,

x = 0, w = a; y = 0, w = b; y →∞, w → a,

where a are b are some constants, is reduced to solving equation (2) with the boundary conditions

ξ = 0, w = b; ξ →∞, w → a.
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Remark. The classical thermal boundary layer equation is defined by
f (ξ) = PrF ′

ξ(ξ), g(ξ) = 1
2 Pr

[

ξF ′

ξ(ξ) − F (ξ)
]

,
where F (ξ) is the Blasius solution in the hydrodynamic problem on the longitudinal homogeneous
translational flow of a viscid incompressible fluid past a flat plane, and Pr is the Prandtl number (x
the coordinate along the plate and y the coordinate normal to the plate surface).ï�ð

References: H. Schlichting (1981), A. D. Polyanin and V. F. Zaitsev (2002).

1.7. Nonlinear Schrödinger Equations and Related
Equations

1.7.1. Equations of the Form i ∂w
∂t

+ ∂2w
∂x2 + f (|w|)w = 0 Involving

Arbitrary Parameters
I Throughout this subsection, w is a complex functions of real variables x and t; i2 = −1.

1. i
∂w

∂t
+

∂2w

∂x2
+ k|w|2w = 0.

Schrödinger equation with a cubic nonlinearity. Here, k is a real number. This equation occurs in
various chapters of theoretical physics, including nonlinear optics, superconductivity, and plasma
physics.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the functions
w1 = ñ A1w( ñ A1x +A2,A2

1t +A3),

w2 = e−i(λx+λ2t+B)w(x + 2λt, t),
whereA1, A2, A3, B, and λ are arbitrary real constants, are also solutions of the equation. The plus
or minus signs in the expression of w1 are chosen arbitrarily.

2◦. Solutions:
w(x, t) = C1 exp

{

i [C2x + (kC2
1 − C2

2 )t + C3]
}

,

w(x, t) = ñ C1

√

2
k

exp[i(C2
1 t + C2)]

cosh(C1x + C3)
,

w(x, t) = ñ A
√

2
k

exp[iBx + i(A2 −B2)t + iC1]
cosh(Ax − 2ABt + C2)

,

w(x, t) =
C1
√

t
exp

[

i
(x + C2)2

4t
+ i(kC2

1 ln t + C3)
]

,

where A, B, C1, C2, and C3 are arbitrary real constants. The second and third solutions are valid
for k > 0. The third solution describes the motion of a soliton in a rapidly decaying case.ï�ð

Reference: L. D. Faddeev and L. A. Takhtadjan (1987).

3◦. Solution:
w(x, t) = (ax + b) exp

[

i(αx2 + βx + γ)
]

,
where the functions a = a(t), b = b(t), α = α(t), β = β(t), and γ = γ(t) are determined by the
autonomous system of ordinary differential equations

a′t = −6aα,
b′t = −2aβ − 2bα,

α′

t = ka2 − 4α2,
β′

t = 2kab − 4αβ,

γ′t = kb2 − β2.ï�ð
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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4◦. N -soliton solutions for k > 0:

w(x, t) =
√

2
k

det R(x, t)
det M(x, t)

.

Here, M(x, t) is an N ×N matrix with entries

Mn,k(x, t) =
1 + gn(x, t)gn(x, t)

λn − λk
, gn(x, t) = γnei(λnx−λ2

n
t), n, k = 1, . . . , N ,

where the λn and γn are arbitrary complex numbers that satisfy the constraints Imλn > 0 (λn ≠ λk
if n ≠ k) and γn ≠ 0; the bar over a symbol denotes the complex conjugate. The square matrix
R(x, t) is of orderN + 1; it is obtained by augmenting M(x, t) with a column on the right and a row
at the bottom. The entries of R are defined as

Rn,k(x, t) = Mn,k(x, t) for n, k = 1, . . . , N (bulk of the matrix),
Rn,N+1(x, t) = gn(x, t) for n = 1, . . . , N (rightmost column),
RN+1,n(x, t) = 1 for n = 1, . . . , N (bottom row),
RN+1,N+1(x, t) = 0 (lower right diagonal entry).

The above solution can be represented, for t→ ò ∞, as the sum of N single-soliton solutions.ó�ô
Reference: L. D. Faddeev and L. A. Takhtadjan (1987).

5◦. Self-similar solution:

w(x, t) =
1

√

C1t + C2
u(z), z =

x + C3
√

C1t + C2
,

whereC1,C2, andC3 are arbitrary constants, and the function u = u(z) is determined by the ordinary
differential equation

u′′zz + k|u|2u − 1
2 iC1(zu′z + u) = 0.

6◦. For other exact solutions, see equation 1.7.5.1 with f (u) = ku2.

7◦. Auto-Bäcklund transformations preserving the form of the equation (with k = 1):

∂w

∂x
−
∂w̃

∂x
= iaf1 −

i

2
f2g1,

∂w

∂t
−
∂w̃

∂t
=

1
2
g1

(

∂w

∂x
+
∂w̃

∂x

)

− ag2 +
i

4
f1

(

|f1|2 + |f2|2
)

.

Here,
f1 = w − w̃, f2 = w + w̃, g1 = iε

(

b − 2|f1|2
)1/2, g2 = i

(

af1 − 1
2 f2g1

)

,

where a and b are arbitrary real constants and ε = ò 1.ó�ô
References: G. L. Lamb (1974), N. H. Ibragimov (1985).

8◦. The Schrödinger equation with a cubic nonlinearity admits infinitely many integrals of motion.
The first three integrals for k = 2:

C1 =
∫

∞

−∞
|w|2 dx, C2 =

∫

∞

−∞

(

w
∂w

∂x
− w

∂w

∂x

)

dx, C3 =
∫

∞

−∞

(

2
∣

∣

∣

∣

∂w

∂x

∣

∣

∣

∣

2

− |w|4
)

dx.

It is assumed here that the initial distribution w(x, 0) decays quite rapidly as |x|→∞. The bar over
a symbol denotes the complex conjugate.

The first three integrals for k = −2:

C1 =
∫

∞

−∞

(

1 − |w|2
)

dx, C2 = −
∫

∞

−∞

(

w
∂w

∂x
− w

∂w

∂x

)

dx, C3 =
∫

∞

−∞

(∣

∣

∣

∣

∂w

∂x

∣

∣

∣

∣

2

+ |w|4 − 1
)

dx.
ó�ô

References: V. E. Zakharov and A. B. Shabat (1972), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov
(1984).
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9◦. The Schrödinger equation with a cubic nonlinearity is integrable by the inverse scattering
method; see the literature cited below.õ�ö

References: V. E. Zakharov and A. B. Shabat (1972), M. J. Ablowitz and H. Segur (1981), R. K. Dodd, J. C. Eilbeck,
J. D. Gibbon, and H. C. Morris (1982), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov (1984),
L. D. Faddeev and L. A. Takhtadjan (1987), V. E. Korepin, N. N. Bogoliubov, and A. G. Izergin (1993), N. N. Akhmediev
and A. Ankiewicz (1997), C. Sulem and P.-L. Sulem (1999).

2. i
∂w

∂t
+

∂2w

∂x2
+ (A|w|2 + B)w = 0.

Schrödinger equation with a cubic nonlinearity. The numbers A and B are assumed real.

1◦. Solutions:
w(x, t) = C1 exp

{

i [C2x + (AC2
1 +B − C2

2 )t + C3]
}

,

w(x, t) =
C1
√

t
exp

[

i
(x + C2)2

4t
+ i(AC2

1 ln t +Bt + C3)
]

,

where C1, C2, and C3 are arbitrary real constants.

2◦. Solution:
w(x, t) = (ax + b) exp

[

i(αx2 + βx + γ)
]

,

where the functions a = a(t), b = b(t), α = α(t), β = β(t), and γ = γ(t) are determined by the
autonomous system of ordinary differential equations

a′t = −6aα,
b′t = −2aβ − 2bα,

α′

t = Aa2 − 4α2,
β′

t = 2Aab − 4αβ,

γ′t = Ab2 − β2 +B.

3◦. For other exact solutions, see equation 1.7.5.1 with f (u) = Au2 +B.

3. i
∂w

∂t
+

∂2w

∂x2
+ (A|w|2 + B|w| + C)w = 0.

Schrödinger equation with a cubic nonlinearity. The numbers A, B, and C are assumed real.

1◦. There is an exact solution of the form

w(x, t) = (ax + b) exp
[

i(αx2 + βx + γ)
]

,

where a = a(t), b = b(t), α = α(t), β = β(t), and γ = γ(t) are real functions of a real variable.

2◦. For other exact solutions, see equation 1.7.5.1 with f (u) = Au2 +Bu + C.

4. i
∂w

∂t
+

∂2w

∂x2
+ A|w|2nw = 0.

Schrödinger equation with a power-law nonlinearity. The numbers A and n are assumed real.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = ÷ B1w( ÷ Bn1 x +B2,B2n
1 t +B3),

w2 = e−i(λx+λ2t+C)w(x + 2λt, t),

whereB1, B2, B3, C, and λ are arbitrary real constants, are also solutions of the equation. The plus
or minus signs in the expression of w1 are chosen arbitrarily.
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2◦. Solutions:
w(x, t) = C1 exp

{

i [C2x + (A|C1|2n − C2
2 )t + C3]

}

,

w(x, t) = ø
[

(n + 1)C2
1

A cosh2(C1nx + C2)

]

1
2n

exp[i(C2
1 t + C3)],

w(x, t) =
C1
√

t
exp

[

i
(x + C2)2

4t
+ i

(

AC2n
1

1 − n
t1−n + C3

)]

,

where C1, C2, and C3 are arbitrary real constants.

3◦. Solution:
w(x, t) = e−i(λx+λ2t+C)U (x + 2λt),

where C and λ are arbitrary constants, and the function U = U (y) is determined by the autonomous
ordinary differential equation U ′′

yy +AU 2n+1 = 0. Its solution can be represented in implicit form.

4◦. Self-similar solution:

w(x, t) = (C1t + C2)−
1

2n u(z), z =
x + C3
√

C1t + C2
,

whereC1,C2, andC3 are arbitrary constants, and the function u = u(z) is determined by the ordinary
differential equation

u′′zz + k|u|2nu −
1
2
iC1

(

zu′z +
1
n
u

)

= 0.

5◦. For other exact solutions, see equation 1.7.5.1 with f (u) = Au2n.

1.7.2. Equations of the Form i ∂w
∂t

+ 1
xn

∂
∂x

(
xn ∂w

∂x

)
+ f (|w|)w = 0

Involving Arbitrary Parameters
I Throughout this subsection, w is a complex function of real variables x and t; i2 = −1. To
n = 1 there corresponds a two-dimensional Schrödinger equation with axial symmetry and to n = 2,
a three-dimensional Schrödinger equation with central symmetry.

1. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ A|w|2w = 0.

Schrödinger equation with a cubic nonlinearity.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = C1e
iC2w( ø C1x,C2

1 t + C3),

where C1, C2, and C3 are arbitrary real constants, are also solutions of the equation.

2◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

x−n(xnu′x)′x − C1u +Au3 = 0.

3◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

xnu2(x)
+ C3,
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where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
ordinary differential equation

x−n(xnu′x)′x − C1u − C2
2x

−2nu−3 +Au3 = 0.

4◦. Solution:

w(x, t) = C1(t + C2)−
n+1

2 exp
[

iϕ(x, t)
]

, ϕ(x, t) =
x2

4(t + C2)
−

AC2
1

n(t + C2)n
+ C3,

where C1, C2, and C3 are arbitrary real constants.

2. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ (A|w|2 + B)w = 0.

Schrödinger equation with a cubic nonlinearity.

1◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

x−n(xnu′x)′x − C1u + (Au2 +B)u = 0.

2◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

xnu2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
ordinary differential equation

x−n(xnu′x)′x − C1u − C2
2x

−2nu−3 + (Au2 +B)u = 0.

3◦. Solution:

w(x, t) = C1(t + C2)−
n+1

2 exp
[

iϕ(x, t)
]

, ϕ(x, t) =
x2

4(t + C2)
−

AC2
1

n(t + C2)n
+Bt + C3,

where C1, C2, and C3 are arbitrary real constants.

3. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ (A|w|2 + B|w| + C)w = 0.

This is a special case of equation 1.7.5.2 with f (u) = Au2 +Bu + C.

4. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ A|w|kw = 0.

Schrödinger equation with power-law nonlinearity.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = ù C2
1e
iC2w( ù Ck1 x,C2k

1 t + C3),

where C1, C2, and C3 are arbitrary real constants, are also solutions of the equation. The plus or
minus signs are chosen arbitrarily.

2◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

x−n(xnu′x)′x − C1u +A|u|ku = 0.
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3◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

xnu2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
ordinary differential equation

x−n(xnu′x)′x − C1u − C2
2x

−2nu−3 +A|u|ku = 0.

4◦. Solution:
w(x, t) = C1(t + C2)−

n+1
2 exp

[

iϕ(x, t)
]

,

ϕ(x, t) =
x2

4(t + C2)
+

2A|C1|k

2 − k − nk
(t + C2)

2−k−nk
2 + C3,

where C1, C2, and C3 are arbitrary real constants.

1.7.3. Other Equations Involving Arbitrary Parameters

1. i
∂w

∂t
+

∂2w

∂x2
+ a

(

1 – e–k|w|)w = 0.

This equation is encountered in plasma theory and laser physics. This is a special case of equation
1.7.5.1 with f (u) = a

(

1 − e−ku).ú�û
Reference: R. K. Bullough (1977, 1978).

2. i
∂w

∂t
+

∂2w

∂x2
+ ia

∂

∂x

(

|w|2w
)

= 0.

This equation is encountered in plasma physics (propagation of Alfven and radio waves); a is a real
number.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the function

w1 = C1w(C2
1x + C2,C4

1 t + C3),

where C1, C2, and C3 are arbitrary real constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = u(t) exp[iv(x, t)], v(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).

Here,

u =
C2

√

t + C1
, ϕ =

1
4(t + C1)

, ψ =
C3 − 2aC2

2 ln |t + C1|
4(t + C1)

, χ = −
∫

(

ψ2 + aψu2) dt + C4,

where C1, . . . , C4 are arbitrary real constants.

3◦. For another solution, see Item 2◦ of equation 1.7.5.4 with f (z) = az2. See also Calogero and
Degasperis (1982).

3. i
∂w

∂t
+ a

∂2

∂x2

(

w
√

1 + |w|2

)

= 0.

This is a special case of equation 1.7.5.5 with f (z) = a(1 + z2)−1/2.ú�û
Reference: F. Calogero and A. Degasperis (1982).

4. i
∂w

∂t
+ (1 + ia)

∂2w

∂x2
+ f (x, t)w|w|2 + g(x, t)w = 0.

Exact solutions of this equation for some specific f (x, t) and g(x, t) are listed in Table 2. See also
equation 1.7.4.4 with f1(t) = 1 and f2(t) = a, and equation 1.7.4.5 f1(x) = 1 and f2(x) = a.ú�û

Reference: L. Garnon and P. Winternitz (1993).
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1.7. NONLINEAR SCHRÖDINGER EQUATIONS AND RELATED EQUATIONS 131

TABLE 2
Structure of exact solutions for the Schrödinger type

equation i ∂w
∂t

+ (1 + ia) ∂
2w
∂x2 + f (x, t)w|w|2 + g(x, t)w = 0

a f (x, t) g(x, t) Solution structure w(x, t)

0 1+ib 0 Solution 1: w=ϕ(t) exp
(

ix2

4t

)

,
Solution 2: w=ψ(z)/x, z=x2/t

0 1+ib ic/t Solution 1: w=ϕ(t) exp
(

ix2

4t

)

,
Solution 2: w=ψ(z)/x, z=x2/t

0 (1+ib)/x (c1+ic2)/x2 w=ψ(z)/
√

x, z=x2/t

0 (1+ib) exp
(

αxt−1/2) 1
4αxt

−3/2+βt−1 w=ψ(z)/x, z=x2/t

0
[

f1(t)+if2(t)
]

exp
[

2h(t)x
]

ih′t(t)x w=ϕ(t) exp
[

−h(t)x
]

arbitrary 1+ib 0 w=ψ(z)/x, z=x2/t

arbitrary (1+ib)e−x ic w=ϕ(t) exp
( 1

2x
)

arbitrary (1+ib)e−kx x+ic w=ϕ(t) exp
( 1

2kx+ixt
)

arbitrary (1+ib)x−k (c1+ic2)x−2 w=x(k−2)/2ψ(z), z=x2/t

arbitrary 1+ib c1xt
−3/2−ic2t

−1 Solution 1: w=ϕ(t) exp
(

− 2ic1x√

t

)

,
Solution 2: w=ψ(z)/x, z=x2/t

1.7.4. Equations with Cubic Nonlinearities Involving Arbitrary
Functions

I Throughout this subsection, w is a complex function of real variables x and t; i2 = −1.

1. i
∂w

∂t
+

∂2w

∂x2
+

[

f (t)|w|2 + g(t)
]

w = 0.

Schrödinger equation with a cubic nonlinearity. Here, f (t) and g(t) are real functions of a real
variable.

1◦. Solution:

w(x, t) = C1 exp
[

iϕ(x, t)
]

, ϕ(x, t) = C2x − C2
2 t +

∫

[

C2
1f (t) + g(t)

]

dt + C3,

where C1, C2, and C3 are arbitrary real constants.

2◦. Solution:

w(x, t) =
C1
√

t
exp

[

iϕ(x, t)
]

, ϕ(x, t) =
(x + C2)2

4t
+

∫

[

C2
1f (t) + tg(t)

] dt

t
+ C3,

where C1, C2, and C3 are arbitrary real constants.

3◦. Solution:
w(x, t) = (ax + b) exp

[

i(αx2 + βx + γ)
]

,
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where the functions a = a(t), b = b(t), α = α(t), β = β(t), and γ = γ(t) are determined by the system
of ordinary differential equations

a′t = −6aα,
b′t = −2aβ − 2bα,

α′

t = f (t)a2 − 4α2,
β′

t = 2f (t)ab − 4αβ,

γ′t = f (t)b2 − β2 + g(t).

2. i
∂w

∂t
+

∂2w

∂x2
+ [f1(t) + if2(t)]w|w|2 + [g1(t) + ig2(t)]w = 0.

Equations of this form occur in nonlinear optics.

1◦. Solutions:

w(x, t) = ü u(t) exp[iϕ(x, t)], ϕ(x, t) = C1x − C2
1 t +

∫

[f1(t)u2(t) + g1(t)] dt + C2.

Here, the function u = u(t) is determined by the Bernoulli equation u′

t + f2(t)u3 + g2(t)u = 0, whose
general solution is given by

u(t) =
[

C3e
G(t) + 2eG(t)

∫

e−G(t)f2(t) dt
]−1/2

, G(t) = 2
∫

g2(t) dt.

2◦. Solutions:

w(x, t) = ü u(t) exp[iϕ(x, t)], ϕ(x, t) =
(x + C1)2

4t
+

∫

[f1(t)u2(t) + g1(t)] dt + C2,

where the function u = u(t) is determined by the Bernoulli equation

u′t + f2(t)u3 +
[

g2(t) +
1
2t

]

u = 0.

Integrating yields

u(t) =
[

C3e
G(t) + 2eG(t)

∫

e−G(t)f2(t) dt
]−1/2

, G(t) = ln t + 2
∫

g2(t) dt.

ý�þ
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3. i
∂w

∂t
+

∂2w

∂x2
+ [f1(x) + if2(x)]w|w|2 + [g1(x) + ig2(x)]w = 0.

Solutions:
w(x, t) = ü u(x) exp[iC1t + iθ(x)],

where the functions u = u(x) and θ = θ(x) are determined by the system of ordinary differential
equations

2u′xθ
′

x + uθ′′xx + f2(x)u3 + g2(x)u = 0,

u′′xx − C1u − u(θ′x)2 + f1(x)u3 + g1(x)u = 0.

4. i
∂w

∂t
+ [f1(t) + if2(t)]

∂2w

∂x2
+ [g1(t) + ig2(t)]w|w|2 + [h1(t) + ih2(t)]w = 0.

Solutions:

w(x, t) = ü u(t) exp[iϕ(x, t)], ϕ(x, t) = C1x +
∫

[−C2
1f1(t) + g1(t)u2(t) + h1(t)] dt + C2.
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Here, the function u = u(t) is determined by the Bernoulli equation

u′t + g2(t)u3 + [h2(t) − C2
1f2(t)]u = 0,

whose general solution is given by

u(t) =
[

C3e
F (t) + 2eF (t)

∫

e−F (t)g2(t) dt
]−1/2

, F (t) = 2
∫

[

h2(t) − C2
1f2(t)

]

dt.

ÿ��
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5. i
∂w

∂t
+ [f1(x) + if2(x)]

∂2w

∂x2
+ [g1(x) + ig2(x)]w|w|2 + [h1(x) + ih2(x)]w = 0.

Solutions:
w(x, t) =

�
u(x) exp[iC1t + iθ(x)],

where the functions u = u(x) and θ = θ(x) are determined by the system of ordinary differential
equations

2f1u
′

xθ
′

x + f1uθ
′′

xx + f2u
′′

xx − f2u(θ′x)2 + g2u
3 + h2u = 0,

f1u
′′

xx − C1u − f1u(θ′x)2 − 2f2u
′

xθ
′

x − f2uθ
′′

xx + g1u
3 + h1u = 0.ÿ��

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

6.
∂w

∂t
+ [f1(t) + if2(t)]

∂2w

∂x2
+ [g1(t) + ig2(t)]w|w|2 + [h1(t) + ih2(t)]w = 0.

With fn, gn,hn = const, this equation is used for describing two-component reaction-diffusion
systems near a bifurcation point; see Kuramoto and Tsuzuki (1975).

Solutions:
w(x, t) = �

u(t) exp[iϕ(x, t)],

ϕ(x, t) = C1x +
∫

[C2
1f2(t) − g2(t)u2(t) − h2(t)] dt + C2.

Here, the function u = u(t) is determined by the Bernoulli equation

u′t + g1(t)u3 + [h1(t) − C2
1f1(t)]u = 0,

whose general solution is given by

u(t) =
[

C3e
F (t) + 2eF (t)

∫

e−F (t)g1(t) dt
]−1/2

,

F (t) = 2
∫

[

h1(t) − C2
1f1(t)

]

dt.

7.
∂w

∂t
+ [f1(x) + if2(x)]

∂2w

∂x2
+ [g1(x) + ig2(x)]w|w|2 + [h1(x) + ih2(x)]w = 0.

Solutions:
w(x, t) = �

u(x) exp[iC1t + iθ(x)],

where the functions u = u(x) and θ = θ(x) are determined by the system of ordinary differential
equations

f1u
′′

xx − f1u(θ′x)2 − f2uθ
′′

xx − 2f2u
′

xθ
′

x + g1u
3 + h1u = 0,

f2u
′′

xx + C1u − f2u(θ′x)2 + f1uθ
′′

xx + 2f1u
′

xθ
′

x + g2u
3 + h2u = 0.
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1.7.5. Equations of General Form Involving Arbitrary Functions of a
Single Argument

I Throughout this subsection, w is a complex function of real variables x and t; i2 = −1.

1. i
∂w

∂t
+

∂2w

∂x2
+ f (|w|)w = 0.

Schrödinger equation of general form; f (u) is a real function of a real variable.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the function

w1 = e−i(λx+λ2t+C1)w(x + 2λt + C2, t + C3),

where C1, C2, C3, and λ are arbitrary real constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, t) = C1 exp
[

iϕ(x, t)
]

, ϕ(x, t) = C2x − C2
2 t + f (|C1|)t + C3.

3◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

where the function u = u(x) is defined implicitly by
∫

du
√

C1u2 − 2F (u) + C3
= C4 � x, F (u) =

∫

uf (|u|) du.

Here, C1, . . . , C4 are arbitrary real constants.

4◦. Solution:
w(x, t) = U (ξ)ei(Ax+Bt+C), ξ = x − 2At, (1)

where the function U = U (ξ) is determined by the autonomous ordinary differential equation
U ′′

ξξ + f (|U |)U − (A2 +B)U = 0. Integrating yields the general solution in implicit form:
∫

dU
√

(A2 +B)U 2 − 2F (U ) + C1
= C2 � ξ, F (U ) =

∫

Uf (|U |) dU . (2)

Relations (1) and (2) involve arbitrary real constants A, B, C, C1, and C2.

5◦. Solution (A, B, and C are arbitrary constants):

w(x, t) = ψ(z) exp
[

i(Axt − 2
3A

2t3 +Bt + C)
]

, z = x −At2,

where the function ψ = ψ(z) is determined by the ordinary differential equation

ψ′′

zz + f (|ψ|)ψ − (Az +B)ψ = 0.

6◦. Solutions:

w(x, t) = � 1
√

C1t
exp

[

iϕ(x, t)
]

, ϕ(x, t) =
(x + C2)2

4t
+

∫

f
(

|C1t|−1/2) dt + C3,

where C1, C2, and C3 are arbitrary real constants.

7◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

u2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
autonomous ordinary differential equation

u′′xx − C1u − C2
2u

−3 + f (|u|)u = 0.
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8◦. Solution:
w(x, t) = u(z) exp

[

iAt + iϕ(z)
]

, z = kx + λt,
whereA, k, and λ are arbitrary real constants, and the functionsu =u(z) andϕ =ϕ(z) are determined
by the system of ordinary differential equations

k2uϕ′′

zz + 2k2u′zϕ
′

z + λu′z = 0,

k2u′′zz − k2u(ϕ′

z)2 − λuϕ′

z −Au + f (|u|)u = 0.
���

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

2. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ f (|w|)w = 0.

Schrödinger equation of general form; f (u) is a real function of a real variable. To n = 1 there
corresponds a two-dimensional Schrödinger equation with axial symmetry and to n = 2, a three-
dimensional Schrödinger equation with central symmetry.

1◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

x−n(xnu′x)′x − C1u + f (|u|)u = 0.

2◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

xnu2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
ordinary differential equation

x−n(xnu′x)′x − C1u − C2
2x

−2nu−3 + f (|u|)u = 0.

3◦. Solution:

w(x, t) = C1t
− n+1

2 exp
[

iϕ(x, t)
]

, ϕ(x, t) =
x2

4t
+

∫

f
(

|C1|t−
n+1

2
)

dt + C2,

where C1 and C2 are arbitrary real constants.���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂w

∂t
= (a + ib)

∂2w

∂x2
+

[

f (|w|) + ig(|w|)
]

w.

Generalized Landau–Ginzburg equation; f (u) and g(u) are real functions of a real variable, a and b
are real numbers. Equations of this form are used for studying second-order phase transitions in
superconductivity theory (see Landau and Ginzburg, 1950) and to describe two-component reaction-
diffusion systems near a point of bifurcation (Kuramoto and Tsuzuki, 1975).

1◦. Suppose w(x, t) is a solution of the generalized Landau–Ginzburg equation. Then the function

w1 = eiC1w(x + C2, t + C3),

where C1, C2, and C3 are arbitrary real constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, t) = C1 exp
[

iϕ(x, t)
]

, ϕ(x, t) = � x
√

f (|C1|)
a

+ t
[

g(|C1|) −
b

a
f (|C1|)

]

+ C2,

where C1 and C2 are arbitrary real constants.
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3◦. Solution:

w(x, t) = u(t) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1x − C2
1 bt +

∫

g(|u|) dt + C2,

where u = u(t) is determined by the ordinary differential equation u′

t = f (|u|)u − aC2
1u, whose

general solution can be represented in implicit form as
∫

du

f (|u|)u − aC2
1u

= t + C3.

4◦. Solution:
w(x, t) = U (z) exp

[

iC1t + iθ(z)
]

, z = x + λt,
whereC1 and λ are arbitrary real constants, and the functionsU = U (z) and θ = θ(z) are determined
by the system of ordinary differential equations

aU ′′

zz − aU (θ′z)2 − bUθ′′zz − 2bU ′

zθ
′

z − λU ′

z + f (|U |)U = 0,

aUθ′′zz − bU (θ′z)2 + bU ′′

zz + 2aU ′

zθ
′

z − λUθ′z − C1U + g(|U |)U = 0.
���

References: V. S. Berman and Yu. A. Danilov (1981), A. D. Polyanin and V. F. Zaitsev (2002).

4. i
∂w

∂t
+

∂2w

∂x2
+ i

∂

∂x

[

f (|w|)w
]

= 0.

1◦. Solution:
w(x, t) = u(t) exp[iv(x, t)], v(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions u = u(t), ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of
ordinary differential equations

u′t + 2ϕu = 0,

ϕ′

t + 4ϕ2 = 0,
ψ′

t + 4ϕψ + 2ϕf (u) = 0,

χ′

t + ψ2 + ψf (u) = 0.
Integrating yields

u =
C2

√

t + C1
, ϕ =

1
4(t + C1)

, ψ = −2ϕ
∫

f (u) dt + C3ϕ, χ = −
∫

[

ψ2 + ψf (u)
]

dt + C4,

where C1, . . . , C4 are arbitrary real constants.

2◦. Solution:
w(x, t) = U (z) exp[iβt + iV (z)], z = kx + λt,

where k, β, and λ are arbitrary real constants, and the functions U = U (z) and V = V (z) are
determined by the system of ordinary differential equations

λU ′

z + k2(UV ′

z )′z + k2U ′

zV
′

z + k[f (U )U ]′z = 0,

−U (β + λV ′

z ) + k2U ′′

zz − k2U (V ′

z )2 − kf (U )UV ′

z = 0.

5. i
∂w

∂t
+

∂2

∂x2

[

f (|w|)w
]

= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = 	 eiC1w( 	 C2x + C3,C2
2 t + C4),

where C1, . . . , C4 are arbitrary real constants, are also solutions of the equation. The plus or minus
signs are chosen arbitrarily.
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2◦. Solution:
w(x, t) = u(t) exp[iv(x, t)], v(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions u = u(t), ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of
ordinary differential equations

u′t + 2uϕf (u) = 0,

ϕ′

t + 4ϕ2f (u) = 0,
ψ′

t + 4ϕψf (u) = 0,

χ′

t + ψ2f (u) = 0.

Integrating yields

ϕ = C1u
2, ψ = C2u

2, χ = −C2
2

∫

u4f (u) dt + C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(t) is defined implicitly as
(C4 is an arbitrary constant)

∫

du

u3f (u)
+ 2C1t + C4 = 0.

3◦. There is a solution of the form

w(x, t) = U (z) exp[iβt + iV (z)], z = kx + λt,

where k, β, and λ are arbitrary real constants, and the functions U = U (z) and V = V (z) are
determined by an appropriate system of ordinary differential equations (which is not written out
here).

4◦. There is a self-similar solution of the form w(x, t) = V (ξ), where ξ = x2/t.

1.7.6. Equations of General Form Involving Arbitrary Functions of
Two Arguments

I Throughout this subsection, w is a complex function of real variables x and t; i2 = −1.

1. i
∂w

∂t
+

∂2w

∂x2
+ f (x, |w|)w = 0.

Schrödinger equation of general form; f (x,u) is a real function of two real variables.

1◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

u′′xx − C1u + f (x, |u|)u = 0.

2◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

u2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
ordinary differential equation

u′′xx − C1u − C2
2u

−3 + f (x, |u|)u = 0.

��

Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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2. i
∂w

∂t
+

∂2w

∂x2
+ f (t, |w|)w = 0.

Schrödinger equation of general form; f (t,u) is a real function of two real variables.

1◦. Suppose w(x, t) is a solution of the Schrödinger equation in question. Then the function

w1 = e−i(λx+λ2t+C1)w(x + 2λt + C2, t),

where C1, C2, and λ are arbitrary real constants, is also a solution of the equation.

2◦. Solutions:

w(x, t) = C1 exp
[

iϕ(x, t)
]

, ϕ(x, t) = C2x − C2
2 t +

∫

f (t, |C1|) dt + C3;

w(x, t) = C1t
−1/2 exp

[

iψ(x, t)
]

, ψ(x, t) =
(x + C2)2

4t
+

∫

f
(

t, |C1|t−1/2) dt + C3,

where C1, C2, and C3 are arbitrary real constants.��
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ f (x, |w|)w = 0.

Schrödinger equation of general form; f (x,u) is a real function of two real variables. To n = 1
there corresponds a two-dimensional Schrödinger equation with axial symmetry and to n = 2,
a three-dimensional Schrödinger equation with central symmetry.

1◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

x−n(xnu′x)′x − C1u + f (x, |u|)u = 0.

2◦. Solution:

w(x, t) = u(x) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1t + C2

∫

dx

xnu2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined by the
ordinary differential equation

x−n(xnu′x)′x − C1u − C2
2x

−2nu−3 + f (x, |u|)u = 0.��
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

4. i
∂w

∂t
+

1
xn

∂

∂x

(

xn ∂w

∂x

)

+ f (t, |w|)w = 0.

Schrödinger equation of general form; f (t,u) is a real function of two real variables.
Solution:

w(x, t) = C1t
− n+1

2 exp
[

iϕ(x, t)
]

, ϕ(x, t) =
x2

4t
+

∫

f
(

t, |C1|t−
n+1

2
)

dt + C2,

where C1 and C2 are arbitrary real constants.��
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5. i
∂w

∂t
+ f (x)

∂2w

∂x2
+ g(x)

∂w

∂x
+ Φ(x, |w|)w = 0.

Schrödinger equation of general form; Φ(x,u) is a real function of two real variables. The case
g(x) = f ′

x(x) corresponds to an anisotropic medium.
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1◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

whereC1 andC2 are arbitrary real constants, and the function u = u(x) is determined by the ordinary
differential equation

f (x)u′′xx + g(x)u′x − C1u + Φ(x, |u|)u = 0.

2◦. Solution:

w(x, t) = U (x) exp
[

iϕ(x, t)
]

,

ϕ(x, t) = C1t + C2

∫

R(x)
U 2(x)

dx + C3, R(x) = exp
[

−
∫

g(x)
f (x)

dx

]

,

where C1, C2, and C3 are arbitrary real constants, and the function U = U (x) is determined by the
ordinary differential equation

f (x)U ′′

xx + g(x)U ′

x − C1U − C2
2f (x)R2(x)U−3 + Φ(x, |U |)U = 0.

6.
∂w

∂t
=

[

f1(t, |w|) + if2(t, |w|)
] ∂2w

∂x2
+

[

g1(t, |w|) + ig2(t, |w|)
]

w.

Solution:

w(x, t) = u(t) exp
[

iϕ(x, t)
]

, ϕ(x, t) = C1x +
∫

[

g2(t, |u|) − C2
1f2(t, |u|)

]

dt + C2,

whereC1 andC2 are arbitrary real constants, and the function u = u(t) is determined by the ordinary
differential equation

u′t = ug1(t, |u|) − C2
1uf1(t, |u|).

7.
∂w

∂t
=

[

f1(x, |w|) + if2(x, |w|)
] ∂2w

∂x2
+

[

g1(x, |w|) + ig2(x, |w|)
]

w.

Solution:
w(x, t) = u(x) exp

[

iϕ(x, t)
]

, ϕ(x, t) = C1t + θ(x),
where the functions u = u(x) and θ = θ(x) are determined by the system of ordinary differential
equations

f1u
′′

xx − f1u(θ′x)2 − f2uθ
′′

xx − 2f2u
′

xθ
′

x + g1(|u|)u = 0,

f1uθ
′′

xx − f2u(θ′x)2 + f2u
′′

xx + 2f1u
′

xθ
′

x − C1u + g2(|u|)u = 0.
Here, fn = fn(x, |u|), gn = gn(x, |u|), n = 1, 2.

8. i
∂w

∂t
+

∂2w

∂x2
+ i

∂

∂x

[

f (t, |w|)w
]

= 0.

Solution:
w(x, t) = u(t) exp[iv(x, t)], v(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions u = u(t), ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of
ordinary differential equations

u′t + 2ϕu = 0,

ϕ′

t + 4ϕ2 = 0,
ψ′

t + 4ϕψ + 2ϕf (t,u) = 0,

χ′

t + ψ2 + ψf (t,u) = 0.
Integrating yields

u =
C2

√

t + C1
, ϕ =

1
4(t + C1)

, ψ = −2ϕ
∫

f (t,u) dt + C3ϕ, χ = −
∫

[

ψ2 + ψf (t,u)
]

dt + C4,

where C1, . . . , C4 are arbitrary real constants.
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9. i
∂w

∂t
+

∂2w

∂x2
+ i

∂

∂x

[

f (x, |w|)w
]

= 0.

Solution:
w(x, t) = U (x) exp[iβt + iV (x)],

where β is an arbitrary real constant, and the real functions U = U (x) and V = V (x) are determined
by the system of ordinary differential equations

(UV ′

x)′x + U ′

xV
′

x + [f (x,U )U ]′x = 0,

−βU + U ′′

xx − U (V ′

x)2 − f (x,U )UV ′

x = 0.

10. i
∂w

∂t
+

∂2

∂x2

[

f (t, |w|)w
]

= 0.

Solution:
w(x, t) = u(t) exp[iv(x, t)], v(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions u = u(t), ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of
ordinary differential equations

u′t + 2uϕf (t,u) = 0,

ϕ′

t + 4ϕ2f (t,u) = 0,
ψ′

t + 4ϕψf (t,u) = 0,

χ′

t + ψ2f (t,u) = 0.
Integrating yields

ϕ = C1u
2, ψ = C2u

2, χ = −C2
2

∫

u4f (t,u) dt + C3,

where C1, C2, and C3 are arbitrary real constants, and u = u(t) is determined by the ordinary
differential equation u′t + 2C1u

3f (t,u) = 0.

11. i
∂w

∂t
+

∂

∂x

[

f (t, |w|)
∂w

∂x

]

= 0.

Solution:
w(x, t) = u(t) exp[iv(x, t)], v(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions u = u(t), ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of
ordinary differential equations

u′t + 2uϕf (t,u) = 0,

ϕ′

t + 4ϕ2f (t,u) = 0,
ψ′

t + 4ϕψf (t,u) = 0,

χ′

t + ψ2f (t,u) = 0.
Integrating yields

ϕ = C1u
2, ψ = C2u

2, χ = −C2
2

∫

u4f (t,u) dt + C3,

where C1, C2, and C3 are arbitrary real constants, and u = u(t) is determined by the ordinary
differential equation u′t + 2C1u

3f (t,u) = 0.

12. i
∂w

∂t
+

∂

∂x

[

f (x, |w|)
∂w

∂x

]

= 0.

There is a solution of the form

w(x, t) = U (x) exp[iβt + iV (x)],

where β is an arbitrary real constant, and the functions U = U (z) and V = V (z) are determined by
an appropriate system of ordinary differential equations (which is not written out here).
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Chapter 2

Parabolic Equations
with Two or More Space Variables

2.1. Equations with Two Space Variables Involving
Power-Law Nonlinearities

2.1.1. Equations of the Form ∂w
∂t

= ∂
∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+awp

1.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+ cwp.

This is a special case of equation 2.4.2.1 with f (w) = cwp.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = C1w
(

C
p−1
2−n

1 x, C
p−1
2−m

1 y, Cp−1
1 t + C2

)

,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (r, t), r2 =
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 ;

w(x, y, t) = t
1

1−p V (z1, z2), z1 = xt
1

n−2 , z2 = yt
1

m−2 .

2.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ cwp.

This is a special case of equation 2.4.2.3 with f (w) = cwp.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = C1w
(

C
p−1
2−n

1 x, y +
1 − p
λ

lnC1, Cp−1
1 t + C2

)

,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (r, t), r2 =
x2−n

a(2 − n)2 +
e−λy

bλ2 ;

w(x, y, t) = t
1

1−p V (z1, z2), z1 = xt
1

n−2 , z2 = y +
1
λ

ln t.
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3.
∂w

∂t
=

∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ cwp.

This is a special case of equation 2.4.2.2 with f (w) = cwp.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = C1w
(

x +
1 − p
β

lnC1, y +
1 − p
λ

lnC1, Cp−1
1 t + C2

)

,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (r, t), r2 =
e−βx

aβ2 +
e−λy

bλ2 ;

w(x, y, t) = t
1

1−p V (z1, z2), z1 = x +
1
β

ln t, z2 = y +
1
λ

ln t.

2.1.2. Equations of the Form ∂w
∂t

= a ∂
∂x

(

wn ∂w
∂x

)

+ b ∂
∂y

(

wk ∂w
∂y

)

1.
∂w

∂t
= a

∂2w

∂x2
+ b

∂

∂y

(

w
∂w

∂y

)

.

This is a special case of equation 2.1.3.1 with c = 0.

2.
∂w

∂t
=

∂

∂x

(

w
∂w

∂x

)

+
∂

∂y

(

w
∂w

∂y

)

.

Boussinesq equation. It arises in nonlinear heat conduction theory and the theory of unsteady flows
through porous media with a free surface (see Polubarinova–Kochina, 1962). This is a special case
of equation 2.1.2.4 with n = 1.

1◦. Solution linear in all independent variables:

w(x, y, t) = Ax +By + (A2 +B2)t + C,

where A, B, and C are arbitrary constants.

2◦. Traveling-wave solution (k1, k2, and λ are arbitrary constants):

w = w(ξ), ξ = k1x + k2y + λt,

where the function w(ξ) is determined by the ordinary differential equation

λw′

ξ = (k2
1 + k2

2)(ww′

ξ)′ξ.

The solution of this equation can be written out in implicit form:

ξ = B +
k2

1 + k2
2

λ2

(

λw −A ln |A + λw|
)

,

where A and B are arbitrary constants.

3◦. Generalized separable solution quadratic in the space variables:

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2,
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where the functions f (t), g(t), and h(t) are determined by the autonomous system of ordinary
differential equations

f ′

t = 6f 2 + 2fh + g2, (1)
g′t = 6(f + h)g, (2)
h′t = 6h2 + 2fh + g2. (3)

It follows from (1) and (3) that f ′

t − h′t = 6(f + h)(f − h). Further, using (2) and assuming g
� 0, we

find that f = h + Ag, where A is an arbitrary constant. With this relation, we eliminate h from (2)
and (3) to obtain a nonlinear ordinary differential equation for g(t):

3gg′′tt − 5g′2t − 36(1 +A2)g4 = 0.

On solving this equation with the change of variable u(g) = (g′t)
2, we obtain (B is an arbitrary

constant)

g′t = gΦ(g), Φ(g) = �
√

Bg4/3 + 36(1 +A2)g2, (4)
h = 1

12 Φ(g) − 1
2Ag, f = 1

12 Φ(g) + 1
2Ag,

where the first equation is separable, and, hence, its solution can be written out in implicit form.
In the special case B = 0, the solution can be represented in explicit form (C is an arbitrary

constant):

f (t) =
µ +A

2(C − µt)
, g(t) =

1
C − µt

, h(t) =
µ −A

2(C − µt)
, µ = �

√

1 +A2.

4◦. Generalized separable solution (generalizes the solution of Item 3◦):

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2 + ϕ(t)x + ψ(t)y + χ(t),

where the functions f (t), g(t), h(t), ϕ(t), ψ(t), and χ(t) are determined by the system of ordinary
differential equations

f ′

t = 6f 2 + 2fh + g2,
g′t = 6(f + h)g,

h′t = 6h2 + 2fh + g2,

ϕ′

t = 2(3f + h)ϕ + 2gψ,
ψ′

t = 2gϕ + 2(f + 3h)ψ,

χ′

t = ϕ2 + ψ2 + 2(f + h)χ.

The first three equations for f , g, and h can be solved independently (see Item 3◦).
Example. Solution:

w(x, t) = −
y2

6t
+ Cxt

−1/3 +
3
2

C
2
t

1/3,

where C is an arbitrary constant.

5◦. There is a “two-dimensional” solution in multiplicative separable form:

w(x, y, t) = (At +B)−1
Θ(x, y),

where A and B are arbitrary constants, and the function Θ is determined by the stationary equation
written out in Item 4◦ of equation 2.1.2.4 with n = α = 1.���

References: S. S. Titov and V. A. Ustinov (1985), V. V. Pukhnachov (1995), A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov,
and D. A. Kazenin (1998).

3.
∂w

∂t
= α

[

∂

∂x

(

1
w

∂w

∂x

)

+
∂

∂y

(

1
w

∂w

∂y

)]

.

This is a special case of equation 2.1.2.4 with n = −1.
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144 PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES

1◦. Traveling-wave solutions:

w(ξ) = −
α(k2

1 + k2
2)

λ(ξ + A)
, ξ = k1x + k2y + λt,

w(ξ) =
{

A +B exp
[

λξ

αA(k2
1 + k2

2)

]}−1

,

where A, B, k1, k2, and λ are arbitrary constants.

2◦. Solutions:

w(x, y, t) =
2αt +B

(sin y +Aex)2 ,

w(x, y, t) =
2A2αt + C

e2x sinh2(Ae−x sin y + B
) ,

w(x, y, t) =
C − 2A2αt

e2x cosh2(Ae−x sin y +B
) ,

w(x, y, t) =
2A2αt + C

e2x cos2
(

Ae−x sin y +B
) ,

where A, B, and C are arbitrary constants.

3◦. The exact solutions specified in Item 2◦ are special cases of a more general solution having the
form of the product of two functions with different arguments:

w(x, y, t) = (Aαt +B)eΘ(x,y),

where A and B are arbitrary constants, and the function Θ(x, y) is a solution of the stationary
equation

∆Θ −AeΘ = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 ,

which is encountered in combustion theory. For solutions of this equation, see 5.2.1.1.���
References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), A. D. Polyanin, A. V. Vyazmin,

A. I. Zhurov, and D. A. Kazenin (1998).

4◦. Other exact solutions:

w(x, y, t) =
2 sinh(αt + C) cosh(αt + C)

(x +A)2 sinh2(αt + C) + (y +B)2 cosh2(αt + C)
,

w(x, y, t) =
[

1
A + αµ2t

+B(A + αµ2t)eµx � sin(µy + η0)
A + αµ2t

]−1

,

w(x, y, t) =
[

A coth θ(t) +B sinh θ(t) eµx � A sin(µy + η0)
sinh θ(t)

]−1

,

w(x, y, t) =
[

A cot θ(t) +B sin θ(t) eµx � A sin(µy + η0)
sin θ(t)

]−1

,

w(x, y, t) =
[

A

cos θ(t)
� A 1 + sin θ(t)

2 cos θ(t)
cosh(µx + ξ0) + sA

1 − sin θ(t)
2 cos θ(t)

sin(µy + η0)
]−1

,

w(x, y, t) =
[

−
A

cos θ(t)
� A 1 − sin θ(t)

2 cos θ(t)
cosh(µx + ξ0) + sA

1 + sin θ(t)
2 cos θ(t)

sin(µy + η0)
]−1

,

w(x, y, t) =
[

A

sinh θ(t)
� A 1 − cosh θ(t)

2 sinh θ(t)
cosh(µx + ξ0) + sA

1 + cosh θ(t)
2 sinh θ(t)

sin(µy + η0)
]−1

,

w(x, y, t) =
[

−
A

sinh θ(t)
� A 1 + cosh θ(t)

2 sinh θ(t)
cosh(µx + ξ0) + sA

1 − cosh θ(t)
2 sinh θ(t)

sin(µy + η0)
]−1

,
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where θ(t) = αµ2At + τ0; A, B, µ, ξ0, η0, and τ0 are arbitrary constants; and s is a parameter that
admits the values 1 or −1 (the first solution was indicated by Pukhnachov, 1995).

By swapping the variables, x � y, in the above relations, one can obtain another group of
solutions (not written out here).

5◦. Solutions with axial symmetry:

w(r, t) =
λ2rλ−2

rλ + Ceαt
,

w(r, t) =
λϕrϕ−2

C1 + rϕ(ϕ ln r − 1)
, ϕ =

λ

αt + C2
,

where r =
√

x2 + y2; C, C1, C2, and λ are arbitrary constants.��	
Reference: S. N. Aristov (1999).

6◦. The transformationw = 1/U leads to an equation of the form 2.1.4.3 with β = 0:

∂U

∂t
= αU∆U − α

[(

∂U

∂x

)2

+
(

∂U

∂y

)2 ]

.

4.
∂w

∂t
= α

[

∂

∂x

(

wn ∂w

∂x

)

+
∂

∂y

(

wn ∂w

∂y

)]

.

This is a two-dimensional heat and mass transfer equation with power-law temperature-dependent
thermal conductivity (diffusion coefficient), where n can be integer, fractional, and negative. This
is a special case of equation 2.4.3.3 with f (w) = αwn.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2/n

1 C
1/n

2 w( 
 C1x + C3, 
 C1y + C4,C2t + C5),
w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, . . . , C5 and β are arbitrary constants, are also solutions of the equation. The plus or
minus signs can be chosen arbitrarily.

2◦. Traveling-wave solution:

w =
[

nλ(k1x + k2y + λt + C)
α(k2

1 + k2
2)

]1/n

,

where C, k1, k2, and λ are arbitrary constants.

3◦. Traveling-wave solution in implicit form (generalizes the solution of Item 2◦):

α(k2
1 + k2

2)
∫

wn dw

λw + C1
= k1x + k2y + λt + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

4◦. Multiplicative separable solution:

w(x, y, t) = f (t)Θ(x, y), f (t) = (Aαnt +B)−1/n.

Here,A andB are arbitrary constants, and the function Θ(x, y) is a solution of the two-dimensional
stationary equation

∂

∂x

(

Θ
n ∂Θ

∂x

)

+
∂

∂y

(

Θ
n ∂Θ

∂y

)

+AΘ = 0.

If n ≠ −1, this equation can be reduced to

∆u +A(n + 1)u
1

n+1 = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 , u = Θ
n+1.
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146 PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES

5◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (z, t), z = k1x + k2y;

w(x, y, t) = G(r, t), r =
√

x2 + y2;
w(x, y, t) = H(ξ1, ξ2), ξ1 = k1x + λ1t, ξ2 = k2y + λ2t;

w(x, y, t) = tβU (η1, η2), η1 = xt−
nβ+1

2 , η2 = yt−
nβ+1

2 ;

w(x, y, t) = e2βtV (ζ1, ζ2), ζ1 = xe−βnt, ζ2 = ye−βnt,

where k1, k2, λ1, λ2, and β are arbitrary constants.

6◦. See also equations 2.5.5.5 and 2.5.5.6 for the case of two space variables.���
References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), S. S. Titov and V. A. Ustinov (1985),

J. R. King (1993), V. V. Pukhnachov (1995).

5.
∂w

∂t
= a1

∂

∂x

(

wn1
∂w

∂x

)

+ a2
∂

∂y

(

wn2
∂w

∂y

)

.

This is a special case of equation 2.4.3.4 with f (w) = a1w
n1 and g(w) = a2w

n2 .

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = A2w(  A−n1Bx + C1,  A−n2By + C2,B2t + C3),

where A, B, C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or
minus signs can be chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
∫

a1k
2
1w

n1 + a2k
2
2w

n2

λw + C1
dw = k1x + k2y + λt + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.���
Reference: A. A. Samarskii and I. M. Sobol’ (1963).

3◦. “Two-dimensional” solution:

w(x, y, t) = tkU (ξ, η), ξ = xt−
1
2 (kn1+1), η = yt−

1
2 (kn2+1),

where k is an arbitrary constant and the function U (ξ, η) is determined by the differential equation

kU − 1
2 (kn1 + 1)ξ

∂U

∂ξ
− 1

2 (kn2 + 1)η
∂U

∂η
= a1

∂

∂x

(

Un1
∂U

∂x

)

+ a2
∂

∂y

(

Un2
∂U

∂y

)

.

4◦. “Two-dimensional” solution:

w(x, y, t) = e2βtV (z1, z2), z1 = xe−βn1t, z2 = ye−βn2t,

where β is an arbitrary constant and the function V (z1, z2) is determined by the differential equation

2βV − βn1z1
∂V

∂z1
− βn2z2

∂V

∂z2
= a1

∂

∂z1

(

V n1
∂V

∂z1

)

+ a2
∂

∂z2

(

V n2
∂V

∂z2

)

.

5◦. There is a “two-dimensional” solution of the form

w(x, y, t) = F (ξ1, ξ2), ξ1 = α1x + β1y + γ1t, ξ2 = α2x + β2y + γ2t,

where the αi, βi, and γi are arbitrary constants.���
References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), N. H. Ibragimov (1994).
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2.1.3. Equations of the Form ∂w
∂t

= ∂
∂x

[

f (w)∂w
∂x

]

+ ∂
∂y

[

g(w)∂w
∂y

]

+h(w)

1.
∂w

∂t
= a

∂2w

∂x2
+

∂

∂y

[

(bw + c)
∂w

∂y

]

.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( � C2x + C3, � C1C2y + C4,C2

2 t + C5) +
c(1 − C2

1 )
bC2

1
,

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
can be chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

bk2
2w + (ak2

1 + ck2
2 − C1bk

2
2) ln |w + C1| = λ(k1x + k2y + λt) + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. Solution:

w = u(z) − 4abC2
1x

2 − 4abC1C2x, z = y + bC1x
2 + bC2x + C3t,

where C1, C2, and C3 are arbitrary constants and the function u(z) is determined by the first-order
ordinary differential equation

(bu + c + ab2C2
2 )u′z + (2abC1 − C3)u = 8a2bC2

1z + C4.

With appropriate translations in both variables, one can reduce this equation to a homogeneous one,
which can be integrated by quadrature.

4◦. Generalized separable solution linear in y (a degenerate solution):

w = F (x, t)y +G(x, t),

where the functions F and G are determined by solving the one-dimensional equations

∂F

∂t
− a

∂2F

∂x2 = 0, (1)

∂G

∂t
− a

∂2G

∂x2 = bF 2. (2)

Equation (1) is a linear homogeneous heat equation. Given F = F (x, t), equation (2) can be treated
as a linear nonhomogeneous heat equation. For these equations, see the books by Tikhonov and
Samarskii (1990) and Polyanin (2002).

5◦. Generalized separable solution quadratic in y:

w = f (x, t)y2 + g(x, t)y + h(x, t),

where the functions f = f (x, t), g = g(x, t), andh=h(x, t) are determined by the system of differential
equations

ft = afxx + 6bf 2,
gt = agxx + 6bfg,

ht = ahxx + bg2 + 2bfh + 2cf .

Here, the subscripts denote partial derivatives.
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148 PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES

6◦. “Two-dimensional” solution:

w = |y + C |1/2θ(x, t) −
c

b
,

where the function θ(x, t) is determined by the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

7◦. “Two-dimensional” solution:

w = U (ξ, t) −
aC2

1 + cC2
2

bC2
2

, ξ = C1x + C2y,

where C1 and C2 are arbitrary constants and the function U (ξ, t) is determined by a differential
equation of the form 1.10.1.1:

∂U

∂t
= bC2

2
∂

∂ξ

(

U
∂U

∂ξ

)

.

8◦. “Two-dimensional” solution:

w = V (η, t) − 4abC2
1x

2 − 4abC1C2x, η = y + bC1x
2 + bC2x,

where C1 and C2 are arbitrary constants and the function V (η, t) is determined by the differential
equation

∂V

∂t
=
∂

∂η

[

(bV + c + ab2C2
2 )
∂V

∂η

]

+ 2abC1
∂V

∂η
− 8a2bC2

1 .

2.
∂w

∂t
=

∂

∂x

[

(αw + β)
∂w

∂x

]

+
∂

∂y

[

(αw + β)
∂w

∂y

]

.

This is a two-dimensional heat and mass transfer equation with a linear temperature-dependent
thermal conductivity (diffusion coefficient).

The substitution U = αw + β leads to an equation of the form 2.1.2.2 for U = U (x, y, t).

3.
∂w

∂t
=

∂

∂x

(

1
αw + β

∂w

∂x

)

+
∂

∂y

(

1
αw + β

∂w

∂y

)

.

This is a two-dimensional heat and mass transfer equation with a hyperbolic temperature-dependent
thermal conductivity (diffusion coefficient).

The substitution U = αw + β leads to an equation of the form 2.1.2.3 for U = U (x, y, t).

4.
∂w

∂t
= α

[

∂

∂x

(

1
w

∂w

∂x

)

+
∂

∂y

(

1
w

∂w

∂y

)]

+ βw.

1◦. The transformation

w(x, y, t) = eβtu(x, y, τ ), τ = C −
1
β
e−βt,

where C is an arbitrary constant, leads to a simpler equation of the form 2.1.2.3:

∂u

∂τ
= α

[

∂

∂x

(

1
u

∂u

∂x

)

+
∂

∂y

(

1
u

∂u

∂y

)]

.

2◦. In Zhuravlev (2000), a nonlinear superposition principle is presented that allows the construction
of complicated multimodal solutions of the original equation; some exact solutions are also specified
there.
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5.
∂w

∂t
= α

[

∂

∂x

(

1
w

∂w

∂x

)

+
∂

∂y

(

1
w

∂w

∂y

)]

+ βw2.

The substitution w = 1/U leads to an equation of the form 2.1.4.3 for U = U (x, y, t).���
References: V. A. Galaktionov and S. A. Posashkov (1989), N. H. Ibragimov (1994).

6.
∂w

∂t
= α

[

∂

∂x

(

wn ∂w

∂x

)

+
∂

∂y

(

wn ∂w

∂y

)]

+ βw.

The transformation (C is an arbitrary constant)

w(x, y, t) = eβtU (x, y, τ ), τ =
1
βn

eβnt + C

leads to a simpler equation of the form 2.1.2.4:

∂U

∂τ
= α

[

∂

∂x

(

Un ∂U

∂x

)

+
∂

∂y

(

Un ∂U

∂y

)]

.

7.
∂w

∂t
= a1

∂

∂x

(

wn1
∂w

∂x

)

+ a2
∂

∂y

(

wn2
∂w

∂y

)

+ bwk.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = A2w( � Ak−n1−1x +B1, � Ak−n2−1y +B2,A2k−2t + B3),

whereA,B1,B2, andB3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs can be chosen arbitrarily).

2◦. Traveling-wave solution:

w(x, y, t) = u(z), z = t − λ1x − λ2y,

where λ1 and λ2 are arbitrary constants, and the function u = u(z) is determined by the ordinary
differential equation

u′z = [(a1λ
2
1u

n1 + a2λ
2
2u

n2)u′z]′z + buk.

3◦. “Two-dimensional” solution:

w(x, y, t) = (αt + β)
1

1−k F (ξ, η), ξ = x(αt + β)
n1−k+1
2(k−1) , η = y(αt + β)

n2−k+1
2(k−1) ,

where the function F = F (ξ, η) is determined by the differential equation

α

1 − k
F + α

n1 − k + 1
2(k − 1)

ξ
∂F

∂ξ
+ α

n2 − k + 1
2(k − 1)

η
∂F

∂η
= a1

∂

∂ξ

(

Fn1
∂F

∂ξ

)

+ a2
∂

∂η

(

Fn2
∂F

∂η

)

+ bF k.

���
References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), M. I. Bakirova, S. N. Dimova,

V. A. Dorodnitsyn, S. P. Kurdyumov, A. A. Samarskii, and S. R. Svirshchevskii (1988), N. H. Ibragimov (1994).

2.1.4. Other Equations

1.
∂w

∂t
= aw

(

∂2w

∂x2
+

∂2w

∂y2

)

.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C1w(C2x + C3,C2y + C4,C1C
2
2 t + C5),

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, . . . , C5 and β are arbitrary constants, are also solutions of the equation.
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2◦. Multiplicative separable solution:

w(x, y, t) = ϕ(t)(C1x
2 + C2xy + C3y

2 + C4x + C5y + C6), ϕ(t) =
1

C7 − 2a(C1 + C3)t
,

where C1, . . . , C7 are arbitrary constants.

3◦. The equation admits a more general solution in the form of the product of functions with different
arguments:

w(x, y, t) =
Θ(x, y)
A +Bt

,

where A and B are arbitrary constants, and the function Θ = Θ(x, y) satisfies the two-dimensional
Poisson equation

a∆Θ +B = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 .

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

4◦. Traveling-wave solution in implicit form:

a(k2
1 + k2

2)
∫

dw

λ ln |w| + C1
= k1x + k2y + λt + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

5◦. The equation has “two-dimensional” solutions with following the forms:

w(x, y, t) = F (z, t), z = k1x + k2y;

w(x, y, t) = G(r, t), r =
√

x2 + y2;
w(x, y, t) = H(ξ1, ξ2), ξ1 = k1x + λ1t, ξ2 = k2y + λ2t;

w(x, y, t) = tβU (η1, η2), η1 = x2t−β−1, η2 = y2t−β−1;

w(x, y, t) = e2tV (ζ1, ζ2), ζ1 = xe−t, ζ2 = ye−t,

where k1, k2, λ1, λ2, and β are arbitrary constants.

2.
∂w

∂t
= (α + βw)

(

∂2w

∂x2
+

∂2w

∂y2

)

+ γw2 + δw + ε.

Generalized separable solution:

w(x, y, t) = f (t) + g(t)Θ(x, y).

Here, Θ(x, y) is any solution of the two-dimensional Helmholtz equation

∆Θ + κΘ = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 , (1)

where κ = γ/β (β ≠ 0). For solutions of the linear equation (1), see the books by Tikhonov and
Samarskii (1990) and Polyanin (2002).

The functions f (t) and g(t) are determined by the autonomous system of ordinary differential
equations

f ′

t = γf 2 + δf + ε,
g′t = (γf + δ − ακ)g.

(2)

The first equation in (2) is independent of g(t) and is separable. On finding f (t), one can solve the
second equation in (2), which is linear in g(t).
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The functions f (t) and g(t) have different forms depending on the values of the equation
parameters. Below are five possible cases; C1 and C2 are arbitrary constants.

1◦. For γ = δ = 0,
f (t) = C1 + εt, g(t) = C2e

−ακt.

2◦. For γ = 0 and δ ≠ 0,
f (t) = C1e

δt −
ε

δ
, g(t) = C2e

(δ−ακ)t.

3◦. For γ ≠ 0 and δ2 − 4γε = µ2 > 0 (µ > 0),

f (t) =
s1 + s2C1e

µt

1 + C1eµt
, g(t) =

C2

1 + C1eµt
e−(γs2+ακ)t, s1,2 =

−δ � µ
2γ

.

4◦. For γ ≠ 0 and δ2 − 4γε = 0,

f (t) = −
δ

2γ
−

1
C1 + γt

, g(t) =
C2

C1 + γt
exp

[( 1
2 δ − ακ

)

t
]

.

5◦. For γ ≠ 0 and δ2 − 4γε = −µ2 < 0 (µ > 0),

f (t) =
µ

2γ
tan

( 1
2µt + C1

)

−
δ

2γ
, g(t) = C2

exp
[( 1

2 δ − ακ
)

t
]

cos
( 1

2µt + C1
) .

���
References: V. A. Galaktionov and S. A. Posashkov (1989), N. H. Ibragimov (1994).

3.
∂w

∂t
= αw

(

∂2w

∂x2
+

∂2w

∂y2

)

– α

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

– β.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C−1
1 w(C1x + C2,C1y + C3,C1t + C4),

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),
where C1, . . . , C4 and β are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solution:

w(x, y, t) = C1 − βt + C2 exp
[

α(µ2 + ν2)
(

C1t − 1
2βt

2)]eµx+νy,

where µ, ν, C1, and C2 are arbitrary constants.

3◦. Solutions for β = 0:

w(x, y, t) =
1

A + αµ2t
+B(A + αµ2t)eµx � sin(µy + η0)

A + αµ2t
,

w(x, y, t) = A coth θ(t) +B sinh θ(t) eµx � A sin(µy + η0)
sinh θ(t)

,

w(x, y, t) = A cot θ(t) +B sin θ(t) eµx � A sin(µy + η0)
sin θ(t)

,

w(x, y, t) =
A

cos θ(t)
� A 1 + sin θ(t)

2 cos θ(t)
cosh(µx + ξ0) + sA

1 − sin θ(t)
2 cos θ(t)

sin(µy + η0),

w(x, y, t) = −
A

cos θ(t)
� A 1 − sin θ(t)

2 cos θ(t)
cosh(µx + ξ0) + sA

1 + sin θ(t)
2 cos θ(t)

sin(µy + η0),

w(x, y, t) =
A

sinh θ(t)
� A 1 − cosh θ(t)

2 sinh θ(t)
cosh(µx + ξ0) + sA

1 + cosh θ(t)
2 sinh θ(t)

sin(µy + η0),

w(x, y, t) = −
A

sinh θ(t)
� A 1 + cosh θ(t)

2 sinh θ(t)
cosh(µx + ξ0) + sA

1 − cosh θ(t)
2 sinh θ(t)

sin(µy + η0),

where A, B, µ, ξ0, η0, and τ0 are arbitrary constants, θ(t) = αµ2At + τ0, and s is a parameter that
can assume the values 1 or −1.

By swapping the variables, x � y, in the above relations, one can obtain another group of
solutions (not written out here).
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4◦. There is a generalized separable solution of the form

w(x, y, t) = f (t) + g(t)ϕ(x) + h(t)ψ(y). (1)

In particular, if ϕ′′

xx = νϕ and ψ′′

yy = −νψ, where ν is an arbitrary constant, we have

ϕ(x) = A1 coshµx +A2 sinhµx, ψ(y) = B1 cosµy +B2 sinµy (ν = µ2 > 0),

ϕ(x) = A1 cosµx +A2 sinµx, ψ(y) = B1 coshµy +B2 sinhµy (ν = −µ2 < 0).

Here, A1, A2, B1, and B2 are arbitrary constants. The functions f (t), g(t), and h(t) in (1) are
determined by the system of ordinary differential equations

f ′

t = αν(A2
1 − sA2

2)g2 − αν(B2
1 + sB2

2)h2 − β,
g′t = ανfg,
h′t = −ανfh,

where s = sign ν. The order of this system can be reduced by 2; then the system becomes

f = Φ(h), g = C2/h, h′t = −ανhΦ(h),

where

Φ(h) = �
√

C1 + (A2
1 − sA2

2)
C2

2
h2 +

2β
αν

ln |h| + (B2
1 + sB2

2)h2 ;

C1 and C2 are arbitrary constants. For β = 0, solutions in explicit form may be obtained in some
cases (see Item 3◦).

5◦. There is a generalized separable solution of the form

w(x, y, t) = f (t) + g(t)ϕ(x) + h(t)ψ(y) + u(t)θ(x)χ(y). (2)

For ϕ′′

xx = 4νϕ, ψ′′

yy = −4νψ, θ′′xx = νθ, and χ′′

yy = −νχ, where ν is an arbitrary constant, one
can set in (2)

for ν = µ2 > 0 for ν = −µ2 < 0

ϕ(x) = A1 cosh 2µx +A2 sinh 2µx
ψ(y) = B1 cos 2µy +B2 sin 2µy
θ(x) = C1 coshµx + C2 sinhµx
χ(y) = D1 cosµy +D2 sinµy

ϕ(x) = A1 cos 2µx +A2 sin 2µx
ψ(y) = B1 cosh 2µy +B2 sinh 2µy
θ(x) = C1 cosµx + C2 sinµx
χ(y) = D1 coshµy +D2 sinhµy

The functions f (t),g(t),h(t), andu(t) are determined by the following system of ordinary differential
equations (s = sign ν):

f ′

t = −4αν(A2
1 − sA2

2)g2 + 4αν(B2
1 + sB2

2)h2 − β,

g′t = −4ανfg + ανa1(D2
1 + sD2

2)u2,

h′t = 4ανfh − ανa2(C2
1 − sC2

2 )u2,
u′t = −2αν(a3g − a4h)u.

The arbitrary constants A1, A2, B1, B2, C1, C2, D1, and D2 are related by the two constraints

2A1C1C2 = A2(C2
1 + sC2

2 ), 2B1D1D2 = B2(D2
1 − sD2

2).

The coefficients a1, a2, a3, and a4 are defined by

a1 =
C2

1 + sC2
2

2A1
, a2 =

D2
1 − sD2

2
2B1

, a3 = A2
C2

1 − sC2
2

C1C2
, a4 = B2

D2
1 + sD2

2
D1D2

,

providedA1 ≠ 0, B1 ≠ 0, C1C2 ≠ 0, and D1D2 ≠ 0.
IfA1 = 0 (A2 ≠ 0), then one should set a1 = C1C2/A2. If B1 = 0 (B2 ≠ 0), then a2 = D1D2/B2.

If C1 = 0 (C2 ≠ 0), then a3 = −A1. If C2 = 0 (C1 ≠ 0), then a3 = A1. If D1 = 0 (D2 ≠ 0), then
a4 = −B1. If D2 = 0 (D1 ≠ 0), then a4 = B1.
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6◦. The equation admits a traveling-wave solution: w = w(k1x + k2y + λt), where k1, k2, and λ are
arbitrary constants.

7◦. There is a generalized separable solution of the form

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2 + ϕ(t)x + ψ(t)y + χ(t).

In the special case ϕ(t) = ψ(t) ≡ 0, the functions f (t), g(t), h(t), and χ(t) are determined by the
autonomous system of ordinary differential equations

f ′

t = α(2fh − 2f 2 − g2),
g′t = −2αg(f + h),

h′t = α(2fh − 2h2 − g2),
χ′

t = 2α(f + h)χ − β,

which can be completely integrated.���
References for equation 2.1.4.3: V. A. Galaktionov and S. A. Posashkov (1989), A. D. Polyanin, A. V. Vyazmin,

A. I. Zhurov, and D. A. Kazenin (1998), A. D. Polyanin and V. F. Zaitsev (2002).

4.
∂w

∂t
= α

[

∂

∂x

(

|∇w|
∂w

∂x

)

+
∂

∂y

(

|∇w|
∂w

∂y

)]

+ βw2.

Here, |∇w|2 =
(

∂w

∂x

)2

+
(

∂w

∂y

)2

.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C1w( � x + C2, � y + C3,C1t + C4),
w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

whereC1, . . . , C4 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs can be chosen arbitrarily).

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, η), ξ = C1x + C1y + C3t, η = C4x + C5y + C6t,

w(x, y, t) = (C1t + C2)−1V (x, y).

3◦. “Two-dimensional” generalized separable solution:

w(x, y, t) =
1

C1 − βt
+

C2

(C1 − βt)2 F (x, y),

where C1 and C2 are arbitrary constants, and the function F (x, y) is any solution of the stationary
equation

∂

∂x

(

|∇F |
∂F

∂x

)

+
∂

∂y

(

|∇F |
∂F

∂y

)

+ κF 2 = 0, κ =
β

α
signC2.

4◦. “Two-dimensional” generalized separable solution:

w(x, y, t) = f (t) + g(t)Θ(x, y).

Here, the functions f (t) and g(t) are given by

f (t) =
1

B − βt
, g(t) =

β

(B − βt)[A + C(B − βt)]
,

whereA, B, and C are arbitrary constants, and the function Θ(x, y) is any solution of the stationary
equation

∂

∂x

(

|∇Θ|
∂Θ

∂x

)

+
∂

∂y

(

|∇Θ|
∂Θ

∂y

)

� κΘ
2 = µΘ, κ =

β

α
, µ =

A

α
.

���
References: V. A. Galaktionov and S. A. Posashkov (1989), N. H. Ibragimov (1994).
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2.2. Equations with Two Space Variables Involving
Exponential Nonlinearities

2.2.1. Equations of the Form ∂w
∂t

= ∂
∂x

[

f (x)∂w
∂x

]

+ ∂
∂y

[

g(y)∂w
∂y

]

+aeλw

1.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+ ceλw.

This is a special case of equation 2.4.2.1 with f (w) = ceλw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = w
(

C
1

2−n
1 x, C

1
2−m

1 y, C1t + C2

)

+
1
λ

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (r, t), r2 =
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 ;

w(x, y, t) = V (z1, z2) −
1
λ

ln t, z1 = xt
1

n−2 , z2 = yt
1

m−2 .

2.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ ceβw.

This is a special case of equation 2.4.2.3 with f (w) = ceβw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = w
(

C
1

2−n
1 x, y −

1
λ

lnC1, C1t + C2

)

+
1
β

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (r, t), r2 =
x2−n

a(2 − n)2 +
e−λy

bλ2 ;

w(x, y, t) = V (z1, z2) −
1
β

ln t, z1 = xt
1

n−2 , z2 = y +
1
λ

ln t.

3.
∂w

∂t
=

∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ ceµw.

This is a special case of equation 2.4.2.2 with f (w) = ceµw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = w
(

x −
1
β

lnC1, y −
1
λ

lnC1, C1t + C2

)

+
1
µ

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (r, t), r2 =
e−βx

aβ2 +
e−λy

bλ2 ;

w(x, y, t) = V (z1, z2) −
1
µ

ln t, z1 = x +
1
β

ln t, z2 = y +
1
λ

ln t.
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2.2.2. Equations of the Form ∂w
∂t

=a ∂
∂x

(

eβw∂w
∂x

)

+b ∂
∂y

(

eλw∂w
∂y

)

+f (w)

1.
∂w

∂t
= α

[

∂

∂x

(

eµw ∂w

∂x

)

+
∂

∂y

(

eµw ∂w

∂y

)]

.

This is a two-dimensional nonstationary heat (diffusion) equation with exponential temperature-
dependent thermal diffusivity (diffusion coefficient). This is a special case of equation 2.4.3.3 with
f (w) = αeµw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w(C1x + C3,C1y + C4,C2t + C5) +
1
µ

ln
C2

C2
1

,

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, . . . , C5 and β are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution in implicit form:

α(k2
1 + k2

2)
∫

eµw dw

λw + C1
= k1x + k2y + λt + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. “Two-dimensional” additive separable solution:

w(x, y, t) = f (t) +
1
µ

ln Θ(x, y), f (t) = −
1
µ

ln(Aαt +B).

Here, A, B, and µ are arbitrary constants, and the function Θ(x, y) is any solution of the Poisson
equation

∆Θ +A = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 .

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (z, t), z = k1x + k2y;

w(x, y, t) = G(r, t), r =
√

x2 + y2;
w(x, y, t) = G(ξ1, ξ2), ξ1 = k1x + λ1t, ξ2 = k2y + λ2t;

w(x, y, t) = H(η1, η2), η1 = x2/t, η2 = y2/t;

w(x, y, t) =
2
µ
t + U (ζ1, ζ2), ζ1 = xe−t, ζ2 = ye−t,

where k1, k2, λ1, and λ2 are arbitrary constants.���
Reference: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983).

2.
∂w

∂t
= a

∂

∂x

(

eβw ∂w

∂x

)

+ b
∂

∂y

(

eλw ∂w

∂y

)

.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w(C1C
β
2 x + C3, � C1C

λ
2 y + C4,C2

1 t + C5) − 2 ln |C2|,

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation.
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2◦. “Two-dimensional” solution:

w(x, y, t) = u(θ, t), θ = c1x + c2y,

where c1 and c2 are arbitrary constants, and the function u = u(θ, t) is determined by the differential
equation

∂u

∂t
=
∂

∂θ

[

(

ac2
1e

βw + bc2
2e

λw
) ∂w

∂θ

]

.

3◦. “Two-dimensional” solution:

w(x, y, t) = u(ζ1, ζ2), ζ1 = k1x +m1t, ζ2 = k2y +m2t,

where k1, k2, m1, andm2 are arbitrary constants, and the function u = u(ζ1, ζ2) is determined by the
differential equation

m1
∂u

∂ζ1
+m2

∂u

∂ζ2
= ak2

1
∂

∂ζ1

(

eβw ∂w

∂ζ1

)

+ bk2
2
∂

∂ζ2

(

eλw ∂w

∂ζ2

)

.

4◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, η) + 2kt, ξ = xe−kβt, η = ye−kλt,

where k is an arbitrary constant, and the function U = U (ξ, η) is determined by the differential
equation

2k − kβξ
∂U

∂ξ
− kλη

∂U

∂η
= a

∂

∂ξ

(

eβU ∂U

∂ξ

)

+ b
∂

∂η

(

eλU ∂U

∂η

)

.

5◦. “Two-dimensional” solution:

w(x, y, t) = V (z1, z2), z1 =
x + C1
√

t + C3
, z2 =

y + C2
√

t + C3
,

where C1, C2, and C3 are arbitrary constants, and the function V = V (z1, z2) is determined by the
differential equation

−
1
2
z1
∂V

∂z1
−

1
2
z2
∂V

∂z2
= a

∂

∂z1

(

eβw ∂w

∂z1

)

+ b
∂

∂z2

(

eλw ∂w

∂z2

)

.

6◦. “Two-dimensional” solution (β = 1):

w(x, y, t) = u(z, t) + 2 ln |x|, z = x−λy,

where the function u = u(z, t) is determined by the differential equation

∂u

∂t
=

(

aλ2z2eu + beλu
) ∂2u

∂z2 + λ
(

aλz2eu + beλu
)

(

∂u

∂z

)2

+ aλ(λ − 3)zeu ∂u

∂z
+ 2aeu.

���
References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), N. H. Ibragimov (1994).

3.
∂w

∂t
= a

∂

∂x

(

eλ1w
∂w

∂x

)

+ b
∂

∂y

(

eλ2w
∂w

∂y

)

+ ceβw.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( � Cβ−λ1
1 x + C2, � Cβ−λ2

1 y + C3,C2β
1 t + C4) + 2 ln |C1|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
can be chosen arbitrarily).

2◦. There is a “two-dimensional” solution of the form

w(x, y, t) = U (ξ, η) −
1
β

ln t, ξ = xt
λ1−β

2β , η = yt
λ2−β

2β .
���

References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), N. H. Ibragimov (1994).
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4.
∂w

∂t
= α

[

∂

∂x

(

eµw ∂w

∂x

)

+
∂

∂y

(

eµw ∂w

∂y

)]

+ βeµw + γ + δe–µw.

The substitution w =
1
µ

lnU leads to an equation of the form 2.1.4.2:

∂U

∂t
= αU

(

∂2U

∂x2 +
∂2U

∂y2

)

+ βµU 2 + µγU + µδ.
�� 

References: V. A. Galaktionov and S. A. Posashkov (1989), N. H. Ibragimov (1994).

2.3. Other Equations with Two Space Variables Involving
Arbitrary Parameters

2.3.1. Equations with Logarithmic Nonlinearities

1.
∂w

∂t
= a

(

∂2w

∂x2
+

∂2w

∂y2

)

– kw ln w.

This is a nonstationary equation with a logarithmic source arising in heat and mass transfer theory
and combustion theory. This is a special case of equation 2.4.1.1 with f (w) = −kw lnw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = exp(C1e
−kt)w(x + C2, ! y + C3, t + C4),

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),
where C1, . . . , C4 and β are arbitrary constants, are also solutions of the equation.

2◦. “Two-dimensional” multiplicative separable solution:

w(x, y, t) = exp(C1e
−kt)Θ(x, y),

where the function Θ(x, y) is a solution of the stationary equation

a

(

∂2
Θ

∂x2 +
∂2

Θ

∂y2

)

− kΘ ln Θ = 0.

This equation has a particular solution of the form Θ = exp(A1x
2 +A2xy +A3y

2 +A4x+A5y +A6),
where the coefficients Ak are determined by an algebraic system of equations.

3◦. “Two-dimensional” solution with incomplete separation of variables (the solution is separable
in the space variables x and y, but is not separable in time t):

w(x, y, t) = ϕ(x, t)ψ(y, t),

where the functions ϕ(x, t) and ψ(y, t) are determined by solving two independent one-dimensional
nonlinear parabolic differential equations:

∂ϕ

∂t
= a

∂2ϕ

∂x2 − kϕ lnϕ,

∂ψ

∂t
= a

∂2ψ

∂y2 − kψ lnψ.

For solutions of these equations, see 1.6.1.4 with f (t) = 0.

4◦. There are exact solutions in the form of the product of functions representing two independent
traveling waves:

w(x, y, t) = ϕ(ξ)ψ(η), ξ = a1x + b1t, η = a2y + b2t,

where a1, b1, a2, and b2 are arbitrary constants. This solution is a special case of the solution
presented in Item 3◦.�� 

References: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983), V. K. Andreev, O. V. Kaptsov,
V. V. Pukhnachov, and A. A. Rodionov (1999), A. D. Polyanin and V. F. Zaitsev (2002).
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2.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+ cw ln w + " w.

This is a special case of equation 2.4.2.1 with f (w) = cw lnw + sw and a special case of equation
2.4.2.4 in which a should be renamed c and b renamed s and then the functions f (x) and g(y) should
be substituted by axn and bym, respectively.

There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (ξ, t), ξ2 =
4

a(2 − n)2 x
2−n +

4
b(2 −m)2 y

2−m;

w(x, y, t) = exp(Aect)G(x, y);
w(x, y, t) = H1(x, t)H2(y, t),

where A is an arbitrary constant.

3.
∂w

∂t
=

∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ cw ln w + " w.

This is a special case of equation 2.4.2.2 with f (w) = cw lnw + sw and a special case of equation
2.4.2.4 in which a should be renamed c and b renamed s and then the functions f (x) and g(y) should
be substituted by eβx and beλy, respectively.

There are exact solutions of the following forms:

w(x, y, t) = F (ξ, t), ξ2 =
4
aβ2 e

−βx +
4
bλ2 e

−λy;

w(x, y, t) = exp(Aect)G(x, y);
w(x, y, t) = H1(x, t)H2(y, t),

where A is an arbitrary constant.

4.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ cw ln w + " w.

This is a special case of equation 2.4.2.3 with f (w) = cw lnw + sw and a special case of equation
2.4.2.4 in which a should be renamed c and b renamed s and then the functions f (x) and g(y) should
be substituted by axn and beλy, respectively.

There are exact solutions of the following forms:

w(x, y, t) = F (ξ, t), ξ2 =
4

a(2 − n)2 x
2−n +

4
bλ2 e

−λy;

w(x, y, t) = exp(Aect)G(x, y);
w(x, y, t) = H1(x, t)H2(y, t),

where A is an arbitrary constant.

2.3.2. Equations with Trigonometrical Nonlinearities

1.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+ c sin(kw + " ).

This is a special case of equation 2.4.2.1 with f (w) = c sin(kw + s).
There is an exact solution of the form

w(x, y, t) = U (ξ, t), ξ2 =
4

a(2 − n)2 x
2−n +

4
b(2 −m)2 y

2−m.
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2.
∂w

∂t
=

∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ c sin(kw + # ).

This is a special case of equation 2.4.2.2 with f (w) = c sin(kw + s).
There is an exact solution of the form

w(x, y, t) = U (ξ, t), ξ2 =
4
aβ2 e

−βx +
4
bλ2 e

−λy.

3.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ c sin(kw + # ).

This is a special case of equation 2.4.2.3 with f (w) = c sin(kw + s).
There is an exact solution of the form

w(x, y, t) = U (ξ, t), ξ2 =
4

a(2 − n)2 x
2−n +

4
bλ2 e

−λy.

2.4. Equations Involving Arbitrary Functions

2.4.1. Heat and Mass Transfer Equations in Quiescent or Moving
Media with Chemical Reactions

1.
∂w

∂t
= a

(

∂2w

∂x2
+

∂2w

∂y2

)

+ f (w).

This is a two-dimensional equation of unsteady heat/mass transfer or combustion in a quiescent
medium.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w( $ x + C1, $ y + C2, t + C3),
w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

whereC1, C2, C3, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 can be chosen independently of each other).

2◦. Traveling-wave solution:

w = w(ξ), ξ = Ax +By + λt,

where A, B, and λ are arbitrary constants, and the function w(ξ) is determined by the autonomous
ordinary differential equation

a(A2 +B2)w′′

ξξ − λw′

ξ + f (w) = 0.

For solutions of this equation, see Polyanin and Zaitsev (1995, 2003).

3◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (z, t), z = k1x + k2y;

w(x, y, t) = G(r, t), r =
√

x2 + y2;
w(x, y, t) = H(ξ1, ξ2), ξ1 = k1x + λ1t, ξ2 = k2y + λ2t,

where k1, k2, λ1, and λ2 are arbitrary constants.
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2.
∂w

∂t
+ a

∂w

∂x
+ b

∂w

∂y
=

∂2w

∂x2
+

∂2w

∂y2
– f (w).

This is a two-dimensional equation of unsteady heat/mass transfer with a volume chemical reaction
in a steady translational fluid flow.

The transformation
w = U (ξ, η, t), ξ = x − at, η = y − bt

leads to a simpler equation of the form 2.4.1.1:

∂U

∂t
=
∂2U

∂ξ2 +
∂2U

∂η2 − f (U ).

3.
∂w

∂t
+ (a1x + b1y + c1)

∂w

∂x
+ (a2x + b2y + c2)

∂w

∂y
=

∂2w

∂x2
+

∂2w

∂y2
– f (w).

This is a two-dimensional equation of unsteady heat/mass transfer with a volume chemical reaction
in a steady translational-shear fluid flow.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w
(

x + Cb1e
λt, y + C(λ − a1)eλt, t

)

,

where C is an arbitrary constant and λ = λ1,2 are roots of the quadratic equation

λ2 − (a1 + b2)λ + a1b2 − a2b1 = 0, (1)

are also solutions of the equation.

2◦. Solutions:
w = w(z), z = a2x + (λ − a1)y + Ceλt,

where λ = λ1,2 are roots of the quadratic equation (1), and the function w(z) is determined by the
ordinary differential equation

[

λz + a2c1 + (λ − a1)c2
]

w′

z =
[

a2
2 + (λ − a1)2]w′′

zz − f (w).

3◦. “Two-dimensional” solutions:

w = U (ζ, t), ζ = a2x + (λ − a1)y,

where λ = λ1,2 are roots of the quadratic equation (1), and the function U (ζ, t) is determined by the
differential equation

∂U

∂t
+

[

λζ + a2c1 + (λ − a1)c2
] ∂U

∂ζ
=

[

a2
2 + (λ − a1)2] ∂

2U

∂ζ2 − f (U ).

Remark. In the case of an incompressible fluid, the equation coefficients must satisfy the
condition a1 + b2 = 0.

4.
∂w

∂t
+ f1(t)

∂w

∂x
+ f2(t)

∂w

∂y
=

∂2w

∂x2
+

∂2w

∂y2
– g(w).

This equation describes mass transfer with volume chemical reaction in an unsteady translational
fluid flow.

The transformation

w = U (ξ, η, t), ξ = x −
∫

f1(t) dt, η = y −
∫

f2(t) dt,

leads to a simpler equation of the form 2.4.1.1:

∂U

∂t
=
∂2U

∂ξ2 +
∂2U

∂η2 − g(U ).
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2.4.2. Equations of the Form ∂w
∂t

= ∂
∂x

[

f (x)∂w
∂x

]

+ ∂
∂y

[

g(y)∂w
∂y

]

+h(w)

1.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+ f (w).

This is a two-dimensional equation of unsteady heat (mass) transfer or combustion in an anisotropic
case with power-law coordinate-dependent principal thermal diffusivities (diffusion coefficients).

Solution for n ≠ 2 and m ≠ 2:

w = w(ξ, t), ξ2 =
4

a(2 − n)2 x
2−n +

4
b(2 −m)2 y

2−m,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 +
A

ξ

∂w

∂ξ
+ f (w), A =

4 − nm
(2 − n)(2 −m)

.

For solutions of this equation with A = 0 and various f (w), see Subsections 1.1.1 to 1.1.3 and
equations 1.2.1.1 to 1.2.1.3, 1.4.1.2, 1.4.1.3, 1.4.1.7, and 1.4.1.8.

2.
∂w

∂t
=

∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ f (w).

This is a two-dimensional equation of unsteady heat (mass) transfer or combustion in an anisotropic
case with exponential coordinate-dependent principal thermal diffusivities (diffusion coefficients).

Solution for β ≠ 0 and λ ≠ 0:

w = w(ξ, t), ξ2 =
4
aβ2 e

−βx +
4
bλ2 e

−λy,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 −
1
ξ

∂w

∂ξ
+ f (w).

3.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beλy ∂w

∂y

)

+ f (w).

Solution for n ≠ 2 and λ ≠ 0:

w = w(ξ, t), ξ2 =
4

a(2 − n)2 x
2−n +

4
bλ2 e

−λy,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 +
n

2 − n
1
ξ

∂w

∂ξ
+ f (w).

4.
∂w

∂t
=

∂

∂x

[

f (x)
∂w

∂x

]

+
∂

∂y

[

g(y)
∂w

∂y

]

+ aw ln w + bw.

This is a two-dimensional equation of unsteady heat (mass) transfer or combustion in an anisotropic
case with arbitrary coordinate-dependent principal thermal diffusivities (diffusion coefficients) and
a logarithmic source.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = exp(C1e
at)w(x, y, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.
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2◦. “Two-dimensional” multiplicative separable solution:
w(x, y, t) = exp(C1e

at)U (x, y),
where the function U (x, y) is determined by the stationary equation

∂

∂x

[

f (x)
∂U

∂x

]

+
∂

∂y

[

g(y)
∂U

∂y

]

+ aU lnU + bU = 0.

3◦. “Two-dimensional” solution with incomplete separation of variables (the solution is separable
in the space variables x and y, but is not separable in time t):

w(x, y, t) = ϕ(x, t)ψ(y, t),
where the functions ϕ(x, t) and ψ(y, t) are determined from the two independent one-dimensional
nonlinear parabolic differential equations

∂ϕ

∂t
=
∂

∂x

[

f (x)
∂ϕ

∂x

]

+ aϕ lnϕ + C(t)ϕ,

∂ψ

∂t
=
∂

∂y

[

g(y)
∂ψ

∂y

]

+ aψ lnψ + bψ − C(t)ψ,

and C(t) is an arbitrary function.%�&
Reference: A. D. Polyanin (2000).

2.4.3. Equations of the Form ∂w
∂t

= ∂
∂x

[

f (w)∂w
∂x

]

+ ∂
∂y

[

g(w)∂w
∂y

]

+h(t,w)

1.
∂w

∂t
= a

[

∂

∂x

(

wn ∂w

∂x

)

+
∂

∂y

(

wn ∂w

∂y

)]

+ f (t)w.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions
w1 = C−2

1 w
( '
Cn

1 x + C2,
'
Cn

1 y + C3, t
)

,

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),
whereC1, C2, C3, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 can be chosen independently of each other).
2◦. Multiplicative separable solution:

w(x, y, t) = exp
[
∫

f (t) dt
]

[

Θ(x, y)
]

1
n+1 , (1)

where the function Θ(x, y) is a solution of the Laplace equation

∆Θ = 0, ∆ ≡
∂2

∂x2 +
∂2

∂y2 .

For solutions of this linear stationary equation, see the books by Tikhonov and Samarskii (1990)
and Polyanin (2002).
3◦. Multiplicative separable solution:

w(x, y, t) = ϕ(t)
[

Θ(x, y)
]

1
n+1 , (2)

where the function ϕ(t) is a solution of the Bernoulli equation
ϕ′

t − f (t)ϕ +Aaϕn+1 = 0, (3)
A is an arbitrary constant, and the function Θ(x, y) is determined by the stationary equation

∆Θ +A(n + 1)Θ
1

n+1 = 0, ∆ ≡
∂2

∂x2 +
∂2

∂y2 .

The general solution of equation (3) is given by

ϕ(t) = exp
[

F (t)
]

{

Aan

∫

exp
[

nF (t)
]

dt +B
}−1/n

, F (t) =
∫

f (t) dt,

where B is an arbitrary constant.
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4◦. The transformation

w(x, y, t) = F (t)U (x, y, τ ), τ =
∫

Fn(t) dt, F (t) = exp
[
∫

f (t) dt
]

leads to a simpler equation of the form 2.1.2.4:

∂U

∂τ
= a

[

∂

∂x

(

Un ∂U

∂x

)

+
∂

∂y

(

Un ∂U

∂y

)]

.

2.
∂w

∂t
= a

[

∂

∂x

(

eµw ∂w

∂x

)

+
∂

∂y

(

eµw ∂w

∂y

)]

+ f (t).

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w
(

C1x + C2, ( C1y + C3, t
)

−
2
µ

ln |C1|,

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, C2, C3, and β are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solution:

w(x, y, t) = ϕ(t) +
1
µ

ln Θ(x, y),

where the function ϕ = ϕ(t) is determined by the ordinary differential equation

ϕ′

t +A(a/µ) exp(µϕ) − f (t) = 0, (1)

and the function Θ(x, y) is a solution of the two-dimensional Poisson equation

∆Θ +A = 0, ∆ ≡
∂2

∂x2 +
∂2

∂y2 . (2)

The general solution of equation (1) is given by

ϕ(t) = F (t) −
1
µ

ln
{

B +Aa
∫

exp
[

µF (t)
]

dt

}

, F (t) =
∫

f (t) dt. (3)

For solutions of the linear stationary equation (2), see the books by Tikhonov and Samarskii (1990)
and Polyanin (2002).

Note that equations (1), (2) and relation (3) involve arbitrary constants A and B.

3◦. The transformation

w(x, y, t) = U (x, y, τ ) + F (t), τ =
∫

exp[µF (t)] dt, F (t) =
∫

f (t) dt,

leads to a simpler equation of the form 2.2.2.1:

∂U

∂τ
= a

[

∂

∂x

(

eµU ∂U

∂x

)

+
∂

∂y

(

eµU ∂U

∂y

)]

.

3.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+
∂

∂y

[

f (w)
∂w

∂y

]

.

This is a two-dimensional nonlinear heat and mass transfer equation for an anisotropic medium.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w(C1x + C2,C1y + C3,C2
1 t + C4),

w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, . . . , C4 and β are arbitrary constants, are also solutions of the equation.

Page 163

© 2004 by Chapman & Hall/CRC



164 PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES

2◦. Traveling-wave solution in implicit form:

(k2
1 + k2

2)
∫

f (w) dw
λw + C1

= k1x + k2y + λt + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. Solution:

w(x, y, t) = U (ξ), ξ =
x2 + y2

t
,

where the function U = U (ξ) is determined by the ordinary differential equation

[ξf (U )U ′

ξ]′ξ + 1
4 ξU

′

ξ = 0.

4◦. “Two-dimensional” solutions (for the axisymmetric problems):

w(x, y, t) = V (r, t), r =
√

x2 + y2,

where the function V = V (r, t) is determined by the differential equation

∂V

∂t
=

1
r

∂

∂r

[

rf (V )
∂V

∂r

]

.

5◦. For other “two-dimensional” solutions, see equation 2.4.3.4 with g(w) = f (w).)�*
Reference: V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskii (1983).

4.
∂w

∂t
=

∂

∂x

[

f (w)
∂w

∂x

]

+
∂

∂y

[

g(w)
∂w

∂y

]

.

This is a two-dimensional unsteady heat and mass transfer equation in an anisotropic case with
arbitrary coordinate-dependent principal thermal diffusivities (diffusion coefficients).

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w(C1x + C2, + C1y + C3,C2
1 t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution in implicit form:
∫

k2
1f (w) + k2

2g(w)
λw + C1

dw = k1x + k2y + λt + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. “Two-dimensional” solution:

w(x, y, t) = U (z, t), z = k1x + k2y,

where the function U = U (z, t) is determined by a differential equation of the form 1.6.15.1:

∂U

∂t
=
∂

∂z

[

ϕ(U )
∂U

∂z

]

, ϕ(U ) = k2
1f (U ) + k2

2g(U ).

4◦. There are more complicated “two-dimensional” solutions of the form

w(x, y, t) = V (ζ1, ζ2), ζ1 = a1x + a2y + a3t, ζ2 = b1x + b2y + b3t.

5◦. “Two-dimensional” solution:

w(x, y, t) = W (ξ, η), ξ =
x
√

at
, η =

y
√

at
,

where a ≠ 0 is any number and the functionW = W (ξ, η) is determined by the differential equation

∂

∂ξ

[

f (W )
∂W

∂ξ

]

+
∂

∂η

[

g(W )
∂W

∂η

]

+
a

2
ξ
∂W

∂ξ
+
a

2
η
∂W

∂η
= 0.

6◦. For group classification of the equation in question, see Dorodnitsyn, Knyazeva, and Svir-
shchevskii (1983).
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2.4.4. Other Equations Linear in the Highest Derivatives

1.
∂w

∂t
=

∂2w

∂x2
+

∂2w

∂y2
+ f (w)

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

The substitution

U =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads to the linear heat equation
∂U

∂t
=
∂2U

∂x2 +
∂2U

∂y2 .

For solutions of this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

2.
∂w

∂t
=

[

aw + f (t)
]

(

∂2w

∂x2
+

∂2w

∂y2

)

+ bw2 + g(t)w + h(t), a ≠ 0.

“Two-dimensional” generalized separable solution:

w(x, y, t) = ϕ(t) + ψ(t)Θ(x, y),

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations

ϕ′

t = bϕ2 + g(t)ϕ + h(t), (1)
ψ′

t =
[

bϕ − βf (t) + g(t)
]

ψ, β = b/a, (2)

and the function Θ(x, y) is any solution of the two-dimensional Helmholtz equation

∆Θ + βΘ = 0, ∆ ≡
∂2

∂x2 +
∂2

∂y2 . (3)

The first equation (1) is independent of ψ and is a Riccati equation for ϕ. In Polyanin and
Zaitsev (2003), many exact solutions of equation (1) for various g(t) and h(t) are presented. Solving
equation (1) followed by substituting the expression ofϕ =ϕ(t) into (2), we arrive at a linear equation
for ψ = ψ(t), which is easy to integrate.

In the special case B = 0, a solution of system (1), (2) is given by

ϕ(t) = exp
[

G(t)
]

{

A +
∫

h(t) exp
[

−G(t)
]

dt

}

, G(t) =
∫

g(t) dt,

ψ(t) = B exp
[

G(t) − βF (t)
]

, F (t) =
∫

f (t) dt,

where A and B are arbitrary constants.
For solutions of the linear stationary equation (3), see the books by Tikhonov and Samarskii

(1990) and Polyanin (2002).

3.
∂w

∂t
= aw

(

∂2w

∂x2
+

∂2w

∂y2

)

– a

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

+ f (t).

1◦. Generalized separable solution:

w(x, y, t) = ϕ(t) + ψ(t)eβx+γy,

where β and γ are arbitrary constants and the functions ϕ(t) and ψ(t) are determined by the system
of ordinary differential equations

ϕ′

t = f (t), ψ′

t = a(β2 + γ2)ϕψ.

Solving this system yields the solution

w(x, y, t) = ϕ(t) +A exp
[

βx + γy + a(β2 + γ2)
∫

ϕ(t) dt
]

, ϕ(t) =
∫

f (t) dt +B,

where A and B are arbitrary constants.
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2◦. There are generalized separable solutions of the following forms:

w(x, y, t) = ϕ(t) + ψ(t)(A1 coshµx +A2 sinhµx) + χ(t)(B1 cosµy +B2 sinµy),
w(x, y, t) = ϕ(t) + ψ(t)(A1 cosµx +A2 sinµx) + χ(t)(B1 coshµy +B2 sinhµy),

where A1, A2, B1, B2, and µ are arbitrary constants, and the functions ϕ(t), ψ(t), and χ(t) are
determined by a system of ordinary differential equations (not written out here).

3◦. There is a generalized separable solution of the form

w(x, y, t) = ϕ(t) + ψ(t)F (x) + χ(t)G(y) + η(t)H(x)P (y),

where
F (x) = A1 cos 2µx +A2 sin 2µx,
H(x) = C1 cosµx + C2 sinµx,

G(y) = B1 cosh 2µy +B2 sinh 2µy,
P (y) = D1 coshµy +D2 sinhµy,

where the constants A1, A2, B1, B2, C1, C2, D1, D2, and µ are related by two constraints, and the
functions ϕ(t), ψ(t), χ(t), and η(t) are determined by a system of ordinary differential equations
(not written out here).

4.
∂w

∂t
+ (a1x + b1y + c1)

∂w

∂x
+ (a2x + b2y + c2)

∂w

∂y
=

∂

∂x

[

f (w)
∂w

∂x

]

+
∂

∂y

[

g(w)
∂w

∂y

]

.

This equation describes unsteady anisotropic heat/mass transfer in a steady translational-shear fluid
flow.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1,2 = w
(

x + Cb1e
λt, y + C(λ − a1)eλt, t

)

,

where C is an arbitrary constant, and λ = λ1,2 are roots of the quadratic equation

λ2 − (a1 + b2)λ + a1b2 − a2b1 = 0, (1)

are also solutions of the equation.

2◦. Solutions:
w = w(z), z = a2x + (λ − a1)y + Ceλt, (2)

where λ = λ1,2 are roots of the quadratic equation (1), and the function w(z) is determined by the
ordinary differential equation

[

λz + a2c1 + (λ − a1)c2
]

w′

z = [ϕ(w)w′

z]w′

z, ϕ(w) = a2
2f (w) + (λ − a1)2g(w).

3◦. “Two-dimensional” solutions:

w = U (ζ, t), ζ = a2x + (λ − a1)y, (3)

where λ = λ1,2 are roots of the quadratic equation (1), and the function U (ζ, t) is determined by the
differential equation

∂U

∂t
+ [λζ + a2c1 + (λ − a1)c2]

∂U

∂ζ
=
∂

∂ζ

[

ϕ(U )
∂U

∂ζ

]

, ϕ(U ) = a2
2f (U ) + (λ − a1)2g(U ).

Remark 1. A more general equation, with an additional term h(w) on the right-hand side,
where h is an arbitrary function, also has solutions of the forms (2) and (3).

Remark 2. In the case of an incompressible fluid, the equation coefficients must satisfy the
condition a1 + b2 = 0.
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5.
∂w

∂t
= f (w)L [w] + g(t)w + h(t).

Here, L is an arbitrary linear differential operator with respect to the space variables x, y (the
operator is independent of t).

“Two-dimensional” generalized separable solution:

w(x, y, t) = ϕ(t) + ψ(t)Θ(x, y),

where the functions ϕ(t) and ψ(t) are given by

ϕ(t) = eG(t)
[

A +
∫

h(t)e−G(t) dt

]

, ψ(t) = BeG(t), G(t) =
∫

g(t) dt,

A is an arbitrary constant, and the function Θ(x, y) is a solution of the linear stationary equation

L [Θ] = 0.

Remark 1. In the equation under consideration, the order of the linear operator L and the
number of space variables can be any. The coefficients of L can be dependent on the space variables.

Remark 2. The above remains valid if f (w) in the equation is substituted by a function
f (x, y, t,w). In the special case f (x, y, t,w) = f1(t) + αw, L [w] = ∆w + βw, where ∆ is the
Laplace operator, α and β are some constants, we obtain an equation of the form 2.4.4.2.

6.
∂w

∂t
=

∂

∂x

[

f (x, y)
∂w

∂x

]

+
∂

∂y

[

g(x, y)
∂w

∂y

]

+ kw ln w.

This is an equation of unsteady heat (mass) transfer or combustion in an anisotropic case with arbitrary
coordinate-dependent principal thermal diffusivities (diffusion coefficients) and a logarithmic source.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = exp(C1e
kt)w(x, y, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, y, t) = exp(C1e
kt)Θ(x, y),

where the function U (x, y) satisfies the stationary equation

∂

∂x

[

f (x, y)
∂U

∂x

]

+
∂

∂y

[

g(x, y)
∂U

∂y

]

+ kU lnU = 0.

7.
∂w

∂t
=

∂

∂x

[

f1(x, t)
∂w

∂x

]

+
∂

∂y

[

f2(y, t)
∂w

∂y

]

+
[

g1(x, t) + g2(y, t)
]

w + h(t)w ln w.

Exact solution with incomplete separation of variables (the solution is separable in the space variables
x and y, but is not separable in time t):

w(x, y, t) = ϕ(x, t)ψ(y, t).

Here, the functions ϕ(x, t) and ψ(y, t) are determined from the two one-dimensional nonlinear
parabolic differential equations

∂ϕ

∂t
=
∂

∂x

[

f1(x, t)
∂ϕ

∂x

]

+ g1(x, t)ϕ + h(t)ϕ lnϕ + C(t)ϕ,

∂ψ

∂t
=
∂

∂y

[

f2(y, t)
∂ψ

∂y

]

+ g2(y, t)ψ + h(t)ψ lnψ − C(t)ψ,

where C(t) is an arbitrary function.
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8.
∂w

∂t
= f1(x, y)

∂2w

∂x2
+ f2(x, y)

∂2w

∂x∂y
+ f3(x, y)

∂2w

∂y2

+ g1(x, y)
∂w

∂x
+ g2(x, y)

∂w

∂y
+

[

h(x, y) + , (t)
]

w + kw ln w.

Multiplicative separable solution:

w(x, y, t) = exp
[

Aekt + ekt

∫

e−kt
s(t) dt

]

Θ(x, y),

where A is an arbitrary constant, and the function Θ(x, y) is a solution of the stationary equation

f1(x, y)
∂2

Θ

∂x2 + f2(x, y)
∂2

Θ

∂x∂y
+ f3(x, y)

∂2
Θ

∂y2

+ g1(x, y)
∂Θ

∂x
+ g2(x, y)

∂Θ

∂y
+ h(x, y)Θ + kΘ lnΘ = 0.

9.
∂w

∂t
=

∂

∂x

[

f (x, t)
∂w

∂x

]

+
∂

∂y

{

[

g(x, t)w + h(x, t)
] ∂w

∂y

}

.

There are “two-dimensional” generalized separable solutions linear and quadratic in y:

w(x, y, t) = ϕ(x, t)y + ψ(x, t),

w(x, y, t) = ϕ(x, t)y2 + ψ(x, t)y + χ(x, t).

2.4.5. Nonlinear Diffusion Boundary Layer Equations

1.
∂w

∂t
+ f (x, t)

∂w

∂x
+ g(x, t)y

∂w

∂y
= h(x, t)

∂

∂y

[

k(w)
∂w

∂y

]

.

This equation arises in nonlinear problems of the unsteady diffusion boundary layer (mass exchange
of drops and bubbles with a flow, convective diffusion in fluid films), where the coordinates x and y
are longitudinal and normal to the interphase surface, respectively.

The transformation

w = U (ζ, τ ,ψ), ζ = yϕ(x, t), τ = τ (x, t), ψ = ψ(x, t),

where the functions ϕ(x, t), τ (x, t), and ψ(x, t) are determined by the system of first-order partial
differential equations

∂ϕ

∂t
+ f (x, t)

∂ϕ

∂x
= −g(x, t)ϕ,

∂τ

∂t
+ f (x, t)

∂τ

∂x
= h(x, t)ϕ2,

∂ψ

∂t
+ f (x, t)

∂ψ

∂x
= 0,

(1)

leads to a simpler equation of the form 1.6.15.1:

∂U

∂τ
=
∂

∂ζ

[

k(U )
∂U

∂ζ

]

. (2)

The cyclic variableψ does not appear in equation (2); however, it can be involved in the transformed
initial and boundary conditions as a parameter.

Integrating system (1) is reduced to solving a single ordinary differential equation: x′

t = f (x, t).
In particular, if the functions f , g, and h are only dependent on x, the general solution of system (1)
is given by

ϕ = Φ1(z)E(x), τ = Φ
2
1(z)

∫

h(x)
f (x)

E2(x) dx + Φ2(z), ψ = Φ3(z),
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where Φ1(z), Φ2(z), and Φ3(z) are arbitrary functions, and

z = t −
∫

dx

f (x)
, E(x) = exp

[

−
∫

g(x)
f (x)

dx

]

.

-�.
Reference: A. D. Polyanin (1982).

2. f (x, y)zn–1 ∂w

∂x
+ g(x, y)zn–1 ∂w

∂y
+ h(x, y)zn ∂w

∂z
=

∂

∂z

[

k(w)
∂w

∂z

]

.

This equation arises in nonlinear problems of the steady three-dimensional diffusion boundary layer
(mass exchange of solid particles, drops, and bubbles with a flow, convective diffusion in fluid films),
where z is a normal coordinate to the particle surface. To a solid particle there corresponds n = 2
and to drops and bubbles, n = 1.

The transformation

w = U (ζ, τ ,ψ), ζ = zϕ(x, y), τ = τ (x, y), ψ = ψ(x, y),

where the functions ϕ(x, y), τ (x, y), and ψ(x, y) are determined by the system of first-order partial
differential equations

f (x, y)
∂ϕ

∂x
+ g(x, y)

∂ϕ

∂y
= −h(x, y)ϕ, (1)

f (x, y)
∂τ

∂x
+ g(x, y)

∂τ

∂y
= ϕ2, (2)

f (x, y)
∂ψ

∂x
+ g(x, y)

∂ψ

∂y
= 0, (3)

leads to a simpler equation of the form 1.6.17.16:

∂U

∂τ
= ζ1−n ∂

∂ζ

[

k(U )
∂U

∂ζ

]

. (4)

The cyclic variable ψ does not enter into equation (4); however, it can appear in the transformed
initial and boundary conditions as a parameter.

Suppose an integral of the ordinary differential equation f (x, y)y′x = g(x, y) has the form

Ξ(x, y) = C.

Then the general solution of equation (3) is given byψ = F (Ξ), where F is an arbitrary function. On
passing in (1)–(2) from x, y to the new variables x, Ξ, one arrives at ordinary differential equations
with independent variable x where Ξ appears as a parameter.

2.5. Equations with Three or More Space Variables

2.5.1. Equations of Mass Transfer in Quiescent or Moving Media
with Chemical Reactions

1.
∂w

∂t
=

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
– f (w).

This equation describes unsteady mass or heat transfer with a volume reaction in a quiescent medium.
The equation admits translations in any of the variables x, y, z, t.

1◦. There is a traveling-wave solution, w = w(k1x + k2y + k3z + λt).
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2◦. For axisymmetric case, the Laplace operator on the right-hand side of the equation takes the
following forms in cylindrical and spherical coordinates, respectively:

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 =
1
ρ

∂

∂ρ

(

ρ
∂w

∂ρ

)

+
∂2w

∂z2 , ρ =
√

x2 + y2;

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 =
1
r2

∂

∂r

(

r2 ∂w

∂r

)

+
1

r2 sin θ
∂

∂θ

(

sin θ
∂w

∂θ

)

, r =
√

x2 + y2 + z2.

3◦. “Three-dimensional” solution:
w = u(ξ, η, t), ξ = y +

x

C
, η = (C2 − 1)x2 − 2Cxy + C2z2,

whereC is an arbitrary constant (C ≠ 0), and the functionu = u(ξ, η, t) is determined by the equation
∂u

∂t
=

(

1 +
1
C2

)

∂2u

∂ξ2 − 4ξ
∂2u

∂ξ∂η
+ 4C2(ξ2 + η)

∂2u

∂η2 + 2(2C2 − 1)
∂u

∂η
− f (u).

Remark. The solution specified in Item 3◦ can be used to obtain other “three-dimensional”
solutions by means of the cyclic permutations of the space variables.

4◦. “Three-dimensional” solution:
w = u(ξ, η, t), ξ = Ax +By + Cz, η =

√

(Bx −Ay)2 + (Cy −Bz)2 + (Az − Cx)2,
where A, B, and C are arbitrary constants and the function u = u(ξ, η, t) is determined by the
equation

∂u

∂t
= (A2 +B2 + C2)

(

∂2u

∂ξ2 +
∂2u

∂η2 +
1
η

∂u

∂η

)

− f (u).

2.
∂w

∂t
= a

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

+ f (t)w ln w + g(t)w.

1◦. There is a functional separable solution of the form

w(x, y, z, t) = exp
[ 3

∑

n,m=1

ϕnm(t)xnxm +
3

∑

n=1

ψn(t)xn + χ(t)
]

, x1 = x, x2 = y, x3 = z.

2◦. There is a incomplete separable solution of the form
w(x, y, z, t) = Φ1(x, t)Φ2(y, t)Φ3(z, t).

3◦. For f (t) = b = const, the equation also has a multiplicative separable solution of the form
w(x, y, z, t) = ϕ(t)Θ(x, y, z),

where ϕ(t) is given by

ϕ(t) = exp
[

Aebt + ebt

∫

e−btg(t) dt
]

,

A is an arbitrary constant, and Θ(x, y, z) is a solution of the stationary equation

a

(

∂2
Θ

∂x2 +
∂2

Θ

∂y2 +
∂2

Θ

∂z2

)

+ bΘ ln Θ = 0.

3.
∂w

∂t
+ a1

∂w

∂x
+ a2

∂w

∂y
+ a3

∂w

∂z
=

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
– f (w).

This equation describes unsteady mass transfer with a volume chemical reaction in a steady trans-
lational fluid flow.

The transformation
w = U (ξ, η, ζ, t), ξ = x − a1t, η = y − a2t, ζ = z − a3t

leads to a simpler equation of the form 2.5.1.1:
∂U

∂t
=
∂2U

∂ξ2 +
∂2U

∂η2 +
∂2U

∂ζ2 − f (U ).
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4.
∂w

∂t
+ f1(t)

∂w

∂x
+ f2(t)

∂w

∂y
+ f3(t)

∂w

∂z
=

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
– g(w).

This equation describes unsteady mass transfer with a volume chemical reaction in an unsteady
translational fluid flow.

The transformation

w = U (ξ, η, t), ξ = x −
∫

f1(t) dt, η = y −
∫

f2(t) dt, ζ = z −
∫

f3(t) dt

leads to a simpler equation of the form 2.5.1.1:

∂U

∂t
=
∂2U

∂ξ2 +
∂2U

∂η2 +
∂2U

∂ζ2 − g(U ).

5.
∂w

∂t
+ (a1x + b1y + c1z + d1)

∂w

∂x
+ (a2x + b2y + c2z + d2)

∂w

∂y

+ (a3x + b3y + c3z + d3)
∂w

∂z
=

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
– f (w).

This equation describes unsteady mass transfer with a volume chemical reaction in a three-
dimensional steady translational-shear fluid flow.

1◦. Let λ be a root of the cubic equation
∣

∣

∣

∣

∣

a1 − λ a2 a3
b1 b2 − λ b3
c1 c2 c3 − λ

∣

∣

∣

∣

∣

= 0, (1)

and let the constants A1, A2, and A3 solve the degenerate system of linear algebraic equations

(a1 − λ)A1 + a2A2 + a3A3 = 0,
b1A1 + (b2 − λ)A2 + b3A3 = 0,
c1A1 + c2A2 + (c3 − λ)A3 = 0.

(2)

One of these equations can be omitted, since it is a consequence of the other two.
Suppose w(x, y, z, t) is a solution of the equation in question. Then the function

w1 = w
(

x +A1Ce
λt, y +A2Ce

λt, z +A3Ce
λt, t

)

,

where C is an arbitrary constant, λ is a root of the cubic equation (1), and A1, A2, and A3 are the
corresponding solution of the algebraic system (2), is also a solution of the equation.

2◦. Solution:
w = w(ξ), ξ = A1x +A2y +A3z + Ceλt,

where C is an arbitrary constant, λ is a root of the cubic equation (1), A1, A2, and A3 are the
corresponding solution of the algebraic system (2), and the function w(ξ) is determined by the
ordinary differential equation

(λξ +A1d1 +A2d2 +A3d3)w′

ξ = (A2
1 +A2

2 +A2
3)w′′

ξξ − f (w).

3◦. Let λ be a root of the cubic equation (1) and let A1, A2, and A3 be the corresponding solution
of the algebraic system (2).

“Two-dimensional” solution:

w = U (ζ, t), ζ = A1x +A2y +A3z,

where the function U (ζ, t) is determined by the differential equation

∂U

∂t
+ (λζ +A1d1 +A2d2 +A3d3)

∂U

∂ζ
= (A2

1 +A2
2 +A2

3)
∂2U

∂ζ2 − f (U ).

Remark. In the case of an incompressible fluid, the equation coefficients must satisfy the
condition a1 + b2 + c3 = 0.
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6.
∂w

∂t
+ (a1x + b1y + c1z + d1)

∂w

∂x
+ (a2x + b2y + c2z + d2)

∂w

∂y
+ (a3x + b3y + c3z + d3)

∂w

∂z

=
∂

∂x

[

f1(w)
∂w

∂x

]

+
∂

∂y

[

f2(w)
∂w

∂y

]

+
∂

∂z

[

f3(w)
∂w

∂z

]

.

This equation describes unsteady anisotropic mass or heat transfer in a three-dimensional steady
translational-shear fluid flow.

1◦. Let λ be a root of the cubic equation
∣

∣

∣

∣

∣

a1 − λ a2 a3
b1 b2 − λ b3
c1 c2 c3 − λ

∣

∣

∣

∣

∣

= 0, (1)

and the constants A1, A2, and A3 solve the degenerate system of linear algebraic equations

(a1 − λ)A1 + a2A2 + a3A3 = 0,
b1A1 + (b2 − λ)A2 + b3A3 = 0,
c1A1 + c2A2 + (c3 − λ)A3 = 0.

(2)

One of these equations can be omitted, since it is a consequence of the other two.
Suppose w(x, y, z, t) is a solution of the equation in question. Then the function

w1 = w
(

x +A1Ce
λt, y +A2Ce

λt, z +A3Ce
λt, t

)

,

where C is an arbitrary constant, λ is a root of the cubic equation (1), and A1, A2, and A3 are the
corresponding solution of the algebraic system (2), is also a solution of the equation.

2◦. Solution:
w = w(ξ), ξ = A1x +A2y +A3z + Ceλt, (3)

where C is an arbitrary constant, λ is a root of the cubic equation (1), and A1, A2, and A3 are
the corresponding solution of the algebraic system (2), and the function w(ξ) is determined by the
ordinary differential equation

(λξ +A1d1 +A2d2 +A3d3)w′

ξ = [ϕ(w)w′

ξ]′ξ,

ϕ(w) = A2
1f1(w) +A2

2f2(w) +A2
3f3(w).

3◦. Let λ be a root of the cubic equation (1) and let A1, A2, and A3 be the corresponding solution
of the algebraic system (2).

“Two-dimensional” solution:

w = U (ζ, t), ζ = A1x +A2y +A3z, (4)

where the function U (ζ, t) is determined by the differential equation

∂U

∂t
+ (λζ +A1d1 +A2d2 +A3d3)

∂U

∂ζ
=
∂

∂ζ

[

ϕ(U )
∂U

∂ζ

]

,

ϕ(U ) = A2
1f1(U ) +A2

2f2(U ) + A2
3f3(U ).

Remark 1. A more general equation, with an additional term g(w) on the right-hand side, where
g is an arbitrary function, also has solutions of the forms (3) and (4).

Remark 2. In the case of an incompressible fluid, the equation coefficients must satisfy the
condition a1 + b2 + c3 = 0.
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2.5.2. Heat Equations with PowerLaw or Exponential
TemperatureDependent Thermal Diffusivity

I Throughout this subsection, the symbols div, ∇, and ∆ stand for the divergence operator,
gradient operator, and Laplace operator in Cartesian coordinates x, y, z (cylindrical, spherical,
and other three-dimensional orthogonal systems of coordinates can be used instead of the Cartesian
coordinates).

1.
∂w

∂t
= ∆(wm).

This is a special case of equation 2.5.5.6.

2.
∂w

∂t
= α div

(

wn∇w
)

+ f (t)w.

1◦. Multiplicative separable solution:

w(x, y, z, t) = exp
[
∫

f (t) dt
]

[

Θ(x, y, z)
]

1
n+1 , (1)

where the function Θ(x, y, z) satisfies the Laplace equation

∆Θ = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

2◦. Multiplicative separable solution:

w(x, y, z, t) = ϕ(t)
[

Θ(x, y, z)
]

1
n+1 , (2)

where the function ϕ(t) is determined by the Bernoulli equation

ϕ′

t − f (t)ϕ +Aαϕn+1 = 0. (3)

Here, A is an arbitrary constant, and Θ(x, y, z) is a solution of the stationary equation

∆Θ +A(n + 1)Θ
1

n+1 = 0.

The general solution of equation (3) is given by

ϕ(t) = exp
[

F (t)
]

{

Aαn

∫

exp
[

nF (t)
]

dt +B
}−1/n

, F (t) =
∫

f (t) dt,

where B is an arbitrary constant.

3◦. Using the transformation

w(x, y, z, t) = F (t)U (x, y, z, τ ), τ =
∫

Fn(t) dt, F (t) = exp
[
∫

f (t) dt
]

,

one arrives at the simpler equation
∂U

∂τ
= α div(Un∇U ).

3.
∂w

∂t
= α div(wn∇w) + f (t)w + g(t)w1–n.

The substitution U = wn leads to a special case of equation 2.5.4.4:

∂U

∂t
= αU∆U +

α

n
|∇U |2 + nf (t)U + ng(t).
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4.
∂w

∂t
= α div(eµw∇w

)

+ f (t).

1◦. Additive separable solution:

w(x, y, z, t) =
∫

f (t) dt +
1
µ

ln Θ(x, y, z),

where the function Θ = Θ(x, y, z) is any solution of the Laplace equation ∆Θ = 0.

2◦. Additive separable solution:

w(x, y, z, t) = ϕ(t) +
1
µ

ln Θ(x, y, z),

where the function ϕ = ϕ(t) is determined by the ordinary differential equation
ϕ′

t +A(α/µ) exp(µϕ) − f (t) = 0. (1)
Here,A is an arbitrary constant, and the function Θ = Θ(x, y, z) is a solution of the Poisson equation

∆Θ +A = 0. (2)
The general solution of equation (1) is given by

ϕ(t) = F (t) −
1
µ

ln
{

B +Aα
∫

exp
[

µF (t)
]

dt

}

, F (t) =
∫

f (t) dt. (3)

For solutions of the linear stationary equation (2), see the books by Tikhonov and Samarskii (1990)
and Polyanin (2002).

Note that equations (1), (2) and relation (3) contain arbitrary constants A and B.

3◦. Using the transformation

w(x, y, z, t) = U (x, y, z, τ ) + F (t), τ =
∫

exp[µF (t)] dt, F (t) =
∫

f (t) dt,

one arrives at the simpler equation
∂U

∂τ
= α div(eµU ∇U ).

5.
∂w

∂t
= a div

(

eµw∇w
)

+ beµw + g(t) + h(t)e–µw .

The substitution U = eµw leads to an equation of the form 2.5.4.5 for U = U (x, y, z, t):
∂U

∂t
= aU∆U + bµU 2 + µg(t)U + µh(t).

Hence, the original equation has solutions of the form

w(x, y, z, t) =
1
µ

ln[ϕ(t) + ψ(t)Θ(x, y, z)].

Note that, with g(t) ≡ const and h(t) ≡ const, the original equation was studied in Galaktionov
and Posashkov (1989) and Ibragimov (1994).

2.5.3. Equations of Heat and Mass Transfer in Anisotropic Media

1.
∂w

∂t
= a

∂2w

∂x2
+

∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

czn ∂w

∂z

)

+ f (w).

1◦. Solution for m ≠ 2 and n ≠ 2:

w = w(ξ, t), ξ2 =
x2

a
+

4 y2−m

b(2 −m)2 +
4 z2−n

c(2 − n)2 ,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation
∂w

∂t
=
∂2w

∂ξ2 +
A

ξ

∂w

∂ξ
+ f (w), A =

2(4 −m − n)
(2 −m)(2 − n)

.

For solutions of this equation with A = 0 and various f (w), see Subsections 1.1.1 to 1.1.3 and
equations 1.2.1.1 to 1.2.1.3, 1.4.1.2, 1.4.1.3, 1.4.1.7, and 1.4.1.8.
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2◦. Solution for m ≠ 2 and n ≠ 2:

w = w(x, ξ, t), ξ2 =
4 y2−m

b(2 −m)2 +
4 z2−n

c(2 − n)2 ,

where the function w(x, ξ) is determined by the two-dimensional nonstationary equation

∂w

∂t
= a

∂2w

∂x2 +
∂2w

∂ξ2 +
A

ξ

∂w

∂ξ
+ f (w), A =

4 −mn
(2 −m)(2 − n)

.

2.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

czl ∂w

∂z

)

+ f (w).

Solution for n ≠ 2, m ≠ 2, and l ≠ 2:

w = w(ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−l

c(2 − l)2

]

,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 +
A

ξ

∂w

∂ξ
+ f (w), A = 2

(

1
2 − n

+
1

2 −m
+

1
2 − l

)

− 1.

For solutions of this equation with A = 0 and various f (w), see Subsections 1.1.1 to 1.1.3 and
equations 1.2.1.1 to 1.2.1.3, 1.4.1.2, 1.4.1.3, 1.4.1.7, and 1.4.1.8.

3.
∂w

∂t
=

∂

∂x

(

aeλx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

+
∂

∂z

(

ceνz ∂w

∂z

)

+ f (w).

Solution for λ ≠ 0, µ ≠ 0, and ν ≠ 0:

w = w(ξ, t), ξ2 = 4
(

e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2

)

,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 −
1
ξ

∂w

∂ξ
+ f (w).

4.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

ceνz ∂w

∂z

)

+ f (w).

Solution for n ≠ 2, m ≠ 2, and ν ≠ 0:

w = w(ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2

]

,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 +
A

ξ

∂w

∂ξ
+ f (w), A =

4 − nm
(2 − n)(2 −m)

.

For solutions of this equation with A = 0 and various f (w), see Subsections 1.1.1 to 1.1.3 and
equations 1.2.1.1 to 1.2.1.3, 1.4.1.2, 1.4.1.3, 1.4.1.7, and 1.4.1.8.

5.
∂w

∂t
=

∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

+
∂

∂z

(

ceνz ∂w

∂z

)

+ f (w).

Solution for n ≠ 2, µ ≠ 0, and ν ≠ 0:

w = w(ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2

]

,

where the function w(ξ, t) is determined by the one-dimensional nonstationary equation

∂w

∂t
=
∂2w

∂ξ2 +
n

2 − n
1
ξ

∂w

∂ξ
+ f (w).
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6.
∂w

∂t
=

∂

∂x

[

f1(w)
∂w

∂x

]

+
∂

∂y

[

f2(w)
∂w

∂y

]

+
∂

∂z

[

f3(w)
∂w

∂z

]

+ g(w).

For group classification and exact solutions of this equation for some fn(w) and g(w), see Dorod-
nitsyn, Knyazeva, and Svirshchevskii (1983).

7.
∂w

∂t
+ (a1x + b1y + c1z + d1)

∂w

∂x
+ (a2x + b2y + c2z + d2)

∂w

∂y
+ (a3x + b3y + c3z + d3)

∂w

∂z

=
∂

∂x

[

f1(w)
∂w

∂x

]

+
∂

∂y

[

f2(w)
∂w

∂y

]

+
∂

∂z

[

f3(w)
∂w

∂z

]

.

This equation describes unsteady anisotropic heat or mass transfer in a three-dimensional steady
translational-shear fluid flow.

1◦. Let λ be a root of the cubic equation
∣

∣

∣

∣

∣

a1 − λ a2 a3
b1 b2 − λ b3
c1 c2 c3 − λ

∣

∣

∣

∣

∣

= 0, (1)

and let the constants A1, A2, and A3 solve the degenerate system of linear algebraic equations

(a1 − λ)A1 + a2A2 + a3A3 = 0,
b1A1 + (b2 − λ)A2 + b3A3 = 0,
c1A1 + c2A2 + (c3 − λ)A3 = 0.

(2)

One of these equations is redundant and can be omitted.
Suppose w(x, y, z, t) is a solution of the equation in question. Then the function

w1 = w
(

x +A1Ce
λt, y +A2Ce

λt, z +A3Ce
λt, t

)

,

where C is an arbitrary constant, λ is a root of the cubic equation (1), and A1, A2, and A3 are the
corresponding solution of the algebraic system (2), is also a solution of the equation.

2◦. Solution:
w = w(ξ), ξ = A1x +A2y +A3z + Ceλt, (3)

where C is an arbitrary constant, λ is a root of the cubic equation (1), and A1, A2, and A3 are
the corresponding solution of the algebraic system (2), and the function w(ξ) is determined by the
ordinary differential equation

(λξ +A1d1 +A2d2 +A3d3)w′

ξ = [ϕ(w)w′

ξ]′ξ, ϕ(w) = A2
1f1(w) +A2

2f2(w) +A2
3f3(w).

3◦. Let λ be a root of the cubic equation (1) and let A1, A2, and A3 be the corresponding solution
of the algebraic system (2).

“Two-dimensional” solutions:

w = U (ζ, t), ζ = A1x +A2y +A3z, (4)

where the function U (ζ, t) is determined by the differential equation

∂U

∂t
+ (λζ +A1d1 +A2d2 +A3d3)

∂U

∂ζ
=
∂

∂ζ

[

ϕ(U )
∂U

∂ζ

]

, ϕ(U ) =A2
1f1(U )+A2

2f2(U )+A2
3f3(U ).

Remark 1. A more general equation, with an additional term g(w) on the right-hand side, where
g is an arbitrary function, also has solutions of the forms (3) and (4).

Remark 2. In the case of an incompressible fluid, the equation coefficients must satisfy the
condition a1 + b2 + c3 = 0.
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2.5.4. Other Equations with Three Space Variables
I Throughout this subsection, the symbols div, ∇, and ∆ stand for the divergence operator,
gradient operator, and Laplace operator in Cartesian coordinates x, y, z; cylindrical, spherical,
and other three-dimensional orthogonal systems of coordinates can be used instead of the Cartesian
coordinates.

1.
∂w

∂t
= a∆w + f (t)|∇w|2 + g(t)w + h(t).

There is a generalized separable solution of the form

w(x1,x2,x3, t) =
3

∑

k,l=1

ϕkl(t)xkxl +
3

∑

k=1

ψk(t)xk + χ(t).

Remark. The more general equation

∂w

∂t
=

3
∑

n,m=1

anm(t)
∂2w

∂xn∂xm

+
3

∑

n=1

bn(t)
(

∂w

∂xn

)2

+
3

∑

n=1

cn(t)
∂w

∂xn

+ g(t)w + h(t)

has solutions of the same form.

2.
∂w

∂t
= ∆w + f (w)|∇w|2.

The substitution

U =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads to the linear heat equation
∂U

∂t
= ∆U .

For solutions of this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

3.
∂w

∂t
= αw∆w – α|∇w|2 – β.

1◦. Solutions:

w(x, y, z, t) = Ax +By + Cz − [α(A2 +B2 + C2) + β]t +D,

w(x, y, z, t) = A − βt +B exp
[

α(κ2 + µ2 + ν2)
(

At − 1
2βt

2)]eκx+µy+νz,

where A, B, C, D, κ, µ, and ν are arbitrary constants.

2◦. See 2.5.4.4 with f (t) = −α, g(t) = 0, and h(t) = −β.

4.
∂w

∂t
= αw∆w + f (t)|∇w|2 + g(t)w + h(t).

There are generalized separable solutions of the form

w(x1,x2,x3, t) =
3

∑

k,l=1

ϕkl(t)xkxl +
3

∑

k=1

ψk(t)xk + χ(t).

Remark. The more general equation

∂w

∂t
=

3
∑

n,m=1

[

anm(t)w + bnm(t)
] ∂2w

∂xn∂xm

+
3

∑

n=1

cn(t)
(

∂w

∂xn

)2

+
3

∑

n=1

sn(t)
∂w

∂xn

+ g(t)w + h(t)

has solutions of the same form.
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5.
∂w

∂t
= [aw + f (t)]∆w + bw2 + g(t)w + h(t).

Here, f (t), g(t), and h(t) are arbitrary functions; a and b are arbitrary parameters (a ≠ 0). This is a
special case of equation 2.5.4.6 with L [w] ≡ ∆w.

Note that, with f (t) ≡ const, g(t) ≡ const, and h(t) ≡ const, this equation was studied in
Galaktionov and Posashkov (1989) and Ibragimov (1994).

6.
∂w

∂t
= [aw + f (t)]L [w] + bw2 + g(t)w + h(t).

Here, f (t), g(t), and h(t) are arbitrary functions; a and b are arbitrary parameters (a ≠ 0); L [w] is an
arbitrary linear differential operator of the second (or any) order that depends on the space variables
x1 = x, x2 = y, x3 = z only and satisfies the condition L [const] ≡ 0:

L [w] ≡
3

∑

n,m=1

pnm(x)
∂2w

∂xn∂xm

+
3

∑

n=1

qn(x)
∂w

∂xn

, x = {x1,x2,x3}.

There is a generalized separable solution of the form

w(x1,x2,x3, t) = ϕ(t) + ψ(t)Θ(x1,x2,x3),

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations

ϕ′

t = bϕ2 + g(t)ϕ + h(t), (1)
ψ′

t =
[

bϕ − βf (t) + g(t)
]

ψ, β = b/a, (2)

and the function Θ(x1,x2,x3) is a solution of the linear stationary equation

L [Θ] + βΘ = 0. (3)

Equation (1) is independent of ψ and represents a Riccati equation for ϕ. A large number of
exact solutions to equation (1) for various g(t) and h(t) can be found in Polyanin and Zaitsev (2003).
On solving (1) and substituting the resulting ϕ = ϕ(t) into (2), one obtains a linear equation for
ψ = ψ(t), which is easy to integrate.

In the special case b = 0, the solution of system (1), (2) is given by

ϕ(t) = exp
[

G(t)
]

{

A +
∫

h(t) exp
[

−G(t)
]

dt

}

, G(t) =
∫

g(t) dt,

ψ(t) = B exp
[

G(t) − βF (t)
]

, F (t) =
∫

f (t) dt,

where A and B are arbitrary constants.
In the special case L ≡ ∆, see Tikhonov and Samarskii (1990) and Polyanin (2002) for solutions

of the linear stationary equation (3).

7.
∂w

∂t
= f (t)Nβ[w] + g(t)w.

Here, Nβ[w] is an arbitrary homogeneous nonlinear differential operator of degree β with respect
to w (i.e., Nβ[αw] = αβNβ[w], α = const) that depends on the space variables x, y, z only (and is
independent of t).

Using the transformation

w(x, y, z, t) = G(t)U (x, y, z, τ ), τ =
∫

f (t)Gβ−1(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

one arrives at the simpler equation
∂U

∂τ
= Nβ[U ], (1)

which has a multiplicative separable solution U = ϕ(τ )Θ(x, y, z).
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Remark 1. The order of the nonlinear operator Nβ (with respect to the derivatives) and the
number of the space variables in the original equation can be any. The coefficients of Nβ can be
dependent on the space variables.

Remark 2. If Nβ is independent explicitly of the space variables, then equation (1) has also a
traveling-wave solution, U = U (ξ), where ξ = k1x + k2y + k3z + λτ . Below are two examples of
such operators:

Nβ[w] = a div(wβ−1∇w) + b|∇w|β + cwβ ,

Nβ[w] = a div(|∇w|β−1∇w) + bwµ|∇w|β−µ,

where a, b, c, and µ are some constants.

8.
∂w

∂t
+ (~v ⋅ ∇)w = ∆w + f (w)|∇w|2.

This is a special case of equation 2.5.5.8 with n = 3.

9.
∂w

∂t
+ (~v ⋅ ∇)w = a∆w + a|∇w|2 + f (~x, t).

This is a special case of equation 2.5.5.9 with n = 3.

10.
∂~w

∂t
+ (~w ⋅ ∇)~w = a∆~w.

Vector Burgers equation; ~w = {w1,w2,w3} and wn = wn(x1,x2,x3). The Hamilton operator ∇ and
Laplace operator ∆ can be represented in any orthogonal system of coordinates.

Solution:

~w = −
2a
θ

∇θ,

where θ is a solution of the linear heat equation

∂θ

∂t
= a∆θ.

For solutions of this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).
/�0

Reference: S. Nerney, E. J. Schmahl, and Z. E. Musielak (1996).

2.5.5. Equations with n Space Variables

I Notation: x = (x1, . . . ,xn), ∆w =
n
∑

k=1

∂2w

∂x2
k

, |∇w|2 =
n
∑

k=1

( ∂w

∂xk

)2
, (~v ⋅ ∇)w =

n
∑

k=1
vk

∂w

∂xk

,

∇ ⋅ ~v =
n
∑

k=1

∂vk

∂xk

.

1.
∂w

∂t
= ∆w + f (w)|∇w|2.

The substitution U =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

, leads to the linear heat equation

∂U

∂t
= ∆U .

For solutions of this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).
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2.
∂w

∂t
= f (t)∆w + g(t)w ln w + h(t)w.

There is a functional separable solution of the form

w(x1, . . . ,xn, t) = exp
[ n

∑

i,j=1

ϕij (t)xixj +
n

∑

i=1

ψi(t)xi + χ(t)
]

.

Example 1. Let f (t) = 1, g(t) = 1, and h(t) = 0. Solutions in the radially symmetric case:

w = exp
(

n

2
−

1
4

r
2 + Be

t

)

, r =
√

x2
1 + · · · + x2

n,

w = exp
{

−
1
4

r
2(1 − Ae

−t)−1 + e
t

[

B −
n

2A
ln(1 − Ae

−t)
]}

,

where A and B are arbitrary constants, A < 1. The first solution is a special case of the second solution as A → 0.

Example 2. Let f (t) = 1, g(t) = −1, and h(t) = 0. Solution in radially symmetric case:

w = exp
{

−
1
4

r
2(Ae

t − 1)−1 + e
−t

[

B −
n

2A
ln(Ae

t − 1)
]}

,

where A and B are arbitrary constants, A > 1.1�2
Reference: A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov (1995).

3.
∂w

∂t
= f1(t)∆w + f2(t)|∇w|2 + f3(t)w +

n
∑

i,j=1

gij (t)xixj +
n

∑

i=1

hi(t)xi + p(t).

There are exact solutions of the following forms:

w(x1, . . . ,xn, t) =
n

∑

i,j=1

ϕij(t)xixj +
n

∑

i=1

ψi(t)xi + χ(t).

4.
∂w

∂t
= f1(t)w∆w + f2(t)|∇w|2 + f3(t)w +

n
∑

i,j=1

gij(t)xixj +
n

∑

i=1

hi(t)xi + p(t).

There are exact solutions of the following forms:

w(x1, . . . ,xn, t) =
n

∑

i,j=1

ϕij(t)xixj +
n

∑

i=1

ψi(t)xi + χ(t).

5.
∂w

∂t
= a∇ ⋅ (wm∇w).

For m > 1, this equation describes the flow of a polytropic gas through a homogeneous porous
medium (w is the gas density).

1◦. In the radially symmetric case the equation is written as

∂w

∂t
=

a

rn−1
∂

∂r

(

rn−1wm ∂w

∂r

)

, r =
√

x2
1 + · · · + x2

n.

Its exact solutions are given in 1.1.15.9, where n should be substituted by n − 1.

2◦. Solution of the instantaneous source type for a = 1:

w =







t−n/(nm+2)
[

m

2(nm + 2)

(

K2
0 −

r2

t2/(nm+2)

)]1/m

if r ≤ K0t
1/(nm+2),

0 if r > K0t
1/(nm+2),
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where

K0 =
{

π−n/2
[

2(nm + 2)
m

]1/m
Γ(n/m + 1 + 1/m)

Γ(1/m + 1)
E0

}m/(nm+2)

, E0 = const .

This is the solution of the initial-value problem with initial function

w(x, 0) = E0δ(x), x 3 R
n,

satisfying the condition of constant energy:
∫

Rn

w(x, t) dx = E0 = const > 0.

3◦. See also equation 2.5.5.6, in which m should be substituted by m + 1.4�5
References: Ya. B. Zel’dovich and A. S. Kompaneets (1950), G. I. Barenblatt (1952).

6.
∂w

∂t
= ∆(wm).

For m > 1, this equation describes the flow of a polytropic gas through a homogeneous porous
medium (w is the gas density). It can be rewritten in the form of equation 2.5.5.5:

∂w

∂t
= m∇ ⋅ (wm−1∇w).

1◦. Solution for m > 1:

w =
( n

∏

k=1

ϕk

)−1(

A −
n

∑

k=1

x2
k

ϕ2
k

)

1
m−1

,

whereA is an arbitrary constant (A > 0), and the functions ϕk = ϕk(t) are determined by the system
of ordinary differential equations

ϕ1
dϕ1

dt
= · · · = ϕn

dϕn

dt
=

2m
m − 1

( n
∏

k=1

ϕk

)1−m

. (1)

System (1) admits n − 1 first integrals:

ϕ2
j = ϕ2

n + Cj , j = 1, 2, . . . , n − 1, (2)

where the Cj are arbitrary constants.
The function ϕn = ϕn(t) is defined in implicit form by (the Cj are assumed to be positive)

∫ ϕn

B

zm

[n−1
∏

j=1

(z2 + Cj )
]

m−1
2
dz =

2mt
m − 1

,

whereB is an arbitrary constant, and the remainingϕj(t) are determined by the positive roots of the
quadratic equations (2).4�5

References: S. S. Titov and V. A. Ustinov (1985), J. R. King (1993), V. V. Pukhnachov (1995).

2◦. Solution for 0 < m < 1:

w =
( n

∏

k=1

ϕk

)−1(

A +
n

∑

k=1

x2
k

ϕ2
k

)

1
m−1

,

where A is an arbitrary constant, and the functions ϕk = ϕk(t) are determined by the system of
ordinary differential equations (1).4�5

References: J. R. King (1993), V. V. Pukhnachov (1995).

3◦. There is an exact solution of the form

w =
[ n
∑

i,j=1

aij(t)xixj +
n

∑

i=1

bi(t)xi + c(t)
]

1
m−1

.

4�5
Reference: G. A. Rudykh and E. I. Semenov (2000); other exact solutions are also given there.
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7.
∂w

∂t
= [aw + f (t)]∆w + bw2 + g(t)w + h(t).

Here, f (t), g(t), and h(t) are arbitrary functions; a and b are arbitrary parameters (a ≠ 0).
There is a generalized separable solution of the form

w(x1, . . . ,xn, t) = ϕ(t) + ψ(t)Θ(x1, . . . ,xn),

where the functions ϕ(t), ψ(t) are determined by the system of ordinary differential equations

ϕ′

t = bϕ2 + g(t)ϕ + h(t), (1)
ψ′

t =
[

bϕ − βf (t) + g(t)
]

ψ, β = b/a, (2)

and the function Θ(x1, . . . ,xn) is a solution of the Helmholtz equation

∆Θ + βΘ = 0. (3)

Equation (1) is independent of ψ and represents a Riccati equation for ϕ. A large number of
exact solutions to equation (1) for various g(t) and h(t) can be found in Polyanin and Zaitsev (2003).
On solving (1) and substituting the resulting ϕ = ϕ(t) into (2), one obtains a linear equation for
ψ = ψ(t), which is easy to integrate.

For solutions of the linear stationary equation (3), see the books by Tikhonov and Samarskii
(1990) and Polyanin (2002).

8.
∂w

∂t
+ (~v ⋅ ∇)w = ∆w + f (w)|∇w|2.

Here, ~v is a prescribed vector function dependent on the space coordinates and time (but independent
of w).

The substitution

Θ =
∫

F (w) dw, where F (w) = exp
[
∫

f (w) dw
]

,

leads a linear convective heat and mass transfer equation for Θ = Θ(x1, . . . ,xn, t):

∂Θ

∂t
+ (~v ⋅ ∇)Θ = ∆Θ.

9.
∂w

∂t
+ (~v ⋅ ∇)w = a∆w + a|∇w|2 + f (x, t).

Here, ~v is a prescribed vector function dependent on the space coordinates and time (but independent
of w).

The substitution Θ = ew leads to the linear equation

∂Θ

∂t
+ (~v ⋅ ∇)Θ = a∆Θ + f (x, t)Θ.

10.
∂w

∂t
= α∇ ⋅

(

wm∇w
)

+ f (t)w.

1◦. Multiplicative separable solution:

w(x, t) = exp
[
∫

f (t) dt
]

[

Θ(x)
]

1
m+1 , (1)

where the function Θ(x) satisfies the Laplace equation

∆Θ = 0.

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
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2◦. Multiplicative separable solution:

w(x, t) = ϕ(t)
[

Θ(x)
]

1
m+1 , (2)

where the function ϕ(t) is determined by the Bernoulli equation
ϕ′

t − f (t)ϕ +Aαϕm+1 = 0. (3)
Here, A is an arbitrary constant and the function Θ(x) satisfies the stationary equation

∆Θ +A(m + 1)Θ
1

m+1 = 0.
The general solution of equation (3) is given by

ϕ(t) = exp
[

F (t)
]

{

Aαm

∫

exp
[

mF (t)
]

dt +B
}−1/m

, F (t) =
∫

f (t) dt,

where B is an arbitrary constant.
3◦. The transformation

w(x, t) = F (t)U (x, τ ), τ =
∫

Fm(t) dt, F (t) = exp
[
∫

f (t) dt
]

,

leads to a simpler equation:
∂U

∂τ
= α∇ ⋅ (Um∇w).

Example. For α = 1, f (t) = −β < 0, we have
∂w

∂t
= ∇ ⋅ (wm∇w) − βw.

Solution in the radially symmetric case:

w =







e
−βt/m[g(t)]−n/(nm+2)

[

m

2(nm + 2)

(

η
2
0 −

r2

[g(t)]2/(nm+2)

)]1/m

if r ≤ r∗(t),

0 if r > r∗(t),
where

r =
√

x2
1 + · · · + x2

n, g(t) = 1 +
1 − e−βmt

βm
, r∗(t) = η0

(

1 +
1 − e−βmt

βm

)1/(nm+2)

.

The diameter of the support of this solution is monotonically increasing but is bounded now by the constant

L = lim
t→∞

|r∗(t)| = η0

(

1 +
1

βm

)1/(nm+2)

< ∞.

The perturbation is localized in a ball of radius L.6�7
References: L. K. Martinson and K. B. Pavlov (1972), A. D. Polyanin and V. F. Zaitsev (2002).

11.
∂w

∂t
= ∇ ⋅ (wm∇w) – w1–m.

Solution in the radially symmetric case for 0 < m < 1:

w =







[

2(nm + 2)
m

t

]−1/m

V 1/m if V ≥ 0,

0 if V < 0,
where

V = At2/(nm+2) −
(nm + 2)2

nm + 1
t2 − r2, r =

√

x2
1 + · · · + x2

n ;

A is an arbitrary constant (A > 0). The solution has a compact support. The diameter of the support
increases with t on the time interval (0, t∗), where

t∗ =
[

A(nm + 1)
(nm + 2)3

]

nm+2
nm+1

and decreases on the interval (t∗,T0), where

T0 =
[

A(nm + 1)
(nm + 2)2

]

nm+2
2(nm+1)

.

The solution vanishes at t = T0.6�7
References: R. Kersner (1978), L. K. Martinson (1979).
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12.
∂w

∂t
= a∇ ⋅ (eλw∇w) + beλw + f (t) + g(t)e–λw.

Functional separable solution:

w(x, t) =
1
λ

ln
[

ϕ(t) + ψ(t)Θ(x)
]

, ψ(t) = exp
{

λ

∫

[

bϕ(t) + f (t)
]

dt

}

,

where the function ϕ(t) is determined by the Riccati equation

ϕ′

t = bλϕ2 + λf (t)ϕ + λg(t), (1)

and the function Θ = Θ(x) is a solution of the Helmholtz equation

a∆Θ + bλΘ = 0. (2)

For details about the Riccati equation (1), see Kamke (1977) and Polyanin and Zaitsev (2003). For
solutions of the linear equation (2), see Tikhonov and Samarskii (1990) and Polyanin (2002).

13.
∂w

∂t
= ∇ ⋅ [f (w)∇w] +

a

f (w)
+ b.

Solution in implicit form:
∫

f (w) dw = at + U (x),

where the function U (x) is determined by the Poisson equation

∆U + b = 0.

For details about this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).8�9

Reference: V. A. Galaktionov (1994).

14.
∂w

∂t
= ∇ ⋅ [f (w)∇w] +

g(t)
f (w)

+ h(x).

Solution in implicit form:
∫

f (w) dw =
∫

g(t) dt + U (x),

where the function U (x) is determined by the Poisson equation

∆U + h(x) = 0.

15.
∂w

∂t
= ∆f (w) +

af (w) + b

f ′(w)
+ c[af (w) + b].

Solution in implicit form:

f (w) = eatU (x) −
b

a
,

where the function U (x) is determined by the Helmholtz equation

∆U + acU = 0.

For details about this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).8�9

Reference: V. A. Galaktionov (1994).

Page 184

© 2004 by Chapman & Hall/CRC



2.5. EQUATIONS WITH THREE OR MORE SPACE VARIABLES 185

16.
∂w

∂t
= L [f (w)] +

g(t)
f ′(w)

+ h(x).

Here, L is an arbitrary linear differential operator of the second (or any) order with respect to the
space variables with coefficients independent of t; the operator satisfies the condition L [const] = 0.

Solution in implicit form:

f (w) =
∫

g(t) dt + U (x),

where the function U (x) is determined by the linear equation

L [U ] + h(x) = 0.

17.
∂w

∂t
= L [f (w)] +

af (w) + b

f ′(w)
+ g(x)[af (w) + b].

Here, L is an arbitrary linear differential operator of the second (or any) order with respect to the
space variables with coefficients independent of t; the operator satisfies the condition L [const] = 0.

Solution in implicit form:

f (w) = eatU (x) −
b

a
,

where the function U (x) is determined by the linear equation

L [U ] + ag(x)U = 0.

18.
∂w

∂t
= L [f (x, w)] +

g(t)
fw(x, w)

+ h(x).

Here, L is an arbitrary linear differential operator of the second (or any) order with respect to the
space variables with coefficients independent of t; the operator satisfies the condition L [const] = 0;
and fw stands for the partial derivative of f with respect to w.

Solution in implicit form:

f (x,w) =
∫

g(t) dt + U (x),

where the function U (x) is determined by the linear equation

L [U ] + h(x) = 0.

19.
∂w

∂t
= L [f (x, w)] +

af (x, w) + b

fw(x, w)
+ g(x)[af (x, w) + b].

Here, L is an arbitrary linear differential operator of the second (or any) order with respect to the
space variables with coefficients independent of t; the operator satisfies the condition L [const] = 0.

Solution in implicit form:

f (x,w) = eatU (x) −
b

a
,

where the function U (x) is determined by the linear equation

L [U ] + ag(x)U = 0.

20.
∂w

∂t
= a∇ ⋅ (|∇w|∇w) + bw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t) + exp
{

∫

[

2bϕ(t) + f (t)
]

dt

}

Θ(x),

where the function ϕ(t) is determined by the Riccati equation

ϕ′

t = bϕ2 + f (t)ϕ + g(t),

and the function Θ = Θ(x) is a solution of the stationary equation

a∇ ⋅ (|∇Θ|∇Θ) + bΘ2 = 0.
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2.6. Nonlinear Schrödinger Equations
2.6.1. TwoDimensional Equations

1. i
∂w

∂t
+

∂2w

∂x2
+

∂2w

∂y2
+ A|w|2w = 0.

Two-dimensional Schrödinger equation with a cubic nonlinearity. This is a special case of equation
2.6.1.3 with f (u) = Au2.

1◦. Suppose w(x, y, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = : C1w( : C1x + C2, : C1y + C3,C2
1 t + C4),

w2 = e−i[λ1x+λ2y+(λ2
1+λ2

2)t+C5]w(x + 2λ1t, y + 2λ2t, t),
w3 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, . . . , C5, λ1, λ2, and β are arbitrary real constants, are also solutions of the equation. The
plus or minus signs in the expression for w1 are chosen arbitrarily.

2◦. Solutions:

w(x, y, t) = C1 exp
{

i [C2x + C3y + (AC2
1 − C2

2 − C2
3 )t + C4]

}

,

w(x, y, t) =
C1

t
exp

[

i
(x + C2)2 + (y + C3)2 − 4AC2

1
4t

+ iC4

]

,

where C1, . . . , C4 are arbitrary real constants.

3◦. “Two-dimensional” solution:

w(x, y, t) = ei(C1t+C2)u(x, y),

where C1 and C2 are arbitrary real constants, and the function u = u(x, y) is determined by the
stationary equation

∂2u

∂x2 +
∂2u

∂y2 +Au3 − C1u = 0.

4◦. Solution:

w(x, y, t) = (f1x + f2y + f3) exp
[

i(g1x
2 + g2xy + g3y

2 + h1x + h2y + h3)
]

,

where the functions fk = fk(t), gk = gk(t), and hk = hk(t) are determined by the autonomous system
of ordinary differential equations

f ′

1 + 2(3g1 + g3)f1 + 2f2g2 = 0,
f ′

2 + 2(g1 + 3g3)f2 + 2f1g2 = 0,
f ′

3 + 2(g1 + g3)f3 + 2(f1h1 + f2h2) = 0,

g′1 + 4g2
1 + g2

2 −Af 2
1 = 0,

g′2 + 4(g1 + g3)g2 − 2Af1f2 = 0,

g′3 + g2
2 + 4g2

3 −Af 2
2 = 0,

h′1 + 4g1h1 + 2g2h2 − 2Af1f3 = 0,
h′2 + 2g2h1 + 4g3h2 − 2Af2f3 = 0,

h′3 + h2
1 + h2

2 −Af 2
3 = 0.

The prime denotes a derivative with respect to t.
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5◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ1, ξ2)ei(k1x+k2y+at+b), ξ1 = x − 2k1t, ξ2 = y − 2k2t,

where k1, k2, a, and b are arbitrary constants, and the function U = U (ξ1, ξ2) is determined by a
differential equation of the form 5.4.1.1:

∂2U

∂ξ2
1

+
∂2U

∂ξ2
2

+A|U |2U − (k2
1 + k2

2 + a)U = 0.

6◦. “Two-dimensional” solution:

w(x, y, t) = Φ(z1, z2) exp
[

i(k1xt + k2yt − 2
3 k

2
1t

3 − 2
3 k

2
2t

3 + at + b)
]

, z1 = x − k1t
2, z2 = y − k2t

2,

where k1, k2, a, and b are arbitrary constants, and the function Φ = Φ(z1, z2) is determined by a
differential equation of the form 5.4.1.1:

∂2
Φ

∂z2
1

+
∂2

Φ

∂z2
2

+A|Φ|2Φ − (k1z1 + k2z2 + a)Φ = 0.

7◦. “Two-dimensional” solution:

w(x, y, t) =
1

√

C1t + C2
u(ξ, η), ξ =

x + C3
√

C1t + C2
, η =

y + C4
√

C1t + C2
,

whereC1, . . . ,C4 are arbitrary constants, and the functionu=u(ξ, η) is determined by the differential
equation

∂2u

∂ξ2 +
∂2u

∂η2 −
1
2
iC1

(

ξ
∂u

∂ξ
+ η

∂u

∂η
+ u

)

+A|u|2u = 0.

2. i
∂w

∂t
+

∂2w

∂x2
+

∂2w

∂y2
+ A|w|2nw = 0.

Two-dimensional Schrödinger equation with a power-law nonlinearity; A and n are real numbers.
This is a special case of equation 2.6.1.3 with f (u) = Au2n.

1◦. Suppose w(x, y, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = ; C1w( ; Cn
1 x + C2, ; Cn

1 y + C3,C2n
1 t + C4),

w2 = e−i[λ1x+λ2y+(λ2
1+λ2

2)t+C5]w(x + 2λ1t, y + 2λ2t, t),
w3 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where C1, . . . , C5, β, λ1, and λ2 are arbitrary real constants, are also solutions of the equation. The
plus or minus signs in the expression for w1 are chosen arbitrarily.

2◦. Solutions:

w(x, y, t) = C1 exp
{

i [C2x + C3y + (A|C1|2n − C2
2 − C2

3 )t + C4]
}

,

w(x, y, t) =
C1

t
exp

[

i
(x + C2)2 + (y + C3)2

4t
+ i

AC2n
1

1 − 2n
t1−2n + iC4

]

,

where C1, . . . , C4 are arbitrary real constants.

3◦. For other exact solutions, see equation 2.6.1.3 with f (w) = Aw2n.
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3. i
∂w

∂t
+

∂2w

∂x2
+

∂2w

∂y2
+ f (|w|)w = 0.

Two-dimensional nonlinear Schrödinger equation of general form.

1◦. Suppose w(x, y, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = e−i[λ1x+λ2y+(λ2
1+λ2

2)t+A]w(x + 2λ1t + C1, y + 2λ2t + C2, t + C3),
w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

where A, C1, C2, C3, λ1, λ2, and β are arbitrary real constants, are also solutions of the equation.

2◦. Traveling-wave solution:

w(x, y, t) = C1 exp
[

i (C2x + C3y + λt + C4)
]

, λ = f (|C1|) − C2
2 − C2

3 ,

where C1, . . . , C4 are arbitrary real constants.

3◦. Exact solutions depending only on the radial variable r =
√

x2 + y2 and time t are determined
by the equation

i
∂w

∂t
+

1
r

∂

∂r

(

r
∂w

∂r

)

+ f (|w|)w = 0,

which is a special case of equation 1.7.5.2 with n = 1.

4◦. “Two-dimensional” solution:

w(x, y, t) = ei(At+B)u(x, y),

whereA andB are arbitrary real constants, and the function u = u(x, y) is determined by a stationary
equation of the form 5.4.1.1:

∂2u

∂x2 +
∂2u

∂y2 + f (|u|)u −Au = 0.

5◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, η)ei(A1x+A2y+Bt+C), ξ = x − 2A1t, η = y − 2A2t,

where A1, A2, B, and C are arbitrary constants, and the function U = U (ξ, η) is determined by a
differential equation of the form 5.4.1.1:

∂2U

∂ξ2 +
∂2U

∂η2 + f (|U |)U − (A2
1 +A2

2 + B)U = 0.

6◦. “Two-dimensional” solution:

w(x, y, t) = Φ(z1, z2) exp
[

i(k1xt + k2yt − 2
3 k

2
1t

3 − 2
3 k

2
2t

3 + at + b)
]

, z1 = x − k1t
2, z2 = y − k2t

2,

where k1, k2, a, and b are arbitrary constants, and the function Φ = Φ(z1, z2) is determined by the
differential equation

∂2
Φ

∂z2
1

+
∂2

Φ

∂z2
2

+ f (|Φ|)Φ − (k1z1 + k2z2 + a)Φ = 0.

7◦. There is a “two-dimensional” solution of the form

w(x, y, t) = U (z1, z2), z1 = a1x + b1y + c1t, z2 = a2x + b2y + c2t.

8◦. For group classification of the original equation, see Gagnon and Winternitz (1988) and Ibragi-
mov (1995).
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2.6.2. Three and nDimensional Equations

1. i
∂w

∂t
+

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
+ A|w|2w = 0.

Three-dimensional Schrödinger equation with a cubic nonlinearity. This is a special case of equation
2.6.2.2 with f (u) = Au2.

1◦. Suppose w(x, y, t) is a solution of the Schrödinger equation in question. Then the functions

w1 = < C1w( < C1x + C2, < C1y + C3, < C1z + C4,C2
1 t + C5),

w2 = e−i[λ1x+λ2y+λ3z+(λ2
1+λ2

2+λ2
3)t+C6]w(x + 2λ1t, y + 2λ2t, z + 2λ3t, t),

whereC1, . . . , C6, λ1, λ2, and λ3 are arbitrary real constants, are also solutions of the equation. The
plus or minus signs in the expression for w1 are chosen arbitrarily.

2◦. There is an exact solution of the form

w = (f1x + f2y + f3z + f4) exp
[

i(g1x
2 + g2y

2 + g3z
2 + g4xy + g5xz + g6yz + h1x + h2y + h3z + h4)

]

,

where fk = fk(t), gk = gk(t), and hk = hk(t).

3◦. Solution:

w(x, y, z, t) = U (ξ1, ξ2, ξ3)ei(k1x+k2y+k3z+at+b), ξ1 = x − 2k1t, ξ2 = y − 2k2t, ξ3 = z − 2k3t,

where k1, k2, k3, a, and b are arbitrary constants, and the function U = U (ξ1, ξ2, ξ3) is determined
by the differential equation

∂2U

∂ξ2
1

+
∂2U

∂ξ2
2

+
∂2U

∂ξ2
3

+A|U |2U − (k2
1 + k2

2 + k2
3 + a)U = 0.

4◦. “Three-dimensional” solution:

w(x, y, z, t) =
1

√

C1t + C2
u(ξ, η, ζ), ξ =

x + C3
√

C1t + C2
, η =

y + C4
√

C1t + C2
, ζ =

z + C5
√

C1t + C2
,

where C1, . . . , C5 are arbitrary constants, and the function u = u(ξ, η, ζ) is determined by the
differential equation

∂2u

∂ξ2 +
∂2u

∂η2 +
∂2u

∂ζ2 −
1
2
iC1

(

ξ
∂u

∂ξ
+ η

∂u

∂η
+ ζ

∂u

∂ζ
+ u

)

+A|u|2u = 0.

=�>
References: L. Gagnon and P. Winternitz (1988, 1989), N. H. Ibragimov (1995), A. M. Vinogradov and I. S. Krasil’shchik

(1997).

2. i
∂w

∂t
+

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
+ f (|w|)w = 0.

Three-dimensional nonlinear Schrödinger equation of general form. It admits translations in any of
the independent variables.

1◦. Suppose w(x, y, z, t) is a solution of the Schrödinger equation in question. Then the function

w1 = e−i[λ1x+λ2y+λ3z+(λ2
1+λ2

2+λ2
3)t+A]w(x + 2λ1t + C1, y + 2λ2t + C2, z + 2λ3t + C3, t + C4),

where A, C1, . . . , C4, λ1, λ2, and λ3 are arbitrary real constants, is also a solution of the equation.

2◦. Exact solutions depending only on the radial variable r=
√

x2 + y2 + z2 and time t are determined
by the equation

i
∂w

∂t
+

1
r2

∂

∂r

(

r2 ∂w

∂r

)

+ f (|w|)w = 0,

which is a special case of equation 1.7.5.2 with n = 2.
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3◦. “Three-dimensional” solution:

w(x, y, z, t) = ei(At+B)u(x, y, z),

where A and B are arbitrary real constants, and the function u = u(x, y, z) is determined by the
stationary equation

∆u + f (|u|)u −Au = 0.

4◦. Axisymmetric solutions in cylindrical and spherical coordinates are determined by equations
where the Laplace operator has the form

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 =
1
ρ

∂

∂ρ

(

ρ
∂w

∂ρ

)

+
∂2w

∂z2 , ρ =
√

x2 + y2;

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 =
1
r2

∂

∂r

(

r2 ∂w

∂r

)

+
1

r2 sin θ
∂

∂θ

(

sin θ
∂w

∂θ

)

, r =
√

x2 + y2 + z2,

respectively.

5◦. “Three-dimensional” solution:

w = U (ξ, η, t), ξ = y +
x

C
, η = (C2 − 1)x2 − 2Cxy + C2z2,

where C is an arbitrary constant (C ≠ 0), and the function U = U (ξ, η, t) is determined by the
differential equation

i
∂U

∂t
+

(

1 +
1
C2

)

∂2U

∂ξ2 − 4ξ
∂2U

∂ξ∂η
+ 4C2(ξ2 + η)

∂2U

∂η2 + 2(2C2 − 1)
∂U

∂η
+ f (|U |)U = 0.

6◦. “Three-dimensional” solution:

w = V (ξ, η, t), ξ = Ax +By + Cz, η =
√

(Bx −Ay)2 + (Cy −Bz)2 + (Az − Cx)2,

where A, B, and C are arbitrary constants and the function V = V (ξ, η, t) is determined by the
equation

i
∂V

∂t
+ (A2 +B2 + C2)

(

∂2V

∂ξ2 +
∂2V

∂η2 +
1
η

∂V

∂η

)

+ f (|V |)V = 0.
?�@

References: L. Gagnon and P. Winternitz (1988, 1989), N. H. Ibragimov (1995).

3. i
∂w

∂t
= ∆w + |w|2w.

This is an n-dimensional Schrödinger equation with a cubic nonlinearity.
Conservation laws:

(

|w|2
)

t
+ i∇ ⋅

(

w̄∇w − w∇w̄
)

x
= 0,

(

|∇w|2 − 1
2 |w|4

)

t
+ i∇ ⋅

[

(∆w + |w|2w)∇w̄ − (∆w̄ + |w|2w̄)∇w
]

x
= 0.

The bar over a symbol denotes the complex conjugate.?�@
Reference: A. M. Vinogradov and I. S. Krasil’shchik (1997).
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Chapter 3

Hyperbolic Equations
with One Space Variable

3.1. Equations with Power-Law Nonlinearities

3.1.1. Equations of the Form ∂2w
∂t2 = ∂2w

∂x2 + aw + bwn + cw2n–1

I The general properties of equations of this type are outlined in 3.4.1.1; traveling-wave solutions
and some other solutions are also presented there.

1.
∂2w

∂t2
=

∂2w

∂x2
+ awn.

This is a special case of equation 3.4.1.1 with f (w) = awn.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w

( �
Cn−1

1 x + C2,
�
Cn−1

1 t + C3
)

,

w2 = w(x coshλ + t sinhλ, x sinhλ + t coshλ),

whereC1, C2, C3, and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Solutions:

w(x, t) = b
(

x + C1t + C2
)

2
1−n , b =

[

2(1 + n)(C2
1 − 1)

a(1 − n)2

]

1
n−1

;

w(x, t) =
[

k(t + C1)2 − k(x + C2)2]
1

1−n , k = 1
4 a(1 − n)2,

where C1 and C2 are arbitrary constants.

3◦. The solutions of Item 2◦ are special cases of solutions of the following forms:

w(x, t) = F (z), z = x + C1t + C2;

w(x, t) = G(ξ), ξ = (t + C1)2 − (x + C2)2.

4◦. Self-similar solution:

w(x, t) = (t + C1)
2

1−n u(ξ), ξ =
x + C2

t + C1
,

where the function u(ξ) is determined by the ordinary differential equation

(1 − ξ2)u′′ξξ +
2(1 + n)

1 − n
ξu′ξ −

2(1 + n)
(1 − n)2 u + aun = 0.

The transformation
u = (cosh θ)

2
n−1 U (θ), ξ = tanh θ
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brings this equation to the autonomous form

U ′′

θθ −
4

(1 − n)2 U + aUn = 0.

Integrating yields the general solution in implicit form

∫
[

4
(n − 1)2 U

2 −
2a
n + 1

Un+1 + C3

]−1/2

dU = C4 � θ,

where C3 and C4 are arbitrary constants.

2.
∂2w

∂t2
=

∂2w

∂x2
+ aw + bwn.

This is a special case of equation 3.4.1.1 with f (w) = aw + bwn.

1◦. Traveling-wave solutions for a > 0:

w(x, t) =
[

2b sinh2 z

a(n + 1)

]

1
1−n

, z = 1
2
√

a (1 − n)(x sinhC1 � t coshC1) + C2 if b(n + 1) > 0,

w(x, t) =
[

−
2b cosh2 z

a(n + 1)

]

1
1−n

, z = 1
2
√

a (1 − n)(x sinhC1 � t coshC1) + C2 if b(n + 1) < 0,

where C1 and C2 are arbitrary constants.

2◦. Traveling-wave solutions for a < 0 and b(n + 1) > 0:

w(x, t) =
[

−
2b cos2 z

a(n + 1)

]

1
1−n

, z = 1
2

√

|a| (1 − n)(x sinhC1 � t coshC1) + C2.

3.
∂2w

∂t2
=

∂2w

∂x2
+ awn + bw2n–1.

This is a special case of equation 3.4.1.1 with f (w) = awn + bw2n−1.
Solutions:

w(x, t) =
[

a(1 − n)2

2(n + 1)
(x sinhC1 � t coshC1 + C2)2 −

b(n + 1)
2an

]

1
1−n

,

w(x, t) =
{

1
4
a(1 − n)2[(t + C1)2 − (x + C2)2] −

b

an

}

1
1−n

,

where C1 and C2 are arbitrary constants.

4.
∂2w

∂t2
=

∂2w

∂x2
+ aw – a(n + 1)wn + bw2n–1.

1◦. Traveling-wave solutions:

w(x, t) =
(

λ + C1 exp z
)

1
1−n , z =

√

a (1 − n)(x sinhC2 � t coshC2),

where λ = λ1,2 are roots of the quadratic equation aλ2 −a(n+1)λ+b= 0, andC1 andC2 are arbitrary
constants.

2◦. See also equation 3.1.1.5, in which b should be renamed −a(n + 1) and c renamed b.
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5.
∂2w

∂t2
=

∂2w

∂x2
+ aw + bwn + cw2n–1.

This is a special case of equation 3.4.1.1 with f (w) = aw + bwn + cw2n−1.
1◦. Traveling-wave solutions for a > 0:

w(x, t) = (A +B cosh z)
1

1−n , z =
√

a (1 − n)(x sinhC1 � t coshC1) + C2,

A = −
b

a(n + 1)
, B = �

[

b2

a2(n + 1)2 −
c

an

]1/2

;

w(x, t) = (A +B sinh z)
1

1−n , z =
√

a (1 − n)(x sinhC1 � t coshC1) + C2,

A = −
b

a(n + 1)
, B = �

[

c

an
−

b2

a2(n + 1)2

]1/2

,

where C1 and C2 are arbitrary constants (the expressions in square brackets must be nonnegative).
2◦. Traveling-wave solutions for a < 0:

w(x, t) = (A +B cos z)
1

1−n , z =
√

|a| (1 − n)(x sinhC1 � t coshC1) + C2,

A = −
b

a(n + 1)
, B = �

[

b2

a2(n + 1)2 −
c

an

]1/2

,

where C1 and C2 are arbitrary constants.
3◦. The substitution u = w1−n leads to an equation with a quadratic nonlinearity:

u

(

∂2u

∂t2
−
∂2u

∂x2

)

+
n

1 − n

[(

∂u

∂t

)2

−
(

∂u

∂x

)2]

= a(1 − n)u2 + b(1 − n)u + c(1 − n).

3.1.2. Equations of the Form ∂2w
∂t2 = a∂2w

∂x2 + f (x, t, w)

1.
∂2w

∂t2
=

∂2w

∂x2
+ a(x2 – t2)wk.

This is a special case of equation 3.4.1.2 with f (w) = awk .

2.
∂2w

∂t2
= a

∂2w

∂x2
+ c(x + bt)nwk.

This is a special case of equation 3.4.1.4 with f (z,w) = cznwk. For b = � 1, see also equations
3.4.1.13 and 3.4.1.14 with f (ξ) = cξn and g(w) = wk.

3.
∂2w

∂t2
=

∂2w

∂x2
+ a(x2 – t2)(xt)nwk.

This is a special case of equation 3.4.1.5 with f (z,w) = aznwk .

4.
∂2w

∂t2
=

∂2w

∂x2
+ aeβtwk.

This is a special case of equation 3.4.1.7 with f (w) = awk .
Functional separable solutions:

w(x, t) =
{

C exp
[

β(k − 1)
4(k + 1)

(t � x)
]

+
√

a

β
(1 − k)eβt/2

}

2
1−k

,

w(x, t) =
{

C exp
[

β(k − 1)
4(k + 1)

(t � x)
]

−
√

a

β
(1 − k)eβt/2

}

2
1−k

,

where C is an arbitrary constant.
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5.
∂2w

∂t2
=

∂2w

∂x2
+ aw + beβtwk.

Functional separable solutions:

w(x, t) =
{

C exp
[

k − 1
4β(k + 1)

( �
√

[β2 − (k − 1)2a][β2 − (k + 3)2a]x

+ [β2 + (k − 1)(k + 3)a] t
)]

+ (k − 1)

√

b

β2 − (k − 1)2a
eβt/2

}

2
1−k

,

w(x, t) =
{

C exp
[

k − 1
4β(k + 1)

( �
√

[β2 − (k − 1)2a][β2 − (k + 3)2a]x

+ [β2 + (k − 1)(k + 3)a] t
)]

− (k − 1)

√

b

β2 − (k − 1)2a
eβt/2

}

2
1−k

,

where C is an arbitrary constant.���
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

6.
∂2w

∂t2
=

∂2w

∂x2
+ eβt(a + beβt)wk.

Functional separable solutions:

w(x, t) =
{

C exp
[

β(k − 1)
2(k + 1)

(t
�
x)

]

+
1

β
√

b

[

a + 1
2 (1 − k)beβt

]

}

2
1−k

,

w(x, t) =
{

C exp
[

β(k − 1)
2(k + 1)

(t
�
x)

]

−
1

β
√

b

[

a + 1
2 (1 − k)beβt

]

}

2
1−k

,

where C is an arbitrary constant.���
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

7.
∂2w

∂t2
=

∂2w

∂x2
+

β2

k2 + 4
w +

(

a2e2βt + abkeβt – b2)w–3, k ≠ 0.

Functional separable solutions:

w(x, t) =
� √

C exp
(

βt +
βkx
√

k2 + 4

)

+
√

k2 + 4
β

(

2a
k
eβt + b

)

,

w(x, t) =
� √

C exp
(

βt −
βkx
√

k2 + 4

)

+
√

k2 + 4
β

(

2a
k
eβt + b

)

,

w(x, t) =
� √

C exp
(

βt +
βkx
√

k2 + 4

)

−
√

k2 + 4
β

(

2a
k
eβt + b

)

,

w(x, t) =
� √

C exp
(

βt −
βkx
√

k2 + 4

)

−
√

k2 + 4
β

(

2a
k
eβt + b

)

,

where C is an arbitrary constant.���
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).
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8.
∂2w

∂t2
=

∂2w

∂x2
–

β2

k2 – 4
w +

(

a2e2βt + abkeβt + b2)w–3, |k| > 2.

Functional separable solutions:

w(x, t) = �
√

C exp
(

βt +
βkx
√

k2 − 4

)

+
√

k2 − 4
β

(

2a
k
eβt + b

)

,

w(x, t) = �
√

C exp
(

βt −
βkx
√

k2 − 4

)

+
√

k2 − 4
β

(

2a
k
eβt + b

)

,

w(x, t) = �
√

C exp
(

βt +
βkx
√

k2 − 4

)

−
√

k2 − 4
β

(

2a
k
eβt + b

)

,

w(x, t) = �
√

C exp
(

βt −
βkx
√

k2 − 4

)

−
√

k2 − 4
β

(

2a
k
eβt + b

)

,

where C is an arbitrary constant.��	
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

9.
∂2w

∂t2
=

∂2w

∂x2
– aeβxwk.

This is a special case of equation 3.4.1.6 with f (w) = −awk.
Functional separable solutions:

w(x, t) =
{

C exp
[

β(k − 1)
4(k + 1)

(x � t)
]

+
√

a

β
(1 − k)eβx/2

}

2
1−k

,

w(x, t) =
{

C exp
[

β(k − 1)
4(k + 1)

(x � t)
]

−
√

a

β
(1 − k)eβx/2

}

2
1−k

,

where C is an arbitrary constant.

10.
∂2w

∂t2
=

∂2w

∂x2
– aw – beβxwk.

Functional separable solutions:

w(x, t) =
{

C exp
[

k − 1
4β(k + 1)

(

� √

[β2 − (k − 1)2a][β2 − (k + 3)2a] t

+ [β2 + (k − 1)(k + 3)a]x
)]

+ (k − 1)

√

b

β2 − (k − 1)2a
eβx/2

}

2
1−k

,

w(x, t) =
{

C exp
[

k − 1
4β(k + 1)

(

� √

[β2 − (k − 1)2a][β2 − (k + 3)2a] t

+ [β2 + (k − 1)(k + 3)a]x
)]

− (k − 1)

√

b

β2 − (k − 1)2a
eβx/2

}

2
1−k

,

where C is an arbitrary constant.
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11.
∂2w

∂t2
=

∂2w

∂x2
– eβx(a + beβx)wk.

Functional separable solutions:

w(x, t) =
{

C exp
[

β(k − 1)
2(k + 1)

(x 
 t)
]

+
1

β
√

b

[

a + 1
2 (1 − k)beβx

]

}

2
1−k

,

w(x, t) =
{

C exp
[

β(k − 1)
2(k + 1)

(x 
 t)
]

−
1

β
√

b

[

a + 1
2 (1 − k)beβx

]

}

2
1−k

,

where C is an arbitrary constant.

12.
∂2w

∂t2
=

∂2w

∂x2
+ ceax+btwk.

This is a special case of equation 3.4.1.8 with f (w) = cwk .

3.1.3. Equations of the Form ∂2w
∂t2 = a∂2w

∂x2 + f
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
=

a

xn

∂

∂x

(

xn ∂w

∂x

)

+ bwm, a > 0.

This equation can be rewritten in the equivalent form

∂2w

∂t2
= a

(

∂2w

∂x2 +
n

x

∂w

∂x

)

+ bwm.

For n = 1 and n = 2, this equation describes nonlinear waves with axial and central symmetry,
respectively.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w

( 
 Ck−1
1 x, 
 Ck−1

1 t + C2
)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Functional separable solution:

w(x, t) =
{

b(1 −m)2

2a(2 + n − nm)
[

a(t + C)2 − x2]
}

1
1−m

, (1)

where C is an arbitrary constant.

3◦. Solution (1) is a special case of the wider family of exact solutions

w = w(r), r2 = A
[

a(t + C)2 − x2],

where the sign of A must coincide with that of the expression in square brackets, and the function
w = w(r) is determined by the ordinary differential equation

w′′

rr +
n + 1
r

w′

r =
b

Aa
wm. (2)

The books by Polyanin and Zaitsev (1995,2003) give more than 20 exact solutions to equation (2)
for specific values of the parameters n and m.

4◦. There is a self-similar solution of the form w = t
2

1−m f (ξ), where ξ = x/t.
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2.
∂2w

∂t2
= a

∂2w

∂x2
+ bwm ∂w

∂x
.

This is a special case of equation 3.4.2.3 with f (w) = bwm.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w
(

Cm1 x + C2, � Cm1 t + C3
)

,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution:

w(x, t) =
[

bm(x + λt + C)
(m + 1)(a − λ2)

]−1/m

, (1)

where C and λ are arbitrary constants.
Solution (1) is a special case of the wider class of traveling-wave solutions

∫

dw

A + bwm+1 =
x + λt + C

(m + 1)(λ2 − a)
,

where A, C, and λ are arbitrary constants.

3◦. There is a self-similar solution of the form w = t−1/mf (x/t).

3.
∂2w

∂t2
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + � .

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( � x + C1, � t + C2) + C3 cosh(kt) + C4 sinh(kt) if c = k2 > 0,

w2 = w( � x + C1, � t + C2) + C3 cos(kt) + C4 sin(kt) if c = −k2 < 0,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Generalized separable solution quadratic in x:

w(x, t) = −
c

4b
( � x + C1t + C2)2 +

1
2b

(a − C2
1 ) −

s

c
+ U (t),

U (t) =
{

C3 cosh(kt) + C4 sinh(kt) if c = k2 > 0,
C3 cos(kt) + C4 sin(kt) if c = −k2 < 0.

3◦. For other solutions, see 3.4.2.4 with f (t) = s.

4.
∂2w

∂t2
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + � tn.

This is a special case of equation 3.4.2.4 with f (t) = stn.

5.
∂2w

∂t2
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + � xn.

This is a special case of equation 3.4.2.5 with f (x) = sxn.

6.
∂2w

∂t2
= a

∂2w

∂x2
+ c

(

∂w

∂x

)2

+ bcw2 + kw + � .

This is a special case of equation 3.4.2.10 with f (t) = c, g(t) = k, and h(t) = s.
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Let A be a root of the quadratic equation bcA2 + kA + s = 0.

1◦. Suppose that 2Abc + k − ab = σ2 > 0. Then there are generalized separable solutions

w(x, t) = A +
[

C1 exp(σt) + C2 exp(−σt)
]

exp
( 
x
√

−b
)

,

where C1 and C2 are arbitrary constants.

2◦. If 2Abc + k − ab = −σ2 < 0, there are generalized separable solutions

w(x, t) = A +
[

C1 cos(σt) + C2 sin(σt)
]

exp
( 
x
√

−b
)

.

For more complicated solutions, see 3.4.2.10.���
References: V. A. Galaktionov (1995, the case a = c was considered), V. F. Zaitsev and A. D. Polyanin (1996).

7.
∂2w

∂t2
= a

∂2w

∂x2
+ bxn

(

∂w

∂x

)2

+ cxm + � tk.

This is a special case of equation 3.4.2.8 with f (x) = bxn, g(x) = cxm, and h(t) = stk.

8.
∂2w

∂t2
= a

∂2w

∂x2
+ ctn

(

∂w

∂x

)2

+ bctnw2 + � tmw + ptk.

This is a special case of equation 3.4.2.10 with f (t) = ctn, g(t) = stm, and h(t) = ptk.

9.
∂2w

∂t2
= a

∂2w

∂x2
+ btn

(

∂w

∂x

)2

+ ctkx
∂w

∂x
.

There is a generalized separable solution quadratic in x:

w = ϕ(t)x2 + ψ(t)x + χ(t).

3.1.4. Equations of the Form ∂2w
∂t2 = f (x) ∂2w

∂x2 + g
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= a(x + β)n

∂2w

∂x2
+ bwm, a > 0.

This equation describes the propagation of nonlinear waves in an inhomogeneous medium.

1◦. Functional separable solution for n ≠ 2:

w(x, t) =
{

s

[

a(2 − n)2(t + C)2 − 4(x + β)2−n]
}

1
1−m , s =

b(1 −m)2

2a(2 − n)(nm − 3n + 4)
,

where C is an arbitrary constant.

2◦. Functional separable solution (generalizes the solution of Item 1◦):

w = w(r), r2 = k
[

1
4

(t + C)2 −
(x + β)2−n

a(2 − n)2

]

,

where k and the expression in square brackets must have like signs, and the function w(r) is
determined by the ordinary differential equation

w′′

rr +
2(1 − n)

2 − n
1
r
w′

r =
4b
k
wm. (1)

The substitution ξ = r
n

2−n leads to the Emden–Fowler equation

w′′

ξξ =
4b(2 − n)2

kn2 ξ
4(1−n)
n wm. (2)
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The books by Polyanin and Zaitsev (1995, 2003) give more than 20 exact solutions to equation (2)
for specific values of the parameters n and m.

Special case. For n = 1, the general solution of equation (1) is written in explicit form as
∫

[

C1 +
8b

k(m + 1)
w

m+1
]−1/2

dw = � r + C2,

where C1 and C2 are arbitrary constants.

3◦. Solution for n = 2:
w = w(y), y = At +B ln |x + β|,

whereA andB are arbitrary constants, and the function w = w(y) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

yy − aBw′

y + bwm = 0. (3)
The solution of equation (3) with A = � B√a is given by

w(y) =
[

b(1 −m)
aB

y + C
]

1
1−m

,

where C is an arbitrary constant.

For A ≠ � B√a, the substitution U (w) =
aB2 −A2

aB
w′

y brings (3) to the Abel equation

UU ′

w − U =
b(A2 − aB2)

a2B2 wm,

whose general solutions for m = −2, −1, − 1
2 , 0, 1 can be found in Polyanin and Zaitsev (2003).

4◦. There is a self-similar solution of the form w = t
2

1−m f (ξ), where ξ = (x + β)t
2
n−2 .���

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

2.
∂2w

∂t2
=

∂

∂x

(

axn ∂w

∂x

)

+ bwm, a > 0.

This equation describes the propagation of nonlinear waves in an inhomogeneous medium.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w
(

C
m−1
2−n

1 x, � C m−1
2

1 t + C2

)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for n ≠ 2:

w(x, t) =
{

s

[

a(2 − n)2(t + C)2 − 4x2−n]
}

1
1−m , s =

b(1 −m)2

2a(2 − n)(4 − n − nm)
,

where C is an arbitrary constant.

3◦. Functional separable solution (generalizes the solution of Item 2◦):

w = w(r), r2 = k
[

1
4

(t + C)2 −
x2−n

a(2 − n)2

]

,

where k and the expression in square brackets must have like signs, and the function w(r) is
determined by the ordinary differential equation

w′′

rr +
2

2 − n
1
r
w′

r =
4b
k
wm.

The substitution ξ = r
n
n−2 leads to the Emden–Fowler equation

w′′

ξξ =
4b(2 − n)2

kn2 ξ− 4
nwm. (1)

The books by Polyanin and Zaitsev (1995, 2003) give more than 20 exact solutions to equation (1)
for specific values of the parameters n and m.
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4◦. Solution for n = 2:
w = w(z), z = At +B ln |x|,

whereA andB are arbitrary constants, and the functionw = w(z) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

zz + aBw′

z + bwm = 0. (2)
The solution of equation (2) with A = � B√a is given by

w(z) =
[

b(m − 1)
aB

z + C
]

1
1−m

,

where C is an arbitrary constant.

For A ≠ � B√a, the substitution U (w) =
A2 − aB2

aB
w′

z brings (2) to the Abel equation

UU ′

w − U =
b(A2 − aB2)

a2B2 wm,

whose exact solutions form = −2, −1, − 1
2 , 0, 1 can be found in Polyanin and Zaitsev (1995, 2003).

5◦. There is a self-similar solution of the form w = t
2

1−m f (ξ), where ξ = xt
2
n−2 .���

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

3.
∂2w

∂t2
= axn ∂2w

∂x2
+ bxn–1wm ∂w

∂x
, a > 0.

This is a special case of equation 3.4.3.5 with f (w) = bwm.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions
w1 = w(C2

1x, � C2−n
1 t + C2),

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for n ≠ 2:

w = w(z), z =
∣

∣a(2 − n)2(t + C)2 − 4x2−n∣
∣

1/2,
whereC is an arbitrary constant, and the functionw =w(z) is determined by the ordinary differential
equation

w′′

zz +
2

a(2 − n)z
[

a(1 − n) + bwm
]

w′

z = 0. (1)

The substitution u(w) = zw′

z leads equation (1) to a first-order separable ordinary differential
equation. Integrating yields a solution in implicit form:

∫

dw

anw −
2b

m + 1
wm+1 + C1

=
1

a(2 − n)
ln z + C2,

where C1 and C2 are arbitrary constants.

3◦. There is a self-similar solution of the form

w = U (ζ), ζ = xt
2
n−2 .

4◦. Solution for n = 2:
w = w(ξ), z = At +B ln |x| + C,

whereA,B, andC are arbitrary constants, and the functionw=w(ξ) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

ξξ +B(bwm − a)w′

ξ = 0.
Integrating yields

∫

dw

bwm+1 − a(m + 1)w + C1
= −

Bξ

(m + 1)(aB2 −A2)
.
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4.
∂2w

∂t2
= axn ∂2w

∂x2
+ bxn–1wm ∂w

∂x
+ cwk, a > 0.

This is a special case of equation 3.4.3.6 with f (w) = bwm and g(w) = cwk .

5.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ cwm, a > 0.

This is an equation of the propagation of nonlinear waves in an inhomogeneous medium. This is a
special case of equation 3.4.3.9 with b = 0 and f (w) = cwm.

6.
∂2w

∂t2
=

∂

∂x

(

aeλx ∂w

∂x

)

+ cwm.

This is a special case of equation 3.4.3.9 with b = aλ and f (w) = cwm.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w
(

x +
1 −m
λ

lnC1, � C m−1
2

1 t + C2

)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for m ≠ � 1 and λ ≠ 0:

w =
[

−
c(m − 1)2

2k(1 +m)
(r + C1)2

]

1
1−m

, r2 = 4k
[

e−λx

aλ2 −
1
4

(t + C2)2
]

,

where C1, C2, and k are arbitrary constants.

3◦. Functional separable solution for λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[

e−λx

aλ2 −
1
4

(t + C)2
]

,

where the function w(r) is determined by the autonomous ordinary differential equation

w′′

rr + ck−1wm = 0.

Integrating yields the general solution in implicit form
∫

[

C1 −
2c

k(m + 1)
wm+1

]−1/2

dw = C2 � r,
where C1 and C2 are arbitrary constants.

4◦. There is an exact solution of the form

w(x, t) = |t|
2

1−m F (z), z = x +
2
λ

ln |t|.

7.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beλx ∂w

∂x
+ cwm, a > 0.

Functional separable solution:

w = w(z), z =
[

4ke−λx − akλ2(t + C)2]1/2
, k = � 1,

whereC is an arbitrary constant, and the functionw =w(z) is determined by the ordinary differential
equation

w′′

zz +
2(aλ − b)
aλ

1
z
w′

z +
c

akλ2 w
m = 0. (1)
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This equation has the exact solution

w(z) =
{

2kλ
[

aλ(m − 3) + 2b(1 −m)
]

c(1 −m)2z2

}

1
m−1

.

For b = aλ, the general solution of equation (1) is given in implicit form by

∫
[

C1 −
2c

akλ2(m + 1)
wm+1

]−1/2

dw = � z + C2,

where C1 and C2 are arbitrary constants.

For b ≠ 1
2aλ, the substitution ξ = z

2b−aλ
aλ brings (1) to the generalized Emden–Fowler equation

w′′

ξξ +
ac

k(2b − aλ)2 ξ
4(aλ−b)
2b−aλ wm = 0. (2)

The books by Polyanin and Zaitsev (1995,2003) give more than 20 exact solutions to equation (2)
for specific values of the parameterm.

8.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beλxwn ∂w

∂x
, a > 0.

This is a special case of equation 3.4.3.10 with f (w) = bwn.

3.1.5. Equations of the Form ∂2w
∂t2 = awn ∂2w

∂x2 + f (x, w)

1.
∂2w

∂t2
= aw

∂2w

∂x2
.

This is a special case of equation 3.1.5.5 with n = 1.

1◦. Solutions:
w = C1xt + C2x + C3t + C4,

w =
3x2 + C1x + C2

a(t + C3)2 + C4(x + C5)(t + C3)3,

where C1, . . . , C5 are arbitrary constants. The first solution is degenerate and the second one is a
generalized separable solution.

2◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

(U − aC2
2 )U ′′

zz − 2C1U
′

z = 8C2
1 .

3◦. Generalized separable solution:

w = (x2 + C1x + C2)f (t) + (C3x + C4)f (t)
∫

dt

f 2(t)
,

whereC1, . . . ,C4 are arbitrary constants, and the function f = f (t) is determined by the autonomous
ordinary differential equation f ′′

tt = 2af 2.���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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2.
∂2w

∂t2
= aw

∂2w

∂x2
+ b.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = � C−2
1 w( � C2

1x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Solutions:
w = (C1t + C2)x + 1

2 bt
2 + C3t + C4,

w =
3x2

at2
+

(

C1t
3 +

C2

t2

)

x + C3t
3 +

C4

t2
−

1
4
bt2.

The first solution is degenerate and the second one is a generalized separable solution (another
arbitrary constant can be added, since the equation is invariant under translation in t).

3◦. Self-similar solution:
w(x, t) = t2u(ξ), ξ = xt−2,

where the function u = u(ξ) is determined by the ordinary differential equation

2u − 2ξu′ξ + 4ξ2u′′ξξ = auu′′ξξ + b.

4◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

(aU − a2C2
2 )U ′′

zz − 2aC1U
′

z = 8aC2
1 − b.

5◦. The second solution in Item 2◦ is a special case of the generalized separable solution

w(x, t) = f (t)x2 + g(t)x + h(t).

3.
∂2w

∂t2
= aw4 ∂2w

∂x2
+ bxnw5.

This is a special case of equation 3.4.4.2 with f (x) = bxn.

4.
∂2w

∂t2
= aw4 ∂2w

∂x2
+ beλxw5.

This is a special case of equation 3.4.4.2 with f (x) = beλx.

5.
∂2w

∂t2
= awn ∂2w

∂x2
, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = (C2/C1)2/nw( � C1x + C3, � C2t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Multiplicative separable solution:

w(x, t) = k(x + C1)
2
n (At + C2)−

2
n , k =

[

A2(n + 2)
a(2 − n)

]

1
n

, (1)

where A, C1, and C2 are arbitrary constants.
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3◦. Expression (1) is a special case of a wider family of multiplicative separable solutions

w = f (x)g(t),

where the functions f = f (x) and g = g(t) are determined by solving the equations

g′′tt − aλgn+1 = 0, (2)
f ′′

xx − λf 1−n = 0. (3)

The general solutions of equations (2) and (3) can be written out in implicit form:

∫
(

C1 +
2aλ
n + 2

gn+2
)−1/2

dg = C2 � t,
∫

(

C3 +
2λ

2 − n
f 2−n

)−1/2

df = C4 � x,

where C1, . . . , C4 are arbitrary constants.
In particular, with C1 = 0, it follows that

g(t) = (At + C)−2/n, A = �
√

aλn2

2(n + 2)
.

4◦. There are also solutions with the following forms:

w(x, t) = (t +A)−
2k+2
n F (z), z = (x +B)(t +A)k;

w(x, t) = e−2λtU (y), y = (x +A)eλnt;

w(x, t) = (At +B)−2/nV (ξ), ξ = x + k ln(At +B) + C,

where A, B, C, k, and λ are arbitrary constants.

3.1.6. Equations of the Form ∂2w
∂t2 = a ∂

∂x

(

wn ∂w
∂x

)

+ f (w)

1.
∂2w

∂t2
= a

∂

∂x

(

w
∂w

∂x

)

.

This is a special case of equation 3.1.6.5 with n = 1.

1◦. Solutions:
w(x, t) = 1

2aA
2t2 +Bt +Ax + C,

w(x, t) = 1
12 aA

−2(At +B)4 + Ct +D + x(At +B),

w(x, t) =
1
a

(

x +A
t +B

)2

,

w(x, t) = (At +B)
√

Cx +D,

w(x, t) = � √

A(x + aλt) +B + aλ2,

where A, B, C, D, and λ are arbitrary constants.���
Reference: S. Tomotika, K. Tamada (1950).

2◦. Generalized separable solution quadratic in x:

w(x, t) = f (t)x2 + g(t)x + h(t),
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where the functions f = f (t), g = g(t), and h = h(t) are determined by the system of ordinary
differential equations

f ′′

tt = 6af 2,
g′′tt = 6afg,

h′′tt = 2afh + ag2.

A particular solution of this system is given by

f =
1
at2

, g =
C1

t2
+ C2t

3, h =
aC2

1
4t2

+
C3

t
+ C4t

2 +
1
2
aC1C2t

3 +
1
54
aC2

2 t
8,

whereC1, . . . , C4 are arbitrary constants. Another arbitrary constant can be inserted in this solution
through the shift in t.

3◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the first-order
ordinary differential equation

(U − aC2
2 )U ′

z − 2C1U = 8C2
1z + C3.

By appropriate translations in both variables, the equation can be made homogeneous, and, hence,
the equation is integrable by quadrature.

2.
∂2w

∂t2
= a

∂

∂x

(

w
∂w

∂x

)

+ b.

This is a special case of equation 8.2.1.3 with F (u, v) = au2 + b.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w(  C2

1x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution in implicit form:

ak2w2 − 2λ2w = −b(kx + λt)2 + C1(kx + λt) + C2,

where C1, C2, k, and λ are arbitrary constants.

3◦. Self-similar solution:
w(x, t) = t2u(ξ), ξ = xt−2,

where the function u = u(ξ) is determined by the ordinary differential equation

2u − 2ξu′ξ + 4ξ2u′′ξξ = a(uu′ξ)
′

ξ + b.

4◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the first-order
ordinary differential equation

(aU − a2C2
2 )U ′

z − 2aC1U = (8aC2
1 − b)z + C3.

By appropriate translations in both variables, the equation can be made homogeneous, and, hence,
the equation is integrable by quadrature.
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5◦. Generalized separable solution quadratic in x:

w(x, t) = f (t)x2 + g(t)x + h(t),

where the functions f = f (t), g = g(t), and h = h(t) are determined by the system of ordinary
differential equations

f ′′

tt = 6af 2,
g′′tt = 6afg,

h′′tt = 2afh + ag2 + b.
A particular solution of this system is given by

f =
1
at2

, g =
C1

t2
+ C2t

3, h =
aC2

1
4t2

+
C3

t
+ C4t

2 +
1
2
aC1C2t

3 +
1
54
aC2

2 t
8 +

1
9
bt2

(

3 ln |t| − 1
)

,

where C1, . . . , C4 are arbitrary constants. Another arbitrary constant, C5, can be inserted in the
solution, by substituting t + C5 for t, since the system is translation invariant in t.

3.
∂2w

∂t2
= a

∂

∂x

(

1
w

∂w

∂x

)

.

This is a special case of equation 3.1.6.5 with n = −1.

1◦. Multiplicative separable solutions:

w(x, t) = (At +B)eCx,

w(x, t) = (at2 +At +B)(x + C)−2,

w(x, t) = (−aA2t2 +Bt + C) cosh−2(Ax +D),

w(x, t) = (aA2t2 +Bt + C) sinh−2(Ax +D),

w(x, t) = (aA2t2 +Bt + C) cos−2(Ax +D),

where A, B, C, and D are arbitrary constants.

2◦. Traveling-wave solution in implicit form:

λ2w = ak2 ln |w| + C1(kx + λt) + C2,

where C1, C2, k, and λ are arbitrary constants.

4.
∂2w

∂t2
= a

∂

∂x

(

1
√

w

∂w

∂x

)

.

This is a special case of equation 3.1.6.5 with n = −1/2.

1◦. Solutions:
w(x, t) =

( 1
2A

2ax2 +Bx +Aat + C
)2,

w(x, t) =
[ 1

12A
−2a−1(Ax +B)4 + Cx +D + t(Ax +B)

]2,

w(x, t) = a2
(

t +A
x +B

)4

,

w(x, t) = (Ax + B)2(Ct +D),

w(x, t) =
[ ! √

A(t + λx) +B + aλ2]2,
where A, B, C, D, and λ are arbitrary constants.

2◦. The substitution w = u2 leads to an equation of the form 3.1.4.2:

∂2u

∂x2 =
1
a

∂

∂t

(

u
∂u

∂t

)

.
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5.
∂2w

∂t2
= a2 ∂

∂x

(

wn ∂w

∂x

)

.

This equation is encountered in wave and gas dynamics. This is a special case of equation 3.4.4.6
with f (w) = a2wn.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = (C2/C1)2/nw( " C1x + C3, " C2t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Degenerate solution:

w = (At +B)(Cx +D)
1
n+1 ,

where A, B, C, and D are arbitrary constants.

3◦. Multiplicative separable solution:

w = f (x)g(t),

where f = f (x) and g = g(t) are defined implicitly by
∫

(

C1 +
2λ
n + 2

fn+2
)−1/2

fn df = C2 " x, (1)

∫
(

C3 +
2a2λ

n + 2
gn+2

)−1/2

dg = C4 " t, (2)

and C1, . . . , C4 and λ are arbitrary constants.
The functions f = f (x) and g = g(t) defined by (1) and (2) can be represented in explicit form

if C1 = 0 and C3 = 0. To the special case C1 = C3 = 0 there corresponds

w(x, t) =
( " bx + c
abt + s

)2/n

, (3)

where b, c, and s are arbitrary constants.

4◦. Traveling-wave solution:
w = w(z), z = x " λt,

where w = w(z) is defined implicitly by (A and B are arbitrary constants)

λ2w −
a2

n + 1
wn+1 = Az +B. (4)

If n = − 1
2 , 1, 2, or 3, equation (4) can be solved for w to give an explicit expression of w = w(z).

5◦. Self-similar solution:
w = w(ξ), ξ =

x +A
t +B

,

where the function w(ξ) is determined by the first-order ordinary differential equation (C is an
arbitrary constant):

(

ξ2 − a2wn
)

w′

ξ = C. (5)

To the special case C = 0 there corresponds the solutionw = (ξ/a)2/n, see formula (3). If C ≠ 0,
by treating w in (5) as the independent variable, one obtains a Riccati equation for ξ = ξ(w):

Cξ′w = ξ2 − a2wn. (6)

The general solution of equation (6) is expressed in terms of Bessel functions; see Kamke (1977)
and Polyanin and Zaitsev (1995, 2003).
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6◦. There are more complicated self-similar solutions of the form

w = (t + β)2kF (z), z =
x + α

(t + β)nk+1 ,

where α, β, and k are arbitrary constants, and the function F = F (z) is determined by solving the
generalized-homogeneous ordinary differential equation

2k(2k − 1)F + (nk + 1)(nk − 4k + 2)zF ′

z + (nk + 1)2z2F ′′

zz = a2(FnF ′

z)′z.

Its order can be reduced.

7◦. Generalized self-similar solution (µ is an arbitrary constant):

w = e−2µtϕ(y), y = xeµnt,

where the function ϕ = ϕ(y) is determined by solving the generalized-homogeneous ordinary
differential equation

4µ2ϕ + µ2n(n − 4)yϕ′

y + (µn)2y2ϕ′′

yy = a2(ϕnϕ′

y)′y.

Its order can be reduced.

8◦. Solution (A, b, and c are arbitrary constants):

w = ( # t +A)−2/nψ(u), u = x + b ln( # t +A) + c,

where the function ψ = ψ(u) is determined by the autonomous ordinary differential equation

2(n + 2)
n2 ψ −

b(n + 4)
n

ψ′

u + b2ψ′′

uu = a2(ψnψ′

u)′u. (7)

Note two special cases where the equation obtained is integrable by quadrature. For n = −2,
equation (7) admits a first integral that represents a separable equation. For n = −4, with the change
of variable G(ψ) = (ψ′

u)2, equation (7) can be reduced to a first-order linear equation.
In the general case, the change of variable H(ψ) = ψ′

u brings (7) to a first-order equation.

9◦. For n ≠ −1, the transformation

τ = x, ζ = t, V = wn+1

brings the original equation to an equation of the similar form

∂2V

∂τ 2 = a−2 ∂

∂ζ

(

V − n
n+1

∂V

∂ζ

)

.

For n = −1, the transformation

τ = x, ζ = t, V = lnw

brings the original equation to an equation of the form 3.2.4.3:

∂2V

∂τ 2 = a−2 ∂

∂ζ

(

eV
∂V

∂ζ

)

.

$�%
References for equation 3.1.6.5: W. F. Ames, R. J. Lohner, and E. Adams (1981), N. H. Ibragimov (1994), V. F. Zaitsev

and A. D. Polyanin (1996).
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6.
∂2w

∂t2
= a

∂

∂x

(

wn ∂w

∂x

)

+ bwn+1 + cw.

1◦. Multiplicative separable solutions for c = λ2 > 0:

w =
(

A1e
λt +A2e

−λt)[B1 cos(kx) +B2 sin(kx)
]

1
n+1 if b(n + 1)/a = k2 > 0,

w =
(

A1e
λt +A2e

−λt)(B1e
kx +B2e

−kx)
1
n+1 if b(n + 1)/a = −k2 < 0,

where A1, A2, B1, and B2 are arbitrary constants.

2◦. Multiplicative separable solutions for c = −λ2 < 0:

w =
[

A1 cos(λt) +A2 sin(λt)
][

B1 cos(kx) +B2 sin(kx)
]

1
n+1 if b(n + 1)/a = k2 > 0,

w =
[

A1 cos(λt) +A2 sin(λt)
](

B1e
kx +B2e

−kx)
1
n+1 if b(n + 1)/a = −k2 < 0,

where A1, A2, B1, and B2 are arbitrary constants.

3◦. Multiplicative separable solution:

w = ϕ(x)ψ(t),

where the functions ϕ = ϕ(x) and ψ = ψ(t) are determined by the autonomous ordinary differential
equations (K is an arbitrary constant)

a(ϕnϕ′

x)′x + bϕn+1 +Kϕ = 0,

ψ′′

tt − cψ +Kψn+1 = 0.

7.
∂2w

∂t2
= a

∂

∂x

(

wn ∂w

∂x

)

+ bwk.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C2
1w( & Ck−n−1

1 x + C2, & Ck−1
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. There are solutions of the following forms:

w(x, t) = U (z), z = λx + βt traveling-wave solution;

w(x, t) = t
2

1−k V (ξ), ξ = xt
k−n−1

1−k self-similar solution.

3.1.7. Other Equations

1.
∂2w

∂t2
= aw

∂2w

∂x2
+ b

(

∂w

∂x

)n

+ c.

This is a special case of equation 8.2.1.3 with F (u, v) = bun + c.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( & C2

1x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.
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2◦. Self-similar solution:
w(x, t) = t2u(ξ), ξ = xt−2,

where the function u = u(ξ) is determined by the ordinary differential equation
2u − 2ξu′ξ + 4ξ2u′′ξξ = a(uu′ξ)

′

ξ + b(u′ξ)
n + c.

3◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,
where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

(aU − a2C2
2 )U ′′

zz + b(U ′

z)n − 2aC1U
′

z = 8aC2
1 − c.

2.
∂2w

∂t2
= axnwm ∂2w

∂x2
, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions
w1 = C2

1w
(

C2
2x, ' Cm1 C2−n

2 t + C3
)

,
where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Multiplicative separable solution:

w(x, t) = kx
2−n
m (C1t + C2)−

2
m , k =

[

2C2
1 (m + 2)

a(2 − n)(2 − n −m)

]

1
m

. (1)

3◦. Expression (1) is a special case of a wider family of multiplicative separable solutions
w = f (x)g(t),

where the functions f = f (x) and g = g(t) are determined by solving the equations
g′′tt − λgm+1 = 0, (2)

f ′′

xx − (λ/a)x−nf 1−m = 0. (3)
The general solution of equation (2) can be written out in implicit form as

∫
(

C1 +
2λ
m + 2

gm+2
)−1/2

dg = C2 ' t,
where C1 and C2 are arbitrary constants.

In particular, with C1 = 0, it follows that

g(t) = (At + C)−2/m, A = '
√

λm2

2(m + 2)
.

The books by Polyanin and Zaitsev (1995, 2003) give more than 20 exact solutions to the
Emden–Fowler equation (3) for specific values of the parameter m.

4◦. There is a self-similar solution of the form

w = t
(n−2)k−2

m F (y), y = xtk ,
where k is an arbitrary constant.

5◦. The transformation
u(z, t) =

1
x
w(x, t), z =

1
z

leads to an equation of the similar form
∂2u

∂t2
= az4−n−mum

∂2u

∂z2 . (4)

In the special case n = 4 −m, equation (4) is greatly simplified to become
∂2u

∂t2
= aum

∂2u

∂z2

and admits a traveling-wave solution u = u(kz + µt); see also equation 3.1.6.5.
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3.
∂2w

∂t2
= aeλxwm ∂2w

∂x2
, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w
(

x +
1
λ

ln
Cm1
C2

2
, C2t + C3

)

,

where C1, C2, C3, and λ are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w(x, t) = U (z), z = x +
2
λ

ln |t|,

where the function U (z) is determined by the ordinary differential equation

(aλ2eλzUm − 4)U ′′

zz + 2λU ′

z = 0.

3◦. For other solutions, see equation 3.4.5.1 with f (x) = aeλx.

4.
∂2w

∂t2
= a

∂

∂x

(

xnwm ∂w

∂x

)

, a > 0.

This is a special case of equation 3.4.5.2 with f (x) = axn.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w

(

C2
2x, ( Cm1 C2−n

2 t + C3
)

,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Multiplicative separable solution:

w(x, t) = kx
2−n
m (C1t + C2)−

2
m , k =

[

2C2
1 (m + 2)

a(2 − n)(m − n + 2)

]

1
m

. (1)

3◦. Expression (1) is a special case of a wider family of multiplicative separable solutions

w = f (x)g(t),

where the functions f = f (x) and g = g(t) are determined by solving the equations

g′′tt − λgm+1 = 0, (2)
a(xnfm+1f ′

x)′x − λf = 0. (3)

The general solution of equation (2) can be written out in implicit form as
∫

(

C1 +
2λ
m + 2

fm+2
)−1/2

df = C2 ( t,
where C1 and C2 are arbitrary constants.

In particular, with C1 = 0, it follows that

f (t) = (At + C)−2/m, A = (
√

λm2

2(m + 2)
.

For n ≠ 1 and m ≠ −1, the transformation

z = x1−n, ϕ = um+1

brings (3) to the Emden–Fowler equation

ϕ′′

zz =
λ(m + 1)
a(1 − n)2 z

n
1−n ϕ

1
m+1 . (4)

The books by Polyanin and Zaitsev (1995, 2003) give more than 20 exact solutions to equation (4)
for specific values of the parameterm.
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4◦. There is a self-similar solution of the form

w = (t + b)
(n−2)k−2

m F (y), y = xtk,

where b and k are arbitrary constants.

5◦. Suppose m ≠ −1 and 2m − 2n − nm + 3 ≠ 0. The transformation

w(x, t) = x
1−n
m+1 u(ξ, t), ξ = x

2m−2n−nm+3
m+1

leads to an equation of the similar form

∂2u

∂t2
= A

∂

∂ξ

(

ξ
3m−3n−2nm+4
2m−2n−nm+3 um

∂u

∂ξ

)

, (5)

where A = a
(

2m − 2n − nm + 3
m + 1

)2

.

In the special case n =
3m + 4
2m + 3

, equation (5) is greatly simplified and coincides, up to notation,
with equation 3.1.6.5:

∂2u

∂t2
= A

∂

∂ξ

(

um
∂u

∂ξ

)

.

5.
∂2w

∂t2
= k(ax2 + bx + c)mw4–2m ∂2w

∂x2
.

This is a special case of equation 3.4.5.4 with f (u) = ku−2m.

1◦. The transformation

w(x, t) = u(z, t)
√

ax2 + bx + c, z =
∫

dx

ax2 + bx + c
leads to an equation of the form 3.4.4.8:

∂2u

∂t2
= ku4−2m ∂

2u

∂z2 + k(ac − 1
4 b

2)u5−2m,

which has a traveling-wave solutionu =u(z+λt) and a multiplicative separable solutionu = f (t)g(z).

2◦. By the transformation

w(x, t) =
[

v(ξ, t)]
1

2m+3 , ξ =
∫

dx

(ax2 + bx + c)m
(1)

the original equation can be reduced to the divergence form

∂2v

∂t2
=
∂

∂ξ

[

F (ξ)v
4−2m
2m−3

∂v

∂ξ

]

, (2)

where the function F (ξ) is defined parametrically by

F (ξ) =
k

(ax2 + bx + c)m
, ξ =

∫

dx

(ax2 + bx + c)m
. (3)

Note some special cases of equation (2) where F = F (ξ) of (3) can be represented in explicit
form:

∂2v

∂t2
= k

∂

∂ξ

(

cos2 ξ

v2
∂v

∂ξ

)

, m = 1, a = 1, b = 0, c = 1;

∂2v

∂t2
= k

∂

∂ξ

(

cosh2 ξ

v2
∂v

∂ξ

)

, m = 1, a = −1, b = 0, c = 1;

∂2v

∂t2
= k

∂

∂ξ

(

ξ−3/2

cos ξ
∂v

∂ξ

)

, m = 1
2 , a = −1, b = 0, c = 1.

Page 212

© 2004 by Chapman & Hall/CRC



3.2. EQUATIONS WITH EXPONENTIAL NONLINEARITIES 213

3.2. Equations with Exponential Nonlinearities

3.2.1. Equations of the Form ∂2w
∂t2 = a∂2w

∂x2 + beβw + ceγw

1.
∂2w

∂t2
= a2 ∂2w

∂x2
+ beβw.

This is a special case of equation 3.4.1.1 with f (w) = beβw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w( ) C1x + C2, ) C1t + C3) +
2
β

ln |C1|,

w2 = w(x coshλ + at sinhλ, t coshλ + a−1x sinhλ),

whereC1, C2, C3, and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solutions:

w(x, t) =
1
β

ln
[

2(B2 − a2A2)
bβ(Ax +Bt + C)2

]

,

w(x, t) =
1
β

ln
[

2(a2A2 −B2)
bβ cosh2(Ax +Bt + C)

]

,

w(x, t) =
1
β

ln
[

2(B2 − a2A2)
bβ sinh2(Ax +Bt + C)

]

,

w(x, t) =
1
β

ln
[

2(B2 − a2A2)
bβ cos2(Ax +Bt + C)

]

,

where A, B, and C are arbitrary constants.

3◦. Functional separable solutions:

w(x, t) =
1
β

ln
(

8a2C

bβ

)

−
2
β

ln
∣

∣(x +A)2 − a2(t +B)2 + C
∣

∣,

w(x, t) = −
2
β

ln
[

C1e
λx )

√

2bβ
2aλ

sinh(aλt + C2)
]

,

w(x, t) = −
2
β

ln
[

C1e
λx )

√

−2bβ
2aλ

cosh(aλt + C2)
]

,

w(x, t) = −
2
β

ln
[

C1e
aλt )

√

−2bβ
2aλ

sinh(λx + C2)
]

,

w(x, t) = −
2
β

ln
[

C1e
aλt )

√

2bβ
2aλ

cosh(λx + C2)
]

,

where A, B, C, C1, C2, and λ are arbitrary constants.

4◦. The change of the independent variables

z = x − at, y = x + at

leads to the Liouville equation 3.5.1.2:

∂2w

∂z∂y
= − 1

4 a
−2b exp(βw).
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Hence, the general solution of the original equation is expressed as

w(x, t) =
1
β

[

f (z) + g(y)
]

−
2
β

ln
∣

∣

∣

∣

k

∫

exp
[

f (z)
]

dz −
bβ

8a2k

∫

exp
[

g(y)
]

dy

∣

∣

∣

∣

,

z = x − at, y = x + at,

where f = f (z) and g = g(y) are arbitrary functions and k is an arbitrary constant.*�+
References: J. Liouville (1853), R. K. Bullough and P. J. Caudrey (1980), V. F. Zaitsev and A. D. Polyanin (1996).

2.
∂2w

∂t2
=

∂2w

∂x2
+ aeβw + be2βw.

1◦. Traveling-wave solution for bβ > 0:

w(x, t) = −
1
β

ln
{

−
b

a
+ C1 exp

[

a

√

β

b

(

x sinhC2 , t coshC2
)

]}

,

where C1 and C2 are arbitrary constants.

2◦. Traveling-wave solution (generalizes the solution of Item 1◦):

w(x, t) = −
1
β

ln
[

aβ

C2
1 − C2

2
+ C3 exp(C1x + C2t) +

a2β2 + bβ(C2
1 − C2

2 )
4C3(C2

1 − C2
2 )2 exp(−C1x − C2t)

]

,

where C1, C2, and C3 are arbitrary constants.

3◦. Traveling-wave solution:

w(x, t) = −
1
β

ln
[

aβ

C2
2 − C2

1
+

√

a2β2 + bβ(C2
2 − C2

1 )
C2

2 − C2
1

sin(C1x + C2t + C3)
]

.

3.
∂2w

∂t2
=

∂2w

∂x2
+ aeβw – be–βw.

The substitution
w(x, t) = u(x, t) + k, k =

1
2β

ln
b

a

leads to an equation of the form 3.3.1.1:

∂2u

∂t2
=
∂2u

∂x2 + 2
√

ab sinh(βu).

4.
∂2w

∂t2
=

∂2w

∂x2
+ aeβw – be–2βw.

1◦. Functional separable solution:

w(x, t) =
1
β

ln[ϕ(x) + ψ(t)],

where the functionsψ(t) andϕ(x) are determined by the first-order autonomous ordinary differential
equations

(ϕ′

x)2 = −2aβϕ3 + C1ϕ
2 − C2ϕ + C3 − bβ,

(ψ′

t)
2 = 2aβψ3 + C1ψ

2 + C2ψ + C3,

whereC1,C2, andC3 are arbitrary constants. Solving these equations for the derivatives, one obtains
separable equations.*�+

References: A. M. Grundland and E. Infeld (1992), R. Z. Zhdanov (1994), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov,
and A. A. Rodionov (1999).
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2◦. The transformation

t = (a2bβ3)−1/6(ξ + η), x = (a2bβ3)−1/6(ξ − η), w =
1
β
U +

1
3β

ln
b

a

leads to an equation of the form 3.5.1.3:

∂2U

∂ξ∂η
= eU − e−2U .

3◦. The equation can be integrated with the inverse scattering method.-�.
References: A. V. Mikhailov (1979), A. P. Fordy and J. A. Gibbons (1980), F. Calogero and A. Degasperis (1982).

3.2.2. Equations of the Form ∂2w
∂t2 = a∂2w

∂x2 + f (x, t, w)

1.
∂2w

∂t2
=

∂2w

∂x2
+ aeβteλw.

This is a special case of equation 3.4.1.7 with f (w) = aeλw.

1◦. Solutions:

w(x, t) = −
β

λ
t −

2
λ

ln
(

C1 + C2x /
√

C2
2 + 1

2λa t

)

,

w(x, t) = −
β

λ
t −

2
λ

ln
(

C1e
−σt + C2e

σx −
λa

8σ2C1
eσt

)

,

where C1, C2, and σ are arbitrary constants.

2◦. The substitution λU = λw + βt leads to an equation of the form 3.2.1.1:

∂2U

∂t2
=
∂2U

∂x2 + aλeλU .

2.
∂2w

∂t2
=

∂2w

∂x2
+ aeβxeλw.

This is a special case of equation 3.4.1.6 with f (w) = aeλw.

1◦. Solutions:

w(x, t) = −
β

λ
x −

2
λ

ln
(

C1 + C2t /
√

C2
2 − 1

2λa x

)

,

w(x, t) = −
β

λ
x −

2
λ

ln
(

C1e
−σx + C2e

σt +
λa

8σ2C1
eσx

)

,

where C1, C2, and σ are arbitrary constants.

2◦. The substitution λU = λw + βx leads to an equation of the form 3.2.1.1:

∂2U

∂t2
=
∂2U

∂x2 + aλeλU .

3.
∂2w

∂t2
=

∂2w

∂x2
+ ceax+bteλw.

This is a special case of equation 3.4.1.8 with f (w) = ceλw.
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4.
∂2w

∂t2
=

∂2w

∂x2
+ βeλw + (αt + γ)e2λw.

Functional separable solutions:

w(x, t) = −
1
λ

ln
{

C exp
[

−
β2λ

2α
(t 0 x)

]

−
1
β

(αt + γ) +
α2

β3λ

}

,

where C is an arbitrary constant.1�2
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

5.
∂2w

∂t2
=

∂2w

∂x2
+ βeλw + (αx + γ)e2λw.

Functional separable solutions:

w(x, t) = −
1
λ

ln
{

C exp
[

β2λ

2α
(x 0 t)

]

−
1
β

(αx + γ) −
α2

β3λ

}

,

where C is an arbitrary constant.

6.
∂2w

∂t2
=

∂2w

∂x2
+ βeλw + (αekt + γ)e2λw.

1◦. Functional separable solutions for k2γ − β2λ ≠ 0:

w(x, t) = −
1
λ

ln
[

C exp
(

0 k2γ − β2λ

2kγ
x +

k2γ + β2λ

2kγ
t

)

+
αβλ

k2γ − β2λ
ekt −

γ

β

]

,

where C is an arbitrary constant.

2◦. Generalized traveling-wave solutions for k2γ − β2λ = 0:

w(x, t) = −
1
λ

ln
[

Cekt +
αk

2β
(t 0 x)ekt −

λβ

k2

]

.

1�2
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

7.
∂2w

∂t2
=

∂2w

∂x2
+ kβeλw + (αekt + λβ2)e2λw.

Generalized traveling-wave solutions:

w(x, t) = −
1
λ

ln
[

Cekt +
α

2β
(t 0 x)ekt −

λβ

k

]

,

where C is an arbitrary constant.

8.
∂2w

∂t2
=

∂2w

∂x2
+ βeλw + (αekx + γ)e2λw.

1◦. Functional separable solutions for k2γ + β2λ ≠ 0:

w(x, t) = −
1
λ

ln
[

C exp
(

0 k2γ + β2λ

2kγ
t +

k2γ − β2λ

2kγ
x

)

−
αβλ

k2γ + β2λ
ekx −

γ

β

]

,

where C is an arbitrary constant.

2◦. Generalized traveling-wave solutions for k2γ + β2λ = 0:

w(x, t) = −
1
λ

ln
[

Cekx +
αk

2β
(x 0 t)ekx +

λβ

k2

]

.

1�2
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).
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9.
∂2w

∂t2
=

∂2w

∂x2
– kβeλw – (αekx + λβ2)e2λw.

Functional separable solutions:

w(x, t) = −
1
λ

ln
[

Cekx +
α

2β
(x 3 t)ekx −

λβ

k

]

,

where C is an arbitrary constant.

10.
∂2w

∂t2
=

∂2w

∂x2
+ βekteλw + (αe2kt + γ)e2λw.

Functional separable solutions:

w(x, t) = −
1
λ

ln
[

C exp
(

3 4k2α − β2λ

4kα
x −

β2λ

4kα
t

)

+
βγλ

4k2α − β2λ
e−kt −

α

β
ekt

]

,

where C is an arbitrary constant.

11.
∂2w

∂t2
=

∂2w

∂x2
+ βekxeλw + (αe2kx + γ)e2λw.

Functional separable solutions:

w(x, t) = −
1
λ

ln
[

C exp
(

3 4k2α + β2λ

4kα
t +

β2λ

4kα
x

)

−
βγλ

4k2α + β2λ
e−kx −

α

β
ekx

]

,

where C is an arbitrary constant.4�5
Reference: A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

3.2.3. Equations of the Form ∂2w
∂t2 = f (x) ∂2w

∂x2 + g
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= a

∂2w

∂x2
+ beλw ∂w

∂x
.

This is a special case of equation 3.4.2.3 with f (w) = beλw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w
(

C1x + C2, 3 C1t + C3
)

+
1
λ

lnC1,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solution:

w = −
1
λ

ln
[

exp(Ax +Aµt +B) − b
A(a − µ2)

]

,

where µ, A, and B are arbitrary constants.

3◦. There is an exact solution of the form

w(x, t) = F (z) −
1
λ

ln |t|, z =
x

t
.
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2.
∂2w

∂t2
=

∂

∂x

(

axn ∂w

∂x

)

+ ceλw, a > 0.

This is a special case of equation 3.2.3.5 with b = an.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w
(

C
2

2−n
1 x, 6 C1t + C2

)

+
2
λ

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for n ≠ 2 and λ ≠ 0:

w = −
1
λ

ln
{

2cλ(2 − n)
n

[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]}

.

3◦. Functional separable solution for n ≠ 2 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + ck−1eλw = 0, A =
2

2 − n
.

4◦. There is an exact solution of the form

w(x, t) = F (z) −
2
λ

ln |t|, z = x|t|
2
n−2 .

3.
∂2w

∂t2
=

a

xn

∂

∂x

(

xn ∂w

∂x

)

+ ceλw, a > 0.

For n = 1 and n = 2, the equation describes the propagation of nonlinear waves with axial and central
symmetry, respectively.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w
(

C1x, 6 C1t + C2
)

+
2
λ

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for n ≠ 0 and λ ≠ 0:

w = −
1
λ

ln
{

cλ

2an
[

x2 − a(t + C)2]
}

.

3◦. Functional separable solution (generalizes the solution of Item 2◦):

w = w(r), r2 = k
[

x2 − a(t + C)2],

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
n + 1
r

w′

r +
c

ak
eλw = 0.

4◦. There is an exact solution of the form

w(x, t) = F (z) −
2
λ

ln |t|, z =
x

t
.
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4.
∂2w

∂t2
= a(x + β)n

∂2w

∂x2
+ ceλw, a > 0.

This is an equation of the propagation of nonlinear waves in an inhomogeneous medium. The
substitution z = x + β leads to a special case of equation 3.2.3.5 with b = 0:

∂2w

∂t2
= azn

∂2w

∂z2 + ceλw.

5.
∂2w

∂t2
= axn ∂2w

∂x2
+ bxn–1 ∂w

∂x
+ ceλw, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w
(

C2
1x, 7 C2−n

1 t + C2
)

+
4 − 2n
λ

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for n ≠ 2:

w = w(ξ), ξ = 1
4 a(2 − n)2(t + C)2 − x2−n.

Here,C is an arbitrary constant, and the functionw =w(ξ) is determined by the ordinary differential
equation

ξw′′

ξξ +Aw′

ξ = Beλw, (1)
where

A =
a(4 − 3n) + 2b

2a(2 − n)
, B =

c

a(2 − n)2 .

For A ≠ 1, an exact solution of equation (1) is given by

w(ξ) =
1
λ

ln
(

1 −A
λBξ

)

.

For A = 1, which corresponds to b = 1
2an, exact solutions of equation (1) are expressed as

w(ξ) =
1
λ

ln
[

2a(2 − n)2

cλξ(ln |ξ| + q)2

]

,

w(ξ) =
1
λ

ln
[

2ap2(2 − n)2

cλξ cos2(p ln |ξ| + q)

]

,

w(ξ) =
1
λ

ln
[

−2ap2(2 − n)2

cλξ cosh2(p ln |ξ| + q)

]

,

where p and q are arbitrary constants.

For A ≠ 1, the substitution ξ = kz
1

1−A (k = 7 1) brings (1) to the generalized Emden–Fowler
equation

w′′

zz =
kB

(1 −A)2 z
2A−1
1−A eλw. (2)

In the special case A = 1
2 , which corresponds to b = a(n − 1), solutions of equation (2) are given

by

w(z) =
1
λ

ln
[

−a(2 − n)2

2kcλ(z + q)2

]

,

w(z) =
1
λ

ln
[

ap2(2 − n)2

2kcλ cosh2(pz + q)

]

,

w(z) =
1
λ

ln
[

−ap2(2 − n)2

2kcλ cos2(pz + q)

]

,

where p and q are arbitrary constants.
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3◦. Solution for n = 2:
w = w(y), y = At +B ln |x| + C,

where A, B, and C are arbitrary constants, and the function w = w(y) is determined by the
autonomous ordinary differential equation

(aB2 −A2)w′′

yy + (b − a)Bw′

y + ceλw = 0. (3)
Solution of equation (3) with A = 8 B√a:

w(y) = −
1
λ

ln
[

cλ

B(b − a)
y + C1

]

.

Solutions of equation (3) with b = a:

w(y) =
1
λ

ln
[

2(A2 − aB2)
cλ(y + q)2

]

,

w(y) =
1
λ

ln
[

2p2(aB2 −A2)
cλ cosh2(py + q)

]

,

w(y) =
1
λ

ln
[

2p2(A2 − aB2)
cλ cos2(py + q)

]

,

where p and q are arbitrary constants.

6.
∂2w

∂t2
= axn ∂2w

∂x2
+ bxn–1eλw ∂w

∂x
, a > 0.

This is a special case of equation 3.4.3.5 with f (w) = beλw.

7.
∂2w

∂t2
=

∂

∂x

(

aeλx ∂w

∂x

)

+ ceµw, a > 0.

This is a special case of equation 3.2.3.9 with b = aλ.
1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w
(

x −
2
λ

ln |C1|, 8 C1t + C2

)

+
2
µ

ln |C1|,

where C1 and C2 are arbitrary constants, are also solutions of the equation.
2◦. Functional separable solution for λ ≠ 0:

w = w(r), r2 = 4k
[

e−λx

aλ2 −
1
4

(t + C1)2
]

,

whereC1 and k are arbitrary constants (k ≠ 0) and the functionw(r) is determined by the autonomous
ordinary differential equation

w′′

rr + ck−1eµw = 0.
Its general solution is expressed as

w =















































−
1
µ

ln
[

−
cµ

2k
(r + C3)2

]

if ckµ < 0,

−
1
µ

ln
[

−
cµ

2kC2
2

sin2(C2r + C3)
]

if ckµ < 0,

−
1
µ

ln
[

−
cµ

2kC2
2

sinh2(C2r + C3)
]

if ckµ < 0,

−
1
µ

ln
[

cµ

2kC2
2

cosh2(C2r + C3)
]

if ckµ > 0,

where C2 and C3 are arbitrary constants.

3◦. There is an exact solution of the form

w(x, t) = F (z) −
2
µ

ln |t|, z = x +
2
λ

ln |t|.
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8.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ ceµw, a > 0.

This is an equation of the propagation of nonlinear waves in an inhomogeneous medium. This is a
special case of equation 3.2.3.9 with b = 0.

9.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beλx ∂w

∂x
+ ceµw, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w
(

x −
2
λ

ln |C1|, 9 C1t + C2

)

+
2
µ

ln |C1|,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution:

w = w(z), z =
[

4ke−λx − akλ2(t + C)2]1/2, k = 9 1,

whereC is an arbitrary constant and the functionw =w(z) is determined by the ordinary differential
equation

w′′

zz +
2(aλ − b)
aλ

1
z
w′

z +
c

akλ2 e
µw = 0. (1)

A solution of equation (1) has the form

w(z) =
1
µ

ln
[

2kλ(aλ − 2b)
cµz2

]

.

Note some other exact solutions of equation (1):

w(z) =
1
µ

ln
[

−2akλ2

cµ(z +B)2

]

if b = aλ,

w(z) =
1
µ

ln
[

2aA2kλ2

cµ cosh2(Az +B)

]

if b = aλ,

w(z) =
1
µ

ln
[

−2aA2kλ2

cµ sinh2(Az +B)

]

if b = aλ,

w(z) =
1
µ

ln
[

−2aA2kλ2

cµ cos2(Az +B)

]

if b = aλ,

w(z) =
1
µ

ln
[

8ABakλ2

cµ(Az2 +B)2

]

if b = 1
2aλ,

where A and B are arbitrary constants.

10.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beλx+µw ∂w

∂x
, a > 0.

This is a special case of equation 3.4.3.10 with f (w) = beµw.

11.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beλx+µw ∂w

∂x
+ ceβw, a > 0.

This is a special case of equation 3.4.3.11 with f (w) = beµw, and g(w) = ceβw.
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3.2.4. Other Equations

1.
∂2w

∂t2
= aeλw ∂2w

∂x2
, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w(C1C
λ
2 x + C3, : C1t + C4, ) − 2 ln |C2|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:
w(x, t) = Axt +Bx + Ct +D,

w(x, t) =
1
λ

ln
[

B2

a

(x +A)2

cosh2(Bt + C)

]

, w(x, t) =
1
λ

ln
[

1
aA2

cosh2(Ax +B)
(t + C)2

]

,

w(x, t) =
1
λ

ln
[

C2

aA2
sinh2(Ax +B)
cosh2(Ct +D)

]

, w(x, t) =
1
λ

ln
[

C2

aA2
cosh2(Ax +B)
sinh2(Ct +D)

]

,

w(x, t) =
1
λ

ln
[

C2

aA2
cos2(Ax +B)
cosh2(Ct +D)

]

, w(x, t) =
1
λ

ln
[

C2

aA2
cosh2(Ax +B)
cos2(Ct +D)

]

,

w(x, t) =
1
λ

ln
[

4BCβ2(x +A)2

a(Beβt + Ce−βt)2

]

, w(x, t) =
1
λ

ln
[

(Aeβx +Be−βx)2

4aABβ2(t + C)2

]

,

where A, B, C, D, and β are arbitrary constants. The first solution is degenerate, while the others
are representable as the sum of functions with different arguments.;�<

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

3◦. Self-similar solution:
w = w(z), z =

x +A
t +B

,

where the function w(z) is determined by the ordinary differential equation

(aeλw − z2)w′′

zz − zw′

z = 0,

whose order can be reduced with the transformation ξ = z−2eλw, U (ξ) = zw′

z.

4◦. Solution:
w =

2(k − 1)
λ

ln(t + C1) + f (ζ), ζ =
x + C2

(t + C1)k
,

whereC1, C2, and k are arbitrary constants, and the function f = f (ζ) is determined by the ordinary
differential equation

k2ζ2f ′′

ζζ + k(k + 1)ζf ′

ζ −
2(k − 1)

λ
= aeλff ′′

ζζ .

5◦. There are exact solutions of the following forms:

w(x, t) = F (η) −
2
λ

ln |t|, η = x + k ln |t|;

w(x, t) = H(ρ) −
2
λ
t, ρ = xet,

where k is an arbitrary constant.

2.
∂2w

∂t2
= aeλw ∂2w

∂x2
+ beβw.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( : Cβ−λ
1 x + C2, : Cβ1 t + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).
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2◦. Traveling-wave solution:
w = u(z), z = k2x + k1t,

where k1 and k2 are arbitrary constants, and the function u(z) is determined by the autonomous
ordinary differential equation

(k2
1 − ak2

2e
λu)u′′zz = beβu.

Its solution can be written out in implicit form as
∫

du
√

F (u)
= C1 = z, F (u) = 2b

∫

eβu du

k2
1 − ak2

2e
λu

+ C2,

where C1 and C2 are arbitrary constants.

3◦. Solution:

w = U (ξ) −
2
β

ln |t|, ξ = x|t|
λ−β
β ,

where the function U (ξ) is determined by the ordinary differential equation

2
β

+
(λ − β)(λ − 2β)

β2 ξU ′

ξ +
(λ − β)2

β2 ξ2U ′′

ξξ = aeλUU ′′

ξξ + beβU .

3.
∂2w

∂t2
=

∂

∂x

(

aeλw ∂w

∂x

)

, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w(C1C
λ
2 x + C3, = C1t + C4, ) − 2 ln |C2|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solutions:

w(x, t) =
1
λ

ln |Ax +B| + Ct +D, (1)

w(x, t) =
2
λ

ln |Ax +B| −
2
λ

ln | = A√a t + C |, (2)

w(x, t) =
1
λ

ln(aA2x2 +Bx + C) −
2
λ

ln(aAt +D), (3)

w(x, t) =
1
λ

ln(Ax2 +Bx + C) +
1
λ

ln
[

p2

aA cos2(pt + q)

]

, (4)

w(x, t) =
1
λ

ln(Ax2 +Bx + C) +
1
λ

ln
[

p2

aA sinh2(pt + q)

]

, (5)

w(x, t) =
1
λ

ln(Ax2 +Bx + C) +
1
λ

ln
[

−p2

aA cosh2(pt + q)

]

, (6)

where A, B, C, D, p, and q are arbitrary constants. Expressions (1) to (6) exhaust all solutions that
can be representable in the form of the sum of functions with different arguments.

3◦. Traveling-wave solution:
w = w(z), z = x = µt,

where w = w(z) is defined implicitly by (A and B are arbitrary constants)

λµ2w − aeλw = Az +B.

4◦. Self-similar solution:
w = u(ξ), ξ =

x +A
t +B

.
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Here, A and B are arbitrary constants, and the function u = u(ξ) is determined by the ordinary
differential equation

(ξ2u′ξ)
′

ξ = (aeλuu′ξ)
′

ξ,

which admits the first integral
(

ξ2 − aeλu
)

u′ξ = C. (7)

To the special case C = 0 there corresponds a solution of the form (2). For C ≠ 0, treating u
in (7) as the independent variable, one obtains a Riccati equation for ξ = ξ(u),

Cξ′u = ξ2 − aeλu,

which is considered in the book by Polyanin and Zaitsev (2003).

5◦. Solution:
w =

2(k − 1)
λ

ln(t + C1) + f (ζ), ζ =
x + C2

(t + C1)k
,

whereC1, C2, and k are arbitrary constants, and the function f = f (ζ) is determined by the ordinary
differential equation

k2ζ2f ′′

ζζ + k(k + 1)ζf ′

ζ −
2(k − 1)

λ
= a(eλff ′

ζ)′ζ .

6◦. There are exact solutions of the following forms:

w(x, t) = F (η) −
2
λ

ln |t|, η = x + k ln |t|;

w(x, t) = H(ζ) −
2
λ
t, η = xet,

where k is an arbitrary constant.

7◦. For other solutions, see equation 3.4.4.6 with f (w) = aeλw.>�?
References: W. F. Ames, R. J. Lohner, and E. Adams (1981), A. D. Polyanin and V. F. Zaitsev (2002).

4.
∂2w

∂t2
=

∂

∂x

(

aeλw ∂w

∂x

)

+ beβw.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( @ Cβ−λ
1 x + C2, @ Cβ1 t + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solution:
w = u(z), z = k2x + k1t,

where k1 and k2 are arbitrary constants, and the function u(z) is determined by the autonomous
ordinary differential equation

k2
1u

′′

zz − ak2
2(eλuu′z)′z = beβu.

The substitution Θ(u) = (u′z)2 leads to the first-order linear equation

(k2
1 − ak2

2e
λu)Θ′

u − 2ak2
2λe

λu
Θ = 2beβu.

3◦. Solution:

w = U (ξ) −
2
β

ln |t|, ξ = x|t|
λ−β
β ,

where the function U (ξ) is determined by the ordinary differential equation

2
β

+
(λ − β)(λ − 2β)

β2 ξU ′

ξ +
(λ − β)2

β2 ξ2U ′′

ξξ = (aeλUU ′

ξ)
′

ξ + beβU .
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5.
∂2w

∂t2
= a

∂

∂x

(

eλw ∂w

∂x

)

+ b – ce–2λw.

Functional separable solution:

w =
1
λ

ln
(

√

cλ t −
bλ

2a
x2 + C1x + C2

)

,

where C1 and C2 are arbitrary constants.

6.
∂2w

∂t2
= aeλx+µt+βw ∂2w

∂x2
, a > 0.

The substitution βu = λx + µt + βw leads to an equation of the form 3.2.4.1:
∂2u

∂t2
= aeβu

∂2u

∂x2 .

3.3. Other Equations Involving Arbitrary Parameters
3.3.1. Equations with Hyperbolic Nonlinearities

1.
∂2w

∂t2
= a

∂2w

∂x2
+ b sinh(λw).

Sinh-Gordon equation. It arises in some areas of physics. This is a special case of equation 3.4.1.1
with f (w) = b sinh(λw).
1◦. Traveling-wave solutions:

w(x, t) = A 2
λ

ln
[

tan
bλ(kx + µt + θ0)

2
√

bλ(µ2 − ak2)

]

,

w(x, t) = A 4
λ

arctanh
[

exp
bλ(kx + µt + θ0)
√

bλ(µ2 − ak2)

]

,

where k, µ, and θ0 are arbitrary constants. It is assumed that bλ(µ2 − ak2) > 0 in both formulas.
2◦. Functional separable solution:

w(x, t) =
4
λ

arctanh
[

f (t)g(x)
]

, arctanh z =
1
2

ln
1 + z
1 − z

,

where the functions f = f (t) and g = g(x) are determined by the first-order autonomous ordinary
differential equations

(

f ′

t

)2 = Af 4 + Bf 2 + C,

a
(

g′x
)2 = Cg4 + (B − bλ)g2 +A,

where A, B, and C are arbitrary constants.
3◦. For other exact solutions of this equation, see equation 3.4.1.1 with f (w) = b sinh(λw), Item 2◦.B�C

References: A. M. Grundland and E. Infeld (1992), R. Z. Zhdanov (1994), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov,
and A. A. Rodionov (1999).

2.
∂2w

∂t2
=

∂2w

∂x2
+ a sinh(βw) + b sinh(2βw).

Double sinh-Gordon equation. Denote: k =
a

2b
.

Traveling-wave solutions:

w = A 1
β

arccosh
1 − k sin z
sin z − k

, z =
√

2bβ(1 − k2) (x sinhC1 A t coshC1 + C2) if |k| < 1;

w = A 2
β

arctanh
(

√

k + 1
k − 1

tanh
ξ

2

)

, ξ =
√

2bβ(k2 − 1) (x sinhC1 A t coshC1 + C2) if |k| > 1,

where C1 and C2 are arbitrary constants.
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3.
∂2w

∂t2
=

∂2w

∂x2
+ beβt sinhk(λw).

This is a special case of equation 3.4.1.7 with f (w) = b sinhk(λw). Hence, for k = 1, this equation
is reduced to a simpler equation of 3.3.1.1.

4.
∂2w

∂t2
=

∂2w

∂x2
+ beβx sinhk(λw).

This is a special case of equation 3.4.1.6 with f (w) = b sinhk(λw). Hence, for k = 1, this equation
is reduced to a simpler equation of 3.3.1.1.

5.
∂2w

∂t2
=

a

xn

∂

∂x

(

xn ∂w

∂x

)

+ k sinh(λw).

This is a special case of equation 3.4.2.1 with f (w) = k sinh(λw) and n = b/a.

6.
∂2w

∂t2
=

∂

∂x

[

a cosh(λw)
∂w

∂x

]

, a > 0.

This is a special case of equation 3.4.4.6 with f (w) = a cosh(λw).

7.
∂2w

∂t2
=

∂

∂x

[

a sinh(λw)
∂w

∂x

]

, a > 0.

This is a special case of equation 3.4.4.6 with f (w) = a sinh(λw).

3.3.2. Equations with Logarithmic Nonlinearities

1.
∂2w

∂t2
= a

∂2w

∂x2
+ bw ln w + kw.

This is a special case of equation 3.4.1.1 with f (w) = bw lnw + kw.
Multiplicative separable solution:

w(x, t) = ϕ(t)ψ(x),

where the functionsϕ(t) andψ(x) are determined by the autonomous ordinary differential equations

ϕ′′

tt − bϕ lnϕ − kϕ = 0,
aψ′′

xx + bψ lnψ = 0,

whose general solutions can be represented in implicit form.

2.
∂2w

∂t2
= a

∂2w

∂x2
+ bw ln w +

(

cxk + D tn)w.

This is a special case of equation 3.4.1.10 with f (x) = cxk and g(t) = stn.

3.
∂2w

∂t2
= a

∂2w

∂x2
+ bwk ln w.

This is a special case of equation 3.4.1.1 with f (w) = bwk lnw. For k = 1, see also equation 3.4.1.9
with f (t) = 0.

4.
∂2w

∂t2
=

∂2w

∂x2
+ a(x2 – t2) lnk(λw).

This is a special case of equation 3.4.1.2 with f (w) = a lnk(λw).
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5.
∂2w

∂t2
=

∂2w

∂x2
+ beβtw ln w.

The transformation

w = U (z, τ ), z = 1
2β exp

( 1
2βt

)

sinh
( 1

2βx
)

, τ = 1
2β exp

( 1
2βt

)

cosh
( 1

2βx
)

leads to a simpler equation of the form 3.3.2.1:

∂2U

∂τ 2 =
∂2U

∂z2 + bU lnU .

6.
∂2w

∂t2
=

∂2w

∂x2
+ beβxw ln w.

The transformation

w = U (z, τ ), z = 1
2 exp

( 1
2βx

)

cosh
( 1

2βt
)

, τ = 1
2 exp

( 1
2βx

)

sinh
( 1

2βt
)

leads to a simpler equation of the form 3.3.2.1:

∂2U

∂τ 2 =
∂2U

∂z2 + bU lnU .

7.
∂2w

∂t2
=

a

xn

∂

∂x

(

xn ∂w

∂x

)

+ cwk ln w.

This is a special case of equation 3.4.2.1 with f (w) = cwk lnw and b = an.

8.
∂2w

∂t2
= axn ∂2w

∂x2
+ b lnk(λw).

This is a special case of equation 3.4.3.2 with β = 0 and f (w) = b lnk(λw).

9.
∂2w

∂t2
= axn ∂2w

∂x2
+ bxn–1 lnk(λw)

∂w

∂x
.

This is a special case of equation 3.4.3.5 with f (w) = b lnk(λw).

10.
∂2w

∂t2
= a

∂

∂x

[

lnk(λw)
∂w

∂x

]

.

This is a special case of equation 3.4.4.6 with f (w) = a lnk(λw).

3.3.3. SineGordon Equation and Other Equations with
Trigonometric Nonlinearities

1.
∂2w

∂t2
= a

∂2w

∂x2
+ b sin(λw).

Sine-Gordon equation. It arises in differential geometry and various areas of physics (superconduc-
tivity, dislocations in crystals, waves in ferromagnetic materials, laser pulses in two-phase media,
and others).

1◦. Suppose w = ϕ(x, t) is a solution of the sine-Gordon equation. Then the functions

w1 =
2πn
λ

E
ϕ(C1

E
x,C2

E
t), n = 0,

E
1,

E
2, . . . ;

w2 =
E
ϕ

(

x coshσ + t
√

a sinhσ, x
sinhσ
√

a
+ t coshσ

)

,

where C1, C2, and σ are arbitrary constants, are also solutions of the equation. The plus or minus
signs in the first expression are chosen in any sequence.
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2◦. Traveling-wave solutions:

w(x, t) =
4
λ

arctan
{

exp
[ F
bλ(kx + µt + θ0)
√

bλ(µ2 − ak2)

]}

if bλ(µ2 − ak2) > 0,

w(x, t) = −
π

λ
+

4
λ

arctan
{

exp
[ F
bλ(kx + µt + θ0)
√

bλ(ak2 − µ2)

]}

if bλ(µ2 − ak2) < 0,

where k, µ, and θ0 are arbitrary constants. The first expression corresponds to a single-soliton
solution.

3◦. Functional separable solution:

w(x, t) =
4
λ

arctan
[

f (x)g(t)
]

, (1)

where the functions f = f (x) and g = g(t) are determined by the first-order autonomous separable
ordinary differential equations

(

f ′

x

)2 = Af 4 +Bf 2 + C,
(

g′t
)2 = −aCg4 + (aB + bλ)g2 − aA,

(2)

where A, B, and C are arbitrary constants. Note some exact solutions that follow from (1) and (2).
3.1. For A = 0, B = k2 > 0, and C > 0, we have

w(x, t) =
4
λ

arctan
[

µ sinh(kx +A1)
k
√

a cosh(µt +B1)

]

, µ2 = ak2 + bλ > 0, (3)

where k, A1, and B1 are arbitrary constants. Formula (3) corresponds to the two-soliton solution of
Perring–Skyrme (1962).

3.2. For A = 0, B = −k2 < 0, and C > 0,

w(x, t) =
4
λ

arctan
[

µ sin(kx +A1)
k
√

a cosh(µt +B1)

]

, µ2 = bλ − ak2 > 0,

where k, A1, and B1 are arbitrary constants.
3.3. For A = k2 > 0, B = k2γ2 > 0, and C = 0,

w(x, t) =
4
λ

arctan
[

γ

µ

eµ(t+A1) + ak2e−µ(t+A1)

ekγ(x+B1) + e−kγ(x+B1)

]

, µ2 = ak2γ2 + bλ > 0,

where k, A1, B1, and γ are arbitrary constants.G�H
Reference: R. Steuerwald (1936), G. L. Lamb (1980), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov

(1984).

4◦. An N -soliton solution is given by (a = 1, b = −1, and λ = 1)

w(x, t) = arccos
[

1 − 2
(

∂2

∂x2 −
∂2

∂t2

)

(lnF )
]

,

F = det
[

Mij

]

, Mij =
2

ai + aj
cosh

(

zi + zj
2

)

,

zi =
F
x − µit + Ci

√

1 − µ2
i

, ai =
F √

1 − µi
1 + µi

,

where µi and Ci are arbitrary constants.G�H
Reference: R. K. Bullough and P. J. Caudrey (1980), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov

(1984).
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5◦. For other exact solutions of the original equation, see equation 3.4.1.1 with f (w) = b sin(λw),
Item 3◦.

6◦. The sine-Gordon equation is integrated by the inverse scattering method; see the book by
Novikov, Manakov, Pitaevskii, and Zakharov (1984). Belokolos (1995) obtained a general formula
for the solution of the sine-Gordon equation with arbitrary initial and boundary conditions.

7◦. The transformation
z = x − at, y = x + at

leads to an equation of the form 3.5.1.5: ∂zyw = − 1
4a

−2 sinw.I�J
References for equation 3.3.3.1: R. Steuerwald (1936), M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur (1973),

V. E. Zakharov, L. A. Takhtajan, and L. D. Faddeev (1974), G. B. Whitham (1974), I. M. Krichever (1980), R. K. Bullough and
P. J. Caudrey (1980), M. J. Ablowitz and H. Segur (1981), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov
(1984), J. Weiss (1984), M. J. Ablowitz and P. A. Clarkson (1991).

2.
∂2w

∂t2
= a

∂2w

∂x2
+ b sin(λw) + c sin

( 1
2 λw

)

.

Double sine-Gordon equation. It arises in nonlinear optics (propagation of ultrashort pulses in a res-
onance degenerate medium) and low temperature physics (propagation of spin waves in anisotropic
spin liquids).

1◦. Traveling-wave solutions:

w(x, t) =
4
λ

arctan
[

√

4b2 − c2

2b − c
tanh

λ
√

4b2 − c2(kx + µt + θ0)

4
√

bλ(ak2 − µ2)

]

if c2 < 4b2,

w(x, t) =
4
λ

arctan
[

√

c2 − 4b2

c − 2b
tan

λ
√

c2 − 4b2(kx + µt + θ0)

4
√

bλ(ak2 − µ2)

]

if c2 > 4b2.

Here, k, µ, and θ0 are arbitrary constants. It is assumed that bλ(ak2 − µ2) > 0 in both formulas.

2◦. Traveling-wave solutions:

w(x, t) = A +
4
λ

arctan
(

B1e
θ + C1

)

+
4
λ

arctan
(

B2e
θ + C2

)

, θ = µt K kx + θ0,

where the parameters A, B1, B2, C1, C2, µ, and k are related by algebraic constraints with the
parameters a, b, c, and λ of the original equation; θ0 is an arbitrary constant.

Note some special cases of interest that arise in applications.
2.1. For a = 1, b = −1, c = − 1

2 , λ = 1:

w(x, t) = 4 arctan
(

eθ−∆
)

+ 4 arctan
(

eθ+∆
)

; ∆ = ln
(
√

5 + 2
)

, k = µ + 5
4µ

−1.

2.2. For a = 1, b = −1, c = − 1
2 , λ = 1:

w(x, t) = 2π + 4 arctan
(

eθ−∆
)

− 4 arctan
(

eθ+∆
)

; ∆ = ln
(
√

3 + 2
)

, k = µ + 3
4µ

−1.

2.3. For a = 1, b = 1, c = 1
2 , λ = 1:

w(x, t) = δ − 2π + 4 arctan
(

4
√

15
eθ +

1
√

15

)

; δ is any, k = µ + 15
16µ

−1.

2.4. For a = 1, b = 1, c = 1
2 , λ = 1:

w(x, t) = 2π − δ + 4 arctan
(

4
√

15
eθ −

1
√

15

)

; δ is any, k = µ + 15
16µ

−1.

I�J
References: R. K. Bullough and P. J. Caudrey (1980), F. Calogero and A. Degasperis (1982).
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3.
∂2w

∂t2
= a

∂2w

∂x2
+ b cos(λw).

The substitution w = u +
π

2λ
leads to an equation of the form 3.3.3.1:

∂2u

∂t2
= a

∂2u

∂x2 − b sin(λu).

4.
∂2w

∂t2
=

∂2w

∂x2
+ beβt sink(λw).

This is a special case of equation 3.4.1.7 with f (w) = b sink(λw). Therefore, for k = 1, the equation
is reduced to a simpler equation of 3.3.3.1.

5.
∂2w

∂t2
=

∂2w

∂x2
+ beβx sink(λw).

This is a special case of equation 3.4.1.6 with f (w) = b sink(λw). Therefore, for k = 1, the equation
is reduced to a simpler equation of 3.3.3.1.

6.
∂2w

∂t2
=

∂2w

∂x2
+ beβt cosk(λw).

This is a special case of equation 3.4.1.7 with f (w) = b cosk(λw). Therefore, for k = 1, the equation
is reduced to a simpler equation of 3.3.3.3.

7.
∂2w

∂t2
=

∂2w

∂x2
+ beβx cosk(λw).

This is a special case of equation 3.4.1.6 with f (w) = b cosk(λw). Therefore, for k = 1, the equation
reduced to a simpler equation of 3.3.3.3.

8.
∂2w

∂t2
=

a

xn

∂

∂x

(

xn ∂w

∂x

)

+ k sin(λw).

This is a special case of equation 3.4.2.1 with f (w) = k sin(λw) and b = an.

9.
∂2w

∂t2
=

∂

∂x

[

a cosn(λw)
∂w

∂x

]

, a > 0.

This is a special case of equation 3.4.4.6 with f (w) = a cosn(λw).

10.
∂2w

∂t2
=

∂

∂x

[

a sinn(λw)
∂w

∂x

]

, a > 0.

This is a special case of equation 3.4.4.6 with f (w) = a sinn(λw).

3.3.4. Equations of the Form ∂2w
∂t2 + a∂w

∂t
= ∂

∂x

[

f (w) ∂w
∂x

]

1.
∂2w

∂t2
+

∂w

∂t
= a

∂

∂x

(

w–2 ∂w

∂x

)

.

The transformation

τ = t + ln |w|, dz = aw−2wxdt + (w + wt)dx, u = 1/w (dz = zt dt + zx dx),
where the subscripts denote the corresponding partial derivatives, leads to the linear telegraph
equation

∂2u

∂τ 2 +
∂u

∂τ
= a

∂2u

∂z2 .L�M
References: C. Rogers and T. Ruggeri (1985), C. Rogers and W. F. Ames (1989).
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2.
∂2w

∂t2
+ k

∂w

∂t
=

∂

∂x

[

a(w + b)n
∂w

∂x

]

.

1◦. Solution for n ≠ −1:

w(x, t) = (x + C2)1/(1+n)(C1e
−kt + C2) − b,

where C1 and C2 are arbitrary constants.

2◦. Solution:
w(x, t) = (x + C)2/nu(t) − b,

whereC is an arbitrary constant, and the function u = u(t) is determined by the ordinary differential
equation

u′′tt + ku′t =
2a(n + 2)

n2 un+1.

This equation is easy to integrate for n = −2 and n = −1. For n = −3/2 and −3, its exact solutions
are given in the handbook by Polyanin and Zaitsev (2003).

3◦. Traveling-wave solution in implicit form:
∫ w+b

0

bun − λ2

kλu + C1
dw = x + λt + C2,

where C1, C2, and λ are arbitrary constants.

4◦. Solution for n = −1:

w(x, t) =
2at + C1e

−kt + C2

k(x + C3)2 − b,

where C1, C2, and C3 are arbitrary constants.

5◦. Generalized separable solution for n = 1:

w(x, t) = f (t)x2 + g(t)x + h(t) − b,

where the functions f (t), g(t), and h(t) are determined by the system of ordinary differential
equations

f ′′

tt + kf ′

t = 6af 2,
g′′tt + kg′t = 6afg,

h′′tt + kh′t = 2afh + ag2.N�O
References: N. H. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂2w

∂t2
+ a

∂w

∂t
=

∂

∂x

(

beλw ∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

C1x + C2, t + C3
)

−
2
λ

ln |C1|,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) =
1
λ

ln(C1x + C2) + C3e
−at + C4,

where C1, . . . , C4 are arbitrary constants.
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3◦. Additive separable solution:

w(x, t) =
1
λ

ln(λC1x
2 + C2x + C3) + u(t),

whereC1, C2, andC3 are arbitrary constants, and the function u = u(t) is determined by the ordinary
differential equation

u′′tt + au′t = 2bC1e
λu.

4◦. Traveling-wave solution in implicit form:
∫

beλw − λ2

aλw + C1
dw = x + λt + C2,

where C1, C2, and λ are arbitrary constants.P�Q
References: N. H. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

3.3.5. Equations of the Form ∂2w
∂t2 + f (w) ∂w

∂t
= ∂

∂x

[

g(w) ∂w
∂x

]

I Equations of this form admit traveling-wave solutionsw =w(kx+λt); to k = 0 there corresponds
a homogeneous solution dependent on t alone and to λ = 0, a stationary solution dependent on x
alone. For g(w) = const, such equations are encountered in the theory of electric field and nonlinear
Ohm laws, where w is the electric field strength.

1.
∂2w

∂t2
+ wn ∂w

∂t
=

∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C1w( R Cn1 x + C2, Cn1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solutions in implicit form:
∫

(n + 1)dw
wn+1 + C1

= −
a(x − at)

1 − a2 + C2 if n ≠ −1,
∫

dw

ln |w| + C1
= −

a(x − at)
1 − a2 + C2 if n = −1,

where C1, C2, and a are arbitrary constants (a ≠ 0, R 1).
Example 1. Traveling-wave solution for n ≠ 0, −1:

w =
(

n

n + 1
ξ + C

)−1/n

, ξ =
a(x − at)

1 − a2 ,

where C and a are arbitrary constants (a ≠ 0, S 1).

Example 2. Traveling-wave solutions for n = 1:

w = 2C1 tanh(C1ξ + C2),
w = −2C1 tan(C1ξ + C2),

ξ =
a(x − at)

1 − a2 ,

where C1, C2, and a are arbitrary constants; a ≠ 0, S 1.

3◦. Self-similar solution:
w = t−1/nϕ(ξ), ξ =

x

t
,

where the function ϕ = ϕ(ξ) is determined by the ordinary differential equation

(1 − ξ2)ϕ′′

ξξ +
[

ϕn −
2(n + 1)

n

]

ξϕ′

ξ +
1
n
ϕn+1 +

n + 1
n2 ϕ = 0.

Page 232

© 2004 by Chapman & Hall/CRC



3.3. OTHER EQUATIONS INVOLVING ARBITRARY PARAMETERS 233

4◦. Generalized separable solution for n = 1:

w = ϕ(x)
[

t + C1 + C2

∫

dx

ϕ2(x)

]

.

Here, the functionϕ=ϕ(x) is determined by the autonomous ordinary differential equationϕ′′

xx =ϕ2,
which has a particular solution ϕ = 6(x + C)−2.T�U

References: Y. P. Emech and V. B. Taranov (1972), N. H. Ibragimov (1994, 1995), A. D. Polyanin and V. F. Zaitsev
(2002).

2.
∂2w

∂t2
+ awn ∂w

∂t
= b

∂2w

∂x2
.

1◦. Self-similar solution:
w(x, t) = u(z)t−1/n, z = xt−1,

where the function u = u(z) is determined by the ordinary differential equation

n2(z2 − b)u′′zz + nz(2n + 2 − naun)u′z + u(1 + n − naun) = 0.

2◦. Passing to the new independent variables τ = at and z = aβ−1/2x, we arrive at an equation of
the form 3.3.5.1:

∂2w

∂τ 2 + wn
∂w

∂τ
=
∂2w

∂z2 .

3.
∂2w

∂t2
+ awn ∂w

∂t
= b

∂

∂x

(

wk ∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C2
1w( V C2n−k

1 x + C2, C2n
1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Self-similar solution:

w(x, t) = u(z)t−1/n, z = xt(k−2n)/(2n) ,

where the function u = u(z) is determined by the ordinary differential equation
[

4bn2uk − (2n − k)2z2]u′′zz + 4bkn2uk−1(u′z
)2

+ (2n − k)(k − 4 − 4n + 2naun)zu′z = 4u(1 + n − anun).T�U
Reference: N. H. Ibragimov (1994).

4.
∂2w

∂t2
+ ew ∂w

∂t
=

∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( V C1x + C2, C1t + C3) + lnC1,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Traveling-wave solutions:

w(x, t) = − ln
{

1
C1

[

exp
(

C1

a2 − 1
(ax − t) + C2

)

− 1
]}

,

w(x, t) = − ln
{

1
a2 − 1

(ax − t) + C1

}

,

where C1, C2, and a are arbitrary constants (a ≠ V 1).
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3◦. Solutions:

w(x, t) = − ln
(

t + Cx
1 − C2 + 2a

√

|t2 − x2|
∣

∣

∣

∣

x + t
x − t

∣

∣

∣

∣

a )

,

w(x, t) = − ln
( W

x

2
+ C(x X t) +

1
4

(x X t) ln
∣

∣

∣

∣

x + t
x − t

∣

∣

∣

∣

)

,

where C and a are arbitrary constants.Y�Z
References: Y. P. Emech and V. B. Taranov (1973), N. H. Ibragimov (1994, 1995).

5.
∂2w

∂t2
+ aeλw ∂w

∂t
= b

∂2w

∂x2
.

1◦. Solution:
w(x, t) = u(z) −

1
λ

ln t, z = xt−1,

where the function u = u(z) is determined by the ordinary differential equation

λ(z2 − b)u′′zz + λz(2 − aeλu)u′z + 1 − aeλu = 0.

2◦. Passing to the new variables τ = at, z = aβ−1/2x, and u = λw, we arrive at an equation of the
form 3.3.5.4:

∂2u

∂τ 2 + eu
∂u

∂τ
=
∂2u

∂z2 .

6.
∂2w

∂t2
+ aeλw ∂w

∂t
= b

∂

∂x

(

eµw ∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( X C2λ−µ
1 x + C2, C2λ

1 t + C3) + 2 lnC1,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Solution:
w(x, t) = u(z) −

1
λ

ln t, z = xt(λ−2µ)/(2µ) ,

where the function u = u(z) is determined by the ordinary differential equation
[

(µ − 2λ)2z2 − 4bλ2eµu
]

u′′zz − 4bµλ2eµu(u′z)2

+ (µ − 2λ)(µ − 4λ + 2aλeλu)zu′z + 4λ(1 − aeλu) = 0.Y�Z
Reference: N. H. Ibragimov (1994).

3.4. Equations Involving Arbitrary Functions

3.4.1. Equations of the Form ∂2w
∂t2 = a∂2w

∂x2 + f (x, t, w)

1.
∂2w

∂t2
= α

∂2w

∂x2
+ f (w).

Nonlinear Klein–Gordon equation.

1◦. Suppose w = w(x, t) is a solution of the equation in question. Then the functions

w1 = w( X x + C1, X t + C2),

w2 = w
(

x coshβ + tα1/2 sinhβ, t coshβ + xα−1/2 sinhβ
)

,

where C1, C2, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).
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2◦. Traveling-wave solution in implicit form:
∫

[

C1 +
2

λ2 − αk2

∫

f (w) dw
]−1/2

dw = kx + λt + C2, (1)

where C1, C2, k, and λ are arbitrary constants.
Nesterov (1978) indicated several cases where solution (1) can be written out in explicit form

(α = µ = 1):

f (w) = −b2 tanhw
cosh2 w

, w(z) = arcsinh
[

sinh k sin
(

bz + c
cosh k

√

λ2 − 1

)]

,

f (w) = −b2 tanw
cos2 w

, w(z) = arcsin
[

sin k sin
(

bz + c
cos k

√

λ2 − 1

)]

,

where k and c are arbitrary constants. In these cases, the following relationships between the wave
speed, λ, and the amplitude, b, correspond to periodic solutions in z with period 2π:

λ2 = 1 + b2 cosh−2 k,

λ2 = 1 + b2 cos−2 k.
3◦. Functional separable solution:

w = w(ξ), ξ = 1
4α(t + C1)2 − 1

4 (x + C2)2,

where C1 and C2 are arbitrary constants, and the function w = w(ξ) is determined by the ordinary
differential equation

ξw′′

ξξ + w′

ξ −
1
α
f (w) = 0.

4◦. For exact solutions of the nonlinear Klein–Gordon equation with f (w) = bwm, f (w) = beβw,
f (w) = b sinh(λw), f (w) = bw lnw, and f (w) = b sin(λw), see equations 3.1.1.1, 3.2.1.1, 3.3.1.1,
3.3.2.1, and 3.3.3.1, respectively. For solutions of the original equation with some other f = f (w),
see Example 11 in Subsection S.5.3.[�\

References: A. M. Grundland and E. Infeld (1992), R. Z. Zhdanov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂t2
=

∂2w

∂x2
+ (x2 – t2)f (w).

1◦. Suppose w = w(x, t) is a solution of this equation. Then the functions

w1 = w( ] x, ] t),
w2 = w(x coshβ + t sinhβ, x sinhβ + t coshβ),

where β is an arbitrary constant, are also solutions of the equation (the plus or minus signs in w1 are
chosen arbitrarily).

2◦. Functional separable solution:

w = w(ξ), ξ = 1
2

(

x2 − t2
)

,

where the function w = w(ξ) is determined by the ordinary differential equation

ξw′′

ξξ + w′

ξ + ξf (w) = 0.

3◦. Self-similar solution:
w = w(τ ), τ = xt.

Here, the function w = w(τ ) is determined by the autonomous ordinary differential equation

w′′

ττ = f (w),

whose general solution can be represented in implicit form as
∫

[

C1 + 2F (w)
]−1/2

dw = C2 ] τ , F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.
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4◦. Functional separable solution:

w = w(z), z = 1
2 (x2 + t2).

Here, the function w = w(z) is determined by the autonomous ordinary differential equation

w′′

zz + f (w) = 0,

whose general solution can be represented in implicit form as
∫

[

C1 − 2F (w)
]−1/2

dw = C2 ^ z, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.

5◦. Functional separable solution (generalizes the solution of Items 3◦ and 4◦):

w = w(r), r = C1x
2 + C2xt + C1t

2 + C3,

where C1, C2, and C3 are arbitrary constants, and the function w = w(r) is determined by the
autonomous ordinary differential equation

(C2
2 − 4C2

1 )w′′

rr = f (w),

6◦. The transformation
w = U (z, τ ), z = 1

2 (x2 + t2), τ = xt
leads to a simpler equation of the form 3.4.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + f (U ).
_�`

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂2w

∂t2
=

∂2w

∂x2
+ (t2 – x2)nf (w), n = 2, 3, . . .

This is a special case of equation 3.4.1.16 with f (y) = yn and g(z) = zn.

4.
∂2w

∂t2
= a

∂2w

∂x2
+ f (x + bt, w).

Solution:
w = w(ξ), ξ = x + bt,

where the function w(ξ) is determined by the ordinary differential equation

(a − b2)w′′

ξξ + f (ξ,w) = 0.

5.
∂2w

∂t2
=

∂2w

∂x2
+ (x2 – t2)f (xt, w).

1◦. Self-similar solution:
w = w(τ ), τ = xt.

Here, the function w = w(τ ) is determined by the ordinary differential equation

w′′

ττ = f (τ ,w).

2◦. The transformation
z = 1

2 (x2 + t2), τ = xt
leads to the simpler equation

∂2w

∂τ 2 =
∂2w

∂z2 + f (τ ,w).
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6.
∂2w

∂t2
=

∂2w

∂x2
+ eβxf (w).

The transformation

w = U (z, τ ), z = exp
( 1

2βx
)

cosh
( 1

2βt
)

, τ = exp
( 1

2βx
)

sinh
( 1

2βt
)

leads to a simpler equation of the form 3.4.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + 4β−2f (U ).

For arbitrary f = f (U ), this equation admits a traveling-wave solutionU =U (kz+λτ ) and a solution
of the form U = U (z2 − τ 2).a�b

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

7.
∂2w

∂t2
=

∂2w

∂x2
+ eβtf (w).

The transformation

w = U (z, τ ), z = exp
( 1

2βt
)

sinh
( 1

2βx
)

, τ = exp
( 1

2βt
)

cosh
( 1

2βx
)

leads to a simpler equation of the form 3.4.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + 4β−2f (U ).

For arbitrary f = f (U ), this equation admits a traveling-wave solutionU =U (kz+λτ ) and a solution
of the form U = U (z2 − τ 2).

8.
∂2w

∂t2
=

∂2w

∂x2
+ eax+btf (w).

1◦. There is a solution of the form w = w(ax + bt).

2◦. For b ≠ c a, the transformation

ξ = ax + bt, τ = bx + at

leads to an equation of the form 3.4.1.6:

∂2w

∂τ 2 =
∂2w

∂ξ2 +
1

a2 − b2 e
ξf (w).

3◦. For b = a, see equation 3.4.1.13 with f (z) = eaz, and for b = −a, see equation 3.4.1.14 with
f (z) = e−az.

9.
∂2w

∂t2
= a

∂2w

∂x2
+ bw ln w + f (t)w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + f (t) + C
]

ϕ = 0,

aψ′′

xx +
(

b lnψ − C
)

ψ = 0,

and C is an arbitrary constant.
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10.
∂2w

∂t2
= a

∂2w

∂x2
+ bw ln w +

[

f (x) + g(t)
]

w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + g(t) + C
]

ϕ = 0,

aψ′′

xx +
[

b lnψ + f (x) − C
]

ψ = 0,

and C is an arbitrary constant.

11.
∂2w

∂t2
= a

∂2w

∂x2
+ f (t)w ln w +

[

bf (t)x + g(t)
]

w.

Multiplicative separable solution:
w(x, t) = e−bxϕ(t),

where the function ϕ(t) is determined by the ordinary differential equation

ϕ′′

tt = f (t)ϕ lnϕ +
[

g(t) + ab2]ϕ.

12.
∂2w

∂t2
= a

∂2w

∂x2
+ f (x)w ln w +

[

bf (x)t + g(x)
]

w.

Multiplicative separable solution:
w(x, t) = e−btϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

aϕ′′

xx + f (x)ϕ lnϕ +
[

g(x) − b2]ϕ = 0.

13.
∂2w

∂t2
=

∂2w

∂x2
+ f (t + x)g(w).

The transformation

w = U (ξ, τ ), z =
1
2

∫ t+x

a

f (λ) dλ −
1
2

(t − x), τ =
1
2

∫ t+x

a

f (λ) dλ +
1
2

(t − x)

where a is an arbitrary constant, leads to an equation of the form 3.4.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + g(U ).
d�e

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

14.
∂2w

∂t2
=

∂2w

∂x2
+ f (t – x)g(w).

The transformation

w = U (z, τ ), z =
1
2

(t + x) −
1
2

∫ t−x

a

f (σ) dσ, τ =
1
2

(t + x) +
1
2

∫ t−x

a

f (σ) dσ

where a is an arbitrary constant, leads to an equation of the form 3.4.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + g(U ).
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15.
∂2w

∂t2
=

∂2w

∂x2
+ f (t + x)g(t – x)eβw.

The transformation

w = U (z, τ ), z =
1
2

∫ t+x

a

f (λ) dλ −
1
2

∫ t−x

b

g(σ) dσ, τ =
1
2

∫ t+x

a

f (λ) dλ +
1
2

∫ t−x

b

g(σ) dσ,

where a and b are arbitrary constants, leads to an equation of the form 3.2.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + eβU .

16.
∂2w

∂t2
=

∂2w

∂x2
+ f (t + x)g(t – x)h(w).

The transformation

w = U (z, τ ), z =
1
2

∫ t+x

a

f (λ) dλ −
1
2

∫ t−x

b

g(σ) dσ, τ =
1
2

∫ t+x

a

f (λ) dλ +
1
2

∫ t−x

b

g(σ) dσ,

where a and b are arbitrary constants, leads to an equation of the form 3.4.1.1:

∂2U

∂τ 2 =
∂2U

∂z2 + h(U ).
f�g

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3.4.2. Equations of the Form ∂2w
∂t2 = a∂2w

∂x2 + f
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= a

∂2w

∂x2
+

b

x

∂w

∂x
+ f (w).

1◦. This is a special case of equation 3.4.3.4 with n = 0. This equation can be rewritten in the form

∂2w

∂t2
=

a

xm
∂

∂x

(

xm
∂w

∂x

)

+ f (w), m =
b

a
.

Tom = 1 andm = 2 there correspond nonlinear waves with axial and central symmetry, respectively.

2◦. Functional separable solution:

w = w(ξ), ξ =
√

ak(t + C)2 − kx2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
a + b
aξ

w′

ξ =
1
ak
f (w).

2.
∂2w

∂t2
= a

∂2w

∂x2
+ f (x)

∂w

∂x
+ bw ln w +

[

g(x) + h(t)
]

w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + h(t) + C
]

ϕ = 0,

aψ′′

xx + f (x)ψ′

x +
[

b lnψ + g(x) − C
]

ψ = 0,

and C is an arbitrary constant.
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3.
∂2w

∂t2
= a

∂2w

∂x2
+ f (w)

∂w

∂x
.

Traveling-wave solution in implicit form:

(λ2 − a)
∫

dw

F (w) + C1
= x + λt + C2, F (w) =

∫

f (w) dw.

where C1, C2, and λ are arbitrary constants. To the stationary solution there correspond λ = 0.

4.
∂2w

∂t2
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + f (t).

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w( h x + C1, t) + C2 cosh(kt) + C3 sinh(kt) if c = k2 > 0,

w2 = w( h x + C1, t) + C2 cos(kt) + C3 sin(kt) if c = −k2 < 0,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:
w(x, t) = U (t) + Θ(ξ), ξ = h x + λt,

where λ is an arbitrary constant, and the functions U (t) and Θ(ξ) are determined by the ordinary
differential equations

U ′′

tt − cU − f (t) = 0, (1)

(a − λ2)Θ′′

ξξ + b
(

Θ
′

ξ

)2 + cΘ = 0. (2)

The solution of equation (1) is given by

U (t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
f (τ ) sinh

[

k(t − τ )
]

dτ if c = k2 > 0,

U (t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
f (τ ) sin

[

k(t − τ )
]

dτ if c = −k2 < 0,
(3)

where C1 and C2 are arbitrary constants.
Equation (2) can be solved with the change of variable z(Θ) =

(

Θ
′

ξ

)2, which leads to first-order
linear equation.

Particular solution of equation (2):

Θ = −
c

4b
(ξ + C3)2 +

1
2b

(a − λ2).

3◦. Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t), (4)

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of ordinary differential
equations

ϕ′′

tt = 4bϕ2 + cϕ, (5)
ψ′′

tt = (4bϕ + c)ψ, (6)
χ′′

tt = cχ + bψ2 + 2aϕ + f (t). (7)

Equation (5) has the trivial particular solution ϕ(t) ≡ 0, to which there corresponds a solution
of (4) linear in x. Another particular solution to equation (5) is given by ϕ = − 1

4 c/b.
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The general solution of the autonomous equation (5) can be represented in implicit form:
∫

( 8
3 bϕ

3 + cϕ2 + C1
)−1/2

dϕ = C2 i t,
where C1 and C2 are arbitrary constants.

The functions ψ = ψ(t) and χ = χ(t) can be found by successively integrating equations (6)
and (7), which are linear in ψ and χ, respectively.

Note that equation (6) has a particular solution ψ = ϕ̄(t), where ϕ̄(t) is any nontrivial particular
solution to (5). Hence, the general solution to (6) is expressed as

ψ(t) = C3ϕ̄(t) + C4ϕ̄(t)
∫

dt

ϕ̄2(t)
,

where C3 and C4 are arbitrary constants.

4◦. The substitution
w = z(x, t) + U (t),

where the function U (t) is defined by formula (3), leads to the simpler equation

∂2z

∂t2
= a

∂2z

∂x2 + b
(

∂z

∂x

)2

+ cz.
j�k

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5.
∂2w

∂t2
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw + f (x).

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w(x, i t + C1) + C2 cosh(kt) + C3 sinh(kt) if c = k2 > 0,

w2 = w(x, i t + C1) + C2 cos(kt) + C3 sin(kt) if c = −k2 < 0,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solution:
w(x, t) = ϕ(x) + ψ(t).

Here,

ψ(t) =
{

C1 cosh(kt) + C2 sinh(kt) if c = k2 > 0,
C1 cos(kt) + C2 sin(kt) if c = −k2 < 0,

where C1 and C2 are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′

xx + b
(

ϕ′

x

)2 + cϕ + f (x) = 0.

6.
∂2w

∂t2
= a

∂2w

∂x2
+ b

(

∂w

∂x

)2

+ cw
∂w

∂x
+ kw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ is a root of the quadratic equation bλ2 + cλ + k = 0, and the functions ϕ(t) and ψ(t) are
determined by the system of ordinary differential equations

ϕ′′

tt = kϕ2 + f (t)ϕ + g(t), (1)
ψ′′

tt =
[

(cλ + 2k)ϕ + f (t) + aλ2]ψ. (2)

In the special case f (t) = const, g(t) = const, equation (1) has exact solutions of the formϕ= const
and, due to its autonomity, can be integrated by quadrature. Equation (2) is linear in ψ and, hence,
with ϕ = const, the general solution to (6) is expressed in terms of exponentials or sine and cosine.
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7.
∂2w

∂t2
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ g(t)w + h(t).

Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t), (1)

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of ordinary differential
equations of the second order with variable coefficients (the arguments of f , g, and h are not
specified)

ϕ′′

tt = 4fϕ2 + gϕ, (2)
ψ′′

tt = (4fϕ + g)ψ, (3)
χ′′

tt = gχ + fψ2 + h + 2aϕ. (4)

Equation (2) has the trivial particular solution ϕ(t) ≡ 0, to which there corresponds a solution
of (1) linear in x.

If a solution ϕ = ϕ(t) of the nonlinear equation (2) has been found, the functions ψ = ψ(t) and
χ = χ(t) can be obtained by successively solving equations (3) and (4), which are linear in ψ and χ,
respectively.

Note that equation (3) has a particular solution ψ = ϕ̄(t), where ϕ̄(t) is any nontrivial particular
solution to (2). Hence, the general solution to (3) is expressed as

ψ(t) = C1ϕ̄(t) + C2ϕ̄(t)
∫

dt

ϕ̄2(t)
,

where C1 and C2 are arbitrary constants. If the functions f and g are proportional to each other,
then a particular solution to equation (2) is given by ϕ = − 1

4 g/f = const.

8.
∂2w

∂t2
= a

∂2w

∂x2
+ f (x)

(

∂w

∂x

)2

+ g(x) + h(t).

Additive separable solution:

w(x, t) = 1
2At

2 +Bt + C +
∫ t

0
(t − τ )h(τ ) dτ + ϕ(x).

Here, A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′

xx + f (x)
(

ϕ′

x)2 + g(x) −A = 0.

9.
∂2w

∂t2
= a

∂2w

∂x2
+ f (x)

(

∂w

∂x

)2

+ bw + g(x) + h(t).

Additive separable solution:
w(x, t) = ϕ(t) + ψ(x).

Here, the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − h(t) = 0,

aψ′′

xx + f (x)(ψ′

x)2 + bψ + g(x) = 0.

The solution of the first equation for ϕ(t) is expressed as

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
h(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
h(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.
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10.
∂2w

∂t2
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ bf (t)w2 + g(t)w + h(t).

1◦. Generalized separable solutions:

w(x, t) = ϕ(t) + ψ(t) exp
( l
x
√

−b
)

, b < 0, (1)

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations
of the second order with variable coefficients (the arguments of f , g, and h are not specified)

ϕ′′

tt = bfϕ2 + gϕ + h, (2)
ψ′′

tt = (2bfϕ + g − ab)ψ. (3)

If a solution ϕ = ϕ(t) to equation (2) has been found, the function ψ = ψ(t) can be obtained by
solving equation (3) linear in ψ.

If the functions f , g, and h are proportional to each other,

g = αf , h = βf (α, β = const),

particular solutions to equation (2) are expressed as

ϕ = k1, ϕ = k2, (4)

where k1 and k2 are roots of the quadratic equation bk2 + αk + β = 0. In this case, equation (3) can
be rewritten in the form

ψ′′

tt =
[

(2bkn + α)f − ab
]

ψ, n = 1, 2. (5)

Kamke (1977) and Polyanin and Zaitsev (2003) present many exact solutions of the linear
equation (5) for various f = f (t). In the special case f = const, the general solution of equation (5)
is the sum of exponentials (or sine and cosine).

2◦. Generalized separable solution (generalizes the solutions of Item 1◦):

w(x, t) = ϕ(t) + ψ(t)
[

A exp
(

x
√

−b
)

+ B exp
(

−x
√

−b
)]

, b < 0, (6)

where the functions ϕ(t) and ψ(t) are determined by the following system of second-order ordinary
differential equations with variable coefficients

ϕ′′

tt = bf
(

ϕ2 + 4ABψ2) + gϕ + h, (7)

ψ′′

tt =
(

2bfϕ + g − ab
)

ψ. (8)

We expressϕ from (8) in terms ofψ and then substitute into (7) to obtain a nonlinear fourth-order
equation forψ; with f , g, h = const, the equation is autonomous and, hence, its order can be reduced.

Note two special cases of solutions (6) that can be expressed in terms of hyperbolic functions:

w(x, t) = ϕ(t) + ψ(t) cosh
(

x
√

−b
)

, A = 1
2 , B = 1

2 ,

w(x, t) = ϕ(t) + ψ(t) sinh
(

x
√

−b
)

, A = 1
2 , B = − 1

2 .

3◦. Generalized separable solution (c is an arbitrary constant):

w(x, t) = ϕ(t) + ψ(t) cos
(

x
√

b + c
)

, b > 0, (9)

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations
of the second order with variable coefficients

ϕ′′

tt = bf
(

ϕ2 + ψ2) + gϕ + h, (10)

ψ′′

tt =
(

2bfϕ + g − ab
)

ψ. (11)m�n
References: V. A. Galaktionov (1995, the case of f = a, g = const, and h = const was considered), V. F. Zaitsev and

A. D. Polyanin (1996).
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11.
∂2w

∂t2
= a

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+
[

g1(t)x + g0(t)
] ∂w

∂x
+ h(t)w + p2(t)x2 + p1(t)x + p0(t).

There is a generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).

12.
∂2w

∂t2
= a

∂2w

∂x2
+ f (x)

(

∂w

∂x

)k

+ g(x)
∂w

∂x
+ bw + h1(t) + h2(x).

Additive separable solution:
w(x, t) = ϕ(x) + ψ(t).

Here,

ψ(t) =































C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
sinh

[

k(t − τ )
]

h1(τ ) dτ if b = k2 > 0,

C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
sin

[

k(t − τ )
]

h1(τ ) dτ if b = −k2 < 0,

C1 + C2t +
∫ t

0
(t − τ )h1(τ ) dτ if b = 0,

where C1 and C2 are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′

xx + f (x)
(

ϕ′

x

)k + g(x)ϕ′

x + bϕ + h2(x) = 0.

13.
∂2w

∂t2
= a

∂2w

∂x2
+ f

(

x,
∂w

∂x

)

+ g(t).

Additive separable solution:

w(x, t) = 1
2At

2 +Bt + C +
∫ t

0
(t − τ )g(τ ) dτ + ϕ(x).

Here, A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′

xx + f
(

x,ϕ′

x

)

−A = 0.

14.
∂2w

∂t2
= a

∂2w

∂x2
+ f

(

x,
∂w

∂x

)

+ bw + g(t).

Additive separable solution:
w(x, t) = ϕ(t) + ψ(x).

Here, the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − g(t) = 0,

aψ′′

xx + f
(

x,ψ′

x

)

+ bψ = 0.

The solution of the first equation is expressed as

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
g(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
g(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.
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15.
∂2w

∂t2
= a

∂2w

∂x2
+ wf

(

t,
1
w

∂w

∂x

)

.

Multiplicative separable solution:
w(x, t) = eλxϕ(t),

where λ is an arbitrary constant, and the function ϕ(t) is determined by the second-order linear
ordinary differential equation

ϕ′′

tt =
[

aλ2 + f (t,λ)
]

ϕ.

3.4.3. Equations of the Form ∂2w
∂t2 = f (x) ∂2w

∂x2 + g
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= (ax2 + b)

∂2w

∂x2
+ ax

∂w

∂x
+ f (w).

The substitution z =
∫

dx
√

ax2 + b
leads to an equation of the form 3.4.1.1:

∂2w

∂t2
=
∂2w

∂z2 + f (w).

2.
∂2w

∂t2
= a(x + β)n

∂2w

∂x2
+ f (w), a > 0.

This equation describes the propagation of nonlinear waves in an inhomogeneous medium. For
n = 0 see equation 3.4.1.1.

1◦. The substitution y = x + β leads to a special case of equation 3.4.3.4 with b = 0.

2◦. Functional separable solution for n ≠ 2:

w = w(r), r2 = k
[

1
4

(t + C)2 −
(x + β)2−n

a(2 − n)2

]

,

where k and the expression in square brackets must have like signs, and w(r) is determined by the
ordinary differential equation

w′′

rr +
2(1 − n)

2 − n
1
r
w′

r =
4
k
f (w). (1)

The substitution ξ = r
n

2−n leads to the generalized Emden–Fowler equation

w′′

ξξ =
4(2 − n)2

kn2 ξ
4(1−n)
n f (w). (2)

The book by Polyanin and Zaitsev (2003) presents a number of exact solutions to equation (2)
for various f = f (w).

Special case. For n = 1, the general solution of equation (1) is written out in implicit form as
∫

[

C1 +
8
k
F (w)

]−1/2
dw = o r + C2, F (w) =

∫

f (w) dw,

where C1 and C2 are arbitrary constants.

3◦. Solution for n = 2:
w = w(y), y = At +B ln |x + β|,

whereA andB are arbitrary constants, and the function w = w(y) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

yy − aBw′

y + f (w) = 0. (3)
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Solution of equation (3) with A = p B√a in implicit form:

aB

∫

dw

f (w)
= y + C,

where C is an arbitrary constant.q�r
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

3.
∂2w

∂t2
=

∂

∂x

[

a(x + β)n
∂w

∂x

]

+ f (w), a > 0.

This equation describes the propagation of nonlinear waves in an inhomogeneous medium.

1◦. Functional separable solution for n ≠ 2:

w = w(r), r2 = k
[

1
4

(t + C)2 −
(x + β)2−n

a(2 − n)2

]

,

where k and the expression in square brackets must have like signs, and the function w(r) is
determined by the ordinary differential equation

w′′

rr +
2

2 − n
1
r
w′

r =
4
k
f (w).

The substitution ξ = r
n
n−2 leads to the generalized Emden–Fowler equation

w′′

ξξ =
4(2 − n)2

kn2 ξ− 4
n f (w). (1)

The book by Polyanin and Zaitsev (2003) presents a number of exact solutions to equation (1) for
various f = f (w).

2◦. Solution for n = 2:
w = w(z), z = At +B ln |x + β|,

whereA andB are arbitrary constants, and the functionw = w(z) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

zz + aBw′

z + f (w) = 0. (2)

Solution of equation (2) with A = p B√a in implicit form:

aB

∫

dw

f (w)
= −z + C,

where C is an arbitrary constant.q�r
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

4.
∂2w

∂t2
= axn ∂2w

∂x2
+ bxn–1 ∂w

∂x
+ f (w), a > 0.

1◦. Functional separable solution for n ≠ 2:

w = w(ξ), ξ = 1
4 a(2 − n)2(t + C)2 − x2−n.

Here,C is an arbitrary constant, and the functionw =w(ξ) is determined by the ordinary differential
equation

ξw′′

ξξ +Aw′

ξ −Bf (w) = 0, (1)

where
A =

a(4 − 3n) + 2b
2a(2 − n)

, B =
1

a(2 − n)2 .
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For A ≠ 1, the substitution ξ = kz
1

1−A (k = s 1) brings (1) to the generalized Emden–Fowler
equation

w′′

zz −
kB

(1 −A)2 z
2A−1
1−A f (w) = 0. (2)

In the special caseA = 1
2 , which corresponds to b = a(n− 1), the general solution of equation (2)

is expressed as
∫

[

C1 + 8kBF (w)
]−1/2

dw = s z + C2, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.
The books by Polyanin and Zaitsev (1995, 2003) present a number of exact solutions to equa-

tion (2) for some f = f (w).

2◦. Solution for n = 2:
w = w(y), y = At +B ln |x| + C,

where A, B, and C are arbitrary constants, and the function w(y) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

yy + (b − a)Bw′

y + f (w) = 0. (3)

Solutions of equation (3) with A = s B√a in implicit form:

(b − a)B
∫

dw

f (w)
= −y + C1.

Solutions of equation (3) with b = a:
∫

[

C1 +
2

A2 − aB2 F (w)
]−1/2

dw = s y + C2, F (w) =
∫

f (w) dw.

ForA ≠ s B√a and b ≠ a, the substitution u(w) =
aB2 −A2

B(a − b)
w′

y brings (3) to the Abel equation

uu′w − u =
A2 − aB2

B2(a − b)2 f (w),

whose exact solutions for various f = f (w) can be found in Polyanin and Zaitsev (2003).

5.
∂2w

∂t2
= axn ∂2w

∂x2
+ xn–1f (w)

∂w

∂x
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w
(

C2
1x, s C2−n

1 t + C2
)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for n ≠ 2:

w = w(z), z =
∣

∣a(2 − n)2(t + C)2 − 4x2−n∣
∣

1/2,

where C is an arbitrary constant, and the function w(z) is determined by the ordinary differential
equation

w′′

zz +
2

a(2 − n)z
[

a(1 − n) + f (w)
]

w′

z = 0. (1)

The substitution u(w) = zw′

z brings (1) to a separable first-order equation, the integration of
which yields the general solution in implicit form:

∫

dw

anw − 2F (w) + C1
=

1
a(2 − n)

ln z + C2, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.
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3◦. Self-similar solution for n ≠ 2:

w = w(ξ), ξ = x|t|
2
n−2 ,

where the function w = w(ξ) is determined by the ordinary differential equation
[

aξn−1 −
4

(n − 2)2 ξ

]

w′′

ξξ +
[

ξn−2f (w) +
2(n − 4)
(n − 2)2

]

w′

ξ = 0.

4◦. Solution for n = 2:
w = w(y), y = At +B ln |x| + C,

where A, B, and C are arbitrary constants, and the function w(y) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

yy +B
[

f (w) − a
]

w′

y = 0,

whose solution with A ≠ t B√a is given by

aB2 −A2

B

∫

dw

F (w) − aw + C1
= −y, F (w) =

∫

f (w) dw.

u�v
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

6.
∂2w

∂t2
= axn ∂2w

∂x2
+ xn–1f (w)

∂w

∂x
+ g(w).

1◦. Functional separable solution for n ≠ 2:

w = w(z), z =
[

ka(2 − n)2(t + C)2 − 4kx2−n]1/2, k = t 1,

where C is an arbitrary constant, and the function w(z) is determined by the ordinary differential
equation

w′′

zz +
2

a(2 − n)
[

a(1 − n) + f (w)
] 1
z
w′

z −
1

ak(2 − n)2 g(w) = 0.

2◦. Solution for n = 2:
w = w(ξ), ξ = At +B ln |x| + C,

where A, B, and C are arbitrary constants, and the function w(ξ) is determined by the autonomous
ordinary differential equation

(aB2 −A2)w′′

ξξ +B
[

f (w) − a
]

w′

ξ + g(w) = 0. (1)

Solution of equation (1) with A = t B√a:

B

∫

[

f (w) − a
] dw

g(w)
= −ξ + C1.

In the general case, the change of variable u(w) = w′

ξ brings (1) to an Abel equation, whose
exact solutions for various f = f (w) and g = g(w) can be found in Polyanin and Zaitsev (2003).

7.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ f (w), a > 0.

This is a special case of equation 3.4.3.9 with b = 0.

8.
∂2w

∂t2
=

∂

∂x

(

aeλx ∂w

∂x

)

+ f (w), a > 0.

This is a special case of equation 3.4.3.9 with b = aλ.
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9.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beλx ∂w

∂x
+ f (w), a > 0.

Functional separable solution:

w = w(z), z =
[

4ke−λx − akλ2(t + C)2]1/2, k = w 1,

whereC is an arbitrary constant and the functionw =w(z) is determined by the ordinary differential
equation

w′′

zz +
2(aλ − b)
aλ

1
z
w′

z +
1

akλ2 f (w) = 0. (1)

For b = aλ, the solution of equation (1) is expressed as
∫

[

C1 −
2

akλ2 F (w)
]−1/2

dw = w z + C2, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.

For b ≠ 1
2aλ, the substitution ξ = z

2b−aλ
aλ brings (1) to the generalized Emden–Fowler equation

w′′

ξξ +
a

k(2b − aλ)2 ξ
4(aλ−b)
2b−aλ f (w) = 0. (2)

The books by Polyanin and Zaitsev (1995, 2003) present a number of exact solutions to equa-
tion (2) for some f = f (w).

10.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ eλxf (w)

∂w

∂x
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w
(

x + 2C1, w eλC1t + C2
)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Functional separable solution for λ ≠ 0:

w = w(z), z =
∣

∣4e−λx − aλ2(t + C)2∣
∣

1/2,

where C is an arbitrary constant, and the function w(z) is determined by the ordinary differential
equation

w′′

zz +
2
z

[

1 −
1
aλ
f (w)

]

w′

z = 0. (1)

The substitution u(w) = zw′

z brings (1) to a separable first-order equation, the integration of which
yields the general solution in implicit form:

∫

dw

2F (w) − aλw + C1
=

1
aλ

ln z + C2, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.
For λ = 0, see equation 3.4.2.3.

3◦. Generalized self-similar solution:

w = w(ξ), ξ = t2eλx,

where the function w = w(z) is determined by the ordinary differential equation

(aλ2ξ2 − 4ξ)w′′

ξξ +
[

λξf (w) + aλ2ξ − 2
]

w′

ξ = 0.x�y
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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11.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ eλxf (w)

∂w

∂x
+ g(w).

1◦. Functional separable solution for λ ≠ 0:

w = w(z), z =
[

4ke−λx − akλ2(t + C)2]1/2, k = z 1,

where C is an arbitrary constant, and the function w(z) is determined by the ordinary differential
equation

w′′

zz +
2
z

[

1 −
1
aλ
f (w)

]

w′

z +
1

akλ2 g(w) = 0.

2◦. For λ = 0, there is a traveling-wave solution: w = w(αx + βt).

12.
∂2w

∂t2
= f (x)

∂2w

∂x2
+ g(x)

∂w

∂x
+ aw ln w +

[

h(x) + p(t)
]

w.

Multiplicative separable solution:
w(x, t) = ϕ(x)ψ(t),

where the functions ϕ(x) and ψ(t) are determined by the ordinary differential equations (C is an
arbitrary constant)

f (x)ϕ′′

xx + g(x)ϕ′

x + aϕ lnϕ +
[

C + h(x)
]

ϕ = 0,

ψ′′

tt − aψ lnψ +
[

C − p(t)
]

ψ = 0.

3.4.4. Equations of the Form ∂2w
∂t2 = f (w) ∂2w

∂x2 + g
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= aw

∂2w

∂x2
+ f (t)

(

∂w

∂x

)2

+ g(t)w + h2(t)x2 + h1(t)x + h0(t).

Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functionsϕ =ϕ(t),ψ =ψ(t), χ =χ(t) are determined by the system of ordinary differential
equations

ϕ′′

tt = 2[2f (t) + a]ϕ2 + g(t)ϕ + h2(t),
ψ′′

tt = 2[2f (t) + a]ϕψ + g(t)ψ + h1(t),

χ′′

tt = 2aϕχ + f (t)ψ2 + g(t)χ + h0(t).{�|
Reference: V. A. Galaktionov (1995); the case of f = const and h1 = h2 = 0 was treated.

2.
∂2w

∂t2
= aw4 ∂2w

∂x2
+ f (x)w5.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C1w
(

x, z C2
1 t + C2

)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Suppose u = u(x) is any nontrivial solution of the second-order linear ordinary differential
equation

au′′xx + f (x)u = 0. (1)

The transformation
ξ =

∫

dx

u2 , z =
w

u
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brings the original equation to a simpler equation of the form 3.1.5.5 with n = 4:
∂2z

∂t2
= az4 ∂

2z

∂ξ2 .

For example, this equation has the following solutions (A, B, C, D, and λ are arbitrary constants):
z(ξ, t) = Aξt +Bξ + Ct +D,

z(ξ, t) = λ−1/4(t + C)−1/2
[

3λ
4A2a

+ (Aξ +B)2
]1/2

.

The first solution is degenerate and the second one is a special case of a multiplicative separable
solution z(ξ, t) = f (ξ)g(t). There are also a traveling-wave solution, z = z(αξ+βt), and a self-similar
solution of the form

z = tkϕ(ζ), ζ = ξt−2k−1,
where k is an arbitrary constant.

3◦. Multiplicative separable solution:

w(x, t) = ( } 2λt + C)−1/2g(x),

whereC is an arbitrary constant, and the function g = g(x) is determined by the Yermakov’s equation

ag′′xx + f (x)g − 3λ2g−3 = 0. (2)

Given a particular solution u = u(x) of the linear equation (1), the general solution of the
nonlinear equation (2) is expressed as (e.g., see Polyanin and Zaitsev, 2003):

Ag2 =
3λ2

a
u2 + u2

(

B +A
∫

dx

u2

)2

,

where A and B are arbitrary constants (A ≠ 0).~��
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

3.
∂2w

∂t2
= a

∂

∂x

(

w–4/3 ∂w

∂x

)

+ f (x)w–1/3, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C3
1w

(

x, } C−2
1 t + C2

)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Suppose u = u(x) is any nontrivial particular solution of the second-order linear ordinary
differential equation

au′′xx − 1
3 f (x)u = 0. (1)

The transformation
ξ =

∫

dx

u2 , z = wu3 (2)

brings the original equation to a simpler equation of the form 3.1.6.5 with n = −4/3:

∂2z

∂t2
= a

∂

∂ξ

(

z−4/3 ∂z

∂ξ

)

.

3◦. For f = b = const, the auxiliary equation (1) employed to determine the transformation (2) has
the following solution:

u(x) =
{

C1 exp(λx) + C2 exp(−λx) if ab > 0,
C1 cos(λx) + C2 sin(λx) if ab < 0,

where λ =
∣

∣

1
3 b/a

∣

∣

1/2; C1 and C2 are arbitrary constants.
For f (x) = bxm or f (x) = beβx, the solutions of equation (1) are expressed in terms of Bessel

functions.~��
Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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4.
∂2w

∂t2
= a

∂

∂x

(

wn ∂w

∂x

)

+ f (x)wn+1 + g(t)w.

Multiplicative separable solution:
w = ϕ(x)ψ(t),

where the functions ϕ = ϕ(x) and ψ = ψ(t) are determined by the ordinary differential equations
(C is an arbitrary constant)

a(ϕnϕ′

x)′x + f (x)ϕn+1 + Cϕ = 0,

ψ′′

tt − g(t)ψ + Cψn+1 = 0.

5.
∂2w

∂t2
= a

∂

∂x

(

eλw ∂w

∂x

)

+ f (x)eλw + g(t).

Additive separable solution:
w = ϕ(x) + ψ(t),

where the functions ϕ = ϕ(x) and ψ = ψ(t) are determined by the ordinary differential equations
(C is an arbitrary constant)

a(eλϕϕ′

x)′x + f (x)eλϕ + C = 0,

ψ′′

tt − g(t) + Ceλψ = 0.

By the change of variable U = eλϕ the first equation is reduced to the linear equation aU ′′

xx +
λf (x)U + λC = 0.

6.
∂2w

∂t2
=

∂

∂x

[

f (w)
∂w

∂x

]

.

This equation is encountered in wave and gas dynamics.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w( � C1x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. The transformation

x = τ , t = z, u =
∫

f (w) dw

leads to an equation of the similar form

∂2u

∂τ 2 =
∂

∂z

[

g(u)
∂w

∂z

]

,

where the function g = g(u) is defined parametrically as

u =
∫

f (w) dw, g(u) =
1

f (w)
.

3◦. Traveling-wave solution:
w = w(z), z = x � λt,

where w = w(z) is defined implicitly by (A and B are arbitrary constants)

λ2w −
∫

f (w) dw = Az +B.

���
Reference: W. F. Ames, R. J. Lohner, and E. Adams (1981).
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4◦. Self-similar solution:
w = w(ξ), ξ =

x + a
t + b

,

where a and b are arbitrary constants, and the functionw(ξ) is determined by the ordinary differential
equation

(

ξ2w′

ξ)′ξ =
[

f (w)w′

ξ

]

′

ξ
,

which admits the first integral
[

ξ2 − f (w)
]

w′

ξ = C. (1)

To the special case C = 0 there corresponds the solution (in implicit form):

ξ2 = f (w).

For C ≠ 0, treating w in (1) as the independent variable, one obtains a Riccati equation for
ξ = ξ(w):

Cξ′w = ξ2 − f (w). (2)

The handbooks by Polyanin and Zaitsev (1995, 2003) present a large number of solutions to
equation (2) for various f = f (w).

By the change of variable ξ = −Cy′w/y, equation (1) is reduced to the second-order linear
equation y′′ww = C−2f (w)y.���

References: W. F. Ames, R. J. Lohner, and E. Adams (1981), V. F. Zaitsev and A. D. Polyanin (1996).

5◦. Solution in parametric form:

x = C1v
2 + C2v +

∫

f (w)(2C1w + C3) dw + C4,

t = (2C1w + C3)v + C2w + C5.

Here and henceforth,C1, . . . , C5 are arbitrary constants.

6◦. Solution in parametric form:

x = [C1F (w) + C2]v + C3F (w) + C4, F (w) =
∫

f (w) dw,

t =
1
2
C1v

2 + C3v +
∫

[C1F (w) + C2] dw + C5.

7◦. Solution in parametric form:

x = [C1F (w) + C2]v2 + C3F (w) + C4 + 2
∫

{

f (w)
∫

[C1F (w) + C2] dw
}

dw,

t =
1
3
C1v

3 + C3v + 2v
∫

[C1F (w) + C2] dw + C5.

8◦. Solution in parametric form:

x = (C1e
λv + C2e

−λv)H(w) + C3,

t =
1
λ

(C1e
λv − C2e

−λv)
1

f (w)
H ′

w(w) + C4,

whereC1, . . . ,C4 andλ are arbitrary constants, the functionH =H(w) is determined by the ordinary
differential equation Lf [H] − λ2H = 0, and the differential operator Lf is expressed as

Lf [ϕ] ≡
d

dw

[

1
f (w)

dϕ

dw

]

. (3)
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9◦. Solution in parametric form:

x = [C1 sin(λv) + C2 cos(λv)]Z(w) + C3,

t =
1
λ

[C2 sin(λv) − C1 cos(λv)]
1

f (w)
Z ′

w(w) + C4,

whereC1, . . . ,C4 and λ are arbitrary constants, the functionZ =Z(w) is determined by the ordinary
differential equation Lf [Z] + λ2Z = 0, and the differential operator Lf is defined by (3).

10◦. Solution in parametric form:

x = [2C1F (w) + C3]v + C2F (w) + C5, F (w) =
∫

f (w) dw,

t = C1v
2 + C2v +

∫

[2C1F (w) + C3] dw + C4.

11◦. Solution in parametric form:

x =
1
2
C1v

2 + C3v +
∫

f (w)(C1w + C2) dw + C5,

t = (C1w + C2)v + C3w + C4.

12◦. Solution in parametric form:

x =
1
3
C1v

3 + C3v + 2v
∫

f (w)(C1w + C2) dw + C5,

t = (C1w + C2)v2 + C3w + C4 + 2
∫

{
∫

f (w)(C1w + C2) dw
}

dw.

13◦. Solution in parametric form:

x =
1
λ

(C1e
λv − C2e

−λv)H ′

w(w) + C3,

t = (C1e
λv + C2e

−λv)H(w) + C4,

where C1, . . . , C4 and λ are arbitrary constants, and the function H = H(w) is determined by the
ordinary differential equation H ′′

ww − λ2f (w)H = 0.

14◦. Solution in parametric form:

x =
1
λ

[C2 sin(λv) − C1 cos(λv)]Z ′

w(w) + C3,

t = [C1 sin(λv) + C2 cos(λv)]Z(w) + C4,

where C1, . . . , C4 and λ are arbitrary constants, and the function Z = Z(w) is determined by the
ordinary differential equation Z ′′

ww + λ2f (w)Z = 0.

15◦. The original equation can be represented as the system of equations

f (w)
∂w

∂x
=
∂v

∂t
,

∂w

∂t
=
∂v

∂x
. (4)

The hodograph transformation
x = x(w, v), t = t(w, v), (5)

wherew and v are treated as the independent variables and x and t as the dependent ones, brings (4)
to the linear system

f (w)
∂t

∂v
=
∂x

∂w
,

∂x

∂v
=
∂t

∂w
. (6)
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Eliminating t, we obtain a linear equation for x = x(w, v):

∂

∂w

[

1
f (w)

∂x

∂w

]

−
∂2x

∂v2 = 0. (7)

Likewise, from system (6) we obtain another linear equation for t = t(w, v):

∂2t

∂w2 − f (w)
∂2t

∂v2 = 0. (8)

The procedure for constructing exact solutions of the original nonlinear equation consists of the
following two stages. First, one finds an exact solution of the linear equation (7) for x = x(w, v).
Further this solution is substituted into the linear system (6), which is then solved to obtain t = t(w, v)
in the form

t =
∫ v

v0

1
f (w)

∂x

∂w
(w, ξ) dξ +

∫ w

w0

∂x

∂v
(η, v0) dη, (9)

where w0 and v0 are any numbers. The thus obtained expressions of (5) will give an exact solution
of the original equation in parametric form.

Likewise, one can first construct an exact solution to the linear equation (8) for t = t(w, v) and
then determine x = x(w, v) from (6).���

Reference: V. F. Zaitsev and A. D. Polyanin (2001).

16◦. Solutions of equation (7) with even powers of v:

x =
n

∑

k=0

ϕk(w)v2k, (10)

where the functions ϕk = ϕk(w) are determined by the recurrence relations

ϕn(w) = AnF (w) +Bn, F (w) =
∫

f (w) dw,

ϕk−1(w) = AkF (w) +Bk + 2k(2k − 1)
∫

f (w)
{

∫

ϕk(w) dw
}

dw,

where the Ak and Bk are arbitrary constants (k = n, . . . , 1).
The dependence t = t(w, v) is defined by (9) and, together with (10), gives a solution of the

original nonlinear equation in parametric form.

17◦. Solutions of equation (7) with odd powers of v:

x =
n

∑

k=0

ψk(w)v2k+1, (11)

where the functions ψk = ψk(w) are determined by the recurrence relations

ψn(w) = AnF (w) +Bn, F (w) =
∫

f (w) dw,

ψk−1(w) = AkF (w) +Bk + 2k(2k + 1)
∫

f (w)
{

∫

ψk(w) dw
}

dw,

where the Ak and Bk are arbitrary constants (k = n, . . . , 1).
The dependence t = t(w, v) is defined by (9) and, together with (11), gives a solution of the

original nonlinear equation in parametric form.���
References for equation 3.4.4.6: W. F. Ames, R. J. Lohner, and E. Adams (1981), N. H. Ibragimov (1994), V. F. Zaitsev

and A. D. Polyanin (2001), A. D. Polyanin and V. F. Zaitsev (2002).
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7.
∂2w

∂t2
=

∂

∂x

[

f (w)
∂w

∂x

]

– a2 f ′(w)
f 3(w)

+ b.

Functional separable solution in implicit form:
∫

f (w) dw = at −
1
2
bx2 + C1x + C2,

where C1 and C2 are arbitrary constants.

8.
∂2w

∂t2
= f (w)

∂2w

∂x2
+ g(w)

∂w

∂x
+ h(w).

Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant, and the function w(z) is determined by the autonomous ordinary
differential equation

[f (w) − λ2]w′′

zz + g(w)w′

z + h(w) = 0.

By the change variable u(w) = w′

z this equation is reduced to the Abel equation

[f (w) − λ2]uu′w + g(w)u + h(w) = 0. (1)

The substitution ξ = −
∫

g(w) dw
f (w) − λ2 brings (1) to the canonical form

uu′ξ − u = F (ξ), (2)

where the function F = F (ξ) is defined parametrically as

F (ξ) =
h(w)
g(w)

, ξ = −
∫

g(w) dw
f (w) − λ2 .

A large number of exact solutions to the Abel equation (2) for various F = F (ξ) can be found
in Polyanin and Zaitsev (2003).

9.
∂2w

∂t2
=

∂

∂x

[

f (w)
∂w

∂x

]

+ g(w)
∂w

∂x
+ h(w).

Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant, and the function w(z) is determined by the autonomous ordinary
differential equation

{[f (w) − λ2]w′

z}′z + g(w)w′

z + h(w) = 0.

With the change of variable
u(w) = [f (w) − λ2]w′

z,

this equation is reduced to the Abel equation

uu′w + g(w)u + h(w)[f (w) − λ2] = 0. (1)

The substitution ξ = −
∫

g(w) dw brings (1) to the canonical form

uu′ξ − u = F (ξ), (2)

where the function F = F (ξ) is defined parametrically by

F (ξ) =
h(w)
g(w)

[f (w) − λ2], ξ = −
∫

g(w) dw.

A large number of exact solutions to the Abel equation (2) for various F = F (ξ) can be found
in Polyanin and Zaitsev (2003).
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10.
∂2w

∂t2
= f (w)

∂2w

∂x2
+ af ′

w(w)
(

∂w

∂x

)2

.

Equations of this form are encountered in the theory of liquid crystals and other applications.
1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w( � C1x + C2,C1t + C3),
where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.
2◦. In the general case, the equation has exact solutions of the form

w(x, t) = w(z), z = kx + λt (traveling-wave solution),

w(x, t) = w(ξ), ξ =
x + b
t + c

(self-similar solution),

where k, λ, b, and c are arbitrary constants.
3◦. The structure of other exact solutions for some specific f (w):

f (w) = Aw +B, w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t);

f (w) = Awk, w(x, t) = ϕ(x)ψ(t);

f (w) = Aeβw, w(x, t) = ϕ(x) + ψ(t).
4◦. A qualitative analysis of the structure of solutions to the original equation was undertaken in
Glassey, Hunter, and Zheng (1997) and Melikyan (1998).

3.4.5. Equations of the Form ∂2w
∂t2 = f (x, w) ∂2w

∂x2 + g
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= f (x)wm ∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions
w1 = C2

1w
(

x, � Cm1 t + C2
)

,
where C1 and C2 are arbitrary constants, are also solutions of the equation.
2◦. Multiplicative separable solution:

w(x, t) = g(t)h(x),
where the functions g = g(t) and h = h(x) are determined by the ordinary differential equations

g′′tt − λgm+1 = 0, (1)

h′′xx − λ
[

f (x)
]−1
h1−m = 0, (2)

where λ is an arbitrary constant.
The general solution of equation (1) is written out in implicit form:

∫
(

C1 +
2λ
m + 2

gm+2
)−1/2

dg = C2 � t,
where C1 and C2 are arbitrary constants.

In particular, if C1 = 0, it follows that

g(t) = (at + C)−2/m, a = �
√

λm2

2(m + 2)
.

For m = 1, the general solution of equation (2) is expressed as

h(x) = λ
∫ x

x0

(x − ξ)
f (ξ)

dξ +Ax +B,

where A, B, and x0 are arbitrary constants.
The book by Polyanin and Zaitsev (2003, Sections 2.3 and 2.7) presents a large number of exact

solutions to the generalized Emden–Fowler equation (2) for various f = f (x).
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3◦. The transformation
u(z, t) =

1
x
w(x, t), z =

1
x

leads to an equation of the similar form

∂2u

∂t2
= z4−mf

(

1
z

)

um
∂2u

∂z2 .

2.
∂2w

∂t2
=

∂

∂x

[

f (x)wm ∂w

∂x

]

.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C2
1w

(

x, � Cm1 t + C2
)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Multiplicative separable solution:

w(x, t) = g(t)h(x),

where the functions g = g(t) and h = h(x) are determined by the ordinary differential equations

g′′tt − λgm+1 = 0, (1)
[f (x)hmh′x]′x − λh = 0, (2)

and λ is an arbitrary constant.
The general solution of equation (1) is written out in implicit form:

∫
(

C1 +
2λ
m + 2

gm+2
)−1/2

dg = C2 � t,
where C1 and C2 are arbitrary constants.

In particular, if C1 = 0, it follows that

g(t) = (at + C)−2/m, a = �
√

λm2

2(m + 2)
.

The transformation
z =

∫

dx

f (x)
, Φ = hm+1

brings (2) to the generalized Emden–Fowler equation

Φ
′′

zz − F (z)Φ
1

m+1 = 0, (3)

where the function F = F (z) is defined parametrically by

F = λ(m + 1)f (x), z =
∫

dx

f (x)
.

The book by Polyanin and Zaitsev (2003, Sections 2.3 and 2.7) presents a large number of exact
solutions to equation (2) for various F = F (z).

3◦. The transformation

w(x, t) =
[

ψ(x)
]

1
m+1 u(ξ, t), ξ =

∫

[

ψ(x)
]

m+2
m+1 dx, ψ(x) =

∫

dx

f (x)
,

leads to an equation of the similar form

∂2u

∂t2
=
∂

∂ξ

[

F(ξ)um
∂u

∂ξ

]

,

where the function F = F(ξ) is defined parametrically by

F = f (x)
[

ψ(x)
]

3m+4
m+1 , ξ =

∫

[

ψ(x)
]

m+2
m+1 dx, ψ(x) =

∫

dx

f (x)
.
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3.
∂2w

∂t2
= w4f

(

w

x

)

∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = C1w
(

C−1
1 x, � C1t + C2

)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. With the transformation
u(z, t) =

1
x
w(x, t), z =

1
x

one arrives at the simpler equation
∂2u

∂t2
= u4f (u)

∂2u

∂z2 ,

which has a traveling-wave solution u = u(z + λt) and self-similar solutions of the form u = u(z/t).

4.
∂2w

∂t2
= w4f

(

w
√

ax2 + bx + c

)

∂2w

∂x2
.

The transformation

w(x, t) = u(z, t)
√

ax2 + bx + c, z =
∫

dx

ax2 + bx + c
leads to an equation of the form 3.4.4.8:

∂2u

∂t2
= u4f (u)

∂2u

∂z2 + (ac − 1
4 b

2)u5f (u),

which has a traveling-wave solution u = u(z + λt).

3.4.6. Equations of the Form ∂2w
∂t2 = f (t, w) ∂2w

∂x2 + g
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= f (t)

∂

∂x

(

w
∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−2
1 w

(

C1x + C2, t
)

,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solutions:

w(x, t) = (C1t + C2)(C3x + C4)1/2,

w(x, t) = (C1t + C2)x +
∫ t

a

(t − τ )(C1τ + C2)2f (τ ) dτ + C3t + C4,

where C1, . . . , C4 and a are arbitrary constants.

3◦. Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of ordinary
differential equations

ϕ′′

tt = 6f (t)ϕ2,
ψ′′

tt = 6f (t)ϕψ,

χ′′

tt = 2f (t)ϕχ + f (t)ψ2.
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4◦. Multiplicative separable solution:

w(x, t) = Φ(t)Ψ(x),

where the functions Φ = Φ(t) and Ψ = Ψ(x) are determined by the ordinary differential equations
(C is an arbitrary constant)

Φ
′′

tt = Cf (t)Φ2,
(ΨΨ

′

x)′x = CΨ.

The last equation is autonomous and has a particular solution Ψ = 1
6Cx

2; in the general case, it is
integrable by quadrature.

2.
∂2w

∂t2
= f (t)

∂

∂x

(

w
∂w

∂x

)

+ g(t)w + h2(t)x2 + h1(t)x + h0(t).

Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of ordinary
differential equations

ϕ′′

tt = 6f (t)ϕ2 + g(t)ϕ + h2(t),
ψ′′

tt = 6f (t)ϕψ + g(t)ψ + h1(t),

χ′′

tt = 2f (t)ϕχ + f (t)ψ2 + g(t)χ + h0(t).

3.
∂2w

∂t2
= [a(t)w + b(t)]

∂2w

∂x2
+ c(t)

(

∂w

∂x

)2

+ d(t)w + e(t)x2 + f (t)x + g(t).

There is a generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).���
Reference: V. A. Galaktionov (1995); the case of a = 1, b = e = f = 0, and c = const was considered.

3.4.7. Other Equations Linear in the Highest Derivatives

1.
∂2w

∂t2
+ f (t)

∂w

∂t
= g(t)

∂

∂x

(

eλw ∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

C1x + C2, t
)

−
2
λ

ln |C1|,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) =
1
λ

ln(C1x + C2) + C3

∫

F (t) dt + C4, F (t) = exp
[

−
∫

f (t) dt
]

,

where C1, . . . , C4 are arbitrary constants.

3◦. Additive separable solution:

w(x, t) =
1
λ

ln(λC1x
2 + C2x + C3) + u(t),

whereC1, C2, andC3 are arbitrary constants, and the function u = u(t) is determined by the ordinary
differential equation

u′′tt + f (t)u′t = 2C1g(t)eλu.
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2.
∂2w

∂t2
+ f (w)

∂w

∂t
=

∂

∂x

[

g(w)
∂w

∂x

]

.

1◦. Traveling-wave solution in implicit form:
∫

k2g(w) − λ2

λF (w) + C1
dw = kx + λt + C2, F (w) =

∫

f (w) dw,

where C1, C2, k, and λ are arbitrary constants.

2◦. For exact solutions of this equation for some specific f (w) and g(w), see Baikov, Gazizov, and
Ibragimov (1989) and Ibragimov (1994).

3.
∂2w

∂t2
= a

∂2w

∂x2
+ f

(

x,
∂w

∂x

)

+ bw + g(t).

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w(x, t) + C1 cosh(kt) + C2 sinh(kt) if b = k2 > 0,

w2 = w(x, t) + C1 cos(kt) + C2 sin(kt) if b = −k2 < 0,
where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solution:
w(x, t) = ϕ(t) + ψ(x).

Here, the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − g(t) = 0,

aψ′′

xx + f
(

x,ψ′

x

)

+ bψ = 0.
The solution of the first equation is expressed as

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
g(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
g(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.
Special case. For f (x,wx) = f (wx), there are more complicated solutions of the form w(x, t) = ϕ(t) + ψ(z), where

z = x + λt.

4.
∂2w

∂t2
= a

∂2w

∂x2
+ f

(

x,
∂w

∂x

)

+ g

(

t,
∂w

∂t

)

.

Additive separable solution:
w(x, t) = ϕ(x) + ψ(t),

where the functions ϕ(x) and ψ(t) are determined by the ordinary differential equations (C is an
arbitrary constant)

aϕ′′

xx + f
(

x,ϕ′

x

)

= C,

ψ′′

tt − g
(

t,ψ′

t

)

= C.

5.
∂2w

∂t2
= a

∂2w

∂x2
+ f

(

x,
∂w

∂x

)

+ g

(

t,
∂w

∂t

)

+ bw.

Additive separable solution:
w(x, t) = ϕ(x) + ψ(t),

where the functions ϕ(x) and ψ(t) are determined by the ordinary differential equations (C is an
arbitrary constant)

aϕ′′

xx + f
(

x,ϕ′

x

)

+ bϕ = C,

ψ′′

tt − g
(

t,ψ′

t

)

− bψ = C.
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6.
∂2w

∂t2
= a

∂2w

∂x2
+ wf

(

x,
1
w

∂w

∂x

)

+ wg

(

t,
1
w

∂w

∂t

)

+ bw ln w.

Multiplicative separable solution:
w(x, t) = ϕ(x)ψ(t),

where the functions ϕ(x) and ψ(t) are determined by the ordinary differential equations (C is an
arbitrary constant)

aϕ′′

xx + ϕf
(

x,ϕ′

x/ϕ
)

+ bϕ lnϕ + Cϕ = 0,

ψ′′

tt − ψg
(

t,ψ′

t/ψ
)

− bψ lnψ + Cψ = 0.

7.
∂2w

∂t2
= f

(

∂w

∂x

)

∂2w

∂x2
.

For f (z) = −z, this equation is encountered in aerodynamics (theory of transonic gas flows).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−1
1 w(C1x + C2,C1t + C3) + C4t + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution:
w(x, t) = Axt +Bx + Cx +D,

where A, B, C, and D are arbitrary constants.

3◦. Additive separable solution:

w(x, t) = At2 +Bt + ϕ(x),

where A and B are arbitrary constants, and the function ϕ = ϕ(x) is determined by the ordinary
differential equation 2A = f (ϕ′

x)ϕ′′

xx. Its general solution can be represented in parametric form
(C1 and C2 are arbitrary constants):

x =
1

2A

∫

f (ξ) dξ + C1, ϕ =
1

2A

∫

ξf (ξ) dξ + C2.

4◦. Solution of the more general form

w(x, t) = At2 +Bt + ϕ(z), z = x + λt,

where A, B, and λ are arbitrary constants, and the function ϕ = ϕ(z) is determined by the ordinary
differential equation 2A =

[

f (ϕ′

z) − λ2]ϕ′′

zz. Its general solution can be represented in parametric
form (C1 and C2 are arbitrary constants):

z =
1

2A

∫

f (ξ) dξ −
λ2

2A
ξ + C1, ϕ =

1
2A

∫

ξf (ξ) dξ −
λ2

4A
ξ2 + C2.

5◦. Self-similar solution:
w = xψ(z), z = x/t,

where the function ψ = ψ(z) is determined by the ordinary differential equation

[f (zψ′

z + ψ) − z2](zψ′′

zz + 2ψ′

z) = 0.

Equating the expression in square brackets to zero, we have

f (zψ′

z + ψ) − z2 = 0.

The general solution of this equation in parametric form:

z = � √

f (τ ), ψ =
1

2
√

f (τ )

∫

τf ′

τ (τ )
√

f (τ )
dτ + C.
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6◦. The Legendre transformation

u(z, τ ) = tz + xτ − w(x, t), z =
∂w

∂t
, τ =

∂w

∂x
,

where u is the new dependent variable, and z and τ are the new independent variables, leads to the
linear equation

∂2u

∂τ 2 = f (τ )
∂2u

∂z2 .

7◦. The substitution v(x, t) =
∂w

∂x
leads to an equation of the form 3.4.4.6:

∂2v

∂t2
=
∂

∂x

[

f (v)
∂v

∂x

]

.

���
Reference: N. H. Ibragimov (1994).

8◦. Below are exact solutions of the equation for some specific f = f (U ).
Special case 1. Let f (U ) = aU .

1◦. Generalized separable solution quadratic in x:

w = (C1t + C2)x2 +
[ 1

3 aC
−2
1 (C1t + C2)4 + C3t + C4

]

x

+ 1
63 a

2
C

−4
1 (C1t + C2)7 + 1

6 aC1C3t
4 + 1

3 a(C1C4 + C2C3)t3 + aC2C4t
2 + C5t + C6,

where C1, . . . , C6 are arbitrary constants.

2◦. Generalized separable solution cubic in x:

w = f (t)x3 + g(t)x2 + h(t)x + p(t),

where the functions f = f (t), g = g(t), h = h(t), p = p(t) are determined by the system of ordinary differential equations

f
′′

tt = 18af2 ,

g
′′

tt = 18afg,

h
′′

tt = 6afh + 4ag2,

p
′′

tt = 2agh.

A particular solution of the system of the first three equations is given by

f =
1

3a(t + C1)2 , g =
C2

(t + C1)2 + C3(t + C1)3,

h =
C4

t + C1
+ C5(t + C1)2 +

aC2
2

(t + C1)2 + 2aC2C3(t + C1)3 +
2aC2

3
27

(t + C1)8,

where C1, . . . ,C5 are arbitrary constants. The function p = p(t) is determined from the last equation by integrating the
right-hand side twice.

3◦. There is the solution in multiplicative separable form: w = ϕ(x)ψ(t).���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

Special case 2. Let f (U ) = aUk.

1◦. Multiplicative separable solution:
w = ϕ(x)ψ(t),

where the functions ϕ(x) and ψ(t) are determined by the autonomous ordinary differential equations

(ψ′

t)2 =
2aC1

k + 2
ψ

k+2 + C2,
2

k + 2
(ϕ′

x)k+2 = C1ϕ
2 + C3,

and C1, C2, and C3 are arbitrary constants. The general solutions to these equations can be written out in implicit form.
Below are exact solutions representable in explicit form:

ψ(t) = A1t
−2/k if C2 = 0, ϕ(x) = A2x

(k+2)/k if C3 = 0.

The coefficients A1 and A2 are determined by substituting these expressions into the above equations.
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2◦. Self-similar solution:
w = tσu(ζ), ζ = tβx, σ = −(kβ + 2β + 2)/k,

where β is an arbitrary constant, and the function u(ζ) is determined by the ordinary differential equation

σ(σ − 1)u + β(2σ + β − 1)ζu′ζ + β2
ζ

2
u
′′

ζζ = a(u′ζ )ku′′ζζ .

3◦. Conservation laws for a = 1:

Dt

(

wt

)

+ Dx

(

−
1

k + 1
w

k+1
x

)

= 0,

Dt

(

wtwx

)

+ Dx

(

−
1

k + 2
w

k+2
x −

1
2
w

2
t

)

= 0,

Dt

(

1
2
w

2
t +

1
(k + 1)(k + 2)

w
k+2
x

)

+ Dx

(

−
1

k + 1
wtw

k+1
x

)

= 0,

Dt

(

twt − w
)

+ Dx

(

−
1

k + 1
tw

k+1
x

)

= 0,

where Dt = ∂
∂t

, Dx = ∂
∂x

.���
References: V. A. Vinokurov and I. G. Nurgalieva (1985), N. H. Ibragimov (1994).

Special case 3. Let f (U ) = a exp(λU ).
Generalized separable solution:

w = (x + C1)ϕ(t) + ψ(x).

Here, the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ
′′

tt = aC2 exp(λϕ), (1)
exp(λψ′

x)ψ′′

xx = C2(x + C1), (2)
where C1 and C2 are arbitrary constants. The general solution of equation (1) is given by

ϕ(t) = −
1
λ

ln
[

aC2λ

2β2 cos2(βt + C3)
]

if aC2λ > 0,

ϕ(t) = −
1
λ

ln
[

aC2λ

2β2 sinh2(βt + C3)
]

if aC2λ > 0,

ϕ(t) = −
1
λ

ln
[

−
aC2λ

2β2 cosh2(βt + C3)
]

if aC2λ < 0,

where C3 and β are arbitrary constants. The general solution of equation (2) is expressed as

ψ(x) =
∫

ln
( 1

2C2x
2 + C1C2x + C4

)

dx +
lnλ
λ
x + C5,

where C4 and C5 are arbitrary constants.���
References for equation 3.4.7.7: N. H. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

8. a
∂2w

∂t2
+

∂w

∂t
= f

(

∂w

∂x

)

∂2w

∂x2
, a ≠ 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1(x, t) = w(t + C1,x + C2) + C3e
−t/a + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = U (z) + C1e

−t/a + C2, z = x + λt,
whereC1, C2, and λ are arbitrary constants, and the functionU (z) is determined by the autonomous
ordinary differential equation

λU ′

z =
[

f (U ′

z) − aλ2]U ′′

zz.

Integrating yields its solution in parametric form:

U =
1
λ

∫

f (τ ) dτ − aλτ + C3, z =
1
λ

∫

f (τ )
τ

dτ − aλ ln |τ | + C4,

where C3 and C4 are arbitrary constants (C3 can be set equal to zero).
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3◦. Additive separable solution:

w(x, t) = C1t + C2 + C3e
−t/a + ϕ(x),

where C1, C2, and C3 are arbitrary constants, the function ϕ(x) is determined by the autonomous
ordinary differential equation f (ϕ′

x)ϕ′′

xx = C1. Integrating yields its solution in parametric form:

ϕ =
1
C1

∫

ξf (ξ) dξ + C4, x =
1
C1

∫

f (ξ) dξ + C5,

where C4 and C5 are arbitrary constants (C4 can be set equal to zero).

4◦. The solutions of Items 3◦ and 4◦ are special cases of the more general solution

w(x, t) = C1t + C2 + C3e
−t/a + ϕ(z), z = x + λt,

where the function ϕ(z) is determined by the autonomous ordinary differential equation

λϕ′

z + C1 =
[

f (ϕ′

z) − aλ2]ϕ′′

zz .

5◦. The contact transformation

t̄ = t + a ln |wx|, x̄ = w + awt, w̄ = x + awt/wx, w̄x̄ = 1/wx, w̄t̄ = −wt/wx (1)

leads to an equation of the similar form

a
∂2w̄

∂t̄2
+
∂w̄

∂t̄
= F

(

∂w̄

∂x̄

)

∂2w̄

∂x̄2 , where F (u) =
1
u2 f

(

1
u

)

.

Transformation (1) has an inverse; it is given by

t = t̄ + a ln |w̄x̄|, x = w̄ + aw̄t̄, w = x̄ + aw̄t̄/w̄x̄, wx = 1/w̄x̄, wt = −w̄t̄/w̄x̄. (2)

The formulas of (2) can be used if the Jacobian function J =
[

(w̄x̄ + aw̄x̄t̄)2 − aw̄x̄x̄(w̄t̄ + aw̄t̄t̄)
]

is
nonzero.

Special case 1. For f (wx) = b(wx)−2, transformation (1) leads to the linear telegraph equation

a
∂2w̄

∂t̄2
+
∂w̄

∂t̄
= b

∂2w̄

∂x̄2 .
���

References: S. R. Svirshchevskii (1986, 1988), N. H. Ibragimov (1994).

6◦. Conservation laws:
Dt

(

awt + w
)

+Dx

[

−Ψ
′(wx)

]

= 0,

Dt

(

aet/awt
)

+Dx

[

−et/aΨ′(wx)
]

= 0,

Dt

(

aet/awtwx
)

+Dx

{

et/a
[

Ψ(wx) − wxΨ′(wx) − 1
2 a(wt)2]} = 0,

where the prime stands for the differentiation,

Dt =
∂

∂t
, Dx =

∂

∂x
, Ψ(u) =

∫ u

0
(u − ζ)f (ζ) dζ + C1u + C2,

and C1 and C2 are arbitrary constants.
Special case 2. For f (wx) = bwn

x (n ≠ 0, −2), there is an additional conservation law:

Dt

{

ae
t/a

[

3n + 4
2

aw
2
t + wt

(

(n + 2)w − nxwx

)

+ (3n + 4)Ψ
]}

+ Dt

{

e
t/a

[

n

2
axw

2
t +

dΨ

dwx

(

nxwx − a(3n + 4)wt − (n + 2)w
)

− nxΨ + Φ

]}

= 0,

where

Ψ =
b

(n + 1)(n + 2)
w

n+2
x , Φ = 0 if n ≠ −1;

Ψ = bwx(ln |wx| − 1), Φ = 2bw if n = −1.

Special case 3. For f (wx) = bekwx , there is an additional conservation law (k ≠ 0):

Dt

{

ae
t/a

[

3
2
akw

2
t +wt(kw+2x−kxwx)+

3b
k
e
kwx

]}

+Dx

{

e
t/a

[

1
2
akxw

2
t −b

(

w+
3
k
x−xwx +3awt

)

e
kwx

]}

= 0.

���
References: S. R. Svirshchevskii (1986, 1988), N. H. Ibragimov (1994).
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9.
∂2w

∂t2
= f

(

∂w

∂t
,
∂w

∂x

)

∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w

(

C1x + C2, C1t + C3
)

+ C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. The Legendre transformation

u(z, τ ) = tz + xτ − w(x, t), z =
∂w

∂t
, τ =

∂w

∂x
,

where u is the new dependent variable, and z and τ are the new independent variables, leads to the
linear equation

∂2u

∂τ 2 = f (z, τ )
∂2u

∂z2 .

Exact solutions of this equation for some specific f (z, τ ) can be found in Polyanin (2002).

3.5. Equations of the Form ∂2w
∂x∂y

= F
(

x, y, w, ∂w
∂x

, ∂w
∂y

)

3.5.1. Equations Involving Arbitrary Parameters of the Form
∂2w

∂x∂y
= f (w)

1.
∂2w

∂x∂y
= awn.

This is a special case of equation 3.5.3.1 with f (w) = awn.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = (C1C2)
1
n−1w

(

C1x + C3, C2y + C4
)

,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x, y) =
[

a(1 − n)2

2(1 + n)

]

1
1−n

(

C1x +
y

C1
+ C2

)

2
1−n

,

w(x, y) =
[

a(1 − n)2]
1

1−n
(

xy + C1x + C2y + C1C2
)

1
1−n .

3◦. Traveling-wave solution in implicit form (generalizes the first solution of Item 2◦):
∫

(

C2 +
2a
n + 1

wn+1
)−1/2

dw = C1x +
y

C1
+ C3.

4◦. Self-similar solution:
w = x

β−1
n−1U (ξ), ξ = yxβ ,

where β is an arbitrary constant, and the functionU (ξ) is determined by the modified Emden–Fowler
equation

βξU ′′

ξξ +
nβ − 1
n − 1

U ′

ξ = aUn.

For exact solutions of this equation, see the book by Polyanin and Zaitsev (2003).
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x, y,w, ∂w
∂x
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∂y

)
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2.
∂2w

∂x∂y
= aeλw.

Liouville equation. This is a special case of equation 3.5.3.1 with f (w) = aeλw.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

C1x + C2, C3y + C4
)

+
1
λ

ln(C1C3),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. General solution:

w =
1
λ

[

f (x) + g(y)
]

−
2
λ

ln
∣

∣

∣

∣

k

∫

exp
[

f (x)
]

dx +
aλ

2k

∫

exp
[

g(y)
]

dy

∣

∣

∣

∣

,

where f = f (x) and g = g(y) are arbitrary functions and k is an arbitrary constant.

3◦. The Liouville equation is related to the linear equation ∂xyu = 0 by the Bäcklund transformation

∂u

∂x
=
∂w

∂x
+

2k
λ

exp
[

1
2
λ(w + u)

]

,

∂u

∂y
= −

∂w

∂y
−
a

k
exp

[

1
2
λ(w − u)

]

.

4◦. The original equation can also be linearized with either of the differential substitutions

w =
1
λ

ln
(

2
v2

∂v

∂x

∂v

∂y

)

, v = v(x, y);

w =
1
λ

ln
(

2
cos2 z

∂z

∂x

∂z

∂y

)

, z = z(x, y).

5◦. Solutions (for a = λ = 1):

w = ln
[

f (x)g(y) cosh−2
(

C1 + C2

∫

g(y) dy −
1

2C2

∫

f (x) dx
)]

,

w = ln
[

f (x)g(y) sinh−2
(

C1 + C2

∫

g(y) dy +
1

2C2

∫

f (x) dx
)]

,

w = ln
[

f (x)g(y) cos−2
(

C1 + C2

∫

g(y) dy +
1

2C2

∫

f (x) dx
)]

,

where f (x) and g(y) are arbitrary functions, and C1 and C2 are arbitrary constants.���
References: J. Liouville (1853), R. K. Bullough and P. J. Caudrey (1980), S. V. Khabirov (1990), N. H. Ibragimov

(1994).

3.
∂2w

∂x∂y
= ew – e–2w.

This is a special case of equation 3.5.3.1 with f (w) = ew − e−2w.

1◦. Solutions:

w = ln
[

1 − 2
∂2(ln ζk)
∂x∂y

]

, (1)
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where

ζ1 = 1 +A exp
(

kx +
3
k
y

)

,

ζ2 = 1 +A1 exp
(

k1x +
3
k1
y

)

+A2 exp
(

k2x +
3
k2
y

)

+A1A2
(k1 − k2)2(k2

1 − k1k2 + k2
2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
exp

[

(k1 + k2)x +
(

3
k1

+
3
k2

)

y

]

,

ζ3 = 1 +A(k2x − 3y) exp
(

kx +
3
k
y

)

−
A2k2

12
exp

(

2kx +
6
k
y

)

,

ζ4 = sin
(

kx −
3
k
y

)

+
√

3
(

kx +
3
k
y

)

,

and A, A1, A2, k, k1, and k2 are arbitrary constants.

2◦. On passing to the new independent variables z = x − y and t = x + y, one obtains an equation of
the form 3.2.1.4:

∂2w

∂t2
=
∂2w

∂z2 + ew − e−2w.

3◦. The substitution u = ew leads to the Tzitzéica equation:

∂2(lnu)
∂x∂y

= u −
1
u2 .

���
Reference: S. S. Safin and R. A. Sharipov (1993), O. V. Kaptsov and Yu. V. Shan’ko (1999, other exact solutions are

also given there).

4.
∂2w

∂x∂y
= a sinh w.

Sinh-Gordon equation. On passing to the new independent variables z = x − y and t = x + y, one
obtains an equation of the form 3.3.1.1:

∂2w

∂t2
=
∂2w

∂z2 + a sinhw.
���

References: S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov (1984), A. Grauel (1985).

5.
∂2w

∂x∂y
= a sin w.

Sine-Gordon equation. This is a special case of equation 3.5.3.1 with f (w) = a sinw.

1◦. Traveling-wave solution:

w(x, y) =















4 arctan
[

exp
(

√

a

AB
(Ax +By + C)

)]

if aAB > 0,

4 arctanh
[

exp
(

√

−
a

AB
(Ax +By + C)

)]

if aAB < 0,

where A, B, and C are arbitrary constants.

2◦. Solution:

w(x, y) = 4 arctan
[

C1 + C2

C1 − C2

sinh(v1 − v2)
cosh(v1 + v2)

]

, vk =
1
2

(

Ckx −
a

Ck
y

)

, k = 1, 2,

where C1 and C2 are arbitrary constants.���
Reference: R. K. Bullough and P. J. Caudrey (1980).
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3◦. Self-similar solution:
w = U (ξ), ξ = xy,

where the function U = U (ξ) is determined by the second-order ordinary differential equation
ξU ′′

ξξ + U ′

ξ = a sinU .

4◦. The Bäcklund transformation

∂u

∂x
=
∂w

∂x
+ 2k sin

(

w + u
2

)

,

∂u

∂y
= −

∂w

∂y
−

2a
k

sin
(

w − u
2

) (1)

brings the original equation to the identical equation

∂2u

∂x∂y
= a sinu.

Given a single exact solution, the formulas of (1) allow us to successively generate other solutions
of the sine-Gordon equation.

5◦. The sine-Gordon equation has infinitely many conservation laws. The first three of them read
as follows:

Dx

(

w2
y

)

+Dy

(

2a cosw
)

= 0,

Dx

(

w4
y − 4w2

yy

)

+Dy

(

4aw2
y cosw

)

= 0,

Dx

(

3w6
y − 12w2

yw
2
yy + 16w3

ywyyy + 24w2
yyy

)

+Dy

[

a(2w4
y − 24w2

yy) cosw
]

= 0,

where Dx = ∂
∂x

and Dy = ∂
∂y

(analogous laws can be obtained by swapping the independent
variables x � y).���

References: A. C. Scott, F. Y. Chu, and D. W. McLaughlin (1973), J. L. Lamb (1974), R. K. Dodd and R. K. Bullough
(1977).

6◦. The equation in question is related to the equation

∂2z

∂x∂y
= z

√

a2 −
(

∂z

∂y

)2

by the transformation

z =
∂w

∂x
,

∂z

∂y
= a sinw.

���
References for equation 3.5.1.5: R. Steuerwald (1936), I. M. Krichever (1980), R. K. Bullough and P. J. Caudrey (1980),

S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov (1984), N. H. Ibragimov (1994).

6.
∂2w

∂x∂y
= a sin w + b sin

( 1
2 w

)

.

On passing to the new independent variables z = x − y and t = x + y, one obtains an equation of the
form 3.3.3.2:

∂2w

∂t2
=
∂2w

∂z2 + a sinw + b sin
( 1

2w
)

.
���

Reference: F. Calogero and A. Degasperis (1982)

.
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3.5.2. Other Equations Involving Arbitrary Parameters

1.
∂2w

∂x∂y
= a

∂w

∂x

∂w

∂y
.

General solution:

w(x, y) = −
1
a

ln
[

f (x) + g(y)
]

,

where f (x) and g(y) are arbitrary functions.

2.
∂2w

∂x∂y
+ a

∂w

∂x

∂w

∂y
+ b

∂w

∂x
+ c

∂w

∂y
= 0.

This equation arises in some problems of chemical engineering and chromatography. The substitu-
tion u = eaw leads to the linear equation

∂2u

∂x∂y
+ b

∂u

∂x
+ c

∂u

∂y
= 0.

���
Reference: H. C. Thomas (1944), G. B. Whitham (1972).

3. w
∂2w

∂x∂y
=

∂w

∂x

∂w

∂y
.

General solution:
w(x, y) = f (x)g(y),

where f (x) and g(y) are arbitrary functions.

4.
∂2w

∂x∂y
= awn ∂w

∂x

∂w

∂y
.

This is a special case of equation 3.5.3.7 with f (w) = awn.

5.
∂2w

∂x∂y
= aeβw ∂w

∂x

∂w

∂y
.

This is a special case of equation 3.5.3.7 with f (w) = aeβw.
General solution in implicit form:

∫

exp
(

−
a

β
eβw

)

dw = ϕ(x) + ψ(y),

where ϕ(x) and ψ(y) are arbitrary functions.

6.
∂2w

∂x∂y
= a

√

∂w

∂x

∂w

∂y
.

This is a special case of equation 3.5.3.8 with f (x, y) = 1
4 a

2 (the original equation is reduced to a
linear one).

7. w
∂2w

∂x∂y
=

√

1 –
(

∂w

∂x

)2
√

1 –
(

∂w

∂y

)2

.

For this and some other integrable nonlinear hyperbolic equations, see Zhiber and Sokolov (2001).
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3.5.3. Equations Involving Arbitrary Functions

1.
∂2w

∂x∂y
= f (w).

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = w
(

C1x + C2, C−1
1 y + C3

)

,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:
w = w(z), z = ax + by,

where a and b are arbitrary constants, and the function w(z) is determined by the autonomous
ordinary differential equation abw′′

zz = f (w).

3◦. Self-similar solution:
w = w(ξ), ξ = xy,

where the functionw(ξ) is determined by the second-order ordinary differential equation ξw′′

ξξ+w′

ξ =
f (w).

4◦. On passing to the new independent variables z = x − y and t = x + y, we obtain an equation of
the form 3.4.1.1:

∂2w

∂t2
=
∂2w

∂z2 + f (w).

5◦. Conservation laws:
Dx

( 1
2w

2
y

)

+Dy

[

−F (w)
]

= 0,

Dx

[

−F (w)
]

+Dy

( 1
2w

2
x

)

= 0,

where Dx =
∂

∂x
, Dy =

∂

∂y
, and F (w) =

∫

f (w) dw.

2.
∂2w

∂x∂y
= f (x)g(y)eβw.

The transformation

ξ =
∫

f (x) dx, η =
∫

g(y) dy

leads to an equation of the form 3.5.1.2:

∂2w

∂ξ∂η
= eβw.

3.
∂2w

∂x∂y
= f (x)g(y)h(w).

The transformation

ξ =
∫

f (x) dx, η =
∫

g(y) dy

leads to an equation of the form 3.5.3.1:

∂2w

∂ξ∂η
= h(w).
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4.
∂2w

∂x∂y
= f (x)g(w)

∂w

∂y
.

1◦. Functional separable solution in implicit form:
∫

dw

G(w)
= ϕ(y) +

∫

f (x) dx, where G(w) =
∫

g(w) dw.

Here, ϕ(y) is an arbitrary function.

2◦. Integrating the original equation with respect to y, we arrive at a first-order partial differential
equation:

∂w

∂x
= f (x)

∫

g(w) dw + ψ(x),

where ψ(x) is an arbitrary function.

5.
∂2w

∂x∂y
= f (x, w)

∂w

∂y
+ g(x, y).

Integrating the original equation with respect to y, we arrive at a first-order partial differential
equation:

∂w

∂x
=

∫ w

a

f (x, τ ) dτ +
∫ y

b

g(x, s) ds + ψ(x),

where ψ(x) is an arbitrary function, and a and b are arbitrary constants. The equation obtained can
be treated as an ordinary differential equation for w = w(x) with parameter y.

6.
∂2w

∂x∂y
= a

∂w

∂x

∂w

∂y
+ f (x, y)

∂w

∂x
+ g(x, y)

∂w

∂y
+ h(x, y).

The substitution u = e−aw leads to the linear equation

∂2u

∂x∂y
= f (x, y)

∂u

∂x
+ g(x, y)

∂u

∂y
− ah(x, y)u.

7.
∂2w

∂x∂y
= f (w)

∂w

∂x

∂w

∂y
.

1◦. The substitution

u =
∫

F (w) dw, F (w) = exp
[

−
∫

f (w) dw
]

leads to the constant coefficient linear equation

∂2u

∂x∂y
= 0.

2◦. General solution in implicit form:
∫

exp
[

−
∫

f (w) dw
]

dw = ϕ(x) + ψ(y),

where ϕ(x) and ψ(y) are arbitrary functions.

8.
∂2w

∂x∂y
= 2

√

f (x, y)
∂w

∂x

∂w

∂y
.

Goursat equation. Introduce functions u = u(x, y) and v = v(x, y) by the differential relations

u =
√

∂w

∂x
, v =

√

∂w

∂y
.
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On differentiating these relations with respect to y and x, respectively, and eliminating w using the
original equation, one arrives at the system

∂u

∂y
= v

√

f (x, y),
∂v

∂x
= u

√

f (x, y).

Eliminating v yields a linear equation for u = u(x, y):

∂2u

∂x∂y
= g(x, y)

∂u

∂y
+ f (x, y)u, where g(x, y) =

1
2
∂

∂x
ln f (x, y).

���
Reference: E. I. Ganzha (2000).

9.
∂w

∂x

∂2w

∂x∂y
= f (x)g(w)

∂w

∂y
.

1◦. Functional separable solution in implicit form:
∫

dw
√

G(w)
= ϕ(y)  

∫

√

2f (x) dx, where G(w) =
∫

g(w) dw.

Here, ϕ(y) is an arbitrary function.

2◦. Integrating the original equation with respect to y, we have
(

∂w

∂x

)2

= 2f (x)
∫

g(w) dw + ψ(x),

where ψ(x) is an arbitrary function. The equation obtained can be treated as a first-order ordinary
differential equation in x for which the constant of integration will be dependent on y.

10.
∂w

∂x

∂2w

∂x∂y
= f (x, w)

∂w

∂y
+ g(x, y).

Integrating the original equation with respect to y, one arrives at a first-order partial differential
equation:

(

∂w

∂x

)2

= 2
∫ w

a

f (x, τ ) dτ + 2
∫ y

b

g(x, s) ds + ψ(x),

where ψ(x) is an arbitrary function and a and b are arbitrary constants. The equation obtained can
be treated as an ordinary differential equation for w = w(x) with parameter y.

11. f

(

x,
∂w

∂x

)

∂2w

∂x∂y
= g(x, w)

∂w

∂y
+ h(x, y).

Integrating the original equation with respect to y, one arrives at a first-order partial differential
equation:

∫ wx

a

f (x,λ) dλ =
∫ w

b

g(x, τ ) dτ +
∫ y

c

h(x, s) ds + ψ(x),

where wx is the partial derivative of w with respect to x, ψ(x) is an arbitrary function, and a, b, and
c are arbitrary constants. The equation obtained can be treated as an ordinary differential equation
for w = w(x) with parameter y.

Page 273

© 2004 by Chapman & Hall/CRC



Chapter 4

Hyperbolic Equations
with Two or Three Space Variables

4.1. Equations with Two Space Variables Involving
Power-Law Nonlinearities

4.1.1. Equations of the Form ∂2w
∂t2 = ∂

∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+awp

1.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+ cwp.

This is a special case of equation 4.4.1.2 with f (w) = cwp.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C1w
(
C

p−1
2−n

1 x, C
p−1
2−m

1 y,
�
C

p−1
2

1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, and p ≠ 1:

w =
[

1
2c(p − 1)

(
1 + p
1 − p

+
2

2 − n
+

2
2 −m

)] 1
p−1

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
] 1

1−p

.

3◦. Solution for n ≠ 2 and m ≠ 2 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + ck−1wp = 0, A =
2(4 − n −m)

(2 − n)(2 − m)
.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]
,

w(x, y, t) = V (x, η), η2 = � 4
[

y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 =
�

4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

w(x, y, t) = |t|
2

1−p F (z1, z2), z1 = x|t|
2

n−2 , z2 = y|t|
2

m−2 .
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2.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
beλy ∂w

∂y

)
+ cwp.

This is a special case of equation 4.4.1.3 with f (w) = cwp.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C1w
(
C

p−1
2−n

1 x, y +
1 − p
λ

lnC1, � C
p−1

2
1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, λ ≠ 0, and p ≠ 1:

w =
[

1
2c(p − 1)

(
1 + p
1 − p

+
2

2 − n

)] 1
p−1

[
x2−n

a(2 − n)2 +
e−λy

bλ2 −
1
4

(t + C)2
] 1

1−p

.

3◦. Solution for n ≠ 2 and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + ck−1wp = 0, A =
2

2 − n
.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−λy

bλ2

]
,

w(x, y, t) = V (x, η), η2 = � 4
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 = � 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

w(x, y, t) = |t|
2

1−p F (z1, z2), z1 = x|t|
2

n−2 , z2 = y +
2
λ

ln |t|.

3.
∂2w

∂t2
=

∂

∂x

(
aeβx ∂w

∂x

)
+

∂

∂y

(
beλy ∂w

∂y

)
+ cwp.

This is a special case of equation 4.4.1.4 with f (w) = cwp.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C1w
(
x +

1 − p
β

lnC1, y +
1 − p
λ

lnC1, � C
p−1

2
1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for p ≠ � 1, β ≠ 0, and λ ≠ 0:

w =
[

−
c(p − 1)2

2k(1 + p)
(r + C1)2

] 1
1−p

, r2 = 4k
[
e−βx

aβ2 +
e−λy

bλ2 −
1
4

(t + C2)2
]

,

where C1, C2, and k are arbitrary constants.
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3◦. Solution for β ≠ 0 and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[
e−βx

aβ2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where the function w(r) is determined by the autonomous ordinary differential equation

w′′

rr + ck−1wp = 0.

Integrating yields its general solution in implicit form:
∫ [

C1 −
2c

k(p + 1)
wp+1

]−1/2

dw = C2 � r,

where C1 and C2 are arbitrary constants.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
(
e−βx

aβ2 +
e−λy

bλ2

)
,

w(x, y, t) = V (x, η), η2 = � 4
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 = � 4
[
e−βx

aβ2 −
1
4

(t + C)2
]

,

w(x, y, t) = |t|
2

1−p F (z1, z2), z1 = x +
2
β

ln |t|, z2 = y +
2
λ

ln |t|.

4.1.2. Equations of the Form ∂2w
∂t2 = a ∂

∂x

(

wn ∂w
∂x

)

+ b ∂
∂y

(

wk ∂w
∂y

)

1.
∂2w

∂t2
= a

∂2w

∂x2
+ b

∂

∂y

(
w

∂w

∂y

)
.

This is a special case of equation 4.1.3.1 with c = 0.

2.
∂2w

∂t2
=

∂

∂x

(
w

∂w

∂x

)
+

∂

∂y

(
w

∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C2
2w( � C1x + C3, � C1y + C4, � C1C2t + C5),

w2 = w(x cosβ + y sinβ, −x sinβ + y cosβ, t),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solutions:

w =
λ2 �

√

A(k1x + k2y + λt) +B
k2

1 + k2
2

,

where A, B, k1, k2, and λ are arbitrary constants.

3◦. Generalized separable solution linear in space variables:

w(x, y, t) = (A1t+B1)x+ (A2t+B2)y + 1
12 (A2

1 +A2
2)t4 + 1

3 (A1B1 +A2B2)t3 + 1
2 (B2

1 +B2
2)t2 +Ct+D,

where A1, A2, B1, B2, C, and D are arbitrary constants.
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4◦. Solutions:
w(x, y, t) = 3

4 t
−2[(x + C1)2 + (y + C2)2],

w(x, y, t) = t−2(x sinλ + y cosλ + C1
)2,

w(x, y, t) =
1

C2
1 + C2

2

(
C1x + C2y + C3

t + C4

)2

,

w(x, y, t) =
C2

2 (x + C4)2

(C1y + C2t + C3)2 + C2
1 (x + C4)2 ,

w(x, y, t) = t
[
C1 ln

(
x2 + y2) + C2

]1/2,

w(x, y, t) = t
[
C1 exp

(
λx

)
sin

(
λy + C2

)
+ C3

]1/2,
where C1, . . . , C4 and λ are arbitrary constants.

5◦. “Two-dimensional” solution in multiplicative separable form (generalizes the last two solutions
of Item 4◦):

w(x, y, t) = (C1t + C2)
√

|U (x, y)|,
where the function U = U (x, y) is determined by the Laplace equation

∂2U

∂x2 +
∂2U

∂y2 = 0.

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

6◦. There is a generalized separable solution quadratic in space variables:

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2,

where the functions f (t), g(t), and h(t) are determined by the autonomous system of ordinary
differential equations

f ′′

tt = 6f 2 + 2fh + g2, (1)
g′′tt = 6(f + h)g, (2)
h′′tt = 6h2 + 2fh + g2. (3)

A particular solution of system (1)–(3) is given by

h(t) = f (t), g(t) = � 2f (t), where f ′′

tt = 12f 2

(the general solution for f can be written out in implicit form).

7◦. There is a generalized separable solution of the form

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2 + ϕ(t)x + ψ(t)y + χ(t),

where the functions f (t), g(t), h(t), ϕ(t), ψ(t), and χ(t) are determined by the system of ordinary
differential equations

f ′′

tt = 6f 2 + 2fh + g2,
g′′tt = 6(f + h)g,

h′′tt = 6h2 + 2fh + g2,

ϕ′′

tt = 2(3f + h)ϕ + 2gψ,
ψ′′

tt = 2gϕ + 2(f + 3h)ψ,

χ′′

tt = ϕ2 + ψ2 + 2(f + h)χ.

The first three equations for f , g, and h are solved independently of the other three (see Item 6◦).

8◦. There is a “two-dimensional” solution in multiplicative separable form

w(x, y, t) = (At +B)−2
Θ(x, y).

9◦. For other solutions, see equation 4.1.2.6 with a = b = n = 1 and equation 4.1.2.7 with a = b =
n = m = 1.���

Reference for equation 4.1.2.2: A. D. Polyanin and V. F. Zaitsev (2002).
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3.
∂2w

∂t2
= a

∂

∂x

(
1

√

w

∂w

∂x

)
+ b

∂

∂y

(
1

√

w

∂w

∂y

)
.

This is a special case of equation 4.1.2.7 with n = k = −1/2 and equation 4.4.2.3 with f (w) = aw−1/2

and g(w) = bw−1/2.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C4
1w( � C1C2x + C3, � C1C2y + C4, � C2t + C5),

w2 = w(x cosβ + y
√
a/b sinβ, −x

√
b/a sinβ + y cosβ, t),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solutions:

w(x, y, t) =
(
aC2

1 + bC2
2

C2
3

�
√
C1x + C2y + C3t + C4

)2

,

where C1, . . . , C4 are arbitrary constants.

3◦. Solutions:

w(x, y, t) = t4
(

sinλ
√

a
x +

cosλ
√

b
y + C1

)−4

,

w(x, y, t) =
( 2

3ab
)2
t4(bx2 + ay2)−2,

w(x, y, t) = (aC2
1 + bC2

2 )2
(

t + C4

C1x + C2y + C3

)4

,

w(x, y, t) =
[
a(C1y + C2t + C3)2 + bC2

1 (x + C4)2]2

C4
2 (x + C4)4 ,

w(x, y, t) = t
[
C1 ln

(
bx2 + ay2) + C2

]2,

w(x, y, t) = t
[
C1 exp

(
λ
√

b x
)

sin
(
λ
√

a y + C2
)

+ C3
]2,

where C1, . . . , C4 and λ are arbitrary constants.

4◦. “Two-dimensional” solution in multiplicative separable form (generalizes the last two solutions
of Item 3◦):

w(x, y, t) = (C1t + C2)U 2(ξ, η), ξ =
x
√

a
, η =

y
√

b
,

where the function U = U (ξ, η) is determined by the Laplace equation

∂2U

∂ξ2 +
∂2U

∂η2 = 0.

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

5◦. “Two-dimensional” generalized separable solution quadratic in t:

w(x, y, t) =
[
f (ξ, η)t + g(ξ, η)

]2, ξ =
x
√

a
, η =

y
√

b
,

where the functions f = f (ξ, η) and g = g(ξ, η) are determined by the system of differential equations

∂2f

∂ξ2 +
∂2f

∂η2 = 0, (1)

∂2g

∂ξ2 +
∂2g

∂η2 = f 2. (2)

Equation (1) is the Laplace equation, and (2) is a Helmholtz equation (wherever f is known). For
these linear equations, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).
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6◦. There is a “two-dimensional” generalized separable solution of the form

w(x, y, t) =
[
f2(x, y)t2 + f1(x, y)t + f0(x, y)

]2.

7◦. For other solutions, see equation 4.1.2.6 with n = −1/2 and equation 4.1.2.7 with n =m = −1/2.

4.
∂2w

∂t2
= a

[
∂

∂x

(
1
w

∂w

∂x

)
+

∂

∂y

(
1
w

∂w

∂y

)]
.

This is a special case of equation 4.1.2.7 with a = b, n = k = −1 and equation 4.4.2.3 with f (w) = a/w
and g(w) = b/w.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C2
1w( � C1C2x + C3, � C1C2y + C4, � C2t + C5),

w2 = w(x cosβ + y sinβ, −x sinβ + y cosβ, t),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

a(k2
1 + k2

2) ln |w| − λ2w = A(k1x + k2y + λt) +B,

where A, B, k1, k2, and λ are arbitrary constants.

3◦. Solutions:
w(x, y, t) = (C1t + C2)eAx+By,

w(x, y, t) = (C1t + C2) exp
[
A(x2 − y2)

]
,

w(x, y, t) = (C1t + C2) exp
[
Aeλx sin(λy +B)

]
,

w(x, y, t) =
a[(Ay +Bt + C1)2 +A2(x + C2)2]

B2(x + C2)2 ,

w(x, y, t) =
at2 +At +B

(x sinλ + y cosλ + C)2 ,

w(x, y, t) =
at2 +At +B
(sin y + Cex)2 ,

w(x, y, t) =
C2

1 (at2 +At +B)
e2x sinh2(C1e−x sin y + C2)

,

w(x, y, t) =
C2

1 (−at2 +At +B)
e2x cosh2(C1e−x sin y + C2)

,

w(x, y, t) =
C2

1 (at2 +At +B)
e2x cos2(C1e−x sin y + C2)

,

where A, B, C, C1, C2, and λ are arbitrary constants.

4◦. “Two-dimensional” solution in multiplicative separable form (generalizes the first three solutions
of Item 3◦):

w(x, y, t) = (C1t + C2)eU (x,y),

where the function U = U (x, y) is determined by the Laplace equation

∂2U

∂x2 +
∂2U

∂y2 = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).
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5◦. “Two-dimensional” solution in multiplicative separable form (generalizes the last four solutions
of Item 3◦):

w(x, y, t) = ( 1
2Aat

2 +Bt + C)eΘ(x,y),

where A, B, and C are arbitrary constants, and the function Θ(x, y) is a solution of the stationary
equation

∂2
Θ

∂x2 +
∂2

Θ

∂y2 = AeΘ,

which occurs in combustion theory. For solutions of this equation, see 5.2.1.1.

6◦. For other solutions, see equation 4.1.2.6 with a = b, n = −1 and equation 4.1.2.7 with a = b,
n = m = −1.	�


References for equation 4.1.2.4: V. A. Baikov (1990), N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

5.
∂2w

∂t2
= a

∂2w

∂x2
+ b

∂

∂y

(
wn ∂w

∂y

)
.

This is a special case of equation 4.4.2.1 with g(w) = bwn.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( � C2x + C3, � Cn

1 C2y + C4, � C2t + C5),

w2 = w(x coshλ + ta1/2 sinhλ, y, xa−1/2 sinhλ + t coshλ),

whereC1, . . . , C5 and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Solutions:

w(x, y, t) = y
1

n+1
[
ϕ(x − t

√

a ) + ψ(x + t
√

a )
]
,

w(x, y, t) =
[
yϕ(x − t

√

a ) + ψ(x − t
√

a )
] 1

n+1 ,

w(x, y, t) =
[
yϕ(x + t

√

a ) + ψ(x + t
√

a )
] 1

n+1 ,

where ϕ(z1) and ψ(z2) are arbitrary functions.

3◦. Solutions:

w(x, y, t) = y
2
n

(
C1x � t

√
aC2

1 + b + C2

)− 2
n ,

w(x, y, t) =
[

2a
b(n + 2)

] 1
n

y
2
n

[
a(t + C1)2 − (x + C2)2]− 1

n ,

w(x, y, t) =
[

1
bC2

2

(
C1x + C2y + C3

t + C4

)2

−
aC2

1
bC2

2

] 1
n

,

w(x, y, t) =
[
C2

2
bC2

1
−

a

bC2
1

(
C1y + C2t + C3

x + C4

)] 1
n

,

where C1, . . . , C4 are arbitrary constants.

4◦. Solutions in implicit form:

2λ
√

a (y + λt) + (t
√

a � x)(bwn − λ2) = ψ(w),

where ψ(w) is an arbitrary function and λ is an arbitrary constant.
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5◦. Solution:
w(x, y, t) = V (z)y2/n, z = x2 − at2,

where the function V = V (z) is determined by the ordinary differential equation

2an2(zV ′′

z + V ′

z ) + b(n + 2)V n+1 = 0.

6◦. “Two-dimensional” solution in multiplicative separable form:

w(x, y, t) = u(x, t)y2/n,

where the function u = u(x, t) is determined by the differential equation

∂2u

∂t2
= a

∂2u

∂x2 +
2b(n + 2)

n2 un+1.

For n = −1 and n = −2, this equation is linear.

Remark. The first solution of Item 2◦, the first two solutions of Item 3◦, and the solutions
of Items 5◦ and 6◦ are special cases of a multiplicative separable solution w = u(x, t)θ(y), where
θ = θ(y) is determined by the autonomous ordinary differential equation (θnθ′y)′y = Cθ.

7◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (y, r), r = x2 − at2;

w(x, y, t) = |t|2λG(ξ, η), ξ =
x

t
, η =

y

|t|nλ+1 ;

w(x, y, t) = |t|−2/nH(y, z), z = x/t;

w(x, y, t) = |y|2/nU (z1, z2), z1 = t + k1 ln |y|, z2 = x + k2 ln |y|;

w(x, y, t) = exp
(

−
2y
n + 1

)
V (ρ1, ρ2), ρ1 = t exp

(
−
ny

n + 1

)
, ρ2 = x exp

(
−
ny

n + 1

)
,

where k1, k2, and λ are arbitrary constants.

8◦. There is an exact solution of the form

w(x, y, t) = W (z), z = (x2 − at2)y−2.

9◦. For other solutions, see equation 4.1.2.7, in which n should be set equal to zero and k should be
renamed n.
��

References for equation 4.1.2.5: N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

6.
∂2w

∂t2
= a

∂

∂x

(
wn ∂w

∂x

)
+ b

∂

∂y

(
wn ∂w

∂y

)
.

This is a special case of equation 4.1.2.7 with n = k.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = (C2/C1)2/nw( � C1x + C3, � C1y + C4, � C2t + C5),

w2 = w(x cosβ + y
√
a/b sinβ, −x

√
b/a sinβ + y cosβ, t),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).
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2◦. Solutions:

w(x, y, t) = t−
2
n

(
sinλ
√

a
x +

cosλ
√

b
y + C1

) 2
n

,

w(x, y, t) =
[

n + 2
2ab(n + 1)

] 1
n

t−
2
n (bx2 + ay2)

1
n ,

w(x, y, t) =
1

(aC2
1 + bC2

2 )1/n

(
C1x + C2y + C3

t + C4

)2/n

,

w(x, y, t) =
C

2/n

2 (x + C4)2/n

[
a(C1y + C2t + C3)2 + bC2

1 (x + C4)2
]1/n

,

w(x, y, t) = t
[
C1 ln

(
bx2 + ay2) + C2

] 1
n+1 ,

w(x, y, t) = t
[
C1 exp

(
λ
√

b x
)

sin
(
λ
√

a y + C2
)

+ C3
] 1

n+1 ,

where C1, . . . , C4 and λ are arbitrary constants.

3◦. Traveling-wave solution in implicit form:

ak2
1 + bk2

2
n + 1

wn+1 − λ2w = C1(k1x + k2y + λt) + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

4◦. “Two-dimensional” solution in multiplicative separable form (generalizes the fifth and sixth
solutions of Item 2◦):

w(x, y, t) = (C1t + C2)
[
U (ξ, η)

] 1
n+1 , ξ =

√

b x, η =
√

a y,

where the function U = U (ξ, η) is determined by the Laplace equation

∂2U

∂ξ2 +
∂2U

∂η2 = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

5◦. “Two-dimensional” solution in multiplicative separable form (generalizes the first and second
solutions of Item 2◦):

w(x, y, t) = f (t)Θ(x, y),

where the function f (t) is determined by the autonomous ordinary differential equation

f ′′

tt = λfn+1, (1)

λ is an arbitrary constant, and the function Θ = Θ(x, y) is a solution of the two-dimensional stationary
equation

a
∂

∂x

(
Θ

n ∂Θ

∂x

)
+ b

∂

∂y

(
Θ

n ∂Θ

∂y

)
− λΘ = 0. (2)

A particular solution to equation (1) is given by (C is an arbitrary constant):

f = (C � kt)−2/n, k = n

√
λ

2(n + 2)
.
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6◦. There are solutions of the following forms:

w(x, y, t) = F (r, t), r = bx2 + ay2 “two-dimensional” solution;

w(x, y, t) = t2λG(ξ, η), ξ =
x

tnλ+1 , η =
y

tnλ+1 “two-dimensional” solution;

w(x, y, t) = y2/nH(z, t), z = y/x “two-dimensional” solution;

w(x, y, t) = |t|−2/nU (z1, z2), z1 = x + k1 ln |t|, z2 = y + k2 ln |t| “two-dimensional” solution;

w(x, y, t) = e−2tV (ρ1, ρ2), ρ1 = xent, ρ2 = yent “two-dimensional” solution;

w(x, y, t) = W (θ), θ = (bx2 + ay2)t−2 “one-dimensional” solution,

where k1, k2, and λ are arbitrary constants.

7◦. For other solutions, see equation 4.1.2.7 with k = n.���
References for equation 4.1.2.6: N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

7.
∂2w

∂t2
= a

∂

∂x

(
wn ∂w

∂x

)
+ b

∂

∂y

(
wk ∂w

∂y

)
.

This is a special case of equation 4.4.2.3 with f (w) = awn and g(w) = bwk.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( � Cn

1 C2x + C3, � Ck
1 C2y + C4, � C2t + C5),

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

aβ2
1

n + 1
wn+1 +

bβ2
2

k + 1
wk+1 − λ2w = C1(β1x + β2y + λt) + C2,

where C1, C2, β1, β2, and λ are arbitrary constants.

3◦. Solutions in implicit form:
(
C1x + C2y + C3

t + C4

)2

= aC2
1w

n + bC2
2w

k ,

a

(
C1y + C2t + C3

x + C4

)2

wn + bC2
1w

k = C2
2 ,

b

(
C1x + C2t + C3

y + C4

)2

wk + aC2
1w

n = C2
2 ,

where C1, . . . , C4 are arbitrary constants.

4◦. “Two-dimensional” solution (c1 and c2 are arbitrary constants):

w(x, y, t) = u(z, t), z = c1x + c2y,

where the function u = u(z, t) is determined by a differential equation of the form 3.4.4.6:

∂2u

∂t2
=
∂

∂z

[
ϕ(u)

∂u

∂z

]
, ϕ(u) = ac2

1u
n + bc2

2u
k,

which can be reduced to a linear equation.
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5◦. “Two-dimensional” solution (s1 and s2 are arbitrary constants):

w(x, y, t) = v(x, ξ), ξ = s1y + s2t,

where the function v = v(x, ξ) is determined by a differential equation of the form 5.4.4.8:

a
∂

∂x

(
vn ∂v

∂x

)
+
∂

∂z

[
ψ(v)

∂v

∂z

]
= 0, ψ(v) = bs2

1v
k − s

2
2 ,

which can be reduced to a linear equation.

6◦. There is a “two-dimensional” solution of the form (generalize the solutions of Items 3◦ and 4◦):

w(x, y, t) = U (z1, z2), z1 = a1x + b1y + c1t, z2 = a2x + b2y + c2t.

7◦. There are exact solutions of the following forms:

w(x, y, t) = t2λF (ξ, η), ξ =
x

tnλ+1 , η =
y

tkλ+1 “two-dimensional” solution;

w(x, y, t) = x2/nG(ζ, t), ζ = x−k/ny “two-dimensional” solution;

w(x, y, t) = e−2tH(z1, z2), z1 = xent, z2 = yekt “two-dimensional” solution;

w(x, y, t) = (x/t)2/nU (θ), θ = x−k/nytk/n−1 “one-dimensional” solution;

where λ is an arbitrary constant.
���

References for equation 4.1.2.7: N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

4.1.3. Equations of the Form ∂2w
∂t2 = ∂

∂x

[

f (w) ∂w
∂x

]

+ ∂
∂y

[

g(w) ∂w
∂y

]

1.
∂2w

∂t2
= a

∂2w

∂x2
+

∂

∂y

[
(bw + c)

∂w

∂y

]
.

This is a special case of equation 4.4.2.1 with g(w) = bw + c.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( � C2x + C3, � C1C2y + C4, � C2t + C5) +

c(1 − C2
1 )

bC2
1

,

w2 = w(x coshλ + ta1/2 sinhλ, y, xa−1/2 sinhλ + t coshλ),

whereC1, . . . , C5 and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Solutions:
w(x, y, t) = |y|1/2[ϕ(x − t

√

a ) + ψ(x + t
√

a )
]

−
c

b
,

w(x, y, t) =
∣∣yϕ(x − t

√

a ) + ψ(x − t
√

a )
∣∣1/2 −

c

b
,

w(x, y, t) =
∣∣yϕ(x + t

√

a ) + ψ(x + t
√

a )
∣∣1/2 −

c

b
,

where ϕ(z1) and ψ(z2) are arbitrary functions.
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3◦. Solutions:

w(x, y, t) = A
√
C1x + C2y + C3t + C4 +

C2
3 − aC2

1
bC2

2
−
c

b
,

w(x, y, t) =
(y + C1)2

(
C2x � t

√
aC2

2 + b + C3
)2 −

c

b
,

w(x, y, t) =
2a(y + C1)2

3b
[
a(t + C2)2 − (x + C3)2

] −
c

b
,

w(x, y, t) =
1
bC2

2

(
C1x + C2y + C3

t + C4

)2

−
aC2

1
bC2

2
−
c

b
,

w(x, y, t) =
C2

2 − aC2
1

b

(
y + C4

C1x + C2t + C3

)2

−
c

b
,

w(x, y, t) =
C2

2
bC2

1
−

a

bC2
1

(
C1y + C2t + C3

x + C4

)2

−
c

b
,

where A, C1, . . . , C4 are arbitrary constants (the first solution is of the traveling-wave type).

4◦. Solutions in implicit form:
2λ
√

a (y + λt) + (t
√

a � x)(bw + c − λ2) = ϕ(w),
where ϕ(w) is an arbitrary function and λ is an arbitrary constant.
5◦. Solution:

w = u(z) − 4abC2
1x

2, z = y + bC1x
2 + C2t,

where C1 and C2 are arbitrary constants and the function u(z) is determined by the first-order
ordinary differential equation

(bu + c − C2
2 )u′z + 2abC1u = 8a2bC2

1z + C3.
With appropriate translations in both variables, the equation can be made homogeneous, which
means that the equation is integrable by quadrature.
6◦. Solution:

w = v(r) − 4abC2
1x

2 + 4bC2
2 t

2, r = y + bC1x
2 + bC2t

2,
where C1 and C2 are arbitrary constants and the function v(r) is determined by the first-order
ordinary differential equation

(bv + c)v′r + 2b(aC1 − C2)v = 8b(a2C2
1 + C2

2 )r + C3.
With appropriate translations in both variables, the equation can be made homogeneous, which
means that the equation is integrable by quadrature.
7◦. Solution (generalizes the solutions of Items 5◦ and 6◦):
w = U (ξ) +A1x

2 +A2t
2 +A3xt +A4x +A5t, ξ = y + b(B1x

2 +B2t
2 +B3xt +B4x +B5t),

whereB1,B2,B3,B4, andB5 are arbitrary constants, and the coefficientsAn are expressed in terms
of Bn as

A1 = b(B2
3 − 4aB2

1),

A2 = b(4B2
2 − aB2

3),
A3 = 4bB3(B2 − aB1),
A4 = 2b(B3B5 − 2aB1B4),
A5 = 2b(2B2B5 − aB3B4),

and the function U (ξ) is determined by the first-order ordinary differential equation
(bU + c + ab2B2

4 − b2B2
5)U ′

ξ + 2b(aB1 −B2)U = 2(A2 − aA1)ξ + C1.
With appropriate translations in both variables, the equation can be made homogeneous, which
means that the equation is integrable by quadrature.
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8◦. Generalized separable solution linear in y:

w = F (x, t)y +G(x, t),

where the functions F and G are determined by the system of differential equations

∂2F

∂t2
− a

∂2F

∂x2 = 0, (1)

∂2G

∂t2
− a

∂2G

∂x2 = bF 2. (2)

Equation (1) is a linear homogeneous wave equation. Given F = F (x, t), (2) represents a linear
nonhomogeneous wave equation.

The general solution of system (1)–(2) is given by

F (x, t) = ϕ1(ξ) + ϕ2(η),

G(x, t) = ψ1(ξ) + ψ2(η) −
b

4a
η

∫
ϕ2

1(ξ) dξ −
b

4a
ξ

∫
ϕ2

2(η) dη −
b

2a

∫
ϕ1(ξ) dξ

∫
ϕ2(η) dη,

ξ = x + t
√

a, η = x − t
√

a,

where ϕ1(ξ), ϕ2(η), ψ1(ξ), and ψ2(η) are arbitrary functions.

9◦. “Two-dimensional” generalized separable solution quadratic in y (generalizes the second and
third solutions of Item 2◦):

w = f (x, t)y2 + g(x, t)y + h(x, t),

where the functions f = f (x, t), g = g(x, t), andh=h(x, t) are determined by the system of differential
equations

ftt = afxx + 6bf 2,
gtt = agxx + 6bfg,

htt = ahxx + bg2 + 2bfh + 2cf .

Here, the subscripts denote partial derivatives.

10◦. “Two-dimensional” solution:

w = V (η, t) − 4abC2
1x

2 − 4abC1C2x, η = y + bC1x
2 + bC2x,

where C1 and C2 are arbitrary constants and the function V (η, t) is determined by the differential
equation

∂2V

∂t2
=
∂

∂η

[
(bV + c + ab2C2

2 )
∂V

∂η

]
+ 2abC1

∂V

∂η
− 8a2bC2

1 .

11◦+. “Two-dimensional” solution:

w = W (x, ζ) + 4bC2
1 t

2 + 4bC1C2t, ζ = y + bC1t
2 + bC2t,

where C1 and C2 are arbitrary constants and the function W (ζ, t) is determined by the differential
equation

a
∂2W

∂x2 +
∂

∂ζ

[
(bW + c − b2C2

2 )
∂W

∂ζ

]
− 2bC1

∂W

∂ζ
− 8bC2

1 = 0.

12◦+. Solution:

w = R(ρ) − 4aC1ϕ(ξ), ρ = y + bC1
(
x − t
√

a
)

+
∫
ϕ(ξ) dξ, ξ = x + t

√

a,
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where C1 is an arbitrary constant, ϕ(ξ) is an arbitrary function, and the functionR(ρ) is determined
by the simple ordinary differential equation [(bR + c)R′

ρ]′ρ = 0. Integrating yields a solution of the
original equation in the form

b(w + 4aC1ϕ)2 + 2c(w + 4aC1ϕ) = C2y + bC1C2
(
x − t
√

a
)

+ C2

∫
ϕdξ + C3, ϕ = ϕ(ξ).

13◦+. Solution (obtained in the same way as in Item 12◦):

b(w + 4aC1ψ)2 + 2c(w + 4aC1ψ) = C2y + bC1C2
(
x + t
√

a
)

+ C2

∫
ψ dη + C3,

where C1, C2, and C3 are arbitrary constants, ψ = ψ(η) is an arbitrary function, η = x − t
√

a.

14◦. Solution:

w = U (z) −
A2

2
√

a b
xt +

A2

2b
t2 −

2
√

aAB

b
t −

1
b

(Aη + 4aB)ψ(η),

z = y +
A

8a
(
x2 + 2

√

axt − 3at2
)

+B(x +
√

a t) +
∫
ψ(η) dη, η = x − t

√

a,
(3)

where A and B are arbitrary constants, ψ(η) is an arbitrary function, and the function U (z) is
determined by the first-order ordinary differential equation (C is an arbitrary constant)

(bU + c)U ′

z +AU −
A2

b
z + C = 0.

With appropriate translations in both variables, the equation can be made homogeneous, which
means it is integrable by quadrature.

Another solution can be obtained by substituting −t for t in (3).

15◦. There are solutions of the following forms:

w(x, y, t) = F (y, r), r = x2 − at2 “two-dimensional” solution;

w(x, y, t) = t2λG(ξ, η) −
c

b
, ξ =

x

t
, η =

y

tλ+1 “two-dimensional” solution;

w(x, y, t) = H(z), z = (x2 − at2)y−2 “one-dimensional” solution;

where λ is an arbitrary constant.

16◦. The substitution u = w + (c/b) leads to a special case of equation 4.1.2.5 with n = 1.

17◦. For other solutions, see equation 4.4.2.3 with f (w) = a and g(w) = bw + c.

2.
∂2w

∂t2
=

∂

∂x

[
(aw + b)

∂w

∂x

]
+

∂

∂y

[
(aw + b)

∂w

∂y

]
.

The substitution U = aw + b leads to an equation of the form 4.1.2.2:

∂2U

∂t2
=
∂

∂x

(
U
∂U

∂x

)
+
∂

∂y

(
U
∂U

∂y

)
.

3.
∂2w

∂t2
=

∂

∂x

[
(a1w + b1)

∂w

∂x

]
+

∂

∂y

[
(a2w + b2)

∂w

∂y

]
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( � C1x + C2, � C1y + C3, � C1t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).
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2◦. Traveling-wave solution:

w(x, y, t) = A
√
k1x + k2y + λt +B +

λ2 − b1k
2
1 − b2k

2
2

a1k
2
1 + a2k

2
2

,

where A, B, k1, k2, and λ are arbitrary constants.
3◦. Generalized separable solution linear in space variables:
w(x, y, t) = (A1t +B1)x + (A2t +B2)y

+ 1
12 (a1A

2
1 + a2A

2
2)t4 + 1

3 (a1A1B1 + a2A2B2)t3 + 1
2 (a1B

2
1 + a2B

2
2 )t2 + Ct +D.

where A1, A2, B1, B2, C, and D are arbitrary constants.
4◦. Solutions:

w(x, y, t) =
1

a1C
2
1 + a2C

2
2

(
C1x + C2y + C3

t + C4

)2

−
b1C

2
1 + b2C

2
2

a1C
2
1 + a2C

2
2

,

w(x, y, t) =
(C2

2 − b2C
2
1 )(x + C4)2 − b1(C1y + C2t + C3)2

a2C
2
1 (x + C4)2 + a1(C1y + C2t + C3)2 ,

w(x, y, t) =
(C2

2 − b1C
2
1 )(y + C4)2 − b2(C1x + C2t + C3)2

a1C
2
1 (y + C4)2 + a2(C1x + C2t + C3)2 ,

where C1, . . . , C4 are arbitrary constants.

5◦. There is a generalized separable solution of the form
w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2 + ϕ(t)x + ψ(t)y + χ(t).

6◦. For other solutions, see equation 4.4.2.3 with f (w) = a1w + b1 and g(w) = a2w + b2.

4.
∂2w

∂t2
=

∂

∂x

(
1

aw + b

∂w

∂x

)
+

∂

∂y

(
1

aw + b

∂w

∂y

)
.

The substitution U = aw + b leads to an equation of the form 4.1.2.4:
∂2U

∂t2
=
∂

∂x

(
1
U

∂U

∂x

)
+
∂

∂y

(
1
U

∂U

∂y

)
.

5.
∂2w

∂t2
=

∂

∂x

[
(a1w

n + b1)
∂w

∂x

]
+

∂

∂y

[
(a2w

n + b2)
∂w

∂y

]
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions
w1 = w( � C1x + C2, � C1y + C3, � C1t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).
2◦. Traveling-wave solutions:

w(x, y, t) =
(
C1x + C2y + λt + C3

) 1
n+1 , λ = �

√
b1C

2
1 + b2C

2
2 ,

where C1, C2, and C3 are arbitrary constants.
3◦. Solutions:

w(x, y, t) =
[

1
a1C

2
1 + a2C

2
2

(
C1x + C2y + C3

t + C4

)2

−
b1C

2
1 + b2C

2
2

a1C
2
1 + a2C

2
2

]1/n

,

w(x, y, t) =
[

(C2
2 − b2C

2
1 )(x + C4)2 − b1(C1y + C2t + C3)2

a2C
2
1 (x + C4)2 + a1(C1y + C2t + C3)2

]1/n

,

w(x, y, t) =
[

(C2
2 − b1C

2
1 )(y + C4)2 − b2(C1x + C2t + C3)2

a1C
2
1 (y + C4)2 + a2(C1x + C2t + C3)2

]1/n

,

where C1, . . . , C4 are arbitrary constants.
4◦. For other solutions, see equation 4.4.2.3 with f (w) = a1w

n + b1 and g(w) = a2w
n + b2.
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4.1.4. Other Equations

1.
∂2w

∂t2
= (α + βw)

(
∂2w

∂x2
+

∂2w

∂y2

)
+ γw2 + δw + ε.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( � x + C1, � y + C2, � t + C3),
w2 = w(x cosβ + y sinβ, −x sinβ + y cosβ, t),

whereC1, C2, C3, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. “Two-dimensional” generalized separable solution:

w(x, y, t) = f (t) + g(t)Θ(x, y). (1)

Here, the function Θ(x, y) satisfies the two-dimensional Helmholtz equation

∆Θ + κΘ = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 ,

where κ = γ/β (β ≠ 0). For solutions of this linear equation, see the books by Tikhonov and
Samarskii (1990) and Polyanin (2002). The functions f (t) and g(t) in (1) are determined from the
autonomous system of nonlinear ordinary differential equations

f ′′

tt = γf 2 + δf + ε, (2)
g′′tt = (γf + δ − ακ)g. (3)

Equation (2) is independent of g(t). Particular solutions of the equation are given by f = const,
where f satisfies the quadratic equation γf 2 + δf + ε = 0. For γ = 0, (2) is a constant-coefficient
linear equation. For γ ≠ 0, the general solution of (2) can be written out in implicit form as

∫
df√

2
3 γf

3 + δf 2 + 2εf + C1

= C2 � t,

where C1 and C2 are arbitrary constants. Equation (3) is linear in g(t). For particular solutions of
the form f = const, it is a constant-coefficient linear equation.

3◦. There is a “two-dimensional” solution of the form

w(x, y, t) = U (z1, z2), z1 = a1x + b1y + c1t, z2 = a2x + b2y + c2t,

where the an, bn, and cn are arbitrary constants (n = 1, 2). To the special case U = U (z1) there
corresponds a traveling wave solution.

2.
∂2w

∂t2
= αw

(
∂2w

∂x2
+

∂2w

∂y2

)
– α

[(
∂w

∂x

)2

+
(

∂w

∂y

)2 ]
– β.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( � C2

1x + C2, � C2
1y + C3,C1t + C4),

w2 = w(x cosβ + y sinβ, −x sinβ + y cosβ, t),

whereC1, . . . , C4 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).
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2◦. There are generalized separable solutions of the form

w(x, y, t) = f (t) + g(t)ϕ(x) + h(t)ψ(y).

In particular, if ϕ′′

xx = νϕ and ψ′′

yy = −νψ, where ν is an arbitrary constant, we have (A1, A2, B1,
and B2 are arbitrary constants)

ϕ(x) = A1 coshµx +A2 sinhµx, ψ(y) = B1 cosµy +B2 sinµy (ν = µ2 > 0),

ϕ(x) = A1 cosµx +A2 sinµx, ψ(y) = B1 coshµy +B2 sinhµy (ν = −µ2 < 0).

The functions f (t), g(t), and h(t) are determined by the autonomous system of ordinary differential
equations

f ′′

tt = αν(A2
1 − sA2

2)g2 − αν(B2
1 + sB2

2)h2 − β,
g′′tt = ανfg,
h′′tt = −ανfh,

where s = sign ν.

3◦. There are generalized separable solutions of the form

w(x, y, t) = f (t) + g(t)ϕ(x) + h(t)ψ(y) + u(t)θ(x)χ(y). (1)

For ϕ′′

xx = 4νϕ, ψ′′

yy = −4νψ, θ′′xx = νθ, and χ′′

yy = −νχ, where ν is an arbitrary constant, one
should set in (1):

if ν = µ2 > 0 if ν = −µ2 < 0

ϕ(x) = A1 cosh 2µx +A2 sinh 2µx
ψ(y) = B1 cos 2µy +B2 sin 2µy
θ(x) = C1 coshµx + C2 sinhµx
χ(y) = D1 cosµy +D2 sinµy

ϕ(x) = A1 cos 2µx +A2 sin 2µx
ψ(y) = B1 cosh 2µy +B2 sinh 2µy
θ(x) = C1 cosµx + C2 sinµx
χ(y) = D1 coshµy +D2 sinhµy

The functions f (t),g(t),h(t), andu(t) are determined by the following system of ordinary differential
equations (s = sign ν):

f ′′

tt = −4αν(A2
1 − sA2

2)g2 + 4αν(B2
1 + sB2

2)h2 − β,

g′′tt = −4ανfg + ανa1(D2
1 + sD2

2)u2,

h′′tt = 4ανfh − ανa2(C2
1 − sC2

2 )u2,
u′′tt = −2αν(a3g − a4h)u.

The arbitrary constants A1, A2, B1, B2, C1, C2, D1, and D2 are related by the two constraints

2A1C1C2 = A2(C2
1 + sC2

2 ), 2B1D1D2 = B2(D2
1 − sD2

2).

The coefficients a1, a2, a3, and a4 are expressed as

a1 =
C2

1 + sC2
2

2A1
, a2 =

D2
1 − sD2

2
2B1

, a3 = A2
C2

1 − sC2
2

C1C2
, a4 = B2

D2
1 + sD2

2
D1D2

,

with A1 ≠ 0, B1 ≠ 0, C1C2 ≠ 0, and D1D2 ≠ 0.
IfA1 = 0 (A2 ≠ 0), then one should set a1 = C1C2/A2. If B1 = 0 (B2 ≠ 0), then a2 = D1D2/B2.

If C1 = 0 (C2 ≠ 0), then a3 = −A1. If C2 = 0 (C1 ≠ 0), then a3 = A1. If D1 = 0 (D2 ≠ 0), then
a4 = −B1. If D2 = 0 (D1 ≠ 0), then a4 = B1.
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4◦. There is a generalized separable solution of the form

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2 + ϕ(t)x + ψ(t)y + χ(t).

In the special case ϕ(t) = ψ(t) ≡ 0, the functions f (t), g(t), h(t), and χ(t) are determined by the
autonomous system of ordinary differential equations

f ′′

tt = α(2fh − 2f 2 − g2),
g′′tt = −2αg(f + h),

h′′tt = α(2fh − 2h2 − g2),
χ′′

tt = 2α(f + h)χ − β.

5◦. There is a “two-dimensional” solution of the form

w(x, y, t) = U (z1, z2), z1 = a1x + b1y + c1t, z2 = a2x + b2y + c2t,

where the an, bn, and cn are arbitrary constants (n = 1, 2). To the special case U = U (z1) there
corresponds a traveling wave solution.

3.
∂2w

∂t2
= a1

∂

∂x

(
wn ∂w

∂x

)
+ a2

∂

∂y

(
wk ∂w

∂y

)
+ bwp.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C2
1w( � Cp−n−1

1 x + C2, � Cp−k−1
1 y + C3, � Cp−1

1 t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (ξ, η), ξ = α1x + α2y + α3t, η = β1x + β2y + β3t;

w(x, y, t) = t
2

1−p U (z1, z2), z1 = xt
p−n−1

1−p , z2 = yt
p−k−1

1−p .

4.2. Equations with Two Space Variables Involving
Exponential Nonlinearities

4.2.1. Equations of the Form ∂2w
∂t2 = ∂

∂x

[

f (x)∂w
∂x

]

+ ∂
∂y

[

g(y)∂w
∂y

]

+aeλw

1.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+ ceλw.

This is a special case of equation 4.4.1.2 with f (w) = ceλw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w
(
C

2
2−n

1 x, C
2

2−m
1 y, � C1t + C2

)
+

2
λ

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, and λ ≠ 0:

w = −
1
λ

ln
{

2cλ(2 − n)(2 −m)
4 − nm

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
]}

.

3◦. Solution for n ≠ 2 and m ≠ 2 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,
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where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + ck−1eλw = 0, A =
2(4 − n −m)

(2 − n)(2 −m)
.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]
,

w(x, y, t) = V (x, η), η2 = � 4
[

y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 = � 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

w(x, y, t) = F (z1, z2) −
2
λ

ln |t|, z1 = x|t|
2

n−2 , z2 = y|t|
2

m−2 .

2.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
beλy ∂w

∂y

)
+ ceβw.

This is a special case of equation 4.4.1.3 with f (w) = ceβw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w
(
C

2
2−n

1 x, y −
2
λ

lnC1, � C1t + C2

)
+

2
β

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, β ≠ 0, and λ ≠ 0:

w = −
1
β

ln
{

2cβ(2 − n)
n

[
x2−n

a(2 − n)2 +
e−λy

bλ2 −
1
4

(t + C)2
]}

.

3◦. Solution for n ≠ 2 and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + ck−1eβw = 0, A =
2

2 − n
.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−λy

bλ2

]
,

w(x, y, t) = V (x, η), η2 = � 4
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 = � 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

w(x, y, t) = F (z1, z2) −
2
β

ln |t|, z1 = x|t|
2

n−2 , z2 = y +
2
λ

ln |t|.
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3.
∂2w

∂t2
=

∂

∂x

(
aeβx ∂w

∂x

)
+

∂

∂y

(
beλy ∂w

∂y

)
+ ceµw.

This is a special case of equation 4.4.1.4 with f (w) = ceµw.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w
(
x −

2
β

lnC1, y −
2
λ

lnC1, � C1t + C2

)
+

2
µ

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for β ≠ 0 and λ ≠ 0:

w = w(r), r2 = 4k
[
e−βx

aβ2 +
e−λy

bλ2 −
1
4

(t + C1)2
]

,

whereC1 and k are arbitrary constants (k ≠ 0) and the functionw(r) is determined by the autonomous
ordinary differential equation

w′′

rr + ck−1eµw = 0.

Its general solution is given by

w =





−
1
µ

ln
[

−
cµ

2k
(r + C3)2

]
if ckµ < 0,

−
1
µ

ln
[

−
cµ

2kC2
2

sin2(C2r + C3)
]

if ckµ < 0,

−
1
µ

ln
[

−
cµ

2kC2
2

sinh2(C2r + C3)
]

if ckµ < 0,

−
1
µ

ln
[

cµ

2kC2
2

cosh2(C2r + C3)
]

if ckµ > 0,

where C2 and C3 are arbitrary constants.

3◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
(
e−βx

aβ2 +
e−λy

bλ2

)
,

w(x, y, t) = V (x, η), η2 = � 4
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 = � 4
[
e−βx

aβ2 −
1
4

(t + C)2
]

,

w(x, y, t) = F (z1, z2) −
2
µ

ln |t|, z1 = x +
2
β

ln |t|, z2 = y +
2
λ

ln |t|.

4.2.2. Equations of the Form ∂2w
∂t2 = a ∂

∂x

(

eβw ∂w
∂x

)

+ b ∂
∂y

(

eλw ∂w
∂y

)

1.
∂2w

∂t2
= a

∂2w

∂x2
+ b

∂

∂y

(
ew ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w(C1x + C3,C2y + C4, � C1t + C5) + ln
C2

1
C2

2
,

w2 = w(x coshλ + ta1/2 sinhλ, y, xa−1/2 sinhλ + t coshλ),

where C1, . . . , C5 and λ are arbitrary constants, are also solutions of the equation.
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2◦. Solutions:
w(x, y, t) = ϕ(x − t

√

a ) + ψ(x + t
√

a ) + ln |C1y + C2|,
w(x, y, t) = ln

[
yϕ(x − t

√

a ) + ψ(x − t
√

a )
]
,

w(x, y, t) = ln
[
yϕ(x + t

√

a ) + ψ(x + t
√

a )
]
,

where C1 and C2 are arbitrary constants and ϕ(z1) and ψ(z2) are arbitrary functions.

3◦. Solutions:

w(x, y, t) = ln
[

(B2 − aA2)(y +D)2

b(Ax +Bt + C)2

]
,

w(x, y, t) = ln
[

(B2 − aA2)(y +D)2

2 cos2(Ax +Bt + C)

]
,

w(x, y, t) = ln
[

(aA2 −B2)(y +D)2

b cosh2(Ax + Bt + C)

]
,

w(x, y, t) = ln
[

(B2 − aA2)(y +D)2

b sinh2(Ax +Bt + C)

]
,

w(x, y, t) = ln
(

4aC
b

)
− 2 ln

∣∣(x +A)2 − a(t +B)2 + C
∣∣ + 2 ln |y +D|,

w(x, y, t) = ln
[

1
bB2

(
Ax +By + C

t +D

)2

−
aA2

bB2

]
,

w(x, y, t) = ln
[
B2

bA2 −
a

bA2

(
Ay +Bt + C

x +D

)2]
,

where A, B, C, and D are arbitrary constants.

4◦. “Two-dimensional” solution:

w(x, y, t) = U (x, t) + 2 ln |y + C |,

where the function U = U (x, t) is determined by a differential equation of the form 3.2.1.1:

∂2U

∂t2
= a

∂2U

∂x2 + 2beU .

Integrating yields a solution of the original equation in the form

w(x, y, t) = f (ξ) + g(η) − 2 ln
∣∣∣∣k

∫
ef (ξ) dξ −

b

4ak

∫
eg(η) dη

∣∣∣∣ + 2 ln |y + C |,

ξ = x −
√

a t, η = x +
√

a t,

where f = f (ξ) and g = g(η) are arbitrary functions and k is an arbitrary constant.

5◦. Solutions in implicit form:

2λ
√

a (y + λt) + (t
√

a � x)(bew − λ2) = ϕ(w),

where ϕ(w) is an arbitrary function and λ is an arbitrary constant.

6◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = F (y, r), r = x2 − at2;

w(x, y, t) = G(ξ, η) − 2k ln |t|, ξ = xt−1, η = y|t|k−1;
w(x, y, t) = H(ζ1, ζ2) + 2 ln |y|, ζ1 = t + k1 ln |y|, ζ2 = x + k2 ln |y|;
w(x, y, t) = U (ρ1, ρ2) + 2y, ρ1 = tey, ρ2 = xey;
w(x, y, t) = V (χ) + 2 ln |y/t|, χ = x/t,

where k, k1, and k2 are arbitrary constants.
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7◦. There is an exact solution of the form

w(x, y, t) = W (z), z = (x2 − at2)y−2.

8◦. For other exact solutions, see equation 4.4.2.3 with f (w) = a and g(w) = bew.���
References for equation 4.2.2.1: N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂t2
= a

∂

∂x

(
eλw ∂w

∂x

)
+ b

∂

∂y

(
eλw ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w(C1x + C3,  C1y + C4,C2t + C5) +
1
λ

ln
C2

2
C2

1
,

w2 = w
(
x cosβ + y

√
a/b sinβ, −x

√
b/a sinβ + y cosβ, t

)
,

where C1, . . . , C5 and β are arbitrary constants, are also solutions of the equation.

2◦. Solutions:

w(x, y, t) = C1t + C2 +
1
λ

ln(C3x + C4y + C5);

w(x, y, t) = C1t + C2 +
1
λ

ln
[
C3(bx2 − ay2) + C4xy + C5

]
;

w(x, y, t) = C1t + C2 +
1
λ

ln
[
C3 ln(bx2 + ay2) + C4

]
;

w(x, y, t) = C1t + C2 +
√

bC3x +
1
λ

ln cos
(√
aC3λy + C4

)
;

w(x, y, t) = C1t + C2 +
1
λ

ln
[
C3 exp

(√
bC4x

)
cos

(√
aC4y + C5

)
+ C6

]
;

w(x, y, t) =
1
λ

ln
[

1
aC2

1 + bC2
2

(
C1x + C2y + C3

t + C4

)2]
;

w(x, y, t) =
1
λ

ln
[

C2
2 (x + C4)2

a(C1y + C2t + C3)2 + bC2
1 (x + C4)2

]
;

w(x, y, t) =
1
λ

ln
[
bC1x

2 + C2xy +Ky2 + C3x + C4y + C5

cos2(C1t + C6)

]
, K =

C2
1
b

− aC1;

w(x, y, t) =
1
λ

ln
[
bC1x

2 + C2xy +Ky2 + C3x + C4y + C5

sinh2(C1t + C6)

]
, K =

C2
1
b

− aC1;

w(x, y, t) =
1
λ

ln
[
bC1x

2 + C2xy −Ky2 + C3x + C4y + C5

cosh2(C1t + C6)

]
, K =

C2
1
b

+ aC1;

w(x, y, t) =
1
λ

ln
[
aC2

1x
2 + C2 exp

(√
bC3x

)
cos

(√
aC3y + C4

)

cos2(aC1t + C5)

]
;

w(x, y, t) =
1
λ

ln
[
bC2

1y
2 + C2 exp

(√
bC3x

)
cos

(√
aC3y + C4

)

cos2(bC1t + C5)

]
;

w(x, y, t) =
1
λ

ln
[
aC2

1x
2 + C2 exp

(√
bC3x

)
cos

(√
aC3y + C4

)

sinh2(aC1t + C5)

]
;

w(x, y, t) =
1
λ

ln
[
bC2

1y
2 + C2 exp

(√
bC3x

)
cos

(√
aC3y + C4

)

sinh2(bC1t + C5)

]
;

w(x, y, t) =
1
λ

ln
[

−aC2
1x

2 + C2 exp
(√
bC3x

)
cos

(√
aC3y + C4

)

cosh2(aC1t + C5)

]
;
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w(x, y, t) =
1
λ

ln
[

−bC2
1y

2 + C2 exp
(√
bC3x

)
cos

(√
aC3y + C4

)

cosh2(bC1t + C5)

]
;

where C1, . . . , C6 are arbitrary constants.

3◦. “Two-dimensional” solution (generalizes the first five solutions of Item 2◦):

w(x, y, t) = C1t + C2 +
1
λ

lnU (ξ, η), ξ =
x
√

a
, η =

y
√

b
,

where C1 and C2 are arbitrary constants and the function U = U (ξ, η) is determined by the Laplace
equation

∂2U

∂ξ2 +
∂2U

∂η2 = 0.

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. “Two-dimensional” solution:

w(x, y, t) = f (t) +
1
λ

lnV (ξ, η), ξ =
x
√

a
, η =

y
√

b
,

where the function f = f (t) is determined by the autonomous ordinary differential equation

f ′′

tt = eλf , (1)

and the function V = V (ξ, η) is a solution of the Poisson equation

∆V − λ = 0, ∆ =
∂2

∂ξ2 +
∂2

∂η2 . (2)

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).
The general solution of equation (1) is given by

f (t) =





−
1
λ

ln
[ 1

2λ(t + C1)2] if λ > 0,

−
1
λ

ln
[
λ

2C2
1

cos2(C1t + C2)
]

if λ > 0,

−
1
λ

ln
[
λ

2C2
1

sinh2(C1t + C2)
]

if λ > 0,

−
1
λ

ln
[

−
λ

2C2
1

cosh2(C1t + C2)
]

if λ < 0.

5◦. There are solutions of the following forms:

w(x, y, t) = F (z, t) +
2
λ

lnx, z =
y

x
, “two-dimensional” solution;

w(x, y, t) = G(r, t), r = bx2 + ay2 “two-dimensional” solution;

w(x, y, t) = H(z1, z2) −
2k
λ

ln |t|, z1 = x|t|k−1, z2 = y|t|k−1 “two-dimensional” solution;

w(x, y, t) = U (ξ, η) −
2
λ

ln |t|, ξ = x + k1 ln |t|, η = y + k2 ln |t| “two-dimensional” solution;

w(x, y, t) = V (ρ1, ρ2) −
2
λ
t, ρ1 = xet, ρ2 = yet “two-dimensional” solution;

w(x, y, t) = W (z) +
2
λ

ln
∣∣∣x
t

∣∣∣, z =
y

x
“one-dimensional” solution,

w(x, y, t) = R(ζ), ζ =
bx2 + ay2

t2
“one-dimensional” solution,

where k, k1, and k2 are arbitrary constants.

6◦. For other exact solutions, see equation 4.4.2.3 with f (w) = aeλw and g(w) = beλw.!�"
References for equation 4.2.2.2: N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).
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3.
∂2w

∂t2
= a

∂

∂x

(
ew ∂w

∂x

)
+ b

∂

∂y

(
eλw ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions
w1 = w( # C1C2x + C3, # C1C

λ
2 y + C4, # C1t + C5) − 2 ln |C2|,

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
ak2

1e
w + bk2

2λ
−1eλw − β2w = C1(k1x + k2y + βt) + C2,

where C1, C2, k1, k2, and β are arbitrary constants.
3◦. Solutions in implicit form:

(
C1x + C2y + C3

t + C4

)2

= aC2
1e

w + bC2
2e

λw,

a

(
C1y + C2t + C3

x + C4

)2

ew + bC2
1e

λw = C2
2 ,

b

(
C1x + C2t + C3

y + C4

)2

eλw + aC2
1e

w = C2
2 ,

where C1, . . . , C4 are arbitrary constants.

4◦. “Two-dimensional” solution (c1 and c2 are arbitrary constants):
w(x, y, t) = u(z, t), z = c1x + c2y,

where the function u = u(z, t) is determined by a differential equation of the form 3.4.4.6:
∂2u

∂t2
=
∂

∂z

[
ϕ(u)

∂u

∂z

]
, ϕ(u) = ac2

1e
u + bc2

2e
λu,

which can be reduced to a linear equation.
5◦. “Two-dimensional” solution (s1 and s2 are arbitrary constants):

w(x, y, t) = v(x, ξ), ξ = s1y + s2t,
where the function v = v(x, ξ) is determined by a differential equation of the form 5.4.4.8:

a
∂

∂x

(
ev ∂v

∂x

)
+
∂

∂z

[
ψ(v)

∂v

∂z

]
= 0, ψ(v) = bs2

1e
λv − s

2
2 ,

which can be reduced to a linear equation.

6◦. There is a “two-dimensional” solution of the form (generalize the solutions of Items 3◦ and 4◦):
w(x, y, t) = U (z1, z2), z1 = a1x + b1y + c1t, z2 = a2x + b2y + c2t.

7◦. Solution:
w(x, y, t) = U (ξ) + 2 ln(x/t), ξ = x−λytλ−1,

where the function U = U (ξ) is determined by the ordinary differential equation[
aλ2ξ2eU + beλU − (λ − 1)2ξ2]U ′′

ξξ + λ
(
aλξ2eU + beλU

)
(U ′

ξ)2

+ ξ
[
aλ(λ − 3)eU − (λ − 1)(λ − 2)

]
U ′

ξ + 2(aeU − 1) = 0.
8◦. “Two-dimensional” solution:

w(x, y, t) = u(z, t) + 2 lnx, z = x−λy,
where the function u = u(z, t) is determined by the differential equation

∂2u

∂t2
=

(
aλ2z2eu + beλu

) ∂2u

∂z2 + λ
(
aλz2eu + beλu

)( ∂u

∂z

)2

+ aλ(λ − 3)zeu ∂u

∂z
+ 2aeu.

9◦. For other exact solutions, see equation 4.4.2.3 with f (w) = aew and g(w) = beλw.$�%
References for equation 4.2.2.3: N. Ibragimov (1994), A. D. Polyanin and V. F. Zaitsev (2002).
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4.2.3. Other Equations

1.
∂2w

∂t2
=

∂

∂x

[
(a1e

λw + b1)
∂w

∂x

]
+

∂

∂y

[
(a2e

λw + b2)
∂w

∂y

]
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( & C1x + C2, & C1y + C3, & C1t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solutions:

w(x, y, t) =
1
λ

ln
(
C1x + C2y + βt + C3

)
, β = &

√
b1C

2
1 + b2C

2
2 ,

where C1, C2, and C3 are arbitrary constants.

3◦. Solutions:

w(x, y, t) =
1
λ

ln
[

1
a1C

2
1 + a2C

2
2

(
C1x + C2y + C3

t + C4

)2

−
b1C

2
1 + b2C

2
2

a1C
2
1 + a2C

2
2

]
,

w(x, y, t) =
1
λ

ln
[

(C2
2 − b2C

2
1 )(x + C4)2 − b1(C1y + C2t + C3)2

a2C
2
1 (x + C4)2 + a1(C1y + C2t + C3)2

]
,

w(x, y, t) =
1
λ

ln
[

(C2
2 − b1C

2
1 )(y + C4)2 − b2(C1x + C2t + C3)2

a1C
2
1 (y + C4)2 + a2(C1x + C2t + C3)2

]
,

where C1, . . . , C4 are arbitrary constants.

4◦. For other solutions, see equation 4.4.2.3 with f (w) = a1e
λw + b1 and g(w) = a2e

λw + b2.

2.
∂2w

∂t2
= a

∂

∂x

(
eλ1w

∂w

∂x

)
+ b

∂

∂y

(
eλ2w

∂w

∂y

)
+ ceβw.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( & Cβ−λ1
1 x + C2, & Cβ−λ2

1 y + C3, & Cβ
1 t + C4) + 2 ln |C1|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, η) −
2
β

ln |t|, ξ = x|t|
λ1−β

β , η = y|t|
λ2−β

β ;

w(x, y, t) = V (η1, η2), η1 = a1x + b1y + c1t, η2 = a2x + b2y + c2t.

4.3. Nonlinear Telegraph Equations with Two Space
Variables

4.3.1. Equations Involving PowerLaw Nonlinearities

1.
∂2w

∂t2
+ k

∂w

∂t
= a

∂2w

∂x2
+

∂

∂y

[
(bw + c)

∂w

∂y

]
.

1◦. “Two-dimensional” generalized separable solution linear in y:

w = f (x, t)y + g(x, t),
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where the functions f and g are determined by the one-dimensional equations

∂2f

∂t2
+ k

∂f

∂t
= a

∂2f

∂x2 ,

∂2g

∂t2
+ k

∂g

∂t
= a

∂2g

∂x2 + bf 2.

The first equation is a linear homogeneous telegraph equation. Given f = f (x, t), the second one
represents a linear nonhomogeneous telegraph equation. For these equations, see the book by
Polyanin (2002).

2◦. There is a “two-dimensional” generalized separable solution quadratic in y:

w = f (x, t)y2 + g(x, t)y + h(x, t).

3◦. The substitution u = w + (c/b) leads to the special case of equation 4.3.1.4 with m = 1.

2.
∂2w

∂t2
+ k

∂w

∂t
=

∂

∂x

[
(a1w + b1)

∂w

∂x

]
+

∂

∂y

[
(a2w + b2)

∂w

∂y

]
.

1◦. Additive separable solution:

w(x, y, t) = Akx +Bky + Ce−kt + k(A2a1 +B2a2)t +D,

where A, B, C, and D are arbitrary constants.

2◦. Generalized separable solution linear in the space variables:

w(x, y, t) = (A1e
−kt +B1)x + (A2e

−kt +B2)y +
1

2k2 (a1A
2
1 + a2A

2
2)e−2kt

−
2
k

(a1A1B1 + a2A2B2)te−kt + C1e
−kt +

1
k

(a1B
2
1 + a2B

2
2)t + C2,

where A1, A2, B1, B2, C1, and C2 are arbitrary constants.

3◦. Traveling-wave solution in implicit form (k ≠ 0):

kλ(a1β
2
1 + a2β

2
2 )w + [kλ(b1β

2
1 + b2β

2
2 − λ2) − C1(a1β

2
1 + a2β

2
2)] ln(kλw + C1)

= k2λ2(β1x + β2y + λt) + C2,

where C1, C2, β1, β2, and λ are arbitrary constants.

4◦. There is a generalized separable solution of the form

w(x, y, t) = f (t)x2 + g(t)xy + h(t)y2 + ϕ(t)x + ψ(t)y + χ(t).

3.
∂2w

∂t2
+ k

∂w

∂t
= a

[
∂

∂x

(
1
w

∂w

∂x

)
+

∂

∂y

(
1
w

∂w

∂y

)]
.

This is a special case of equation 4.3.1.6 with n = m = −1.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C2
1w( ' C1x + C2, ' C1y + C3, t + C4),

w2 = w(x cosβ + y sinβ, −x sinβ + y cosβ, t),

whereC1, . . . , C4 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).
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2◦. Solutions:

w(x, y, t) =
2at +A +Be−kt

k(sin y + Cex)2 ,

w(x, y, t) =
C2

1 (2at +A +Be−kt)
ke2x sinh2(C1e−x sin y + C2)

,

w(x, y, t) =
C2

1 (−2at +A +Be−kt)
ke2x cosh2(C1e−x sin y + C2)

,

w(x, y, t) =
C2

1 (2at +A +Be−kt)
ke2x cos2(C1e−x sin y + C2)

,

where A, B, C, C1, and C2 are arbitrary constants.

3◦. The exact solutions specified in Item 2◦ are special cases of a more general solution in the form
of the product of functions with different arguments:

w(x, y, t) = (Aat +B + Ce−kt)eΘ(x,y),

where A, B, and C are arbitrary constants and the function Θ(x, y) is a solution of the stationary
equation

∆Θ −AkeΘ = 0, ∆ =
∂2

∂x2 +
∂2

∂y2 ,

which occurs in combustion theory. For solutions of this equation, see 5.2.1.1.(�)
Reference: N. H. Ibragimov (1994).

4.
∂2w

∂t2
+ k

∂w

∂t
= a

∂2w

∂x2
+ b

∂

∂y

(
wm ∂w

∂y

)
.

This is a special case of equation 4.3.1.6 with n = 0.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( * x + C2, * Cm

1 y + C3, t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. “Two-dimensional” solution:

w(x, y, t) = u(x, t)y2/m,

where the function u(x, t) is determined by the differential equation

∂2u

∂t2
+ k

∂u

∂t
= a

∂2u

∂x2 +
2b(m + 2)

m2 um+1.

For m = −2 and m = −1, this equation is linear.

3◦. “Two-dimensional” multiplicative separable solution:

w(x, y, t) =
{
U (x, t)|y + C |1/(m+1) if m ≠ −1,
U (x, t) exp(Cy) if m = −1,

where C is an arbitrary constant and the function U (x, t) is determined by the telegraph equation

∂2U

∂t2
+ k

∂U

∂t
= a

∂2U

∂x2 .

For solutions of this linear equation, see the book by Polyanin (2002).(�)
Reference: N. H. Ibragimov (1994).
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5.
∂2w

∂t2
+ k

∂w

∂t
= a

∂

∂x

(
wn ∂w

∂x

)
+ b

∂

∂y

(
wn ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( + Cn

1 x + C2, + Cn
1 y + C3, t + C4),

w2 = w
(
x cosβ + y

√
a/b sinβ, −x

√
b/a sinβ + y cosβ, t

)
,

whereC1, . . . , C4 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Multiplicative separable solution:

w(x, y, t) = F (t)Φ(x, y),

where the function F (t) is determined by the autonomous ordinary differential equation (C is an
arbitrary constant)

F ′′

tt + kF ′

t = CFn+1, (1)

and the function Φ(x, y) satisfies the stationary equation

a
∂

∂x

(
Φ

n ∂Φ

∂x

)
+ b

∂

∂y

(
Φ

n ∂Φ

∂y

)
= CΦ. (2)

Example. For C = 0, it follows from (1) that F = Ae−kt + B, where A and B are arbitrary constants. For C = 0,
equation (2) is reduced to the Laplace equation

∂2
Ψ

∂x̄2 +
∂2

Ψ

∂ȳ2 = 0, where Ψ = Φ
n+1 , x̄ =

x
√

a
, ȳ =

y
√

b
.

3◦. “Two-dimensional” solution:

w(x, y, t) = u(r, t), r =
√
bx2 + ay2,

where the function u(r, t) is determined by the differential equation

∂2u

∂t2
+ k

∂u

∂t
=
ab

r

∂

∂r

(
run ∂u

∂r

)
.

4◦. Solution:
w(x, y, t) = U (t)(bx2 + ay2)1/n,

where the function U (t) is determined by the autonomous ordinary differential equation

U ′′

tt + kU ′

t =
4ab(n + 1)

n2 Un+1.
,�-

Reference: N. H. Ibragimov (1994).

6.
∂2w

∂t2
+ k

∂w

∂t
= a

∂

∂x

(
wn ∂w

∂x

)
+ b

∂

∂y

(
wm ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( + Cn

1 x + C2, + Cm
1 y + C3, t + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
∫

a1β
2
1w

n + a2β
2
2w

m − λ2

kλw + C1
dw = β1x + β2y + λt + C2,

where C1, C2, β1, β2, and λ are arbitrary constants.
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3◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, t), ξ = βx + µy,

where β and µ are arbitrary constants, and the functionU = U (ξ, t) is determined by the differential
equation

∂2U

∂t2
+ k

∂U

∂t
=
∂

∂ξ

[(
aβ2Un + bµ2Um

) ∂U
∂ξ

]
.

Remark. There is a more general, “two-dimensional” solution of the form

w(x, y, t) = V (ξ1, ξ2), ξ1 = β1x + µ1y + λ1t, ξ2 = β2x + µ2y + λ2t,

where the βi, µi, and λi are arbitrary constants.

4◦. “Two-dimensional” solution:

w(x, y, t) = y2/mu(z, t), z = xy−n/m,

where the function u = u(z, t) is determined by the differential equation

m2
(
∂2u

∂t2
+ k

∂u

∂t

)
=

(
am2un + bn2z2um

) ∂2u

∂z2

+ nm
(
amun−1 + bnz2um−1)

(
∂u

∂z

)2

+ bn(n − 3m − 4)zum ∂u

∂z
+ 2b(m + 2)um+1.

.�/
Reference: N. H. Ibragimov (1994).

4.3.2. Equations Involving Exponential Nonlinearities

1.
∂2w

∂t2
+ k

∂w

∂t
= a

∂2w

∂x2
+ b

∂

∂y

(
ew ∂w

∂y

)
.

This is a special case of equation 4.4.3.10 with f (t) = k, g(t) = a, h(t) = b, and λ = 1.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w( 0 x + C2, 0 C1y + C3, t + C4) − 2 ln |C1|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. “Two-dimensional” solution:

w(x, y, t) = u(x, t) + ln |y + C |,

where C is an arbitrary constant and the function u(x, t) is determined by the linear telegraph
equation

∂2u

∂t2
+ k

∂u

∂t
= a

∂2u

∂x2 .

3◦. “Two-dimensional” solution:

w(x, y, t) = U (x, t) + 2 ln |y + C |,

where C is an arbitrary constant and the function U (x, t) is determined by the differential equation

∂2U

∂t2
+ k

∂U

∂t
= a

∂2U

∂x2 + 2beU .
.�/

Reference: N. H. Ibragimov (1994).
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2.
∂2w

∂t2
+ k

∂w

∂t
= a

∂

∂x

(
ew ∂w

∂x

)
+ b

∂

∂y

(
ew ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( 1 C1x + C2, 1 C1y + C3, t + C4) − 2 ln |C1|,

w2 = w
(
x cosβ + y

√
a/b sinβ, −x

√
b/a sinβ + y cosβ, t

)
,

whereC1, . . . , C4 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. “Two-dimensional” additive separable solution:

w(x, y, t) = ϕ(t) + ln[ψ(x, y)],

where the function u(t) is determined by the autonomous ordinary differential equation (C is an
arbitrary constant)

ϕ′′

tt + kϕ′

t = Ceϕ,

and the function ψ(x, y) satisfies the Poisson equation

∂2ψ

∂x̄2 +
∂2ψ

∂ȳ2 = C, where x̄ =
x
√

a
, ȳ =

y
√

b
.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

3◦. “Two-dimensional” solution:

w(x, y, t) = u(r, t), r =
√
bx2 + ay2,

where the function u(r, t) is determined by the differential equation

∂2u

∂t2
+ k

∂u

∂t
=
ab

r

∂

∂r

(
reu ∂u

∂r

)
.

4◦. Solution:
w(x, y, t) = u(t) + ln(bx2 + ay2),

where the function u(t) is determined by the autonomous ordinary differential equation

u′′tt + ku′t = 4abeu.

5◦. There is a “two-dimensional” solution of the form

w(x, y, t) = u(z, t) + 2 ln |x|, z = y/x.2�3
Reference: N. H. Ibragimov (1994).

3.
∂2w

∂t2
+ k

∂w

∂t
= a

∂

∂x

(
ew ∂w

∂x

)
+ b

∂

∂y

(
eλw ∂w

∂y

)
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( 1 C1x + C2, 1 Cλ
1 y + C3, t + C4) − 2 ln |C1|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
∫

a1β
2
1e

w + a2β
2
2e

λw − γ2

kγw + C1
dw = β1x + β2y + γt + C2,

where C1, C2, β1, β2, and γ are arbitrary constants.
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3◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, t), ξ = βx + µy,

where β and µ are arbitrary constants, and the functionU = U (ξ, t) is determined by the differential
equation

∂2U

∂t2
+ k

∂U

∂t
=
∂

∂ξ

[(
aβ2ew + bµ2eλw

) ∂U
∂ξ

]
.

Remark. There is a more general, “two-dimensional” solution of the form

w(x, y, t) = V (ξ1, ξ2), ξ1 = β1x + µ1y + σ1t, ξ2 = β2x + µ2y + σ2t,

where the βi, µi, and σi are arbitrary constants.

4◦. There is a “two-dimensional” solution of the form

w(x, y, t) = u(z, t) + 2 ln |x|, z = y|x|−λ.
4�5

Reference: N. H. Ibragimov (1994).

4.4. Equations with Two Space Variables Involving
Arbitrary Functions

4.4.1. Equations of the Form ∂2w
∂t2 = ∂

∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+h(w)

1.
∂2w

∂t2
= a

∂2w

∂x2
+ b

∂2w

∂y2
+ f (w).

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( 6 x + C1, 6 y + C2, 6 t + C3),

w2 = w
(
x cosβ + y

√
a/b sinβ, −x

√
b/a sinβ + y cosβ, t

)
,

w3 = w
(
x coshλ + ta1/2 sinhλ, y, xa−1/2 sinhλ + t coshλ

)
,

w4 = w
(
x, y coshλ + tb1/2 sinhλ, yb−1/2 sinhλ + t coshλ

)
,

where C1, C2, C3, β, and λ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

∫ [
C1 +

2
λ2 − ak2

1 − bk2
2
F (w)

]−1/2

dw = k1x + k2y + λt + C2, F (w) =
∫
f (w) dw,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. Solution (C1, C2, and C3 are arbitrary constants):

w = w(r), r2 = A
[

(x + C1)2

a
+

(y + C2)2

b
− (t + C3)2

]
.

Here, A and the expression in square brackets must have like signs, and the function w(r) is
determined by the ordinary differential equation

w′′

rr + 2r−1w′

r +A−1f (w) = 0.

Page 305

© 2004 by Chapman & Hall/CRC



306 HYPERBOLIC EQUATIONS WITH TWO OR THREE SPACE VARIABLES

4◦. “Two-dimensional” solution:

w = U (ξ, η), ξ =
x
√

aC
+

y
√

b
, η = (C2 − 1)

x2

a
− 2C

xy
√

ab
− C2t2, (1)

whereC is an arbitrary constant (C ≠ 0), and the functionU = U (ξ, η) is determined by the equation
(

1 +
1
C2

)
∂2U

∂ξ2 − 4ξ
∂2U

∂ξ∂η
+ 4C2(ξ2 + η)

∂2U

∂η2 + 2(2C2 − 1)
∂U

∂η
+ f (U ) = 0. (2)

Remark. Relations (1) and equation (2) can be used to obtain other “two-dimensional” solution
by means of the following rename: (x, a) � (y, b).

5◦. There is a “two-dimensional” solution of the form

w(x, y, t) = u(z1, z2), z1 = C1x + C2y + λ1t, z2 = C3x + C4y + λ2t.

2.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+ f (w).

1◦. Solution for n ≠ 2 and m ≠ 2:

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + k−1f (w) = 0, A =
2(4 − n −m)

(2 − n)(2 −m)
.

2◦. “Two-dimensional” solution for n ≠ 2 and m ≠ 2:

w = U (ξ, t), ξ2 = 4k
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]
,

where the function U (ξ, t) is determined by the differential equation

∂2U

∂t2
= k

(
∂2U

∂ξ2 +
B1

ξ

∂U

∂ξ

)
+ f (U ), B1 =

4 − nm
(2 − n)(2 −m)

.

3◦. “Two-dimensional” solution for m ≠ 2:

w = V (x, η), η2 = 4k
[

y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,

where the function V (x, η) is determined by the differential equation

∂

∂x

(
axn ∂w

∂x

)
+ k

(
∂2V

∂η2 +
B2

η

∂V

∂η

)
+ f (V ) = 0, B2 =

2
2 −m

.

4◦. “Two-dimensional” solution for n ≠ 2:

w = W (y, ζ), ζ2 = 4k
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

where the functionW (y, ζ) is determined by the differential equation

∂

∂y

(
bym ∂w

∂y

)
+ k

(
∂2W

∂ζ2 +
B3

ζ

∂W

∂ζ

)
+ f (W ) = 0, B3 =

2
2 − n

.

7�8
References: A. D. Polyanin and A. I. Zhurov (1998), A. D. Polyanin and V. F. Zaitsev (2002).
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3.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
beλy ∂w

∂y

)
+ f (w).

1◦. Solution for n ≠ 2 and λ ≠ 0:

w = w(r), r2 = 4k
[

x2−n

a(2 − n)2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + k−1f (w) = 0, A =
2

2 − n
.

2◦. “Two-dimensional” solution for n ≠ 2 and λ ≠ 0:

w = U (ξ, t), ξ2 = 4k
[

x2−n

a(2 − n)2 +
e−λy

bλ2

]
,

where the function U (ξ, t) is determined by the differential equation

∂2U

∂t2
= k

(
∂2U

∂ξ2 +
B

ξ

∂U

∂ξ

)
+ f (U ), B =

n

2 − n
.

3◦. “Two-dimensional” solution for λ ≠ 0:

w = V (x, η), η2 = 4k
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

where the function V (x, η) is determined by the differential equation

∂

∂x

(
axn ∂w

∂x

)
+ k

∂2V

∂η2 + f (V ) = 0.

4◦. “Two-dimensional” solution for n ≠ 2:

w = W (y, ζ), ζ2 = 4k
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

,

where the functionW (y, ζ) is determined by the differential equation

∂

∂y

(
beλy ∂w

∂y

)
+ k

(
∂2W

∂ζ2 +
A

ζ

∂W

∂ζ

)
+ f (W ) = 0, A =

2
2 − n

.

4.
∂2w

∂t2
=

∂

∂x

(
aeβx ∂w

∂x

)
+

∂

∂y

(
beλy ∂w

∂y

)
+ f (w).

1◦. Solution for β ≠ 0 and λ ≠ 0:

w = w(r), r2 = 4k
[
e−βx

aβ2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where the function w(r) is determined by the autonomous ordinary differential equation

w′′

rr + k−1f (w) = 0.

Integrating yields its general solution in implicit form:
∫ [

C1 + 2k−1
∫
f (w) dw

]−1/2

dw = C2 9 r,

where C1 and C2 are arbitrary constants.
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2◦. “Two-dimensional” solution for β ≠ 0 and λ ≠ 0:

w = U (ξ, t), ξ2 = 4k
(
e−βx

aβ2 +
e−λy

bλ2

)
,

where the function U (ξ, t) is determined by the differential equation

∂2U

∂t2
= k

(
∂2U

∂ξ2 −
1
ξ

∂U

∂ξ

)
+ f (U ).

3◦. “Two-dimensional” solution for λ ≠ 0:

w = V (x, η), η2 = 4k
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

where the function V (x, η) is determined by the differential equation

∂

∂x

(
aeβx ∂w

∂x

)
+ k

∂2V

∂η2 + f (V ) = 0.

4◦. “Two-dimensional” solution for β ≠ 0:

w = W (y, ζ), ζ2 = 4k
[
e−βx

aβ2 −
1
4

(t + C)2
]

,

where the functionW (y, ζ) is determined by the differential equation

∂

∂y

(
beλy ∂w

∂y

)
+ k

∂2W

∂ζ2 + f (W ) = 0.

:�;
References: A. D. Polyanin and A. I. Zhurov (1998), A. D. Polyanin and V. F. Zaitsev (2002).

5.
∂2w

∂t2
=

∂

∂x

[
f (x)

∂w

∂x

]
+

∂

∂y

[
g(y)

∂w

∂y

]
+ aw ln w + bw.

This is a special case of equation 4.4.3.6 with g(t) = b and h1(x) = h2(y) = 0 and a special case of
equation 4.4.3.7 with f (x, y) = f (x) and g(x, y) = g(y).

4.4.2. Equations of the Form ∂2w
∂t2 = ∂

∂x

[

f (w)∂w
∂x

]

+ ∂
∂y

[

g(w)∂w
∂y

]

+h(w)

1.
∂2w

∂t2
= a

∂2w

∂x2
+

∂

∂y

[
g(w)

∂w

∂y

]
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( < C1x + C2, < C1y + C3, < C1t + C4),

w2 = w(x coshλ + ta1/2 sinhλ, y, xa−1/2 sinhλ + t coshλ),

whereC1, . . . , C4 and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

k2
2

∫
g(w) dw + (ak2

1 − λ2)w = C1(k1x + k2y + λt) + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.
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3◦. Solutions in implicit form:
∫
g(w) dw = yϕ1

(
x = t√a )

+ ϕ2
(
x = t√a )

,

2λ
√

a (y + λt) + (t
√

a = x)[g(w) − λ2] = ψ(w),

where ϕ1(z), ϕ2(z), and ψ(w) are arbitrary functions, and λ is an arbitrary constant.

4◦. “Two-dimensional” solutions (generalize the solutions of Item 3◦):

w(x, y, t) = U (ξ, η), ξ = y + λt, η = x = t√a,

where λ is an arbitrary constant and the functionU = U (ξ, η) is determined by the first-order partial
differential equation

[
g(U ) − λ2] ∂U

∂ξ

>
2λ
√

a
∂U

∂η
= ϕ(η), (1)

with ϕ(η) being an arbitrary function.
In the special case λ = 0, equation (1) is an ordinary differential equation in ξ that can be readily

integrated to obtain the first group of solutions specified in Item 3◦.
In the general case, the characteristic system corresponding to equation (1) has the form

(Polyanin, Zaitsev, and Moussiaux, 2002)

dξ

g(U ) − λ2 = > dη

2λ
√

a
=
dU

ϕ(η)
.

Its independent integrals are given by

U = Φ(η) = C1, ξ = 1
2λ
√

a

∫
g
(
C1

>
Φ(η)

)
dη

> λ

2
√

a
η = C2, (2)

where
Φ(η) =

1
2λ
√

a

∫
ϕ(η) dη.

We first calculate the integral in the second relation of (2) and then, in the resulting expression,
substitute the left-hand side of the first relation of (2) for C1.

The general solution of equation (1) has the form

F (C1,C2) = 0,

where F (C1,C2) is an arbitrary function of two variables, and C1 and C2 are determined by (2).
To the special case ϕ(η) = 0 in (1) there corresponds the second group of solutions specified in

Item 3◦.

5◦. “Two-dimensional” solution:

w(x, y, t) = u(y, z), z = x2 − at2,

where the function u = u(y, z) is determined by the differential equation

4a
(
z
∂2u

∂z2 +
∂u

∂z

)
+
∂

∂y

[
g(u)

∂u

∂y

]
= 0.

6◦. Solution:
w(x, y, t) = v(ζ), ζ = (x2 − at2)y−2,

where the function v = v(ζ) is determined by the ordinary differential equation

2aζv′′ζζ + 2av′ζ + 2ζ2[g(v)v′ζ]′ζ + 3ζg(v)v′ζ = 0.

7◦. For other exact solutions, see equation 4.4.2.3 with f (w) = a.
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2.
∂2w

∂t2
=

∂

∂x

[
f (w)

∂w

∂x

]
+

∂

∂y

[
f (w)

∂w

∂y

]
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( ? C1x + C2, ? C1y + C3, ? C1t + C4),
w2 = w(x cosβ − y sinβ,x sinβ + y cosβ, t),

whereC1, . . . , C4 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

(k2
1 + k2

2)
∫
f (w) dw − λ2w = C1(k1x + k2y + λt) + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. Solution:
w(x, y, t) = U (ζ), ζ = (x2 + y2)t−2,

where the function U = U (ζ) is determined by the ordinary differential equation

2ζ2U ′′

ζζ + 3ζU ′

ζ = 2[ζf (U )U ′

ζ]′ζ .

4◦. “Two-dimensional” solution with axial symmetry:

w(x, y, t) = u(r, t), r =
√
x2 + y2,

where the function u = u(r, t) is determined by the differential equation

∂2u

∂t2
=

1
r

∂

∂r

[
rf (u)

∂u

∂r

]
.

5◦. For other exact solutions, see equation 4.4.2.3 with f (w) = g(w).

3.
∂2w

∂t2
=

∂

∂x

[
f (w)

∂w

∂x

]
+

∂

∂y

[
g(w)

∂w

∂y

]
.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the function

w1 = w( ? C1x + C2, ? C1y + C3, ? C1t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation (the plus or minus signs
in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
∫ [

k2
1f (w) + k2

2g(w)
]
dw − λ2w = C1(k1x + k2y + λt) + C2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. Solutions in implicit form:
(
C1x + C2y + C3

t + C4

)2

= C2
1f (w) + C2

2g(w),

(
C1y + C2t + C3

x + C4

)2

f (w) + C2
1g(w) = C2

2 ,

(
C1x + C2t + C3

y + C4

)2

g(w) + C2
1f (w) = C2

2 ,

where C1, . . . , C4 are arbitrary constants.

Page 310

© 2004 by Chapman & Hall/CRC



4.4. EQUATIONS WITH TWO SPACE VARIABLES INVOLVING ARBITRARY FUNCTIONS 311

4◦. Solution:
w = w(ξ), ξ =

C1x + C2y + C3

t + C4
,

where C1, . . . , C4 are arbitrary constants and the function u(ξ) is determined by the ordinary
differential equation

(ξ2w′

ξ)′ξ = [ϕ(w)w′

ξ]′ξ, ϕ(w) = C2
1f (w) + C2

2g(w),

which admits the first integral
[
ξ2 − C2

1f (w) − C2
2g(w)

]
w′

ξ = C5. (1)

To the special case C5 = 0 there corresponds the first solution of Item 3◦.
For C5 ≠ 0, treating w in (1) as the independent variable, one obtains a Riccati equation for

ξ = ξ(w):
C5ξ

′

w = ξ2 − C2
1f (w) − C2

2g(w). (2)

For exact solutions of equation (2), which is reduced to a second-order linear equation, see the book
by Polyanin and Zaitsev (2003).

5◦. Solution:
w = u(η), η =

C1y + C2t + C3

x + C4
,

where C1, . . . , C4 are arbitrary constants and the function u(η) is determined by the ordinary
differential equation

C2
2u

′′

ηη = [η2f (u)u′η]′η + C2
1 [g(u)u′η]′η,

which admits the first integral

[η2f (u) + C2
1g(u) − C2

2 ]u′η = C5. (3)

To the special case C5 = 0 there corresponds the second solution of Item 3◦.
For C5 ≠ 0, treating u in (3) as the independent variable, one obtains a Riccati equation for

η = η(u):
C5η

′

u = η2f (u) + C2
1g(u) − C2

2 . (4)

For exact solutions of equation (4), which is reduced to a second-order linear equation, see the book
by Polyanin and Zaitsev (2003).

6◦. Solution:
w = v(ζ), ζ =

C1x + C2t + C3

y + C4
,

where C1, . . . , C4 are arbitrary constants, and the function v(ζ) is determined by the first-order
ordinary differential equation

[ζ2g(v) + C2
1f (v) − C2

2 ]v′ζ = C5.

To the special case C5 = 0, there corresponds the third solution of Item 3◦. The inverse function
ζ = ζ(v) is determined by the Riccati equation that can be obtained from (4) with the renaming
u→ v, η → ζ, and f � g.

7◦. “Two-dimensional” solution (a and b are arbitrary constants):

w(x, y, t) = U (z, t), z = ax + by,

where the function U = U (z, t) is determined by a differential equation of the form 3.4.4.6:

∂2U

∂t2
=
∂

∂z

[
ϕ(U )

∂U

∂z

]
, ϕ(U ) = a2f (U ) + b2g(U ),

which can be reduced to a linear equation.
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8◦. “Two-dimensional” solution (a and b are arbitrary constants):

w(x, y, t) = V (x, ξ), ξ = ay + bt,
where the function V = V (x, ξ) is determined by a differential equation of the form 5.4.4.8:

∂

∂x

[
f (V )

∂V

∂x

]
+
∂

∂ξ

[
ψ(V )

∂V

∂ξ

]
= 0, ψ(V ) = a2g(V ) − b2,

which can be reduced to a linear equation.

9◦. “Two-dimensional” solution (a and b are arbitrary constants):

w(x, y, t) = W (y, η), η = ax + bt,
where the functionW = W (y, η) is determined by a differential equation of the form 5.4.4.8:

∂

∂y

[
g(W )

∂W

∂x

]
+
∂

∂η

[
χ(W )

∂W

∂η

]
= 0, χ(W ) = a2f (W ) − b2,

which can be reduced to a linear equation.

10◦. There is a “two-dimensional” solution of the form (generalizes the solutions of Items 7◦–9◦):

w(x, y, t) = Q(z1, z2), z1 = a1x + b1y + c1t, z2 = a2x + b2y + c2t.

11◦. “Two-dimensional” solution:

w(x, y, t) = R(ξ, η), ξ = xt−1, η = yt−1,

where the functionR = R(ξ, η) is determined by the differential equation

ξ2 ∂
2R

∂ξ2 + 2ξη
∂2R

∂ξ∂η
+ η2 ∂

2R

∂η2 + 2ξ
∂R

∂ξ
+ 2η

∂R

∂η
=
∂

∂ξ

[
f (R)

∂R

∂ξ

]
+
∂

∂η

[
g(R)

∂R

∂η

]
.

12◦. For results of the group analysis of the original equation, see Ibragimov (1994).

4.
∂2w

∂t2
= a

∂2w

∂x2
+

∂

∂y

[
f (w)

∂w

∂y

]
+ g(w).

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( @ x + C1, @ y + C2, @ t + C3),

w2 = w(x coshλ + ta1/2 sinhλ, y, xa−1/2 sinhλ + t coshλ),

whereC1, C2, C3, and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
∫
h(w)

[
C1 − 2

∫
h(w)g(w) dw

]−1/2

dw = k1x + k2y + λt + C2, h(w) = k2
2f (w) + ak2

1 − λ2,

where C1, C2, k1, k2, and λ are arbitrary constants.

3◦. Solutions in implicit form:
∫
f (w)

[
ϕ
(
x + t
√

a
)

− 2
∫
f (w)g(w) dw

]−1/2

dw = ψ
(
x + t
√

a
) @ y,

∫
f (w)

[
ϕ
(
x − t
√

a
)

− 2
∫
f (w)g(w) dw

]−1/2

dw = ψ
(
x − t
√

a
) @ y,

where the functions ϕ(z) and ψ(z) are arbitrary functions.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (y, z), z = x2 − at2;
w(x, y, t) = V (ξ, η), ξ = A1x +B1y + C1t, η = A2x +B2y + C2t.
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5.
∂2w

∂t2
=

∂

∂x

[
f (w)

∂w

∂x

]
+

∂

∂y

[
f (w)

∂w

∂y

]
– a2 f ′(w)

f 3(w)
+ b.

Solution in implicit form: ∫
f (w) dw = at + U (x, y),

where the function U = U (x, y) is determined by the Poisson equation
∂2U

∂x2 +
∂2U

∂y2 + b = 0.

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).
Remark. The above remains true if the constant b in the equation is substituted by an arbitrary

function b = b(x, y).

4.4.3. Other Equations

1.
∂2w

∂t2
= axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ f (w).

1◦. Solution for n ≠ 2 and m ≠ 2:

w = w(r), r2 =
4
k

[
x2−n

a(2 − n)2 +
y2−m

b(2 − m)2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + kf (w) = 0, A = 2
(

1 − n
2 − n

+
1 −m
2 −m

)
.

2◦. There are “two-dimensional” solutions of the following forms:

w(x, y, t) = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]
,

w(x, y, t) = V (x, η), η2 = A 4
[

y2−m

b(2 −m)2 −
1
4

(t + C)2
]

,

w(x, y, t) = W (y, ζ), ζ2 = A 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

.

2.
∂2w

∂t2
= axn ∂2w

∂x2
+ beλy ∂2w

∂y2
+ f (w).

1◦. Solution for n ≠ 2 and λ ≠ 0:

w = w(r), r2 =
4
k

[
x2−n

a(2 − n)2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r + kf (w) = 0, A =
2(3 − n)

2 − n
.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−λy

bλ2

]
,

w = V (x, η), η2 = A 4
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

w = W (y, ζ), ζ2 = A 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

.
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3.
∂2w

∂t2
= aeβx ∂2w

∂x2
+ beλy ∂2w

∂y2
+ f (w).

1◦. Solution for β ≠ 0 and λ ≠ 0:

w = w(r), r2 =
4
k

[
e−βx

aβ2 +
e−λy

bλ2 −
1
4

(t + C)2
]

,

where C and k are arbitrary constants (k ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr + 4r−1w′

r + kf (w) = 0.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
(
e−βx

aβ2 +
e−λy

bλ2

)
,

w = V (x, η), η2 = B 4
[
e−λy

bλ2 −
1
4

(t + C)2
]

,

w = W (y, ζ), ζ2 = B 4
[
e−βx

aβ2 −
1
4

(t + C)2
]

.

4.
∂2w

∂t2
=

[
aw + f (t)

]( ∂2w

∂x2
+

∂2w

∂y2

)
+ bw2 + g(t)w + h(t), a ≠ 0.

Generalized separable solution:

w(x, y, t) = ϕ(t) + ψ(t)Θ(x, y),

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations

ϕ′′

tt = bϕ2 + g(t)ϕ + h(t),

ψ′

tt =
[
bϕ − βf (t) + g(t)

]
ψ, β = b/a,

and the function Θ = Θ(x, y) satisfies the two-dimensional Helmholtz equation

∆Θ + βΘ = 0, ∆ ≡
∂2

∂x2 +
∂2

∂y2 .

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

5.
∂2w

∂t2
= aw

(
∂2w

∂x2
+

∂2w

∂y2

)
– a

[(
∂w

∂x

)2

+
(

∂w

∂y

)2 ]
+ f (t).

1◦. Generalized separable solution:

w(x, y, t) = ϕ(t) + ψ(t)eβx+γy,

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations

ϕ′′

tt = f (t), ψ′′

tt = a(β2 + γ2)ϕψ.

The solution of the first equation is expressed as (C1 and C2 are arbitrary constants)

ϕ(t) =
∫ t

0
(t − τ )f (τ ) dτ + C1t + C2.

The solution of the second equation, which is linear in ψ, can be found in Kamke (1977) and
Polyanin and Zaitsev (1995, 2003) for many f (t).
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2◦. There are generalized separable solutions of the following forms:

w(x, y, t) = ϕ(t) + ψ(t)(A1coshµx +A2 sinhµx) + χ(t)(B1 cosµy +B2 sinµy),
w(x, y, t) = ϕ(t) + ψ(t)(A1cosµx +A2 sinµx) + χ(t)(B1 coshµy +B2 sinhµy),

where A1, A2, B1, B2, and µ are arbitrary constants, and the functions ϕ(t), ψ(t), and χ(t) are
determined by solving an appropriate system of second-order ordinary differential equations (not
written out here).

3◦. There are generalized separable solutions of the form

w(x, y, t) = ϕ(t) + ψ(t)F (x) + χ(t)G(y) + η(t)H(x)P (y),

where
F (x) = A1 cos 2µx +A2 sin 2µx,
H(x) = C1 cosµx + C2 sinµx,

G(y) = B1 cosh 2µy +B2 sinh 2µy,
P (y) = D1 coshµy +D2 sinhµy.

The arbitrary constantsA1,A2,B1,B2,C1,C2,D1,D2, and µ are related by two constraints, and the
functions ϕ(t), ψ(t), χ(t), and η(t) satisfy a system of second-order ordinary differential equations
(not written out here).

6.
∂2w

∂t2
=

∂

∂x

[
f1(x)

∂w

∂x

]
+

∂

∂y

[
f2(y)

∂w

∂y

]
+ aw ln w +

[
g(t) + h1(x) + h2(y)

]
w.

Multiplicative separable solution:

w(x, y, t) = ϕ(x)ψ(y)χ(t),

where the functions ϕ = ϕ(x), ψ = ψ(y), and χ = χ(t) are determined by the ordinary differential
equations

[f1(x)ϕ′

x]′x + aϕ lnϕ + [h1(x) + C1]ϕ = 0,
[f2(y)ψ′

y]′y + aψ lnψ + [h2(y) + C2]ψ = 0,

χ′′

tt − aχ lnχ − [g(t) − C1 − C2]χ = 0,
and C1 and C2 are arbitrary constants.

7.
∂2w

∂t2
=

∂

∂x

[
f (x, y)

∂w

∂x

]
+

∂

∂y

[
g(x, y)

∂w

∂y

]
+ kw ln w.

Multiplicative separable solution:

w(x, y, t) = ϕ(t)Θ(x, y),

where the function ϕ(t) is determined by the ordinary differential equation

ϕ′′

tt − kϕ lnϕ −Aϕ = 0, (1)

A is an arbitrary constant, and the function Θ(x, y) satisfies the stationary equation

∂

∂x

[
f (x, y)

∂Θ

∂x

]
+
∂

∂y

[
g(x, y)

∂Θ

∂y

]
+ kΘ ln Θ −AΘ = 0.

A particular solution of equation (1) is given by (B is an arbitrary constant)

ϕ(t) = exp
[
k

4
(t +B)2 +

k − 2A
2k

]
,

and the general solution can be written out in implicit form as (B and C are arbitrary constants)
∫ [

kϕ2 lnϕ + (A − 1
2 k)ϕ2 +B

]−1/2

dϕ = C C t.
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8.
∂2w

∂t2
= f1(x, y)

∂2w

∂x2
+ f2(x, y)

∂2w

∂x∂y
+ f3(x, y)

∂2w

∂y2

+ g1(x, y)
∂w

∂x
+ g2(x, y)

∂w

∂y
+

[
h(x, y) + D (t)

]
w + kw ln w.

Multiplicative separable solution:

w(x, y, t) = ϕ(t)θ(x, y),

where the function ϕ = ϕ(t) is determined by the ordinary differential equation

ϕ′′

tt − kϕ lnϕ −
[
s(t) + C

]
ϕ = 0,

and the function θ = θ(x, y) satisfies the stationary equation

f1(x, y)
∂2θ

∂x2 +f2(x, y)
∂2θ

∂x∂y
+f3(x, y)

∂2θ

∂y2 +g1(x, y)
∂θ

∂x
+g2(x, y)

∂θ

∂y
+

[
h(x, y) −C

]
θ+kθ ln θ = 0.

9.
∂2w

∂t2
+ f (t)

∂w

∂t
= g(t)

∂2w

∂x2
+ h(t)

∂

∂y

(
wm ∂w

∂y

)
.

1◦. “Two-dimensional” solution:

w(x, y, t) =
{
u(x, t)|y + C |1/(m+1) if m ≠ −1,
u(x, t) exp(Cy) if m = −1,

where C is an arbitrary constant and the function u(x, t) is determined by the linear telegraph
equation

∂2u

∂t2
+ f (t)

∂u

∂t
= g(t)

∂2u

∂x2 .

2◦. “Two-dimensional” solution:

w(x, y, t) = v(x, t)|y + C |2/m,

where the function v(x, t) is determined by the differential equation

∂2v

∂t2
+ f (t)

∂v

∂t
= g(t)

∂2v

∂x2 +
2(m + 2)
m2 h(t)vm+1.

For m = −2 and m = −1, this equation is linear.

10.
∂2w

∂t2
+ f (t)

∂w

∂t
= g(t)

∂2w

∂x2
+ h(t)

∂

∂y

(
eλw ∂w

∂y

)
.

1◦. “Two-dimensional” solution:

w(x, y, t) = u(x, t) +
1
λ

ln |y + C |

where C is an arbitrary constant and the function u(x, t) is determined by the linear telegraph
equation

∂2u

∂t2
+ f (t)

∂u

∂t
= g(t)

∂2u

∂x2 .

2◦. “Two-dimensional” solution:

w(x, y, t) = v(x, t) +
2
λ

ln |y + C |,

where C is an arbitrary constant and the function v(x, t) is determined by the differential equation

∂2v

∂t2
+ f (t)

∂v

∂t
= g(t)

∂2v

∂x2 +
2
λ
h(t)eλv.
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4.5. Equations with Three Space Variables Involving
Arbitrary Parameters

4.5.1. Equations of the Form
∂2w
∂t2 = ∂

∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+ ∂
∂z

[

h(z) ∂w
∂z

]

+ awp

1.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+

∂

∂z

(
czk ∂w

∂z

)
+ E wp.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C1w
(
C

p−1
2−n

1 x, C
p−1
2−m

1 y, C
p−1
2−k

1 z, F C
p−1

2
1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, k ≠ 2, and p ≠ 1:

w =
[

A

2s(p − 1)

] 1
p−1

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 −
1
4

(t + C)2
] 1

1−p

,

A =
1 + p
1 − p

+
2

2 − n
+

2
2 −m

+
2

2 − k
.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = |t|
2

1−p F (ρ1, ρ2, ρ3), ρ1 = x|t|
2

n−2 , ρ2 = y|t|
2

m−2 , ρ3 = z|t|
2

k−2 .

4◦. For other exact solutions, see equation 4.6.1.2 with f (w) = swp.

2.
∂2w

∂t2
=

∂

∂x

(
aeλx ∂w

∂x

)
+

∂

∂y

(
beµy ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ E wp.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C1w
(
x +

1 − p
λ

lnC1, y +
1 − p
µ

lnC1, z +
1 − p
ν

lnC1, F C
p−1

2
1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for p ≠ F 1, λ ≠ 0, µ ≠ 0, and ν ≠ 0:

w =
[

−
s(p − 1)2

2k(1 + p)
(r + C1)2

] 1
1−p

, r2 = 4k
[
e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C2)2
]

,

where C1, C2, and k are arbitrary constants.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = |t|
2

1−p F (ρ1, ρ2, ρ3), ρ1 = x +
2
λ

ln |t|, ρ2 = y +
2
µ

ln |t|, ρ3 = z +
2
ν

ln |t|.

4◦. For other exact solutions, see equation 4.6.1.3 with f (w) = swp.
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3.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ G wp.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C1w
(
C

p−1
2−n

1 x, C
p−1
2−m

1 y, z +
1 − p
ν

lnC1, H C
p−1

2
1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, ν ≠ 0, and p ≠ 1:

w =
[

A

2s(p − 1)

] 1
p−1

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2 −
1
4

(t + C)2
] 1

1−p

,

A =
1 + p
1 − p

+
2

2 − n
+

2
2 −m

.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = |t|
2

1−p F (ρ1, ρ2, ρ3), ρ1 = x|t|
2

n−2 , ρ2 = y|t|
2

m−2 , ρ3 = z +
2
ν

ln |t|.

4◦. For other exact solutions, see equation 4.6.1.4 with f (w) = swp.

4.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
beµy ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ G wp.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C1w
(
C

p−1
2−n

1 x, y +
1 − p
µ

lnC1, z +
1 − p
ν

lnC1, H C
p−1

2
1 t + C2

)
,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, µ ≠ 0, ν ≠ 0, and p ≠ 1:

w =
[

1
2s(p − 1)

(
1 + p
1 − p

+
2

2 − n

)] 1
p−1

[
x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
] 1

1−p

.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = |t|
2

1−p F (ρ1, ρ2, ρ3), ρ1 = x|t|
2

n−2 , ρ2 = y +
2
µ

ln |t|, ρ3 = z +
2
ν

ln |t|.

4◦. For other exact solutions, see equation 4.6.1.5 with f (w) = swp.

4.5.2. Equations of the Form
∂2w
∂t2 = ∂

∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+ ∂
∂z

[

h(z) ∂w
∂z

]

+ aeλw

1.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+

∂

∂z

(
czk ∂w

∂z

)
+ G eλw.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w
(
C

2
2−n

1 x, C
2

2−m
1 y, C

2
2−k

1 z, H C1t + C2

)
+

2
λ

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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2◦. Solution for n ≠ 2, m ≠ 2, k ≠ 2, and λ ≠ 0:

w = −
1
λ

ln
{

2sλ

A

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 −
1
4

(t + C)2
]}

,

A =
2

2 − n
+

2
2 −m

+
2

2 − k
− 1.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = F (ρ1, ρ2, ρ3) −
2
λ

ln |t|, ρ1 = x|t|
2

n−2 , ρ2 = y|t|
2

m−2 , ρ3 = z|t|
2

k−2 .

4◦. For other exact solutions, see equation 4.6.1.2 with f (w) = seλw.

2.
∂2w

∂t2
=

∂

∂x

(
aeλx ∂w

∂x

)
+

∂

∂y

(
beµy ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ I eβw.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w
(
x −

2
λ

lnC1, y −
2
µ

lnC1, z −
2
ν

lnC1, J C1t + C2

)
+

2
β

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solutions for λ ≠ 0, µ ≠ 0, ν ≠ 0, and β ≠ 0:

w(x, y, z, t) = −
1
β

ln
[

−
sβ

2k
(r + C1)2

]
if skβ < 0;

w(x, y, z, t) = −
1
β

ln
[

−
sβ

2kC2
1

sin2(C1r + C2)
]

if skβ < 0;

w(x, y, z, t) = −
1
β

ln
[

−
sβ

2kC2
1

sinh2(C1r + C2)
]

if skβ < 0;

w(x, y, z, t) = −
1
β

ln
[

sβ

2kC2
1

cosh2(C1r + C2)
]

if skβ > 0;

where C1, C2, and k are arbitrary constants and

r2 = 4k
[
e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C3)2
]

,

where k and the expression in square brackets must have like signs.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = F (ρ1, ρ2, ρ3) −
2
β

ln |t|, ρ1 = x +
2
λ

ln |t|, ρ2 = y +
2
µ

ln |t|, ρ3 = z +
2
ν

ln |t|.

4◦. For other exact solutions, see equation 4.6.1.3 with f (w) = seβw.

3.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ I eβw.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w
(
C

2
2−n

1 x, C
2

2−m
1 y, z −

2
ν

lnC1, J C1t + C2

)
+

2
β

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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2◦. Solution for n ≠ 2, m ≠ 2, ν ≠ 0, and β ≠ 0:

w = −
1
β

ln
{

2sβ

A

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2 −
1
4

(t + C)2
]}

,

A =
2

2 − n
+

2
2 −m

− 1.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = F (ρ1, ρ2, ρ3) −
2
β

ln |t|, ρ1 = x|t|
2

n−2 , ρ2 = y|t|
2

m−2 , ρ3 = z +
2
ν

ln |t|.

4◦. For other exact solutions, see equation 4.6.1.4 with f (w) = seβw.

4.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
beµy ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ K eβw.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w
(
C

2
2−n

1 x, y −
2
µ

lnC1, z −
2
ν

lnC1, L C1t + C2

)
+

2
β

lnC1,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Solution for n ≠ 2, µ ≠ 0, ν ≠ 0, and β ≠ 0:

w = −
1
β

ln
[

x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

+
1
β

ln
n

2sβ(2 − n)
.

3◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = F (ρ1, ρ2, ρ3) −
2
β

ln |t|, ρ1 = x|t|
2

n−2 , ρ2 = y +
2
µ

ln |t|, ρ3 = z +
2
ν

ln |t|.

4◦. For other exact solutions, see equation 4.6.1.5 with f (w) = seβw.

4.5.3. Equations of the Form
∂2w
∂t2 = a ∂

∂x

(

wn ∂w
∂x

)

+ b ∂
∂y

(

wm ∂w
∂y

)

+ c ∂
∂z

(

wk ∂w
∂z

)

+ swp

1.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂2w

∂y2
+ a3

∂

∂z

(
wk ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( L C2x + C3, L C2y + C4, L Ck

1 C2z + C5, L C2t + C6),

w2 = w(x cosβ + y
√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t),

w3 = w(x coshλ + ta1/2
1 sinhλ, y, z, xa−1/2

1 sinhλ + t coshλ),

w4 = w(x, y coshµ + ta1/2
2 sinhµ, z, ya−1/2

2 sinhµ + t coshµ),

where C1, . . . , C6, β, λ, and µ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).M�N

Reference: N. H. Ibragimov (1994).
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2◦. Solutions:

w(x, y, z, t) = |z|
1

k+1
[
Ax2 +By2 + (a1A + a2B)t2 + C1xy + C2xt + C3yt

+ C4x + C5y + C6t + C7
]
;

w(x, y, z, t) = |z|
1

k+1
[
A(a2x

2 + a1y
2 − a1a2t

2)−1/2 +B
]
;

w(x, y, z, t) = A|z|
1

k+1 exp
(
λ1x + λ2y O γt ) +B, γ =

√
a1λ

2
1 + a2λ

2
2;

w(x, y, z, t) = A|z|
1

k+1 sin
(
λ1x + C1) sin

(
λ2y + C2) sin

(
γt + C3), γ =

√
a1λ

2
1 + a2λ

2
2;

w(x, y, z, t) =
[

1
a3C

2
3

(
C1x + C2y + C3z + C4

t + C5

)2

−
a1C

2
1 + a2C

2
2

a3C
2
3

]1/k

;

w(x, y, z, t) =
[
C2

3 − a2C
2
1

a3C
2
2

−
a1

a3C
2
2

(
C1y + C2z + C3t + C4

x + C5

)2]1/k

;

w(x, y, z, t) =
[
C2

3 − a1C
2
1

a3C
2
2

−
a2

a3C
2
2

(
C1x + C2z + C3t + C4

y + C5

)2]1/k

;

w(x, y, z, t) =
[
C2

3 − a1C
2
1 − a2C

2
2

a3

(
z + C5

C1x + C2y + C3t + C4

)2]1/k

;

where A, B, C1, . . . , C7, λ1, and λ2 are arbitrary constants.

3◦. Solutions:

w =
∣∣zϕ(ξ) + ψ(ξ)

∣∣
1

k+1 , ξ = C1x + C2y O t
√
a1C

2
1 + a2C

2
2 ,

where C1 and C2 are arbitrary constants, ϕ(ξ) and ψ(ξ) are arbitrary functions.

4◦. “Three-dimensional” solution (generalizes the first four solutions of Item 2◦):

w(x, y, z, t) = |z|
1

k+1 u(x̂, ŷ, t), x̂ = a−1/2
1 x, ŷ = a−1/2

2 y,
where the function u = u(x̂, ŷ, t) is determined by the linear wave equation

∂2u

∂t2
=
∂2u

∂x̂2 +
∂2u

∂ŷ2 .

For this equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

5◦. Solutions in implicit form:

2λ
√
a1C

2
1 + a2C

2
2
(
z + λt

) O (
C1x + C2y O t

√
a1C

2
1 + a2C

2
2
)(
a3w

k − λ2) = Φ(w),

where Φ(w) is an arbitrary function, C1, C2, and λ are arbitrary constants.

6◦. There are solutions of the following forms:

w(x, y, z, t) = |z|2/kF (x, y, t) “three-dimensional” solution;

w(x, y, z, t) = |t|2λG(ξ, η, ζ), ξ = xt−1, η = yt−1, ζ = z|t|−kλ−1 “three-dimensional” solution;

w(x, y, z, t) = H(r, z, t), r = a2x
2 + a1y

2 “three-dimensional” solution;

w(x, y, z, t) = U (ξ, y, z), ξ = x2 − a1t
2 “three-dimensional” solution;

w(x, y, z, t) = |t|2λV (ρ, ζ), ρ = t−1
√
a2x2 + a1y2, ζ = z|t|−kλ−1 “two-dimensional” solution;

w(x, y, z, t) = W (ζ, z), ζ = a2x
2 + a1y

2 − a1a2t
2 “two-dimensional” solution;

w(x, y, z, t) = R(η), η = (a2x
2 + a1y

2 − a1a2t
2)z−2 “one-dimensional” solution;

w(x, y, z, t) = |z|2/kQ(p), p = a2x
2 + a1y

2 − a1a2t
2 “one-dimensional” solution,

where λ is an arbitrary constant.

7◦. For other exact solutions, see equation 4.5.3.6 with n = m = 0.
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2.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂

∂y

(
wk ∂w

∂y

)
+ a3

∂

∂z

(
wk ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( P C2x + C3, P Ck

1 C2y + C4, P Ck
1 C2z + C5, P C2t + C6),

w2 = w
(
x, y cosβ + z

√
a2/a3 sinβ, −y

√
a3/a2 sinβ + z cosβ, t

)
,

w3 = w
(
x coshλ + ta1/2

1 sinhλ, y, z, xa−1/2
1 sinhλ + t coshλ

)
,

where C1, . . . , C6, β, and λ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).Q�R

Reference: N. H. Ibragimov (1994).

2◦. Solutions:

w(x, y, z, t) =
[

(C1x + C2y + C3z + C4)2 − a1C
2
1 (t + C5)2

(a2C
2
2 + a3C

2
3 )(t + C5)2

]1/k

,

w(x, y, z, t) =
[
C2

3 (x + C5)2 − a1(C1y + C2z + C3t + C4)2

(a2C
2
1 + a3C

2
2 )(x + C5)2

]1/k

,

w(x, y, z, t) =
[

(C2
3 − a1C

2
1 )(y + C5)2

a2(C1x + C2z + C3t + C4)2 + a3C
2
2 (y + C5)2

]1/k

,

w(x, y, z, t) =
[

(C2
3 − a1C

2
1 )(z + C5)2

a3(C1x + C2y + C3t + C4)2 + a2C
2
2 (z + C5)2

]1/k

,

where C1, . . . , C5 are arbitrary constants.

3◦. Solution:

w(x, y, z, t) =
[
ϕ(x + t

√

a1 ) + ψ(x − t
√

a1 )
]
u

1
k+1 (ŷ, ẑ), ŷ = a−1/2

2 y, ẑ = a−1/2
3 z,

where ϕ(ρ1) and ψ(ρ2) are arbitrary functions and the function u(ŷ, ẑ) is determined by the Laplace
equation

∂2u

∂ŷ2 +
∂2u

∂ẑ2 = 0.

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. “Three-dimensional” solutions:

w =
∣∣v(ŷ, ẑ, ζ)

∣∣
1

k+1 , ŷ = a−1/2
2 y, ẑ = a−1/2

3 z, ζ = x P t√a1,

where the function v(ŷ, ẑ, ζ) is determined by the Laplace equation

∂2v

∂ŷ2 +
∂2v

∂ẑ2 = 0,

which is implicitly independent of the cyclic variable ζ (the constants of integration that appear in
the solution are arbitrary functions of ζ).

5◦. Multiplicative separable solution (generalizes the solution of Item 3◦):

w(x, y, z, t) = R(x, t)Q(y, z),

where the functionsR = R(x, t) and Q = Q(y, z) are determined by the differential equations

∂2R

∂t2
= a1

∂2R

∂x2 +ARk+1,

a2
∂

∂y

(
Qk ∂Q

∂y

)
+ a3

∂

∂z

(
Qk ∂Q

∂z

)
= AQ,

and A is an arbitrary constant.
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6◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = t2λF (ξ, η, ζ), ξ = xt−1, η = yt−kλ−1, ζ = zt−kλ−1;

w(x, y, z, t) = G(x, r, t), r = a3y
2 + a2z

2;

w(x, y, z, t) = H(ξ, y, z), ξ = x2 − a1t
2,

where λ is an arbitrary constant.

7◦. There are solutions of the following forms:

w(x, y, z, t) = U (ξ, ρ), ξ = xt−1, ρ = t−kλ−1
√
a3y2 + a2z2 “two-dimensional” solution;

w(x, y, z, t) = V (r, ξ), r = a3y
2 + a2z

2, ξ = x2 − a1t
2 “two-dimensional” solution;

w(x, y, z, t) = W (p, q), p = (a3y
2 + a2z

2)t−2, q = xt−1 “two-dimensional” solution;

w(x, y, z, t) = Θ(η), η = (a3y
2 + a2z

2)(x2 − a1t
2)−1 “one-dimensional” solution,

where λ is an arbitrary constant.

8◦. For other exact solutions, see equation 4.5.3.6 with n = 0 and m = k.

3.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂

∂y

(
wm ∂w

∂y

)
+ a3

∂

∂z

(
wk ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( S C2x + C3, S Cm

1 C2y + C4, S Ck
1 C2z + C5, S C2t + C6),

w2 = w(x coshλ + ta1/2
1 sinhλ, y, z,xa−1/2

1 sinhλ + t coshλ),

whereC1, . . . , C6 and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).
T�U

Reference: N. H. Ibragimov (1994).

2◦. Multiplicative separable solution:

w(x, y, z, t) =
[
ϕ(x + t

√

a1 ) + ψ(x − t
√

a1 )
]
|y + C1|

1
m+1 |z + C2|

1
k+1 ,

where ϕ(ρ1) and ψ(ρ2) are arbitrary functions and C1 and C2 are arbitrary constants.

3◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = t2λF (ξ, η, ζ), ξ = xt−1, η = yt−mλ−1, ζ = zt−kλ−1;

w(x, y, z, t) = G(r, y, z), r = x2 − a1t
2;

w(x, y, z, t) = y2/mH(x, s, t), s = zy−k/m,

where λ is an arbitrary constant.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z, t) = U (p, q), p = (x2 − a1t
2)y−2, q = zy−1;

w(x, y, z, t) = y2/mV (r, s), r = x2 − a1t
2, s = zy−k/m.

5◦. For other exact solutions, see equation 4.5.3.6 with n = 0.
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4.
∂2w

∂t2
= a1

∂

∂x

(
wk ∂w

∂x

)
+ a2

∂

∂y

(
wk ∂w

∂y

)
+ a3

∂

∂z

(
wk ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( V Ck

1 C2x + C3, V Ck
1 C2y + C4, V Ck

1 C2z + C5, V C2t + C6),

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

whereC1, . . . , C6 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).W�X

Reference: N. H. Ibragimov (1994).

2◦. Solutions:

w(x, y, z, t) = (C1t + C2)
[
a3C3x

2 + a3C4y
2 − (a1C3 + a2C4)z2 + C5

] 1
k+1 ,

w(x, y, z, t) = (C1t + C2)
(

C3√
a2a3x2 + a1a3y2 + a1a2z2

+ C4

) 1
k+1

,

w(x, y, z, t) =
[

1
a1C

2
1 + a2C

2
2 + a3C

2
3

(
C1x + C2y + C3z + C4

t + C5

)2]1/k

,

w(x, y, z, t) =
[

C2
3 (x + C5)2

a1(C1y + C2z + C3t + C4)2 + (a2C
2
1 + a3C

2
2 )(x + C5)2

]1/k

,

w(x, y, z, t) =
[

C2
3 (y + C5)2

a2(C1x + C2z + C3t + C4)2 + (a1C
2
1 + a3C

2
2 )(y + C5)2

]1/k

,

w(x, y, z, t) =
[

C2
3 (z + C5)2

a3(C1x + C2y + C3t + C4)2 + (a1C
2
1 + a2C

2
2 )(z + C5)2

]1/k

,

where C1, . . . , C5 are arbitrary constants.

3◦. Multiplicative separable solution:

w(x, y, z, t) = (C1t + C2)
[
Θ(x̂, ŷ, ẑ)

] 1
k+1 , x̂ = a−1/2

1 x, ŷ = a−1/2
2 y, ẑ = a−1/2

3 z,

where the function Θ = Θ(x̂, ŷ, ẑ) is determined by the Laplace equation

∂2
Θ

∂x̂2 +
∂2

Θ

∂ŷ2 +
∂2

Θ

∂ẑ2 = 0.

For this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = |t|2λF (ξ, η, ζ), ξ = x|t|−kλ−1, η = y|t|−kλ−1, ζ = z|t|−kλ−1;

w(x, y, z, t) = |z|2/kG(p, q, t), p = xz−1, q = yz−1;

w(x, y, z, t) = H(ρ, z, t), ρ = a2x
2 + a1y

2,

where λ is an arbitrary constant.

5◦. There are solutions of the following forms:

w(x, y, z, t) = U (r, t), r = a2a3x
2 + a1a3y

2 + a1a2z
2 “two-dimensional” solution;

w(x, y, z, t) = V (χ), χ = (a2a3x
2 + a1a3y

2 + a1a2z
2)t−2 “one-dimensional” solution.

6◦. For other exact solutions, see equation 4.5.3.6 with n = m = k.
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5.
∂2w

∂t2
= a1

∂

∂x

(
wn ∂w

∂x

)
+ a2

∂

∂y

(
wn ∂w

∂y

)
+ a3

∂

∂z

(
wk ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C−2
1 w( Y Cn

1 C2x + C3, Y Cn
1 C2y + C4, Y Ck

1 C2z + C5, Y C2t + C6),

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

whereC1, . . . , C6 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).Z�[

Reference: N. H. Ibragimov (1994).

2◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = t2λF (ξ, η, ζ), ξ = xt−nλ−1, η = yt−nλ−1, ζ = zt−kλ−1;

w(x, y, z, t) = G(r, z, t), r = a2x
2 + a1y

2;

w(x, y, z, t) = z2/kH(p, q, t), p = xz−n/k, q = yz−n/k,
where λ is an arbitrary constant.

3◦. There are solutions of the following forms:

w(x, y, z, t) = U (r, s), r = (a2x
2 + a1y

2)t−2, s = zt−1 “two-dimensional” solution,

w(x, y, z, t) = t−2/kz2/kV (χ), χ = (a2x
2 + a1y

2)t2n/k−2z−2n/k “one-dimensional” solution.
4◦. For other exact solutions, see equation 4.5.3.6 with m = n.

6.
∂2w

∂t2
= a1

∂

∂x

(
wn ∂w

∂x

)
+ a2

∂

∂y

(
wm ∂w

∂y

)
+ a3

∂

∂z

(
wk ∂w

∂z

)
.

This is a special case of equation 4.6.2.6 with f (w) = a1w
n, g(w) = a2w

m, and h(w) = a3w
k .

1◦. Suppose w(x, y, z, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( Y Cn

1 C2x + C3, Y Cm
1 C2y + C4, Y Ck

1 C2z + C5, Y C2t + C6),

where C1, . . . , C6 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).Z�[

Reference: N. H. Ibragimov (1994).

2◦. Multiplicative separable solution:

w(x, y, z, t) = (C1t + C2)|x + C3|
1

n+1 |y + C4|
1

m+1 |z + C5|
1

k+1 .

3◦. Traveling-wave solution in implicit form:
a1b

2
1

n + 1
wn+1 +

a2b
2
2

m + 1
wm+1 +

a3b
2
3

k + 1
wk+1 − λ2w = C1(b1x + b2y + b3z + λt) + C2,

where C1, C2, b1, b2, b3, and λ are arbitrary constants.

4◦. Solutions in implicit form:
(
C1x + C2y + C3z + C4

t + C5

)2

= a1C
2
1w

n + a2C
2
2w

m + a3C
2
3w

k,

a1w
n

(
C1y + C2z + C3t + C4

x + C5

)2

+ a2C
2
1w

m + a3C
2
2w

k = C2
3 ,

a2w
m

(
C1x + C2z + C3t + C4

y + C5

)2

+ a1C
2
1w

n + a3C
2
2w

k = C2
3 ,

a3w
k

(
C1x + C2y + C3t + C4

z + C5

)2

+ a1C
2
1w

n + a2C
2
2w

m = C2
3 ,

where C1, . . . , C5 are arbitrary constants.
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5◦. “Two-dimensional” solution (b1, b2, and b3 are arbitrary constants):

w(x, y, z, t) = u(ξ, t), ξ = b1x + b2y + b3z,

where the function u = u(ξ, t) is determined by a differential equation of the form 3.4.4.6:

∂2u

∂t2
=
∂

∂ξ

[
(a1b

2
1u

n + a2b
2
2u

m + a3b
2
3u

k)
∂u

∂ξ

]
,

which can be reduced to a linear equation.

6◦. “Two-dimensional” solution (c1, c2, and c3 are arbitrary constants):

w(x, y, z, t) = v(x, η), η = c1t + c2y + c3z, (1)

where the function v = v(x, η) is determined by a differential equation of the form 5.4.4.8:

a1
∂

∂x

(
vn ∂v

∂x

)
+
∂

∂η

[(
a2c

2
2v

m + a3c
2
3v

k − c2
1
) ∂v
∂η

]
= 0, (2)

which can be reduced to a linear equation.
Formula (1) and equation (2) can be used to obtain two other “two-dimensional” solutions by

means of the following cyclic permutations of variables and determining parameters:
(x, a1,n)

↗ ↘

(z, a3, k)←− (y, a2,m)

7◦. “Two-dimensional” solution (the bn and cn are arbitrary constants):

w(x, y, z, t) = U (ζ, ρ), ζ = b1t + b2x, ρ = c1y + c2z,

where the function U = U (ζ, ρ) is determined by a differential equation of the form 5.4.4.8:
∂

∂ζ

[
Φ(U )

∂U

∂ζ

]
+
∂

∂ρ

[
Ψ(U )

∂U

∂ρ

]
= 0, Φ(U ) = a1b

2
2U

n − b2
1, Ψ(U ) = a2c

2
1U

m + a3c
2
2U

k,

which can be reduced to a linear equation.
Remark. The solution specified in Item 7◦ can be used to obtain other “two-dimensional”

solutions by means of cyclic permutations of variables and determining parameters, as shown in
Item 6◦.

8◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = t2λF (ξ, η, ζ), ξ = xt−nλ−1, η = yt−mλ−1, ζ = zt−kλ−1;

w(x, y, z, t) = x2/nG(r, s, t), r = yx−m/n, s = zx−k/n,
where λ is an arbitrary constant.

9◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z, t) = H(p, q), p = b1x + b2y + b3z + b4t, q = c1x + c2y + c3z + c4t;

w(x, y, z, t) = t−2/nx2/nU (ρ,χ), ρ = x−m/nyt(m−n)/n, χ = x−k/nzt(k−n)/n,
where the bn and cn are arbitrary constants.

7.
∂2w

∂t2
= a1

∂

∂x

(
wn ∂w

∂x

)
+ a2

∂

∂y

(
wm ∂w

∂y

)
+ a3

∂

∂z

(
wk ∂w

∂z

)
+ bwp.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = C2
1w( \ Cp−n−1

1 x + C2, \ Cp−m−1
1 y + C3, \ Cp−k−1

1 z + C4, \ Cp−1
1 t + C5),

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. There is a “three-dimensional” solution of the form

w(x, y, z, t) = t
2

1−p U (ξ, η, ζ), ξ = xt
p−n−1

1−p , η = yt
p−m−1

1−p , ζ = zt
p−k−1

1−p .
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4.5.4. Equations of the Form
∂2w
∂t2 = a ∂

∂x

(

eλ1w ∂w
∂x

)

+b ∂
∂y

(

eλ2w ∂w
∂y

)

+c ∂
∂z

(

eλ3w ∂w
∂z

)

+seβw

1.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂2w

∂y2
+ a3

∂

∂z

(
ew ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( ] C1x + C3, ] C1y + C4, ] C1C2z + C5, ] C1t + C6) − 2 ln |C2|,

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

w3 = w
(
x coshλ + ta1/2

1 sinhλ, y, z, xa−1/2
1 sinhλ + t coshλ

)
,

w4 = w
(
x, y coshµ + ta1/2

2 sinhµ, z, ya−1/2
2 sinhµ + t coshµ

)
,

where C1, . . . , C6, β, λ, and µ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).^�_

Reference: N. H. Ibragimov (1994).

2◦. Solutions:

w(x, y, z, t) = C1x
2 + C2y

2 + (a1C1 + a2C2)t2 + C3xy + C4xt + C5yt

+ C6x + C7y + C8t + C9 + ln |z|;

w(x, y, z, t) = C1(a2x
2 + a1y

2 − a1a2t
2)−1/2 + C2 + ln |z|;

w(x, y, z, t) = C1 exp
(
λ1x + λ2y ] γt ) + C2 + ln |z|, γ =

√
a1λ

2
1 + a2λ

2
2;

w(x, y, z, t) = C1 sin
(
λ1x + C2) sin

(
λ2y + C3) sin

(
γt + C4) + ln |z|, γ =

√
a1λ

2
1 + a2λ

2
2;

w(x, y, z, t) = ln
[

1
a3C

2
3

(
C1x + C2y + C3z + C4

t + C5

)2

−
a1C

2
1 + a2C

2
2

a3C
2
3

]
;

w(x, y, z, t) = ln
[
C2

3 − a2C
2
1

a3C
2
2

−
a1

a3C
2
2

(
C1y + C2z + C3t + C4

x + C5

)2]
;

w(x, y, z, t) = ln
[
C2

3 − a1C
2
1

a3C
2
2

−
a2

a3C
2
2

(
C1x + C2z + C3t + C4

y + C5

)2]
;

w(x, y, z, t) = ln
[
C2

3 − a1C
2
1 − a2C

2
2

a3

(
z + C5

C1x + C2y + C3t + C4

)2]
;

where the Cn are arbitrary constants.

3◦. Solutions:
w = ln |zϕ(ξ) + ψ(ξ)|, ξ = C1x + C2y ] t

√
a1C

2
1 + a2C

2
2 ,

where C1 and C2 are arbitrary constants, and ϕ(ξ) and ψ(ξ) are arbitrary functions.

4◦. “Three-dimensional” solution (generalizes the first four solutions of Item 2◦):

w(x, y, z, t) = u(x̂, ŷ, t) + ln |z|, x̂ = a−1/2
1 x, ŷ = a−1/2

2 y,

where the function u = u(x̂, ŷ, t) is determined by the linear wave equation

∂2u

∂t2
=
∂2u

∂x̂2 +
∂2u

∂ŷ2 .

For this equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
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5◦. “Two-dimensional” solution:

w(x, y, z, t) = U (ξ, t) + 2 ln |z|, ξ = C1x + C2y,

where C1 and C2 are arbitrary constants and the function U = U (ξ, t) is determined by a solvable
equation of the form 3.2.1.1:

∂2U

∂t2
= (a1C

2
1 + a2C

2
2 )
∂2U

∂ξ2 + 2a3e
U .

6◦. “Two-dimensional” solution:

w(x, y, z, t) = v(x, η) + 2 ln |z|, η = C1y + C2t, (1)

where C1 and C2 are arbitrary constants and the function v = v(η, t) is determined by the equation

(C2
1 − a2C

2
2 )
∂2v

∂η2 = a1
∂2v

∂x2 + 2a3e
v. (2)

For σ = C2
1 − a2C

2
2 > 0, on dividing by σ, one obtains a solvable equation of the form 3.2.1.1. For

σ = C2
1 − a2C

2
2 < 0, the transformation η = η̃

√

|σ|, x = x̃√a1 leads to a solvable equation of the form
5.2.1.1:

∂2v

∂x̃2 +
∂2v

∂η̃2 = −2a3e
v.

Remark. Relations (1) and equation (2) can be used to obtain another “two-dimensional”
solution by means of the following renaming: (x, a1) � (y, a2).

7◦. Solutions in implicit form:

2λ
√
a1C

2
1 + a2C

2
2
(
z + λt

) ` (
C1x + C2y

`
t
√
a1C

2
1 + a2C

2
2
)(
a3e

w − λ2) = Φ(w),

where Φ(w) is an arbitrary function, and C1, C2, and λ are arbitrary constants.

8◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = F (x, y, t) + 2 ln |z|;

w(x, y, z, t) = G(ξ1, ξ2, ξ3) − 2k ln |t|, ξ1 = xt−1, ξ2 = yt−1, ξ3 = z|t|k−1;
w(x, y, z, t) = H(η1, η2, η3) + 2 ln |z|, η1 = t + k1 ln |z|, η2 = x + k2 ln |z|, η3 = y + k3 ln |z|;
w(x, y, z, t) = E(ζ1, ζ2, ζ3) + 2z, ζ1 = tez, ζ2 = xez, ζ3 = yez;

w(x, y, z, t) = P (r, z, t), r = a2x
2 + a1y

2;

w(x, y, z, t) = Q(ρ, y, z), ρ = x2 − a1t
2;

where k, k1, k2, and k3 are arbitrary constants.

9◦. There are solutions of the following forms:

w(x, y, z, t) = U (r, t) + 2 ln |z|, r = a2x
2 + a1y

2 “two-dimensional” solution;

w(x, y, z, t) = V (ρ, y) + 2 ln |z|, ρ = x2 − a1t
2 “two-dimensional” solution;

w(x, y, z, t) = W (θ, z), θ = a2x
2 + a1y

2 − a1a2t
2 “two-dimensional” solution;

w(x, y, z, t) = R(ξ1, ξ2) + 2 ln |z/t|, ξ1 = xt−1, ξ2 = yt−1 “two-dimensional” solution;

w(x, y, z, t) = S(θ) + 2 ln |z|, θ = a2x
2 + a1y

2 − a1a2t
2 “one-dimensional” solution;

w(x, y, z, t) = T (χ), χ = (a2x
2 + a1y

2 − a1a2t
2)z−2 “one-dimensional” solution.

10◦+. For other exact solutions, see equation 4.6.2.6 with f (w) = a1, g(w) = a2, and h(w) = a3e
w.
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2.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂

∂y

(
ew ∂w

∂y

)
+ a3

∂

∂z

(
ew ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( a C1x + C3, a C1C2y + C4, a C1C2z + C5, a C1t + C6) − 2 ln |C2|,

w2 = w
(
x, y cosβ + z

√
a2/a3 sinβ, −y

√
a3/a2 sinβ + z cosβ, t

)
,

w3 = w
(
x coshλ + ta1/2

1 sinhλ, y, z,xa−1/2
1 sinhλ + t coshλ

)
,

where C1, . . . , C6, β, and λ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).b�c

Reference: N. H. Ibragimov (1994).

2◦. Solutions:

w(x, y, z, t) = ϕ(x + t
√

a1 ) + ψ(x − t
√

a1 ) + ln(a3C1y
2 + C2yz − a2C1z

2 + C3y + C4z + C5),

w(x, y, z, t) = ϕ(x + t
√

a1 ) + ψ(x − t
√

a1 ) + ln
[
C1 exp(C2

√

a3 y) sin(C2
√

a2 z + C3) + C4
]
,

w(x, y, z, t) = ϕ(x + t
√

a1 ) + ψ(x − t
√

a1 ) + ln
[
C1 exp(C2

√

a2 z) sin(C2
√

a3 y + C3) + C4
]
,

w(x, y, z, t) = ln
[

(C1x + C2y + C3z + C4)2 − a1C
2
1 (t + C5)2

(a2C
2
2 + a3C

2
3 )(t + C5)2

]
,

w(x, y, z, t) = ln
[
C2

3 (x + C5)2 − a1(C1y + C2z + C3t + C4)2

(a2C
2
1 + a3C

2
2 )(x + C5)2

]
,

w(x, y, z, t) = ln
[

(C2
3 − a1C

2
1 )(y + C5)2

a2(C1x + C2z + C3t + C4)2 + a3C
2
2 (y + C5)2

]
,

w(x, y, z, t) = ln
[

(C2
3 − a1C

2
1 )(z + C5)2

a3(C1x + C2y + C3t + C4)2 + a2C
2
2 (z + C5)2

]
,

where ϕ(ρ1) and ψ(ρ2) are arbitrary functions and C1, . . . , C5 are arbitrary constants.

3◦. Solution (generalizes the first three solutions of Item 2◦):

w(x, y, z, t) = ϕ(x + t
√

a1 ) + ψ(x − t
√

a1 ) + lnu(ŷ, ẑ), ŷ = a−1/2
2 y, ẑ = a−1/2

3 z,

where ϕ(ρ1) and ψ(ρ2) are arbitrary functions and the function u(ŷ, ẑ) is determined by the Laplace
equation

∂2u

∂ŷ2 +
∂2u

∂ẑ2 = 0. (1)

For this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. “Three-dimensional” solutions:

w = ln
∣∣v(ŷ, ẑ, ζ)

∣∣, ŷ = a−1/2
2 y, ẑ = a−1/2

3 z, ζ = x a t√a1,

where the function v(ŷ, ẑ, ζ) is determined by the Laplace equation

∂2v

∂ŷ2 +
∂2v

∂ẑ2 = 0,

which is implicitly independent of the cyclic variable ζ (the constants of integration that appear in
the solution will be arbitrary functions of ζ).

5◦. Additive separable solution (generalizes the solution of Item 3◦):

w(x, y, z, t) = R(x̂, t) + lnQ(ŷ, ẑ), x̂ = a−1/2
1 x, ŷ = a−1/2

2 y, ẑ = a−1/2
3 z,
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where the functionsR = R(x̂, t) and Q = Q(ŷ, ẑ) are determined by the differential equations

∂2R

∂t2
=
∂2R

∂x̂2 +AeR, (2)

∂2Q

∂ŷ2 +
∂2Q

∂ẑ2 = A, (3)

and A is an arbitrary constant. The general solution of equation (2) is given in 3.2.1.1. By the
substitution Q = 1

2Aŷ
2 + u, the Helmholtz equation (3) can be reduced to the Laplace equation (1).

6◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = F (ξ, η, ζ) − 2λ ln |t|, ξ = xt−1, η = y|t|λ−1, ζ = z|t|λ−1;

w(x, y, z, t) = G(x, r, t), r = a3y
2 + a2z

2;

w(x, y, z, t) = H(ρ, y, z), ρ = x2 − a1t
2,

where λ is an arbitrary constant.

7◦. There are solutions of the following forms:

w(x, y, z, t) = E(r, ρ), r = a3y
2 + a2z

2, ρ = x2 − a1t
2 “two-dimensional” solution;

w(x, y, z, t) = U (χ1,χ2) + 2 ln |y/t|, χ1 = x/t, χ2 = z/y “two-dimensional” solution;

w(x, y, z, t) = V (p, q), p = (a3y
2 + a2z

2)t−2, q = xt−1 “two-dimensional” solution;

w(x, y, z, t) = W (η), η = (a3y
2 + a2z

2)(x2 − a1t
2)−1 “one-dimensional” solution.

8◦. For other exact solutions, see equation 4.6.2.6 with f (w) = a1, g(w) = a2e
w, and h(w) = a3e

w.

3.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂

∂y

(
ew ∂w

∂y

)
+ a3

∂

∂z

(
ekw ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( d C1x + C3, d C1C2y + C4, d C1C
k
2 z + C5, d C1t + C6) − lnC2

2 ,

w2 = w(x coshλ + ta1/2
1 sinhλ, y, z,xa−1/2

1 sinhλ + t coshλ),

whereC1, . . . , C6 and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).e�f

Reference: N. H. Ibragimov (1994).

2◦. Additive separable solution:

w(x, y, z, t) = ϕ(x + t
√

a1 ) + ψ(x − t
√

a1 ) + ln |y + C1| +
1
k

ln |z + C2|,

where ϕ(ρ1) and ψ(ρ2) are arbitrary functions and C1 and C2 are arbitrary constants.

3◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = F (ξ, η, ζ) − 2β ln |t|, ξ = xt−1, η = y|t|β−1, ζ = z|t|kβ−1;

w(x, y, z, t) = G(r, y, z), r = x2 − a1t
2,

where β is an arbitrary constant.

4◦. There are solutions of the following forms:

w(x, y, z, t) = F (ρ1, ρ2) + 2 ln
∣∣∣ y
t

∣∣∣, ρ1 = xt−1, ρ2 = |t|k−1|y|−kz “two-dimensional” solution,

w(x, y, z, t) = U (p, q), p = (x2 − a1t
2)y−2, q = zy−1 “two-dimensional” solution,

w(x, y, z, t) = V (r, s) + 2 ln |y|, r = x2 − a1t
2, s = z|y|−k “two-dimensional” solution,

w(x, y, z, t) = W (χ) −
2

k − 1
ln

∣∣∣ y
z

∣∣∣, χ = |x2 − a1t
2|k−1|y|−2kz2 “one-dimensional” solution.

5◦. For other exact solutions, see equation 4.6.2.6 with f (w) = a1, g(w) = a2e
w, and h(w) = a3e

kw.
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4.
∂2w

∂t2
= a1

∂

∂x

(
ew ∂w

∂x

)
+ a2

∂

∂y

(
ew ∂w

∂y

)
+ a3

∂

∂z

(
ew ∂w

∂z

)
.

This is a special case of equation 4.6.2.4 with f (w) = ew.

1◦. Suppose w(x, y, z, t) is a solution of the equation in question. Then the functions

w1 = w( g C1C2x + C3, g C1C2y + C4, g C1C2z + C5, g C1t + C6) − lnC2
2 ,

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

whereC1, . . . , C6 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).h�i

Reference: N. H. Ibragimov (1994).

2◦. Solutions:

w(x, y, z, t) = C1t + C2 + ln
[
a3C3x

2 + a3C4y
2 − (a1C3 + a2C4)z2 + C5

]
,

w(x, y, z, t) = C1t + C2 + ln
[
C3(a2a3x

2 + a1a3y
2 + a1a2z

2)−1/2 + C4
]
,

w(x, y, z, t) = ln
[

1
a1C

2
1 + a2C

2
2 + a3C

2
3

(
C1x + C2y + C3z + C4

t + C5

)2]
,

w(x, y, z, t) = ln
[

C2
3 (x + C5)2

a1(C1y + C2z + C3t + C4)2 + (a2C
2
1 + a3C

2
2 )(x + C5)2

]
,

w(x, y, z, t) = ln
[

C2
3 (y + C5)2

a2(C1x + C2z + C3t + C4)2 + (a1C
2
1 + a3C

2
2 )(y + C5)2

]
,

w(x, y, z, t) = ln
[

C2
3 (z + C5)2

a3(C1x + C2y + C3t + C4)2 + (a1C
2
1 + a2C

2
2 )(z + C5)2

]
,

where C1, . . . , C5 are arbitrary constants.

3◦. Additive separable solution:

w(x, y, z, t) = C1t + C2 + ln Θ(x̂, ŷ, ẑ), x̂ = a−1/2
1 x, ŷ = a−1/2

2 y, ẑ = a−1/2
3 z,

where the function Θ = Θ(x̂, ŷ, ẑ) is determined by the Laplace equation

∂2
Θ

∂x̂2 +
∂2

Θ

∂ŷ2 +
∂2

Θ

∂ẑ2 = 0.

For this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = F (ξ, η, ζ) − 2β ln |t|, ξ = x|t|β−1, η = y|t|β−1, ζ = z|t|β−1;

w(x, y, z, t) = G(ρ, z, t), ρ = a2x
2 + a1y

2;
w(x, y, z, t) = H(p, q, t) + 2 ln |z|, p = x/z, q = y/z,

where β is an arbitrary constant.

5◦. There are solutions of the following forms:

w(x, y, z, t) = U (r, t), r = a2a3x
2 + a1a3y

2 + a1a2z
2 “two-dimensional” solution;

w(x, y, z, t) = V (χ), χ = (a2a3x
2 + a1a3y

2 + a1a2z
2)t−2 “one-dimensional” solution.

6◦. For other exact solutions, see equation 4.5.4.6 with λ1 = λ2 = λ3 = 1.
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5.
∂2w

∂t2
= a1

∂

∂x

(
ew ∂w

∂x

)
+ a2

∂

∂y

(
ew ∂w

∂y

)
+ a3

∂

∂z

(
ekw ∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( j C1C2x + C3, j C1C2y + C4, j C1C
k
2 z + C5, j C1t + C6) − lnC2

2 ,

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

whereC1, . . . , C6 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).k�l

Reference: N. H. Ibragimov (1994).

2◦. Additive separable solution:

w(x, y, z, t) = C1t + C2 +
1
k

ln |z + C3| + ln Θ(x̂, ŷ), x̂ = a−1/2
1 x, ŷ = a−1/2

2 y,

where the function Θ = Θ(x̂, ŷ) is determined by the Laplace equation

∂2
Θ

∂x̂2 +
∂2

Θ

∂ŷ2 = 0.

For this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

3◦. There are solutions of the following forms:

w = F (ξ, η, ζ) − 2β ln |t|, ξ = x|t|β−1, η = y|t|β−1, ζ = z|t|kβ−1 “three-dimensional” solution;

w = G(r, z, t), r = a2x
2 + a1y

2 “three-dimensional” solution;

w = H(ρ1, ρ2) + 2 ln |x/t|, ρ1 = y/x, ρ2 = |t|k−1|x|−kz, “two-dimensional” solution;

w = U (χ) + ln
[
(a2x

2 + a1y
2)t−2], χ = (a2x

2 + a1y
2)|z|−2/k|t|2/k−2 “one-dimensional” solution;

where β is an arbitrary constant.

4◦. For other exact solutions, see equation 4.5.4.6 with λ1 = λ2 = 1 and λ3 = k.

6.
∂2w

∂t2
= a1

∂

∂x

(
eλ1w

∂w

∂x

)
+ a2

∂

∂y

(
eλ2w

∂w

∂y

)
+ a3

∂

∂z

(
eλ3w

∂w

∂z

)
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( j C1C
λ1
2 x + C3, j C1C

λ2
2 y + C4, j C1C

λ3
2 z + C5, j C1t + C6) − lnC2

2 ,

where C1, . . . , C6 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).k�l

Reference: N. H. Ibragimov (1994).

2◦. Additive separable solution:

w(x, y, z, t) = C1t + C2 +
1
λ1

ln |x + C3| +
1
λ2

ln |y + C4| +
1
λ3

ln |z + C5|.

3◦. Traveling-wave solution in implicit form:

a1k
2
1

λ1
eλ1w +

a2k
2
2

λ2
eλ2w +

a3k
2
3

λ3
eλ3w − β2w = C1(k1x + k2y + k3z + βt) + C2,

where C1, C2, k1, k2, k3, and β are arbitrary constants.
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4◦. Solutions in implicit form:
(
C1x + C2y + C3z + C4

t + C5

)2

= a1C
2
1e

λ1w + a2C
2
2e

λ2w + a3C
2
3e

λ3w,

a1e
λ1w

(
C1y + C2z + C3t + C4

x + C5

)2

+ a2C
2
1e

λ2w + a3C
2
2e

λ3w = C2
3 ,

a2e
λ2w

(
C1x + C2z + C3t + C4

y + C5

)2

+ a1C
2
1e

λ1w + a3C
2
2e

λ3w = C2
3 ,

a3e
λ3w

(
C1x + C2y + C3t + C4

z + C5

)2

+ a1C
2
1e

λ1w + a2C
2
2e

λ2w = C2
3 ,

where C1, . . . , C5 are arbitrary constants.

5◦. “Two-dimensional” solution (k1, k2, and k3 are arbitrary constants):
w(x, y, z, t) = u(ξ, t), ξ = k1x + k2y + k3z,

where the function u = u(ξ, t) is determined by a differential equation of the form 3.4.4.6:
∂2u

∂t2
=
∂

∂ξ

[
ϕ(u)

∂u

∂ξ

]
, ϕ(u) = a1k

2
1e

λ1w + a2k
2
2e

λ2w + a3k
2
3e

λ3w,

which can be reduced to a linear equation.

6◦. “Two-dimensional” solution (b1, b2, and b3 are arbitrary constants):
w(x, y, z, t) = v(x, η), η = b1y + b2z + b3t, (1)

where the function v = v(x, η) is determined by a differential equation of the form 5.4.4.8:

a1
∂

∂x

(
eλ1v

∂v

∂x

)
+
∂

∂η

[
ψ(v)

∂v

∂η

]
= 0, ψ(v) = a2b

2
1e

λ2v + a3b
2
2e

λ3v − b2
3, (2)

which can be reduced to a linear equation.
Relations (1) and equation (2) can be used to obtain two other “two-dimensional” solutions by

means of the following cyclic permutations of variables and determining parameters:
(x, a1,λ1)

↗ ↘

(z, a3,λ3)←− (y, a2,λ2)
7◦. “Two-dimensional” solution (bn and cn are arbitrary constants):

w(x, y, z, t) = U (ζ, ρ), ζ = b1t + b2x, ρ = c1y + c2z,
where the function U = U (ζ, ρ) is determined by a differential equation of the form 5.4.4.8:
∂

∂ζ

[
Φ(U )

∂U

∂ζ

]
+
∂

∂ρ

[
Ψ(U )

∂U

∂ρ

]
= 0, Φ(U ) = a1b

2
2e

λ1U − b2
1, Ψ(U ) = a2c

2
1e

λ2U + a3c
2
2e

λ3U ,

which can be reduced to a linear equation.
Remark. The solution specified in Item 7◦ can be used to obtain other “two-dimensional”

solutions by means of cyclic permutations of variables and determining parameters as shown in
Item 6◦.

8◦. There are more complicated “two-dimensional” solutions of the form
w(x, y, z, t) = V (z1, z2), z1 = b1x + b2y + b3z + b4t, z2 = c1x + c2y + c3z + c4t.

9◦. There is a “two-dimensional” solution of the form

w(x, y, z, t) = W (ρ1, ρ2) +
2
λ1

ln
∣∣∣x
t

∣∣∣, ρ1 = |t|λ2/λ1−1|x|−λ2/λ1y, ρ2 = |t|λ3/λ1−1|x|−λ3/λ1z.

10◦+. There is a “three-dimensional” solution of the form
w(x, y, z, t) = F (ξ, η, ζ) − 2β ln |t|, ξ = x|t|βλ1−1, η = y|t|βλ2−1, ζ = z|t|βλ3−1,

where β is an arbitrary constant.
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7.
∂2w

∂t2
= a1

∂

∂x

(
eλ1w

∂w

∂x

)
+ a2

∂

∂y

(
eλ2w

∂w

∂y

)
+ a3

∂

∂z

(
eλ3w

∂w

∂z

)
+ beβw.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w( m Cβ−λ1
1 x + C2, m Cβ−λ2

1 y + C3, m Cβ−λ3
1 z + C4, m Cβ

1 t + C5) + 2 ln |C1|,

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = U (ξ, η, ζ) −
2
β

ln |t|, ξ = x|t|
λ1−β

β , η = y|t|
λ2−β

β , ζ = z|t|
λ3−β

β ,

w(x, y, z, t) = V (η1, η2, η3), ηn = anx + bny + cnz + dnt (n = 1, 2, 3).

4.6. Equations with Three Space Variables Involving
Arbitrary Functions

4.6.1. Equations of the Form
∂2w
∂t2 = ∂

∂x

[

f1(x) ∂w
∂x

]

+ ∂
∂y

[

f2(y) ∂w
∂y

]

+ ∂
∂z

[

f3(z) ∂w
∂z

]

+ g(w)

1.
∂2w

∂t2
=

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
+ f (w).

The equation admits translations in any of the variables x, y, z, and t.

1◦. Traveling-wave solution in implicit form:

∫ [
C1 +

2
λ2 − k2

1 − k2
2 − k2

3

∫
f (w) dw

]−1/2

dw = k1x + k2y + k3z + λt + C2,

where C1, C2, k1, k2, k3, and λ are arbitrary constants.

2◦. Solution:

w(x, y, z, t) = w(ρ), ρ2 = A
[
(x + C1)2 + (y + C2)2 + (z + C3)2 − (t + C4)2],

where the arbitrary constant A and the expression in square brackets must have like signs, and the
function w(ρ) is determined by the ordinary differential equation

w′′

ρρ + 3ρ−1w′

ρ +A−1f (w) = 0.

3◦. For the case of axisymmetric solutions, the Laplace operator on the right-hand side of the
equation is expressed in cylindrical and spherical coordinates as

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 =
1
r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2 , r =
√
x2 + y2;

∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2 =
1
r2

∂

∂r

(
r2 ∂w

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂w

∂θ

)
, r =

√
x2 + y2 + z2.

4◦. “Three-dimensional” solution:

w = u(ξ, η, t), ξ = y +
x

C
, η = (C2 − 1)x2 − 2Cxy + C2z2,
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whereC is an arbitrary constant (C ≠ 0), and the functionu = u(ξ, η, t) is determined by the equation

∂2u

∂t2
=

(
1 +

1
C2

)
∂2u

∂ξ2 − 4ξ
∂2u

∂ξ∂η
+ 4C2(ξ2 + η)

∂2u

∂η2 + 2(2C2 − 1)
∂u

∂η
+ f (u).

5◦. “Three-dimensional” solution:

w = v(z, ξ, ζ), ξ = y +
x

C
, ζ = (C2 − 1)x2 − 2Cxy − C2t2,

whereC is an arbitrary constant (C ≠ 0), and the function v = v(z, ξ, ζ) is determined by the equation

∂2v

∂z2 +
(

1 +
1
C2

)
∂2v

∂ξ2 − 4ξ
∂2v

∂ξ∂ζ
+ 4C2(ξ2 + ζ)

∂2v

∂ζ2 + 2(2C2 − 1)
∂v

∂ζ
+ f (v) = 0.

Remark. The solutions specified in Items 4◦ and 5◦ can be used to obtain other “three-
dimensional” solutions by means of the cyclic permutations of the space variables.

6◦. “Three-dimensional” solution:

w = U (ξ, η, t), ξ = Ax +By + Cz, η =
√

(Bx −Ay)2 + (Cy −Bz)2 + (Az − Cx)2,

where A, B, and C are arbitrary constants and the function U = U (ξ, η, t) is determined by the
equation

∂2U

∂t2
= (A2 + B2 + C2)

(
∂2U

∂ξ2 +
∂2U

∂η2 +
1
η

∂U

∂η

)
+ f (U ).

2.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+

∂

∂z

(
czk ∂w

∂z

)
+ f (w).

1◦. Solution for n ≠ 2, m ≠ 2, and k ≠ 2:

w = w(r), r2 =
4
B

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 −
1
4

(t + C)2
]

,

where B and C are arbitrary constants (B and the expression in square brackets must have like
signs), and the function w(r) is determined by the ordinary differential equation

d2w

dr2 +
A

r

dw

dr
+Bf (w) = 0, A =

2
2 − n

+
2

2 −m
+

2
2 − k

.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]
;

w = V (x, η), η2 = n 4
[

y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 −
1
4

(t + C)2
]

;

w = W (ζ, ρ), ζ2 = n 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

, ρ2 = 4
[

y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]
.

The second and third solutions can be used to obtain other “two-dimensional” solutions by
means of the following cyclic permutations of variables and determining parameters:

(x, a,n)
↗ ↘

(z, c, k)←− (y, b,m)
o�p

Reference: A. D. Polyanin and A. I. Zhurov (1998).
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3.
∂2w

∂t2
=

∂

∂x

(
aeλx ∂w

∂x

)
+

∂

∂y

(
beµy ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ f (w).

1◦. Solution for λ ≠ 0, µ ≠ 0, and ν ≠ 0:

w = w(r), r2 =
4
B

[
e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C1)2
]

,

where B and C1 are arbitrary constants and the function w(r) is determined by the autonomous
ordinary differential equation

w′′

rr +Bf (w) = 0.

Integrating yields its solution in implicit form:

∫ [
C2 − 2B

∫
f (w) dw

]−1/2

dw = C3 q r,

where C2 and C3 are arbitrary constants.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
(
e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2

)
;

w = V (x, η), η2 = q 4
[
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = W (ζ, ρ), ζ2 = q 4
[
e−λx

aλ2 −
1
4

(t + C)2
]

, ρ2 = 4
(
e−µy

bµ2 +
e−νz

cν2

)
.

The second and third solutions can be used to obtain other “two-dimensional” solutions by
means of the following cyclic permutations of variables and determining parameters:

(x, a,λ)
↗ ↘

(z, c, ν)←− (y, b,µ)
r�s

Reference: A. D. Polyanin and A. I. Zhurov (1998).

4.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
bym ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ f (w).

1◦. Solution for n ≠ 2, m ≠ 2, and ν ≠ 0:

w = w(r), r2 =
4
B

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2 −
1
4

(t + C1)2
]

,

whereB andC are arbitrary constants and the functionw(r) is determined by the ordinary differential
equation

w′′

rr +
A

r
w′

r +Bf (w) = 0, A =
2

2 − n
+

2
2 −m

.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2

]
;

w = V1(x, η1), η2
1 = q 4

[
y2−m

b(2 − m)2 +
e−νz

cν2 −
1
4

(t + C)2
]

;
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w = V2(y, η2), η2
2 = t 4

[
x2−n

a(2 − n)2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V3(z, η3), η2
3 = t 4

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

;

w = W1(ζ1, ρ1), ζ2
1 = t 4

[
x2−n

a(2 − n)2 −
1
4

(t + C)2
]

, ρ2
1 = 4

[
y2−m

b(2 −m)2 +
e−νz

cν2

]
;

w = W2(ζ2, ρ2), ζ2
2 = t 4

[
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

, ρ2
2 = 4

[
x2−n

a(2 − n)2 +
e−νz

cν2

]
;

w = W3(ζ3, ρ3), ζ2
3 = t 4

[
e−νz

cν2 −
1
4

(t + C)2
]

, ρ2
3 = 4

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]
.

5.
∂2w

∂t2
=

∂

∂x

(
axn ∂w

∂x

)
+

∂

∂y

(
beµy ∂w

∂y

)
+

∂

∂z

(
ceνz ∂w

∂z

)
+ f (w).

1◦. Solution for n ≠ 2, µ ≠ 0, and ν ≠ 0:

w = w(r), r2 =
4
B

[
x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

,

whereB andC are arbitrary constants and the functionw(r) is determined by the ordinary differential
equation

w′′

rr +
2

2 − n
1
r
w′

r +Bf (w) = 0.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2

]
;

w = V1(x, η1), η2
1 = t 4

[
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V2(y, η2), η2
2 = t 4

[
x2−n

a(2 − n)2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V3(z, η3), η2
3 = t 4

[
x2−n

a(2 − n)2 +
e−µy

bµ2 −
1
4

(t + C)2
]

;

w = W1(ζ1, ρ1), ζ2
1 = t 4

[
x2−n

a(2 − n)2 −
1
4

(t + C)2
]

, ρ2
1 = 4

[
e−µy

bµ2 +
e−νz

cν2

]
;

w = W2(ζ2, ρ2), ζ2
2 = t 4

[
e−µy

bµ2 −
1
4

(t + C)2
]

, ρ2
2 = 4

[
x2−n

a(2 − n)2 +
e−νz

cν2

]
;

w = W3(ζ3, ρ3), ζ2
3 = t 4

[
e−νz

cν2 −
1
4

(t + C)2
]

, ρ2
3 = 4

[
x2−n

a(2 − n)2 +
e−µy

bµ2

]
.

6.
∂2w

∂t2
=

∂

∂x

[
f (x)

∂w

∂x

]
+

∂

∂y

[
g(y)

∂w

∂y

]
+

∂

∂z

[
h(z)

∂w

∂z

]
+ aw ln w + bw.

1◦. Multiplicative separable solution:

w(x, y, z, t) = X(x)Y (y)Z(z)ϕ(t),

where the functionsX(x), Y (y),Z(z), andϕ(t) are determined by the ordinary differential equations
[f (x)X ′

x]′x + aX lnX + C1X = 0,
[g(y)Y ′

y]′y + aY lnY + C2Y = 0,

[h(z)Z ′

z]′z + aZ lnZ + C3Z = 0,
ϕ′′

tt − aϕ lnϕ + (C1 + C2 + C3 − b)ϕ = 0,
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where C1, C2, and C3 are arbitrary constants. A particular and the general solutions of the last
equations can be obtained from the formulas of Item 2◦, whereA should be set equal to b−C1−C2−C3.

2◦. Multiplicative separable solution:

w(x, y, z, t) = ϕ(t)Θ(x, y, z).

Here, the function ϕ(t) is determined by the autonomous ordinary differential equation

ϕ′′

tt − aϕ lnϕ −Aϕ = 0, (1)

where A is an arbitrary constant, and the function Θ(x, y, z) satisfies the stationary equation

∂

∂x

[
f (x)

∂Θ

∂x

]
+
∂

∂y

[
g(y)

∂Θ

∂y

]
+
∂

∂z

[
h(z)

∂Θ

∂z

]
+ aΘ lnΘ + (b −A)Θ = 0.

A particular solution of equation (1) is given by

ϕ(t) = exp
[
a

4
(t +B)2 +

a − 2A
2a

]
,

where B is an arbitrary constant, and the general solution can be written out in implicit form (C is
an arbitrary constant):

∫ [
aϕ2 lnϕ + (A − 1

2 a)ϕ2 +B
]−1/2

dϕ = C u t.

4.6.2. Equations of the Form
∂2w
∂t2 = ∂

∂x

[

f1(w) ∂w
∂x

]

+ ∂
∂y

[

f2(w) ∂w
∂y

]

+ ∂
∂z

[

f3(w) ∂w
∂z

]

+ g(w)

1.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂2w

∂y2
+

∂

∂z

[
h(w)

∂w

∂z

]
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( u C1x + C2, u C1y + C3, u C1z + C4, u C1t + C5),

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

w3 = w
(
x coshλ + ta1/2

1 sinhλ, y, z,xa−1/2
1 sinhλ + t coshλ

)
,

where C1, . . . , C5, β, and λ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).v�w

Reference: N. H. Ibragimov (1994).

2◦. Solutions in implicit form:
∫
h(w) dw = zϕ(η) + ψ(η), η = C1x + C2y u t

√
a1C

2
1 + a2C

2
2 ,

where C1 and C2 are arbitrary constants, ϕ(η) and ψ(η) are arbitrary functions.

3◦. “Two-dimensional” solution (generalizes the solutions of Item 2◦):

w(x, y, z, t) = U (ξ, η), ξ = z + λt, η = C1x + C2y u t
√
a1C

2
1 + a2C

2
2 ,

where C1, C2, and λ are arbitrary constants, and the function U = U (ξ, η) is determined by the
first-order partial differential equation

[
h(U ) − λ2] ∂U

∂ξ

x 2λ
√
a1C

2
1 + a2C

2
2
∂U

∂η
= ϕ(η), (1)

and ϕ(η) is an arbitrary function.
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In the special case λ = 0, equation (1) is an ordinary differential equation in ξ and can be easily
integrated to obtain solutions of Item 2◦.

In the general case, equation (1) can be solved using a characteristic system of ordinary differ-
ential equations; see Polyanin, Zaitsev, and Moussiaux (2002). In the special case ϕ(η) = 0, the
general solution of equation (1) can be written out in implicit form:

2λ
√
a1C

2
1 + a2C

2
2 ξ y η[h(U ) − λ2] = Φ(U ),

where Φ(U ) is an arbitrary function.

4◦. “Three-dimensional” solutions:

w = u(y, z, ζ), ζ = x y t√a1, (2)

where the function u(y, z, ζ) is determined by a differential equation of the form 5.4.4.8:

a2
∂2u

∂y2 +
∂

∂z

[
h(u)

∂u

∂z

]
= 0, (3)

which can be reduced to a linear equation. Equation (3) is implicitly independent of the cyclic
variable ζ (the constants of integration that appear in the solution will be arbitrary functions of ζ).

Remark 1. Relations (2) and equation (3) can be used to obtain another “three-dimensional”
solution by means of the following renaming: (x, a1) � (y, a2).

5◦. “Three-dimensional” solution:

w = v(z, ξ, η), ξ =
x
√

a1C
+

y
√

a2
, η = (C2 − 1)

x2

a1
− 2C

xy
√

a1a2
− C2t2, (4)

where C is an arbitrary constant (C ≠ 0), and the function v = v(ξ, η) is determined by the equation
(

1 +
1
C2

)
∂2v

∂ξ2 − 4ξ
∂2v

∂ξ∂η
+ 4C2(ξ2 + η)

∂2v

∂η2 + 2(2C2 − 1)
∂v

∂η
+
∂

∂z

[
h(v)

∂v

∂z

]
= 0. (5)

Remark 2. Relations (4) and equation (5) can be used to obtain another “three-dimensional”
solution by means of the following renaming: (x, a1) � (y, a2).

6◦. There are solutions of the following forms:

w(x, y, z, t) = F (r, z, t), r = a2x
2 + a1y

2 “three-dimensional” solution;

w(x, y, z, t) = G(ξ, y, z), ξ = x2 − a1t
2 “three-dimensional” solution;

w(x, y, z, t) = H(ζ, z), ζ = a2x
2 + a1y

2 − a1a2t
2 “two-dimensional” solution;

w(x, y, z, t) = U (η), η = (a2x
2 + a1y

2 − a1a2t
2)z−2 “one-dimensional” solution.

7◦. For other exact solutions, see equation 4.6.2.6 with f (w) = a1 and g(w) = a2.

2.
∂2w

∂t2
= a1

∂2w

∂x2
+ a2

∂

∂y

[
g(w)

∂w

∂y

]
+ a3

∂

∂z

[
g(w)

∂w

∂z

]
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( y C1x + C2, y C1y + C3, y C1z + C4, y C1t + C5),

w2 = w
(
x, y cosβ + z

√
a2/a3 sinβ, −y

√
a3/a2 sinβ + z cosβ, t

)
,

w3 = w
(
x coshλ + ta1/2

1 sinhλ, y, z,xa−1/2
1 sinhλ + t coshλ

)
,

where C1, . . . , C5, β, and λ are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).z�{

Reference: N. H. Ibragimov (1994).
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2◦. “Three-dimensional” solutions:

w = u(y, z, ζ), ζ = x | t√a1,

where the function u(y, z, ζ) is determined by the differential equation

a2
∂

∂y

[
g(u)

∂u

∂y

]
+ a3

∂

∂z

[
g(u)

∂u

∂z

]
= 0, (1)

which is implicitly independent of the cyclic variable ζ (the constants of integration that appear in
the solution are arbitrary functions of ζ). The transformation

v =
∫
g(u) du, y =

y
√

a2
, z =

z
√

a3

brings (1) to the Laplace equation
∂2v

∂y2 +
∂2v

∂z2 = 0.

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

3◦. There are solutions of the following forms:

w(x, y, z, t) = F (x, r, t), r = a3y
2 + a2z

2 “three-dimensional” solution;

w(x, y, z, t) = G(ξ, y, z), ξ = x2 − a1t
2 “three-dimensional” solution;

w(x, y, z, t) = H(r, ξ), r = a3y
2 + a2z

2, ξ = x2 − a1t
2 “two-dimensional” solution;

w(x, y, z, t) = U (p, q), p = (a3y
2 + a2z

2)t−2, q = xt−1 “two-dimensional” solution;

w(x, y, z, t) = V (η), η = (a3y
2 + a2z

2)(x2 − a1t
2)−1 “one-dimensional” solution.

4◦. For other exact solutions, see equation 4.6.2.6 with f (w) = a1, in which g(w) should be renamed
a2g(w) and h(w) renamed a3g(w).

3.
∂2w

∂t2
= a1

∂2w

∂x2
+

∂

∂y

[
g(w)

∂w

∂y

]
+

∂

∂z

[
h(w)

∂w

∂z

]
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( | C1x + C2, | C1y + C3, | C1z + C4, | C1t + C5),

w2 = w(x coshλ + ta1/2
1 sinhλ, y, z,xa−1/2

1 sinhλ + t coshλ),

whereC1, . . . ,C5, and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. “Three-dimensional” solutions:

w = u(y, z, ζ), ζ = x | t√a1,

where the function u(y, z, ζ) is determined by a differential equation of the form 5.4.4.8:

∂

∂y

[
g(u)

∂u

∂y

]
+
∂

∂z

[
h(u)

∂u

∂z

]
= 0,

which can be reduced to a linear equation. The equation obtained is implicitly independent of the
cyclic variable ζ (the constants of integration that appear in the solution will be arbitrary functions
of ζ).

3◦. There are solutions of the following forms:

w(x, y, z, t) = W (ξ, y, z), ξ = x2 − a1t
2 “three-dimensional” solution;

w(x, y, z, t) = U (p, q), p = (x2 − a1t
2)y−2, q = zy−1 “two-dimensional” solution.

4◦. For other exact solutions, see equation 4.6.2.6 with f (w) = a1.
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4.
∂2w

∂t2
= a1

∂

∂x

[
f (w)

∂w

∂x

]
+ a2

∂

∂y

[
f (w)

∂w

∂y

]
+ a3

∂

∂z

[
f (w)

∂w

∂z

]
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( } C1x + C2, } C1y + C3, } C1z + C4, } C1t + C5),

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).~��

Reference: N. H. Ibragimov (1994).

2◦. There are “three-dimensional” solutions of the following forms:

w = W (ρ, z, t), ρ = a2x
2 + a1y

2;

w = U (ξ, η, t), ξ =
x
√

a1C
+

y
√

a2
, η = (C2 − 1)

x2

a1
− 2C

xy
√

a1a2
+ C2 z

2

a3
;

w = V (ζ, θ, t), ζ =
Ax
√

a1
+
By
√

a2
+
Cz
√

a3
, θ =

(
Bx
√

a1
−
Ay
√

a2

)2

+
(
Cy
√

a2
−
Bz
√

a3

)2

+
(
Az
√

a3
−
Cx
√

a1

)2

,

where A, B, and C are arbitrary constants.
Remark. The first and second solutions specified in Item 2◦ can be used to obtain other “three-

dimensional” solutions by means of the following cyclic permutations of variables and determining
parameters:

(x, a1)
↗ ↘

(z, a3)←− (y, a2)

3◦. There are exact solutions of the following forms:

w(x, y, z, t) = Φ(r, t), r = a2a3x
2 + a1a3y

2 + a1a2z
2 “two-dimensional” solution;

w(x, y, z, t) = Ψ(χ), χ = (a2a3x
2 + a1a3y

2 + a1a2z
2)t−2 “one-dimensional” solution.

4◦. For other exact solutions, see equation 4.6.2.6, in which f (w), g(w), andh(w) should be renamed
a1f (w), a2f (w), and a3f (w), respectively.

5.
∂2w

∂t2
= a1

∂

∂x

[
f (w)

∂w

∂x

]
+ a2

∂

∂y

[
f (w)

∂w

∂y

]
+

∂

∂z

[
h(w)

∂w

∂z

]
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( } C1x + C2, } C1y + C3, } C1z + C4, } C1t + C5),

w2 = w
(
x cosβ + y

√
a1/a2 sinβ, −x

√
a2/a1 sinβ + y cosβ, z, t

)
,

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).~��

Reference: N. H. Ibragimov (1994).

2◦. There are solutions of the following forms:

w(x, y, z, t) = W (ξ, z, t), ξ = a2x
2 + a1y

2 “three-dimensional” solution;

w(x, y, z, t) = U (p, q), p = (a2x
2 + a1y

2)t−2, q = zt−1 “two-dimensional” solution.

3◦. For other exact solutions, see equation 4.6.2.6, in which f (w) should be renamed a1f (w) and
g(w) renamed a2f (w).
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6.
∂2w

∂t2
=

∂

∂x

[
f (w)

∂w

∂x

]
+

∂

∂y

[
g(w)

∂w

∂y

]
+

∂

∂z

[
h(w)

∂w

∂z

]
.

1◦. Suppose w(x, y, z, t) is a solution of this equation. Then the functions

w1 = w( � C1x + C2, � C1y + C3, � C1z + C4, � C1t + C5),

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:
∫ [

k2
1f (w) + k2

2g(w) + k2
3h(w)

]
dw − λ2w = C1(k1x + k2y + k3z + λt) + C2,

where C1, C2, k1, k2, k3, and λ are arbitrary constants.

3◦. Solutions in implicit form:
(
C1x + C2y + C3z + C4

t + C5

)2

= C2
1f (w) + C2

2g(w) + C2
3h(w),

(
C1y + C2z + C3t + C4

x + C5

)2

f (w) + C2
1g(w) + C2

2h(w) = C2
3 ,

(
C1x + C2z + C3t + C4

y + C5

)2

g(w) + C2
1f (w) + C2

2h(w) = C2
3 ,

(
C1x + C2y + C3t + C4

z + C5

)2

h(w) + C2
1f (w) + C2

2g(w) = C2
3 ,

where C1, . . . , C5 are arbitrary constants.

4◦. Solution:
w = w(ξ), ξ =

C1x + C2y + C3z + C4

t + C5
,

where C1, . . . , C5 are arbitrary constants, and the function u(ξ) is determined by the ordinary
differential equation

(ξ2w′

ξ)′ξ = [ϕ(w)w′

ξ]′ξ, ϕ(w) = C2
1f (w) + C2

2g(w) + C3h(w),

which admits the first integral
[
ξ2 − C2

1f (w) − C2
2g(w) − C2

3h(w)
]
w′

ξ = C6. (1)

To the special case C6 = 0 there corresponds the first solution in Item 3◦.
For C6 ≠ 0, treating w in (1) as the independent variable, we obtain a Riccati equation for

ξ = ξ(w):
C6ξ

′

w = ξ2 − C2
1f (w) − C2

2g(w) − C2
3h(w). (2)

For exact solutions of equation (2), which can be reduced to a second-order linear equation, see
Polyanin and Zaitsev (2003).

5◦. Solution:
w = u(η), η =

C1y + C2z + C3t + C4

x + C5
, (3)

where C1, . . . , C5 are arbitrary constants, and the function u(η) is determined by the ordinary
differential equation

C2
3u

′′

ηη = [η2f (u)u′η]′η + C2
1 [g(u)u′η]′η + C2

2 [h(u)u′η]′η,
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which admits the first integral

[η2f (u) + C2
1g(u) + C2

2h(u) − C2
3 ]u′η = C6. (4)

To the special case C6 = 0 there corresponds the second solution in Item 3◦.
ForC6 ≠ 0, treatingu in (4) as the independent variable, we obtain a Riccati equation for η = η(u):

C6η
′

u = η2f (u) + C2
1g(u) + C2

2h(u) − C2
3 . (5)

For exact solutions of equation (5), which can be reduced to a second-order linear equation, see
Polyanin and Zaitsev (2003).

Formula (3) and equation (5) can be used to obtain two other “one-dimensional” solutions by
means of the following cyclic permutations of variables and determining functions:

(x, f )
↗ ↘

(z,h)←− (y, g)

6◦. “Two-dimensional” solution (k1, k2, and k3 are arbitrary constants):

w(x, y, z, t) = u(ξ, t), ξ = k1x + k2y + k3z,

where the function u = u(ξ, t) is determined by a differential equation of the form 3.4.4.6:
∂2u

∂t2
=
∂

∂ξ

[
ϕ(u)

∂u

∂ξ

]
, ϕ(u) = k2

1f (u) + k2
2g(u) + k2

3h(u),

which can be reduced to a linear equation.

7◦. “Two-dimensional” solution (a, b, and c are arbitrary constants):

w(x, y, z, t) = v(x, η), η = ay + bz + ct,
where the function v = v(x, η) is determined by a differential equation of the form 5.4.4.8:

∂

∂x

[
f (v)

∂v

∂x

]
+
∂

∂η

[
ψ(v)

∂v

∂η

]
= 0, ψ(v) = a2g(v) + b2h(v) − c2,

which can be reduced to a linear equation.

8◦. “Two-dimensional” solution (the an and bn are arbitrary constants):

w(x, y, z, t) = U (ζ, ρ), ζ = a1t + a2x, ρ = b1y + b2z,

where the function U = U (ζ, ρ) is determined by a differential equation of the form 5.4.4.8:
∂

∂ζ

[
Φ(U )

∂U

∂ζ

]
+
∂

∂ρ

[
Ψ(U )

∂U

∂ρ

]
= 0, Φ(U ) = a2

2f (U ) − a2
1, Ψ(U ) = b2

1g(U ) + b2
2h(U ),

which can be reduced to a linear equation.
Remark. The solutions specified in Items 7◦ and 8◦ can be used to obtain other “two-

dimensional” solutions by means of the cyclic permutations of variables and determining functions
as shown in Item 5◦.

9◦. There are more complicated “two-dimensional” solutions of the form

w(x, y, z, t) = V (z1, z2), z1 = a1x + a2y + a3z + a4t, z2 = b1x + b2y + b3z + b4t.

10◦+. “Three-dimensional” solution:

w(x, y, z, t) = Θ(p, q, s), p = x/t, q = y/t, s = z/t,
where the function Θ = Θ(p, q, s) is determined by the differential equation

p2 ∂
2
Θ

∂p2 + q2 ∂
2
Θ

∂q2 + r2 ∂
2
Θ

∂r2 + 2pq
∂2

Θ

∂p∂q
+ 2pr

∂2
Θ

∂p∂r
+ 2rq

∂2
Θ

∂r∂q

+ 2p
∂Θ

∂p
+ 2q

∂Θ

∂q
+ 2r

∂Θ

∂r
=
∂

∂p

[
f (Θ)

∂Θ

∂p

]
+
∂

∂q

[
g(Θ)

∂Θ

∂q

]
+
∂

∂r

[
h(Θ)

∂Θ

∂r

]
.

11◦. For results of the group analysis of the original equation, see Ibragimov (1994).
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7.
∂2w

∂t2
=

∂

∂x

[
f (w)

∂w

∂x

]
+

∂

∂y

[
f (w)

∂w

∂y

]
+

∂

∂z

[
f (w)

∂w

∂z

]
– a2 f ′(w)

f 3(w)
+ b.

Solution in implicit form: ∫
f (w) dw = at + U (x, y, z),

where the function U = U (x, y, z) is determined by the Poisson equation

∂2U

∂x2 +
∂2U

∂y2 +
∂2U

∂z2 + b = 0.

For this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
Remark. The above holds true if the constant b in the equation is replaced by an arbitrary

function b = b(x, y, z).

4.6.3. Other Equations

1.
∂2w

∂t2
= axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ czk ∂2w

∂z2
+ f (w).

1◦. Solution for n ≠ 2, m ≠ 2, and k ≠ 2:

w = w(r), r2 =
4
B

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 −
1
4

(t + C)2
]

,

where C and B are arbitrary constants (B ≠ 0) and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
A

r
w′

r +Bf (w) = 0, A = 2
(

1 − n
2 − n

+
1 −m
2 −m

+
1 − k
2 − k

)
.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]
;

w = V (x, η), η2 = � 4
[

y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 −
1
4

(t + C)2
]

;

w = W (ζ, ρ), ζ2 = � 4
[

x2−n

a(2 − n)2 −
1
4

(t + C)2
]

, ρ2 = 4
[

y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]
.

The second and third solutions can be used to obtain other “two-dimensional” solutions by
means of the following cyclic permutations of variables and determining parameters:

(x, a,n)
↗ ↘

(z, c, k)←− (y, b,m)

2.
∂2w

∂t2
= aeλx ∂2w

∂x2
+ beµy ∂2w

∂y2
+ ceνz ∂2w

∂z2
+ f (w).

1◦. Solution for λ ≠ 0, µ ≠ 0, and ν ≠ 0:

w = w(r), r2 =
4
B

[
e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C1)2
]

,

where B and C1 are arbitrary constants and the function w(r) is determined by the autonomous
ordinary differential equation

w′′

rr + 6r−1w′

r +Bf (w) = 0.
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2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
(
e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2

)
;

w = V (x, η), η2 = � 4
[
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = W (ζ, ρ), ζ2 = � 4
[
e−λx

aλ2 −
1
4

(t + C)2
]

, ρ2 = 4
(
e−µy

bµ2 +
e−νz

cν2

)
.

The second and third solutions can be used to obtain other “two-dimensional” solutions by
means of the following cyclic permutations of variables and determining parameters:

(x, a,λ)
↗ ↘

(z, c, ν)←− (y, b,µ)

3.
∂2w

∂t2
= axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ ceνz ∂2w

∂z2
+ f (w).

1◦. Solution for n ≠ 2, m ≠ 2, and ν ≠ 0:

w = w(r), r2 =
4
B

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2 −
1
4

(t + C1)2
]

,

whereB andC are arbitrary constants and the functionw(r) is determined by the ordinary differential
equation

w′′

rr +
A

r
w′

r +Bf (w) = 0, A = 2
(

1 − n
2 − n

+
1 −m
2 −m

+ 1
)

.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2

]
;

w = V1(x, η1), η2
1 = � 4

[
y2−m

b(2 −m)2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V2(y, η2), η2
2 = � 4

[
x2−n

a(2 − n)2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V3(z, η3), η2
3 = � 4

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

;

w = W1(ζ1, ρ1), ζ2
1 = � 4

[
x2−n

a(2 − n)2 −
1
4

(t + C)2
]

, ρ2
1 = 4

[
y2−m

b(2 −m)2 +
e−νz

cν2

]
;

w = W2(ζ2, ρ2), ζ2
2 = � 4

[
y2−m

b(2 −m)2 −
1
4

(t + C)2
]

, ρ2
2 = 4

[
x2−n

a(2 − n)2 +
e−νz

cν2

]
;

w = W3(ζ3, ρ3), ζ2
3 = � 4

[
e−νz

cν2 −
1
4

(t + C)2
]

, ρ2
3 = 4

[
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]
.

4.
∂2w

∂t2
= axn ∂2w

∂x2
+ beµy ∂2w

∂y2
+ ceνz ∂2w

∂z2
+ f (w).

1◦. Solution for n ≠ 2, µ ≠ 0, and ν ≠ 0:

w = w(r), r2 =
4
B

[
x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

,

whereB andC are arbitrary constants and the functionw(r) is determined by the ordinary differential
equation

w′′

rr +
2(5 − 3n)

2 − n
1
r
w′

r +Bf (w) = 0.
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2◦. There are “two-dimensional” solutions of the following forms:

w = U (ξ, t), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2

]
;

w = V1(x, η1), η2
1 = � 4

[
e−µy

bµ2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V2(y, η2), η2
2 = � 4

[
x2−n

a(2 − n)2 +
e−νz

cν2 −
1
4

(t + C)2
]

;

w = V3(z, η3), η2
3 = � 4

[
x2−n

a(2 − n)2 +
e−µy

bµ2 −
1
4

(t + C)2
]

;

w = W1(ζ1, ρ1), ζ2
1 = � 4

[
x2−n

a(2 − n)2 −
1
4

(t + C)2
]

, ρ2
1 = 4

[
e−µy

bµ2 +
e−νz

cν2

]
;

w = W2(ζ2, ρ2), ζ2
2 = � 4

[
e−µy

bµ2 −
1
4

(t + C)2
]

, ρ2
2 = 4

[
x2−n

a(2 − n)2 +
e−νz

cν2

]
;

w = W3(ζ3, ρ3), ζ2
3 = � 4

[
e−νz

cν2 −
1
4

(t + C)2
]

, ρ2
3 = 4

[
x2−n

a(2 − n)2 +
e−µy

bµ2

]
.
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Chapter 5

Elliptic Equations
with Two Space Variables

5.1. Equations with Power-Law Nonlinearities

5.1.1. Equations of the Form ∂2w
∂x2 + ∂2w

∂y2 = aw + bwn + cw2n–1

I The general properties of this type of equation are listed in 5.4.1.1; traveling-wave solutions and
solutions with central symmetry are also treated there.

1.
∂2w

∂x2
+

∂2w

∂y2
= kwn.

This is a steady heat and mass transfer equation with annth-order volume reaction in two dimensions.
This equation arises also in combustion theory and is a special case of equation 5.4.1.1 with
f (w) = kwn.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = C2
1w(

�
Cn−1

1 x + C2,
�
Cn−1

1 y + C3),
w2 = w(x cosβ − y sinβ, x sinβ + y cosβ),

whereC1, C2, C3, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Solutions:

w(x, y) = (Ax +By + C)
2

1−n , B =
�
√

k(n − 1)2

2(n + 1)
−A2;

w(x, y) = s

[

(x + C1)2 + (y + C2)2]
1

1−n , s =
[ 1

4 k(1 − n)2]
1

1−n ,

where A, C, C1, and C2 are arbitrary constants.

3◦. Traveling-wave solution in implicit form (generalizes the first solution of Item 2◦):
∫

[

D +
2kwn+1

(n + 1)(A2 +B2)

]−1/2

dw = Ax +By + C,

where A, B, C, and D are arbitrary constants (n ≠ −1).

4◦. Solution (generalizes the second solution of Item 2◦):

w = w(r), r =
√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants, and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
1
r
w′

r = kwn.
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5◦. Self-similar solution:

w(x, y) = (x + C1)
2

1−n u(ξ), ξ =
y + C2

x + C1
,

where the function u(ξ) is determined by the ordinary differential equation

(1 + ξ2)u′′ξξ −
2(1 + n)

1 − n
ξu′ξ +

2(1 + n)
(1 − n)2 u − kun = 0.

6◦. Multiplicative separable solution in polar coordinates (another representation of the solution of
Item 5◦):

w(x, y) = r
2

1−nU (θ), r =
√

(x + C1)2 + (y + C2)2, tan θ =
y + C2

x + C1
,

where the function U = U (θ) is determined by the autonomous ordinary differential equation

U ′′

θθ +
4

(1 − n)2 U = kUn.

Integrating yields the general solution in implicit form:
∫

[

2k
n + 1

Un+1 −
4

(n − 1)2 U
2 + C3

]−1/2

dU = C4 � θ,

where C3 and C4 are arbitrary constants.���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂x2
+

∂2w

∂y2
= aw + bwn.

This is a special case of equation 5.4.1.1 with f (w) = aw + bwn.

1◦. Traveling-wave solutions for a > 0:

w(x, y) =
[

2b sinh2 z

a(n + 1)

]

1
1−n

, z = 1
2
√

a (1 − n)(x sinC1 + y cosC1) + C2 if b(n + 1) > 0,

w(x, y) =
[

−
2b cosh2 z

a(n + 1)

]

1
1−n

, z = 1
2
√

a (1 − n)(x sinC1 + y cosC1) + C2 if b(n + 1) < 0,

where C1 and C2 are arbitrary constants.

2◦. Traveling-wave solutions for a < 0 and b(n + 1) > 0:

w(x, y) =
[

−
2b cos2 z

a(n + 1)

]

1
1−n

, z = 1
2

√

|a| (1 − n)(x sinC1 + y cosC1) + C2.

3.
∂2w

∂x2
+

∂2w

∂y2
= awn + bw2n–1.

This is a special case of equation 5.4.1.1 with f (w) = awn + bw2n−1.
Solutions:

w(x, y) =
[

a(1 − n)2

2(n + 1)
(x sinC1 + y cosC1 + C2)2 −

b(n + 1)
2an

]

1
1−n

,

w(x, y) =
{

1
4
a(1 − n)2[(x + C1)2 + (y + C2)2] −

b

an

}

1
1−n

,

where C1 and C2 are arbitrary constants.
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4.
∂2w

∂x2
+

∂2w

∂y2
= aw – a(n + 1)wn + bw2n–1.

1◦. Traveling-wave solutions:

w(x, y) =
(

λ + C1 exp z
)

1
1−n , z =

√

a (1 − n)(x sinC2 + y cosC2),

where λ = λ1,2 are roots of the quadratic equation aλ2 −a(n+1)λ+b= 0, andC1 andC2 are arbitrary
constants.

2◦. See also equation 5.1.1.5, where the following renaming should be made: b → −a(n + 1) and
c→ b.

5.
∂2w

∂x2
+

∂2w

∂y2
= aw + bwn + cw2n–1.

This is a special case of equation 5.4.1.1 with f (w) = aw + bwn + cw2n−1.

1◦. Traveling-wave solutions for a > 0:

w(x, y) = (A +B cosh z)
1

1−n , z =
√

a (1 − n)(x sinC1 + y cosC1) + C2,

A = −
b

a(n + 1)
, B = �

[

b2

a2(n + 1)2 −
c

an

]1/2

;

w(x, y) = (A +B sinh z)
1

1−n , z =
√

a (1 − n)(x sinC1 + y cosC1) + C2,

A = −
b

a(n + 1)
, B = �

[

c

an
−

b2

a2(n + 1)2

]1/2

,

where C1 and C2 are arbitrary constants (the expressions in square brackets must be nonnegative).

2◦. Traveling-wave solutions for a < 0:

w(x, y) = (A +B cos z)
1

1−n , z =
√

|a| (1 − n)(x sinC1 + y cosC1) + C2,

A = −
b

a(n + 1)
, B = �

[

b2

a2(n + 1)2 −
c

an

]1/2

,

where C1 and C2 are arbitrary constants.

3◦. The substitution u = w1−n leads to an equation of the form 5.1.6.7:

u

(

∂2u

∂x2 +
∂2u

∂y2

)

+
n

1 − n

[(

∂u

∂x

)2

+
(

∂u

∂y

)2]

= a(1 − n)u2 + b(1 − n)u + c(1 − n).

5.1.2. Equations of the Form ∂2w
∂x2 + ∂2w

∂y2 = f (x, y, w)

1.
∂2w

∂x2
+

∂2w

∂y2
= a(x2 + y2)wn.

This is a special case of equation 5.4.1.2 with f (w) = awn.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = C4
1w( � Cn−1

1 x, � Cn−1
1 y),

w2 = w(x cosβ − y sinβ, x sinβ + y cosβ),

where C1 and β are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).
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2◦. The transformation
w = U (z, ζ), z = 1

2 (x2 − y2), ζ = xy
leads to a simpler equation of the form 5.1.1.1:

∂2U

∂z2 +
∂2U

∂ζ2 = aUn.

2.
∂2w

∂x2
+

∂2w

∂y2
= c(ax + by)kwn.

This is a special case of equation 5.4.1.10 with f (z,w) = czkwn.

3.
∂2w

∂x2
+

∂2w

∂y2
= a(x2 + y2)kwn.

This is a special case of equation 5.4.1.3 with f (w) = awn.

4.
∂2w

∂x2
+

∂2w

∂y2
= a(x2 + y2)(xy)kwn.

This is a special case of equation 5.4.1.12 with f (z,w) = azkwn.

5.
∂2w

∂x2
+

∂2w

∂y2
= aeβxwn.

This is a special case of equation 5.4.1.4 with f (w) = awn.

6.
∂2w

∂x2
+

∂2w

∂y2
= keax–bywn.

This is a special case of equation 5.4.1.5 with f (w) = kwn.

7.
∂2w

∂x2
+

∂2w

∂y2
= k

(

w + A11x
2 + A12xy + A22y

2 + B1x + B2y
)n.

This is a special case of equation 5.4.1.14 with f (u) = kun.

5.1.3. Equations of the Form ∂2w
∂x2 + a∂2w

∂y2 = F
(
x, y, w, ∂w

∂x
, ∂w

∂y

)

1.
∂2w

∂x2
+

∂2w

∂y2
= (a1x + b1y + c1)

∂w

∂x
+ (a2x + b2y + c2)

∂w

∂y
+ kwn.

This is a special case of equation 5.4.2.2 with f (w) = kwn.

2.
∂2w

∂x2
+

∂2w

∂y2
+

a

x

∂w

∂x
+

b

y

∂w

∂y
= kwn.

This is a special case of equation 5.4.2.4 with f (ξ,w) = kwn.

3.
∂2w

∂x2
+ a

∂2w

∂y2
= b

(

∂w

∂y

)2

+ cw + � xn.

This is a special case of equation 5.4.2.6 with f (x) = b, g(x) = c, and h(x) = sxn.

4.
∂2w

∂x2
+

∂2w

∂y2
= α

(

∂w

∂y

)2

+ βxny2 + γxmy + µxk.

This is a special case of equation 5.4.2.8 with a = b = 1, f (x) = α, g(x) = h1(x) = h0(x) = p(x) = 0,
q2(x) = βxn, q1(x) = γxm, and q0(x) = µxk.
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5.
∂2w

∂x2
+ a

∂2w

∂y2
= c

(

∂w

∂y

)2

+ bcw2 + kw + � .

Let A be a root of the quadratic equation bcA2 + kA + s = 0.

1◦. Suppose the inequality 2Abc + k + ab = σ2 > 0 holds. Then the equation has the generalized
separable solutions

w(x, y) = A +
[

C1 exp(σx) + C2 exp(−σx)
]

exp
( �
y
√

−b
)

,
where C1 and C2 are arbitrary constants.

2◦. If 2Abc + k + ab = −σ2 < 0, then the equation has the generalized separable solutions
w(x, y) = A +

[

C1 cos(σx) + C2 sin(σx)
]

exp
( �
y
√

−b
)

.
3◦. For more complicated solutions, see equation 5.4.2.7 with f (x) = c, g(x) = k, and h(x) = s.

6.
∂2w

∂x2
+ a

∂2w

∂y2
= cxn

(

∂w

∂y

)2

+ bcxnw2 + kxmw + � xl.

This is a special case of equation 5.4.2.7 with f (x) = cxn, g(x) = kxm, and h(x) = sxl.

7.
∂2w

∂x2
+ a

∂2w

∂y2
= ceβx

(

∂w

∂y

)2

+ bceβxw2 + keµxw + � eνx.

This is a special case of equation 5.4.2.7 with f (x) = ceβx, g(x) = keµx, and h(x) = seνx.

8.
∂2w

∂x2
+

∂2w

∂y2
= awn

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

This is a special case of equation 5.4.2.9 with f (w) = awn. The substitution

U =
∫

exp
(

−
a

n + 1
wn+1

)

dw

leads to the two-dimensional Laplace equation for U = U (x, y):
∂2U

∂x2 +
∂2U

∂y2 = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

9.
∂2w

∂x2
+

∂2w

∂y2
= α

(

∂w

∂x

)n

+ β

(

∂w

∂y

)m

+ kw.

This is a special case of equation 5.4.2.10 with a = b = 1, f (x) = α, and g(y) = β.

10.
∂2w

∂x2
+

∂2w

∂y2
= (a1x + b1y + c1)

(

∂w

∂x

)k

+ (a2x + b2y + c2)
(

∂w

∂y

)k

.

This is a special case of equation 5.4.2.12 with f (w,u, v) = 0.

5.1.4. Equations of the Form ∂
∂x

[
f1(x,y)∂w

∂x

]
+ ∂

∂y

[
f2(x,y)∂w

∂y

]
=g(w)

I Equations of this form are encountered in stationary problems of heat and mass transfer and
combustion theory. Here, f1 and f2 are the principal thermal diffusivities (diffusion coefficients)
dependent on the space coordinates x and y, and g = g(w) is a source function that defines the law
of heat (substance) release or absorption.

1.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= cwk.

This is a special case of equation 5.4.3.1 with f (w) = cwk .
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1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C1w
(

C
k−1
2−n

1 x, C
k−1
2−m

1 y
)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
A

ξ
w′

ξ = Bwk , (1)

where
A =

4 − nm
(2 − n)(2 −m)

, B =
4c

ab(2 − n)2(2 −m)2 .

3◦. Below are some exact solutions of equation (1).
3.1. Equation (1) admits an exact solution of the form

w =
[

2(1 + k + A −Ak)
B(1 − k)2

]

1
k−1

ξ
2

1−k

with k ≠ 1.
3.2. For m = 4/n, the exact solution can be represented in implicit form as

∫
[

C1 +
2cn2wk+1

ab(k + 1)(2 − n)4

]−1/2

dw = C2 	 ξ,

where C1 and C2 are arbitrary constants.
3.3. The substitution ζ = ξ1−A brings (1) to the Emden–Fowler equation

w′′

ζζ =
B

(1 −A)2 ζ
2A

1−Awk . (2)

Over 20 exact solutions to equation (2) for various values of k can be found in Polyanin and Zaitsev
(2003).

2.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= cwm.

This is a special case of equation 5.4.3.8 with f (w) = cwm.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C1w
(

C
m−1
2−n

1 x, y +
1 −m
µ

lnC1

)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution for n ≠ 2 and µ ≠ 0:

w = w(ξ), ξ =
[

bµ2x2−n + a(2 − n)2e−µy]1/2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
n

2 − n
1
ξ
w′

ξ =
4c

abµ2(2 − n)2 w
m.

3.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= cwm.

This is a special case of equation 5.4.3.6 with f (w) = cwm.
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1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C1w
(

x +
1 −m
β

lnC1, y +
1 −m
µ

lnC1

)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution for βµ ≠ 0:

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ −
1
ξ
w′

ξ = Awm, A =
4c

abβ2µ2 . (1)

3◦. Below are some exact solutions of equation (1).
3.1. Equation (1) admits a solution of the form

w =
[

abmβ2µ2

c(1 −m)2

]

1
m−1

ξ
2

1−m .

3.2. The substitution ζ = ξ2 brings (1) to the Emden–Fowler equation

w′′

ζζ = 1
4Aζ

−1wm,

whose solutions with m = −1 and m = −2 can be found in Polyanin and Zaitsev (2003).

4.
∂

∂x

[

(ay + c)
∂w

∂x

]

+
∂

∂y

[

(bx + 
 )
∂w

∂y

]

= kwn.

This is a special case of equation 5.4.4.1 with f (w) = kwn.
The equation can be rewritten in the simpler form

(ay + c)
∂2w

∂x2 + (bx + s)
∂2w

∂y2 = kwn.

5.
∂

∂x

[

(a1x + b1y + c1)
∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2)
∂w

∂y

]

= kwn.

This is a special case of equation 5.4.4.2 with f (w) = kwn.

5.1.5. Equations of the Form ∂
∂x

[
f1(w) ∂w

∂x

]
+ ∂

∂y

[
f2(w) ∂w

∂y

]
= g(w)

I Equations of this form are encountered in stationary problems of heat and mass transfer and
combustion theory. Here, f1 = f1(w) and f2 = f2(w) are the temperature (concentration) dependent
principal thermal diffusivities (diffusion coefficients), and g = g(w) is a source function that defines
the law of heat (substance) release or absorption. Simple solutions dependent on a single space
variable, w = w(x) and w = w(y), are not considered in this subsection.

1.
∂2w

∂x2
+

∂

∂y

[

(αw + β)
∂w

∂y

]

= 0.

Stationary Khokhlov–Zabolotskaya equation (for α = 1 and β = 0). It arises in acoustics, nonlinear
mechanics, and heat and mass transfer theory. This is a special case of equation 5.4.4.8 with f (w) = 1
and g(w) = αw + β.
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1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 =
C2

1
C2

2
w(C1x + C3,C2y + C4) +

β

α

(

C2
1

C2
2

− 1
)

,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:
w(x, y) = Ay − 1

2A
2αx2 + C1x + C2,

w(x, y) = (Ax +B)y −
α

12A2 (Ax +B)4 + C1x + C2,

w(x, y) = −
1
α

(

y +A
x +B

)2

+
C1

x +B
+ C2(x +B)2 −

β

α
,

w(x, y) = −
1
α

[

β + λ2 � √

A(y + λx) +B
]

,

w(x, y) = (Ax +B)
√

C1y + C2 −
β

α
,

where A, B, C1, C2, and λ are arbitrary constants. The first two solutions are linear in y, the third
is quadratic in y, and the fourth one is a traveling-wave solution.

3◦. Generalized separable solution quadratic in y (generalizes the third solution of Item 2◦):

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x),

where the functions ϕ = ϕ(x), ψ = ψ(x), and χ = χ(x) are determined by the system of ordinary
differential equations

ϕ′′

xx + 6αϕ2 = 0, (1)
ψ′′

xx + 6αϕψ = 0, (2)
χ′′

xx + 2αϕχ = −2βϕ − αψ2. (3)

The nonlinear autonomous equation (1) is independent of the others; its solution can be expressed
in terms elliptic integrals. Equations (2) and (3) are solved successively (these are linear in the
unknowns ψ and χ, respectively).

System (1)–(3) admits the following five-parameter family of solutions:

ϕ(x) = −
1

α(x +A)2 ,

ψ(x) =
B1

(x +A)2 +B2(x +A)3,

χ(x) =
C1

x +A
+ C2(x +A)2 −

β

α
−

αB2
1

4(x +A)2 −
1
2
αB1B2(x +A)3 −

1
54
αB2

2 (x +A)8,

where A, B1, B2, C1, and C2 are arbitrary constants.

4◦. Solution in parametric form:

x = C1wt + C2w + C3t + C4,

y = 1
2C1t

2 + C2t − 1
3αC1w

3 − 1
2 (αC3 + βC1)w2 − βC3w + C5.

5◦. Solution in parametric form:

x = C1t
2 + C2wt + C3t + C4w − C1

( 1
3αw

3 + βw2) + C5,

y = 1
2C2t

2 + C4t − C1t
(

αw2 + 2βw
)

− 1
3αC2w

3 − 1
2 (αC3 + βC2)w2 − βC3w + C6.
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6◦. Self-similar solution (A and B are arbitrary constants):

w = w(ζ), ζ =
x +A
y +B

where the function w(ζ) is determined by the ordinary differential equation

w′′

ζζ + [ζ2(αw + β)w′

ζ]′ζ = 0.

On integrating the equation once and taking w to be the independent variable, one obtains a Riccati
equation for ζ = ζ(w):

Cζ ′w = (αw + β)ζ2 + 1,

where C is an arbitrary constant. The general solution to this equation can be expressed in terms of
Bessel functions; see Polyanin and Zaitsev (2003).

7◦. Solution (generalizes the last solution of Item 2◦):

w(x, y) =
1
α
f (x)g(y) −

β

α
.

The functions f (x) and g(y) are determined by the autonomous ordinary differential equations
(A is an arbitrary constant)

f ′′

xx = Af 2, (gg′y)′y = −Ag, (4)

which are independent. Integrating the equations of (4) yields their general solutions in implicit
form:

C1 � x =
∫

( 2
3Af

3 +B1
)−1/2

df ,

C2 � y =
∫

g
(

− 2
3Ag

3 +B2
)−1/2

dg,

where B1, B2, C1, and C2 are arbitrary constants.

8◦. Solution (A, B, and k are arbitrary constants):

w =
1
α

(x +A)2kF (z) −
β

α
, z =

y +B
(x +A)k+1 ,

where the function F = F (z) is determined by solving the generalized-homogeneous ordinary
differential equation

2k(2k − 1)F − (k + 1)(3k − 2)zF ′

z + (k + 1)2z2F ′′

zz + (FF ′

z)′z = 0.

Its order can be reduced.

9◦. Solution (A and λ are arbitrary constants):

w =
1
α
e−2λx

Φ(u) −
β

α
, u = (y +A)eλx,

where the function Φ = Φ(u) is determined by solving the generalized-homogeneous ordinary
differential equation

4λ2
Φ − 3λ2uΦ′

u + λ2u2
Φ

′′

uu + (ΦΦ
′

u)′u = 0.

Its order can be reduced.

10◦. Solution (A, B, and C are arbitrary constants):

w =
1
α

( � x +A)−2
Ψ(ξ) −

β

α
, ξ = y +B ln( � x +A) + C,

where the function Ψ = Ψ(ξ) is determined by the autonomous ordinary differential equation

6Ψ − 5BΨ
′

ξ + B2
Ψ

′′

ξξ + (ΨΨ
′

ξ)
′

ξ = 0.

Its order can be reduced.
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11◦+. Solution:

w = U (η) − 4αC2
1x

2 − 4αC1C2x, η = y + αC1x
2 + αC2x,

where C1 and C2 are arbitrary constants and the function U (η) is determined by the first-order
ordinary differential equation

(αU + β + α2C2
2 )U ′

η + 2αC1U = 8αC2
1η + C3.

Through appropriate translations in both variables, one can make the equation homogeneous, which
means that the equation is integrable by quadrature.

12◦. The original equation can be rewritten as the system of equations

∂w

∂x
=
∂v

∂y
, −(αw + β)

∂w

∂y
=
∂v

∂x
.

The hodograph transformationx = x(w, v), y = y(w, v) (w and v treated as the independent variables,
and x and y, as the dependent ones) brings it to the linear system

∂y

∂v
=
∂x

∂w
, −(αw + β)

∂x

∂v
=
∂y

∂w
.

On eliminating y, one obtains a linear equation for x = x(w, v):

∂2x

∂w2 + (αw + β)
∂2x

∂v2 = 0.

13◦. Let w(x, y) be any solution of the Khokhlov–Zabolotskaya equation (with α = 1 and β = 0).
Then the ordinary differential equation

u′′tt = F (t,u), F (t,u) =
1

9ϕ

(

∂v

∂u
+ 3ϕ′′

ttu + 3ψ′

t

)

,

where

v = −ϕ1/3w(x, y) − ϕ−1(ϕ′

tu + ψ)2, x =
1
3

∫

ϕ−2/3 dt, y = ϕ−1/3u −
1
3

∫

ϕ−4/3ψ dt,

and ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions, has a first integral cubic in u′

t.��
References for equation 5.1.5.1: Y. Kodama and J. Gibbons (1989), V. V. Kozlov (1995), V. F. Zaitsev and A. D. Polyanin

(2001), A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂x2
+

∂

∂y

(

1
αw + β

∂w

∂y

)

= 0.

1◦. Solutions:

w(x, y) =
−A2x2 +Bx + C
α(Ay +D)2 −

β

α
,

w(x, y) =
p2

Aα

Ax2 +Bx + C
cosh2(py + q)

−
β

α
,

w(x, y) = −
p2

Aα

Ax2 +Bx + C
sinh2(py + q)

−
β

α
,

w(x, y) = −
p2

Aα

Ax2 +Bx + C
cos2(py + q)

−
β

α
,

where A, B, C, D, p, and q are arbitrary constants.
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2◦. Solution in parametric form:

x = C1wt + C2w + C3t + C4,

y =
1
2
C1t

2 + C2t −
C1

α
w −

1
α2 (αC3 − βC1) ln |αw + β| + C5,

where C1, . . . , C5 are arbitrary constants.

3◦. For other exact solutions, see equation 5.4.4.8 with f (w) = 1 and g(w) = (αw + β)−1.

4◦. The substitution αw +β = eU leads to an equation of the form 5.2.4.1 (with swapped variables,
x � y):

∂

∂x

(

eU
∂U

∂x

)

+
∂2U

∂y2 = 0.

3.
∂2w

∂x2
+

∂

∂y

(

α
√

w + β

∂w

∂y

)

= 0.

The substitution U =
1
α

√

w + β leads to the equation

∂

∂x

(

U
∂U

∂x

)

+
∂2U

∂y2 = 0.

Up to the swap of the coordinates (x � y) and renaming the unknown function, this equation
coincides with a special case of 5.1.5.1.

4.
∂

∂x

[

(α1w + β1)
∂w

∂x

]

+
∂

∂y

[

(α2w + β2)
∂w

∂y

]

= γ.

1◦. Traveling-wave solutions linear in the coordinates:

w(x, y) = Ax �
√

γ −A2α1

α2
y +B,

where A and B are arbitrary constants.

2◦. Traveling-wave solution in implicit form:

(A2α1 +B2α2)w2 + 2(A2β1 +B2β2)w = γ(Ax +By)2 + C1(Ax +By) + C2,

where A, B, C1, and C2 are arbitrary constants.

3◦. For other solutions with γ = 0, see 5.4.4.8 with f (w) = α1w + β1 and g(w) = α2w + β2.

5.
∂

∂x

(

wm ∂w

∂x

)

+
∂

∂y

(

wm ∂w

∂y

)

= αwn.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C2
1w( � Cn−m−1

1 x + C2, � Cn−m−1
1 y + C3),

w2 = w(x cosβ − y sinβ, x sinβ + y cosβ),

whereC1, C2, C3, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. For m ≠ −1, the substitution U = wm+1 leads to an equation of the form 5.1.1.1:

∂2U

∂x2 +
∂2U

∂y2 = α(m + 1)U
n
m+1 .

3◦. For m = −1, the substitution w = eV leads to an equation of the form 5.2.1.1:

∂2V

∂x2 +
∂2V

∂y2 = αenV .
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6.
∂

∂x

(

awn ∂w

∂x

)

+
∂

∂y

(

bwm ∂w

∂y

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = C−2
1 w( � Cn1 C2x + C3, � Cm1 C2y + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Multiplicative separable solution:

w(x, y) = f (x)g(y). (1)

The functions f (x) and g(y) are determined by the autonomous ordinary differential equations
(A is an arbitrary constant)

(fnf ′

x)′x = Abfm+1, (gmg′y)′y = −Aagn+1, (2)

which are independent. Integrating the equations of (2) yields their general solutions in implicit
form:

∫

fn
(

2Ab
n +m + 2

fn+m+2 +B1

)−1/2

df = C1 � x,

∫

gm
(

−
2Aa

n +m + 2
gn+m+2 +B2

)−1/2

dg = C2 � y,

where B1, B2, C1, and C2 are arbitrary constants; n +m + 2 ≠ 0.

3◦. There are exact solutions of the following forms:

w(x, y) = x−2kF (z), z = yxmk−nk−1,

w(x, y) = x
2

n−mG(ξ), ξ = y + k lnx,

w(x, y) = e2xH(η), η = ye(n−m)x,

where k is an arbitrary constant.

4◦. For other exact solutions of the original equation, see 5.4.4.8 with f (w) = awn and g(w) = bwm.

7. a1
∂

∂x

(

wn ∂w

∂x

)

+ a2
∂

∂y

(

wm ∂w

∂y

)

= bwk.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C2
1w( � Ck−n−1

1 x + C2, � Ck−m−1
1 y + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. There are exact solutions of the following forms:

w(x, y) = F (ξ), ξ = α1x + α2y traveling-wave solution;

w(x, y) = x
2

n−k+1 U (z), z = yx
k−m−1
n−k+1 self-similar solution.

5.1.6. Other Equations Involving Arbitrary Parameters

1.
∂2w

∂x2
+ aw4 ∂2w

∂y2
= bynw5.

This is a special case of equation 5.4.5.1 with f (y) = byn.
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2.
∂2w

∂x2
+ aw4 ∂2w

∂y2
= beβyw5.

This is a special case of equation 5.4.5.1 with f (y) = beβy.

3. axn ∂2w

∂x2
+ bym ∂2w

∂y2
= cwk.

This is a special case of equation 5.4.5.5 with k = s = 0 and f (w) = cwk.

1◦. Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
A

ξ
w′

ξ = Bwk , (1)

where
A =

3nm − 4n − 4m + 4
(2 − n)(2 −m)

, B =
4c

ab(2 − n)2(2 −m)2 .

2◦. Below are some exact solutions of equation (1).
2.1. For k ≠ 1, equation (1) admits an exact solution of the form

w =
[

2(1 + k +A −Ak)
B(1 − k)2

]

1
k−1

ξ
2

1−k .

2.2. For m =
4n − 4
3n − 4

, the general solution of (1) is written out in implicit form as

∫
[

C1 +
2c(3n − 4)2wk+1

ab(k + 1)(2 − n)4

]−1/2

dw = C2 � ξ,

where C1 and C2 are arbitrary constants.
2.3. The substitution ζ = ξ1−A brings (1) to the Emden–Fowler equation

w′′

ζζ =
B

(1 −A)2 ζ
2A

1−Awk . (2)

Over 20 exact solutions to equation (2) for various values of k can be found in Polyanin and Zaitsev
(2003).

4. axn ∂2w

∂x2
+ beβy ∂2w

∂y2
= cwm.

This is a special case of equation 5.4.5.9 with k = s = 0 and f (w) = cwm.

5. aeβx ∂2w

∂x2
+ beµy ∂2w

∂y2
= cwm.

This is a special case of equation 5.4.5.7 with k = s = 0 and f (w) = cwm.

1◦. Functional separable solution for βµ ≠ 0:

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
3
ξ
w′

ξ = Awm, A =
4c

abβ2µ2 . (1)
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2◦. Below are some exact solutions of equation (1).
2.1. There is a solution of the form

w(ξ) =
[

ab(2 −m)β2µ2

c(1 −m)2

]

1
m−1

ξ
2

1−m .

2.2. The substitution ζ = ξ−2 brings (1) to the Emden–Fowler equation

w′′

ζζ = 1
4Aζ

−3wm,

whose solution for m = 3 can be found in Polyanin and Zaitsev (2003).

6. w

(

∂2w

∂x2
+

∂2w

∂y2

)

–
(

∂w

∂x

)2

–
(

∂w

∂y

)2

= αwβ.

The substitution w = eU leads to an equation of the form 5.2.1.1:

∂2U

∂x2 +
∂2U

∂y2 = αe(β−2)U .

7. w

(

∂2w

∂x2
+

∂2w

∂y2

)

+ σ

[(

∂w

∂x

)2

+
(

∂w

∂y

)2]

= αw2 + βw + γ.

1◦. Traveling-wave solutions for α(1 + σ) > 0:

w(x, y) =A1 +B1 cosh z, z =
√

α

1 + σ
k1x + k2y
√

k2
1 + k2

2

+ C,

A1 = −
β

α

1 + σ
1 + 2σ

, B1 = �
√

β2(1 + σ)2

α2(1 + 2σ)2 −
γ(1 + σ)
ασ

;

w(x, y) =A2 +B2 sinh z, z =
√

α

1 + σ
k1x + k2y
√

k2
1 + k2

2

+ C,

A2 = −
β

α

1 + σ
1 + 2σ

, B2 = �
√

γ(1 + σ)
ασ

−
β2(1 + σ)2

α2(1 + 2σ)2 ,

where k1, k2, and C are arbitrary constants.

2◦. Traveling-wave solutions for α(1 + σ) < 0:

w(x, y) = A +B cos z, z =
√

−
α

1 + σ
k1x + k2y
√

k2
1 + k2

2

+ C,

A = −
β

α

1 + σ
1 + 2σ

, B = �
√

β2(1 + σ)2

α2(1 + 2σ)2 −
γ(1 + σ)
ασ

,

where k1, k2, and C are arbitrary constants.

3◦. Solution:
w = w(r), r =

√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants and the function w(r) is determined by the ordinary
differential equation

ww′′

rr +
1
r
ww′

r + σ
(

w′

r

)2 = αw2 + βw + γ.
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4◦. For γ = 0, apart from the solutions presented in Items 1◦ to 3◦, other solutions can be constructed.
To this end, we apply the change of variable w = u2 to the original equation to obtain

u

(

∂2u

∂x2 +
∂2u

∂y2

)

+ (1 + 2σ)
[(

∂u

∂x

)2

+
(

∂u

∂y

)2]

= 1
2αu

2 + 1
2β.

This equation is a special case of the original one. It follows that its solution can be obtained with the
formulas given in Items 1◦ and 2◦, where variables and parameters should be renamed as follows:
σ → 1 + 2σ, α→ 1

2α, β → 0, and γ → 1
2β.

5◦. Solutions for α = 0:

w(x, y) =
β

2(1 + 2σ)

(

k1x + k2y
√

k2
1 + k2

2

+ C
)2

−
γ(1 + 2σ)

2βσ
,

w(x, y) =
β

4(1 + σ)
[

(x + C1)2 + (y + C2)2] −
γ(1 + σ)
βσ

,

where k1, k2, C, C1, and C2 are arbitrary constants.���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

8.
∂

∂x

[

(a1x + b1y + c1w + k1)
∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2w + k2)
∂w

∂y

]

= 0.

This is a special case of equation 5.4.4.10 with f (w) = c1w + k1 and g(w) = c2w + k2.

9.
∂

∂x

[

(a1x + b1y + c1w
n)

∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2w
k)

∂w

∂y

]

= 0.

This is a special case of equation 5.4.4.10 with f (w) = c1w
n and g(w) = c2w

k.

10. a
∂w

∂x

∂2w

∂x2
+

∂2w

∂y2
= 0.

This is an equation of steady transonic gas flow.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function
w1 = C−3

1 C2
2w(C1x + C3,C2y + C4) + C5y + C6,

where C1, . . . , C6 are arbitrary constants, is also a solution of the equation.���
Reference: N. H. Ibragimov (1985).

2◦. Solutions:
w(x, y) = C1xy + C2x + C3y + C4,

w(x, y) = −
(x + C1)3

3a(y + C2)2 + C3y + C4,

w(x, y) =
a2C3

1
39

(y +A)13 +
2
3
aC2

1 (y +A)8(x +B) + 3C1(y +A)3(x +B)2 −
(x +B)3

3a(y +A)2 ,

w(x, y) = −aC1y
2 + C2y + C3 � 4

3C1
(C1x + C4)3/2,

w(x, y) = −aA3y2 −
B2

aA2 x + C1y + C2 � 4
3

(Ax +By + C3)3/2,

w(x, y) =
1
3

(Ay +B)(2C1x + C2)3/2 −
aC3

1
12A2 (Ay +B)4 + C3y + C4,

w(x, y) = −
9aA2

y + C1
+ 4A

(

x + C2

y + C1

)3/2

−
(x + C2)3

3a(y + C1)2 + C3y + C4,

w(x, y) = −
3
7
aA2(y + C1)7 + 4A(x + C2)3/2(y + C1)5/2 −

(x + C2)3

3a(y + C1)2 + C3y + C4,

where A, B, C1, . . . , C4 are arbitrary constants (the first solution is degenerate).
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3◦. Self-similar solution:
w(x, y) = y−3k−2U (z), z = xyk,

where k is an arbitrary constant, and the functionU =U (z) is determined by the ordinary differential
equation

aU ′

zU
′′

zz + k2z2U ′′

zz − 5k(k + 1)zU ′

z + 3(k + 1)(3k + 2)U = 0.

4◦. Generalized separable solution:

w(x, y) = ϕ1(y) + ϕ2(y)x3/2 + ϕ3(y)x3,

where the functions ϕk = ϕk(y) are determined by the autonomous system of ordinary differential
equations

ϕ′′

1 + 9
8 aϕ

2
2 = 0,

ϕ′′

2 + 45
4 aϕ2ϕ3 = 0,

ϕ′′

3 + 18aϕ2
3 = 0,

where the prime stands for the differentiation with respect to y. The general solution of the first
equation can be written out in implicit form (it is expressed in terms of the Weierstrass function).

5◦. Generalized separable solution cubic in x:

w(x, y) = ψ1(y) + ψ2(y)x + ψ3(y)x2 + ψ4(y)x3,

where the functions ψk = ψk(y) are determined by the autonomous system of ordinary differential
equations

ψ′′

1 + 2aψ2ψ3 = 0,

ψ′′

2 + 2a(2ψ2
3 + 3ψ2ψ4) = 0,

ψ′′

3 + 18aψ3ψ4 = 0,

ψ′′

4 + 18aψ2
4 = 0.

A particular solution of the system is given by

ψ1(y) = −2a
∫ y

y0

(y − t)ψ2(t)ψ3(t) dt +B1y +B2,

ψ2(y) = C3(y +A)−1 + C4(y +A)2 − aC2
1 (y +A)−2 − 2aC1C2(y +A)3 −

2
27
aC2

2 (y +A)8,

ψ3(y) = C1(y +A)−2 + C2(y +A)3, ψ4(y) = −
1

3a
(y +A)−2,

where A, B1, B2, C1, . . . , C4 are arbitrary constants and y0 is any number.

6◦. Generalized separable solution:

w(x, y) = η(y)θ(x) − aC1

∫ y

0
(y − t)η2(t) dt + C2y + C3,

whereC1,C2, andC3 are arbitrary constants, and the functions η(y) and θ(x) satisfy the autonomous
ordinary differential equations (C4 is an arbitrary constant)

η′′yy + aC4η
2 = 0, (1)

θ′xθ
′′

xx = C4θ + C1. (2)

The solutions to equations (1) and (2) can be written out in implicit form:
∫

(

C5 − 2
3 aC4η

3)−1/2
dη = C6 � y,

∫

( 3
2C4θ

2 + 3C1θ + C7
)−1/3

dθ = x + C8,

where C5, C6, C7, and C8 are arbitrary constants.���
References for equation 5.1.6.10: S. S. Titov (1988), S. R. Svirshchevskii (1995), A. D. Polyanin and V. F. Zaitsev

(2002).
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11.
∂2w

∂y2
+

a

y

∂w

∂y
+ b

∂w

∂x

∂2w

∂x2
= 0.

For b < 0, this equation describes a transonic gas flow.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−3
1 C2

2w(C1x + C3,C2y) + C4y
1−a + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, y) = −
bC1

4(a + 1)
y2 + C2y

1−a + C3 � 2
3C1

(C1x + C4)3/2,

where C1, . . . , C4 are arbitrary constants.

3◦. Generalized separable solutions:

w(x, y) = −
9A2b

16(n + 1)(2n + 1 + a)
(y + C1)2n+2 +A(y + C1)n(x + C2)3/2 +

a − 3
9b

(x + C2)3

(y + C1)2 ,

where A, C1, and C2 are arbitrary constants, and the n = n1,2 are roots of the quadratic equation

n2 + (a − 1)n + 5
4 (a − 3) = 0.

4◦. Generalized separable solution:

w(x, y) = (Ay1−a + B)(2C1x + C2)3/2 + 9bC3
1θ(y),

where A, B, C1, and C2 are arbitrary constants, and the function θ = θ(y) is determined by the
second-order linear ordinary differential equation

θ′′yy +
a

y
θ′y + (Ay1−a +B)2 = 0.

Integrating yields

θ(y) = −
B2

2(a + 1)
y2 −

AB

3 − a
y3−a −

A2

2(2 − a)(3 − a)
y4−2a + C3y

1−a + C4.

5◦. Self-similar solution:
w(x, y) = y−3k−2U (z), z = xyk,

where k is an arbitrary constant, and the functionU =U (z) is determined by the ordinary differential
equation

bU ′

zU
′′

zz + k2z2U ′′

zz + k(a − 5k − 5)zU ′

z + (3k + 2)(3k + 3 − a)U = 0.

6◦. Generalized separable solution:

w(x, y) = ϕ1(y) + ϕ2(y)x3/2 + ϕ3(y)x3,

where the functions ϕk = ϕk(y) are determined by the system of ordinary differential equations

ϕ′′

1 +
a

y
ϕ′

1 +
9
8
bϕ2

2 = 0,

ϕ′′

2 +
a

y
ϕ′

2 +
45
4
bϕ2ϕ3 = 0,

ϕ′′

3 +
a

y
ϕ′

3 + 18bϕ2
3 = 0,

where the prime stands for the differentiation with respect to y.
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7◦. Generalized separable solution cubic in x:

w(x, y) = ψ1(y) + ψ2(y)x + ψ3(y)x2 + ψ4(y)x3,

where the functions ψk = ψk(y) are determined by the system of ordinary differential equations

ψ′′

1 +
a

y
ψ′

1 + 2bψ2ψ3 = 0,

ψ′′

2 +
a

y
ψ′

2 + 2b(2ψ2
3 + 3ψ2ψ4) = 0,

ψ′′

3 +
a

y
ψ′

3 + 18bψ3ψ4 = 0,

ψ′′

4 +
a

y
ψ′

4 + 18bψ2
4 = 0.

8◦. Generalized separable solution:

w(x, y) = ξ(y) + η(y)θ(x).

Here, the functions ξ(y) and η(y) are determined by the system of ordinary differential equations

η′′yy +
a

y
η′y + bC1η

2 = 0,

ξ′′yy +
a

y
ξ′y + bC2η

2 = 0,

whereC1 andC2 are arbitrary constants, and the function θ = θ(x) is determined by the autonomous
ordinary differential equation

θ′xθ
′′

xx = C1θ + C2.

Its solution can be written out in implicit form:
∫

( 3
2C1θ

2 + 3C2θ + C3
)−1/3

dθ = x + C4,

where C3 and C4 are arbitrary constants.���
References for equation 5.1.6.11: S. S. Titov (1988), S. R. Svirshchevskii (1995), A. D. Polyanin and V. F. Zaitsev

(2002).

5.2. Equations with Exponential Nonlinearities

5.2.1. Equations of the Form ∂2w
∂x2 + ∂2w

∂y2 = a + beβw + ceγw

1.
∂2w

∂x2
+

∂2w

∂y2
= aeβw.

This equation occurs in combustion theory and is a special case of equation 5.4.1.1 with f (w) =aeβw.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = w( � Cβ1 x + C2, � Cβ1 y + C3) + 2 ln |C1|,
w2 = w(x cosλ − y sinλ, x sinλ + y cosλ),

whereC1, C2, C3, and λ are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).
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2◦. Solutions:

w(x, y) =
1
β

ln
[

2(A2 +B2)
aβ(Ax +By + C)2

]

if aβ > 0,

w(x, y) =
1
β

ln
[

2(A2 +B2)
aβ sinh2(Ax +By + C)

]

if aβ > 0,

w(x, y) =
1
β

ln
[

−2(A2 +B2)
aβ cosh2(Ax +By + C)

]

if aβ < 0,

w(x, y) =
1
β

ln
[

2(A2 +B2)
aβ cos2(Ax +By + C)

]

if aβ > 0,

w(x, y) =
1
β

ln
(

8C
aβ

)

−
2
β

ln
∣

∣(x +A)2 + (y +B)2 − C
∣

∣,

where A, B, and C are arbitrary constants. The first four solutions are of traveling-wave type and
the last one is a radial symmetric solution with center at the point (−A, −B).

Example. For a = β = 1, the boundary value problem for the circle r =
√

x2 + y2 ≤ 1 with the boundary condition
w

∣∣
r=1 = 0 has the following two solutions (see the last solution in Item 2◦ with a = β = 1, A = B = 0, and C = k):

w(r) = ln
8k

(k − r2)2 , k = 5 � 2
√

6.

The first solution is bounded at every point inside the circle, r ≤ 1, and the second one has a singularity at the circumference
r =

√

k.���
References: D. A. Frank-Kamenetskii (1987), V. F. Zaitsev and A. D. Polyanin (1996).

3◦. Functional separable solutions:

w(x, y) = −
2
β

ln
[

C1e
ky  

√

2aβ
2k

cos(kx + C2)
]

,

w(x, y) =
1
β

ln
2k2(B2 −A2)

aβ[A cosh(kx + C1) +B sin(ky + C2)]2 ,

w(x, y) =
1
β

ln
2k2(A2 +B2)

aβ[A sinh(kx + C1) +B cos(ky + C2)]2 ,

where A, B, C1, C2, and k are arbitrary constants (x and y can be swapped to give another three
solutions).���

Reference: S. N. Aristov (1999).

4◦. General solution:

w(x, y) = −
2
β

ln

√

|a|β2
[

1 + sign(aβ)Φ(z)Φ(z)
]

4|Φ′

z(z)|
,

where Φ = Φ(z) is an arbitrary analytic (holomorphic) function of the complex variable z = x + iy
with nonzero derivative, and the bar over a symbol denotes the complex conjugate.���

References: I. N. Vekua (1960), I. Kh. Sabitov (2001).

5◦. The original equation is related to the linear equation

∂2U

∂x2 +
∂2U

∂y2 = 0 (1)

by the Bäcklund transformation

∂U

∂x
+ 1

2β
∂w

∂y
=

( 1
2aβ

)1/2 exp
( 1

2βw
)

sinU , (2)

∂U

∂y
− 1

2β
∂w

∂x
=

( 1
2aβ

)1/2 exp
( 1

2βw
)

cosU . (3)
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Suppose there is a (particular) solution U = U (x, y) of the Laplace equation (1). Then (2) can
be treated as a first-order ordinary differential equation for w = w(y) with parameter x, which can
be reduced to a linear equation with the help of the change of variable z = exp

(

− 1
2βw). Finally, we

have

w = −
2
β
F −

2
β

ln
[

Ψ(x) − k
∫

e−F sinU dy
]

, F =
∫

(

∂U

∂x

)

dy,

where k =
( 1

2aβ
)1/2; in the integration x is treated as a parameter. The function Ψ(x) is determined

after substituting this expression for w into equation (3).!�"
Reference: R. K. Bullough and P. J. Caudrey (1980).

2.
∂2w

∂x2
+

∂2w

∂y2
= aeβw + be2βw.

1◦. Traveling-wave solution for bβ > 0:

w(x, y) = −
1
β

ln
{

−
b

a
+ C1 exp

[

a

√

β

b

(

x sinC2 + y cosC2
)

]}

,

where C1 and C2 are arbitrary constants.

2◦. Traveling-wave solution (generalizes the solution of Item 1◦):

w(x, y) = −
1
β

ln
[

−
aβ

C2
1 + C2

2
+ C3 exp(C1x + C2y) +

a2β2 − bβ(C2
1 + C2

2 )
4C3(C2

1 + C2
2 )2 exp(−C1x − C2y)

]

,

where C1, C2, and C3 are arbitrary constants.

3◦. Traveling-wave solution:

w(x, y) = −
1
β

ln
[

aβ

C2
1 + C2

2
+

√

a2β2 + bβ(C2
1 + C2

2 )
C2

1 + C2
2

sin(C1x + C2y + C3)
]

.

3.
∂2w

∂x2
+

∂2w

∂y2
= aeβw – be–βw.

The transformation
w(x, y) = u(x, y) + k, k =

1
2β

ln
b

a

leads to an equation of the form 5.3.1.1:

∂2u

∂x2 +
∂2u

∂y2 = 2
√

ab sinh(βu).

4.
∂2w

∂x2
+

∂2w

∂y2
= aeβw + be–2βw.

Functional separable solution:

w(x, y) =
1
β

ln[ϕ(x) + ψ(y)],

where the functionsϕ(x) andψ(y) are determined by the first-order autonomous ordinary differential
equations

(ϕ′

x)2 = 2aβϕ3 + C1ϕ
2 + C2ϕ + C3,

(ψ′

y)2 = 2aβψ3 − C1ψ
2 + C2ψ − C3 − bβ,

whereC1,C2, andC3 are arbitrary constants. Solving these equations for the derivatives, one obtains
separable equations.!�"

References: A. M. Grundland and E. Infeld (1992), J. Miller (Jr.) and L. A. Rubel (1993), R. Z. Zhdanov (1994),
V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).
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5.
∂2w

∂x2
+

∂2w

∂y2
= a + beβw + ce2βw.

The substitution u = e−βw leads to a equation with a quadratic nonlinearity of the form 5.1.6.7:

u

(

∂2u

∂x2 +
∂2u

∂y2

)

−
(

∂u

∂x

)2

−
(

∂u

∂y

)2

+ aβu2 + bβu + cβ = 0.

5.2.2. Equations of the Form ∂2w
∂x2 + ∂2w

∂y2 = f (x, y, w)

1.
∂2w

∂x2
+

∂2w

∂y2
= Aeαx+βyeµw.

The substitution U = αx + βy + µw leads to an equation of the form 5.2.1.1:

∂2U

∂x2 +
∂2U

∂y2 = AµeU .

2.
∂2w

∂x2
+

∂2w

∂y2
= Aeαxy+βx+γyeµw.

The substitution U = αxy + βx + γy + µw leads to an equation of the form 5.2.1.1:

∂2U

∂x2 +
∂2U

∂y2 = AµeU .

3.
∂2w

∂x2
+

∂2w

∂y2
= A(x2 + y2)eβw.

The transformation
w = U (z, ζ), z = 1

2 (x2 − y2), ζ = xy

leads to a simpler equation of the form 5.2.1.1:

∂2U

∂z2 +
∂2U

∂ζ2 = AeβU .

4.
∂2w

∂x2
+

∂2w

∂y2
= A(x2 + y2)keβw.

This is a special case of equation 5.4.1.3 with f (w) = Aeβw.

5.2.3. Equations of the Form ∂
∂x

[
f1(x,y)∂w

∂x

]
+ ∂

∂y

[
f2(x,y)∂w

∂y

]
=g(w)

I Equations of this form are encountered in stationary problems of heat and mass transfer and
combustion theory. Here, f1 and f2 are the principal thermal diffusivities (diffusion coefficients)
dependent on the space coordinates x and y, and g = g(w) is a source function that defines the law
of heat (substance) release or absorption.

1.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= ceβw.

This is a special case of equation 5.4.3.1 with f (w) = ceβw.

Page 367

© 2004 by Chapman & Hall/CRC



1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

C
2

2−n x, C
2

2−m y
)

+
2
β

lnC,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2.

Here, the function w = w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
A

ξ
w′

ξ = Beβw, (1)

where

A =
4 − nm

(2 − n)(2 −m)
, B =

4c
ab(2 − n)2(2 −m)2 .

3◦. Below are some exact solutions of equation (1).
3.1. For A ≠ 1, there is a solution of the form

w(ξ) = −
1
β

ln
[

Bβ

2(1 −A)
ξ2

]

.

3.2. For A = 0, which corresponds to m =
4
n

and B =
cn2

ab(2 − n)4 , we obtain from (1) several

more families of exact solutions to the original equation:

w(ξ) =
1
β

ln
[

2
βB(ξ + C)2

]

if βB > 0,

w(ξ) =
1
β

ln
[

2λ2

βB cos2(λξ + C)

]

if βB > 0,

w(ξ) =
1
β

ln
[

2λ2

βB sinh2(λξ + C)

]

if βB > 0,

w(ξ) =
1
β

ln
[

−2λ2

βB cosh2(λξ + C)

]

if βB < 0,

w(ξ) =
1
β

ln
[

−8λ2C1C2

βB
(

C1eλξ + C2e−λξ
)2

]

,

where λ, C, C1, and C2 are arbitrary constants.

3.3. For A = 1, which corresponds to m =
n

n − 1
, another family of exact solutions follows

from (1):

w(ξ) =
1
β

ln
(

−
8C
βB

)

−
2
β

ln(ξ2 + C), B =
4c(n − 1)2

ab(2 − n)4 ,

where C is an arbitrary constant.

4◦. There is an exact solution of the form

w(x, y) = U (z) +
n − 2
β

lnx, z = yx
n−2
2−m .
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2.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= ceλw.

This is a special case of equation 5.4.3.6 with f (w) = ceλw.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

x −
2
β

lnC, y −
2
µ

lnC
)

+
2
λ

lnC,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution:

w = −
1
λ

ln
[

cλ

(

e−βx

aβ2 +
e−µy

bµ2

)]

.

3◦. Functional separable solution for βµ ≠ 0 (generalizes the solution of Item 2◦):

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ −
1
ξ
w′

ξ = Aeλw, A =
4c

abβ2µ2 .

4◦. There is an exact solution of the form

w(x, y) = U (z) +
β

λ
x, z = y −

β

µ
x.

3.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beβy ∂w

∂y

)

= ceλw.

This is a special case of equation 5.4.3.8 with f (w) = ceλw.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

C
2

2−n x, y −
2
β

lnC
)

+
2
λ

lnC,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution:

w = −
1
λ

ln
{

cλ(2 − n)
(1 − n)

[

x2−n

a(2 − n)2 +
e−βy

bβ2

]}

.

3◦. Functional separable solution for n ≠ 2 and β ≠ 0 (generalizes the solution of Item 2◦):

w = w(ξ), ξ2 = 4
[

x2−n

a(2 − n)2 +
e−βy

bβ2

]

,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
A

ξ
w′

ξ = ceλw, A =
n

2 − n
.

4◦. There is an exact solution of the form

w(x, y) = U (z) +
n − 2
λ

lnx, z = y +
2 − n
β

lnx.
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4.
∂

∂x

[

(ay + c)
∂w

∂x

]

+
∂

∂y

[

(bx + # )
∂w

∂y

]

= keλw.

This is a special case of equation 5.4.4.1 with f (w) = keλw.
The equation can be rewritten in the form

(ay + c)
∂2w

∂x2 + (bx + s)
∂2w

∂y2 = keλw.

5.
∂

∂x

[

(a1x + b1y + c1)
∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2)
∂w

∂y

]

= keλw.

This is a special case of equation 5.4.4.2 with f (w) = keλw.

5.2.4. Equations of the Form ∂
∂x

[
f1(w) ∂w

∂x

]
+ ∂

∂y

[
f2(w) ∂w

∂y

]
= g(w)

I Equations of this form are encountered in stationary problems of heat and mass transfer and
combustion theory. Here, f1 = f1(w) and f2 = f2(w) are the principal thermal diffusivities (diffusion
coefficients) dependent on the temperature (concentration)w, and g = g(w) is a source function that
defines the law of heat (substance) release or absorption. Simple solutions dependent on a single
coordinate, w = w(x) and w = w(y), are not treated in this subsection.

1.
∂2w

∂x2
+

∂

∂y

(

aeβw ∂w

∂y

)

= 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w(C1x + C3, $ C1C
β
2 y + C4) − 2 ln |C2|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solutions:

w(x, y) =
1
β

ln(Ay +B) + Cx +D,

w(x, y) =
1
β

ln(−aA2y2 +By + C) −
2
β

ln(−aAx +D),

w(x, y) =
1
β

ln(Ay2 +By + C) +
1
β

ln
[

p2

aA cosh2(px + q)

]

,

w(x, y) =
1
β

ln(Ay2 +By + C) +
1
β

ln
[

p2

−aA cos2(px + q)

]

,

w(x, y) =
1
β

ln(Ay2 +By + C) +
1
β

ln
[

p2

−aA sinh2(px + q)

]

,

where A, B, C, D, p, and q are arbitrary constants.

3◦. Traveling-wave solution in implicit form:

k2
1w +

ak2
2
β
eβw = C1(k1x + k2y) + C2,

where C1, C2, k1, and k2 are arbitrary constants.
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4◦. Self-similar solution (A and B are arbitrary constants):

u = u(z), z =
x +A
y +B

,

where the function u(z) is determined by the ordinary differential equation

(z2u′z)′z + (aeβuu′z)′z = 0.

This equation admits the first integral
(

z2 + aeβu
)

u′z = C.

Treating u as the independent variable, we get a Riccati equation for z = z(u),

Cz′u = z2 + aeβu,

whose solution is expressed in terms of Bessel functions.

5◦. Solution (generalizes the solution of Item 4◦):

w = U (ξ) −
2(k + 1)

β
ln |x|, ξ = y|x|k,

where k is an arbitrary constant and the function U (ξ) is determined by the ordinary differential
equation

2(k + 1)
β

+ k(k − 1)ξU ′

ξ + k2ξ2U ′′

ξξ + (aeβUU ′

ξ)
′

ξ = 0.

6◦. There are exact solutions of the following forms:

w(x, y) = F (η) −
2
β

ln |x|, η = y + k ln |x|;

w(x, y) = H(ζ) −
2
β
x, ζ = yex;

where k is an arbitrary constant.

7◦. For other solutions, see equation 5.4.4.8 with f (w) = 1 and g(w) = aeβw.

2.
∂2w

∂x2
+

∂

∂y

(

aeβw ∂w

∂y

)

= beλw .

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w( % Cλ1 x + C2, % Cλ−β
1 y + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solution:
w = u(z), z = k1x + k2y,

where k1 and k2 are arbitrary constants, and the function u(z) is determined by the autonomous
ordinary differential equation

k2
1u

′′

zz + ak2
2(eβuu′z)′z = beλu.

The substitution Θ(u) = (u′z)2 leads to the first-order linear equation

(k2
1 + ak2

2e
βu)Θ′

u + 2ak2
2βe

βu
Θ = 2beλu.

3◦. Solution:
w = U (ξ) −

2
λ

ln |x|, ξ = yx
β−λ
λ ,

where the function U (ξ) is determined by the ordinary differential equation

2
λ

+
(β − λ)(β − 2λ)

λ2 ξU ′

ξ +
(β − λ)2

λ2 ξ2U ′′

ξξ + (aeβUU ′

ξ)
′

ξ = beλU .
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3.
∂

∂x

(

aeβw ∂w

∂x

)

+
∂

∂y

(

beγw ∂w

∂y

)

= 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w( & C1C
β
2 x + C3, & C1C

γ
2 y + C4) − 2 ln |C2|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

ak2
1β

−1eβw + bk2
2γ

−1eγw = C1(k1x + k2y) + C2,

where C1, C2, k1, and k2 are arbitrary constants.

3◦. Additive separable solution:
w(x, y) = ϕ(x) + ψ(y). (1)

Here, the functionsϕ(x) andψ(y) are determined by the autonomous ordinary differential equations
(A is an arbitrary constant)

ϕ′′

xx + β(ϕ′

x)2 = Abe(γ−β)ϕ,

ψ′′

yy + γ(ψ′

y)2 = −Aae(β−γ)ψ,
(2)

which are independent of each other.
Integrating yields the general solutions to the equations of (2) in implicit form:

∫

eβϕ
[

2Ab
β + γ

e(β+γ)ϕ +B1

]−1/2

dϕ = C1 & x,

∫

eγψ
[

−
2Aa
β + γ

e(β+γ)ψ +B2

]−1/2

dψ = C2 & y,

where B1, B2, C1, and C2 are arbitrary constants; β + γ ≠ 0.
Remark. Particular solutions to equations (2) are given by

ϕ(x) =
1

β − γ
ln

[

Ab(β − γ)2

2(β + γ)
(x + C3)2

]

,

ψ(y) =
1

γ − β
ln

[

−
Aa(β − γ)2

2(β + γ)
(y + C4)2

]

,

where C4 and C2 are arbitrary constants.

4◦. There are exact solutions of the following forms:

w(x, y) = F (z) +
2k
β − γ

ln |x|, z = y|x|k−1;

w(x, y) = G(ξ) +
2

β − γ
ln |x|, ξ = y + k ln |x|;

w(x, y) = H(η) + 2x, η = ye(β−γ)x;

where k is an arbitrary constant.

5◦. For other exact solutions of the original equation, see 5.4.4.8 with f (w) = aeβw and g(w) = beγw.

4. a
∂

∂x

(

eβw ∂w

∂x

)

+ b
∂

∂y

(

eγw ∂w

∂y

)

= ceλw.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w( & Cλ−β
1 x + C2, & Cλ−γ

1 y + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).
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2◦. There are exact solutions of the following forms:

w(x, y) = F (z), z = k1x + k2y;

w(x, y) = G(ξ) +
2

β − λ
ln |x|, ξ = y|x|

λ−γ
β−λ .

5.2.5. Other Equations Involving Arbitrary Parameters

1.
∂2w

∂x2
+

∂2w

∂y2
+

a

x

∂w

∂x
+

b

y

∂w

∂y
= ceβw.

This is a special case of equation 5.4.2.4 with f (ξ,w) = ceβw.

2.
∂2w

∂x2
+

∂2w

∂y2
= aeβw

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

This is a special case of equation 5.4.2.9 with f (w) = aeβw.

The substitution U =
∫

exp
(

−
a

β
eβw

)

dw leads to the two-dimensional Laplace equation for

U = U (x, y):
∂2U

∂x2 +
∂2U

∂y2 = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

3.
∂2w

∂x2
+ aeβw ∂2w

∂y2
= 0, a > 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w ' = w(C1x + C3, ( C1C
β
2 y + C4, ) − 2 ln |C2|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:

w(x, y) = Axy +By + Cx +D,

w(x, y) =
1
β

ln
[

B2

a

(y +A)2

sinh2(Bx + C)

]

, w(x, y) =
1
β

ln
[

1
aA2

sinh2(Ay +B)
(x + C)2

]

,

w(x, y) =
1
β

ln
[

B2

a

(y +A)2

cos2(Bx + C)

]

, w(x, y) =
1
β

ln
[

1
aA2

cos2(Ay +B)
(x + C)2

]

,

w(x, y) =
1
β

ln
[

C2

aA2
cos2(Ay +B)
sinh2(Cx +D)

]

, w(x, y) =
1
β

ln
[

C2

aA2
sinh2(Ay +B)
cos2(Cx +D)

]

,

w(x, y) =
1
β

ln
[

C2

aA2
sinh2(Ay +B)
sinh2(Cx +D)

]

, w(x, y) =
1
β

ln
[

C2

aA2
cos2(Ay +B)
cos2(Cx + D)

]

,

where A, B, C, and D are arbitrary constants. The first solution is degenerate and the others are
representable as the sum of functions with different arguments.

3◦. Self-similar solution:
w = w(z), z = y/x,

where the function w(z) is determined by the ordinary differential equation

(z2 + aeβw)w′′

zz + 2zw′

z = 0.
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4◦. Solution:
w = U (ζ) −

2(k + 1)
β

ln |x + C1|, ζ = (y + C2)(x + C1)k,

whereC1, C2, and k are arbitrary constants, and the functionU =U (ζ) is determined by the ordinary
differential equation

(k2ζ2 + aeβU )U ′′

ζζ + k(k − 1)ζU ′

ζ +
2(k + 1)

β
= 0.

4.
∂2w

∂x2
+ aeβw ∂2w

∂y2
= beλw.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w( ) Cλ−β
1 y + C2, ) Cλ1 x + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Traveling-wave solution:
w = u(z), z = k1x + k2y,

where k1 and k2 are arbitrary constants, and the function u(z) is determined by the autonomous
ordinary differential equation

(k2
1 + ak2

2e
βu)u′′zz = beλu.

Its solution can be written out in implicit form as
∫

du
√

F (u)
= C1 ) z, F (u) = 2b

∫

eλu du

k2
1 + ak2

2e
βu

+ C2,

where C1 and C2 are arbitrary constants.

3◦. Solution:
w = U (ξ) −

2
λ

ln |x|, ξ = y|x|
β−λ
λ ,

where the function U (ξ) is determined by the ordinary differential equation

2
λ

+
(β − λ)(β − 2λ)

λ2 ξU ′

ξ +
(β − λ)2

λ2 ξ2U ′′

ξξ + aeβUU ′′

ξξ = beλU .

5. axn ∂2w

∂x2
+ bym ∂2w

∂y2
= ceβw.

This is a special case of equation 5.4.5.5 with k = s = 0 and f (w) = ceβw.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

C
2

2−n x, C
2

2−m y
)

+
2
β

lnC,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
A

ξ
w′

ξ = Beβw, (1)

where
A =

3nm − 4n − 4m + 4
(2 − n)(2 −m)

, B =
4c

ab(2 − n)2(2 −m)2 .
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3◦. Below are some exact solutions of equation (1).
3.1. For A ≠ 1, equation (1) admits an exact solution of the form

w(ξ) = −
1
β

ln
[

Bβ

2(1 −A)
ξ2

]

.

3.2. For A = 0, which corresponds to m =
4n − 4
3n − 4

and B =
c(3n − 4)2

ab(2 − n)4 , we obtain from (1)

several more families of exact solutions to the original equation:

w(ξ) =
1
β

ln
[

2λ2

βB cos2(λξ + C)

]

if βB > 0,

w(ξ) =
1
β

ln
[

2λ2

βB sinh2(λξ + C)

]

if βB > 0,

w(ξ) =
1
β

ln
[

−2λ2

βB cosh2(λξ + C)

]

if βB < 0,

where λ and C are arbitrary constants.

3.3. For A = 1, which corresponds to m =
n

n − 1
, another family of exact solutions follows

from (1):

w(ξ) =
1
β

ln
(

−
8C
βB

)

−
2
β

ln(ξ2 + C), B =
4c(n − 1)2

ab(2 − n)4 ,

where C is an arbitrary constant.

6. aeβx ∂2w

∂x2
+ beµy ∂2w

∂y2
= ceλw.

This is a special case of equation 5.4.5.7 with k = s = 0 and f (w) = ceβw.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

x −
2
β

lnC, y −
2
µ

lnC
)

+
2
λ

lnC,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Functional separable solution for βµ ≠ 0:

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
3
ξ
w′

ξ = Aeλw, A =
4c

abβ2µ2 ,

which admits the exact solution

w = −
1
λ

ln
(

−
1
4
Aλξ2

)

.

7. axn ∂2w

∂x2
+ beβy ∂2w

∂y2
= ceλw.

This is a special case of equation 5.4.5.9 with k = s = 0 and f (w) = ceλw.
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5.3. Equations Involving Other Nonlinearities
5.3.1. Equations with Hyperbolic Nonlinearities

1.
∂2w

∂x2
+

∂2w

∂y2
= a sinh(βw).

This is a special case of equation 5.4.1.1 with f (w) = a sinh(βw).

1◦. Traveling-wave solution in implicit form:
∫

[

D +
2a cosh(βw)
β(A2 +B2)

]−1/2

dw = Ax +By + C,

where A, B, C, and D are arbitrary constants.

2◦. Solution with central symmetry about the point (−C1, −C2):

w = w(ξ), ξ =
√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants, and the function w(ξ) is determined by the ordinary
differential equation

w′′

ξξ +
1
ξ
w′

ξ = a sinh(βw).

3◦. Functional separable solution:

w(x, y) =
4
β

arctanh
[

f (x)g(y)
]

, arctanh z =
1
2

ln
1 + z
1 − z

,

where the functions f = f (x) and g = g(y) are determined by the first-order autonomous ordinary
differential equations

(

f ′

x

)2 = Af 4 +Bf 2 + C,
(

g′y
)2 = −Cg4 + (aβ −B)g2 −A,

and A, B, and C are arbitrary constants.

4◦. The original equation is related to (see 5.3.3.1)

∂2U

∂x2 +
∂2U

∂y2 = a sin(βU )

by the Bäcklund transformation

∂U

∂x
+
∂w

∂y
= 2

√

a

β
sin

( 1
2βU

)

cosh
( 1

2βw
)

,

∂U

∂y
−
∂w

∂x
= 2

√

a

β
cos

( 1
2βU

)

sinh
( 1

2βw
)

.
*�+

References: R. K. Bullough and P. J. Caudrey (1980), A. C. Wing, H. H. Cheb, and Y. C. Lee (1987).

2.
∂2w

∂x2
+

∂2w

∂y2
= a sinh(βw) + b sinh(2βw).

Denote k =
a

2b
.

Traveling-wave solutions:

w = , 1
β

arccosh
1 − k sin z
sin z − k

, z =
√

2bβ(1 − k2) (x sinC1 + y cosC1 + C2) if |k| < 1;

w = , 2
β

arctanh
(

√

k + 1
k − 1

tanh
ξ

2

)

, ξ =
√

2bβ(k2 − 1) (x sinC1 + y cosC1 + C2) if |k| > 1,

where C1 and C2 are arbitrary constants.
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3.
∂2w

∂x2
+

∂2w

∂y2
= a(x2 + y2) sinh(βw).

This is a special case of equation 5.4.1.2 with f (w) = a sinh(βw).

4.
∂2w

∂x2
+

∂2w

∂y2
= a(x2 + y2) cosh(βw).

This is a special case of equation 5.4.1.2 with f (w) = a cosh(βw).

5.
∂2w

∂x2
+

∂2w

∂y2
= aeβx sinh(λw).

This is a special case of equation 5.4.1.4 with f (w) = a sinh(λw).

6.
∂2w

∂x2
+

∂2w

∂y2
= a coshn(βw)

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

This is a special case of equation 5.4.2.9 with f (w) = a coshn(βw).

7.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= k sinh(βw).

This is a special case of equation 5.4.3.1 with f (w) = k sinh(βw).

8.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= k sinh(λw).

This is a special case of equation 5.4.3.6 with f (w) = k sinh(λw).

9.
∂2w

∂x2
+

∂

∂y

[

a cosh(βw)
∂w

∂y

]

= 0.

This is a special case of equation 5.4.4.8 with f (w) = 1 and g(w) = a cosh(βw).

5.3.2. Equations with Logarithmic Nonlinearities

1.
∂2w

∂x2
+

∂2w

∂y2
= αw ln(βw).

This is a special case of equation 5.4.1.1 with f (w) = αw ln(βw).
On making the change of variable U = ln(βw), one obtains an equation with a quadratic

nonlinearity:
∂2U

∂x2 +
∂2U

∂y2 +
(

∂U

∂x

)2

+
(

∂U

∂y

)2

= αU . (1)

1◦. Equation (1) has exact solutions quadratic in the independent variables:

U (x, y) = 1
4α(x +A)2 + 1

4α(y +B)2 + 1,

U (x, y) = A(x+B)2 - √Aα−4A2 (x+B)(y+C)+( 1
4α−A)(y+C)2+ 1

2 ,

where A, B, and C are arbitrary constants.

2◦. Equation (1) has a traveling-wave solution:

U (x, y) = F (ξ), ξ = Ax +By + C.

Here, the function F = F (ξ) is defined implicitly by

ξ =
∫

[

De−2F +
α

A2 +B2 (F − 1
2 )

]−1/2

dF ,

where A, B, C, and D are arbitrary constants.
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3◦. Equation (1) has a solution in the form of the sum of functions with different arguments:

U (x, y) = f (x) + g(y).

Here, the functions f = f (x) and g = g(y) are defined implicitly by

A1 . x =
∫

(

B1e
−2f + αf − 1

2α
)−1/2

df ,

A2 . y =
∫

(

B2e
−2g + αg − 1

2α
)−1/2

dg,

where A1, B1, A2, and B2 are arbitrary constants.

4◦. The original equation admits exact solutions of the form

w = w(ζ), ζ =
√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants, and the function w(ζ) is determined by the ordinary
differential equation

w′′

ζζ +
1
ζ
w′

ζ = αw ln(βw).
/�0

References: J. A. Shercliff (1977), A. D. Polyanin, A. V. Vyazmin, A. I. Zhurov, and D. A. Kazenin (1998).

2.
∂2w

∂x2
+

∂2w

∂y2
= aw ln w + (bxn + cyk)w.

This is a special case of equation 5.4.1.8 with f (x) = bxn and g(y) = cyk.

3.
∂2w

∂x2
+

∂2w

∂y2
= α(x2 + y2) ln(βw).

This is a special case of equation 5.4.1.2 with f (w) = α ln(βw).

4.
∂2w

∂x2
+

∂2w

∂y2
= aeβx ln(λw).

This is a special case of equation 5.4.1.4 with f (w) = a ln(λw).

5.
∂2w

∂x2
+

∂2w

∂y2
= axw + bw ln |w|.

This equation is used for describing some flows of ideal stratified fluids. It is a special case of
equation 5.3.2.6 with k = a2 = a0 = 0.

1◦. Multiplicative separable solution:

w(x, y) = exp
[

−
a

b
x +

b

4
(y + C)2 +

a2

b3 +
1
2

]

,

where C is an arbitrary constant.

2◦. Multiplicative separable solution (generalizes the solution of Item 1◦):

w(x, y) = ϕ(x)ψ(y),

where the functions ϕ = ϕ(x) and ψ = ψ(y) are determined by the system of ordinary differential
equations

ϕ′′

xx = bϕ ln |ϕ| + (ax + C)ϕ,
ψ′′

yy = bψ ln |ψ| − Cψ,
C is an arbitrary constant./�0

Reference: V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).
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6.
∂2w

∂x2
+

∂2w

∂y2
+

k

x

∂w

∂x
= (a2x

2 + a1x + a0)w + bw ln |w|.

Grad–Shafranov equation (with k = −1 and a1 = a0 = 0). This equation is used to describe some
steady-state axisymmetric (swirling) flows of ideal fluids. It also occurs in plasma physics.
1◦. Multiplicative separable solution:

w(x, y) = ϕ(x)ψ(y),
where the functions ϕ = ϕ(x) and ψ = ψ(y) are determined by the system of ordinary differential
equations

ϕ′′

xx +
k

x
ϕ′

x = bϕ ln |ϕ| + (a2x
2 + a1x + a0 + C)ϕ,

ψ′′

yy = bψ ln |ψ| − Cψ,
C is an arbitrary constant.

2◦. Solutions for a1 = 0:

w(x, y) = exp
[

Ax2 +
b

4
(y +B)2 +

2
b
A(k + 1) −

a0

b
+

1
2

]

, A =
1
8

(

b 1
√

b2 + 16a2
)

,

where B is an arbitrary constant.

3◦. Solution for a1 = a2 = 0:
w = w(r), r =

√

x2 + y2,
where the function w(r) is determined by the ordinary differential equation

w′′

rr +
k + 1
r

w′

r = a0w + bw ln |w|.2�3
References: G. Rosen (1969), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).

7.
∂2w

∂x2
+

∂2w

∂y2
+

a

x

∂w

∂x
+

b

y

∂w

∂y
= cwn ln(βw).

This is a special case of equation 5.4.2.4 with f (ξ,w) = cwn ln(βw).

8.
∂2w

∂x2
+

∂2w

∂y2
= a lnn(βw)

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

This is a special case of equation 5.4.2.9 with f (w) = a lnn(βw).

9.
∂2w

∂x2
+

∂

∂y

[

a lnn(βw)
∂w

∂y

]

= 0.

This is a special case of equation 5.4.4.8 with f (w) = 1 and g(w) = a lnn(βw).

10.
∂

∂x

[

(a1x + b1)
∂w

∂x

]

+
∂

∂y

[

(a2y + b2)
∂w

∂y

]

= kw ln(βw).

1◦. Traveling-wave solution:

w = w(ξ), ξ =
x

a1
+
y

a2
+
b1

a2
1

+
b2

a2
2

,

where the function w(ξ) is determined by the ordinary differential equation
(ξw′

ξ)
′

ξ = kw ln(βw).
2◦. Multiplicative separable solution:

w(x, y) = ϕ(x)ψ(y),
where the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

[(a1x + b1)ϕ′

x]′x − kϕ ln(βϕ) + Cϕ = 0,
[(a2y + b2)ψ′

y]′y − kψ lnψ − Cψ = 0,
C is an arbitrary constant.
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11.
∂

∂x

[

(a1x + b1y + c1)
∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2)
∂w

∂y

]

= kw ln w.

This is a special case of equation 5.4.4.2 with f (w) = kw lnw.

12.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= k ln(βw).

This is a special case of equation 5.4.3.1 with f (w) = k ln(βw).

13.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= kw ln w.

This is a special case of equation 5.4.3.1 with f (w) = kw lnw and a special case of equation 5.4.3.9
with f (x) = axn and g(y) = bym.

14.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= k ln(λw).

This is a special case of equation 5.4.3.6 with f (w) = k ln(λw).

15.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= kw ln w.

This is a special case of equation 5.4.3.6 with f (w) = kw lnw and a special case of equation 5.4.3.9
with f (x) = aeβx and g(y) = beµy.

5.3.3. Equations with Trigonometric Nonlinearities

1.
∂2w

∂x2
+

∂2w

∂y2
= α sin(βw).

This is a special case of equation 5.4.1.1 with f (w) = α sin(βw).

1◦. Traveling-wave solution:

w = w(z), z = Ax +By + C,

where w(z) is defined implicitly by
∫

[

D −
2α cos(βw)
β(A2 +B2)

]−1/2

dw = z,

and A, B, C, and D are arbitrary constants.

2◦. Solution with central symmetry about the point (−C1, −C2):

w = w(ξ), ξ =
√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants and the function w = w(ξ) is determined by the ordinary
differential equation

w′′

ξξ +
1
ξ
w′

ξ = α sin(βw).

3◦. Functional separable solution for α = β = 1:

w(x, y) = 4 arctan
(

cotA
coshF
coshG

)

,

F =
cosA
√

1 +B2
(x −By), G =

sinA
√

1 +B2
(y +Bx),

where A and B are arbitrary constants.
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4◦. Functional separable solution (generalizes the solution of Item 3◦):

w(x, y) =
4
β

arctan
[

f (x)g(y)
]

,

where the functions f = f (x) and g = g(y) are determined by the first-order autonomous ordinary
differential equations

(

f ′

x

)2 = Af 4 +Bf 2 + C,
(

g′y
)2 = Cg4 + (αβ −B)g2 +A,

and A, B, and C are arbitrary constants.

5◦. Auto-Bäcklund transformations (α = β = 1):

∂w̃

∂x
= −i

∂w

∂y
+ k sin

w̃ + w
2

+
1
k

sin
w̃ − w

2
,

−i
∂w̃

∂y
=
∂w

∂x
+ k sin

w̃ + w
2

−
1
k

sin
w̃ − w

2
,

where i2 = −1.4�5
References for equation 5.3.3.1: R. K. Bullough and P. J. Caudrey (1980), J. Miller (Jr.) and L. A. Rubel (1993),

V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).

2.
∂2w

∂x2
+

∂2w

∂y2
= a sin(βw) + b sin(2βw).

Denote k =
a

2b
.

Traveling-wave solutions:

w = 6 2
β

arctan
(

k + 1
√

1 − k2
coth

z

2

)

, z =
√

2bβ(1 − k2) (x sinC1 + y cosC1 + C2) if |k| < 1;

w = 6 2
β

arctan
(

k + 1
√

k2 − 1
tan

ξ

2

)

, ξ =
√

2bβ(k2 − 1) (x sinC1 + y cosC1 + C2) if |k| > 1,

where C1 and C2 are arbitrary constants.

3.
∂2w

∂x2
+

∂2w

∂y2
= α cos(βw).

The substitution βw = βu + 1
2π leads to an equation of the form 5.3.3.1:

∂2u

∂x2 +
∂2u

∂y2 = −α sin(βu).

4.
∂2w

∂x2
+

∂2w

∂y2
= α(x2 + y2) sin(βw).

This is a special case of equation 5.4.1.2 with f (w) = α sin(βw).

5.
∂2w

∂x2
+

∂2w

∂y2
= α(x2 + y2) cos(βw).

This is a special case of equation 5.4.1.2 with f (w) = α cos(βw).

6.
∂2w

∂x2
+

∂2w

∂y2
= aeβx sin(λw).

This is a special case of equation 5.4.1.4 with f (w) = a sin(λw).
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7.
∂2w

∂x2
+

∂2w

∂y2
= a cos(βw)

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

This is a special case of equation 5.4.2.9 with f (w) = a cos(βw).

8.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= k sin(βw).

This is a special case of equation 5.4.3.1 with f (w) = k sin(βw).

9.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= k sin(λw).

This is a special case of equation 5.4.3.6 with f (w) = k sin(λw).

10.
∂2w

∂x2
+

∂

∂y

[

a cosn(βw)
∂w

∂y

]

= 0.

This is a special case of equation 5.4.4.8 with f (w) = 1 and g(w) = a cosn(βw).

5.4. Equations Involving Arbitrary Functions

5.4.1. Equations of the Form ∂2w
∂x2 + ∂2w

∂y2 = F (x, y, w)

1.
∂2w

∂x2
+

∂2w

∂y2
= f (w).

This is a stationary heat equation with a nonlinear source.

1◦. Suppose w = w(x, y) is a solution of the equation in question. Then the functions

w1 = w( 7 x + C1, 7 y + C2),
w2 = w(x cosβ − y sinβ, x sinβ + y cosβ),

where C1, C2, and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

∫
[

C +
2

A2 +B2 F (w)
]−1/2

dw = Ax +By +D, F (w) =
∫

f (w) dw,

where A, B, C, and D are arbitrary constants.

3◦. Solution with central symmetry about the point (−C1, −C2):

w = w(ζ), ζ =
√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants and the function w = w(ζ) is determined by the ordinary
differential equation

w′′

ζζ +
1
ζ
w′

ζ = f (w).

4◦. For exact solutions of the original equation for some f (w), see Subsections 5.1.1 and 5.2.1 and
equations 5.3.1.1, 5.3.2.1, and 5.3.3.1 (see also Subsection S.5.3, Example 12).
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2.
∂2w

∂x2
+

∂2w

∂y2
= (x2 + y2)f (w).

1◦. Suppose w = w(x, y) is a solution of this equation. Then the function

w1 = w(x cosβ − y sinβ, x sinβ + y cosβ),

where β is an arbitrary constant, is also a solution of the equation.

2◦. Solution with central symmetry:

w = w(r), r =
√

x2 + y2,

where the function w = w(r) is determined by the ordinary differential equation

w′′

rr +
1
r
w′

r = r2f (w).

3◦. Self-similar solution:
w = w(ζ), ζ = xy.

Here, the function w = w(ζ) is determined by the autonomous ordinary differential equation

w′′

ζζ = f (w),

whose general solution can be written out in implicit form as
∫

[

C1 + 2F (w)
]−1/2

dw = C2 8 ζ, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.

4◦. Functional separable solution:

w = w(z), z = 1
2 (x2 − y2).

Here, the function w = w(z) is determined by the autonomous ordinary differential equation

w′′

zz = f (w),

whose general solution can be written out in implicit form as
∫

[

C1 + 2F (w)
]−1/2

dw = C2 8 z, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.

5◦. The transformation
w = U (z, ζ), z = 1

2 (x2 − y2), ζ = xy
leads to a simpler equation of the form 5.4.1.1:

∂2U

∂z2 +
∂2U

∂ζ2 = f (U ).

9�:
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂2w

∂x2
+

∂2w

∂y2
= (x2 + y2)kf (w).

1◦. Suppose w = w(x, y) is a solution of this equation. Then the function

w1 = w(x cosβ − y sinβ, x sinβ + y cosβ),

where β is an arbitrary constant, is also a solution of the equation.
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2◦. Solution with central symmetry:

w = w(r), r =
√

x2 + y2,

where the function w = w(r) is determined by the ordinary differential equation

w′′

rr +
1
r
w′

r = r2kf (w).

3◦. Suppose k = ; 1, ; 2, . . . The transformation

z = 1
2 (x2 − y2), ζ = xy for k = 1,

z = 1
3 (x3 − 3xy2), ζ = 1

3 (3x2y − y3) for k = 2,

z = 1
2 ln(x2 + y2), ζ = arctan

y

x
for k = −1,

z = −
x

x2 + y2 , ζ =
y

x2 + y2 for k = −2

leads to a simpler equation of the form 5.4.1.1:

∂2w

∂z2 +
∂2w

∂ζ2 = f (w). (1)

For arbitrary f = f (w), this equation admits a traveling-wave solution w = w(Az + Bζ), where A
and B are arbitrary constants, and a solution of the form w = w(z2 + ζ2).

In the general case, for any integer k ≠ −1, the transformation

z =
(x + iy)k+1 + (x − iy)k+1

2(k + 1)
, ζ =

(x + iy)k+1 − (x − iy)k+1

2(k + 1)i
, i2 = −1 (2)

leads to equation (1). It follows from (2) that

z2 + ζ2 =
1

(k + 1)2 (x2 + y2)k+1.

4◦. Suppose k is an arbitrary constant (k ≠ −1). The transformation

z =
1

k + 1
rk+1 cos

[

(k + 1)ϕ
]

, ζ =
1

k + 1
rk+1 sin

[

(k + 1)ϕ
]

, (3)

where x = r cosϕ and y = r sinϕ, leads to the simpler equation (1). For k = ; 1, ; 2, . . . , transfor-
mation (3) coincides with transformation (2).<�=

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

4.
∂2w

∂x2
+

∂2w

∂y2
= eβxf (w).

The transformation

w = W (u, v), u = exp
( 1

2βx
)

cos
( 1

2βy
)

, v = exp
( 1

2βx
)

sin
( 1

2βy
)

leads to a simpler equation of the form 5.4.1.1:

∂2W

∂u2 +
∂2W

∂v2 = 4β−2f (W ).

<�=
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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5.
∂2w

∂x2
+

∂2w

∂y2
= eax–byf (w).

Let us represent the exponent of e in the form

ax − by = β(x cosσ − y sinσ); β =
√

a2 + b2, cosσ = a/β, sinσ = b/β.

The transformation
ξ = x cosσ − y sinσ, η = x sinσ + y cosσ,

leads to an equation of the form 5.4.1.4:

∂2w

∂ξ2 +
∂2w

∂η2 = eβξf (w).

6.
∂2w

∂x2
+

∂2w

∂y2
= f (x, y)eβw.

Suppose f (x, y) = ε|F (z)|2, where ε = > 1 and F = F (z) is a prescribed analytic function of the
complex variable z = x + iy.

1◦. General solution:

w(x, y) = −
2
β

ln
|βF (z)|

[

1 + ε sign(β)Φ(z)Φ(z)
]

4|Φ′

z(z)|
,

where Φ = Φ(z) is an arbitrary analytic (holomorphic) function of the complex variable z = x + iy
with nonzero derivative; the bar over a symbol denotes the complex conjugate.

2◦. Another representation of the general solution with β = −2:

w(x, y) = ln
(

|ϕ(z)|2 + ε|ψ(z)|2
)

.

Here, the holomorphic functions ϕ = ϕ(z) and ψ = ψ(z) are given by

ϕ2 = CΦ exp
(

a

2

∫ z

z0

F

Φ
dz

)

, ψ2 =
Φ

C
exp

(

−
a

2

∫ z

z0

F

Φ
dz

)

,

where |a| = 1, C ≠ 0 is any, z0 is an arbitrary point in the complex plane, and Φ = Φ(z) is an
arbitrary holomorphic function satisfying the condition Φ

′(z∗) = > 1
2 aF (z∗) at any point z = z∗

where Φ(z∗) = 0. The condition just mentioned means that the function Φ can only have simple
zeros.?�@

Reference: I. Kh. Sabitov (2001).

7.
∂2w

∂x2
+

∂2w

∂y2
= aw ln w + f (x)w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y),

where the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

ϕ′′

xx −
[

a lnϕ + f (x) + C
]

ϕ = 0,

ψ′′

yy −
(

a lnψ − C
)

ψ = 0,

and C is an arbitrary constant.
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8.
∂2w

∂x2
+

∂2w

∂y2
= aw ln w +

[

f (x) + g(y)
]

w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y),

where the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations
ϕ′′

xx −
[

a lnϕ + f (x) + C
]

ϕ = 0,

ψ′′

yy −
[

a lnψ + g(y) − C
]

ψ = 0,
and C is an arbitrary constant.

9.
∂2w

∂x2
+

∂2w

∂y2
= f (x)w ln w +

[

af (x)y + g(x)
]

w.

Multiplicative separable solution:
w(x, y) = e−ayϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

ϕ′′

xx = f (x)ϕ lnϕ +
[

g(x) − a2]ϕ.

10.
∂2w

∂x2
+

∂2w

∂y2
= f (ax + by, w).

Solution:
w = w(ξ), ξ = ax + by,

where the function w(ξ) is determined by the ordinary differential equation

(a2 + b2)w′′

ξξ = f (ξ,w).

11.
∂2w

∂x2
+

∂2w

∂y2
= f (x2 + y2, w).

1◦. Suppose w = w(x, y) is a solution of this equation. Then the function

w1 = w(x cosβ − y sinβ, x sinβ + y cosβ),

where β is an arbitrary constant, is also a solution of the equation.

2◦. Solution with central symmetry:

w = w(ξ), ξ =
(

x2 + y2)1/2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
1
ξ
w′

ξ = f (ξ2,w).

12.
∂2w

∂x2
+

∂2w

∂y2
= (x2 + y2)f (xy, w).

1◦. Self-similar solution:
w = w(ζ), ζ = xy,

where the function w(ζ) is determined by the ordinary differential equation

w′′

ζζ = f (ζ,w).

2◦. The transformation
w = U (z, ζ), z = 1

2 (x2 − y2), ζ = xy
leads to the simpler equation

∂2U

∂z2 +
∂2U

∂ζ2 = f (ζ,U ).
A�B

Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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13.
∂2w

∂x2
+

∂2w

∂y2
= (x2 + y2)f (x2 – y2, w).

1◦. Functional separable solution:

w = w(z), z = 1
2 (x2 − y2),

where the function w(z) is determined by the ordinary differential equation

w′′

zz = f (2z,w).

2◦. The transformation
w = U (z, ζ), z = 1

2 (x2 − y2), ζ = xy
leads to the simpler equation

∂2U

∂z2 +
∂2U

∂ζ2 = f (2z,U ).

14.
∂2w

∂x2
+

∂2w

∂y2
= f

(

w + A11x
2 + A12xy + A22y

2 + B1x + B2y
)

.

The substitution U = w + A11x
2 + A12xy + A22y

2 + B1x + B2y leads to an equation of the form
5.4.1.1:

∂2U

∂x2 +
∂2U

∂y2 = f (U ) + 2A11 + 2A22.

5.4.2. Equations of the Form a∂2w
∂x2 + b∂2w

∂y2 = F
(
x, y, w, ∂w

∂x
, ∂w

∂y

)

1. a
∂2w

∂x2
+ b

∂2w

∂y2
= f (w).

This equation describes steady-state processes of heat/mass transfer or combustion in anisotropic
media. Here, a and b are the principal thermal diffusivities (diffusion coefficients) and f = f (w) is
a kinetic function that defines the law of heat (substance) release.

The transformation ξ = x/
√

a, η = y/
√

b leads to an equation of the form 5.4.1.1:

∂2w

∂ξ2 +
∂2w

∂η2 = f (w).

2. (a1x + b1y + c1)
∂w

∂x
+ (a2x + b2y + c2)

∂w

∂y
=

∂2w

∂x2
+

∂2w

∂y2
– f (w).

This equation describes steady-state mass transfer with a volume chemical reaction in a translational-
shear fluid flow.

Traveling-wave solution:

w = w(z), z = a2x + (k − a1)y,

where k is a root of the quadratic equation

k2 − (a1 + b2)k + a1b2 − a2b1 = 0,

and the function w(z) is determined by the ordinary differential equation
[

kz + a2c1 + (k − a1)c2
]

w′

z =
[

a2
2 + (k − a1)2]w′′

zz − f (w).

Remark. In the case of an incompressible fluid, the equation coefficients must satisfy the
condition a1 + b2 = 0.
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3. a
∂2w

∂x2
+ b

∂2w

∂y2
+ cx

∂w

∂x
– cy

∂w

∂y
= (bx2 + ay2)f (w).

Solution:
w = w(z), z = xy,

where the function w(z) is determined by the autonomous ordinary differential equation

w′′

zz = f (w).

4.
∂2w

∂x2
+

∂2w

∂y2
+

a

x

∂w

∂x
+

b

y

∂w

∂y
= f (x2 + y2, w).

Solution with central symmetry:

w = w(ξ), ξ =
(

x2 + y2)1/2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
a + b + 1

ξ
w′

ξ = f (ξ2,w).

5. a
∂2w

∂x2
+ b

∂2w

∂y2
= f1(x)

∂w

∂x
+ f2(y)

∂w

∂y
+ kw ln w +

[

g1(x) + g2(y)
]

w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(x) are determined by the ordinary differential equations

aϕ′′

xx = f1(x)ϕ′

x + kϕ lnϕ +
[

g1(x) + C
]

ϕ,

bψ′′

yy = f2(y)ψ′

y + kψ lnψ +
[

g2(y) − C
]

ψ,

where C is an arbitrary constant.

6.
∂2w

∂x2
+ a

∂2w

∂y2
= f (x)

(

∂w

∂y

)2

+ g(x)w + h(x).

Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x), (1)

where the functions ϕ(x), ψ(x), and χ(x) are determined by the following system of ordinary
differential equations (the arguments of f , g, and h are omitted):

ϕ′′

xx = 4fϕ2 + gϕ, (2)
ψ′′

xx = (4fϕ + g)ψ, (3)
χ′′

xx = gχ + fψ2 + h − 2aϕ. (4)

Whenever a solution ϕ = ϕ(x) of the nonlinear equation (2) is found, the functionsψ = ψ(x) and
χ = χ(x) can be determined successively from equations (3) and (4), which are linear in ψ and χ,
respectively.

It is apparent from the comparison of equations (2) and (3) that (3) has the particular solution
ψ = ϕ(x). Hence, the general solution to (3) is given by (see Polyanin and Zaitsev, 2003)

ψ(x) = C1ϕ(x) + C2ϕ(x)
∫

dx

ϕ2(x)
, ϕ C 0.

Note that equation (2) has the trivial particular solution ϕ(x) ≡ 0, to which there corresponds
solution (1) linear in y. If the functions f and g are proportional, then a particular solution to
equation (2) is given by ϕ = − 1

4 g/f = const.
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7.
∂2w

∂x2
+ a

∂2w

∂y2
= f (x)

(

∂w

∂y

)2

+ bf (x)w2 + g(x)w + h(x).

1◦. Generalized separable solutions:

w(x, y) = ϕ(x) + ψ(x) exp
( D
y
√

−b
)

, b < 0, (1)

where the functions ϕ(x) and ψ(x) are determined by the following system of ordinary differential
equations (the arguments of f , g, and h are omitted):

ϕ′′

xx = bfϕ2 + gϕ + h, (2)
ψ′′

xx = (2bfϕ + g + ab)ψ. (3)

Whenever a solutionϕ =ϕ(x) of equation (2) is found, the functionsψ =ψ(x) can be determined
by solving equation (3), which is linear in ψ.

If the functions f , g, and h are proportional, i.e.,

g = αf , h = βf (α, β = const),

then particular solutions of equation (2) are given by

ϕ = k1, ϕ = k2, (4)

where k1 and k2 are roots of the quadratic equation bk2 + αk + β = 0. In this case, equation (3) can
be rewritten as

ψ′′

xx =
[

(2bkn + α)f + ab
]

ψ, n = 1, 2. (5)
The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a large number of exact

solutions to the linear equation (5) for various f = f (x). In the special case f = const, the general
solution of equation (5) is the sum of exponentials (or sine and cosine).

2◦. Generalized separable solution (generalizes the solutions of Item 1◦):

w(x, y) = ϕ(x) + ψ(x)
[

A exp
(

y
√

−b
)

+B exp
(

−y
√

−b
)]

, b < 0, (6)

where the functions ϕ(x) and ψ(x) are determined by the system of ordinary differential equations

ϕ′′

xx = bf
(

ϕ2 + 4ABψ2) + gϕ + h,

ψ′′

xx = 2bfϕψ + gψ + abψ.

Note two special cases of solution (6) that involve hyperbolic functions. These are:

w(x, y) = ϕ(x) + ψ(x) cosh
(

y
√

−b
)

, A = 1
2 , B = 1

2 ,

w(x, y) = ϕ(x) + ψ(x) sinh
(

y
√

−b
)

, A = 1
2 , B = − 1

2 .

3◦. Generalized separable solution (c is an arbitrary constant):

w(x, y) = ϕ(x) + ψ(x) cos
(

y
√

b + c
)

, b > 0,

where the functions ϕ(x) and ψ(x) are determined by the system of ordinary differential equations

ϕ′′

xx = bf
(

ϕ2 + ψ2) + gϕ + h,

ψ′′

xx = 2bfϕψ + gψ + abψ.E�F
References: V. A. Galaktionov (1995), V. F. Zaitsev and A. D. Polyanin (1996).

8. a
∂2w

∂x2
+ b

∂2w

∂y2
= f (x)

(

∂w

∂y

)2

+ g(x)
∂w

∂x

+
[

h1(x)y + h0(x)
]∂w

∂y
+ p(x)w + q2(x)y2 + q1(x)y + q0(x).

There is a generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x).
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9.
∂2w

∂x2
+

∂2w

∂y2
= f (w)

[(

∂w

∂x

)2

+
(

∂w

∂y

)2 ]

.

The substitution

U =
∫

dw

F (w)
, where F (w) = exp

[
∫

f (w) dw
]

,

leads to the two-dimensional Laplace equation for U = U (x, y):

∂2U

∂x2 +
∂2U

∂y2 = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).

10. a
∂2w

∂x2
+ b

∂2w

∂y2
= f (x)

(

∂w

∂x

)n

+ g(y)
(

∂w

∂y

)m

+ kw.

Additive separable solution:
w(x, y) = ϕ(x) + ψ(y).

Here, the functions ϕ(x) and ψ(x) are determined by the ordinary differential equations

aϕ′′

xx − f (x)
(

ϕ′

x

)n − kϕ = C,

bψ′′

yy − g(y)
(

ψ′

y

)m − kψ = −C,

where C is an arbitrary constant.

11. a
∂2w

∂x2
+ b

∂2w

∂y2
= f1(x)

(

∂w

∂x

)n

+ f2(y)
(

∂w

∂y

)m

+ g1(x)
∂w

∂x
+ g2(y)

∂w

∂y
+ h1(x) + h2(y) + kw.

Additive separable solution:
w(x, y) = ϕ(x) + ψ(y).

Here, the functions ϕ(x) and ψ(x) are determined by the ordinary differential equations

aϕ′′

xx − f1(x)
(

ϕ′

x

)n − g1(x)ϕ′

x − kϕ − h1(x) = C,

bψ′′

yy − f2(y)
(

ψ′

y

)m − g2(y)ψ′

y − kψ − h2(y) = −C,

where C is an arbitrary constant.

12.
∂2w

∂x2
+

∂2w

∂y2
= (a1x + b1y + c1)

(

∂w

∂x

)k

+ (a2x + b2y + c2)
(

∂w

∂y

)k

+ f

(

w,
∂w

∂x
,

∂w

∂y

)

.

Solutions are sought in the traveling-wave form

w = w(z), z = Ax +By + C,

where the constants A, B, and C are determined by solving the algebraic system of equations

a1A
k + a2B

k = A, (1)
b1A

k + b2B
k = B, (2)

c1A
k + c2B

k = C. (3)

Equations (1) and (2) are first solved for A and B and then equation (3) is used to evaluate C. The
unknown function w(z) is determined by the ordinary differential equation

(A2 +B2)w′′

zz = z(w′

z)k + f
(

w, Aw′

z , Bw′

z

)

.
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13. a
∂2w

∂x2
+ b

∂2w

∂y2
= f1

(

x,
∂w

∂x

)

+ f2

(

y,
∂w

∂y

)

+ kw.

Additive separable solution:
w(x, y) = ϕ(x) + ψ(y).

Here, the functions ϕ(x) and ψ(x) are determined by the ordinary differential equations

aϕ′′

xx − f1
(

x,ϕ′

x

)

− kϕ = C,

bψ′′

yy − f2
(

y,ψ′

y

)

− kψ = −C,

where C is an arbitrary constant.

14. a
∂2w

∂x2
+ b

∂2w

∂y2
= f1

(

x,
1
w

∂w

∂x

)

w + f2

(

y,
1
w

∂w

∂y

)

w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

a
ϕ′′

xx

ϕ
− f1

(

x,
ϕ′

x

ϕ

)

= C,

b
ψ′′

yy

ψ
− f2

(

y,
ψ′

y

ψ

)

= −C,

where C is an arbitrary constant.

5.4.3. Heat and Mass Transfer Equations of the Form
∂
∂x

[
f (x) ∂w

∂x

]
+ ∂

∂y

[
g(y) ∂w

∂y

]
= h(w)

I Equations of this form describe steady-state heat/mass transfer or combustion processes in
inhomogeneous anisotropic media. Here, f = f (x) and g = g(y) are the principal thermal diffusivities
(diffusion coefficients) dependent on coordinates; h = h(w) is the kinetic function (source function),
which defines the law of heat (substance) release of absorption. The simple solutions dependent on
a single coordinate, w = w(x) or w = w(y), are not considered in this subsection.

1.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

= f (w).

1◦. Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
A

ξ
w′

ξ = Bf (w), (1)

where
A =

4 − nm
(2 − n)(2 −m)

, B =
4

ab(2 − n)2(2 −m)2 .

Form = 4/n, a family of exact solutions to the original equation with arbitrary f = f (w) follows
from (1). It is given by

∫
[

C1 +
2n2

ab(2 − n)4 F (w)
]−1/2

dw = C2 G ξ, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.
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2◦. The substitution ζ = ξ1−A brings (1) to the generalized Emden–Fowler equation

w′′

ζζ =
B

(1 −A)2 ζ
2A

1−A f (w). (2)

A large number of exact solutions to equation (2) for various f = f (w) can be found in Polyanin and
Zaitsev (2003).H�I

Reference: V. F. Zaitsev and A. D. Polyanin (1996).

2.
∂

∂x

[

a(x + c)n
∂w

∂x

]

+
∂

∂y

[

b(y + J )m
∂w

∂y

]

= f (w).

The transformation ζ = x + c, η = y + s leads to an equation of the form 5.4.3.1:
∂

∂ζ

(

aζn
∂w

∂ζ

)

+
∂

∂η

(

bηm
∂w

∂η

)

= f (w).

3.
∂

∂x

[

a
(

|x| + c
)n ∂w

∂x

]

+
∂

∂y

[

b
(

|y| + J )m ∂w

∂y

]

= f (w).

The transformation ζ = |x| + c, η = |y| + s leads to an equation of the form 5.4.3.1:
∂

∂ζ

(

aζn
∂w

∂ζ

)

+
∂

∂η

(

bηm
∂w

∂η

)

= f (w).

4. a
∂2w

∂x2
+

∂

∂y

(

beµy ∂w

∂y

)

= f (w).

Functional separable solution for µ ≠ 0:

w = w(ξ), ξ =
[

bµ2(x + C1)2 + 4ae−µy]1/2,
where C1 is an arbitrary constant and the function w(ξ) is determined by the autonomous ordinary
differential equation

w′′

ξξ =
1

abµ2 f (w).

The general solution of this equation with arbitrary kinetic function f = f (w) is defined implicitly
by

∫
[

C2 +
2

abµ2 F (w)
]−1/2

dw = C3 K ξ, F (w) =
∫

f (w) dw,

where C2 and C3 are arbitrary constants.

5. a
∂2w

∂x2
+

∂

∂y

(

beµ|y| ∂w

∂y

)

= f (w).

The substitution ζ = |y| leads to an equation of the form 5.4.3.4.

6.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= f (w).

Functional separable solution for βµ ≠ 0:

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2,
where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ −
1
ξ
w′

ξ = Af (w), A =
4

abβ2µ2 . (1)

The substitution ζ = ξ2 brings (1) to the generalized Emden–Fowler equation
w′′

ζζ = 1
4Aζ

−1f (w),

whose solutions with f (w) = (kw+ s)−1 and f (w) = (kw+ s)−2 (k, s = const) can be found in Polyanin
and Zaitsev (2003).H�I

Reference: V. F. Zaitsev and A. D. Polyanin (1996).
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7.
∂

∂x

(

aeβ|x| ∂w

∂x

)

+
∂

∂y

(

beµ|y| ∂w

∂y

)

= f (w).

The transformation ζ = |x|, η = |y| leads to an equation of the form 5.4.3.6.

8.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beµy ∂w

∂y

)

= f (w).

Functional separable solution for n ≠ 2 and µ ≠ 0:

w = w(ξ), ξ =
[

bµ2x2−n + a(2 − n)2e−µy]1/2,

where the function w(ξ) is determined by the ordinary differential equation

w′′

ξξ +
n

2 − n
1
ξ
w′

ξ =
4

abµ2(2 − n)2 f (w).

9.
∂

∂x

[

f (x)
∂w

∂x

]

+
∂

∂y

[

g(y)
∂w

∂y

]

= kw ln w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y),

where the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

[f (x)ϕ′

x]′x = kϕ lnϕ + Cϕ,
[g(y)ψ′

y]′y = kψ lnψ − Cψ,

and C is an arbitrary constant.L�M
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

10.
∂

∂x

[

f (x)
∂w

∂x

]

+
∂

∂y

[

g(y)
∂w

∂y

]

= aw ln w + bw.

This is a special case of equation 5.4.4.6 with k = a, h1(x) = b, and h2(y) = 0.

5.4.4. Equations of the Form
∂
∂x

[
f (x, y, w) ∂w

∂x

]
+ ∂

∂y

[
g(x, y, w) ∂w

∂y

]
= h(x, y, w)

1. (ay + c)
∂2w

∂x2
+ (bx + N )

∂2w

∂y2
= f (w).

This equation can be rewritten in the divergence form

∂

∂x

[

(ay + c)
∂w

∂x

]

+
∂

∂y

[

(bx + s)
∂w

∂y

]

= f (w).

For ab ≠ 0, there is an exact solution of the form

w = w(ξ), ξ = (a2b)−1/3x + (ab2)−1/3y + (a2b)−2/3c + (ab2)−2/3
s,

where the function w(ξ) is determined by the ordinary differential equation

ξw′′

ξξ = f (w).
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2.
∂

∂x

[

(a1x + b1y + c1)
∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2)
∂w

∂y

]

= f (w).

Solutions are sought in the traveling wave form

w = w(z), z = Ax +By + C,

where the constants A, B, and C are determined by solving the algebraic system of equations

a1A
2 + a2B

2 = A, (1)
b1A

2 + b2B
2 = B, (2)

c1A
2 + c2B

2 = C. (3)

Equations (1) and (2) are first solved for A and B and then equation (3) is used to evaluate C. The
unknown function w(z) is determined by the ordinary differential equation

zw′′

zz + (Aa1 +Bb2)w′

z = f (w).

3.
∂2w

∂x2
+

∂

∂y

{

[

f (x)w + g(x)
] ∂w

∂y

}

= 0.

1◦. Generalized separable solution linear in y:

w(x, y) = (Ax +B)y −
∫ x

x0

(x − t)(At +B)2f (t) dt + C1x + C2,

where A, B, C1, C2, and x0 are arbitrary constants. This solution is degenerate.

2◦. Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x),

where the functions ϕ = ϕ(x), ψ = ψ(x), and χ = χ(x) are determined by the system of ordinary
differential equations

ϕ′′

xx + 6fϕ2 = 0, (1)
ψ′′

xx + 6fϕψ = 0, (2)
χ′′

xx + 2fϕχ + 2ϕg + fψ2 = 0. (3)

The nonlinear equation (1) is treated independently from the others. For f ≡ const, its solution
can be expressed in terms of elliptic integrals. For f = aeλx, a particular solution to (1) is given
by ϕ = − λ2

6a e
−λx. Equations (2) and (3) are solved successively (these are linear in their respective

unknowns). Since ψ = ϕ(x) is a particular solution to equation (2), the general solution is expressed
as (see Polyanin and Zaitsev, 2003)

ψ(x) = C1ϕ(x) + C2ϕ(x)
∫

dx

ϕ2(x)
,

where C1 and C2 are arbitrary constants.

4.
∂2w

∂x2
+

∂

∂y

[

f (y)
√

w + a

∂w

∂y

]

= 0.

The substitution U =
√

w + a leads to the equation

∂

∂x

(

U
∂U

∂x

)

+
∂

∂y

[

f (y)
∂U

∂y

]

= 0,

which has a generalized separable solution of the form

U (x, y) = ϕ(y)x + ψ(y),

U (x, y) = ϕ(y)x2 + ψ(y)x + χ(y).
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5.
∂2w

∂x2
+ f (w)

∂2w

∂y2
= 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w(C1x + C2, O C1y + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Degenerate solution: w = C1xy + C2x + C3y + C4.

3◦. Self-similar solution:
w = w(z), z = y/x,

where the function w(z) is determined by the ordinary differential equation

[z2 + f (w)]w′′

zz + 2zw′

z = 0.

6.
∂

∂x

[

f (x)
∂w

∂x

]

+
∂

∂y

[

g(y)
∂w

∂y

]

= kw ln w +
[

h1(x) + h2(y)
]

w.

Multiplicative separable solution:

w(x, y) = exp
[

ϕ(x) + ψ(y)
]

.

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

e−ϕ[feϕϕ′

x]′x − kϕ − h1(x) = C,

e−ψ[geψψ′

y]′y − kψ − h2(y) = −C,

where C is an arbitrary constant.

7.
∂

∂x

[

f (x)
∂w

∂x

]

+
∂

∂y

{

[

g(x)w + h(x)
] ∂w

∂y

}

= 0.

There are generalized separable solutions linear and quadratic in y:

w(x, y) = ϕ(x)y + ψ(x),

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x).

8.
∂

∂x

[

f (w)
∂w

∂x

]

+
∂

∂y

[

g(w)
∂w

∂y

]

= 0.

This is a stationary anisotropic heat (diffusion) equation; f (w) and g(w) are the principal thermal
diffusivities (diffusion coefficients).

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w(C1x + C2, O C1y + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution in implicit form:
∫

[

A2f (w) +B2g(w)
]

dw = C1(Ax +By) + C2,

where A, B, C1, and C2 are arbitrary constants.
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3◦. Self-similar solution (α and β are arbitrary constants):

w = w(ζ), ζ =
x + α
y + β

,

where the function w(ζ) is determined by the ordinary differential equation

[f (w)w′

ζ]′ζ + [ζ2g(w)w′

ζ]′ζ = 0. (1)

Integrating (1) and taking w to be the independent variable, one obtains a Riccati equation for
ζ = ζ(w):

Cζ ′w = g(w)ζ2 + f (w), (2)

where C is an arbitrary constant. A large number of exact solutions to equation (2) for various
f = f (w) and g = g(w) can be found in Polyanin and Zaitsev (2003).

4◦. Solution in parametric form:

x = C1v
2 + C2v −

∫

f (w)[2C1G(w) + C3] dw + C4,

y = −[2C1G(w) + C3]v − C2G(w) + C5, G(w) =
∫

g(w) dw,

where C1, . . . , C5 are arbitrary constants.

5◦. Solution in parametric form:

x = [C1F (w) + C2]v + C3F (w) + C4, F (w) =
∫

f (w) dw,

y =
1
2
C1v

2 + C3v −
∫

g(w)[C1F (w) + C2] dw + C5.

6◦. Solution in parametric form:

x = [C1F (w) + C2]v2 + C3F (w) + C4 − 2
∫

{

f (w)
∫

g(w)[C1F (w) + C2] dw
}

dw,

y =
1
3
C1v

3 + C3v − 2v
∫

g(w)[C1F (w) + C2] dw + C5.

7◦. Solution in parametric form:

x = (C1e
λv + C2e

−λv)H(w) + C3,

y =
1
λ

(C1e
λv − C2e

−λv)
1

f (w)
H ′

w(w) + C4,

whereC1, . . . ,C4 andλ are arbitrary constants, the functionH =H(w) is determined by the ordinary
differential equation Lf [H] + λ2g(w)H = 0, and the differential operator Lf is defined as

Lf [ϕ] ≡
d

dw

[

1
f (w)

dϕ

dw

]

. (3)

8◦. Solution in parametric form:

x = [C1 sin(λv) + C2 cos(λv)]Z(w) + C3,

y =
1
λ

[C2 sin(λv) − C1 cos(λv)]
1

f (w)
Z ′

w(w) + C4,

where C1, . . . , C4 and λ are arbitrary constants, and the function Z = Z(w) is determined by the
ordinary differential equation Lf [Z] − λ2g(w)Z = 0.
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9◦. Solution in parametric form:

x = [2C1F (w) + C3]v + C2F (w) + C5, F (w) =
∫

f (w) dw,

y = C1v
2 + C2v −

∫

g(w)[2C1F (w) + C3] dw + C4.

10◦. Solution in parametric form:

x =
1
2
C1v

2 + C3v −
∫

f (w)[C1G(w) + C2] dw + C5,

y = −[C1G(w) + C2]v − C3G(w) + C4, G(w) =
∫

g(w) dw.

11◦. Solution in parametric form:

x =
1
3
C1v

3 + C3v − 2v
∫

f (w)[C1G(w) + C2] dw + C5,

y = −[C1G(w) + C2]v2 − C3G(w) + C4 + 2
∫

{

g(w)
∫

f (w)[C1G(w) + C2] dw
}

dw.

12◦. Solution in parametric form:

x = −
1
λ

(C1e
λv − C2e

−λv)
1

g(w)
H ′

w(w) + C3,

y = (C1e
λv + C2e

−λv)H(w) + C4,

whereC1,C2,C3, andλ are arbitrary constants, the functionH =H(w) is determined by the ordinary
differential equation Lg[H] + λ2f (w)H = 0, and the differential operator Lg is defined by (3) with
f (w) = g(w).

13◦. Solution in parametric form:

x = −
1
λ

[C2 sin(λv) − C1 cos(λv)]
1

g(w)
Z ′

w(w) + C3,

y = [C1 sin(λv) + C2 cos(λv)]Z(w) + C4,

whereC1,C2,C3, and λ are arbitrary constants, the functionZ =Z(w) is determined by the ordinary
differential equation Lg[Z] − λ2f (w)Z = 0, and the differential operator Lg is defined by (3) with
f (w) = g(w).

14◦. The original equation can be represented as the sum of the equations

f (w)
∂w

∂x
=
∂v

∂y
, −g(w)

∂w

∂y
=
∂v

∂x
. (4)

The hodograph transformation
x = x(w, v), y = y(w, v), (5)

where w, v are treated as the independent variables and x, y as the dependent ones, brings (4) to the
linear system

f (w)
∂y

∂v
=
∂x

∂w
, −g(w)

∂x

∂v
=
∂y

∂w
. (6)

Eliminating y yields the following linear equation for x = x(w, v):

∂

∂w

[

1
f (w)

∂x

∂w

]

+ g(w)
∂2x

∂v2 = 0. (7)
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Likewise, we can obtain another linear equation for y = y(w, v) from system (6). We have

∂

∂w

[

1
g(w)

∂y

∂w

]

+ f (w)
∂2y

∂v2 = 0. (8)

The procedure for constructing exact solutions to the original equation consists of the following
two stages. First, one finds an exact solution to the linear equation (7) for x = x(w, v). Then, this
solution is substituted into the linear system (6), from which the function y = y(w, v) is found in the
form

y =
∫ v

v0

1
f (w)

∂x

∂w
(w, ξ) dξ −

∫ w

w0

g(η)
∂x

∂v
(η, v0) dη, (9)

where w0 and v0 are any numbers. The thus obtained expressions of (5) define a solution to the
original equation in parametric form.

Likewise, one can first construct an exact solution to the linear equation (8) for y = y(w, v) and
then find x = x(w, v) from (6) in the form

x = −
∫ v

v0

1
g(w)

∂y

∂w
(w, ξ) dξ +

∫ w

w0

f (η)
∂y

∂v
(η, v0) dη,

where w0 and v0 are any numbers.
Remark 1. Let x = Φ(w, v; f , g) be a solution to equation (7). Then y = Φ(w, v; g, f ) solves

equation (8).

Remark 2. Let x = Φ(w, v; f , g), y = Ψ(w, v; f , g) be a solution to system of equations (6).
Then the functions x = Ψ(w, v; −g, −f ) and y = Φ(w, v; −g, −f ) also solve this system.

15◦. Solutions to equation (7) with even powers of v:

x =
n

∑

k=0

ϕk(w)v2k, (10)

where the functions ϕk = ϕk(w) are determined by the recurrence relations

ϕn(w) = AnF (w) +Bn, F (w) =
∫

f (w) dw,

ϕk−1(w) = AkF (w) +Bk − 2k(2k − 1)
∫

f (w)
{

∫

g(w)ϕk(w) dw
}

dw,

where the Ak and Bk are arbitrary constants (k = n, . . . , 1).
The function y = y(w, v) is defined by (9) and, in conjunction with relation (10), gives a solution

to the original nonlinear equation in parametric form.

16◦. Solutions to equation (7) with odd powers of v:

x =
n

∑

k=0

ψk(w)v2k+1, (11)

where the functions ψk = ψk(w) are determined by the recurrence relations

ψn(w) = AnF (w) +Bn, F (w) =
∫

f (w) dw,

ψk−1(w) = AkF (w) +Bk − 2k(2k + 1)
∫

f (w)
{

∫

g(w)ψk(w) dw
}

dw,

where the Ak and Bk are arbitrary constants (k = n, . . . , 1).
The function y = y(w, v) is defined by (9) and, in conjunction with relation (11), gives a solution

to the original nonlinear equation in parametric form.
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17◦. In the special case g(w) = k2f (w), the transformation

x̄ = kx, u =
∫

f (w) dw

leads to the Laplace equation
∂2u

∂x̄2 +
∂2u

∂y2 = 0.

For solutions of this linear equation, see the books by Tikhonov and Samarskii (1990) and Polyanin
(2002).P�Q

References for equation 5.4.4.8: V. F. Zaitsev and A. D. Polyanin (2001), A. D. Polyanin and V. F. Zaitsev (2002).

9.
∂

∂x

[

f (w)
∂w

∂x

]

+
∂

∂y

[

g(w)
∂w

∂y

]

= (a1x + b1y + c1)
∂w

∂x
+ (a2x + b2y + c2)

∂w

∂y
.

This equation describes steady-state anisotropic heat/mass transfer in a translational-shear fluid flow.
Traveling-wave solution:

w = w(z), z = a2x + (k − a1)y,

where k is a root of the quadratic equation

k2 − (a1 + b2)k + a1b2 − a2b1 = 0,

and the function w(z) is determined by the ordinary differential equation

[ϕ(w)w′

z]′z = [kz + a2c1 + (k − a1)c2]w′

z, ϕ(w) = a2
2f (w) + (k − a1)2g(w).

Remark 1. The above remains the same if an arbitrary function,h(w), is added to the right-hand
side of the original equation.

Remark 2. In the case of an incompressible fluid, equation coefficients must satisfy the condi-
tion a1 + b2 = 0.

10.
∂

∂x

{

[

a1x + b1y + f (w)
] ∂w

∂x

}

+
∂

∂y

{

[

a2x + b2y + g(w)
] ∂w

∂y

}

= 0.

Solutions are sought in the traveling-wave form

w = w(ξ), ξ = Ax + By,

where the constants A and B are determined by solving the algebraic system of equations

a1A
2 + a2B

2 = A, b1A
2 + b2B

2 = B.

The desired function w(ξ) is determined by the first-order ordinary differential equation (C is an
arbitrary constant):

[

ξ +A2f (w) +B2g(w)
]

w′

ξ = C.

Taking w to be the independent variable, we obtain a first-order linear equation for ξ = ξ(w):

Cξ′w = ξ +A2f (w) +B2g(w).

5.4.5. Other Equations

1.
∂2w

∂x2
+ aw4 ∂2w

∂y2
= f (y)w5.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C1w
( R
C2

1x + C2, y
)

,

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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2◦. Let u = u(y) be any nontrivial particular solution of the second-order linear ordinary differential
equation

au′′yy − f (y)u = 0. (1)

The transformation
ζ =

∫

dy

u2 , ξ =
w

u

simplifies the original equation considerably, bringing it to the form

∂2ξ

∂x2 + aξ4 ∂
2ξ

∂ζ2 = 0. (2)

This equation is independent of f explicitly and has a degenerate solution

ξ(x, ζ) = Axζ +Bζ + Cx +D,

where A, B, C, and D are arbitrary constants. Furthermore, equation (2) has exact solutions with
the following structures, for example:

ξ(x, ζ) = ξ(kx + λζ) (traveling-wave solution),
ξ(x, ζ) = g(x)h(ζ) (multiplicative separable solution),

ξ(x, ζ) = xβϕ(η), η = ζx−2β−1 (self-similar solution),

where k, λ, and β are arbitrary constants.S�T
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

2.
∂2w

∂x2
+ a

∂

∂y

(

wn ∂w

∂y

)

= f (y)wn+1 + g(x)w.

Multiplicative separable solution:
w = ϕ(x)ψ(y),

where the functions ψ = ψ(y) and ϕ = ϕ(x) are determined by the ordinary differential equations
(C is an arbitrary constant)

ϕ′′

xx − g(x)ϕ + Cϕn+1 = 0,

a(ψnψ′

y)′y − f (y)ψn+1 − Cψ = 0.

3.
∂2w

∂x2
+ a

∂

∂y

(

eλw ∂w

∂y

)

= f (y)eλw + g(x).

Additive separable solution:
w = ϕ(x) + ψ(y),

where the functions ψ = ψ(y) and ϕ = ϕ(x) are determined by the ordinary differential equations

ϕ′′

xx − g(x) + Ceλϕ = 0,

a(eλψψ′

y)′y − f (y)eλψ − C = 0,

and C is an arbitrary constant. The second equation can be reduced, with the change of variable
U = eλψ , to the linear equation aU ′′

yy − λf (y)U − λC = 0.

4.
∂2w

∂x2
+

[

f3(x)w + f2(x)y2 + f1(x)y + f0(x)
]∂2w

∂y2
= g2(x)

(

∂w

∂y

)2

+ g1(x)
∂w

∂x
+

[

h1(x)y + h0(x)
] ∂w

∂y
+ U 3(x)w + U 2(x)y2 + U 1(x)y + U 0(x).

There is a generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x).
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5. axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ kxn–1 ∂w

∂x
+ V ym–1 ∂w

∂y
= f (w).

Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2
.

Here, the function w(ξ) is determined by the ordinary differential equation

Aw′′

ξξ +
B

ξ
w′

ξ = f (w), (1)

where

A = 1
4 ab(2 − n)2(2 −m)2,

B = 1
4 (2 − n)(2 −m)

[

ab(3nm − 4n − 4m + 4) + 2bk(2 −m) + 2as(2 − n)
]

.

Solution of equation (1) with B = 0 and arbitrary f = f (w) in implicit form:
∫

[

C1 +
2
A
F (w)

]−1/2

dw = C2 W ξ, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.X�Y
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

6. axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ kxn–1f (w)

∂w

∂x
+ V ym–1f (w)

∂w

∂y
= g(w).

For n ≠ 2 and m ≠ 2, there is a functional separable solution of the form

w = w(ξ), ξ =
[

b(2 −m)2x2−n + a(2 − n)2y2−m]1/2.

7. aeβx ∂2w

∂x2
+ beµy ∂2w

∂y2
+ keβx ∂w

∂x
+ V eµy ∂w

∂y
= f (w).

Functional separable solution for βµ ≠ 0:

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2.

Here, the function w = w(ξ) is determined by the ordinary differential equation

Aw′′

ξξ +
B

ξ
w′

ξ = f (w), (1)

where
A = 1

4abβ
2µ2, B = 1

4βµ(3abβµ − 2bkµ − 2asβ).

Solution of equation (1) with B = 0 and arbitrary f = f (w) in implicit form:
∫

[

C1 +
2
A
F (w)

]−1/2

dw = C2 W ξ, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.

8. aeβx ∂2w

∂x2
+ beµy ∂2w

∂y2
+ keβxf (w)

∂w

∂x
+ V eµyf (w)

∂w

∂y
= g(w).

For βµ ≠ 0, there is a functional separable solution of the form

w = w(ξ), ξ =
(

bµ2e−βx + aβ2e−µy)1/2.
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9. axn ∂2w

∂x2
+ beβy ∂2w

∂y2
+ kxn–1 ∂w

∂x
+ Z eβy ∂w

∂y
= f (w).

Functional separable solution β ≠ 0 and n ≠ 2:

w = w(ξ), ξ =
[

bβ2x2−n + a(2 − n)2e−βy]1/2.

Here, the function w(ξ) is determined by the ordinary differential equation

Aw′′

ξξ +
B

ξ
w′

ξ = f (w), (1)

where
A = 1

4abβ
2(2 − n)2, B = 1

4β(2 − n)
[

abβ(4 − 3n) + 2bkβ − 2as(2 − n)
]

.

Solution of equation (1) with B = 0 and arbitrary f = f (w) in implicit form:
∫

[

C1 +
2
A
F (w)

]−1/2

dw = C2 [ ξ, F (w) =
∫

f (w) dw,

where C1 and C2 are arbitrary constants.\�]
Reference: V. F. Zaitsev and A. D. Polyanin (1996).

10. axn ∂2w

∂x2
+ beβy ∂2w

∂y2
+ kxn–1f (w)

∂w

∂x
+ Z eβyf (w)

∂w

∂y
= g(w).

For β ≠ 0 and n ≠ 2, there is a functional separable solution of the form

w = w(ξ), ξ =
[

bβ2x2−n + a(2 − n)2e−βy]1/2.

11. (ay + c)
∂2w

∂x2
+ (bx + Z )

∂2w

∂y2
= f

(

w,
∂w

∂x
,

∂w

∂y

)

.

Functional separable solution for ab ≠ 0:

w = w(ξ), ξ = (a2b)−1/3x + (ab2)−1/3y + (a2b)−2/3c + (ab2)−2/3
s.

Here, the function w(ξ) is determined by the ordinary differential equation

ξw′′

ξξ = f
(

w, βw′

ξ , µw′

ξ

)

,

where β = (a2b)−1/3, µ = (ab2)−1/3.

12. (a1x + b1y + c1)
∂2w

∂x2
+ (a2x + b2y + c2)

∂2w

∂y2
= f

(

w,
∂w

∂x
,

∂w

∂y

)

.

Solutions are sought in the traveling-wave form

w = w(ξ), ξ = Ax +By + C,

where the constants A, B, and C are determined by solving the algebraic system of equations

a1A
2 + a2B

2 = A, (1)
b1A

2 + b2B
2 = B, (2)

c1A
2 + c2B

2 = C. (3)

Equations (1) and (2) are first solved for A and B and then equation (3) is used to evaluate C.
The desired function w(ξ) is determined by the ordinary differential equation

ξw′′

ξξ = f
(

w, Aw′

ξ , Bw′

ξ

)

.
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13. f1(x)
∂2w

∂x2
+ f2(y)

∂2w

∂y2
= g1(x)

∂w

∂x
+ g2(y)

∂w

∂y
+ kw ln w +

[

h1(x) + h2(y)
]

w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

f1(x)ϕ′′

xx = g1(x)ϕ′

x + kϕ lnϕ +
[

h1(x) + C
]

ϕ,

f2(y)ψ′′

yy = g2(y)ψ′

y + kψ lnψ +
[

h2(y) − C
]

ψ,

where C is an arbitrary constant.

14.
[

a1x + b1y + f (w)
] ∂2w

∂x2
+

[

a2x + b2y + g(w)
] ∂2w

∂y2
= h

(

w,
∂w

∂x
,

∂w

∂y

)

.

Traveling-wave solution:
w = w(ξ), ξ = Ax + By,

where the constants A, B, and C are determined by solving the algebraic system of equations

a1A
2 + a2B

2 = A, b1A
2 + b2B

2 = B,

and the function w(ξ) is determined by the ordinary differential equation
[

ξ +A2f (w) +B2g(w)
]

w′′

ξξ = h
(

w, Aw′

ξ , Bw′

ξ

)

.

15.
∂

∂x

{

[

a1x + b1y + f (w)
] ∂w

∂x

}

+
∂

∂y

{

[

a2x + b2y + g(w)
] ∂w

∂y

}

= h

(

w,
∂w

∂x
,

∂w

∂y

)

.

Traveling-wave solution:
w = w(ξ), ξ = Ax + By,

where the constants A, B, and C are determined by solving the algebraic system of equations

A2a1 +B2a2 = A, A2b1 +B2b2 = B,

and the function w(ξ) is determined by the ordinary differential equation
[

ϕ(ξ,w)w′

ξ

]

′

ξ
= h

(

w, Aw′

ξ , Bw′

ξ

)

,

ϕ(ξ,w) = ξ +A2f (w) +B2g(w).

16.
∂2w

∂x2
+ f (x)

∂w

∂x
+ g(x)

∂w

∂y

∂2w

∂y2
+ h(x)w = 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C−3
1 w

(

x, C1y + C2
)

+ φ(x),

whereC1 andC2 are arbitrary constants, and φ(x) is determined by the second-order linear ordinary
differential equation φ′′xx + f (x)φ′x + h(x)φ = 0, is also a solution of the equation.

2◦. Generalized separable solution:

w(x, y) = ϕ1(x) + ϕ2(x)y3/2 + ϕ3(x)y3,

where the functions ϕk = ϕk(x) are determined by the system of ordinary differential equations

ϕ′′

1 + f (x)ϕ′

1 + 9
8 g(x)ϕ2

2 + h(x)ϕ1 = 0,

ϕ′′

2 + f (x)ϕ′

2 + 45
4 g(x)ϕ2ϕ3 + h(x)ϕ2 = 0,

ϕ′′

3 + f (x)ϕ′

3 + 18g(x)ϕ2
3 + h(x)ϕ3 = 0,

where the prime stands for the differentiation with respect to x.

Page 403

© 2004 by Chapman & Hall/CRC



3◦. Generalized separable solution cubic in y:

w(x, y) = ψ1(x) + ψ2(x)y + ψ3(x)y2 + ψ4(x)y3,

where the functions ψk = ψk(x) are determined by the system of ordinary differential equations

ψ′′

1 + f (x)ψ′

1 + 2g(x)ψ2ψ3 + h(x)ϕ1 = 0,

ψ′′

2 + f (x)ψ′

2 + 2g(x)(2ψ2
3 + 3ψ2ψ4) + h(x)ϕ2 = 0,

ψ′′

3 + f (x)ψ′

3 + 18g(x)ψ3ψ4 + h(x)ϕ3 = 0,

ψ′′

4 + f (x)ψ′

4 + 18g(x)ψ2
4 + h(x)ϕ4 = 0.

4◦. Generalized separable solution:

w(x, y) = ξ(x) + η(x)θ(y).

Here, the functions ξ = ξ(x) and η = η(x) are determined by the system of ordinary differential
equations

η′′xx + f (x)η′x + ag(x)η2 + h(x)η = 0,

ξ′′xx + f (x)ξ′x + bg(x)η2 + h(x)ξ = 0,

where a and b are arbitrary constants, and the function θ = θ(y) is determined by the autonomous
ordinary differential equation

θ′yθ
′′

yy = aθ + b,
whose solution can be written out in implicit form.

17.
∂2w

∂x2
+ f

(

∂w

∂x
,
∂w

∂y

)

∂2w

∂y2
= 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C−1
1 w

(

C1x + C2, C1y + C3
)

+ C4,

where C1, C2, C4, and C4 are arbitrary constants, is also a solution of the equation.

2◦. The Legendre transformation

u(ξ, η) = xξ + yη − w(x, y), ξ =
∂w

∂x
, η =

∂w

∂y
,

where u is the new dependent variable, and ξ and η are the new independent variables, leads to the
linear equation

∂2u

∂η2 + f (ξ, η)
∂2u

∂ξ2 = 0.

Exact solutions of this equation for some f (ξ, η) can be found in Polyanin (2002).
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Chapter 6

Elliptic Equations
with Three or More Space Variables

6.1. Equations with Three Space Variables Involving
Power-Law Nonlinearities

6.1.1. Equations of the Form
∂
∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+ ∂
∂z

[

h(z) ∂w
∂z

]

= awp

1.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

czk ∂w

∂z

)

= �
wp.

This is a special case of equation 6.3.1.3 with f (w) = swp.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = C1w
(

C
p−1
2−n

1 x, C
p−1
2−m

1 y, C
p−1
2−k

1 z
)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, k ≠ 2, and p ≠ 1:

w =
[

1
s(1 − p)

(

p

1 − p
+

1
2 − n

+
1

2 −m
+

1
2 − k

)]

1
p−1

[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

1
1−p

.

3◦. Functional separable solution for n ≠ 2, m ≠ 2, and k ≠ 2 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = swp, A =
2

2 − n
+

2
2 −m

+
2

2 − k
− 1.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 ,

w(x, y, z) = V (x, η), η2 =
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 ,

w(x, y, z) = W (y, ζ), ζ2 =
x2−n

a(2 − n)2 +
z2−k

c(2 − k)2 ,

w(x, y, z) = x
n−2
p−1 F (ρ1, ρ2), ρ1 = yx

n−2
2−m , ρ2 = zx

n−2
2−k .
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406 ELLIPTIC EQUATIONS WITH THREE OR MORE SPACE VARIABLES

2.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= � wp.

This is a special case of equation 6.3.1.5 with f (w) = swp.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = C1w
(

C
p−1
2−n

1 x, C
p−1
2−m

1 y, z +
1 − p
λ

lnC1

)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, λ ≠ 0, and p ≠ 1:

w =
[

1
s(p − 1)

(

p

1 − p
+

1
2 − n

+
1

2 −m

)]

1
p−1

[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−λz

cλ2

]

1
1−p

.

3◦. Functional separable solution for n ≠ 2, m ≠ 2, and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−λz

cλ2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = swp, A =
2

2 − n
+

2
2 −m

− 1.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 ,

w(x, y, z) = V (x, η), η2 =
y2−m

b(2 −m)2 +
e−λz

cλ2 ,

w(x, y, z) = W (y, ζ), ζ2 =
x2−n

a(2 − n)2 +
e−λz

cλ2 ,

w(x, y, z) = x
n−2
p−1 F (ρ1, ρ2), ρ1 = yx

n−2
2−m , ρ2 = z +

2 − n
λ

lnx.

3.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beβy ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= � wp.

This is a special case of equation 6.3.1.6 with f (w) = swp.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = C1w
(

C
p−1
2−n

1 x, y +
1 − p
β

lnC1, z +
1 − p
λ

lnC1

)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for n ≠ 2, β ≠ 0, λ ≠ 0, and p ≠ 1:

w =
[

1
s(p − 1)

(

p

1 − p
+

1
2 − n

)]

1
p−1

[

x2−n

a(2 − n)2 +
e−βy

bβ2 +
e−λz

cλ2

]

1
1−p

.

3◦. Functional separable solution for n ≠ 2, β ≠ 0, and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
e−βy

bβ2 +
e−λz

cλ2

]

,
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where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = swp, A =
n

2 − n
.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
x2−n

a(2 − n)2 +
e−βy

bβ2 ,

w(x, y, z) = V (x, η), η2 =
e−βy

bβ2 +
e−λz

cλ2 ,

w(x, y, z) = W (y, ζ), ζ2 =
x2−n

a(2 − n)2 +
e−λz

cλ2 ,

w(x, y, z) = x
n−2
p−1 F (ρ1, ρ2), ρ1 = y +

2 − n
β

lnx, ρ2 = z +
2 − n
λ

lnx.

4.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beγy ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= � wp.

This is a special case of equation 6.3.1.4 with f (w) = swp.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = C1w
(

x +
1 − p
β

lnC1, y +
1 − p
γ

lnC1, z +
1 − p
λ

lnC1

)

,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for p ≠ 1, β ≠ 0, γ ≠ 0, and λ ≠ 0:

w =
[

p

b(1 − p)2

]

1
p−1

(

e−βx

aβ2 +
e−γy

bγ2 +
e−λz

cλ2

)

1
1−p

.

3◦. Functional separable solution for β ≠ 0, γ ≠ 0, and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
(

e−βx

aβ2 +
e−γy

bγ2 +
e−λz

cλ2

)

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr −
1
r
w′

r = swp.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
e−βx

aβ2 +
e−γy

bγ2 ,

w(x, y, z) = V (x, η), η2 =
e−γy

bγ2 +
e−λz

cλ2 ,

w(x, y, z) = W (y, ζ), ζ2 =
e−βx

aβ2 +
e−λz

cλ2 ,

w(x, y, z) = exp
( βx

p − 1

)

F (ρ1, ρ2), ρ1 = y −
β

γ
x, ρ2 = z −

β

λ
x.
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408 ELLIPTIC EQUATIONS WITH THREE OR MORE SPACE VARIABLES

6.1.2. Equations of the Form
∂
∂x

[

f (w) ∂w
∂x

]

+ ∂
∂y

[

g(w) ∂w
∂y

]

+ ∂
∂z

[

g(w) ∂w
∂z

]

= 0

1.
∂2w

∂x2
+ a

∂2w

∂y2
+

∂

∂z

[

(bw + c)
∂w

∂z

]

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = C−2
1 w(

�
C2x + C3,

�
C2y + C4,

�
C1C2z + C5) +

c(1 − C2
1 )

bC2
1

,

w2 = w(x cosβ + ya−1/2 sinβ, −xa1/2 sinβ + y cosβ, z),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Solutions:

w(x, y, z) = A
√

C1x + C2y + C3z + C4 −
C2

1 + aC2
2

bC2
3

−
c

b
,

w(x, y, z) = (C1x + C2)z + C3x + C4y + C5 − 1
12 bC

−2
1 (C1x + C2)4,

w(x, y, z) = (C1x + C2)z + C3(ax2 − y2) − 1
12 bC

−2
1 (C1x + C2)4,

w(x, y, z) = |z|1/2[C1(ax2 − y2) + C2x + C3 + C4)
]

−
c

b
,

w(x, y, z) = C1|z|1/2 exp
(√

aC2x
)

sin(C2y + C3) −
c

b
,

w(x, y, z) = C1|z|1/2 sin(
√

aC2x + C3) exp(C2y) −
c

b
,

where A, C1, . . . , C5 are arbitrary constants (the first solution is of the traveling-wave type).

3◦. Solution:
w = u(ξ) − 4bC2

1x
2, ξ = z + bC1x

2 + C2y,

where C1 and C2 are arbitrary constants and the function u(ξ) is determined by the first-order
ordinary differential equation

(bu + c + aC2
2 )u′ξ + 2bC1u = 8bC2

1ξ + C3.

With appropriate translations in both variables, one can make the equation homogeneous, which
means it is integrable by quadrature.

4◦. Solution:
w = v(r) − 4bC2

2x
2 − 4abC2

1y
2, r = z + bC1x

2 + bC2y
2,

where C1 and C2 are arbitrary constants and the function v(r) is determined by the first-order
ordinary differential equation

(bv + c)v′r + 2b(aC2 + C1)v = 8b(a2C2
1 + C2

2 )r + C3.

With appropriate translations in both variables, one can make the equation homogeneous.

5◦. Solution (generalizes the solution of Items 3◦ and 4◦):

w = U (ζ) +A1x
2 +A2y

2 + A3xy +A4x +A5y, ζ = z + b(B1x
2 +B2y

2 +B3xy +B4x +B5y),
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6.1. EQUATIONS WITH THREE SPACE VARIABLES INVOLVING POWER-LAW NONLINEARITIES 409

where B1, B2, B3, B4, and B5 are arbitrary constants, the coefficients An are expressed in terms
of Bn by

A1 = −b(4B2
1 + aB2

3),

A2 = −b(B2
3 + 4aB2

2),
A3 = −4bB3(B1 + aB2),
A4 = −2b(2B1B4 + aB3B5),
A5 = −2b(B3B4 + 2aB2B5),

and the function U (ζ) is determined by the first-order ordinary differential equation

(bU + c + ab2B2
5 + b2B2

4)U ′

ζ + 2b(aB2 +B1)U + 2(aA2 +A1)ζ = C1.

With appropriate translations in both variables, one can make the equation homogeneous, which
means it is integrable by quadrature.

6◦. “Two-dimensional” generalized separable solution linear in z (generalizes the second and third
solutions of Item 2◦):

w = f (x, η)z + g(x, η), η = a−1/2y,
where the functions f and g are determined by the system of differential equations

∂2f

∂x2 +
∂2f

∂η2 = 0, (1)

∂2g

∂x2 +
∂2g

∂η2 = −bf 2. (2)

Equation (1) is the Laplace equation. Given f = f (x, η), (2) represents a Helmholtz equation. For
solutions of these linear equations, see Tikhonov and Samarskii (1990) and Polyanin (2002).

7◦. “Two-dimensional” generalized separable solution quadratic in z:

w = f (x, y)z2 + g(x, y)z + h(x, y),

where the functions f = f (x, y), g = g(x, y), and h = h(x, y) are determined by the system of
differential equations

fxx + afyy + 6bf 2 = 0,
gxx + agyy + 6bfg = 0,

hxx + ahyy + bg2 + 2bfh + 2cf = 0.
Here, the subscripts denote the corresponding partial derivatives.

8◦. “Two-dimensional” solution (generalizes the last three solutions of Item 2◦):

w(x, y, z) = |z|1/2U (x, η) −
c

b
, η = a−1/2y,

where the function U = U (x, η) is determined by the Laplace equation

∂2U

∂x2 +
∂2U

∂η2 = 0.

9◦. There are solutions of the following forms:

w(x, y, z) = F (z, r), r = ax2 + y2 “two-dimensional” solution;

w(x, y, z) = x2λG(ξ, η) −
c

b
, ξ =

y

x
, η =

z

xλ+1 “two-dimensional” solution;

w(x, y, z) = H(ζ), ζ = (ax2 + y2)z−2 “one-dimensional” solution;

where λ is an arbitrary constant.

10◦+. The substitution u = w + (c/b) leads to a special case of equation 6.1.2.3 with n = 1.
Remark. In the special case a = 1, b < 0, and c > 0, the equation in question describes transonic

flows of ideal polytropic gases (Pokhozhaev, 1989).

Page 409

© 2004 by Chapman & Hall/CRC
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2.
∂2w

∂x2
+

∂

∂y

[

(a1w + b1)
∂w

∂y

]

+
∂

∂z

[

(a2w + b2)
∂w

∂z

]

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = w( � C1x + C2, � C1y + C3, � C1z + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution:

w(x, y, z) = A
√

k1x + k2y + k3z +B −
k2

1 + b1k
2
2 + b2k

2
3

a1k
2
2 + a2k

2
3

,

where A, B, k1, k2, and k3 are arbitrary constants.

3◦. Solution linear in y and z:

w(x, y, z) = (A1x +B1)y + (A2x +B2)z
− 1

12 (a1A
2
1 + a2A

2
2)x4 − 1

3 (a1A1B1 + a2A2B2)x3 − 1
2 (a1B

2
1 + a2B

2
2 )x2 + Cx +D,

where A1, A2, B1, B2, C, and D are arbitrary constants.

4◦. There is a generalized separable solution of the form

w(x, y, z) = f (x)y2 + g(x)yz + h(x)z2 + ϕ(x)y + ψ(x)z + χ(x).

5◦. For other solutions, see equation 6.3.2.3 with f (w) = 1, g(w) = a1w + b1, and h(w) = a2w + b2.

3.
∂2w

∂x2
+ a

∂2w

∂y2
+ b

∂

∂z

(

wn ∂w

∂z

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = C−2
1 w( � C2x + C3, � C2y + C4, � Cn

1 C2z + C5),

w2 = w(x cos β + ya−1/2 sinβ, −xa1/2 sinβ + y cosβ, z),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Solutions:
w(x, y, z) = z

1
n+1 [C1(ax2 − y2) + C2x + C3y + C4],

w(x, y, z) = z
1

n+1 [C1 ln(ax2 + y2) + C2],

w(x, y, z) = C1z
1

n+1 exp(
√

aC2x) cos(C2y + C3),

where C1, . . . , C4 are arbitrary constants.

3◦. “Two-dimensional” solution (generalizes the solutions of Item 2◦):

w(x, y, z) = z
1

n+1U (x, η), η = a−1/2y,

where the function U = U (x, η) is determined by the Laplace equation

∂2U

∂x2 +
∂2U

∂η2 = 0.

For this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

Page 410

© 2004 by Chapman & Hall/CRC



6.1. EQUATIONS WITH THREE SPACE VARIABLES INVOLVING POWER-LAW NONLINEARITIES 411

4◦. “Two-dimensional” solution:

w(x, y, z) = u(x, η)z2/n, η = a−1/2y,

where the function u = u(x, η) is determined by a differential equation of the form 5.1.1:

∂2u

∂x2 +
∂2u

∂η2 +
2b(n + 2)

n2 un+1 = 0.

For n = −1 and n = −2, this equation is linear.
Remark. The solutions of Items 2◦ and 3◦ are special cases of a multiplicative separable solution

w = u(x, y)θ(z), where θ = θ(z) is determined by the autonomous ordinary differential equation
(θnθ′z)′z = Cθ.

5◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = F (z, r), r = ax2 + y2;

w(x, y, z) = x2λG(ξ, η), ξ =
y

x
, η =

z

xnλ+1 ;

w(x, y, z) = |x|−2/nH(z, ζ), ζ = y/x;

w(x, y, z) = |z|2/nU (t1, t2), t1 = x + k1 ln |z|, t2 = y + k2 ln |z|;

w(x, y, z) = exp
(

−
2z
n + 1

)

V (ρ1, ρ2), ρ1 = x exp
(

−
nz

n + 1

)

, ρ2 = y exp
(

−
nz

n + 1

)

,

where k1, k2, and λ are arbitrary constants.

6◦. There are solutions of the following forms:

w(x, y, z) = W (ζ), ζ = (ax2 + y2)z−2;

w(x, y, z) = S(r)z2/n, r = ax2 + y2.

7◦. For other solutions, see equation 6.1.2.5, where n should be set equal to zero and then k should
be renamed n.���

Reference: N. Ibragimov (1994).

4.
∂2w

∂x2
+ a

∂

∂y

(

wn ∂w

∂y

)

+ b
∂

∂z

(

wn ∂w

∂z

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = C−2
1 w( � C2x + C3, � Cn

1 C2y + C4, � Cn
1 C2z + C5),

w2 = w
(

x, y cosβ + z
√

a/b sinβ, −y
√

b/a sinβ + z cosβ
)

,

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs are chosen arbitrarily).

2◦. Degenerate solutions:

w(x, y, z) = x
[

C1(by2 − ax2) + C2x + C3y + C4
]

1
n+1 ,

w(x, y, z) = x
[

C1 ln
(

by2 + az2) + C2
]

1
n+1 ,

w(x, y, z) = x
[

C1 exp
(

λ
√

b y
)

sin
(

λ
√

a z + C2
)

+ C3
]

1
n+1 ,

where C1, . . . , C4 and λ are arbitrary constants.
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3◦. “Two-dimensional” solution (generalizes the solutions of Item 2◦):

w(x, y, z) = (C1x + C2)
[

U (ξ, η)
]

1
n+1 , ξ =

√

b y, η =
√

a z,

where the function U = U (ξ, η) is determined by the Laplace equation

∂2U

∂ξ2 +
∂2U

∂η2 = 0.

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. “Two-dimensional” solution:

w(x, y, z) = x−2/n
Θ(y, z),

where the function Θ = Θ(y, z) is determined by the differential equation

a
∂

∂y

(

Θ
n ∂Θ

∂y

)

+ b
∂

∂z

(

Θ
n ∂Θ

∂z

)

+
2(n + 2)
n2 Θ = 0.

For n = −2, the equation obtained can be reduced, with the transformation u = 1/Θ, ξ =
√

b y,
η =
√

a z, to the Laplace equation.
Remark. The solutions of Items 2◦ and 3◦ are special cases of a multiplicative separable solution

w = ϕ(x)u(y, z), where ϕ = ϕ(x) is determined by the autonomous ordinary differential equation
ϕ′′

zz = Cϕn+1.

5◦. There are solutions of the following forms:

w(x, y, z) = F (x, r), r = by2 + az2 “two-dimensional” solution;

w(x, y, z) = x2λG(ξ, η), ξ =
y

xnλ+1 , η =
z

xnλ+1 “two-dimensional” solution;

w(x, y, z) = z2/nH(x, ζ), ζ = z/y “two-dimensional” solution;

w(x, y, z) = |x|−2/nU (z1, z2), z1 = y + k1 ln |x|, z2 = z + k2 ln |x| “two-dimensional” solution;

w(x, y, z) = e−2xV (ρ1, ρ2), ρ1 = yenx, ρ2 = zenx “two-dimensional” solution;

w(x, y, z) = W (θ), θ = (by2 + az2)x−2 “one-dimensional” solution,

where k1, k2, and λ are arbitrary constants.

6◦. For other solutions, see equation 6.1.2.5 with k = n.	�

Reference: N. Ibragimov (1994).

5.
∂2w

∂x2
+ a

∂

∂y

(

wn ∂w

∂y

)

+ b
∂

∂z

(

wk ∂w

∂z

)

= 0.

This is a special case of equation 6.3.2.3 with f (w) = 1, g(w) = awn, and h(w) = bwk.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the functions

w1 = C−2
1 w( � C2x + C3, � Cn

1 C2y + C4, � Ck
1 C2z + C5),

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

β2
1w +

aβ2
2

n + 1
wn+1 +

bβ2
3

k + 1
wk+1 = C1(β1x + β2y + β3z) + C2,

where C1, C2, β1, β2, and β3 are arbitrary constants.
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3◦. “Two-dimensional” solution (c1 and c2 are arbitrary constants):

w(x, y, z) = u(x, ξ), ξ = c1y + c2z,

where the function u = u(x, ξ) is determined by a differential equation of the form 5.4.4.8:

∂2u

∂x2 +
∂

∂ξ

[

ϕ(u)
∂u

∂ξ

]

= 0, ϕ(u) = ac2
1u

n + bc2
2u

k,

which can be reduced to a linear equation.

4◦. “Two-dimensional” solution (s1 and s2 are arbitrary constants):

w(x, y, z) = v(y, η), η = s1x + s2z,

where the function v = v(y, η) is determined by a differential equation of the form 5.4.4.8:

a
∂

∂y

(

vn ∂v

∂y

)

+
∂

∂η

[

ψ(v)
∂v

∂η

]

= 0, ψ(v) = s
2
1 + bs2

2v
k,

which can be reduced to a linear equation.

5◦. There is a “two-dimensional” solution of the form (generalize the solutions of Items 3◦ and 4◦):

w(x, y, z) = U (z1, z2), z1 = a1y + b1z + c1x, z2 = a2y + b2z + c2x.

6◦. There are exact solutions of the following forms:

w(x, y, z) = x2λF (ξ, η), ξ =
y

xnλ+1 , η =
z

xkλ+1 “two-dimensional” solution;

w(x, y, z) = y2/nG(ζ,x), ζ = y−k/nz “two-dimensional” solution;

w(x, y, z) = e−2xH(z1, z2), z1 = yenx, z2 = zekx “two-dimensional” solution;

w(x, y, z) = (y/x)2/nU (θ), θ = xk/n−1y−k/nz “one-dimensional” solution;

where λ is an arbitrary constant.��
References: N. Ibragimov (1994), V. F. Zaitsev and A. D. Polyanin (2001), A. D. Polyanin and V. F. Zaitsev (2002).

6. a1
∂

∂y

(

wn1
∂w

∂y

)

+ a2
∂

∂y

(

wn2
∂w

∂y

)

+ a3
∂

∂z

(

wn3
∂w

∂z

)

= 0.

This is a special case of equation 6.3.2.3 with f (w) = a1w
n1 , g(w) = a2w

n2 , and h(w) = a3w
n3 .

6.2. Equations with Three Space Variables Involving
Exponential Nonlinearities

6.2.1. Equations of the Form
∂
∂x

[

f (x) ∂w
∂x

]

+ ∂
∂y

[

g(y) ∂w
∂y

]

+ ∂
∂z

[

h(z) ∂w
∂z

]

= aeλw

1.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

czk ∂w

∂z

)

= � eλw.

This is a special case of equation 6.3.1.3 with f (w) = seλw.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = w
(

C
2

2−n
1 x, C

2
2−m

1 y, C
2

2−k
1 y

)

+
2
λ

lnC1,

where C1 is an arbitrary constant, is also a solution of the equation.
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2◦. Solution for n ≠ 2, m ≠ 2, and k ≠ 2:

w = −
1
λ

ln
{

sλ

A

[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]}

, A = 1 −
1

2 − n
−

1
2 −m

−
1

2 − k
.

3◦. Functional separable solution for n ≠ 2, m ≠ 2, and k ≠ 2 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
B

r
w′

r = seλw, B =
2

2 − n
+

2
2 −m

+
2

2 − k
− 1.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 ,

w(x, y, z) = V (x, η), η2 =
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2 ,

w(x, y, z) = W (y, ζ), ζ2 =
x2−n

a(2 − n)2 +
z2−k

c(2 − k)2 ,

w(x, y, z) = F (ρ1, ρ2) +
n − 2
λ

lnx, ρ1 = yx
n−2
2−m , ρ2 = zx

n−2
2−k .

2.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= � eσw.

This is a special case of equation 6.3.1.5 with f (w) = seσw.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = w
(

C
2

2−n
1 x, C

2
2−m

1 y, z −
2
λ

lnC1

)

+
2
σ

lnC1,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for n ≠ 2, m ≠ 2, and λ ≠ 0:

w = −
1
σ

ln
{

sσ

A

[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−λz

cλ2

]}

, A = 1 −
1

2 − n
−

1
2 −m

.

3◦. Functional separable solution for n ≠ 2, m ≠ 2, and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−λz

cλ2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
B

r
w′

r = seσw, B =
2

2 − n
+

2
2 −m

− 1.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 ,

w(x, y, z) = V (x, η), η2 =
y2−m

b(2 −m)2 +
e−λz

cλ2 ,

w(x, y, z) = W (y, ζ), ζ2 =
x2−n

a(2 − n)2 +
e−λz

cλ2 ,

w(x, y, z) = F (ρ1, ρ2) +
n − 2
σ

lnx, ρ1 = yx
n−2
2−m , ρ2 = z +

2 − n
λ

lnx.
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3.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beβy ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= � eσw.

This is a special case of equation 6.3.1.6 with f (w) = seσw.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = w
(

C
2

2−n
1 x, y −

2
β

lnC1, z −
2
λ

lnC1

)

+
2
σ

lnC1,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for n ≠ 2, β ≠ 0, and λ ≠ 0:

w = −
1
σ

ln
{

sσ(2 − n)
1 − n

[

x2−n

a(2 − n)2 +
e−βy

bβ2 +
e−λz

cλ2

]}

.

3◦. Functional separable solution for n ≠ 2, β ≠ 0, and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
e−βy

bβ2 +
e−λz

cλ2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = seσw, A =
n

2 − n
.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
x2−n

a(2 − n)2 +
e−βy

bβ2 ,

w(x, y, z) = V (x, η), η2 =
e−βy

bβ2 +
e−λz

cλ2 ,

w(x, y, z) = W (y, ζ), ζ2 =
x2−n

a(2 − n)2 +
e−λz

cλ2 ,

w(x, y, z) = F (ρ1, ρ2) +
n − 2
σ

lnx, ρ1 = y +
2 − n
β

lnx, ρ2 = z +
2 − n
λ

lnx.

4.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beγy ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= � eσw.

This is a special case of equation 6.3.1.4 with f (w) = seσw.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the function

w1 = w
(

x −
2
β

lnC1, y −
2
γ

lnC1, z −
2
λ

lnC1

)

+
2
σ

lnC1,

where C1 is an arbitrary constant, is also a solution of the equation.

2◦. Solution for β ≠ 0, γ ≠ 0, and λ ≠ 0:

w = −
1
σ

ln
[

sσ

(

e−βx

aβ2 +
e−γy

bγ2 +
e−λz

cλ2

)]

.

3◦. Functional separable solution for β ≠ 0, γ ≠ 0, and λ ≠ 0 (generalizes the solution of Item 2◦):

w = w(r), r2 = 4
(

e−βx

aβ2 +
e−γy

bγ2 +
e−λz

cλ2

)

,
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where the function w(r) is determined by the ordinary differential equation

w′′

rr −
1
r
w′

r = seσw.

4◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (ξ, z), ξ2 =
e−βx

aβ2 +
e−γy

bγ2 ,

w(x, y, z) = V (x, η), η2 =
e−γy

bγ2 +
e−λz

cλ2 ,

w(x, y, z) = W (y, ζ), ζ2 =
e−βx

aβ2 +
e−λz

cλ2 ,

w(x, y, z) = F (ρ1, ρ2) +
β

σ
x, ρ1 = y −

β

γ
x, ρ2 = z −

β

λ
x.

6.2.2. Equations of the Form
a1

∂
∂x

(

eλ1w ∂w
∂x

)

+ a2
∂
∂y

(

eλ2w ∂w
∂y

)

+ a3
∂
∂y

(

eλ2w ∂w
∂y

)

= beβw

1.
∂2w

∂x2
+ a

∂2w

∂y2
+ b

∂

∂z

(

ew ∂w

∂z

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = w(C1x + C3, � C1y + C4,C2z + C5) + ln
C2

1
C2

2
,

w2 = w(x cosβ + ya−1/2 sinβ, −xa1/2 sinβ + y cosβ, z),

whereC1, . . . , C5 and β are arbitrary constants, are also solutions of the equation (the plus or minus
signs in w1 are chosen arbitrarily).

2◦. Solutions:

w(x, y, z) = C1(ax2 − y2) + C2xy + C3x + C4y + C5 + ln(C6z + C7),
w(x, y, z) = C1 exp(

√

aC2x) sin(C2y + C3) + ln(C4z + C5),
w(x, y, z) = C1 exp(C2y) sin(

√

aC2x + C3) + ln(C4z + C5),

w(x, y, z) = ln
[

(C2
1 + aC2

2 )(z + C4)2

b cosh2(C1x + C2y + C3)

]

,

w(x, y, z) = ln
(

4aC3

b

)

− 2 ln
∣

∣(y + C1)2 + a(x + C2)2 + C3
∣

∣ + 2 ln |z + C4|,

where C1, . . . , C7 are arbitrary constants.

3◦. “Two-dimensional” solution (generalizes the first three solutions of Item 2◦):

w(x, y, z) = U (x, η) + ln(C1z + C2), η = a−1/2y,

where C1 and C2 are arbitrary constants and the function U (x, η) is determined by the Laplace
equation

∂2U

∂x2 +
∂2U

∂η2 = 0.

For this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
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4◦. “Two-dimensional” solution:

w(x, y, z) = V (x, η) + 2 ln |z + C |, η = a−1/2y,

where the function V = V (x, η) is determined by a solvable differential equation of the form 5.2.1.1:

∂2V

∂x2 +
∂2V

∂η2 = −2beV .

5◦. There are solutions of the following forms:

w(x, y, z) = F (r, z), r = ax2 + y2 “two-dimensional”;

w(x, y, z) = G(ξ1, ξ2) − 2k ln |x|, ξ1 = yx−1, ξ2 = z|x|k−1 “two-dimensional”;

w(x, y, z) = H(η1, η2) + 2k ln |z|, η1 = x|z|k−1, η2 = y|z|k−1 “two-dimensional”;
w(x, y, z) = U (ζ1, ζ2) + 2 ln |z|, ζ1 = x + k1 ln |z|, ζ2 = y + k2 ln |z| “two-dimensional”;
w(x, y, z) = V (ρ1, ρ2) + 2z, ρ1 = xez, ρ2 = yez “two-dimensional”;

w(x, y, z) = W (χ), χ = (ax2 + y2)z−2 “one-dimensional”;

where k, k1, and k2 are arbitrary constants.

6◦. For other exact solutions, see equation 6.3.2.3 with f (w) = 1, g(w) = a, and h(w) = bew.

2.
∂2w

∂x2
+ a

∂

∂y

(

eλw ∂w

∂y

)

+ b
∂

∂z

(

eλw ∂w

∂z

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = w(C1x + C3,C2y + C4,C2z + C5) +
1
λ

ln
C2

1
C2

2
,

w2 = w
(

x, y cosβ + z
√

a/b sinβ, −y
√

b/a sinβ + z cosβ
)

,

where C1, . . . , C5 and β are arbitrary constants,

2◦. Solutions:

w(x, y, z) = C1x + C2 +
1
λ

ln(C3y + C4z + C5);

w(x, y, z) = C1x + C2 +
1
λ

ln
[

C3(by2 − az2) + C4yz + C5
]

;

w(x, y, z) = C1x + C2 +
1
λ

ln
[

C3 ln(by2 + az2) + C4
]

;

w(x, y, z) = C1x + C2 +
√

bC3y +
1
λ

ln cos
(√

aC3λz + C4
)

;

w(x, y, z) = C1x + C2 +
1
λ

ln
[

C3 exp
(
√

bC4y
)

cos
(√

aC4z + C5
)

+ C6
]

;

w(x, y, z) =
1
λ

ln
[

−aC2
1y

2 + C2 exp
(
√

bC3y
)

cos
(√

aC3z + C4
)

cos2(aC1x + C5)

]

;

w(x, y, z) =
1
λ

ln
[

−bC2
1z

2 + C2 exp
(
√

bC3y
)

cos
(√

aC3z + C4
)

cos2(bC1x + C5)

]

;

w(x, y, z) =
1
λ

ln
[

−aC2
1y

2 + C2 exp
(√

bC3y
)

cos
(√

aC3z + C4
)

sinh2(aC1x + C5)

]

;

w(x, y, z) =
1
λ

ln
[

−bC2
1z

2 + C2 exp
(
√

bC3y
)

cos
(√

aC3z + C4
)

sinh2(bC1x + C5)

]

;
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w(x, y, z) =
1
λ

ln
[

aC2
1y

2 + C2 exp
(√

bC3y
)

cos
(√

aC3z + C4
)

cosh2(aC1x + C5)

]

;

w(x, y, z) =
1
λ

ln
[

bC2
1z

2 + C2 exp
(√

bC3y
)

cos
(√

aC3z + C4
)

cosh2(bC1x + C5)

]

;

where C1, . . . , C6 are arbitrary constants.

3◦. “Two-dimensional” solution (generalizes the first five solutions of Item 2◦):

w(x, y, z) = C1x + C2 +
1
λ

lnU (ξ, η), ξ =
y
√

a
, η =

z
√

b
,

where C1 and C2 are arbitrary constants and the function U = U (ξ, η) is determined by the Laplace
equation

∂2U

∂ξ2 +
∂2U

∂η2 = 0.

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).

4◦. “Two-dimensional” solution:

w(x, y, z) = f (x) +
1
λ

lnV (ξ, η), ξ =
y
√

a
, η =

z
√

b
,

where the function f = f (x) is determined by the autonomous ordinary differential equation (k is an
arbitrary constant)

f ′′

xx + keλf = 0, (1)
and the function V = V (ξ, η) is a solution of the Poisson equation

∆V − kλ = 0, ∆ =
∂2

∂ξ2 +
∂2

∂η2 . (2)

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
The general solution of equation (1) is expressed as

f (x) =















































−
1
λ

ln
[

− 1
2 kλ(x + C1)2] if kλ < 0,

−
1
λ

ln
[

−
kλ

2C2
1

cos2(C1x + C2)
]

if kλ < 0,

−
1
λ

ln
[

−
kλ

2C2
1

sinh2(C1x + C2)
]

if kλ < 0,

−
1
λ

ln
[

kλ

2C2
1

cosh2(C1x + C2)
]

if kλ > 0.

5◦. There are solutions of the following forms:

w(x, y, z) = F (x, τ ) +
2
λ

ln |y|, τ =
z

y
, “two-dimensional” solution;

w(x, y, z) = G(x, r), r = by2 + az2 “two-dimensional” solution;

w(x, y, z) = H(z1, z2) −
2k
λ

ln |x|, z1 = y|x|k−1, z2 = z|x|k−1 “two-dimensional” solution;

w(x, y, z) = U (ξ, η) −
2
λ

ln |x|, ξ = y + k1 ln |x|, η = z + k2 ln |x| “two-dimensional” solution;

w(x, y, z) = V (ρ1, ρ2) −
2
λ
x, ρ1 = yex, ρ2 = zex “two-dimensional” solution;

w(x, y, z) = W (ζ), ζ =
by2 + az2

x2 “one-dimensional” solution.

6◦. For other exact solutions, see equation 6.3.2.3 with f (w) = 1, g(w) = aeλw, and h(w) = beλw.
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3.
∂2w

∂x2
+ a

∂

∂y

(

ew ∂w

∂y

)

+ b
∂

∂z

(

eλw ∂w

∂z

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the function

w1 = w(C1x + C3,C1C2y + C4,C1C
λ
2 z + C5) − 2 ln |C2|,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution in implicit form:

k2
1w + ak2

2e
w + bk2

3λ
−1eλw = C1(k1x + k2y + k3z) + C2,

where C1, C2, k1, k2, and k3 are arbitrary constants.

3◦. “Two-dimensional” solution (c1 and c2 are arbitrary constants):

w(x, y, z) = u(x, ξ), ξ = c1y + c2z,

where the function u = u(x, ξ) is determined by a differential equation of the form 5.4.4.8:

∂2u

∂x2 +
∂

∂ξ

[

ϕ(u)
∂u

∂ξ

]

= 0, ϕ(u) = ac2
1e

u + bc2
2e

λu,

which can be reduced to a linear equation.

4◦. “Two-dimensional” solution (s1 and s2 are arbitrary constants):

w(x, y, z) = v(y, η), η = s1x + s2z,

where the function v = v(y, η) is determined by a differential equation of the form 5.4.4.8:

a
∂

∂y

(

ev ∂v

∂y

)

+
∂

∂η

[

ψ(v)
∂v

∂η

]

= 0, ψ(v) = bs2
2e

λv + s
2
1 ,

which can be reduced to a linear equation.

5◦. There is a “two-dimensional” solution of the form (generalize the solutions of Items 3◦ and 4◦):

w(x, y, z) = U (z1, z2), z1 = a1x + b1y + c1z, z2 = a2x + b2y + c2z.

6◦. There are exact solutions of the following forms:

w(x, y, z) = F (ξ1, ξ2) − 2k ln |x|, ξ1 = y|x|k−1, ξ2 = z|x|kλ−1 “two-dimensional”;

w(x, y, z) = G(x, η) + 2 ln |y|, η = |y|−λz “two-dimensional”;

w(x, y, z) = H(ζ1, ζ2) − 2kx, ζ1 = yekx, ζ2 = zekλx “two-dimensional”;

w(x, y, z) = V (ρ) + 2 ln |y/x|, ρ = |x|λ−1|y|−λz “one-dimensional”;

where k is an arbitrary constant.

7◦. For other exact solutions, see equation 6.3.2.2 with f (w) = 1, g(w) = aew, and h(w) = beλw.���
Reference: N. Ibragimov (1994).

4. a1
∂

∂x

(

eλ1w
∂w

∂x

)

+ a2
∂

∂y

(

eλ2w
∂w

∂y

)

+ a3
∂

∂z

(

eλ3w
∂w

∂z

)

= 0.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = w( � C1C
λ1
2 x + C3, � C1C

λ2
2 y + C4, � C1C

λ3
2 z + C5) − 2 ln |C2|,

where C1, . . . , C5 are arbitrary constants,
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2◦. There is an exact solution of the form

w(x, y, z) = U (ξ) −
2

λ1 − λ2
ln

∣

∣

∣

y

x

∣

∣

∣
, ξ = |x|

λ2−λ3
λ1−λ2 |y|

λ3−λ1
λ1−λ2 z.

3◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = U (η1, η2) − 2k ln |x|, η1 = y|x|k(λ2−λ1)−1, η2 = z|x|k(λ3−λ1)−1,

w(x, y, z) = V (ζ1, ζ2) − 2kx, ζ1 = y exp
[

k(λ2 − λ1)x
]

, ζ2 = z exp
[

k(λ3 − λ1)x
]

,

where k is an arbitrary constant.

4◦. For other exact solutions, see equation 6.3.2.3 with f (w) = a1e
λ1w, g(w) = a2e

λ2w, and h(w) =
a3e

λ3w.

5. a1
∂

∂x

(

eλ1w
∂w

∂x

)

+ a2
∂

∂y

(

eλ2w
∂w

∂y

)

+ a3
∂

∂z

(

eλ3w
∂w

∂z

)

= beβw.

1◦. Suppose w(x, y, z) is a solution of this equation. Then the functions

w1 = w( � Cβ−λ1
1 x + C2, � Cβ−λ2

1 y + C3, � Cβ−λ3
1 z + C4) + 2 ln |C1|,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
are chosen arbitrarily).

2◦. There is a “two-dimensional” solution of the form

w(x, y, z) = U (ξ, η) +
2

λ1 − β
ln |x|, ξ = y|x|

β−λ2
λ1−β , η = z|x|

β−λ3
λ1−β .

6.3. Three-Dimensional Equations Involving Arbitrary
Functions

6.3.1. Heat and Mass Transfer Equations of the Form
∂
∂x

[

f1(x) ∂w
∂x

]

+ ∂
∂y

[

f2(y) ∂w
∂y

]

+ ∂
∂z

[

f3(z) ∂w
∂z

]

= g(w)

I Equations of this type describe steady-state heat/mass transfer or combustion processes in inho-
mogeneous anisotropic media. Here, f1(x), f2(y), and f3(z) are the principal thermal diffusivities
(diffusion coefficients) dependent on coordinates, and g = g(w) is the kinetic function, which defines
the law of heat (substance) release or absorption.

1. a
∂2w

∂x2
+ b

∂2w

∂y2
+ c

∂2w

∂z2
= f (w).

1◦. Traveling-wave solution:

w = w(θ), θ = Ax +By + Cz.

The function w(θ) is defined implicitly by
∫

[

C1 +
2

aA2 + bB2 + cC2 F (w)
]−1/2

dw = C2 � θ, F (w) =
∫

f (w) dw,

where A, B, C, C1, and C2 are arbitrary constants.

2◦. Solution:

w = w(r), r2 =
(x + C1)2

a
+

(y + C2)2

b
+

(z + C3)2

c
,

where C1, C2, and C3 are arbitrary constants, and the function w(r) is determined by the ordinary
differential equation

w′′

rr +
2
r
w′

r = f (w).
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3◦. “Two-dimensional” solution:

w = U (ξ, η), ξ =
y
√

b
+

x
√

aC
, η = (C2 − 1)

x2

a
− 2C

xy
√

ab
+ C2 z

2

c
,

whereC is an arbitrary constant (C ≠ 0), and the functionU = U (ξ, η) is determined by the equation
(

1 +
1
C2

)

∂2U

∂ξ2 − 4ξ
∂2U

∂ξ∂η
+ 4C2(ξ2 + η)

∂2U

∂η2 + 2(2C2 − 1)
∂U

∂η
= f (U ).

Remark. The solution specified in Item 3◦ can be used to obtain other “two-dimensional”
solutions by means of the following cyclic permutations of variables and determining parameters:

(x, a)
↗ ↘

(z, c)←− (y, b)

4◦. “Two-dimensional” solution:

w = V (ζ, ρ), ζ =
Ax
√

a
+
By
√

b
+
Cz
√

c
, ρ2 =

(

Bx
√

a
−
Ay
√

b

)2

+
(

Cy
√

b
−
Bz
√

c

)2

+
(

Az
√

c
−
Cx
√

a

)2

,

whereA,B, andC are arbitrary constants and the functionV =V (ζ, ρ) is determined by the equation

∂2V

∂ζ2 +
∂2V

∂ρ2 +
1
ρ

∂V

∂ρ
=

1
A2 +B2 + C2 f (V ).

5◦. The transformation x =
√

a x̄, y =
√

b ȳ, z =
√

c z̄ brings the original equation to the form
∆w = f (w).

2. a
∂2w

∂x2
+

∂

∂y

(

byn ∂w

∂y

)

+
∂

∂z

(

czm ∂w

∂z

)

= f (w).

1◦. For n = m = 0, see equation 6.3.1.1.

2◦. Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(r), r2 = 4
[

x2

4a
+

y2−n

b(2 − n)2 +
z2−m

c(2 −m)2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = f (w), A =
2(4 − n −m)

(2 − n)(2 −m)
.

3◦. “Two-dimensional” solution for n ≠ 2 and m ≠ 2:

w = U (x, ξ), ξ2 = 4
[

y2−n

b(2 − n)2 +
z2−m

c(2 −m)2

]

,

where the function U (x, ξ) is determined by the differential equation

a
∂2U

∂x2 +
∂2U

∂ξ2 +
B

ξ

∂U

∂ξ
= f (U ), B =

4 − nm
(2 − n)(2 −m)

.

4◦. There are “two-dimensional” solutions of the following forms:

w = V (y, η), η2 = 4
[

x2

4a
+

z2−m

c(2 −m)2

]

,

w = W (z, ζ), ζ2 = 4
[

x2

4a
+

y2−n

b(2 − n)2

]

.
���

Reference: A. D. Polyanin and A. I. Zhurov (1998).
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3.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

czk ∂w

∂z

)

= f (w).

1◦. Functional separable solution for n ≠ 2, m ≠ 2, and k ≠ 2:

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = f (w), A = 2
(

1
2 − n

+
1

2 − m
+

1
2 − k

)

− 1.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (x, ξ), ξ2 = 4
[

y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

,

w = V (y, η), η2 = 4
[

x2−n

a(2 − n)2 +
z2−k

c(2 − k)2

]

,

w = W (z, ζ), ζ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]

.

���
Reference: A. D. Polyanin and A. I. Zhurov (1998).

4.
∂

∂x

(

aeβx ∂w

∂x

)

+
∂

∂y

(

beγy ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= f (w).

1◦. Functional separable solution for β ≠ 0, γ ≠ 0, and λ ≠ 0:

w = w(r), r2 = 4
(

e−βx

aβ2 +
e−γy

bγ2 +
e−λz

cλ2

)

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr −
1
r
w′

r = f (w).

2◦. There are “two-dimensional” solutions of the following forms:

w = U (x, ξ), ξ2 = 4
(

e−γy

bγ2 +
e−λz

cλ2

)

,

w = V (y, η), η2 = 4
(

e−βx

aβ2 +
e−λz

cλ2

)

,

w = W (z, ζ), ζ2 = 4
(

e−βx

aβ2 +
e−γy

bγ2

)

.

���
Reference: A. D. Polyanin and A. I. Zhurov (1998).

5.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

bym ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= f (w).

1◦. Functional separable solution for n ≠ 2, m ≠ 2, and λ ≠ 0:

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−λz

cλ2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = f (w), A = 2
(

1
2 − n

+
1

2 −m

)

− 1.
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2◦. There are “two-dimensional” solutions of the following forms:

w = U (x, ξ), ξ2 = 4
[

y2−m

b(2 −m)2 +
e−λz

cλ2

]

,

w = V (y, η), η2 = 4
[

x2−n

a(2 − n)2 +
e−λz

cλ2

]

,

w = W (z, ζ), ζ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]

.

6.
∂

∂x

(

axn ∂w

∂x

)

+
∂

∂y

(

beβy ∂w

∂y

)

+
∂

∂z

(

ceλz ∂w

∂z

)

= f (w).

1◦. Functional separable solution for n ≠ 2, β ≠ 0, and λ ≠ 0:

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
e−βy

bβ2 +
e−λz

cλ2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
n

2 − n
1
r
w′

r = f (w). (1)

Example 1. For n = 0 and any f = f (w), equation (1) can be solved by quadrature to obtain
∫ [

C1 + 2
∫

f (w) dw

]−1/2
dw = C2 � r,

where C1 and C2 are arbitrary constants.

Example 2. For n = 1 and f (w) = Aeβw, equation (1) has the one-parameter solution

w(r) =
1
β

ln
(

−
8C

βA

)
−

2
β

ln(r2 + C),

where C is an arbitrary constant.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (x, ξ), ξ2 = 4
[

e−βy

bβ2 +
e−λz

cλ2

]

,

w = V (y, η), η2 = 4
[

x2−n

a(2 − n)2 +
e−λz

cλ2

]

,

w = W (z, ζ), ζ2 = 4
[

x2−n

a(2 − n)2 +
e−βy

bβ2

]

.
���

Reference: A. D. Polyanin and A. I. Zhurov (1998).

7.
∂

∂x

[

f1(x)
∂w

∂x

]

+
∂

∂y

[

f2(y)
∂w

∂y

]

+
∂

∂z

[

f3(z)
∂w

∂z

]

= aw ln w + bw.

This is a special case of equation 6.3.3.6 with g1(x) = b and g2(y) = g3(z) = 0.

6.3.2. Heat and Mass Transfer Equations with Complicating Factors

1. (a1x + b1y + c1z + d1)
∂w

∂x
+ (a2x + b2y + c2z + d2)

∂w

∂y

+ (a3x + b3y + c3z + d3)
∂w

∂z
=

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
– f (w).

This equation describes steady-state mass transfer with a volume chemical reaction in a three-
dimensional translational-shear fluid flow.

Page 423

© 2004 by Chapman & Hall/CRC



424 ELLIPTIC EQUATIONS WITH THREE OR MORE SPACE VARIABLES

Let k be a root of the cubic equation
∣

∣

∣

∣

∣

a1 − k a2 a3
b1 b2 − k b3
c1 c2 c3 − k

∣

∣

∣

∣

∣

= 0,

and the constants A, B, and C solve the degenerate system of linear algebraic equations

(a1 − k)A + a2B + a3C = 0,
b1A + (b2 − k)B + b3C = 0,
c1A + c2B + (c3 − k)C = 0.

One of the equations follows from the other two and, hence, can be omitted.
Solution:

w = w(ζ), ζ = Ax +By + Cz,

where the function w(ζ) is determined by the ordinary differential equation

(kζ +Ad1 +Bd2 + Cd3)w′

ζ = (A2 +B2 + C2)w′′

ζζ − f (w).

Remark. In the case of an incompressible fluid, some of the equation coefficients must satisfy
the condition a1 + b2 + c3 = 0.

2.
∂

∂x

[

(a1x + b1y + c1z + d1)
∂w

∂x

]

+
∂

∂y

[

(a2x + b2y + c2z + d2)
∂w

∂y

]

+
∂

∂z

[

(a3x + b3y + c3z + d3)
∂w

∂z

]

= f (w).

Solutions are sought in the form

w = w(ζ), ζ = Ax +By + Cz +D,

where the constants A, B, C, and D are determined by solving the algebraic system of equations

a1A
2 + a2B

2 + a3C
2 = A,

b1A
2 + b2B

2 + b3C
2 = B,

c1A
2 + c2B

2 + c3C
2 = C,

d1A
2 + d2B

2 + d3C
2 = D.

The first three equations are first solved for A, B, and C. The resulting expressions are then
substituted into the last equation to evaluate D. The desired function w(ζ) is determined by the
ordinary differential equation

ζw′′

ζζ + (a1A + b2B + c3C)w′

ζ = f (w).

3.
∂

∂x

[

f (w)
∂w

∂x

]

+
∂

∂y

[

g(w)
∂w

∂y

]

+
∂

∂z

[

h(w)
∂w

∂z

]

= 0.

This equation describes steady-state heat/mass transfer or combustion processes in inhomogeneous
anisotropic media. Here, f (w), g(w), and h(w) are the principal thermal diffusivities (diffusion
coefficients) dependent on the temperature w.

1◦. Suppose w(x, y, z) is a solution of the equation in question. Then the functions

w1 = w( � C1x + C2, � C1y + C3, � C1z + C4),

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation (the plus or minus signs
in front of C1 are chosen arbitrarily).
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2◦. Traveling-wave solution in implicit form:
∫

[

k2
1f (w) + k2

2g(w) + k2
3h(w)

]

dw = C1(k1x + k2y + k3z) + C2,

where C1, C2, k1, k2, k3, and λ are arbitrary constants.

3◦. Solution:
w = w(θ), θ =

C1y + C2z + C3

x + C4
, (1)

where C1, . . . , C4 are arbitrary constants, and the function w(θ) is determined by the ordinary
differential equation

[θ2f (w)w′

θ]′θ + C2
1 [g(w)w′

θ]′θ + C2
2 [h(w)w′

θ]′θ = 0,

which admits the first integral

[θ2f (w) + C2
1g(w) + C2

2h(w)]w′

θ = C5.

For C5 ≠ 0, treating w as the independent variable, one obtains a Riccati equation for θ = θ(w):

C5θ
′

w = θ2f (w) + C2
1g(w) + C2

2h(w). (2)

For exact solutions of this equation, which can be reduced to a second-order linear equation, see
Polyanin and Zaitsev (2003).

Relations (1) and equation (2) can be used to obtain two other “one-dimensional” solutions by
means of the following cyclic permutations of variables and determining functions:

(x, f )
↗ ↘

(z,h)←− (y, g) (3)

4◦. “Two-dimensional” solution (a and b are arbitrary constants):

w(x, y, z) = U (x, ζ), ζ = ay + bz, (4)

where the function U = U (x, ζ) is determined by a differential equation of the form 5.4.4.8:

∂

∂x

[

f (U )
∂U

∂x

]

+
∂

∂ζ

[

ψ(U )
∂U

∂ζ

]

= 0, ψ(U ) = a2g(U ) + b2h(U ), (5)

which can be reduced to a linear equation.
Relations (4) and equation (5) can be used to obtain two other “two-dimensional” solutions by

means of the cyclic permutations of variables and determining functions; see (3).

5◦. There are “two-dimensional” solutions of the following forms:

w(x, y, z) = V (z1, z2), z1 = a1x + a2y + a3z, z2 = b1x + b2y + b3z;
w(x, y, z) = W (ξ, η), ξ = y/x, η = z/x,

where the an and bn are arbitrary constants (the first solution generalizes the one of Item 3◦).

6◦. Let g(w) = af (w). Then, there is a “two-dimensional” solution of the form

w(x, y, z) = u(r, z), r = ax2 + y2.

7◦. Let g(w) = af (w) and h(w) = bf (w). Then, the transformation

v =
∫

f (w) dw, y =
√

a y, z =
√

b z

leads to the Laplace equation
∂2v

∂x2 +
∂2v

∂y2 +
∂2v

∂z2 = 0.

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
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4.
∂

∂x

[

f1(w)
∂w

∂x

]

+
∂

∂y

[

f2(w)
∂w

∂y

]

+
∂

∂z

[

f3(w)
∂w

∂z

]

= (a1x + b1y + c1z + d1)
∂w

∂x
+ (a2x + b2y + c2z + d2)

∂w

∂y
+ (a3x + b3y + c3z + d3)

∂w

∂z
.

This equation describes steady-state anisotropic heat/mass transfer with a volume chemical reaction
in a three-dimensional translational-shear fluid flow.

Let k be a root of the cubic equation
∣

∣

∣

∣

∣

a1 − k a2 a3
b1 b2 − k b3
c1 c2 c3 − k

∣

∣

∣

∣

∣

= 0,

and the constants A, B, and C solve the degenerate system of linear algebraic equations

(a1 − k)A + a2B + a3C = 0,
b1A + (b2 − k)B + b3C = 0,
c1A + c2B + (c3 − k)C = 0.

One of the equations follows from the other two and, hence, can be omitted.
Solution:

w = w(ζ), ζ = Ax +By + Cz, (1)

where the function w(ζ) is determined by the ordinary differential equation

[ϕ(w)w′

ζ ]′ζ = (kζ +Ad1 +Bd2 + Cd3)w′

ζ ,

ϕ(w) = A2f1(w) +B2f2(w) + C2f3(w).

Remark 1. A more general equation, with an additional term g(w) on the right-hand side, where
g is an arbitrary function, also has a solution of the form (1).

Remark 2. In the case of an incompressible fluid, some of the equation coefficients must satisfy
the condition a1 + b2 + c3 = 0.

6.3.3. Other Equations

1.
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
= f (w)

[(

∂w

∂x

)2

+
(

∂w

∂y

)2

+
(

∂w

∂z

)2]

.

The substitution

U =
∫

dw

F (w)
, where F (w) = exp

[
∫

f (w) dw
]

,

leads to the three-dimensional Laplace equation for U = U (x, y, z):

∂2U

∂x2 +
∂2U

∂y2 +
∂2U

∂z2 = 0.

For solutions of this linear equation, see Tikhonov and Samarskii (1990) and Polyanin (2002).
Remark. For a more complicated equation of the form (~v ⋅ ∇)w = ∆w − f (w)|∇w|2, with an

additional convective term, see 6.4.1.1.

2. axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ czk ∂2w

∂z2
= f (w).

1◦. Functional separable solution for n ≠ 2, m ≠ 2, and k ≠ 2:

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

,
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where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = f (w), A = 5 − 2
(

1
2 − n

+
1

2 − m
+

1
2 − k

)

.

2◦. There is a “two-dimensional” solution of the form

w(x, y, z) = U (x, ρ), ρ2 = 4
[

y2−m

b(2 −m)2 +
z2−k

c(2 − k)2

]

.

This solution can be used to obtain other “two-dimensional” solutions by means of the following
cyclic permutations of variables and determining parameters:

(x, a,n)
↗ ↘

(z, c, k)←− (y, b,m)

3. aeλx ∂2w

∂x2
+ beµy ∂2w

∂y2
+ ceνz ∂2w

∂z2
= f (w).

1◦. Functional separable solution for λ ≠ 0, µ ≠ 0, and ν ≠ 0:

w = w(r), r2 = 4
(

e−λx

aλ2 +
e−µy

bµ2 +
e−νz

cν2

)

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
5
r
w′

r = f (w).

2◦. There is a “two-dimensional” solution of the form

w(x, y, z) = U (x, ξ), ξ2 = 4
(

e−µy

bµ2 +
e−νz

cν2

)

.

This solution can be used to obtain other “two-dimensional” solutions by means of the following
cyclic permutations of the variables and determining parameters:

(x, a,λ)
↗ ↘

(z, c, ν)←− (y, b,µ)

4. axn ∂2w

∂x2
+ bym ∂2w

∂y2
+ ceνz ∂2w

∂z2
= f (w).

1◦. Functional separable solution for n ≠ 2, m ≠ 2, and ν ≠ 0:

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2 +
e−νz

cν2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
A

r
w′

r = f (w), A = 2
(

1 − n
2 − n

+
1 −m
2 −m

)

+ 1.

2◦. There are “two-dimensional” solutions of the following forms:

w = U (x, ξ), ξ2 = 4
[

y2−m

b(2 −m)2 +
e−νz

cν2

]

,

w = V (y, η), η2 = 4
[

x2−n

a(2 − n)2 +
e−νz

cν2

]

,

w = W (z, ζ), ζ2 = 4
[

x2−n

a(2 − n)2 +
y2−m

b(2 −m)2

]

.
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5. axn ∂2w

∂x2
+ beµy ∂2w

∂y2
+ ceνz ∂2w

∂z2
= f (w).

1◦. Functional separable solution for n ≠ 2, µ ≠ 0, and ν ≠ 0:

w = w(r), r2 = 4
[

x2−n

a(2 − n)2 +
e−µy

bµ2 +
e−νz

cν2

]

,

where the function w(r) is determined by the ordinary differential equation

w′′

rr +
8 − 5n
2 − n

1
r
w′

r = f (w).

2◦. There are “two-dimensional” solutions of the following forms:

w = U (x, ξ), ξ2 = 4
[

e−µy

bµ2 +
e−νz

cν2

]

,

w = V (y, η), η2 = 4
[

x2−n

a(2 − n)2 +
e−νz

cν2

]

,

w = W (z, ζ), ζ2 = 4
[

x2−n

a(2 − n)2 +
e−µy

bµ2

]

.

6.
∂

∂x

[

f1(x)
∂w

∂x

]

+
∂

∂y

[

f2(y)
∂w

∂y

]

+
∂

∂z

[

f3(z)
∂w

∂z

]

= aw ln w+
[

g1(x)+g2(y)+g3(z)
]

w.

Multiplicative separable solution:

w(x, y, z) = ϕ(x)ψ(y)χ(z),

where the functions ϕ = ϕ(x), ψ = ψ(y), and χ = χ(z) are determined by the ordinary differential
equations (C1 and C2 are arbitrary constants)

[f1(x)ϕ′

x]′x − aϕ lnϕ − [g1(x) + C1]ϕ = 0,
[f2(y)ψ′

y]′y − aψ lnψ − [g2(y) + C2]ψ = 0,

[f3(z)χ′

z]′z − aχ lnχ − [g3(z) − C1 − C2]χ = 0.

6.4. Equations with n Independent Variables

6.4.1. Equations of the Form
∂

∂x1

[

f1(x1) ∂w
∂x1

]

+ · · · + ∂
∂xn

[

fn(xn) ∂w
∂xn

]

= g(x1, . . . , xn, w)

1.
n

∑

k=1

∂2w

∂x2
k

= f (w)
n

∑

k=1

(

∂w

∂xk

)2

+
n

∑

k=1

gk(x1, . . . , xn)
∂w

∂xk

.

The substitution

U =
∫

dw

F (w)
, where F (w) = exp

[
∫

f (w) dw
]

,

leads to the linear equation

n
∑

k=1

∂2U

∂x2
k

=
n

∑

k=1

gk(x1, . . . ,xn)
∂U

∂xk

.
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2.
n

∑

k=1

∂

∂xk

(

akxmk

k

∂w

∂xk

)

= f (w).

Functional separable solution:

w = w(r), r2 = A
n

∑

k=1

x2−mk

k

ak(2 −mk)2 ,

where the function w(r) is determined by the ordinary differential equation

d2w

dr2 +
B

r

dw

dr
=

4
A
f (w), B =

n
∑

k=1

2
2 −mk

− 1.

Example 1. For f (w) = bwp, there is an exact solution of the form

w =
[

1
b(1 − p)

(
p

1 − p
+

n∑

k=1

1
2 − mk

)] 1
p−1

[ n∑

k=1

x
2−mk

k

ak(2 − mk)2

] 1
1−p

.

Example 2. For f (w) = beλw , there is an exact solution of the form

w = −
1
λ

ln
[ n∑

k=1

x
2−mk

k

ak(2 − mk)2

]
+

1
λ

ln
1 − B

2bλ
, B =

n∑

k=1

2
2 − mk

− 1.

���
Reference: A. D. Polyanin and A. I. Zhurov (1998).

3.
n

∑

k=1

∂

∂xk

(

akeλkxk
∂w

∂xk

)

= f (w).

Functional separable solution:

w = w(r), r2 = A
n

∑

k=1

e−λkxk

akλ
2
k

,

where the function w(r) is determined by the ordinary differential equation

d2w

dr2 −
1
r

dw

dr
=

4
A
f (w).

Example 1. For f (w) = bwp, there is an exact solution of the form

w =
[

p

b(1 − p)2

] 1
p−1

( n∑

k=1

e−λkxk

akλ2
k

) 1
1−p

.

Example 2. For f (w) = beβw, there is an exact solution of the form

w = −
1
β

ln
(

bβ

n∑

k=1

e−λkxk

akλ2
k

)
.

���
Reference: A. D. Polyanin and A. I. Zhurov (1998).

4.
 

∑

k=1

∂

∂xk

(

akxmk

k

∂w

∂xk

)

+
n

∑

k= +1

∂

∂xk

(

bkeλkxk
∂w

∂xk

)

= f (w).

1◦. Functional separable solution:

w = w(r), r2 = A
s

∑

k=1

x2−mk

k

ak(2 −mk)2 +A
n

∑

k=s+1

e−λkxk

bkλ
2
k

,

where the function w(r) is determined by the ordinary differential equation

d2w

dr2 +
B

r

dw

dr
=

4
A
f (w), B =

s
∑

k=1

2
2 −mk

− 1.
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Example 1. For f (w) = cwp, there is an exact solution of the form

w =
[

1
c(1 − p)

(
p

1 − p
+

s∑

k=1

1
2 − mk

)] 1
p−1

[ s∑

k=1

x
2−mk

k

ak(2 − mk)2 +
n∑

k=s+1

e−λkxk

bkλ2
k

] 1
1−p

.

Example 2. For f (w) = ceβw, there is an exact solution of the form

w = −
1
β

ln
[ s∑

k=1

x
2−mk

k

ak(2 − mk)2 +
n∑

k=s+1

e−λkxk

bkλ2
k

]
+

1
β

ln
1 − B

2cβ
, B =

s∑

k=1

2
2 − mk

− 1.

2◦. We divide the equation variables into two groups (responsible for both power-law and exponen-
tial terms) and look for exact solutions in the form

w = w(y, z),
where

y2 = A1

q
∑

k=1

x2−mk

k

ak(2 − mk)2 +A1

p
∑

k=s+1

e−λkxk

bkλ
2
k

, 0 ≤ q ≤ s ≤ p ≤ n;

z2 = A2

s
∑

k=q+1

x2−mk

k

ak(2 −mk)2 +A2

n
∑

k=p+1

e−λkxk

bkλ
2
k

.

Then we obtain the following equation for w:

A1

(

∂2w

∂y2 +
B1

y

∂w

∂y

)

+A2

(

∂2w

∂z2 +
B1

z

∂w

∂z

)

= 4f (w),

B1 =
q

∑

k=1

2
2 −mk

− 1, B2 =
s

∑

k=q+1

2
2 −mk

− 1.

For B1 = B2 = 0 and A1 = A2 = 1, this equation arises in plane problems of heat and mass transfer
(see equations 5.1.1.1, 5.2.1.1, 5.3.1.1, 5.3.2.1, 5.3.3.1, and 5.4.1.1).!�"

Reference: A. D. Polyanin and A. I. Zhurov (1998).

5.
n

∑

k=1

∂

∂xk

[

fk(xk)
∂w

∂xk

]

= aw ln w + w

n
∑

k=1

gk(xk).

Multiplicative separable solution:
w(x1,x2, . . . ,xn) = ϕ1(x1)ϕ2(x2) . . . ϕn(xn),

where the functions ϕ1 = ϕ1(x1), ϕ2 = ϕ2(x2), . . . , ϕn = ϕn(xn) are determined by the ordinary
differential equations

d

dxk

[

fk(xk)
dϕk

dxk

]

− aϕk lnϕk −
[

gk(xk) + Ck

]

ϕk = 0; k = 1, 2, . . . , n.

The arbitrary constants C1, . . . , Cn are related by a single constraint, C1 + · · · + Cn = 0.

6.4.2. Other Equations

1.
n

∑

k=1

fk(xk)
∂2w

∂x2
k

+
n

∑

k=1

gk(xk)
∂w

∂xk

= aw ln w + w

n
∑

k=1

hk(xk).

Multiplicative separable solution:
w(x1,x2, . . . ,xn) = ϕ1(x1)ϕ2(x2) . . . ϕn(xn),

where the functions ϕ1 = ϕ1(x1), ϕ2 = ϕ2(x2), . . . , ϕn = ϕn(xn) are determined by the ordinary
differential equations

fk(xk)
d2ϕk

dx2
k

+ gk(xk)
dϕk

dxk

− aϕk lnϕk −
[

hk(xk) + Ck

]

ϕk = 0; k = 1, 2, . . . , n.

The arbitrary constants C1, . . . , Cn are related by a single constraint, C1 + · · · + Cn = 0.
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2.
n

∑

k=1

akxmk

k

∂2w

∂x2
k

+
n

∑

k=1

bkxmk–1
k

∂w

∂xk

= f (w).

Functional separable solution:

w = w(r), r2 = A
n

∑

k=1

x2−mk

k

ak(2 −mk)2

where the function w(r) is determined by the ordinary differential equation

d2w

dr2 +
B

r

dw

dr
=

4
A
f (w), B = 2

n
∑

k=1

ak(1 −mk) + bk
ak(2 −mk)

− 1.

Example 1. For f (w) = cwp, there is an exact solution of the form

w =
[

1
2c(1 − p)

(
1 + p

1 − p
+ B

)] 1
p−1

[ n∑

k=1

x
2−mk

k

ak(2 − mk)2

] 1
1−p

.

Example 2. For f (w) = ceβw, there is an exact solution of the form

w = −
1
β

ln
[ n∑

k=1

x
2−mk

k

ak(2 − mk)2

]
+

1
β

ln
1 − B

2cβ
.

3.
n

∑

k=1

akeλkxk
∂2w

∂x2
k

+
n

∑

k=1

bkeλkxk
∂w

∂xk

= f (w).

Functional separable solution:

w = w(r), r2 = A
n

∑

k=1

e−λkxk

akλ
2
k

,

where the function w(r) is determined by the ordinary differential equation

d2w

dr2 +
B

r

dw

dr
=

4
A
f (w), B = 2n − 1 − 2

n
∑

k=1

bk

akλk

.

Example 1. For f (w) = cwp, there is an exact solution of the form

w =
[

1
2c(1 − p)

(
1 + p

1 − p
+ B

)] 1
p−1

( n∑

k=1

e−λkxk

akλ2
k

) 1
1−p

.

Example 2. For f (w) = ceβw, there is an exact solution of the form

w = −
1
β

ln
( n∑

k=1

e−λkxk

akλ2
k

)
+

1
β

ln
1 − B

2cβ
.

4.
m1
∑

k=1

(

akxnk

k

∂2w

∂x2
k

+ akpkxnk–1
k

∂w

∂xk

)

+
m2
∑

k=1

(

bkeλkxk
∂2w

∂x2
k

+ bkqkeλkxk
∂w

∂xk

)

= f (w).

Functional separable solution:

w = w(r), r2 = A
m1
∑

k=1

x2−nk

k

ak(2 − nk)2 +A
m2
∑

k=1

e−λkxk

bkλ
2
k

,

where the function w(r) is determined by the ordinary differential equation

d2w

dr2 +
B

r

dw

dr
=

4
A
f (w), B = 2

m1
∑

k=1

1 − nk + pk

2 − nk

− 2
m2
∑

k=1

qk

λk

+ 2m2 − 1.
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Chapter 7

Equations Involving Mixed Derivatives
and Some Other Equations

Preliminary remarks. Semilinear equations, which can be reduced to the canonical form by
standard transformations, are not considered in this chapter. See Section S.1 for information about
semilinear equations. For hyperbolic equations that contain mixed derivatives, see Section 3.5.

7.1. Equations Linear in the Mixed Derivative

7.1.1. Calogero Equation

1.
∂2w

∂x∂t
= w

∂2w

∂x2
+ a.

This is a special case of equation 7.1.1.3 with f (u) = a.

2.
∂2w

∂x∂t
= w

∂2w

∂x2
+ a

(

∂w

∂x

)2

.

This is a special case of equation 7.1.1.3 with f (u) = au2.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C2x + C2ϕ(t),C1C2t + C3) + ϕ′

t(t),

where C1, C2, and C3 are arbitrary constants, and ϕ(t) is an arbitrary function, is also a solution of
the equation.

2◦. General solution in parametric form:

w = f ′

t(t) +
∫

[

g(z) − at
]

1−a
a dz,

x = −f (t) +
∫

[

g(z) − at
]

1
a dz,

where f (t) and g(z) are arbitrary functions and z is the parameter.

3◦. Conservation laws:

Dt

[

(wx)1/a
]

+Dx

[

−w(wx)1/a
]

= 0,

Dt

[

(wxx)
1

2a+1
]

+Dx

[

−w(wxx)
1

2a+1
]

= 0.
���

References: F. Calogero (1984), J. K. Hunter and R. Saxton (1991), M. V. Pavlov (2001).
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3.
∂2w

∂x∂t
= w

∂2w

∂x2
+ f

(

∂w

∂x

)

.

Calogero equation.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x + C1ϕ(t), t + C2) + ϕ′

t(t),

where C1 and C2 are arbitrary constants and ϕ(t) is an arbitrary function, is also a solution of the
equation.

2◦. Degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t),

where ψ(t) is an arbitrary function and the function ϕ(t) is defined implicitly by (C is an arbitrary
constant)

∫

dϕ

f (ϕ)
= t + C.

3◦. Introduce the notation

u =
∂w

∂x
, v = Φ(u) = exp

[
∫

u du

f (u)

]

. (1)

The transformation

dz = v dx + vw dt, dy = dt
(

dz =
∂z

∂x
dx +

∂z

∂t
dt

)

(2)

defines the passage from x, t to the new independent variables z, y in accordance with the rule
∂

∂x
= v

∂

∂z
,

∂

∂t
=
∂

∂y
+ vw

∂

∂z
. (3)

This results in the first-order equation
∂u

∂y
= f (u),

which is independent of z and can be treated as an ordinary differential equation. Integrating yields
its solution in implicit form:

∫

du

f (u)
= y + ϕ(z), (4)

where ϕ(z) is an arbitrary function. With the first relations of (1) and (3), we obtain the equation
∂w

∂z
=
u

v
=⇒

∂w

∂z
=

u

Φ(u)
,

whose general solution is given by

w =
∫

u dz

Φ(u)
+ ψ(y), (5)

where ψ(y) is an arbitrary function, and u = u(z, y) is defined implicitly by (4). The inverse of
transformation (2) has the form

dx =
1

Φ(u)
dz − w dy, dt = dy. (6)

Integrating the first relation in (6) yields

x =
∫ z

z0

dξ

Φ(u(ξ, y))
−

∫ y

y0

w(z0, τ ) dτ , (7)

where w = w(z, y) is defined by (5), and x0 and y0 are any numbers.
Formulas (4), (5), and (7) with y = t define the general solution of the equation in question in

parametric form (z is the parameter).���
References: F. Calogero (1984), M. V. Pavlov (2001).
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4◦. Conservation law:
Dt[Φ(wx)] +Dx[−wΦ(wx)] = 0,

where Dt = ∂
∂t

, Dx = ∂
∂x

, and the function Φ(u) is defined in (1).���
References: F. Calogero (1984), M. V. Pavlov (2001).

7.1.2. Khokhlov–Zabolotskaya Equation

1.
∂2w

∂x∂t
– w

∂2w

∂x2
–

(

∂w

∂x

)2

–
∂2w

∂y2
= 0.

Two-dimensional Khokhlov–Zabolotskaya equation. It describes the propagation of a sound beam
in a nonlinear medium; t and y play the role of the space coordinates and x is a linear combination
of time and a coordinate.

The equation of unsteady transonic gas flows (see 7.1.3.1 with a = b = 1/2)

2uxτ + uxuxx − uyy = 0

can be reduced to the Khokhlov–Zabolotskaya equation; see Lin, Reissner, and Tsien (1948). To this end, one should pass
to the new variable τ = 2t, differentiate the equation with respect to x, and then substitute w = −∂u/∂x.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 C

2
2w(C1x + C3,C2y + C4,C−1

1 C
2
2 t + C5),

w2 = w(x + λy + ϕ(t), y + 2λt, t) + ϕ′

t(t) − λ2,

where C1, . . . , C5 and λ are arbitrary constants and ϕ = ϕ(t) is an arbitrary function, are also
solutions of the equation.

2◦. Solutions:

w(x, y, t) = −
x

t + C1
+ ϕy + ψ,

w(x, y, t) = 2ϕx + (ϕ′

t − 2ϕ2)y2 + ψy + χ,

w(x, y, t) = (ϕy + ψ)x −
1

12ϕ2 (ϕy + ψ)4 +
1
6
ϕ′

ty
3 +

1
2
ψ′

ty
2 + χy + θ,

w(x, y, t) = C1
√

x + C2y + ϕ + ϕ′

t − C2
2 ,

w(x, y, t) =
C1

t

√

4t(x + ϕ) − (y + C2)2 + ϕ′

t,

where ϕ = ϕ(t), ψ = ψ(t), χ = χ(t), and θ = θ(t) are arbitrary functions, the prime stands for the
differentiation, and C1 and C2 are arbitrary constants.

3◦. Solution in implicit form:

tz + x + λy + λ2t + ϕ(t) = F (z), z = w − ϕ′

t(t),

where ϕ(t) and F (z) are arbitrary functions. With λ = 0, this relation determines the general
y-independent solution of the original equation.

4◦. “Two-dimensional” generalized separable solution quadratic in x:

w = f (y, t)x2 + g(y, t)x + h(y, t),

where the functions f = f (y, t), g = g(y, t), andh =h(y, t) are determined by the system of differential
equations

fyy = −6f 2,
gyy = −6fg + 2ft,

hyy = −2fh + gt − g2.
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The subscripts y and t denote the corresponding partial derivatives. A particular solution of this
system is given by

f = −
1
R2 , g =

C1(t)
R2 + C2(t)R3 −

ϕ′

t(t)
2R

,

h =
C3(t)
R

+ C4(t)R2 +
R2

3

∫

1
R

(gt − g2) dy −
1

3R

∫

R2(gt − g2) dy, R = y + ϕ(t),

where ϕ(t), C1(t), . . . , C4(t) are arbitrary functions.

5◦. “Two-dimensional” solution:

w = xu(ξ, t), ξ = yx−1/2,

where the function u = u(ξ, t) is determined by the differential equation

2ξ
∂2u

∂ξ∂t
+ (ξ2u + 4)

∂2u

∂ξ2 + ξ2
(

∂u

∂ξ

)2

− 5ξu
∂u

∂ξ
− 4

∂u

∂t
+ 4u2 = 0.

6◦. “Two-dimensional” solution:

w = v(ζ, t) +
α′

t + 4
α

x, ζ = y2 + αx,

where α = α(t) is an arbitrary function and the function v = v(ζ, t) is determined by the differential
equation

α
∂2v

∂ζ∂t
− (α2v + 4ζ)

∂2v

∂ζ2 − α2
(

∂v

∂ζ

)2

− (α′

t + 10)
∂v

∂ζ
+ β′

t − β2 = 0, β =
α′

t + 4
α

.

The last equation has a particular solution of the form v = ζϕ(t), where the function ϕ = ϕ(t) is
determined by the Riccati equation αϕ′

t − α2ϕ2 − (α′

t + 10)ϕ + β′

t − β2 = 0.

7◦. “Two-dimensional” solution:

w = U (r, z), z = x + βy + λt, r = y + µt,

where β, λ, and µ are arbitrary constants, and the function U = U (r, z) is determined by the
differential equation

(λ − β2)
∂2U

∂z2 + (µ − 2β)
∂2U

∂r∂z
−
∂2U

∂r2 − U
∂2U

∂z2 −
(

∂U

∂z

)2

= 0.

With λ = β2 and µ = 2β, we obtain an equation of the form 5.1.5.1.

8◦. “Two-dimensional” solution:

w = x−2V (p, q), p = tx−3, q = yx−2,

where the function V = V (p, q) is determined by the differential equation

3p(3V p + 1)
∂2V

∂p2 + (4q2V + 1)
∂2V

∂q2 + 2q(6pV + 1)
∂2V

∂p∂q

+
(

3p
∂V

∂p
+ 2q

∂V

∂q

)2

+ (36pV + 5)
∂V

∂p
+ 22qV

∂V

∂q
+ 10V 2 = 0.

9◦. Solution:
w = u(r)x2y−2, r = (At +B)−1x−1y2,

where A and B are arbitrary constants, and the function u = u(r) is determined by the ordinary
differential equation

r2(u −Ar + 4)u′′rr + r2(u′r)2 − r(6u −Ar + 6)u′r + 6(u + 1)u = 0.���
References for equation 7.1.2.1: Y. Kodama (1988), Y. Kodama and J. Gibbons (1989), N. H. Ibragimov (1994, pp. 299–

300; 1995, pp. 447–450), A. M. Vinogradov and I. S. Krasil’shchik (1997), A. D. Polyanin and V. F. Zaitsev (2002).
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2.
∂2w

∂x∂t
+ a

∂

∂x

(

w
∂w

∂x

)

+ b
∂2w

∂y2
= 0.

The transformation
w(x, y, t) =

b

a
u(x, y, τ ), τ = −bt

leads to an equation of the form 7.1.2.1:

∂2u

∂x∂τ
−
∂

∂x

(

u
∂u

∂x

)

−
∂2u

∂y2 = 0.

3.
∂2w

∂x∂t
– f (t)

∂

∂x

(

w
∂w

∂x

)

– g(t)
∂2w

∂y2
= 0.

Generalized Khokhlov–Zabolotskaya equation.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 w(C2

1x + C2,C1y + C3, t),

w2 = w(ξ, η, t) + ϕ(t), ξ = x + λy +
∫

[f (t)ϕ(t) + λ2g(t)] dt, η = y + 2λ
∫

g(t) dt,

where C1, C2, C3, and λ are arbitrary constants and ϕ = ϕ(t) is an arbitrary function, are also
solutions of the equation.

2◦. Solutions:

w(x, y, t) = −x
(

∫

f dt + C
)−1

+ ϕy + ψ,

w(x, y, t) = 2ϕx +
ϕ′

t − 2fϕ2

g
y2 + ψy + χ,

w(x, y, t) = (ϕy + ψ)x −
f

12gϕ2 (ϕy + ψ)4 +
ϕ′

t

6g
y3 +

ψ′

t

2g
y2 + χy + θ,

where ϕ = ϕ(t), ψ = ψ(t), χ = χ(t), and θ = θ(t) are arbitrary functions; C is an arbitrary constant;
f = f (t) and g = g(t); the prime denotes a derivative with respect to t.

3◦. “Two-dimensional” solution:

w(x, y, t) = U (z, t) + ϕ(t), z = x + λy,

where the functionϕ(t) is an arbitrary function,λ is an arbitrary constant, and the functionU =U (z, t)
is determined by the first-order partial differential equation [ψ(t) is an arbitrary function]

∂U

∂t
− f (t)U

∂U

∂z
− [f (t)ϕ(t) + λ2g(t)]

∂U

∂z
= ψ(t).

A complete integral of this equation is sought in the formU = A(t)z +B(t), which allows obtaining
the general solution (see Polyanin, Zaitsev, and Moussiaux, 2002).

4◦. “Two-dimensional” generalized separable solution quadratic in x:

w = ϕ(y, t)x2 + ψ(y, t)x + χ(y, t),

where the functionϕ=ϕ(y, t),ψ =ψ(y, t), andχ=χ(y, t) are determined by the system of differential
equations

gϕyy = −6fϕ2,
gψyy = −6fϕψ + 2ϕt,

gχyy = −f (2ϕχ + ψ2) + ψt.
The subscripts y and t denote the corresponding partial derivatives, f = f (t) and g = g(t).	�


Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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4.
∂2w

∂x∂t
–

(

∂w

∂x

)2

– w
∂2w

∂x2
–

∂2w

∂y2
–

∂2w

∂z2
= 0.

Three-dimensional Khokhlov–Zabolotskaya equation.

1◦. Suppose w(x, y, z, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 C

2
2w(C1x + C3,C2y + C4,C2z + C5,C−1

1 C
2
2 t + C6),

w2 = w(x + λy + µz + ϕ(t), y + 2λt, z + 2µt, t) + ϕ′

t(t) − λ2 − µ2,
w3 = w(x, y cosβ + z sinβ, −y sinβ + z cosβ, t),

where C1, . . . , C6, λ, µ, and β are arbitrary constants, and ϕ = ϕ(t) is an arbitrary function, are also
solutions of the equation.

2◦. Solutions:

w(x, y, z, t) = 2α1x + (α′

1 − 2α2
1 − α2)y2 + α3y + α2z

2 + βz + γ,

w(x, y, z, t) =
C

√

4tx − y2 − z2

t3/2 ,

where α1, α2, α3, β, γ are arbitrary functions of t, and C is an arbitrary constant.

3◦. “Three-dimensional” solution:

w = u(x, ξ, t), ξ = y sinβ + z cosβ,

where β is an arbitrary constant and the function u = u(x, ξ, t) is determined by the Khokhlov–
Zabolotskaya equation of the form 7.1.2.1:

∂2u

∂x∂t
−

(

∂u

∂x

)2

− u
∂2u

∂x2 −
∂2u

∂ξ2 = 0.

4◦. “Three-dimensional” generalized separable solution linear in x:

w = f (y, z, t)x + g(y, z, t),

where the functions f = f (y, z, t) and g = g(y, z, t) are determined by the differential equations

fyy + fzz = 0,

gyy + gzz = ft − f 2.

The subscripts y, z, and t denote the corresponding partial derivatives. The first equation represents
the Laplace equation and the second one is a Poisson equation (for g). For solutions of these linear
equations, see, for example, Tikhonov and Samarskii (1990) and Polyanin (2002).

5◦. “Three-dimensional” generalized separable solution quadratic in x:

w = f (y, z, t)x2 + g(y, z, t)x + h(y, z, t),

where the functions f = f (y, z, t), g = g(y, z, t), and h = h(y, z, t) are determined by the system of
differential equations

fyy + fzz = −6f 2,
gyy + gzz = −6fg + 2ft,

hyy + hzz = −2fh + gt − g2.
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6◦. Solution:
w(x, y, z, t) = u(ξ)t−λ, ξ = tλ−2(4xt − y2 − z2),

where λ is an arbitrary constant, and the function u = u(ξ) is determined by the ordinary differential
equation

[4u + (1 − λ)ξ]u′′ξξ + 4(u′ξ)2 = 0.

For λ ≠ 1, the passage to the inverse ξ = ξ(u), the change of variable ξ(u) = p(u) − 4
1−λ

u, and the
reduction of order with p′u = 4

1−λ
η(p) result in the first-order equation pηη′p − η + 1 = 0. Integrating

yields (η − 1)eη = C1p.
For λ = 1, we have u(ξ) = � √C1ξ + C2.

7◦. Solution:

w(x, y, z, t) =
y2 + z2

t2
U (ζ), ζ =

y2 + z2

xt
,

where the function U = U (ζ) is determined by the ordinary differential equation

ζ2(ζ2U − ζ + 4)U ′′

ζζ + ζ4(U ′

ζ)2 + ζ(2ζ2U − 3ζ + 12)U ′

ζ + 4U = 0.

8◦. Solution:

w(x, y, z, t) =
z2

t2
V (q), q =

4tx − y2

z2 ,

where the function V = V (q) is determined by the ordinary differential equation

2(4V + q2 − q)V ′′

qq + 8(V ′

q )2 + (1 − q)V ′

q + V = 0.
��

References for equation 7.1.2.4: A. M. Vinogradov, I. S. Krasil’shchik, and V. V. Lychagin (1986), N. H. Ibragimov
(1994, 1995).

5.
∂2w

∂t∂x
+ a

∂

∂x

(

w
∂w

∂x

)

+ b
∂2w

∂y2
+ c

∂2w

∂z2
= 0.

1◦. For a < 0, b < 0, and c < 0, the passage to the new independent variables according to

x = x̄
√

−a, y = ȳ
√

−b, z = z̄
√

−a, t = t̄/
√

−a

leads to the three-dimensional Khokhlov–Zabolotskaya equation 7.1.2.4.

2◦. Suppose w(x, y, z, t) is a solution of the equation in question. Then the functions

w1 = C−2
1 C2

2w(C1x + C3,C2y + C4,C2z + C5,C−1
1 C

2
2 t + C6),

w2 = w(x + λy + µz + ϕ(t), y − 2bλt, z − 2cµt, t) −
1
a
ϕ′

t(t) −
bλ2 + cµ2

a
,

where C1, . . . , C6, λ, µ, and β are arbitrary constants and ϕ = ϕ(t) is an arbitrary function, are also
solutions of the equation.

3◦. Solutions:

w(x, y, z, t) = αy + βz +
1

at + C
x + γ,

w(x, y, z, t) = α ln(cy2 + bz2) − (β′

t + 4abcβ2)(cy2 + bz2) + 4bcβx + γ,

where α = α(t), β = β(t), and γ = γ(t) are arbitrary functions and C is an arbitrary constant.

4◦. “Three-dimensional” generalized separable solution linear in x:

w = f (y, z, t)x + g(y, z, t),

where the functions f = f (y, z, t) and g = g(y, z, t) are determined by the differential equations

bfyy + cfzz = 0, (1)
bgyy + cgzz = −ft − af 2. (2)
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The subscripts y, z, t denote the corresponding partial derivatives. If bc > 0, then by the scaling
y = ȳ

√

|b|, z = z̄
√

|c|, equation (1) can be reduced to the Laplace equation, and if bc < 0, to the
wave equation. Likewise, equation (2) can be reduced to a Poisson equation and a nonhomogeneous
wave equation, respectively. For solutions of these linear equations, see, for example, Tikhonov and
Samarskii (1990) and Polyanin (2002).

Remark. The above remains true if the coefficients a, b, and c are functions of y, z, and t.

5◦. “Three-dimensional” generalized separable solution quadratic in x:

w = f (y, z, t)x2 + g(y, z, t)x + h(y, z, t),

where the functions f = f (y, z, t), g = g(y, z, t), and h = h(y, z, t) are determined by the system of
differential equations

bfyy + cfzz = −6af 2,
bgyy + cgzz = −6afg − 2ft,

bhyy + chzz = −2afh − gt − ag2.

Remark. This remains true if the coefficients a, b, and c are functions of y, z, and t.

6◦. There are “three-dimensional” solutions of the following forms:

w(x, y, z, t) = u(x, t, ξ), ξ = cy2 + bz2;

w(x, y, z, t) = v(p, q, r)xk+2, p = txk+1, q = yxk/2, r = zxk/2,

where k is an arbitrary constant.

7◦. “Two-dimensional” solution:

w(x, y, z, t) = xU (η, t), η = (cy2 + bz2)x−1,

where the function U = U (η, t) is determined by the differential equation

η(aηU + 4bc)
∂2U

∂η2 − η
∂2U

∂t∂η
+ aη2

(

∂U

∂η

)2

− 2(aηU − 2bc)
∂U

∂η
+
∂U

∂t
+ aU 2 = 0.

8◦. “Two-dimensional” solution:

w(x, y, z, t) = V (ζ, t) −
ϕ′

t − 4bc
aϕ

x, ζ = cy2 + bz2 + ϕx,

where ϕ = ϕ(t) is an arbitrary function, and V = V (ζ, t) is determined by the differential equation

aϕ2(aϕ2V + 4bcζ)
∂2V

∂ζ2 + aϕ3 ∂
2V

∂t∂ζ
+ aϕ2

(

aϕ2 ∂V

∂ζ
− ϕ′

t + 12bc
)

∂V

∂ζ

− ϕ′′

ttϕ + 2(ϕ′

t)
2 − 12bcϕ′

t + 16b2c2 = 0.
���

References: P. Kucharczyk (1967), S. V. Sukhinin (1978), N. H. Ibragimov (1994).

7.1.3. Equation of Unsteady Transonic Gas Flows

1.
∂2w

∂x∂t
+ a

∂w

∂x

∂2w

∂x2
– b

∂2w

∂y2
= 0.

This is an equation of an unsteady transonic gas flow; see Lin, Reissner, and Tsien (1948). This is a
special case of equation 7.1.3.2 with f (t) = a and g(t) = −b.
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1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 =C−3
1 C

2
2w(C1x + C3,C2y + C4,C−1

1 C
2
2 t + C5) + C6yt + C7y + C8t + C9,

w2 =w(ξ, η, t) + ϕ′′

tt(t)y
2 + 2bϕ′

t(t)x + ψ(t)y + χ(t),

ξ = x + λy + bλ2t − 2abϕ(t), η = y + 2bλt,
where the Cn and λ are arbitrary constants and ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are arbitrary
functions, are also solutions of the equation.

2◦. Solution:

w(x, y, t) =
1

12b2 (γ′′tt + 6aγγ′t + 4a2γ3)y4 +
1
6b

(α′

t + 2aαγ)y3

+
1
2b

[2(γ′t + 2aγ2)x + β′

t + 2aβγ]y2 + (αx + δ)y + γx2 + βx + µ,

where α = α(t), β = β(t), γ = γ(t), µ = µ(t), and δ = δ(t) are arbitrary functions.

3◦. “Two-dimensional” solution:
w(x, y, t) = U (z, t) + ϕ(t)y + ψ(t), z = x + λy,

where ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions, λ is an arbitrary constant, and the function
U = U (z, t) is determined by the first-order partial differential equation

∂U

∂t
+
a

2

(

∂U

∂z

)2

− bλ2 ∂U

∂z
= 0. (1)

A complete integral of this equation is given by
U = C1z +

(

bλ2C1 − 1
2aC

2
1
)

t + C2,
where C1 and C2 are arbitrary constants. The general solution of equation (1) can be written out in
parametric form (Polyanin, Zaitsev, and Moussiaux, 2002):

U = sz +
(

bλ2
s − 1

2as
2)t + f (s),

z +
(

bλ2 − as
)

t + f ′

s(s) = 0,
where f = f (s) is an arbitrary function and s is the parameter.

4◦. “Two-dimensional” solution of a more general form:
w(x, y, t) = U (z, t) + ϕ(t)y2 + ψ(t)y + χ(t)x + θ(t), z = x + λy,

where ϕ = ϕ(t), ψ = ψ(t), χ = χ(t), and θ = θ(t) are arbitrary functions, λ is an arbitrary constant,
and the function U = U (z, t) is determined by the first-order partial differential equation [σ(t) is an
arbitrary function]:

∂U

∂t
+
a

2

(

∂U

∂z

)2

+
[

aχ(t) − bλ2] ∂U

∂z
=

[

2bϕ(t) − χ′

t(t)
]

z + σ(t).

This equation can be fully integrated—a complete integral is sought in the form U = f (t)z + g(t).

5◦. “Two-dimensional” generalized separable solution cubic in x:
w(x, y, t) = f (y, t)x3 + g(y, t)x2 + h(y, t)x + r(y, t),

where the functions f = f (y, t), g = g(y, t), h = h(y, t), and r = r(y, t) are determined by the
differential equations

bfyy = 18af 2,
bgyy = 18afg + 3ft,

bhyy = 6afh + 4ag2 + 2gt,
bryy = 2agh + ht.

The subscripts y and t denote the corresponding partial derivatives. Setting f = 0 and g =ϕ(t)y+ψ(t),
where ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions, one can integrate the system with respect to y
to obtain a solution dependent on six arbitrary functions.
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6◦. “Two-dimensional” solution:

w(x, y, t) = v(x, r)t−1, r = yt−1/2,

where the function v = v(x, r) is determined by the differential equation

r
∂2v

∂x∂r
− 2a

∂v

∂x

∂2v

∂x2 + 2b
∂2v

∂r2 + 2
∂v

∂r
= 0.

7◦. “Two-dimensional” solution:

w(x, y, t) = v(p, t) +
γγ′′tt−2(γ′t)

2−18bγ′t−40b2

12abγ3 y4 +
(

4b + γ′t
aγ3 p − δ

)

y2 + µy + λ, p = y2 + γx,

where γ = γ(t), µ = µ(t), λ = λ(t), and δ = δ(t) are arbitrary functions, and the function v = v(p, t)
is determined by the differential equation

(

γ′tp + aγ3 ∂v

∂p

)

∂2v

∂p2 + γ
∂2v

∂t∂p
+ (γ′t − 2b)

∂v

∂p
−

2b[p(γ′t + 4b) − aγ3δ]
aγ3 = 0.

���
References for equation 7.1.3.1: E. V. Mamontov (1969), E. M. Vorob’ev, N. V. Ignatovich, and E. O. Semenova (1989),

A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂x∂t
+ f (t)

∂w

∂x

∂2w

∂x2
+ g(t)

∂2w

∂y2
= 0.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 =C−4
1 w(C2

1x + C2,C1y + C3, t) + C4yt + C5y + C6t + C7,

w2 =w(ξ, η, t) −
ϕ′

t(t)
2g(t)

y2 + ψ(t)y + ϕ(t)x + χ(t),

ξ = x + λy −
∫

[

λ2g(t) + f (t)ϕ(t)
]

dt, η = y − 2λ
∫

g(t) dt,

where C1, . . . , C7 and λ are arbitrary constants and ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are arbitrary
functions, are also solutions of the equation.

2◦. Generalized separable solution in the form of a polynomial of degree 4 in y:

w(x, y, t) = a(t)y4 + b(t)y3 + [c(t)x + d(t)]y2 + [α(t)x + β(t)]y + γ(t)x2 + µ(t)x + δ(t),

where α = α(t), β = β(t), γ = γ(t), µ = µ(t), and δ = δ(t) are arbitrary functions, and the functions
a = a(t), b = b(t), c = c(t), and d = d(t) are given by

a = −
c′t + 2fγc

12g
, b = −

α′

t + 2fαγ
6g

, c = −
γ′t + 2fγ2

g
, d = −

µ′

t + 2fγµ
2g

.

3◦. “Two-dimensional” solution:

w(x, y, t) = U (z, t) + ϕ(t)y2 + ψ(t)y + χ(t)x + θ(t), z = x + λy,

where ϕ = ϕ(t), ψ = ψ(t), χ = χ(t), and θ = θ(t) are arbitrary functions, λ is an arbitrary constant,
and the function U = U (z, t) is determined by the first-order partial differential equation [σ(t) is an
arbitrary function]:

∂U

∂t
+

1
2
f (t)

(

∂U

∂z

)2

+ [f (t)χ(t) + λ2g(t)]
∂U

∂z
= −[2g(t)ϕ(t) + χ′

t(t)]z + σ(t).

This equation can be fully integrated; a complete integral is sought in the form U = f (t)z + g(t).

Page 442

© 2004 by Chapman & Hall/CRC



7.1. EQUATIONS LINEAR IN THE MIXED DERIVATIVE 443

4◦. “Two-dimensional” generalized separable solution cubic in x:

w(x, y, t) = ϕ(y, t)x3 + ψ(y, t)x2 + χ(y, t)x + θ(y, t),

where the functions ϕ = ϕ(y, t), ψ = ψ(y, t), χ = χ(y, t), and θ = θ(y, t) are determined by the
differential equations

gϕyy + 18fϕ2 = 0,
gψyy + 18fϕψ + 3ϕt = 0,

gχyy + 6fϕχ + 4fψ2 + 2ψt = 0,
gθyy + 2fψχ + χt = 0.

The subscripts y and t denote the corresponding partial derivatives, f = f (t) and g = g(t). These
equations can be treated as ordinary differential equations for y with parameter t; the constants of
integration will be functions of t. The first equation has the following particular solutions: ϕ = 0
and ϕ = −

g

3f (y + h)2 , where h = h(t) is an arbitrary function.

5◦. “Two-dimensional” solution:

w(x, y, t) = u(p, t) + a(t)y4 + [b(t)p + c(t)]y2 + µ(t)y + λ(t), p = y2 + γ(t)x.

Here, c = c(t), γ = γ(t), µ = µ(t), and λ = λ(t) are arbitrary functions; and the function u = u(p, t) is
determined by the differential equation

γ
∂2u

∂p∂t
+

(

γ′tp + fγ3 ∂u

∂p

)

∂2u

∂p2 + (γ′t + 2g)
∂u

∂p
+ 2g(bp + c) = 0,

where the functions a = a(t) and b = b(t) are given by

a = −
(bγ)′t + 10gb

12g
, b =

γ′t − 4g
fγ3 .

���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

7.1.4. Equations of the Form ∂w
∂y

∂2w
∂x∂y

– ∂w
∂x

∂2w
∂y2 = F

(

x, y, ∂w
∂x

, ∂w
∂y

)

1.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= 0.

General solution:
w(x, y) = F

(

y +G(x)
)

,

where F (z) and G(x) are arbitrary functions.���
Reference: D. Zwillinger (1989, p. 397).

2.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x).

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = � C−1
1 w(x,C1y + ϕ(x)) + C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function, are also solutions of the
equation.
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2◦. Generalized separable solutions linear and quadratic in y:

w(x, y) = � y
[

2
∫

f (x) dx + C1

]1/2

+ ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

[

ϕ2(x) − 2
∫

f (x) dx
]

+ C2,

where ϕ(x) is an arbitrary function and C1 and C2 are arbitrary constants.

3◦. The von Mises transformation

ξ = x, η = w, U (ξ, η) =
∂w

∂y
, where w = w(x, y), (1)

brings the original equation to the first-order nonlinear equation

U
∂U

∂ξ
= f (ξ), (2)

which is independent of η. On integrating (2) and taking into account the relations of (1), we obtain
the first-order equation

(

∂w

∂y

)2

= 2
∫

f (x) dx + ψ(w), (3)

where ψ(w) is an arbitrary function.
Integrating (3) yields the general solution in implicit form:

∫

dw
√

2F (x) + ψ(w)
= � y + ϕ(x),

where ϕ(x) and ψ(w) are arbitrary functions, F (x) =
∫

f (x) dx.

3.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂w

∂y
.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C−1
1 w(x,C1y + C2) + C3,

w2 = w
(

x, y + ϕ(x)
)

,

where C1, C2, and C3 are arbitrary constants and ϕ(x) is an arbitrary function, are also solutions of
the equation.

2◦. Generalized separable solutions:

w(x, y) = y
[
∫

f (x) dx + C
]

+ ϕ(x),

w(x, y) = ϕ(x)eλy −
1
λ

∫

f (x) dx + C,

where ϕ(x) is an arbitrary function and C and λ are arbitrary constants.

3◦. The equation can be rewritten as the relation that the Jacobian of the functions w and v =
wy −

∫

f (x) dx is equal to zero. It follows that w and v are functionally dependent, which means
that v is expressible in terms of w:

∂w

∂y
−

∫

f (x) dx = ϕ(w), (1)
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where ϕ(w) is an arbitrary function. Any solution of the first-order equation (1) for any ϕ(w) is a
solution of the original equation.

Equation (1) can be treated as an ordinary differential equation in the independent variable y
with parameter x. Integrating yields its general solution in implicit form:

∫
[

ϕ(w) +
∫

f (x) dx
]−1

dw = y + ψ(x),

where ψ(x) and ϕ(w) are arbitrary functions.

4.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂w

∂y
+ g(y)

∂w

∂x
.

First integral:
∂w

∂y
= ϕ(w) −

∫

g(y) dy +
∫

f (x) dx,

whereϕ(w) is an arbitrary function. This equation can be treated as a first-order ordinary differential
equation in the independent variable y with parameter x.

5.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)g

(

∂w

∂y

)

.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C−1
1 w(x,C1y + C2) + C3,

w2 = w
(

x, y + ϕ(x)
)

,

where C1, C2, and C3 are arbitrary constants and ϕ(x) is an arbitrary function, are also solutions of
the equation.

2◦. First integral:
∫

U dU

g(U )
= ϕ(w) +

∫

f (x) dx, U =
∂w

∂y
,

whereϕ(w) is an arbitrary function. This equation can be treated as a first-order ordinary differential
equation in the independent variable y with parameter x.

7.1.5. Other Equations with Two Independent Variables

1.
∂w

∂y

∂2w

∂x∂y
+ f (y)

∂w

∂x

∂2w

∂y2
= g(y)w + h(y)x + � (y).

Generalized separable solution linear in x:

w = ϕ(y)x + ψ(y),

where the functions ϕ(y) and ψ(y) are determined by the system of ordinary differential equations

fϕϕ′′

yy + (ϕ′

y)2 = gϕ + h,

fϕψ′′

yy + ϕ′

yψ
′

y = gψ + s.

2.
[

1 –
(

∂w

∂t

)2] ∂2w

∂x2
+ 2

∂w

∂x

∂w

∂t

∂2w

∂x∂t
–

[

1 +
(

∂w

∂x

)2] ∂2w

∂t2
= 0.

Born–Infeld equation (see Born and Infeld, 1934). It is used in nonlinear electrodynamics and field
theory.
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1◦. Solutions:
w(x, t) = ϕ(x + t),
w(x, t) = ψ(x − t),

where ϕ(z1) and ψ(z2) are arbitrary functions.

2◦. Cauchy problem with initial conditions:

w = f (x) at t = 0, ∂tw = g(x) at t = 0.

The hyperbolicity condition 1 + [f ′

x(x)]2 − g2(x) > 0 is assumed to hold.
Solution in parametric form:

t =
1
2

∫ β

α

1 + [f ′

ζ(ζ)]2
√

1 + [f ′

ζ(ζ)]2 − g2(ζ)
dζ,

x =
α + β

2
−

1
2

∫ β

α

f ′

ζ(ζ)g(ζ) dζ
√

1 + [f ′

ζ(ζ)]2 − g2(ζ)
,

w =
f (α) + f (β)

2
+

1
2

∫ β

α

g(ζ) dζ
√

1 + [f ′

ζ(ζ)]2 − g2(ζ)
.

���
Reference: B. M. Barbashov and N. A. Chernikov (1966).

3◦. By the introduction of the new variables

ξ = x − t, η = x + t, u =
∂w

∂ξ
, v =

∂w

∂η
,

the Born–Infeld equation can be rewritten as the equivalent system of equations

∂u

∂η
−
∂v

∂ξ
= 0,

v2 ∂u

∂ξ
− (1 + 2uv)

∂u

∂η
+ u2 ∂v

∂η
= 0.

The hodograph transformation (where u, v are treated as the independent variables and ξ, η as the
dependent ones) leads to the linear system

∂ξ

∂v
−
∂η

∂u
= 0,

v2 ∂η

∂v
+ (1 + 2uv)

∂ξ

∂v
+ u2 ∂ξ

∂u
= 0.

(1)

On eliminating η, we can reduce this system to the second-order linear equation

u2 ∂
2ξ

∂u2 + (1 + 2uv)
∂2ξ

∂u∂v
+ v2 ∂

2ξ

∂v2 + 2u
∂ξ

∂u
+ 2v

∂ξ

∂v
= 0.

Looking for solutions in the hyperbolic domain, we write out the equation of characteristics

u2 dv2 − (1 + 2uv) du dv + v2 du2 = 0.

Integrals of this equation are given by r = C1 and s = C2, where

r =
√

1 + 4uv − 1
2v

, s =
√

1 + 4uv − 1
2u

. (2)
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Passing in (1) to the new variables of (2), we obtain

r2 ∂ξ

∂r
+
∂η

∂r
= 0,

∂ξ

∂s

+ s
2 ∂η

∂s

= 0.
(3)

Eliminating η yields the simple equation
∂2ξ

∂r∂s

= 0,

whose solution is the sum of two arbitrary functions with different arguments, ξ = ϕ(r) +ψ(s). The
function η is found from system (3).���

Reference: G. B. Whitham (1974).

4◦. The Legendre transformation

w(x, t) + u(ζ, τ ) = xζ + tτ , ζ =
∂w

∂x
, τ =

∂w

∂t
, x =

∂u

∂ζ
, t =

∂u

∂τ

leads to the linear equation
(

1 − τ 2) ∂
2u

∂τ 2 − 2ζτ
∂2u

∂ζ∂τ
−

(

1 + ζ2) ∂
2u

∂ζ2 = 0.

3.
[

a +
( ∂w

∂y

)2] ∂2w

∂x2
– 2b

∂w

∂x

∂w

∂y

∂2w

∂x∂y
+

[

c +
( ∂w

∂x

)2] ∂2w

∂y2
= 0.

Equation of minimal surfaces (with a = b = c = 1). It describes, for example, the shape of a foam
film bounded by a given contour.

1◦. The Legendre transformation

w(x, y) + u(ξ, η) = xξ + yη, ξ =
∂w

∂x
, η =

∂w

∂y
, x =

∂u

∂ξ
, y =

∂u

∂η

leads to the linear equation
(

a + η2) ∂
2u

∂η2 + 2bξη
∂2u

∂ξ∂η
+

(

c + ξ2) ∂
2u

∂ξ2 = 0.

2◦. General solution in parametric form for a = b = c = 1:

x = Re f1(z), y = Re f2(z), w = Re f3(z),
where the fk(z) are arbitrary analytic functions of the complex variable z = α + iβ with derivatives
constrained by

[f ′

1(z)]2 + [f ′

2(z)]2 + [f ′

3(z)]2 = 0.
For example, z can be taken as one of the functions fk(z).���

Reference: R. Courant and D. Hilbert (1989).

4.
∂2w

∂x∂y
= F

(

y,
∂w

∂x

)

∂w

∂y

∂2w

∂x2
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x + C2, y) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. The Euler transformation

w(x, y) + u(ξ, η) = xξ, x =
∂u

∂ξ
, y = η

leads to the linear equation (for details, see Subsection S.2.3)
∂2u

∂ξ∂η
= F (η, ξ)

∂u

∂η
.
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5.
[

f 2 –
( ∂w

∂x

)2] ∂2w

∂x2
– 2

∂w

∂x

∂w

∂y

∂2w

∂x∂y
+

[

f 2 –
( ∂w

∂y

)2] ∂2w

∂y2
= 0, f = f (w2

x + w2
y).

This equation describes a two-dimensional steady-state isentropic flow of a compressible gas; w is
the velocity potential and f is the sound speed.

The Legendre transformation

w(x, y) + U (ξ, η) = xξ + yη, ξ =
∂w

∂x
, η =

∂w

∂y
, x =

∂U

∂ξ
, y =

∂U

∂η

leads to the linear equation

(

f 2 − ξ2) ∂
2U

∂η2 + 2ξη
∂2U

∂ξ∂η
+

(

f 2 − η2) ∂
2U

∂ξ2 = 0, f = f (ξ2 + η2).
���

Reference: R. Courant and D. Hilbert (1989).

7.1.6. Other Equations with Three Independent Variables

1.
∂2w

∂x∂t
+ f

(

∂w

∂x

)

∂2w

∂x2
+ b

∂2w

∂y2
= 0.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = C−1
1 w(C1x + C2,C1y + C3,C1t + C4) + C5yt + C6y + C7t + C8,

w2 = w(x + λy − bλ2t, y − 2bλt, t) + ϕ(t)y + ψ(t),

where C1, . . . , C8 and λ are arbitrary constants and ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions,
are also solutions of the equation.

2◦. “Two-dimensional” solution:

w(x, y, t) = U (z, t) + ϕ(t)y2 + ψ(t)y + χ(t), z = x + λy,

where ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are arbitrary functions, λ is an arbitrary constant, and the
function U = U (z, t) is determined by the first-order partial differential equation

∂U

∂t
+ F

(

∂U

∂z

)

+ bλ2 ∂U

∂z
+ 2bϕ(t)z = σ(t), F (u) =

∫

f (u) du,

where σ(t) is an arbitrary function. A complete integral of this equation has the form

U = A(t)z +B(t),

where the functionsA(t) and B(t) are given by

A(t) = −2b
∫

ϕ(t) dt + C1, B(t) =
∫

[

σ(t) − F (A(t)) − bλ2A(t)
]

dt + C2,

and C1 and C2 are arbitrary constants.���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂x∂t
+ f (t)Φ

(

∂w

∂x

)

∂2w

∂x2
+ g(t)

∂2w

∂y2
= 0.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the function

w1 = w(ξ, η, t) + ϕ(t)y + ψ(t), ξ = x + λy − λ2
∫

g(t) dt + C1, η = y − 2λ
∫

g(t) dt + C2,

where C1, C2, and λ are arbitrary constants and ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions, is
also a solution of the equation.
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2◦. “Two-dimensional” solution:
w(x, y, t) = U (z, t) + ϕ(t)y2 + ψ(t)y + χ(t), z = x + λy,

where ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are arbitrary functions, λ is an arbitrary constant, and the
function U = U (z, t) is determined by the first-order partial differential equation

∂U

∂t
+ f (t)Ψ

(

∂U

∂z

)

+ λ2g(t)
∂U

∂z
+ 2g(t)ϕ(t)z = σ(t), Ψ(u) =

∫

Φ(u) du,

where σ(t) is an arbitrary function. This equation can be fully integrated—a complete integral is
sought in the form U = A(t)z +B(t).

7.2. Equations Quadratic in the Highest Derivatives

7.2.1. Equations of the Form ∂2w
∂x2

∂2w
∂y2 = F (x, y)

I Suppose w(x, y) is a solution of the equation in question. Then the function
w1 = w(x, y) + C1xy + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

1.
∂2w

∂x2

∂2w

∂y2
= f (x)yk.

1◦. Suppose w(x, y) is a solution of this equation. Then the function
w1 = C−k−2

1 w(x,C2
1y) + C2xy + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solutions:

w(x, y) = (C1x + C2)yk+1 +
y

k(k + 1)

∫ x

0

(x − t)f (t)
(C1t + C2)

dt + C3xy + C4x + C5y + C6,

w(x, y) = (C1x + C2)yk+2 +
1

(k + 1)(k + 2)

∫ x

0

(x − t)f (t)
(C1t + C2)

dt + C3xy + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants.

3◦. Generalized separable solution:

w(x, y) = ϕ(x)y
k+2

2 + C1xy + C2x + C3y + C4,
where C1, . . . , C4 are arbitrary constants and the function ϕ = ϕ(x) is determined by the ordinary
differential equation

k(k + 2)ϕϕ′′

xx = 4f (x).

2.
∂2w

∂x2

∂2w

∂y2
= f (x)g(y).

1◦. Additive separable solution:

w(x, y) = C1

∫ x

0
(x − t)f (t) dt + C2x +

1
C1

∫ y

0
(y − τ )g(τ ) dτ + C3y + C4,

where C1, . . . , C4 are arbitrary constants.

2◦. Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y),

where the functions ϕ = ϕ(x) and ψ = ψ(y) are determined by the ordinary differential equations
(C1 is an arbitrary constant)

ϕϕ′′

xx = C1f (x),

ψψ′′

yy = C−1
1 g(y).
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3.
∂2w

∂x2

∂2w

∂y2
= f (ax + by).

Solutions:

w(x, y) = � 1
ab

∫ z

0
(z − t)

√

f (t)dt + C1xy + C2x + C3y + C4, z = ax + by,

where C1, . . . , C4 are arbitrary constants.

4.
∂2w

∂x2

∂2w

∂y2
= f (x)y2k + g(x)yk + h(x)yk–1.

Generalized separable solution:

w(x, y) = ϕ(x)yk+1 + ψ(x)y + χ(x),

where the functions ϕ = ϕ(x), ψ = ψ(x), and χ = χ(x) are determined by the system of ordinary
differential equations

k(k + 1)ϕϕ′′

xx = f (x),
k(k + 1)ϕψ′′

xx = g(x),
k(k + 1)ϕχ′′

xx = h(x).

5.
∂2w

∂x2

∂2w

∂y2
= f (x)eλy.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C1w
(

x, y −
2
λ

ln |C1|
)

+ C2xy + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution:

w(x, y) = (C1x + C2)eλy +
1
λ2

∫ x

x0

(x − t)f (t)
C1t + C2

dt + C3xy + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants, and x0 is any number such that the integrand does not
have a singularity at x = x0.

3◦. Generalized separable solution:

w(x, y) = ϕ(x)eλy/2 + C1xy + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, and the function ϕ = ϕ(x) is determined by the ordinary
differential equation λ2ϕϕ′′

xx = 4f (x).

6.
∂2w

∂x2

∂2w

∂y2
= f (x)e2λy + g(x)eλy.

Generalized separable solution:

w(x, y) = ϕ(x)eλy +
1
λ2

∫ x

x0

(x − t)
g(t)
ϕ(t)

dt + C1xy + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants and the function ϕ = ϕ(x) is determined by the ordinary
differential equation λ2ϕϕ′′

xx = f (x).
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7.2.2. Monge–Ampère equation
(

∂2w
∂x∂y

)2
– ∂2w

∂x2
∂2w
∂y2 = F (x, y)

Preliminary remarks.
The Monge–Ampère equation is encountered in differential geometry, gas dynamics, and meteorol-
ogy.

1◦. Suppose w(x, y) is a solution of the Monge–Ampère equation. Then the function

w1 = w(x, y) + C1x + C2y + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. The transformation

x̄ = a1x + b1y + c1, ȳ = a2x + b2y + c2, w̄ = kw + a3x + b3y + c3, F̄ = k2(a1b2 − a2b1)−2F ,

where the an, bn, cn, and k are arbitrary constants, takes the Monge–Ampère equation to an equation
of the same form.

3◦. The transformation

x̄ = x(1 + αx + βy)−1, ȳ = y(1 + αx + βy)−1, w̄ = w(1 + αx + βy)−1, F̄ = F (1 + αx + βy)4,

where α and β are arbitrary constants, takes the Monge–Ampère equation to an equation of the same
form.���

References: S. V. Khabirov (1990), N. H. Ibragimov (1994).

4◦. In Lagrangian coordinates, the system of equations of the one-dimensional gas dynamics with
plane waves is as follows:

∂u

∂t
+
∂p

∂ξ
= 0,

∂V

∂t
−
∂u

∂ξ
= 0,

where t is time, u the velocity, p the pressure, ξ the Lagrangian coordinate, and V the specific
volume. The equation of state is assumed to have the form V = V

(

p,S(ξ)
)

, where S = S(ξ) is a
prescribed entropy profile.

The Martin transformation

u(ξ, t) =
∂w

∂x
(x, y), t =

∂w

∂y
(x, y), x = ξ, y = p(ξ, t)

reduces the equations of the one-dimensional gas dynamics to the nonhomogeneousMonge–Ampère
equation

(

∂2w

∂x∂y

)2

−
∂2w

∂x2
∂2w

∂y2 = F (x, y),

where F (x, y) = − ∂V
∂p

(

p,S(ξ)
)

.
���

References: M. N. Martin (1953), B. L. Rozhdestvenskii and N. N. Yanenko (1983).

1.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= 0.

Homogeneous Monge–Ampère equation.

1◦. Supposew(x, y) is a solution of the homogeneous Monge–Ampère equation. Then the functions

w1 = C1w(C2x + C3y + C4,C5x + C6y + C7) + C8x + C9y + C10,

w2 = (1 + C1x + C2y)w
(

x

1 + C1x + C2y
,

y

1 + C1x + C2y

)

,

where C1, . . . , C10 are arbitrary constants, are also solutions of the equation.
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2◦. First integrals:

Φ1

(

∂w

∂x
,
∂w

∂y

)

= 0,

Φ2

(

∂w

∂x
,w − x

∂w

∂x
− y

∂w

∂y

)

= 0,

where Φ1(u, v) and Φ2(u, z) are arbitrary functions of two arguments.

3◦. General solution in parametric form:

w = tx + ϕ(t)y + ψ(t),
x + ϕ′(t)y + ψ′(t) = 0,

where t is the parameter, and ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions.

4◦. Solutions involving one arbitrary function:

w(x, y) = ϕ(C1x + C2y) + C3x + C4y + C5,

w(x, y) = (C1x + C2y)ϕ
(

y

x

)

+ C3x + C4y + C5,

w(x, y) = (C1x + C2y + C3)ϕ
(

C4x + C5y + C6

C1x + C2y + C3

)

+ C7x + C8y + C9,

where C1, . . . , C9 are arbitrary constants and ϕ = ϕ(z) is an arbitrary function.

5◦. Solutions involving arbitrary constants:

w(x, y) = C1y
2 + C2xy +

C2
2

4C1
x2 + C3y + C4x + C5,

w(x, y) =
1

x + C1

(

C2y
2 + C3y +

C2
3

4C2

)

+ C4y + C5x + C6,

w(x, y) =  (C1x + C2y + C3)k + C4x + C5y + C6,

w(x, y) =  (C1x + C2y + C3)k+1

(C4x + C5y + C6)k
+ C7x + C8y + C9,

w(x, y) =  
√

C1(x + a)2 + C2(x + a)(y + b) + C3(y + b)2 + C5x + C6y + C7,

where the a, b, and the Cn are arbitrary constants.!�"
References for equation 7.2.2.1: E. Goursat (1933), S. V. Khabirov (1990), N. H. Ibragimov (1994).

2.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= A.

1◦. First integrals for A = a2 > 0:

Φ1

(

∂w

∂x
+ ay,

∂w

∂y
− ax

)

= 0,

Φ2

(

∂w

∂x
− ay,

∂w

∂y
+ ax

)

= 0,

where the Φn(u, v) are arbitrary functions of two arguments (n = 1, 2).

2◦. General solution in parametric form for A = a2 > 0:

x =
β − λ

2a
, y =

ψ′(λ) − ϕ′(β)
2a

, w =
(β + λ)[ψ′(λ) − ϕ′(β)] + 2ϕ(β) − 2ψ(λ)

4a
,

where β and λ are the parameters, ϕ = ϕ(β) and ψ = ψ(λ) are arbitrary functions.

Page 452

© 2004 by Chapman & Hall/CRC



7.2. EQUATIONS QUADRATIC IN THE HIGHEST DERIVATIVES 453

3◦. Solutions:

w(x, y) = #
√

A

C2
x(C1x + C2y) + ϕ(C1x + C2y) + C3x + C4y,

w(x, y) = C1y
2 + C2xy +

1
4C1

(C2
2 −A)x2 + C3y + C4x + C5,

w(x, y) =
1

x + C1

(

C2y
2 + C3y +

C2
3

4C2

)

−
A

12C2
(x3 + 3C1x

2) + C4y + C5x + C6,

w(x, y) = # 2
√

A

3C1C2
(C1x − C2

2y
2 + C3)3/2 + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants and ϕ = ϕ(z) is an arbitrary function.
Another five solutions can be obtained:

(a) from the solution of equation 7.2.2.18 with α = 0 and f (u) =A, where β is an arbitrary constant;
(b) from the solution of equation 7.2.2.20 with f (u) = A, where a, b, and c are arbitrary constants;
(c) from the solution of equation 7.2.2.21 with f (u) = A, where a, b, c, k, and s are arbitrary

constants;
(d) from the solution of equation 7.2.2.22 with α = 0 and f (u) =A, where β is an arbitrary constant;
(e) from the solution of equation 7.2.2.24 with α = 0 and f (u) =A, where β is an arbitrary constant.

4◦. The Legendre transformation

u = xξ + yη − w(x, y), ξ =
∂w

∂x
, η =

∂w

∂y
,

where u = u(ξ, η) is the new independent variable, and ξ and η are the new dependent variables,
leads to an equation of the similar form

(

∂2u

∂ξ∂η

)2

−
∂2u

∂ξ2
∂2u

∂η2 =
1
A

.
$�%

Reference: E. Goursat (1933).

3.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x).

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C−1
1 w(x,C2x # C1y + C3) + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solutions quadratic in y:

w(x, y)=C1y
2 + C2xy +

C2
2

4C1
x2 −

1
2C1

∫ x

0
(x − t)f (t) dt + C3y + C4x + C5,

w(x, y)=
1

x + C1

(

C2y
2+ C3y +

C2
3

4C2

)

−
1

2C2

∫ x

0
(x − t)(t + C1)f (t) dt + C4y + C5x + C6,

where C1, . . . , C6 are arbitrary constants.$�%
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3◦. Generalized separable solutions for f (x) > 0:

w(x, y) = # y
∫

√

f (x) dx + ϕ(x) + C1y,

where ϕ(x) is an arbitrary function.$�%
References: M. N. Martin (1953), B. L. Rozhdestvenskii and N. N. Yanenko (1983).
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4◦. Conservation law:

Dx

[

y(wxwyy − wywxy + gy) − g − wxwy

]

+Dy

[

y(wywxx − wxwxy + gx) + (wx)2] = 0,

where Dx =
∂

∂x
, Dy =

∂

∂y
, g = y

∫

f (x) dx + ϕ(x) + ψ(y), and ϕ(x) and ψ(y) are arbitrary

functions.&�'
Reference: S. V. Khabirov (1990).

5◦. Let us consider some specific functions f = f (x). Solutions that can be obtained by the formulas
of Items 1◦ and 2◦ are omitted.

5.1. Solutions with f (x) = Axk can be obtained:
(a) from the solution of equation 7.2.2.18 with f (u) = A and α = k/2, where β is an arbitrary constant;
(b) from the solution of equation 7.2.2.24 with f (u) = A and α = k/2, where β is an arbitrary constant.

5.2. Solutions for f (x) = Aeλx:

w(x, y) = ( 2
√

A

C2λ
e
λx/2 sin(C1x + C2y + C3) + C4x + C5y + C6,

w(x, y) = ( 2
√

A

C2λ
e
λx/2 sinh(C1x + C2y + C3) + C4x + C5y + C6,

w(x, y) = ( 2
√

−A

C2λ
e
λx/2 cosh(C1x + C2y + C3) + C4x + C5y + C6.

Another solution can be obtained from the solution of equation 7.2.2.22 with α = λ and f (u) = A, where β is an arbitrary
constant.

4.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)y.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = ) C−3
1 w(x,C2

1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solution quadratic in y:

w(x, y) = C1y
2 − y

∫

F (x) dx +
1

2C1

∫ x

a

(x − t)F 2(t) dt + C2x + C3y + C4,

F (x) =
1

2C1

∫

f (x) dx + C5,

where C1, . . . , C5 are arbitrary constants.

3◦. Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x),

where

ϕ(x) =
1

C1x + C2
, ψ(x) = C3ϕ(x) + C4 +

ϕ(x)
2C1

∫

f (x) dx
[ϕ(x)]3 −

1
2C1

∫

f (x) dx
[ϕ(x)]2 ,

χ(x) =
1
2

∫ x

a

(x − t)
[ψ′

t(t)]2

ϕ(t)
dt + C5x + C6.

4◦. Generalized separable solutions cubic in y:

w(x, y) = C1y
3 −

1
6C1

∫ x

a

(x − t)f (t) dt + C2x + C3y + C4,

w(x, y) =
y3

(C1x + C2)2 −
1
6

∫ x

a

(x − t)(C1t + C2)2f (t) dt + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants.

5◦. See solution of equation 7.2.2.7 in Item 3◦ with k = 1.&�'
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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5.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)y2.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = * C−2
1 w(x,C1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 +
[

C1

∫

ϕ2(x) dx + C2

]

y +
1
2
C2

1

∫ x

a

(x − t)ϕ3(t) dt + C3x + C4,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

ϕϕ′′

xx = 2(ϕ′

x)2 − 1
2 f (x).

3◦. Generalized separable solutions in the form of polynomials of degree 4 in y:

w(x, y) = C1y
4 −

1
12C1

∫ x

a

(x − t)f (t) dt + C2x + C3y + C4,

w(x, y) =
y4

(C1x + C2)3 −
1
12

∫ x

a

(x − t)(C1t + C2)3f (t) dt + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants.

4◦. See solution of equation 7.2.2.7 in Item 3◦ with k = 2.+�,
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

6.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)y2 + g(x)y + h(x).

Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x),

where the functions ϕ = ϕ(x), ψ = ψ(x), and χ = χ(x) are determined by the system of ordinary
differential equations

ϕϕ′′

xx = 2(ϕ′

x)2 − 1
2 f (x),

ϕψ′′

xx = 2ϕ′

xψ
′

x − 1
2 g(x),

ϕχ′′

xx = 1
2 (ψ′

x)2 − 1
2h(x).

7.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)yk.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = * C−k−2
1 w(x,C2

1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solutions:

w(x, y)=
C1y

k+2

(k + 1)(k + 2)
−

1
C1

∫ x

a

(x − t)f (t) dt + C2x + C3y + C4,

w(x, y)=
yk+2

(C1x + C2)k+1 −
1

(k + 1)(k + 2)

∫ x

a

(x − t)(C1t + C2)k+1f (t) dt + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants.
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3◦. Multiplicative separable solution:

w(x, y) = ϕ(x)y
k+2

2 ,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

k(k + 2)ϕϕ′′

xx − (k + 2)2(ϕ′

x)2 + 4f (x) = 0.

4◦. Let us consider the case where f is a power-law function of x, f (x) = Axn, in more detail.
Solutions:

w(x, y) =
C1x

n+2

(n + 1)(n + 2)
−

Ayk+2

C1(k + 1)(k + 2)
+ C2y + C3x + C4,

w(x, y) =
C1x

n+2

(n + 1)(n + 2)yn+1 −
Ayk+n+3

C1(k + n + 2)(k + n + 3)
+ C2y + C3x + C4,

w(x, y) =
C1y

k+2

(k + 1)(k + 2)xk+1 −
Axk+n+3

C1(k + n + 2)(k + n + 3)
+ C2y + C3x + C4,

w(x, y) = (C1x + C2)−k−1yk+2 −
A

(k + 1)(k + 2)

∫ x

a

(x − t)tn(C1t + C2)k+1 dt + C3y + C4x,

w(x, y) = (C1y + C2)−n−1xn+2 −
A

(n + 1)(n + 2)

∫ y

a

(y − t)tk(C1t + C2)n+1 dt + C3y + C4x,

where C1, . . . , C4 are arbitrary constants.
There are also a multiplicative separable solution, see Item 3◦ with f (x) = Axn, and a solution

of the same type:

w(x, y) = ψ(y)x
n+2

2 ,

where the function ψ = ψ(y) is determined by the ordinary differential equation

n(n + 2)ψψ′′

yy − (n + 2)2(ψ′

y)2 + 4Ayk = 0.

The substitution ψ = U −n/2 brings it to the Emden–Fowler equation

U ′′

yy =
8A

n2(n + 2)
ykUn+1,

whose exact solutions for various values of k and n can be found in the books by Polyanin and
Zaitsev (1995, 2003).

Another exact solution for f (x) = Axn can be obtained from the solution of equation 7.2.2.18
with f (u) = Auk and n = 2α + kβ, where α and β are arbitrary constants.-�.

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

8.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)y2k+2 + g(x)yk.

Generalized separable solution:

w(x, y) = ϕ(x)yk+2 −
1

(k + 1)(k + 2)

∫ x

a

(x − t)
g(t)
ϕ(t)

dt + C1x + C2y + C3,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

(k + 1)(k + 2)ϕϕ′′

xx − (k + 2)2(ϕ′

x)2 + f (x) = 0.
-�.

Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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9.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)eλy.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = / C1w
(

x, y −
2
λ

ln |C1|
)

+ C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solutions:

w(x, y) = C1

∫ x

a

(x − t)f (t) dt + C2x −
1

C1λ2 e
λy + C3y + C4,

w(x, y) = C1e
βx+λy −

1
C1λ2

∫ x

a

(x − t)e−βtf (t) dt + C2x + C3y + C4,

where C1, . . . , C4 and β are arbitrary constants.

3◦. Multiplicative separable solution:

w(x, y) = ϕ(x) exp
( 1

2λy
)

,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

ϕϕ′′

xx − (ϕ′

x)2 + 4λ−2f (x) = 0.0�1
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

10.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)e2λy + g(x)eλy.

Generalized separable solution:

w(x, y) = ϕ(x)eλy −
1
λ2

∫ x

a

(x − t)
g(t)
ϕ(t)

dt + C1x + C2y + C3,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

ϕϕ′′

xx − (ϕ′

x)2 + λ−2f (x) = 0.0�1
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

11.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)g(y) + A2.

Generalized separable solutions:

w(x, y) = C1

∫ x

a

(x − t)f (t) dt −
1
C1

∫ y

b

(y − ξ)g(ξ) dξ / Axy + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants; a and b are any numbers.

12.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (ax + by).

1◦. Solutions:

w(x, y) = / x
b

∫

√

f (z)dz + ϕ(z) + C1x + C2y, z = ax + by,

where C1 and C2 are arbitrary constants and ϕ(z) is an arbitrary function.

2◦. The transformation
w = U (x, z), z = ax + by

leads to an equation of the form 7.2.2.3:
(

∂2U

∂x∂z

)2

=
∂2U

∂x2
∂2U

∂z2 + b−2f (z).

Here, x and z play the role of y and x in 7.2.2.3, respectively.
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13.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= xkf (ax + by).

The transformation
w = U (x, z), z = ax + by

leads to an equation of the form 7.2.2.7:
(

∂2U

∂x∂z

)2

=
∂2U

∂x2
∂2U

∂z2 + b−2xkf (z).

Here, x and z play the role of y and x in 7.2.2.7, respectively.

14.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= x2k+2f (ax + by) + xkg(ax + by).

The transformation
w = U (x, z), z = ax + by

leads to an equation of the form 7.2.2.8:
(

∂2U

∂x∂z

)2

=
∂2U

∂x2
∂2U

∂z2 + b−2xk+2f (z) + b−2xkg(z).

Here, x and z play the role of y and x in 7.2.2.8, respectively.

15.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= eλxf (ax + by).

The transformation
w = U (x, z), z = ax + by

leads to an equation of the form 7.2.2.9:
(

∂2U

∂x∂z

)2

=
∂2U

∂x2
∂2U

∂z2 + b−2eλxf (z).

Here, x and z play the role of y and x in 7.2.2.9, respectively.

16.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= e2λxf (ax + by) + eλxg(ax + by).

The transformation
w = U (x, z), z = ax + by

leads to an equation of the form 7.2.2.10:
(

∂2U

∂x∂z

)2

=
∂2U

∂x2
∂2U

∂z2 + b−2e2λxf (z) + b−2eλxg(z).

Here, x and z play the role of y and x in 7.2.2.10, respectively.

17.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
=

1
x4

f

(

y

x

)

.

This is a special case of equation 7.2.2.18 with α = −2 and β = −1.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = 2 w(C1x, C1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

Page 458

© 2004 by Chapman & Hall/CRC



7.2. EQUATIONS QUADRATIC IN THE HIGHEST DERIVATIVES 459

2◦. Integral:

w − x
∂w

∂x
− y

∂w

∂y

3 ∫

√

f (z)dz = C, z =
y

x
,

where C is an arbitrary constant.
4�5

References: M. N. Martin (1953), B. L. Rozhdestvenskii and N. N. Yanenko (1983).

3◦. Solutions:

w = xϕ
(

y

x

) 3 ∫

√

f (z)dz + C, z =
y

x
,

where ϕ(z) is an arbitrary function.

4◦. Conservation law:

Dx

(

∂w

∂x

∂2w

∂y2

)

+Dy

[

−
∂w

∂x

∂2w

∂x∂y
+ x−3F

(

y

x

)]

= 0,

where Dx =
∂

∂x
, Dy =

∂

∂y
, and F (z) =

∫

f (z) dz.

4�5
Reference: S. V. Khabirov (1990).

18.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= x2αf (xβy).

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = 3
C

β−α−1
1 w(C1x, C−β

1 y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Self-similar solution:
w(x, y) = xα−β+1u(z) z = xβy,

where the function u = u(z) is determined by the ordinary differential equation

[β(β + 1)zu′z + (α − β)(β − α − 1)u]u′′zz + (α + 1)2(u′z)2 − f (z) = 0.
4�5

Reference: S. V. Khabirov (1990).

19.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (ax – by2).

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = w(x + 2bC1y + abC1, y + aC1) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:

w(x, y) =
3 ∫

√

F (z) + C1 dz + C2x + C3y + C4, F (z) =
1
a2b

∫

f (z) dz, z = ax − by2,

where C1, . . . , C4 are arbitrary constants.
4�5

Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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20.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (ax2 + bxy + cy2).

Solution for b2 ≠ 4ac:
w(x, y) = u(z) z = ax2 + bxy + cy2,

where the function u = u(z) is determined by the ordinary differential equation

2(4ac − b2)zu′zu
′′

zz + (4ac − b2)(u′z)2 + f (z) = 0.

Integrating yields

u(z) = 6
∫

√

F (z)
z

dz + C1, F (z) =
1

b2 − 4ac

∫

f (z) dz + C2,

where C1 and C2 are arbitrary constants.7�8
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

21.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (ax2 + bxy + cy2 + kx + 9 y).

Solution:
w(x, y) = u(z), z = ax2 + bxy + cy2 + kx + sy,

where the function u = u(z) is determined by the ordinary differential equation

2
[

(4ac − b2)z + as2 + ck2 − bks
]

u′zu
′′

zz + (4ac − b2)(u′z)2 + f (z) = 0.

The substitution V (z) = (u′z)2 leads to a first-order linear equation.7�8
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

22.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= eαxf (eβxy).

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = 6 Cα−2β
1 w(x − 2 lnC1, C2β

1 y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Generalized self-similar solution:

w(x, y) = eµxU (z), z = eβxy, µ = 1
2α − β,

where the function U = U (z) is determined by the ordinary differential equation

β2zU ′

zU
′′

zz − µ2UU ′′

zz + (β + µ)2(U ′

z)2 − f (z) = 0.

23.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= eky/xf (x).

Solution:

w(x, y) = exp
(

ky

2x

)

ϕ(x),

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

x2ϕϕ′′

xx − x2(ϕ′

x)2 + 2xϕϕ′

x − ϕ2 + 4k−2x4f (x) = 0.
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24.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= x2αf (xβey/x).

Solution:
w(x, y) = xα+2u(z), z = xβey/x,

where the function u = u(z) is determined by the ordinary differential equation

z2[βzu′z + (α + 2)(α + 1)u
]

u′′zz + z
{[

β − (α + 1)2]zu′z + (α + 2)(α + 1)u
}

u′z + f (z) = 0.
:�;

Reference: S. V. Khabirov (1990).

25.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= y–4 exp(2αy–1)f (xy–1 + βy–2).

Solution:
w = y exp(αy−1)ϕ(z) + C1y + C2x + C3, z = xy−1 + βy−2,

whereC1,C2, andC3 are arbitrary constants, and the functionϕ =ϕ(z) is determined by the ordinary
differential equation

(2βϕ′

z + α2ϕ)ϕ′′

zz − α2ϕ′

z
2 + f (z) = 0.:�;

Reference: S. V. Khabirov (1990).

I For exact solutions of the nonhomogeneous Monge–Ampère equation for some specificF =F (x, y)
(without functional arbitrariness), see Khabirov (1990) and Ibragimov (1994). The Cauchy problem
for the Monge–Ampère equation is discussed in Courant and Hilbert (1989).

7.2.3. Equations of the Form
(

∂2w
∂x∂y

)2
– ∂2w

∂x2
∂2w
∂y2 =F

(

x,y,w, ∂w
∂x

, ∂w
∂y

)

1.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)w + g(x).

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = w(x, y + C1x + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution quadratic in y:

w = ϕ(x)y2 + ψ(x)y + χ(x),

where ϕ(x), ψ(x), and χ(x) are determined by the system of ordinary differential equations

2ϕϕ′′

xx + f (x)ϕ − 4(ϕ′

x)2 = 0,
2ϕψ′′

xx + f (x)ψ − 4ϕ′

xψ
′

x = 0,

2ϕχ′′

xx + f (x)χ + g(x) − (ψ′

x)2 = 0.

Note that the second equation is linear in ψ and has a particular solution ψ = ϕ (hence, its general
solution can be expressed via the particular solution of the first equation).

2.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)w2.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C1w(x, y + C2x + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.
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2◦. Multiplicative separable solution:

w(x, y) = eλyu(x),

where λ is an arbitrary constant and the function u = u(x) is determined by the ordinary differential
equation

uu′′xx − (u′x)2 + λ−2f (x)u2 = 0.

3.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)ynwk.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = Cn+2w(x,Ck−2y),

where C is an arbitrary constant, is also a solution of the equation.

2◦. Multiplicative separable solution with n ≠ −2 and k ≠ 2:

w(x, y) = y
n+2
2−k U (x),

where the function U (x) is determined by the ordinary differential equation

(n + 2)(n + k)UU ′′

xx − (n + 2)2(U ′

x)2 + (k − 2)2f (x)Uk = 0.

4.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (x)eλywk.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = Cw
(

x, y +
k − 2
λ

lnC
)

,

where C is an arbitrary constant, is also a solution of the equation.

2◦. Multiplicative separable solution with k ≠ 2 and λ ≠ 0:

w(x, y) = exp
(

λy

2 − k

)

U (x),

where the function U (x) is determined by the ordinary differential equation

UU ′′

xx − (U ′

x)2 + (k − 2)2λ−2f (x)Uk = 0.

5.
(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2
= f (w).

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = w(A1x +B1y + C1,A2x +B2y + C2), |A2B1 −A1B2| = 1,

whereC1, C2, and any three of the four constantsA1,A2, B1, andB2 are arbitrary, is also a solution
of the equation.

2◦. Functional separable solution:

w(x, y) = u(z), z = ax2 + bxy + cy2 + kx + sy,

where a, b, c, k, and s are arbitrary constants and the function u = u(z) is determined by the ordinary
differential equation

2
[

(4ac − b2)z + as2 + ck2 − bks
]

u′zu
′′

zz + (4ac − b2)(u′z)2 + f (u) = 0.
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6.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ f (x) exp

(

ay

x

)

wk.

Solution:

w(x, y) = exp
(

λy

x

)

u(x), λ =
a

2 − k
,

where the function u = u(x) is determined by the ordinary differential equation

x2uu′′xx − (xu′x − u)2 + λ−2x4f (x)uk = 0.

7.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ a

∂w

∂y
.

This equation is used in meteorology for describing wind fields in near-equatorial regions.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C−2
1 C−1

2 w(C1x + C3,C2y + C4x + C5) + C6x + C7,

where C1, . . . , C7 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:
w = ϕ(x),

w = 1
4 (
√

a x + C)2y + ϕ(x),
where ϕ(x) is an arbitrary function and C is an arbitrary constant.

3◦. Solutions:
w = C1e

λy − 1
2 aλ

−1x2 + C2x + C3,

w = 1
4 a(x + C1)2(y + C2),

w = 1
4 aC

−1
2 (x + C1)2 tanh(C2y + C3),

w = 1
4 aC

−1
2 (x + C1)2 coth(C2y + C3),

w = 1
4 aC

−1
2 (x + C1)2 tan(C2y + C3),

where ϕ(x) is an arbitrary function and C1, C2, C3, and λ are arbitrary constants. The first solution
is a solution in additive separable form and the other four are multiplicative separable solutions.<�=

Reference: E. R. Rozendorn (1984).

4◦. Generalized separable solution quadratic in y:

w = F (x)y2 +G(x)y +H(x),

where
F (x) =

1
C1x + C2

, G(x) = −
a

6C2
1

(C1x + C2)2 +
C3

C1x + C2
+ C4,

H(x) =
1
2

∫ x

0
(x − t)

[G′

t(t)]2 − aG(t)
F (t)

dt + C5x + C6,

and C1, . . . , C6 are arbitrary constants.

5◦. Generalized separable solution:

w = C1 exp(C2x + C3y) −
a

2C3
x2 + C4x + C5.

6◦. There are exact solutions of the following forms:

w(x, y) = |x|k+2U (z), z = y|x|−k;

w(x, y) = ekxV (ξ), ξ = ye−kx;

w(x, y) = x2W (η), η = y + k ln |x|;
where k is an arbitrary constant.
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8.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ f (x)

∂w

∂y
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C−1
1 w(x,C1y + C2x + C3) + C4x + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w = ϕ(x),

w =
1
4

[
∫

f (x) dx + C
]2

y + ϕ(x),

w = C1 exp(C2x + C3y) −
1
C3

∫ x

0
(x − t)f (t) dt + C4x + C5,

where ϕ(x) is an arbitrary function and C is an arbitrary constant. For C2 = 0, the last solution is an
additive separable solution.

3◦. Generalized separable solution quadratic in y:

w = ϕ(x)y2 + ψ(x)y + χ(x),

where

ϕ(x) =
1

C1x + C2
, ψ(x) = −

∫
[

ϕ2(x)
∫

f (x)
ϕ2(x)

dx

]

dx +
C3

C1x + C2
+ C4,

χ(x) =
1
2

∫ x

0
(x − t)

[ψ′

t(t)]
2 − f (t)ψ(t)
ϕ(t)

dt + C5x + C6,

and C1, . . . , C6 are arbitrary constants.

9.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ f

(

∂w

∂x

)

.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C−1
1 w(C1x + C2y + C3, > y + C4) + C5y + C6,

where C1, . . . , C6 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solution linear in x:

w(x, y) = ϕ(y)x + ψ(y),

where ψ(y) is an arbitrary function and the function ϕ(y) is defined implicitly by
∫

dϕ
√

f (ϕ)
= > y + C,

where C is an arbitrary constant.

3◦. Additive separable solution:

w(x, y) = C1y
2 + C2y + C3 + z(x),

where the function z(x) is determined by the autonomous ordinary differential equation 2C1z
′′

xx +
f (z′x) = 0. Its general solution can be written out in parametric form as

x = −2C1

∫

dt

f (t)
+ C3, z = −2C1

∫

t dt

f (t)
+ C4.
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4◦. The Legendre transformation

u = xξ + yη − w(x, y), ξ =
∂w

∂x
, η =

∂w

∂y
,

where u = u(ξ, η) is the new dependent variable and ξ and η are the new independent variables, leads
to an equation of the form 7.2.2.3:

(

∂2u

∂ξ∂η

)2

−
∂2u

∂ξ2
∂2u

∂η2 =
1
f (ξ)

.

10.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ F

(

∂w

∂x
,
∂w

∂y

)

.

The Legendre transformation

u = xξ + yη − w(x, y), ξ =
∂w

∂x
, η =

∂w

∂y
,

where u = u(ξ, η) is the new dependent variable and ξ and η are the new independent variables, leads
to the simpler equation

(

∂2u

∂ξ∂η

)2

−
∂2u

∂ξ2
∂2u

∂η2 =
1

F (ξ, η)
.

For exact solutions of this equation, see Subsection 7.2.2.

7.2.4. Equations of the Form
(

∂2w
∂x∂y

)2
= f (x, y) ∂2w

∂x2
∂2w
∂y2 + g(x, y)

1.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function
w1 = C1w(x,C2y + C3) + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solutions involving arbitrary functions:
w(x, y) = ϕ(x) + C1y + C2,
w(x, y) = ϕ(y) + C1x + C2,

where C1 and C2 are arbitrary constants and ϕ = ϕ(z) is an arbitrary function.

3◦. Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + [C1ϕ(x) + C2]y +
C2

1
2

∫ x

0
(x − t)

[ϕ′

t(t)]2

f (t)ϕ(t)
dt + C3x + C4,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation
f (x)ϕϕ′′

xx − 2(ϕ′

x)2 = 0.
4◦. Generalized separable solution involving an arbitrary power of y:

w(x, y) = ϕ(x)yk + C1x + C2y + C3

where the function ϕ = ϕ(x) is determined by the ordinary differential equation
(k − 1)f (x)ϕϕ′′

xx − k(ϕ′

x)2 = 0.
5◦. Generalized separable solution involving an exponential of y:

w(x, y) = ϕ(x)eλy + C1x + C2y + C3,
where C1, C2, C3, and λ are arbitrary constants and the function ϕ = ϕ(x) is determined by the
ordinary differential equation

f (x)ϕϕ′′

xx − (ϕ′

x)2 = 0.
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2.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x).

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = ? C−1
1 w(x,C1y + C2) + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants, are also solutions of the equation.

2◦. Generalized separable solution linear in y:

w(x, y) = ? y
∫

√

g(x) dx + ϕ(x) + C1y,

where ϕ(x) is an arbitrary function.

3◦. Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + [C1ϕ(x) + C2]y +
1
2

∫ x

0
(x − t)

C2
1 [ϕ′

t(t)]
2 − g(t)

f (t)ϕ(t)
dt + C3x + C4,

where C1, . . . , C4 are arbitrary constants and the function ϕ = ϕ(x) is determined by the ordinary
differential equation

f (x)ϕϕ′′

xx − 2(ϕ′

x)2 = 0,

which has a particular solution ϕ = C6.

3.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)y.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C−3
1 w(x,C2

1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution cubic in y:

w(x, y) = C1y
3 + C2y −

1
6C1

∫ x

a

(x − t)
g(t)
f (t)

dt + C3x + C4,

where C1, . . . , C4 are arbitrary constants.
A more general solution is given by

w(x, y) = ϕ(x)y3 + C1y −
1
6

∫ x

a

(x − t)
g(t) dt
f (t)ϕ(t)

+ C2x + C3,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

2f (x)ϕϕ′′

xx − 3(ϕ′

x)2 = 0.

3◦. For an exact solution quadratic in y, see equation 7.2.4.5 with g2 = g0 = 0.

4◦. See the solution of equation 7.2.4.6 in Item 3◦ with k = 1.

4.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)y2.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = ? C−2
1 w(x,C1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.
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2◦. Generalized separable solution involving y to the power of four:

w(x, y) = C1y
4 + C2y −

1
12C1

∫ x

a

(x − t)
g(t)
f (t)

dt + C3x + C4,

where C1, . . . , C4 are arbitrary constants.
A more general solution is given by

w(x, y) = ϕ(x)y4 + C1y −
1
12

∫ x

a

(x − t)
g(t) dt
f (t)ϕ(t)

+ C2x + C3,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

3f (x)ϕϕ′′

xx − 4(ϕ′

x)2 = 0.

3◦. For an exact solution quadratic in y, see equation 7.2.4.5 with g1 = g0 = 0.

4◦. See the solution of equation 7.2.4.6 in Item 3◦ with k = 2.

5.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g2(x)y2 + g1(x)y + g0(x).

Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x),

where the functions ϕ = ϕ(x), ψ = ψ(x), and χ = χ(x) are determined by the system of ordinary
differential equations

f (x)ϕϕ′′

xx = 2(ϕ′

x)2 − 1
2 g2(x),

f (x)ϕψ′′

xx = 2ϕ′

xψ
′

x − 1
2 g1(x),

f (x)ϕχ′′

xx = 1
2 (ψ′

x)2 − 1
2 g0(x).

6.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)yk.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = @ C−k−2
1 w(x,C2

1y) + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solution:

w(x, y) =
C1y

k+2

(k + 1)(k + 2)
+ C2y −

1
C1

∫ x

a

(x − t)
g(t)
f (t)

dt + C3x + C4,

where C1, . . . , C4 are arbitrary constants.

3◦. Multiplicative separable solution:

w(x, y) = ϕ(x)y
k+2

2 ,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

k(k + 2)f (x)ϕϕ′′

xx − (k + 2)2(ϕ′

x)2 + 4g(x) = 0.

4◦. Generalized separable solution:

w(x, y) = ψ(x)yk+2 −
1

(k + 1)(k + 2)

∫ x

a

(x − t)
g(t)

f (t)ψ(t)
dt + C1x + C2y + C3,

where the function ψ = ψ(x) is determined by the ordinary differential equation

(k + 1)f (x)ψψ′′

xx − (k + 2)(ψ′

x)2 = 0.
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7.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)y2k+2 + h(x)yk.

Generalized separable solution:

w(x, y) = ϕ(x)yk+2 −
1

(k + 1)(k + 2)

∫ x

a

(x − t)
h(t)

f (t)ϕ(t)
dt + C1x + C2y + C3,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

(k + 1)(k + 2)f (x)ϕϕ′′

xx − (k + 2)2(ϕ′

x)2 + g(x) = 0.

8.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)eλy.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C1w
(

x, y −
2
λ

ln |C1|
)

+ C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. Additive separable solution:

w(x, y) = C1e
λy + C2y −

1
C1λ2

∫ x

a

(x − t)
g(t)
f (t)

dt + C3x + C4,

where C1, . . . , C4 are arbitrary constants.

3◦. Multiplicative separable solution:

w(x, y) = ϕ(x) exp
( 1

2λy
)

,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

f (x)ϕϕ′′

xx − (ϕ′

x)2 + 4λ−2g(x) = 0.

4◦. Generalized separable solution:

w(x, y) = ψ(x)eλy −
1
λ2

∫ x

a

(x − t)
g(t)

f (t)ψ(t)
dt + C1x + C2y + C3,

where the function ψ = ψ(x) is determined by the ordinary differential equation

f (x)ψψ′′

xx − (ψ′

x)2 = 0.

9.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)e2λy + h(x)eλy.

Generalized separable solution:

w(x, y) = ϕ(x)eλy −
1
λ2

∫ x

a

(x − t)
h(t)

f (t)ϕ(t)
dt + C1x + C2y + C3,

where the function ϕ = ϕ(x) is determined by the ordinary differential equation

f (x)ϕϕ′′

xx − (ϕ′

x)2 + λ−2g(x) = 0.
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10.
(

∂2w

∂x∂y

)2

= f1(x)g1(y)
∂2w

∂x2

∂2w

∂y2
+ f2(x)g2(y).

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = w(x, y) + C1x + C2y + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution for f1g1 ≠ 0:

w(x, y) = C1

∫ x

a

(x − t)
f2(t)
f1(t)

dt −
1
C1

∫ y

b

(y − ξ)
g2(ξ)
g1(ξ)

dξ + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants.

3◦. Degenerate solutions for f2g2 = 0:

w(x, y) = ϕ(x) + C1y + C2,
w(x, y) = ϕ(y) + C1x + C2,

where C1 and C2 are arbitrary constants and ϕ = ϕ(z) is an arbitrary function.

4◦. Generalized separable solution for f2g2 = 0:

w(x, y) = ϕ(x)ψ(y) + C1x + C2y + C3,

where the functions ϕ = ϕ(x) and ψ = ψ(y) are determined by the ordinary differential equations

f1(x)ϕϕ′′

xx − C4(ϕ′

x)2 = 0,

C4g1(y)ψψ′′

yy − (ψ′

y)2 = 0.

11.
(

∂2w

∂x∂y

)2

= f (ax + by)
∂2w

∂x2

∂2w

∂y2
+ g(ax + by).

Solution:
w(x, y) = ϕ(z) + C1x

2 + C2xy + C3y
2 + C4x + C5y, z = ax + by,

where C1, . . . , C5 are arbitrary constants and the function ϕ(z) is determined by the ordinary
differential equation

(abϕ′′

zz + C2)2 = f (z)(a2ϕ′′

zz + 2C1)(b2ϕ′′

zz + 2C3) + g(z),

which is easy to integrate; to this end, the equation should first be solved for ϕ′′

zz.

7.2.5. Other Equations

1.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ f (x)

∂2w

∂y2
.

The substitution

w = U (x, y) −
∫ x

a

(x − t)f (t) dt

leads to an equation of the form 7.2.2.1:
(

∂2U

∂x∂y

)2

=
∂2U

∂x2
∂2U

∂y2 .
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2.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ f (x)

∂2w

∂x∂y
.

First integral:
∂w

∂y
= Φ

(

∂w

∂x

)

+
∫

f (x) dx,

where Φ(u) is an arbitrary function.

3.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ a1

∂2w

∂x2
+ a2

∂2w

∂y2
+ b.

The substitution
w = U (x, y) − 1

2 a2x
2 − 1

2 a1y
2

leads to an equation of the form 7.2.2.2:
(

∂2U

∂x∂y

)2

=
∂2U

∂x2
∂2U

∂y2 + b − a1a2.

4.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ a1

∂2w

∂x2
+ a2

∂2w

∂y2
+ b1

∂w

∂x
+ b2

∂w

∂y
.

This equation is used in meteorology for describing horizontal air flows; w is the stream function
for the wind velocity, and x and y are coordinates on the earth surface.A�B

Reference: E. R. Rozendorn (1984).

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w(x + C1, y + C2) + C3(b2x − b1y) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w = C3 exp
[

−
b1C1 + b2C2

a1C
2
1 + a2C

2
2

(C1x + C2y)
]

+ C4.

3◦. Generalized separable solution linear in y:

w = y(C1e
−λx + C2) +

C2
1

2a1
e−2λx +

(

b2C1

b1
x + C3

)

e−λx −
b2C2

b1
x + C4, λ =

b1

a1

where C1, . . . , C4 are arbitrary constants.

4◦. Generalized separable solution quadratic in y:

w = f (x)y2 + g(x)y + h(x),

where the functions f (x), g(x), and h(x) are determined by the system of ordinary differential
equations

2ff ′′

xx + a1f
′′

xx + b1f
′

x − 4(f ′

x)2 = 0, (1)
2fg′′xx + a1g

′′

xx + b1g
′

x − 4f ′

xg
′

x + 2b2f = 0, (2)
2fh′′xx + a1h

′′

xx + b1h
′

x + 2a2f + b2g − (g′x)2 = 0. (3)

This system can be fully integrated. To this end, equation (1) is first reduced, with the change of
variable U (f ) = f ′

x, to a first-order linear equation. Equation (2) is linear in g and a fundamental
system of solutions of the corresponding homogeneous equation has the form g1 = 1, g2 = f (x).
Equation (3) is finally reduced, with the substitution V (x) = h′

x, to first-order linear equation.
Remark. The solutions of Items 3◦ and 4◦ can be used to obtain two other solutions by means

of the following renaming: (x, a1, b1) � (y, a2, b2).
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5.
(

∂2w

∂x∂y

)2

=
∂2w

∂x2

∂2w

∂y2
+ f1(x)

∂2w

∂x2
+ f2(x)

∂2w

∂y2
+ g1(x)

∂w

∂x
+ g2(x)

∂w

∂y
.

There are generalized separable solutions linear and quadratic in y:

w(x, y) = ϕ1(x)y + ϕ0(x),

w(x, y) = ψ2(x)y2 + ψ1(x)y + ψ0(x).

6.
(

∂2w

∂x∂y

)2

= f (x)
∂2w

∂x2

∂2w

∂y2
+ g(x)w + h2(x)y2 + h1(x)y + h0(x).

Generalized separable solution quadratic in y:

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x),

where the functions ϕ = ϕ(x), ψ = ψ(x), and χ = χ(x) are determined by the system of ordinary
differential equations

2f (x)ϕϕ′′

xx − 4(ϕ′

x)2 + g(x)ϕ + h2(x) = 0,
2f (x)ϕψ′′

xx − 4ϕ′

xψ
′

x + g(x)ψ + h1(x) = 0,

2f (x)ϕχ′′

xx − (ψ′

x)2 + g(x)χ + h0(x) = 0.

7.
(

∂2w

∂x∂y

)2

= f1(x)
∂2w

∂x2

∂2w

∂y2
+

[

f2(x)w + f3(x)y2 + f4(x)y + f5(x)
]

(

∂2w

∂y2

)2

+ g1(x)
∂2w

∂x2
+

[

g2(x)y + g3(x)
] ∂2w

∂x∂y
+

[

g4(x)w + g5(x)y2 + g6(x)y + g7(x)
] ∂2w

∂y2

+ h1(x)
(

∂w

∂y

)2

+ h2(x)
∂w

∂x
+

[

h3(x)y + h4(x)
] ∂w

∂y
+ C 1(x)w + C 2(x)y2 + C 3(x)y + C 4(x).

There is a generalized separable solution of the form

w(x, y) = ϕ(x)y2 + ψ(x)y + χ(x).

8.
∂2w

∂x2

[(

∂2w

∂x∂y

)2

–
∂2w

∂x2

∂2w

∂y2

]

=
∂2w

∂y2
.

This equation occurs in plane problems of plasticity; w is the generating function.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = D C−2
1 w(C1x + C2,C3y + C4) + C5x + C6y + C7,

where C1, . . . , C7 are arbitrary constants, are also solutions of the equation.

2◦. Introduce the new variable
U (x, y) =

∂w

∂x
and apply the Legendre transformation (for details, see Subsection S.2.3)

X =
∂U

∂x
, Y =

∂U

∂y
, Z = x

∂U

∂x
+ y

∂U

∂y
− U

to obtain a second-order linear equation:

(1 +X2)2 ∂
2Z

∂X2 + 2XY (1 +X2)
∂2Z

∂X∂Y
+ Y 2(X2 − 1)

∂2Z

∂Y 2 = 0. (1)

This equation is hyperbolic. The transformation

t = arctanX , ξ = 1
2 ln(1 +X2) − lnY , F =

Z
√

1 +X2
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brings (1) to a constant-coefficient linear equation:

∂2F

∂t2
=
∂2F

∂ξ2 − F . (2)

For solutions of equation (2), see the books by Tikhonov and Samarskii (1990) and Polyanin (2002).
Remark. The original equation is invariant under the Legendre transformation

x =
∂w

∂x
, y =

∂w

∂y
, w = x

∂w

∂x
+ y

∂w

∂y
− w.

E�F
References: Yu. N. Radayev (1988), V. I. Astafiev, Yu. N. Radayev, and L. V. Stepanova (2001).

7.3. Bellman Type Equations and Related Equations
7.3.1. Equations with Quadratic Nonlinearities

1.
∂w

∂t

∂w

∂x
– f (t)

∂w

∂x

∂2w

∂y2
– g(t)

(

∂w

∂y

)2

= 0.

This equation occurs in problems of optimal correction of random disturbances and is a consequence
of the Bellman equation; see Chernousko (1971) and Chernousko and Kolmanovskii (1978). The
variable t = T − τ plays the role of “backward” time.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, y + C3, t) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. “Two-dimensional” solutions:

w = U (z, τ ), z = y G 2
[

x

∫

g(t) dt + C1x

]1/2

+ C2, τ =
∫

f (t) dt + C3,

where C1, C2, and C3 are arbitrary constants, and the function U = U (z, τ ) is determined by the
linear heat equation

∂U

∂τ
−
∂2U

∂z2 = 0.
E�F

Reference: A. S. Bratus’ and K. A. Volosov (2002).

3◦. “Two-dimensional” solution:

w = u(ξ, τ ), ξ = y + C1x +
1
C1

∫

g(t) dt + C2, τ =
∫

f (t) dt + C3,

whereC1,C2, andC3 are arbitrary constants, and the function u = u(ξ, η) is determined by the linear
heat equation

∂u

∂τ
−
∂2u

∂ξ2 = 0.

4◦. The solutions of Items 2◦ and 3◦ are special cases of a more general solution with the form

w = U (z, τ ), z = y + ϕ(x, t), τ =
∫

f (t) dt,

where the function ϕ = ϕ(x, t) satisfies the first-order nonlinear partial differential equation

∂ϕ

∂t

∂ϕ

∂x
= g(t), (1)
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and the function U = U (z, τ ) is determined by the linear heat equation

∂U

∂τ
−
∂2U

∂z2 = 0.

A complete integral of equation (1) is given by

ϕ = C1x +
1
C1

∫

g(t) dt + C2, (2)

where C1 and C2 are arbitrary constants. The general integral of equation (1) can be represented
in parametric form with the complete integral (2) and the two relations (see Kamke, 1965, and
Polyanin, Zaitsev, and Moussiaux, 2002)

C2 = ψ(C1),

x −
1
C2

1

∫

g(t) dt + ψ′(C1) = 0,

where ψ = ψ(C1) is an arbitrary function and the prime denotes a derivative with respect to the
argument; C1 and C2 play the role of parameters.

Remark. To the solution of Item 2◦ there corresponds ψ(C1) = const.H�I
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5◦. “Two-dimensional” solutions:

w = J exp
[

λy + ζ(x, t)
]

,

where λ is an arbitrary constant, and the function ζ = ζ(x, t) is determined by the first-order partial
differential equation

∂ζ

∂t

∂ζ

∂x
− λ2f (t)

∂ζ

∂x
− λ2g(t) = 0. (3)

A complete integral of equation (3) is given by

ζ = C1x + λ2
∫

[

f (t) +
1
C1
g(t)

]

dt + C2, (4)

where C1 and C2 are arbitrary constants. The general integral of equation (3) can be represented in
parametric form with the complete integral (4) and the two relations

C2 = ϕ(C1),

x −
λ2

C2
1

∫

g(t) dt + ϕ′(C1) = 0,

where ϕ = ϕ(C1) is an arbitrary function; C1 and C2 play the role of parameters.H�I
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

6◦. “Two-dimensional” solution:
w = eλxθ(y, t),

where λ is an arbitrary constant, and the function θ = θ(y, t) is determined by the “two-dimensional”
equation

λθ
∂θ

∂t
− λf (t)θ

∂2θ

∂y2 − g(t)
(

∂θ

∂y

)2

= 0.

7◦. Cauchy problems and self-similar solutions of the equation for power-law f (t) and g(t) are
discussed in Chernousko (1971) and Chernousko and Kolmanovskii (1978).
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2.
∂w

∂t

∂w

∂x
– f (t)

∂w

∂x

∂2w

∂y2
– g(t)h(x)

(

∂w

∂y

)2

= 0.

The substitution z =
∫

h(x) dx leads to an equation of the form 7.3.1.1 for w = w(z, y, t).

3.
∂w

∂t

∂w

∂x
– f (t)

∂w

∂x

(

∂2w

∂y2
+

n

y

∂w

∂y

)

– g(t)h(x)
(

∂w

∂y

)2

= 0.

This equation occurs in problems of optimal correction of random disturbances and is a consequence
of the Bellman equation; see Chernousko and Kolmanovskii (1978). The variable t = T − τ plays the
role of “backward” time; n + 1 is the dimensionality of the equations of motion of the controllable
system (n is a nonnegative integer).

“Two-dimensional” solution:

w(x, y, t) = exp
[

λ

∫

h(x) dx
]

U (y, t),

where the function U (y, t) is determined by the differential equation (λ is an arbitrary constant)

λU
∂U

∂t
− λf (t)U

(

∂2U

∂y2 +
n

y

∂U

∂y

)

− g(t)
(

∂U

∂y

)2

= 0.

4.
∂w

∂t

∂w

∂x
– f (t)

∂w

∂x

∂2w

∂y2
– g(x, t)

(

∂w

∂y

)2

= 0.

1◦. “Two-dimensional” solution:

w = U (z, τ ), z = y + ϕ(x, t), τ =
∫

f (t) dt.

Here, the function ϕ = ϕ(x, t) is determined by the first-order nonlinear partial differential equation
∂ϕ

∂t

∂ϕ

∂x
= g(x, t), (1)

and the function U = U (z, τ ) is determined by the linear heat equation
∂U

∂τ
−
∂2U

∂z2 = 0. (2)

Complete integrals and the general solutions (integrals) of equation (1) for various g(x, t) can
be found in Polyanin, Zaitsev, and Moussiaux (2002). For solutions of equation (2), see Tikhonov
and Samarskii (1990) and Polyanin (2002).

2◦. “Two-dimensional” solutions:

w = K exp
[

λy + ζ(x, t)
]

,

where λ is an arbitrary constant and the function ζ = ζ(x, t) is determined by the first-order nonlinear
partial differential equation

∂ζ

∂t

∂ζ

∂x
− λ2f (t)

∂ζ

∂x
− λ2g(x, t) = 0.

L�M
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5.
∂w

∂t

∂w

∂x
– f (x, t)

∂w

∂x

∂2w

∂y2
– g(x, t)

(

∂w

∂y

)2

= 0.

“Two-dimensional” solutions:
w = K exp

[

λy + ζ(x, t)
]

,
where λ is an arbitrary constant and the function ζ = ζ(x, t) is determined by the first-order nonlinear
partial differential equation

∂ζ

∂t

∂ζ

∂x
− λ2f (x, t)

∂ζ

∂x
− λ2g(x, t) = 0.
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7.3.2. Equations with Power-Law Nonlinearities

1.
∂w

∂t

(

∂w

∂x

)k

– f (t)
(

∂w

∂x

)k ∂2w

∂y2
– g(t)

(

∂w

∂y

)k+1

= 0.

This equation occurs in problems of optimal correction of random disturbances and is a consequence
of the Bellman equation; see Chernousko (1971) and Chernousko and Kolmanovskii (1978). The
variable t = T − τ plays the role of “backward” time.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, y + C3, t) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. “Two-dimensional” solution:

w = U (z, τ ), τ =
∫

f (t) dt + C1,

z = y + (x + C2)
k

k+1

[

(k + 1)k+1

kk

∫

g(t) dt + C3

]

1
k+1

+ C4,

where C1, . . . , C4 are arbitrary constants and the function U = U (z, τ ) is determined by the linear
heat equation

∂U

∂τ
−
∂2U

∂z2 = 0.
N�O

Reference: A. S. Bratus’ and K. A. Volosov (2002).

3◦. “Two-dimensional” solution:

w = u(ξ, τ ), ξ = y + C1x +
1
Ck

1

∫

g(t) dt + C2, τ =
∫

f (t) dt + C3,

whereC1, C2, andC3 are arbitrary constants and the function u = u(ξ, η) is determined by the linear
heat equation

∂u

∂τ
−
∂2u

∂ξ2 = 0.

4◦. The solutions of Items 2◦ and 3◦ are special cases of the more general solution

w = U (z, τ ), z = y + ϕ(x, t), τ =
∫

f (t) dt,

where the function ϕ = ϕ(x, t) satisfies the first-order nonlinear partial differential equation

∂ϕ

∂t

(

∂ϕ

∂x

)k

= g(t), (1)

and the function U = U (z, τ ) is determined by the linear heat equation

∂U

∂τ
−
∂2U

∂z2 = 0.

A complete integral of equation (1) is given by

ϕ = C1x +
1
Ck

1

∫

g(t) dt + C2, (2)
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where C1 and C2 are arbitrary constants. The general integral of equation (1) can be expressed
in parametric form with the complete integral (2) and the two relations (see Kamke, 1965, and
Polyanin, Zaitsev, and Moussiaux, 2002)

C2 = ψ(C1),

x −
k

Ck+1
1

∫

g(t) dt + ψ′(C1) = 0,

where ψ = ψ(C1) is an arbitrary function and the prime denotes a derivative;C1 and C2 play the role
of parameters.P�Q

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

5◦. “Two-dimensional” solution:

w = exp
[

λy + ζ(x, t)
]

,

where λ is an arbitrary constant and the function ζ = ζ(x, t) is determined by the first-order partial
differential equation

∂ζ

∂t

(

∂ζ

∂x

)k

− λ2f (t)
(

∂ζ

∂x

)k

− λk+1g(t) = 0. (3)

A complete integral of this equation has the form (see Polyanin, Zaitsev, and Moussiaux, 2002)

ζ = C1x +
∫

[

λ2f (t) +
λk+1

Ck
1
g(t)

]

dt + C2, (4)

where C1 and C2 are arbitrary constants. The general integral of equation (3) can be expressed in
parametric form with the complete integral (4) and the two relations

C2 = ϕ(C1),

x − k
λk+1

Ck+1
1

∫

g(t) dt + ϕ′(C1) = 0,

where ϕ = ϕ(C1) is an arbitrary function; C1 and C2 play the role of parameters.P�Q
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

6◦. “Two-dimensional” solution:
w = eλxθ(y, t),

where λ is an arbitrary constant and the function θ = θ(y, t) is determined by the “two-dimensional”
equation

∂θ

∂t
− f (t)

∂2θ

∂y2 −
g(t)

(λθ)k

(

∂θ

∂y

)k+1

= 0.

7◦. Cauchy problems and self-similar solutions of the equation for power-law f (t) and g(t) are
discussed in Chernousko (1971) and Chernousko and Kolmanovskii (1978).

2.
∂w

∂t

(

∂w

∂x

)k

– f (t)
(

∂w

∂x

)k ∂2w

∂y2
– g(t)h(x)

(

∂w

∂y

)k+1

= 0.

The substitution z =
∫

[h(x)]1/k dx leads to an equation of the form 7.3.2.1 for w = w(z, y, t).

3.
∂w

∂t

(

∂w

∂x

)k

– f (t)
(

∂w

∂x

)k ∂2w

∂y2
– g(x, t)

(

∂w

∂y

)k+1

= 0.

1◦. “Two-dimensional” solution:

w = U (z, τ ), z = y + ϕ(x, t), τ =
∫

f (t) dt.

Page 476

© 2004 by Chapman & Hall/CRC



7.3. BELLMAN TYPE EQUATIONS AND RELATED EQUATIONS 477

Here, the function ϕ = ϕ(x, t) is determined by the first-order nonlinear partial differential equation

∂ϕ

∂t

(

∂ϕ

∂x

)k

= g(x, t), (1)

and the function U = U (z, τ ) is determined by the linear heat equation

∂U

∂τ
−
∂2U

∂z2 = 0. (2)

Complete integrals and the general solutions (integrals) of equation (1) for various g(x, t) can
be found in Polyanin, Zaitsev, and Moussiaux (2002). For solutions of equation (2), see Tikhonov
and Samarskii (1990) and Polyanin (2002).

2◦. “Two-dimensional” solution:

w = exp
[

λy + ζ(x, t)
]

,

whereλ is an arbitrary constant, and the function ζ = ζ(x, t) is determined by the first-order nonlinear
partial differential equation

∂ζ

∂t

(

∂ζ

∂x

)k

− λ2f (t)
(

∂ζ

∂x

)k

− λk+1g(x, t) = 0.

R�S
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

4.
∂w

∂t

(

∂w

∂x

)k

– f (x, t)
(

∂w

∂x

)k ∂2w

∂y2
– g(x, t)

(

∂w

∂y

)k+1

= 0.

“Two-dimensional” solution:
w = exp

[

λy + ζ(x, t)
]

,

whereλ is an arbitrary constant, and the function ζ = ζ(x, t) is determined by the first-order nonlinear
partial differential equation

∂ζ

∂t

(

∂ζ

∂x

)k

− λ2f (x, t)
(

∂ζ

∂x

)k

− λk+1g(x, t) = 0.
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Chapter 8

Second›Order Equations
of General Form

8.1. Equations Involving the First Derivative in t

8.1.1. Equations of the Form ∂w
∂t

= F
(

w, ∂w
∂x

, ∂2w
∂x2

)

Preliminary remarks. Consider the equation
∂w

∂t
= F

(

w,
∂w

∂x
,
∂2w

∂x2

)

. (1)

1◦. Suppose w(x, t) is a solution of equation (1). Then the function w(x + C1, t + C2), where C1
and C2 are arbitrary constants, is also a solution of the equation.

2◦. In the general case, equation (1) admits traveling-wave solution

w = w(ξ), ξ = kx + λt, (2)

where k and λ are arbitrary constants and the functionw(ξ) is determined by the ordinary differential
equation

F
(

w, kw′

ξ , k2w′′

ξξ

)

− λw′

ξ = 0.
This subsection presents special cases where equation (1) admits exact solutions other than

traveling wave (2).

1.
∂w

∂t
= F

(

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−2
1 w(C1x + C2,C2

1 t + C3) + C4x + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = F (A)t + 1
2Ax

2 +Bx + C,

where A, B, and C are arbitrary constants.

3◦. Generalized separable solution:

w(x, t) = (Ax +B)t + C + ϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

F
(

ϕ′′

xx

)

= Ax +B.

4◦. Solution:
w(x, t) = At +B + ψ(ξ), ξ = kx + λt,

whereA, B, k, and λ are arbitrary constants and the functionψ(ξ) is determined by the autonomous
ordinary differential equation

F
(

k2ψ′′

ξξ

)

= λψ′

ξ +A.
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5◦. Solution:
w(x, t) = 1

2Ax
2 +Bx + C + U (ξ), ξ = kx + λt,

whereA, B, k, and λ are arbitrary constants and the functionU (ξ) is determined by the autonomous
ordinary differential equation

F
(

k2U ′′

ξξ +A
)

= λU ′

ξ .

6◦. Self-similar solution:
w(x, t) = tΘ(ζ), ζ =

x
√

t
,

where the function Θ(ζ) is determined by the ordinary differential equation

F
(

Θ
′′

ζζ

)

+ 1
2 ζΘ

′

ζ − Θ = 0.

7◦. The substitution u(x, t) =
∂w

∂x
brings the original equation to an equation of the form 1.6.18.3:

∂u

∂t
= f

(

∂u

∂x

)

∂2u

∂x2 , f (z) = F ′

z(z).

8◦. The transformation

t̄ = αt + γ1, x̄ = β1x + β2w + γ2,

w̄ = β1
(

β4w + 1
2β3x

2 + γ3x
)

+ γ4t + γ5 + β2
[

β3(xwx − w) + γ3wx + 1
2β4w

2
x

]

,

w̄x̄ = β3x + β4wx + γ3,

where α, the βi, and the γi are arbitrary constants (α ≠ 0, β1β4 − β2β3 ≠ 0) and the subscripts x and
x̄ denote the corresponding partial derivatives, takes the equation in question to an equation of the
same form. The right-hand side of the equation becomes

F̄ (w̄x̄x̄) =
β1β4 − β2β3

α
F (wxx) +

γ4

α
.

���
References: I. Sh. Akhatov, R. K. Gazizov, and N. H. Ibragimov (1989), N. H. Ibragimov (1994).

Special case 1. Equation:
∂w

∂t
= a

(

∂2w

∂x2

)k

, k > 0, k ≠ 1.

1◦. Additive separable solution:
w(x, t) = 1

2C1x
2 + C2x + aCk

1 t + C3,

where C1, C2, and C3 are arbitrary constants.

2◦. Solution:

w(x, t) =
[

a(1 − k)t + C1
]

1
1−k u(x) + C2,

where the function u(x) is determined by the autonomous ordinary differential equation (u′′

xx)k − u = 0, whose general
solution can be written out in implicit form:

∫
(

2k
1 + k

u
1+k

k + C3

)−1/2
du = � x + C4.

Special case 2. Equation:
∂w

∂t
= a exp

(

λ
∂2w

∂x2

)

.

Generalized separable solution:

w(x, t) = U (x) −
1

2λ
(x2 + A1x + A2) ln(B1t + B2) + C1x + C2,

where A1, A2, B1, B2, C1, and C2 are arbitrary constants, and the function U (x) is determined by the ordinary differential
equation

2aλ exp(λU ′′

xx) + B1(x2 + A1x + A2) = 0,

which is easy to integrate; to this end, the equation should first be solved for U ′′

xx.
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Special case 3. Equation:
∂w

∂t
= a ln

∣

∣

∣

∣

∂2w

∂x2

∣

∣

∣

∣

.

Generalized separable solution:

w(x, t) = (at + C)
[

ln
2A2(at + C)

cos2(Ax + B)
− 1

]

+ D,

where A, B, C, and D are arbitrary constants.

2.
∂w

∂t
= F

(

∂w

∂x
,

∂2w

∂x2

)

.

Apart from a traveling-wave solution, this equation has a more complicated exact solution of the
form

w(x, t) = At +B + ϕ(ξ), ξ = kx + λt,

whereA,B, k, and λ are arbitrary constants, and the functionϕ(ξ) is determined by the autonomous
ordinary differential equation

F
(

kϕ′

ξ, k
2ϕ′′

ξξ

)

− λϕ′

ξ −A = 0.

Special case. Equation:
∂w

∂t
= a

∂w

∂x

∂2w

∂x2 .

1◦. Generalized separable solution:
w(x, t) = ϕ1(t) + ϕ2(t)x3/2 + ϕ3(t)x3,

where the functions ϕk = ϕk(t) are determined by the autonomous system of ordinary differential equations

ϕ
′

1 = 9
8 aϕ

2
2,

ϕ
′

2 = 45
4 aϕ2ϕ3,

ϕ
′

3 = 18aϕ2
3.

The prime denotes a derivative with respect to t.

2◦. Generalized separable solution cubic in x:

w(x, t) = ψ1(t) + ψ2(t)x + ψ3(t)x2 + ψ4(t)x3,

where the functions ψk = ψk(t) are determined by the autonomous system of ordinary differential equations

ψ
′

1 = 2aψ2ψ3,

ψ
′

2 = 2a(2ψ2
3 + 3ψ2ψ4),

ψ
′

3 = 18aψ3ψ4,

ψ
′

4 = 18aψ2
4 .

3◦. Generalized separable solution:

w(x, t) =
θ(x) + C3

C1t + C2
+ C4,

where C1, . . . , C4 are arbitrary constants and the function θ = θ(x) is determined by the autonomous ordinary differential
equation

aθ
′

xθ
′′

xx + C1θ + C1C3 = 0,

whose solution can be written out in implicit form.

3.
∂w

∂t
= F

(

∂w

∂x
,

∂2w

∂x2

)

+ aw.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1, t + C2) + C3e
at,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.
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2◦. Degenerate solution:

w(x, t) = (C1x + C2)eat + eat
∫

e−atF (C1e
at, 0) dt.

3◦. Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation

F
(

w′

z ,w′′

zz

)

− λw′

z + aw = 0.

4.
∂w

∂t
= aw

∂w

∂x
+ F

(

∂w

∂x
,

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + aC1t + C2, t + C3) + C1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution:

w(x, t) = −
x + C1

aτ
+

1
τ

∫

τF
(

−
1
aτ

, 0
)

dτ , τ = t + C2.

3◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x + aC1t

2 + C2t,

where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the autonomous
ordinary differential equation

F
(

U ′

ζ ,U ′′

ζζ

)

+ aUU ′

ζ = C2U
′

ζ + 2C1.

In the special case C1 = 0, the above solution converts to a traveling-wave solution.

5.
∂w

∂t
= aw

∂w

∂x
+ F

(

∂w

∂x
,

∂2w

∂x2

)

+ bw.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + aC1e
bt + C2, t + C3) + C1be

bt,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution:
w(x, t) = ϕ(t)x + ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the system of ordinary differential equations

ϕ′

t = aϕ2 + bϕ,
ψ′

t = aϕψ + bψ + F (ϕ, 0),

which is easy to integrate (the first equation is a Bernoulli equation and the second one is linear
in ψ).

3◦. Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation

F
(

w′

z ,w′′

zz

)

+ aww′

z − λw′

z + bw = 0.
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6.
∂w

∂t
=

∂

∂x

[

F
(

w, wx

)]

, wx =
∂w

∂x
.

1◦. The transformation

t̄ = t − t0, x̄ = −
∫ x

x0

w(y, t) dy −
∫ t

t0

F
(

w(x0, τ ),wx(x0, τ )
)

dτ , w̄(x̄, t̄) =
1

w(x, t)

converts a (nonzero) solution w(x, t) of the original equation to a solution w̄(x̄, t̄) of a similar
equation:

∂w̄

∂t̄
=
∂

∂x̄

[

F̄
(

w̄, w̄x̄
)

]

,

where
F̄

(

w,wx
)

= wF
(

w−1, w−3wx
)

. (1)

2◦. In the special case
F

(

w,wx
)

= g(w)(wx)k,

it follows from (1) that

F̄
(

w,wx
)

= ḡ(w)(wx)k, ḡ(w) = w1−3kg(w−1).���
References: W. Strampp (1982), J. R. Burgan, A. Munier, M. R. Feix, and E. Fijalkow (1984), N. H. Ibragimov (1994).

7.
∂w

∂t
= F

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w(x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = tϕ(z), z = kx + λ ln |t|,

where k and λ are arbitrary constants and the function ϕ(z) is determined by the autonomous
ordinary differential equation

F

(

k
ϕ′

z

ϕ
, k2 ϕ

′′

zz

ϕ

)

= λϕ′

z + ϕ.

8.
∂w

∂t
= wF

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x + C2, t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = Ceλtϕ(x),

where C and λ are arbitrary constants and the function ϕ(x) is determined by the autonomous
ordinary differential equation

F

(

ϕ′

x

ϕ
,
ϕ′′

xx

ϕ

)

= λ.

This equation has particular solutions of the form ϕ(x) = eαx, where α is a root of the algebraic (or
transcendental) equation F (α,α2) − λ = 0.
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3◦. Solution:
w(x, t) = Ceλtψ(ξ), ξ = kx + βt,

whereC, k, λ, and β are arbitrary constants, and the functionψ(ξ) is determined by the autonomous
ordinary differential equation

ψF

(

k
ψ′

ξ

ψ
, k2 ψ

′′

ξξ

ψ

)

= βψ′

ξ + λψ.

This equation has particular solutions of the form ψ(ξ) = eµξ .

9.
∂w

∂t
= wβF

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

.

For the cases β = 0 and β = 1, see equations 8.1.1.7 and 8.1.1.8, respectively.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2,Cβ−1
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) =
[

(1 − β)At +B
]

1
1−β ϕ(x),

where A and B are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

ϕβ−1F

(

ϕ′

x

ϕ
,
ϕ′′

xx

ϕ

)

= A.

3◦. Solution:

w(z, t) = (t + C)
1

1−β Θ(z), z = kx + λ ln(t + C),
where C, k, and λ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

Θ
βF

(

k
Θ

′

z

Θ
, k2 Θ

′′

zz

Θ

)

= λΘ′

z +
1

1 − β
Θ.

10.
∂w

∂t
= eβwF

(

∂w

∂x
,

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1,C2t + C3) +
1
β

lnC2,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = −
1
β

ln(Aβt +B) + ϕ(x),

where A and B are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

eβϕF
(

ϕ′

x, ϕ′′

xx

)

+A = 0.

3◦. Solution:
w(x, t) = −

1
β

ln(t + C) + Θ(ξ), ξ = kx + λ ln(t + C),

where C, k, and λ are arbitrary constants, and the function Θ(ξ) is determined by the autonomous
ordinary differential equation

eβΘF
(

kΘ′

ξ, k
2
Θ

′′

ξξ

)

= λΘ′

ξ −
1
β

.
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11.
∂w

∂t
= F

(

∂2w

∂x2

/

∂w

∂x

)

.

This is a special case of equation 8.1.1.2.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−1
1 w(x + C2,C1t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = At +B + ϕ(ξ), ξ = kx + λt,

whereA,B, k, and λ are arbitrary constants, and the functionϕ(ξ) is determined by the autonomous
ordinary differential equation

F
(

kϕ′′

ξξ/ϕ
′

ξ

)

= λϕ′

ξ +A.

If A = 0, the equation has a traveling-wave solution.

3◦. Solution:
w(x, t) = tΘ(z) + C, z = kx + λ ln |t|

whereC, k, β, and λ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

F
(

kΘ′′

zz/Θ
′

z

)

= λΘ′

z + Θ.

12.
∂w

∂t
=

∂w

∂x
F

(

∂2w

∂x2

/

∂w

∂x

)

.

This is a special case of equation 8.1.1.2.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = At +B + ϕ(z), z = kx + λt,

whereA,B, k, and λ are arbitrary constants, and the functionϕ(z) is determined by the autonomous
ordinary differential equation

kϕ′

zF
(

kϕ′′

zz/ϕ
′

z

)

= λϕ′

z +A.

3◦. Solution:
w(x, t) = AeβtΘ(ξ) +B, ξ = kx + λt,

where A, B, k, β, and λ are arbitrary constants, and the function Θ(ξ) is determined by the
autonomous ordinary differential equation

kΘ′

ξF
(

kΘ′′

ξξ/Θ
′

ξ

)

= λΘ′

ξ + βΘ.

13.
∂w

∂t
=

(

∂w

∂x

)β

F

(

∂2w

∂x2

/ ∂w

∂x

)

.

This is a special case of equation 8.1.1.2. For the cases β = 0 and β = 1, see equations 8.1.1.11 and
8.1.1.12, respectively.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2,Cβ−1
1 t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

Page 485

© 2004 by Chapman & Hall/CRC



486 SECOND-ORDER EQUATIONS OF GENERAL FORM

2◦. Generalized separable solution:

w(x, t) =
[

A(1 − β)t +B
]

1
1−β ϕ(x) + C,

where A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

(

ϕ′

x

)β
F

(

ϕ′′

xx/ϕ
′

x

)

= Aϕ.

3◦. Solution:

w(x, t) = (t +A)
1

1−β Θ(z) +B, z = kx + λ ln(t +A),

whereA,B, k, and λ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

kβ
(

Θ
′

z

)β
F

(

kΘ′′

zz/Θ
′

z

)

= λΘ′

z +
1

1 − β
Θ.

14.
∂w

∂t
= wF

(

( ∂w

∂x

)2
+ aw2,

1
w

∂2w

∂x2

)

.

This is a special case of equation 8.1.2.11.

15.
∂w

∂t
= wF

(

1
w

∂2w

∂x2
, w

∂2w

∂x2
–

( ∂w

∂x

)2
)

.

This is a special case of equation 8.1.2.12.

16.
∂w

∂t
= wF

(

∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

+ G

(

∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

.

This is a special case of equation 8.1.2.13.

8.1.2. Equations of the Form ∂w
∂t

= F
(

t, w, ∂w
∂x

, ∂2w
∂x2

)

1.
∂w

∂t
= F

(

t,
∂w

∂x
,
∂2w

∂x2

)

+ aw.

Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Ceat,

where C are arbitrary constants, is also a solution of the equation.

2.
∂w

∂t
+ f (t)w

∂w

∂x
= F

(

t,
∂w

∂x
,
∂2w

∂x2

)

+ g(t)w.

Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

x + ψ(t), t
)

+ ϕ(t), ϕ(t) = C exp
[
∫

g(t) dt
]

, ψ(t) = −
∫

f (t)ϕ(t) dt,

where C is an arbitrary constant, is also a solution of the equation.
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3.
∂w

∂t
= wF

(

t,
1
w

∂2w

∂x2

)

.

Multiplicative separable solutions:

w(x, t) = A exp
[

λx +
∫

F (t,λ2) dt
]

,

w(x, t) =
[

A cosh(λx) +B sinh(λx)
]

exp
[
∫

F (t,λ2) dt
]

,

w(x, t) =
[

A cos(λx) +B sin(λx)
]

exp
[
∫

F (t, −λ2) dt
]

,

where A, B, and λ are arbitrary constants.

4.
∂w

∂t
= wF

(

t,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

.

Multiplicative separable solution:

w(x, t) = A exp
[

λx +
∫

F (t,λ,λ2) dt
]

,

where A and λ are arbitrary constants.

5.
∂w

∂t
= wF

(

t, wk ∂w

∂x
, w2k+1 ∂2w

∂x2

)

.

1◦. Multiplicative separable solution for k ≠ −1:

w(x, t) =
[

C1(k + 1)x + C2
]

1
k+1 ϕ(t),

where the function ϕ = ϕ(t) is determined by the first-order ordinary differential equation

ϕ′

t = ϕF
(

t,C1ϕ
k+1, −kC2

1ϕ
2k+2).

2◦. For k = −1, see equation 8.1.2.4.

6.
∂w

∂t
= f (t)wβ

Φ

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

+ g(t)w.

The transformation

w(x, t) = G(t)u(x, τ ), τ =
∫

f (t)Gβ−1(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 8.1.1.9:

∂u

∂τ
= uβΦ

(

1
u

∂u

∂x
,

1
u

∂2u

∂x2

)

,

which has a traveling-wave solution u = u(Ax + Bτ ) and a solution in the multiplicative form
u = ϕ(x)ψ(τ ).

7.
∂w

∂t
= f (t)

(

∂w

∂x

)k

Φ

(

∂2w

∂x2

/

∂w

∂x

)

+ g(t)w + h(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),
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where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations

ϕ′

t = Af (t)ϕk + g(t)ϕ, (1)
ψ′

t = g(t)ψ +Bf (t)ϕk + h(t), (2)

C is an arbitrary constant, and the function Θ(x) is determined by the second-order ordinary
differential equation

(

Θ
′

x

)k
Φ

(

Θ
′′

xx/Θ
′

x

)

= AΘ +B. (3)
The general solution of system (1), (2) is expressed as

ϕ(t) = G(t)
[

C − kA
∫

f (t)Gk−1(t) dt
]

1
1−k

, G(t) = exp
[
∫

g(t) dt
]

,

ψ(t) = DG(t) +G(t)
∫

[

Bf (t)ϕk(t) + h(t)
] dt

G(t)
,

where A, B, C, and D are arbitrary constants.
For k = 1 and Φ(x, y) = Φ(y), a solution to equation (3) is given by

Θ(x) = αeλx −B/A,

where α is an arbitrary constant and λ is determined from the algebraic (or transcendental) equation
λΦ(λ) = A.

8.
∂w

∂t
= f (t)eβw

Φ

(

∂w

∂x
,

∂2w

∂x2

)

+ g(t).

The transformation

w(x, t) = u(x, τ ) +G(t), τ =
∫

f (t) exp
[

βG(t)
]

dt, G(t) =
∫

g(t) dt,

leads to a simpler equation of the form 8.1.1.10:

∂u

∂τ
= eβuΦ

(

∂u

∂x
,
∂2u

∂x2

)

,

which has a traveling-wave solutionu=u(Ax+Bτ ) and an additive separable solutionu=ϕ(x)+ψ(τ ).

9.
∂w

∂t
= f (t)Φ

(

w,
∂w

∂x
,

∂2w

∂x2

)

+ g(t)
∂w

∂x
.

With the transformation

w = U (z, τ ), z = x +
∫

g(t) dt, τ =
∫

f (t) dt

one arrives at the simpler equation

∂U

∂τ
= Φ

(

U ,
∂U

∂z
,
∂2U

∂z2

)

,

which has a traveling-wave solution U = U (kz + λτ ).

10.
∂w

∂t
= wF

(

t, w
∂2w

∂x2
+ aw2

)

.

Multiplicative separable solutions:

w(x, t) =
[

C1 sin
(

x
√

a
)

+ C2 cos
(

x
√

a
)]

exp
[
∫

F (t, 0) dt
]

if a > 0,

w(x, t) =
[

C1 sinh
(

x
√

|a|
)

+ C2 cosh
(

x
√

|a|
)]

exp
[
∫

F (t, 0) dt
]

if a < 0,

where C1 and C2 are arbitrary constants.
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11.
∂w

∂t
= wF

(

t,
(

∂w

∂x

)2

+ aw2,
1
w

∂2w

∂x2

)

.

1◦. Multiplicative separable solution for a > 0:

w(x, t) =
[

C1 sin
(

x
√

a
)

+ C2 cos
(

x
√

a
)]

ϕ(t),

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation ϕ′

t = ϕF
(

t, a(C2
1 + C2

2 )ϕ2, −a
)

.

2◦. Multiplicative separable solution for a < 0:

w(x, t) =
(

C1e
√

|a|x + C2e
−
√

|a|x)ϕ(t),

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation ϕ′

t = ϕF
(

t, 4C1C2aϕ
2, −a

)

.
Example. For C1C2 = 0, a solution is given by

w(x, t) = C exp
[ �

√

|a| x +
∫

F (t, 0, −a) dt
]

,

where C is an arbitrary constant.

12.
∂w

∂t
= wF

(

t,
1
w

∂2w

∂x2
, w

∂2w

∂x2
–

(

∂w

∂x

)2)

.

1◦. Multiplicative separable solution:

w(x, t) = C exp
[

λx +
∫

F (t,λ2, 0) dt
]

,

where C and λ are arbitrary constants.

2◦. Multiplicative separable solution:

w(x, t) = (Aeλx +Be−λx)ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation ϕ′

t = ϕF
(

t,λ2, 4ABλ2ϕ2).

3◦. Multiplicative separable solution:

w(x, t) = [A sin(λx) +B cos(λx)]ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation ϕ′

t = ϕF
(

t, −λ2, −λ2(A2 +B2)ϕ2).���
Reference: Ph. W. Doyle (1996), the case ∂tF ≡ 0 was treated.

13.
∂w

∂t
= wF

(

t,
∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

+ G

(

t,
∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

.

Generalized separable solution quadratic in x:

w = ϕ1(t)x2 + ϕ2(t)x + ϕ3(t),

where the functions ϕ1, ϕ2, and ϕ3 are determined by the system of first-order ordinary differential
equations

ϕ′

1 = ϕ1F
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

,

ϕ′

2 = ϕ2F
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

,

ϕ′

3 = ϕ3F
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

+G
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

.
It follows from the first two equations that ϕ2 = Cϕ1, where C is an arbitrary constant.
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8.1.3. Equations of the Form ∂w
∂t

= F
(

x, w, ∂w
∂x

, ∂2w
∂x2

)

Preliminary remarks. Consider the equation

∂w

∂t
= F

(

x, w,
∂w

∂x
,
∂2w

∂x2

)

. (1)

Suppose that the auxiliary ordinary differential equation

w = F (x, w, w′

x, w′′

xx)

is reduced, by a linear transformation

x = ϕ(z), w = ψ(z)u + χ(z)

and the subsequent division of the resulting equation by ψ(z), to the autonomous form

u = F(u, u′z, u′′zz),

where F = F/ψ. Then, the original equation (1) can be reduced, by the same transformation

x = ϕ(z), w(x, t) = ψ(z)u(z, t) + χ(z),

to the equation
∂u

∂t
= F

(

u,
∂u

∂z
,
∂2u

∂z2

)

,

which has a traveling-wave solution u = u(kz + λt).
The above allows using various known transformations of ordinary differential equations (see

Kamke, 1977, and Polyanin and Zaitsev, 2003) for constructing exact solutions to partial differential
equations. If the original equation is linear, then such transformations will result in linear constant-
coefficient equations.

1.
∂w

∂t
= F

(

x,
∂2w

∂x2

)

.

Generalized separable solution:

w(x, t) = Axt +Bt + C + ϕ(x),

where A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

F
(

x, ϕ′′

xx

)

= Ax +B.

2.
∂w

∂t
= F

(

x,
∂w

∂x
,

∂2w

∂x2

)

.

Additive separable solution:
w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

F
(

x, ϕ′

x, ϕ′′

xx

)

= A.

3.
∂w

∂t
= ax

∂w

∂x
+ F

(

w,
∂w

∂x
,

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−at, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.
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2◦. Generalized traveling-wave solution:

w = w(z), z = x + Ce−at,

where C is an arbitrary constant and the function w(z) is determined by the ordinary differential
equation

F
(

w,w′

z ,w′′

zz

)

+ azw′

z = 0.

4.
∂w

∂t
= F

(

∂w

∂x
, x

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x,C1t + C2) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

F
(

ϕ′

x, xϕ′′

xx

)

= A.

3◦. Solution:
w(x, t) = tΘ(ξ) + C, ξ = x/t,

where C is an arbitrary constant, and the function Θ(ξ) is determined by the ordinary differential
equation

F
(

Θ
′

ξ, ξΘ
′′

ξξ

)

+ ξΘ′

ξ − Θ = 0.

5.
∂w

∂t
= F

(

w, x
∂w

∂x
, x2 ∂2w

∂x2

)

.

The substitution x = 	 ez leads to the equation

∂w

∂t
= F

(

w,
∂w

∂z
,
∂2w

∂z2 −
∂w

∂z

)

,

which has a traveling-wave solution w = w(kz + λt).

6.
∂w

∂t
= xkF

(

w, x
∂w

∂x
, x2 ∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x,C−k
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Self-similar solution:
w(x, t) = w(z), z = xt1/k ,

where the function w(z) is determined by the ordinary differential equation

kzk−1F
(

w, zw′

z, z2w′′

zz

)

− w′

z = 0.
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7.
∂w

∂t
= xkF

(

w, x
∂w

∂x
, x2 ∂2w

∂x2

)

+ ax
∂w

∂x
.

Passing to the new independent variables

z = xeat, τ =
1
ak

(

1 − e−akt),

we obtain an equation of the form 8.1.3.6:

∂w

∂τ
= zkF

(

w, z
∂w

∂z
, z2 ∂

2w

∂z2

)

.

8.
∂w

∂t
= eλxF

(

w,
∂w

∂x
,

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1, e−λC1t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = w(z), z = λx + ln t,

where the function w(z) is determined by the ordinary differential equation

ezF
(

w, λw′

z , λ2w′′

zz

)

− w′

z = 0.

9.
∂w

∂t
= wF

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(x, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = eλtϕ(x),

where λ is an arbitrary constant and the function ϕ(x) is determined by the ordinary differential
equation

F
(

x, ϕ′

x/ϕ, ϕ′′

xx/ϕ
)

= λ.

10.
∂w

∂t
= wβF

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

.

For β = 1, see equation 8.1.3.9.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x, Cβ−1
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) =
[

(1 − β)At +B
]

1
1−β ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

ϕβ−1F
(

x, ϕ′

x/ϕ, ϕ′′

xx/ϕ
)

= A.
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11.
∂w

∂t
= eβwF

(

x,
∂w

∂x
,

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, C1t + C2) +
1
β

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = −
1
β

ln(Aβt +B) + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

eβϕF
(

x, ϕ′

x, ϕ′′

xx

)

+A = 0.

12.
∂w

∂t
=

∂w

∂x
F

(

x,
∂2w

∂x2

/

∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function
w1 = C1w(x, t + C2) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:
w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

ϕ′

xF
(

x, ϕ′′

xx/ϕ
′

x

)

= A.

3◦. Generalized separable solution:
w(x, t) = AeµtΘ(x) +B

where A, B, and µ are arbitrary constants, and the function Θ(x) is determined by the ordinary
differential equation

Θ
′

xF
(

x, Θ
′′

xx/Θ
′

x

)

= µΘ.

13.
∂w

∂t
=

(

∂w

∂x

)β

F

(

x,
∂2w

∂x2

/ ∂w

∂x

)

.

For β = 1, see equation 8.1.3.12.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function
w1 = C1w(x, Cβ−1

1 t + C2) + C3,
where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:
w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

(

ϕ′

x

)β
F

(

x, ϕ′′

xx/ϕ
′

x

)

= A.

3◦. Generalized separable solution:

w(x, t) =
[

A(1 − β)t + C1
]

1
1−β

[

Θ(x) +B
]

+ C2,
whereA, B, C1, andC2 are arbitrary constants, and the function Θ(x) is determined by the ordinary
differential equation

(

Θ
′

x

)β
F

(

x, Θ
′′

xx/Θ
′

x

)

= AΘ +AB.
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8.1.4. Equations of the Form ∂w
∂t

= F
(

x, t, w, ∂w
∂x

, ∂2w
∂x2

)

1.
∂w

∂t
= a

( ∂w

∂x

)m( ∂2w

∂x2

)n

+
[

f (t)x + g(t)
] ∂w

∂x
+ h(t)w.

The transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

Fm+2n(t)Hm+n−1(t) dt,

where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to the simpler equation
∂u

∂τ
= a

(

∂u

∂x

)m(

∂2u

∂z2

)n

.

The last equation admits a traveling-wave solution, a self-similar solution, and a multiplicative
separable solution.

2.
∂w

∂t
= f (w)

( ∂2w

∂x2

)k

+
[

xg(t) + h(t)
] ∂w

∂x
.

The transformation

z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

G2k(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to the simpler equation
∂w

∂τ
= f (w)

(

∂2w

∂z2

)k

.

The last equation admits a traveling-wave solution and a self-similar solution.

3.
∂w

∂t
= F

(

x, t,
∂w

∂x
,
∂2w

∂x2

)

+ aw.

Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t) + Ceat,
where C are arbitrary constants, is also a solution of the equation.

4.
∂w

∂t
= F

(

ax + bt, w,
∂w

∂x
,

∂2w

∂x2

)

.

Solution:
w = w(ξ), ξ = ax + bt,

where the function w(ξ) is determined by the ordinary differential equation

F
(

ξ, w, aw′

ξ , a2w′′

ξξ

)

− bw′

ξ = 0.

5.
∂w

∂t
= f (t)xk

Φ

(

w, x
∂w

∂x
, x2 ∂2w

∂x2

)

+ xg(t)
∂w

∂x
.

Passing to the new independent variables

z = xG(t), τ =
∫

f (t)G−k(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

we obtain a simpler equation of the form 8.1.3.6:

∂w

∂τ
= zkΦ

(

w, z
∂w

∂z
, z2 ∂

2w

∂z2

)

.
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6.
∂w

∂t
= wF

(

t,
f (x)
w

∂2w

∂x2

)

.

Multiplicative separable solution:

w(x, t) = ϕ(x) exp
[
∫

F (t,λ) dt
]

,

where the function ϕ = ϕ(x) satisfies the linear ordinary differential equation f (x)ϕ′′

xx = λϕ.

7.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2

)

+ f (t)eλx.

Generalized separable solution:

w(x, t) = eλxE(t)
[

A +
∫

f (t)
E(t)

dt

]

+Be−λxE(t), E(t) = exp
[
∫

Φ(t,λ2) dt
]

,

where A, B, and λ are arbitrary constants.

8.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2

)

+ f (t)eλx + g(t)e–λx.

Generalized separable solution:

w(x, t) = eλxE(t)
[

A +
∫

f (t)
E(t)

dt

]

+ e−λxE(t)
[

B +
∫

g(t)
E(t)

dt

]

,

E(t) = exp
[
∫

Φ(t,λ2) dt
]

,

where A, B, and λ are arbitrary constants.

9.
∂w

∂t
= wF1

(

t,
1
w

∂2w

∂x2

)

+ eλxF2

(

t,
1
w

∂2w

∂x2

)

+ e–λxF3

(

t,
1
w

∂2w

∂x2

)

.

There is a generalized separable solution of the form

w(x, t) = eλxϕ(t) + e−λxψ(t).

10.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2

)

+ f (t) cosh(λx) + g(t) sinh(λx).

Generalized separable solution:

w(x, t) = cosh(λx)E(t)
[

A +
∫

f (t)
E(t)

dt

]

+ sinh(λx)E(t)
[

B +
∫

g(t)
E(t)

dt

]

,

E(t) = exp
[
∫

Φ(t,λ2) dt
]

,

where A, B, and λ are arbitrary constants.

11.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2

)

+ f (t) cos(λx).

Generalized separable solution:

w(x, t) = cos(λx)E(t)
[

A +
∫

f (t)
E(t)

dt

]

+B sin(λx)E(t),

E(t) = exp
[
∫

Φ(t, −λ2) dt
]

,

where A, B, and λ are arbitrary constants.
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12.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2

)

+ f (t) cos(λx) + g(t) sin(λx).

Generalized separable solution:

w(x, t) = cos(λx)E(t)
[

A +
∫

f (t)
E(t)

dt

]

+ sin(λx)E(t)
[

B +
∫

g(t)
E(t)

dt

]

,

E(t) = exp
[
∫

Φ(t, −λ2) dt
]

,

where A, B, and λ are arbitrary constants.

13.
∂w

∂t
= wF1

(

t,
1
w

∂2w

∂x2

)

+ cos(λx)F2

(

t,
1
w

∂2w

∂x2

)

+ sin(λx)F3

(

t,
1
w

∂2w

∂x2

)

.

There is a generalized separable solution of the form

w(x, t) = cos(λx)ϕ(t) + sin(λx)ψ(t).

14.
∂w

∂t
= wΦ

(

t,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

+ f (t)eλx.

Multiplicative separable solution:

w(x, t) = eλxE(t)
[

A +
∫

f (t)
E(t)

dt

]

, E(t) = exp
[
∫

Φ(t,λ,λ2) dt
]

,

where A, B, and λ are arbitrary constants.

15.
∂w

∂t
= f (t)wβ

Φ

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

+ g(t)w.

The transformation

w(x, t) = G(t)u(x, τ ), τ =
∫

f (t)Gβ−1(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 8.1.3.10:

∂u

∂τ
= uβΦ

(

x,
1
u

∂u

∂x
,

1
u

∂2u

∂x2

)

,

which has a multiplicative separable solution u = ϕ(x)ψ(τ ).

16.
∂w

∂t
= f (t)

(

∂w

∂x

)k

Φ

(

x,
∂2w

∂x2

/

∂w

∂x

)

+ g(t)w + h(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations

ϕ′

t = Af (t)ϕk + g(t)ϕ, (1)
ψ′

t = g(t)ψ +Bf (t)ϕk + h(t), (2)

C is an arbitrary constant, and the function Θ(x) is determined by the second-order ordinary
differential equation

(

Θ
′

x

)k
Φ

(

x, Θ
′′

xx/Θ
′

x

)

= AΘ +B. (3)

Page 496

© 2004 by Chapman & Hall/CRC



8.1. EQUATIONS INVOLVING THE FIRST DERIVATIVE IN t 497

The general solution of system (1), (2) is expressed as

ϕ(t) = G(t)
[

C − kA
∫

f (t)Gk−1(t) dt
]

1
1−k

, G(t) = exp
[
∫

g(t) dt
]

,

ψ(t) = DG(t) +G(t)
∫

[

Bf (t)ϕk(t) + h(t)
] dt

G(t)
,

where A, B, C, and D are arbitrary constants.
For k = 1 and Φ(x, y) = Φ(y), a solution of equation (3) is given by

Θ(x) = αeλx −B/A,

where α is an arbitrary constant, and λ is found from the algebraic (or transcendental) equation
λΦ(λ) = A.

17.
∂w

∂t
=

[

f1(t)w + f0(t)
]

(

∂w

∂x

)k

Φ

(

x,
∂2w

∂x2

/

∂w

∂x

)

+ g1(t)w + g0(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations (C is an arbitrary constant):

ϕ′

t = Cf1(t)ϕk+1 + g1(t)ϕ, (1)
ψ′

t =
[

Cf1(t)ϕk + g1(t)
]

ψ + Cf0(t)ϕk + g0(t), (2)

and the function Θ(x) is determined by the second-order ordinary differential equation
(

Θ
′

x

)k
Φ

(

x, Θ
′′

xx/Θ
′

x

)

= C. (3)

The general solution of system (1), (2) is expressed as

ϕ(t) = G(t)
[

A − kC
∫

f1(t)Gk(t) dt
]−1/k

, G(t) = exp
[
∫

g1(t) dt
]

,

ψ(t) = Bϕ(t) + ϕ(t)
∫

[

Cf0(t)ϕk(t) + g0(t)
] dt

ϕ(t)
,

where A, B, and C are arbitrary constants.
Further, we assume that Φ is independent of x explicitly, i.e., Φ(x, y) = Φ(y). For Φ(0) ≠ 0 and

Φ(0) ≠∞, particular solution to equation (3) has the form Θ(x) = αx + β, where αkΦ(0) = C and β
is an arbitrary constant.

For k = 0, the general solution of equation (3) is expressed as

Θ(x) = αeλx + β,

where α and β are arbitrary constants, and λ is determined from the algebraic (transcendental)
equation Φ(λ) = C.

18.
∂w

∂t
= f (t)eβw

Φ

(

x,
∂w

∂x
,

∂2w

∂x2

)

+ g(t).

The transformation

w(x, t) = u(x, τ ) +G(t), τ =
∫

f (t) exp
[

βG(t)
]

dt, G(t) =
∫

g(t) dt

leads to a simpler equation of the form 8.1.3.11:

∂u

∂τ
= eβuΦ

(

x,
∂u

∂x
,
∂2u

∂x2

)

,

which has an additive separable solution u = ϕ(x) + ψ(τ ).
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19.
∂w

∂t
= wF

(

t,
∂2w

∂x2
,

∂w

∂x
– x

∂2w

∂x2
, 2w – 2x

∂w

∂x
+ x2 ∂2w

∂x2

)

.

Multiplicative separable solution:

w(x, t) = (C2x
2 + C1x + C0)ϕ(t),

whereC0,C1, andC2 are arbitrary constants, and the functionϕ =ϕ(t) is determined by the ordinary
differential equation ϕ′

t = ϕF
(

t, 2C2ϕ,C1ϕ, 2C0ϕ
)

.
��
Reference: Ph. W. Doyle (1996), the case ∂tF ≡ 0 was treated.

20.
∂w

∂t
= F

(

x, t, w,
∂w

∂x

)

G

(

x,
∂w

∂x
,

∂2w

∂x2

)

+ h(t).

Additive separable solution:

w(x, t) = ϕ(x) +
∫

h(t) dt,

where the function ϕ(x) is determined by the ordinary differential equation

G
(

x,ϕ′

x,ϕ′′

xx

)

= 0.

21.
∂w

∂t
= F

(

x, t, w,
∂w

∂x

)

G

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

+ h(t)w.

Multiplicative separable solution:

w(x, t) = C exp
[
∫

h(t) dt
]

ϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

G
(

x, ϕ′

x/ϕ, ϕ′′

xx/ϕ
)

= 0.

22.
∂w

∂t
= g0(t)F0

(

∂2w

∂x2

)

+ xg1(t)F1

(

∂2w

∂x2

)

+ x2g2(t)F2

(

∂2w

∂x2

)

+ h(t)
(

∂w

∂x

)2

+
[

p0(t) + xp1(t)
] ∂w

∂x
+ q(t)w + � 0(t) + x� 1(t) + x2 � 2(t).

There is a generalized separable solution of the form

w(x, t) = x2ϕ(t) + xψ(t) + χ(t).

23.
∂w

∂t
= x2f2

(

t,
∂2w

∂x2

)

+ xf1

(

t,
∂2w

∂x2

)

+ f0

(

t,
∂2w

∂x2

)

.

Generalized separable solution quadratic in x:

w(x, t) = x2ϕ(t) + x
∫

f1(t, 2ϕ) dt +
∫

f0(t, 2ϕ) dt + C1x + C2,

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the first-order
ordinary differential equation

ϕ′

t = f2(t, 2ϕ).

24.
∂w

∂t
= x2f2

(

t,
∂2w

∂x2

)

+ xf1

(

t,
∂2w

∂x2

)

+ f0

(

t,
∂2w

∂x2

)

+ g(t)w.

There is a generalized separable solution of the form

w(x, t) = x2ϕ(t) + xψ(t) + χ(t).
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8.1.5. Equations of the Form F
(

x, t, w, ∂w
∂t

, ∂w
∂x

, ∂2w
∂x2

)

= 0

1. F

(

at + bx, w,
∂w

∂t
,

∂w

∂x
,

∂2w

∂x2

)

= 0.

Solution:
w = w(ξ), ξ = at + bx,

where the function w(ξ) is determined by the ordinary differential equation

F
(

ξ, w, aw′

ξ , bw′

ξ , b2w′′

ξξ

)

= 0.

2. F

(

t,
1
w

∂w

∂t
,

1
w

∂2w

∂x2

)

= 0.

1◦. Multiplicative separable solution:

w(x, t) =
[

A cosh(λx) +B sinh(λx)
]

ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ(t) is determined by the first-order
ordinary differential equation

F
(

t,ϕ′

t/ϕ,λ2) = 0.

2◦. Multiplicative separable solution:

w(x, t) =
[

A cos(λx) +B sin(λx)
]

ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ(t) is determined by the first-order
ordinary differential equation

F
(

t,ϕ′

t/ϕ, −λ2) = 0.

3. F

(

t,
1
w

∂w

∂t
,

1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

= 0.

Multiplicative separable solution:
w(x, t) = Aeλxϕ(t),

whereA and λ are arbitrary constants, and the functionϕ(t) is determined by the first-order ordinary
differential equation

F
(

t,ϕ′

t/ϕ,λ,λ2) = 0.

4. F

(

x,
1
w

∂w

∂t
,

1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

= 0.

Multiplicative separable solution:
w(x, t) = Aeλtϕ(x),

where A and λ are arbitrary constants, and the function ϕ(x) is determined by the second-order
ordinary differential equation

F
(

x,λ,ϕ′

x/ϕ,ϕ′′

xx/ϕ
)

= 0.

5. F1

(

t,
∂w

∂t

)

+ F2

(

x,
∂w

∂x
,
∂2w

∂x2

)

= kw.

Additive separable solution:
w(x, t) = ϕ(t) + ψ(x),

where the functionsϕ(x) andψ(x) are determined by the first- and second-order ordinary differential
equations

F1
(

t,ϕ′

t

)

− kϕ = C,

F2
(

x,ψ′

x,ψ′′

xx

)

− kψ = −C,
and C is an arbitrary constant.
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6. F1

(

t,
1
w

∂w

∂t

)

+ wkF2

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

= 0.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functionsϕ(t) andψ(x) are determined by the first- and second-order ordinary differential
equations

ϕ−kF1
(

t,ϕ′

t/ϕ
)

= C,

ψkF2
(

x,ψ′

x/ψ,ψ′′

xx/ψ
)

= −C,

and C is an arbitrary constant.

7. F1

(

t,
∂w

∂t

)

+ eλwF2

(

x,
∂w

∂x
,
∂2w

∂x2

)

= 0.

Additive separable solution:
w(x, t) = ϕ(t) + ψ(x),

where the functionsϕ(x) andψ(x) are determined by the first- and second-order ordinary differential
equations

e−λϕF1
(

t,ϕ′

t

)

= C,

eλψF2
(

x,ψ′

x,ψ′′

xx

)

= −C,

and C is an arbitrary constant.

8. F1

(

t,
1
w

∂w

∂t

)

+ F2

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

= k ln w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functionsϕ(x) andψ(x) are determined by the first- and second-order ordinary differential
equations

F1
(

t,ϕ′

t/ϕ
)

− k lnϕ = C,

F2
(

x,ψ′

x/ψ,ψ′′

xx/ψ
)

− k lnψ = −C,

and C is an arbitrary constant.

8.1.6. Equations with Three Independent Variables

1.
∂w

∂t
= aw

∂w

∂x
+ F

(

∂w

∂x
,

∂w

∂y
,

∂2w

∂x2
,

∂2w

∂y2

)

.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the function

w1 = w(x + aC1t + C2, y + C3, t + C4) + C1,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w = w(z), z = C1x + C2y + λt,

whereC1, C2, and λ is an arbitrary constant and the functionw(z) is determined by the autonomous
ordinary differential equation

F
(

C1w
′

z ,C2w
′

z,C2
1w

′′

zz ,C2
2w

′′

zz

)

+ aC1ww
′

z = λw′

z .
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3◦. Solution:
w = u(ξ) + 2C1t, ξ = x + C2y + aC1t

2 + C3t,
whereC1, C2, andC3 is an arbitrary constant and the function u(ξ) is determined by the autonomous
ordinary differential equation

F
(

u′ξ,C2u
′

ξ,u
′′

ξξ,C
2
2u

′′

ξξ

)

+ auu′ξ = C3u
′

ξ + 2C1.

4◦. “Two-dimensional” solution:

w(x, y, t) = U (y, η) + 2C1t, η = x + aC1t
2 + C2t,

where C1 and C2 are arbitrary constants and the function U (y, η) is determined by the differential
equation

2C1 + C2
∂U

∂η
= aU

∂U

∂η
+ F

(

∂U

∂η
,
∂U

∂y
,
∂2U

∂η2 ,
∂2U

∂y2

)

.

5◦. There is a “two-dimensional” solution of the form

w(x, y, t) = V (ζ1, ζ2), ζ1 = a1x + b1y + c1t, ζ2 = a2x + b2y + c2t.

2.
∂w

∂t
+ (a1x + b1y)

∂w

∂x
+ (a2x + b2y)

∂w

∂y
= F

(

w,
∂w

∂x
,

∂w

∂y
,

∂2w

∂x2
,

∂2w

∂x∂y
,

∂2w

∂y2

)

.

1◦. Suppose w(x, y, t) is a solution of this equation. Then the functions

w1 = w
(

x + Cb1e
λt, y + C(λ − a1)eλt, t

)

,

where C is an arbitrary constant, and λ = λ1,2 are roots of the quadratic equation

λ2 − (a1 + b2)λ + a1b2 − a2b1 = 0, (1)

are also solutions of the equation.

2◦. Solutions:
w = w(z), z = a2x + (λ − a1)y + Ceλt,

where λ = λ1,2 are roots of the quadratic equation (1), and the function w(z) is determined by the
ordinary differential equation

[

λz + a2c1 + (λ − a1)c2
]

w′

z = F
(

w, a2w
′

z , (λ − a1)w′

z, a2
2w

′′

zz, a2(λ − a1)w′′

zz, (λ − a1)2w′′

zz

)

.

3◦. “Two-dimensional” solutions:

w = u(ζ, t), ζ = a2x + (λ − a1)y,

where λ = λ1,2 are roots of the quadratic equation (1), and the function u(ζ, t) is determined by the
differential equation

∂u

∂t
+
[

λζ+a2c1 +(λ−a1)c2
] ∂u

∂ζ
=F

(

u, a2
∂u

∂ζ
, (λ−a1)

∂u

∂ζ
, a2

2
∂2u

∂ζ2 , a2(λ−a1)
∂2u

∂ζ2 , (λ−a1)2 ∂
2u

∂ζ2

)

.

8.2. Equations Involving Two or More Second
Derivatives

8.2.1. Equations of the Form ∂2w
∂t2 = F

(

w, ∂w
∂x

, ∂2w
∂x2

)

1.
∂2w

∂t2
= F

(

∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−2
1 w(C1x + C2,C1t + C3) + C4xt + C5x + C6t + C7,

where the Cn are arbitrary constants, is also a solution of the equation.
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2◦. Solution quadratic in x and t:

w(x, t) = 1
2Ax

2 +Bxt + 1
2F (A)t2 + C1x + C2t + C3,

where A, B, C1, C2, and C3 are arbitrary constants.

3◦. Generalized separable solution quadratic in x:

w(x, t) =
1
2

(C1t + C2)x2 + (C3t + C4)x +
∫ t

0
(t − ξ)F (C1ξ + C2) dξ + C5t + C6,

where C1, . . . , C6 are arbitrary constants.

4◦. Generalized separable solution quadratic in t:

w(x, t) =
1
2

(C1x + C2)t2 + (C3x + C4)t +
∫ x

0
(x − ξ)Φ(C1ξ + C2) dξ + C5x + C6,

where C1, . . . , C6 are arbitrary constants, and the function Φ(u) is the inverse of F (u).

5◦. Self-similar solution:
w = t2U (z), z = x/t,

where the function U = U (z) is determined by the ordinary differential equation

2U − 2zU ′

z + z2U ′′

zz = F (U ′′

zz).

6◦. The substitution u(x, t) =
∂w

∂x
leads to an equation of the form 3.4.7.7:

∂2u

∂t2
= f

(

∂u

∂x

)

∂2u

∂x2 , f (ξ) = F ′

ξ(ξ).

��
Reference: N. H. Ibragimov (1994).

Special case 1. Let F (ξ) = aξn.

1◦. Multiplicative separable solution:
w(x, t) = ϕ(x)ψ(t),

where the functions ϕ = ϕ(x) and ψ = ψ(t) are determined by the second-order autonomous ordinary differential equations
(C is an arbitrary constant)

ϕ
′′

xx = Cϕ1/n,

ψ
′′

tt = aCn
ψ

n,

whose general solutions can be written out in implicit form.

2◦. Self-similar solution:

w(x, t) = tσU (z), z = tβx, σ =
2(1 + nβ)

1 − n
,

where β is an arbitrary constant, and the function U = U (z) is determined by the ordinary differential equation

σ(σ − 1)U + β(2σ + β − 1)zU ′

z + β2
z

2
U

′′

zz = a(U ′′

zz)n.

3◦. Generalized separable solution quadratic in x:

w(x, t) =
1
2

(C1t + C2)x2 + (C3t + C4)x +
a

C2
1 (n + 1)(n + 2)

(C1t + C2)n+2 + C5t + C6,

where C1, . . . , C6 are arbitrary constants.

4◦. Generalized separable solution quadratic in t:

w(x, t) =
1
2

(C1x + C2)t2 + (C3x + C4)t +
4a1/n

C2
1 (4n2 − 1)

(C1x + C2)(2n+1)/2 + C5x + C6,

where C1, . . . , C6 are arbitrary constants.

Special case 2. Let F (ξ) = a exp(λξ). Generalized separable solution:

w = (A2x
2 + A1x + A0)ϕ(t) + ψ(x),
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where A2, A1, and A0 are arbitrary constants, and the functions ϕ(t) and ψ(x) are determined by the ordinary differential
equations (B2 is an arbitrary constant)

ϕ
′′

tt = aB2 exp(2A2λϕ), (1)
exp(λψ′′

xx) = B2(A2x
2 + A1x + A0). (2)

The general solution of equation (1) is expressed as

ϕ(t) = −
1

2A2λ
ln

[

A2B2aλ

C2
1

cos2(C1t + C2)
]

if A2B2aλ > 0,

ϕ(t) = −
1

2A2λ
ln

[

A2B2aλ

C2
1

sinh2(C1t + C2)
]

if A2B2aλ > 0,

ϕ(t) = −
1

2A2λ
ln

[

−
A2B2aλ

C2
1

cosh2(C1t + C2)
]

if A2B2aλ < 0,

where C1 and C2 are arbitrary constants. The general solution of equation (2) is given by

ψ(x) =
1
λ

∫ t

t0

(t − ξ) ln(A2B2ξ
2 + A1B2ξ + A0B2) dξ + B1t + B0,

where B1 and B0 are arbitrary constants.

Special case 3. Let F (ξ) = a ln ξ + b. Generalized separable solution:

w = (A2t
2 + A1t + A0)ϕ(x) + ψ(t),

where A2, A1, and A0 are arbitrary constants, and the functions ϕ(x) and ψ(t) are determined by the ordinary differential
equations (B2 is an arbitrary constant)

a lnϕ′′

xx − 2A2ϕ = B2, (3)
ψ
′′

tt − a ln(A2t
2 + A1t + A0) − b = B2. (4)

The general solution of equation (3) is given by

ϕ(x) = −
a

2A2
ln

[

A2

aC2
1

cos2(C1x + C2)
]

−
B2

2A2
if A2a > 0,

ϕ(x) = −
a

2A2
ln

[

A2

aC2
1

sinh2(C1x + C2)
]

−
B2

2A2
if A2a > 0,

ϕ(x) = −
a

2A2
ln

[

−
A2

aC2
1

cosh2(C1x + C2)
]

−
B2

2A2
if A2a < 0,

ϕ(x) = 1
2 e

B2/a
x

2 + C1x + C2 if A2 = 0,

where C1 and C2 are arbitrary constants. The general solution of equation (1) is expressed as

ϕ(t) = a
∫ t

t0

(t − ξ) ln(A2ξ
2 + A1ξ + A0) dξ +

1
2

(B2 + b)t2 + B1t + B0,

where B1 and B0 are arbitrary constants.

2.
∂2w

∂t2
= F

(

∂w

∂x
,
∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1, t + C2) + C3t + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:
w = w(z), z = kx + λt,

where k and λ are arbitrary constants, and the function w(z) is determined by the autonomous
ordinary differential equation

F (kw′

z, k2w′′

zz) − λ2w′′

zz = 0.
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3◦. Additive separable solution:

w(x, t) = At2 +Bt + C + ϕ(x),

whereA,B, andC are arbitrary constants, and the functionϕ=ϕ(x) is determined by the autonomous
ordinary differential equation

F (ϕ′

x,ϕ′′

xx) − 2A = 0.

4◦. Solution (generalizes the solutions of Items 2◦ and 3◦):

w(x, t) = At2 +Bt + C + ϕ(z), z = kx + λt,

where A, B, C, k, and λ are arbitrary constants, and the function ϕ = ϕ(z) is determined by the
autonomous ordinary differential equation

F (kϕ′

z, k2ϕ′′

zz) − λ2ϕ′′

zz − 2A = 0.

3.
∂2w

∂t2
= aw

∂2w

∂x2
+ F

(

∂w

∂x
,
∂2w

∂x2

)

.

1◦. Degenerate solution linear in x:

w = (C1t + C2)x + C3t + C4 +
∫ t

0
(t − τ )F (C1τ + C2, 0) dτ .

2◦. Traveling-wave solution:

w(x, t) = w(ξ), ξ = βx + λt,

where β and λ are arbitrary constants, and the function w = w(ξ) is determined by the autonomous
ordinary differential equation

(aβ2w − λ2)w′′

ξξ + F (βw′

ξ ,β2w′′

ξξ) = 0.

3◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

(aU − a2C2
2 )U ′′

zz − 2aC1U
′

z + F (U ′

z,U ′′

zz) = 8aC2
1 .

Special case 1. Let F (wx,wxx) = F (wx). Self-similar solution:

w(x, t) = t2u(ζ), ζ = xt−2,

where the function u = u(ζ) is determined by the ordinary differential equation

2u − 2ζu′ζ + 4ζ2
u
′′

ζζ = auu′′ζζ + F (u′ζ ).

Special case 2. Let F (wx,wxx) = F (wxx). Generalized separable solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the system of ordinary differential equations

ϕ
′′

tt = 6aϕ2,

ψ
′′

tt = 6aϕψ,

χ
′′

tt = 2aϕχ + F (2ϕ).

4.
∂2w

∂t2
= wF

(

( ∂w

∂x

)2
+ aw2,

1
w

∂2w

∂x2

)

.

This is a special case of equation 8.2.2.7.
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5.
∂2w

∂t2
= wF

(

1
w

∂2w

∂x2
, w

∂2w

∂x2
+ aw2

)

.

This is a special case of equation 8.2.2.8.

6.
∂2w

∂t2
= wF

(

1
w

∂2w

∂x2
, w

∂2w

∂x2
–

( ∂w

∂x

)2
)

.

This is a special case of equation 8.2.2.9.

7.
∂2w

∂t2
= wF

(

∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

+ G

(

∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

.

This is a special case of equation 8.2.2.11.

8.2.2. Equations of the Form ∂2w
∂t2 = F

(

x, t, w, ∂w
∂x

, ∂w
∂t

, ∂2w
∂x2

)

1.
∂2w

∂t2
= F

(

t,
∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1, t) + C2xt + C3x + C4t + C5,

where the Cn are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution quadratic in x:

w(x, t) =
1
2

(C1t + C2)x2 + (C3t + C4)x +
∫ t

0
(t − ξ)F (ξ,C1ξ + C2) dξ + C5t + C6,

where C1, . . . , C6 are arbitrary constants.

3◦. The substitution u(x, t) = ∂w
∂x

leads to a simpler equation which is linear in the highest deriva-
tives:

∂2u

∂t2
= f

(

t,
∂u

∂x

)

∂2u

∂x2 , f (t, ξ) =
∂

∂ξ
F (t, ξ).

2.
∂2w

∂t2
= F

(

x,
∂2w

∂x2

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x, t + C1) + C2xt + C3x + C4t + C5,

where Cn are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution quadratic in t:

w(x, t) =
1
2

(C1x + C2)t2 + (C3x + C4)t + ϕ(x) + C5x + C6,

where C1, . . . , C6 are arbitrary constants, and the function ϕ = ϕ(x) is determined by the ordinary
differential equation

C1x + C2 = F (x,ϕ′′

xx).
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3.
∂2w

∂t2
= F

(

x, w,
∂w

∂x
,

∂2w

∂x2

)

.

Suppose the auxiliary ordinary differential equation

w = F (x, w, w′

x, w′′

xx)

is reduced, with the linear transformation

x = ϕ(z), w = ψ(z)u + χ(z)

followed by the division of the resulting equation by ψ(z), to the autonomous form

u = F(u, u′z, u′′zz),

where F = F/ψ. Then the original partial differential equation can be reduced, with the same
transformation,

x = ϕ(z), w(x, t) = ψ(z)u(z, t) + χ(z),

to
∂2u

∂t2
= F

(

u,
∂u

∂z
,
∂2u

∂z2

)

,

which has a traveling-wave solution u = u(z + λt).
The above allows using various known transformations of ordinary differential equations (see

Kamke, 1977; Polyanin and Zaitsev, 2003) for constructing exact solutions to partial differential
equations. If the original equation is linear, then such transformations will result in linear constant-
coefficient equations.

4.
∂2w

∂t2
= (aw + bx)

∂2w

∂x2
+ F

(

∂w

∂x
,
∂2w

∂x2

)

.

The substitution w = u − (b/a)x leads to an equation of the form 8.2.1.3:

∂2u

∂t2
= au

∂2u

∂x2 + F
(

∂u

∂x
−
b

a
,
∂2u

∂x2

)

.

5.
∂2w

∂t2
= F

(

x,
∂w

∂x
,

∂2w

∂x2

)

+ G

(

t,
∂w

∂t

)

+ bw.

Additive separable solution:
w(x, t) = ϕ(x) + ψ(t),

where the functions ϕ(x) and ψ(t) are determined by the ordinary differential equations (C is an
arbitrary constant)

F
(

x,ϕ′

x,ϕ′′

xx

)

+ bϕ = C,

ψ′′

tt −G
(

t,ψ′

t

)

− bψ = C.

6.
∂2w

∂t2
= F

(

x, t,
∂w

∂x
,

∂2w

∂x2

)

+ aw.

Suppose w(x, t) is a solution of this equation. Then the functions

w1 = w(x, t) + C1 cosh(kt) + C2 sinh(kt) if a = k2 > 0,

w2 = w(x, t) + C1 cos(kt) + C2 sin(kt) if a = −k2 < 0,

where C1 and C2 are arbitrary constants, are also solutions of the equation.
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7.
∂2w

∂t2
= wF

(

t,
1
w

∂w

∂t
,
(

∂w

∂x

)2

+ aw2,
1
w

∂2w

∂x2

)

.

1◦. Multiplicative separable solution for a > 0:

w(x, t) =
[

C1 sin
(

x
√

a
)

+ C2 cos
(

x
√

a
)]

ϕ(t),

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation

ϕ′′

tt = ϕF
(

t, ϕ′

t/ϕ, a(C2
1 + C2

2 )ϕ2, −a
)

.

2◦. Multiplicative separable solution for a < 0:

w(x, t) =
(

C1e
√

|a|x + C2e
−
√

|a|x)ϕ(t),

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation

ϕ′′

tt = ϕF
(

t, ϕ′

t/ϕ, 4aC1C2ϕ
2, −a

)

.

8.
∂2w

∂t2
= wF

(

t,
1
w

∂w

∂t
,

1
w

∂2w

∂x2
, w

∂2w

∂x2
+ aw2

)

.

Multiplicative separable solutions:

w(x, t) =
[

C1 sin
(

x
√

a
)

+ C2 cos
(

x
√

a
)]

ϕ(t) if a > 0,

w(x, t) =
(

C1e
√

|a|x + C2e
−
√

|a|x)ϕ(t) if a < 0,

where C1 and C2 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation

ϕ′′

tt = ϕF
(

t,ϕ′

t/ϕ, −a, 0
)

.

9.
∂2w

∂t2
= wF

(

t,
1
w

∂w

∂t
,

1
w

∂2w

∂x2
, w

∂2w

∂x2
–

(

∂w

∂x

)2)

.

1◦. Multiplicative separable solution:

w(x, t) = (Aeλx +Be−λx)ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation ϕ′′

tt = ϕF
(

t, ϕ′

t/ϕ, λ2, 4ABλ2ϕ2).

2◦. Multiplicative separable solution:

w(x, t) = [A sin(λx) +B cos(λx)]ϕ(t),

where A and B are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation ϕ′′

tt = ϕF
(

t, ϕ′

t/ϕ, −λ2, −λ2(A2 +B2)ϕ2).

10.
∂2w

∂t2
= wF

(

t,
∂2w

∂x2
,

∂w

∂x
– x

∂2w

∂x2
, 2w – 2x

∂w

∂x
+ x2 ∂2w

∂x2

)

.

Multiplicative separable solution:

w(x, t) = (C2x
2 + C1x + C0)ϕ(t),

whereC0,C1, andC2 are arbitrary constants, and the functionϕ =ϕ(t) is determined by the ordinary
differential equation ϕ′′

tt = ϕF
(

t, 2C2ϕ,C1ϕ, 2C0ϕ
)

.
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11.
∂2w

∂t2
= wF

(

t,
∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

+ G

(

t,
∂2w

∂x2
, 2w

∂2w

∂x2
–

( ∂w

∂x

)2
)

.

Generalized separable solution quadratic in x:

w = ϕ1(t)x2 + ϕ2(t)x + ϕ3(t),

where the functions ϕ1, ϕ2, and ϕ3 are determined by the solution of the ordinary differential
equations

ϕ′′

1 = ϕ1F
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

,

ϕ′′

2 = ϕ2F
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

,

ϕ′′

3 = ϕ3F
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

+G
(

t, 2ϕ1, 4ϕ1ϕ3 − ϕ2
2
)

.
It follows from the first two equations that

ϕ2 = C1ϕ1 + C2ϕ1

∫

dt

ϕ2
1

,

where C1 and C2 are arbitrary constants.

12.
∂2w

∂t2
= wF1

(

t,
1
w

∂2w

∂x2

)

+ eλxF2

(

t,
1
w

∂2w

∂x2

)

+ e–λxF3

(

t,
1
w

∂2w

∂x2

)

.

There is a generalized separable solution of the form

w(x, t) = eλxϕ(t) + e−λxψ(t).

13.
∂2w

∂t2
= wF1

(

t,
1
w

∂2w

∂x2

)

+ cos(λx)F2

(

t,
1
w

∂2w

∂x2

)

+ sin(λx)F3

(

t,
1
w

∂2w

∂x2

)

.

There is a generalized separable solution of the form

w(x, t) = cos(λx)ϕ(t) + sin(λx)ψ(t).

14.
∂2w

∂t2
= x2f2

(

t,
∂2w

∂x2

)

+ xf1

(

t,
∂2w

∂x2

)

+ f0

(

t,
∂2w

∂x2

)

.

Generalized separable solution quadratic in x:

w(x, t) = x2ϕ(t) + x
∫ t

0
(t − ξ)f1

(

ξ, 2ϕ(ξ)
)

dξ +
∫ t

0
(t − ξ)f0

(

ξ, 2ϕ(ξ)
)

dξ +C1xt +C2x +C3t +C4,

where C1, . . . , C4 are arbitrary constants, and the function ϕ = ϕ(t) is determined by the ordinary
differential equation

ϕ′′

tt = f2(t, 2ϕ).

15.
∂2w

∂t2
= x2f2

(

t,
∂2w

∂x2

)

+ xf1

(

t,
∂2w

∂x2

)

+ f0

(

t,
∂2w

∂x2

)

+ g(t)w.

There is a generalized separable solution of the form

w(x, t) = x2ϕ(t) + xψ(t) + χ(t).

8.2.3. Equations Linear in the Mixed Derivative

1.
∂2w

∂x∂t
= F

(

t,
∂w

∂x
,
∂2w

∂x2

)

+ g(t)w
∂2w

∂x2
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + ϕ(t), t) +
ϕ′

t(t)
g(t)

,

where ϕ(t) is an arbitrary function, is also a solution of the equation.
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8.2. EQUATIONS INVOLVING TWO OR MORE SECOND DERIVATIVES 509

2◦. Degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t),

where ψ(t) is an arbitrary function and ϕ(t) is determined by the first-order ordinary differential
equation ϕ′

t = F (t,ϕ, 0).

3◦. For g(t) = a and F = F (wx,wxx), the equation has a traveling-wave solution

w = U (z), z = kx + λt,
where k and λ are arbitrary constants, and the function U (z) is determined by the autonomous
ordinary differential equation

kλU ′′

zz = ak2UU ′′

zz + F (kU ′

z, k2U ′′

zz).

2. f

(

∂w

∂x
,
∂w

∂y

)

∂2w

∂x2
+ g

(

∂w

∂x
,
∂w

∂y

)

∂2w

∂x∂y
+ h

(

∂w

∂x
,
∂w

∂y

)

∂2w

∂y2
= 0.

The Legendre transformation

w(x, y) + u(ξ, η) = xξ + yη, ξ =
∂w

∂x
, η =

∂w

∂y

leads to the linear equation (for details, see Subsection S.2.3)

f (ξ, η)
∂2u

∂η2 − g(ξ, η)
∂2u

∂ξ∂η
+ h(ξ, η)

∂2u

∂ξ2 = 0.

3.
∂2w

∂x∂t
= F

(

t, w,
∂w

∂x
,
∂2w

∂x2

)

+ g(t)
∂2w

∂y2
.

1◦. “Two-dimensional” solution:

w(x, y, t) = u(z, t), z = x + C1y + C2
1

∫

g(t) dt + C2,

where C1 and C2 are arbitrary constants and the function u(z, t) is determined by the differential
equation

∂2u

∂z∂t
= F

(

t,u,
∂u

∂z
,
∂2u

∂z2

)

.

2◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, t), ξ = x + ϕ(t)(y + C1)2, ϕ(t) = −
[

4
∫

g(t) dt + C2

]−1

,

where the function U (ξ, t) is determined by the differential equation
∂2U

∂ξ∂t
= F

(

t,U ,
∂U

∂ξ
,
∂2U

∂ξ2

)

+ 2g(t)ϕ(t)
∂U

∂ξ
.

8.2.4. Equations with Two Independent Variables, Nonlinear in Two
or More Highest Derivatives

1. f1

(

∂2w

∂x2

)

f2

(

∂2w

∂y2

)

= g1(x)g2(y).

Generalized separable solution:

w(x, y) = ϕ(x) + ψ(y) + C1xy + C2x + C3y + C4,

where C1, . . . , C4 are arbitrary constants, and the functions ϕ = ϕ(x) and ψ = ψ(y) are determined
by the ordinary differential equations (a is any)

f1(ϕ′′

xx) = ag1(x),
af2(ψ′′

yy) = g2(y).
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510 SECOND-ORDER EQUATIONS OF GENERAL FORM

2. F

(

x, y,
∂w

∂x
,
∂2w

∂x2
,

∂2w

∂x∂y

)

= 0.

The substitution u = ∂w
∂x

leads to the first-order partial differential equation

F

(

x, y,u,
∂u

∂x
,
∂u

∂y

)

= 0.

For details about integration methods and exact solutions for such equations (with various F ), see
Kamke (1965) and Polyanin, Zaitsev, and Moussiaux (2002).

3.
∂2w

∂y2
= F

(

∂2w

∂x2
,

∂2w

∂x∂y

)

.

1◦. Solution quadratic in both variables:

w(x, y) = 1
2C1x

2 + C2xy + 1
2F (C1,C2)y2 + C3x + C4y + C5,

where C1, . . . , C5 are arbitrary constants.

2◦. We differentiate the equation with respect to x, introduce the new variable

U (x, y) =
∂w

∂x
,

and then apply the Legendre transformation (for details, see Subsection S.2.3)

X =
∂U

∂x
, Y =

∂U

∂y
, Z = x

∂U

∂x
+ y

∂U

∂y
− U

to obtain the second-order linear equation

∂2Z

∂X2 = FX (X ,Y )
∂2Z

∂Y 2 − FY (X ,Y )
∂2Z

∂X∂Y
,

where the subscripts X and Y denote the corresponding partial derivatives.
Special case. Let F (X,Y ) = aX + f (Y ), or

∂2w

∂y2 = a
∂2w

∂x2 + f
(

∂2w

∂x∂y

)

.

Solution:

w = ϕ(z) + 1
6 (A2A3 − A1A4)x3 + 1

2 aA1A3x
2
y + 1

2 aA2A3xy
2 + 1

6 (a2
A1A3 + aA2A4)y3

+ 1
2B1x

2 + B2xy + 1
2B3y

2 + B4x + B5y + B6, z = A1x + A2y,

where the An and Bm are arbitrary constants and the function ϕ(z) is determined by the ordinary differential equation

(A2
2 − aA2

1)ϕ′′

zz + aA4z + B3 − aB1 = f (A1A2ϕ
′′

zz + aA3z + B2).

4. F

(

∂2w

∂x2
,

∂2w

∂x∂y
,
∂2w

∂y2

)

= 0.

1◦. Solution quadratic in both variables:

w(x, y) = A11x
2 +A12xy +A22y

2 + B1x +B2y + C,

whereA11, A12, A22, B1, B2, and C are arbitrary constants constrained by F (2A11,A12, 2A22) = 0.

2◦. Solving the equation for wyy (or wxx), one arrives at an equation of the form 8.2.4.2.
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5. F1

(

x,
∂w

∂x
,
∂2w

∂x2
,

∂2w

∂x∂y

)

+ F2

(

y,
∂w

∂y
,

∂2w

∂x∂y
,
∂2w

∂y2

)

= kw.

Additive separable solution:
w(x, y) = ϕ(x) + ψ(y).

Here, ϕ(x) and ψ(y) are determined by the ordinary differential equations

F1
(

x,ϕ′

x,ϕ′′

xx, 0
)

− kϕ = C,

F2
(

y,ψ′

y, 0,ψ′′

yy

)

− kψ = −C,

where C is an arbitrary constant.

6. F1

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

+ F2

(

y,
1
w

∂w

∂y
,

1
w

∂2w

∂y2

)

= ln w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

F1
(

x,ϕ′

x/ϕ,ϕ′′

xx/ϕ
)

− lnϕ = C,

F2
(

y,ψ′

y/ψ,ψ′′

yy/ψ
)

− lnψ = −C,

where C is an arbitrary constant.

7. F1

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2

)

+ wkF2

(

y,
1
w

∂w

∂y
,

1
w

∂2w

∂y2

)

= 0.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

ϕ−kF1
(

x,ϕ′

x/ϕ,ϕ′′

xx/ϕ
)

= C,

ψkF2
(

y,ψ′

y/ψ,ψ′′

yy/ψ
)

= −C,

where C is an arbitrary constant.

8. F

(

ax + by, w,
∂w

∂x
,

∂w

∂y
,

∂2w

∂x2
,

∂2w

∂y2
,

∂2w

∂x∂y

)

= 0.

Solution:
w = w(ξ), ξ = ax + by,

where the function w(ξ) is determined by the ordinary differential equation

F
(

ξ, w, aw′

ξ , bw′

ξ, a
2w′′

ξξ , b2w′′

ξξ , abw′′

ξξ

)

= 0.

9. F

(

ax + by, w + kx + � y,
∂w

∂x
,

∂w

∂y
,

∂2w

∂x2
,

∂2w

∂y2
,

∂2w

∂x∂y

)

= 0.

The substitution u(x, y) = w(x, y) + kx + sy leads to an equation of the form 8.2.4.8:

F

(

ax + by, u,
∂u

∂x
− k,

∂u

∂y
− s,

∂2u

∂x2 ,
∂2u

∂y2 ,
∂2u

∂x∂y

)

= 0.
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10. (a1x + b1y)
∂w

∂x
+ (a2x + b2y)

∂w

∂y
= F

(

w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2
,

∂2w

∂x∂y
,
∂2w

∂y2

)

.

Traveling-wave solutions:
w = w(z), z = a2x + (k − a1)y,

where k is a root of the quadratic equation

k2 − (a1 + b2)k + a1b2 − a2b1 = 0,

and the function w(z) is determined by the ordinary differential equation

kzw′

z = F
(

w, a2w
′

z , (k − a1)w′

z , a2
2w

′′

zz , a2(k − a1)w′′

zz, (k − a1)2w′′

zz

)

.

11. (a1x + b1y + c1)
(

∂w

∂x

)k

+ (a2x + b2y + c2)
(

∂w

∂y

)k

= F

(

w,
∂w

∂x
,

∂w

∂y
,

∂2w

∂x2
,

∂2w

∂x∂y
,

∂2w

∂y2

)

.

Exact solutions are sought in the traveling-wave form

w = w(z), z = Ax +By + C,

where the constants A, B, and C are determined by solving the algebraic system

a1A
k + a2B

k = A, (1)
b1A

k + b2B
k = B, (2)

c1A
k + c2B

k = C. (3)

Equations (1) and (2) are first solved for A and B, and then C is evaluated from (3).
The desired function w(z) is determined by the ordinary differential equation

z(w′

z)k = F
(

w, Aw′

z , Bw′

z, A2w′′

zz , ABw′′

zz , B2w′′

zz

)

.

12. (a1x + b1y)
∂2w

∂x2
+ (a2x + b2y)

∂2w

∂x∂y
+ (a3x + b3y)

∂2w

∂y2

= F

(

w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2
,

∂2w

∂x∂y
,
∂2w

∂y2

)

.

Traveling-wave solutions:
w = w(z), z = Ax +By,

where the constants A and B are determined by solving the algebraic system of equation

a1A
2 + a2AB + a3B

2 = A,

b1A
2 + b2AB + b3B

2 = B,

and the desired function w(z) is determined by the ordinary differential equation

zw′′

zz = F
(

w, Aw′

z , Bw′

z, A2w′′

zz , ABw′′

zz , B2w′′

zz

)

.

8.2.5. Equations with n Independent Variables

1.
n

∑

k=1

fk

(

xk,
∂w

∂xk

,
∂2w

∂x2
k

)

= aw.

Additive separable solution:

w(x1, . . . ,xn) =
n

∑

k=1

ϕk(xk),
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where the functionsϕk = ϕk(xk) are determined by the second-order ordinary differential equations
n

∑

k=1

fk

(

xk,
dϕk

dxk
,
d2ϕk

dx2
k

)

− aϕk = Ck, k = 1, 2, . . . , n.

The arbitrary constants C1, . . . , Cn are related by the constraint C1 + · · · + Cn = 0.
Remark. The functions fk in the original equation can also depend on any number of mixed

derivatives∂xixj
w. In this case, the arguments corresponding to ∂xixj

w in the second-order ordinary
differential equations obtained will be replaced by zeros.

2.
n

∑

k=1

fk

(

xk,
1
w

∂w

∂xk

,
1
w

∂2w

∂x2
k

)

= a ln w.

Multiplicative separable solution:

w(x1, . . . ,xn) =
n

∏

k=1

ϕk(xk),

where the functionsϕk = ϕk(xk) are determined by the second-order ordinary differential equations

fk

(

xk ,
1
ϕk

dϕk

dxk
,

1
ϕk

d2ϕk

dx2
k

)

− a lnϕk = Ck; k = 1, . . . ,n.

The arbitrary constants C1, . . . , Cn are related by a single constraint, C1 + · · · + Cn = 0.

3. F

(

x1, . . . , xk;
∂w

∂x1
, . . . ,

∂w

∂xk

;
∂2w

∂x2
1

, . . . ,
∂2w

∂x2
k

)

+ G

(

xk+1, . . . , xn;
∂w

∂xk+1
, . . . ,

∂w

∂xn

;
∂2w

∂x2
k+1

, . . . ,
∂2w

∂x2
n

)

= aw.

Additive separable solution:
w(x1, . . . ,xk,xk+1, . . . ,xn) = ϕ(x1, . . . ,xk) + ψ(xk+1, . . . ,xn).

Here, the functions ϕ = ϕ(x1, . . . ,xk) and ψ = ψ(xk+1, . . . ,xn) are determined by solving the two
simpler partial differential equations

F

(

x1, . . . ,xk;
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xk
;
∂2ϕ

∂x2
1

, . . . ,
∂2ϕ

∂x2
k

)

= aϕ + C,

G

(

xk+1, . . . ,xn;
∂ψ

∂xk+1
, . . . ,

∂ψ

∂xn
;
∂2ψ

∂x2
k+1

, . . . ,
∂2ψ

∂x2
n

)

= aψ − C,

where C is an arbitrary constant.

4. F

(

x1, . . . , xk;
1
w

∂w

∂x1
, . . . ,

1
w

∂w

∂xk

;
1
w

∂2w

∂x2
1

, . . . ,
1
w

∂2w

∂x2
k

)

+ G

(

xk+1, . . . , xn;
1
w

∂w

∂xk+1
, . . . ,

1
w

∂w

∂xn

;
1
w

∂2w

∂x2
k+1

, . . . ,
1
w

∂2w

∂x2
n

)

= a ln w.

Multiplicative separable solution:
w(x1, . . . ,xk,xk+1, . . . ,xn) = ϕ(x1, . . . ,xk)ψ(xk+1, . . . ,xn).

Here, the functions ϕ = ϕ(x1, . . . ,xk) and ψ = ψ(xk+1, . . . ,xn) are determined by solving the two
simpler partial differential equations

F

(

x1, . . . ,xk;
1
ϕ

∂ϕ

∂x1
, . . . ,

1
ϕ

∂ϕ

∂xk
;

1
ϕ

∂2ϕ

∂x2
1

, . . . ,
1
ϕ

∂2ϕ

∂x2
k

)

= a lnϕ + C,

G

(

xk+1, . . . ,xn;
1
ψ

∂ψ

∂xk+1
, . . . ,

1
ψ

∂ψ

∂xn
;

1
ψ

∂2ψ

∂x2
k+1

, . . . ,
1
ψ

∂2ψ

∂x2
n

)

= a lnψ − C,

where C is an arbitrary constant.
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5. F

(

x1, . . . , xk;
1
w

∂w

∂x1
, . . . ,

1
w

∂w

∂xk

;
1
w

∂2w

∂x2
1

, . . . ,
1
w

∂2w

∂x2
k

)

+ wβG

(

xk+1, . . . , xn;
1
w

∂w

∂xk+1
, . . . ,

1
w

∂w

∂xn

;
1
w

∂2w

∂x2
k+1

, . . . ,
1
w

∂2w

∂x2
n

)

= 0.

Multiplicative separable solution:

w(x1, . . . ,xk,xk+1, . . . ,xn) = ϕ(x1, . . . ,xk)ψ(xk+1, . . . ,xn).

Here, the functions ϕ = ϕ(x1, . . . ,xk) and ψ = ψ(xk+1, . . . ,xn) are determined by solving the two
simpler partial differential equations

ϕ−βF

(

x1, . . . ,xk;
1
ϕ

∂ϕ

∂x1
, . . . ,

1
ϕ

∂ϕ

∂xk
;

1
ϕ

∂2ϕ

∂x2
1

, . . . ,
1
ϕ

∂2ϕ

∂x2
k

)

= C,

ψβG

(

xk+1, . . . ,xn;
1
ψ

∂ψ

∂xk+1
, . . . ,

1
ψ

∂ψ

∂xn
;

1
ψ

∂2ψ

∂x2
k+1

, . . . ,
1
ψ

∂2ψ

∂x2
n

)

= −C,

where C is an arbitrary constant.

Page 514

© 2004 by Chapman & Hall/CRC



Chapter 9

Third›Order Equations

9.1. Equations Involving the First Derivative in t

9.1.1. Korteweg–de Vries Equation ∂w
∂t

+ a∂3w
∂x3 + bw ∂w

∂x
= 0

1.
∂w

∂t
+

∂3w

∂x3
– 6w

∂w

∂x
= 0.

Korteweg–de Vries equation in canonical form. It is used in many sections of nonlinear mechanics
and theoretical physics for describing one-dimensional nonlinear dispersive nondissipative waves (in
which the dissipation law for linear waves has the form ω = a1k+a3k

3, where k is the wavenumber).
In particular, the mathematical modeling of moderate-amplitude shallow-water surface waves is
based on this equation (see Korteweg and de Vries, 1895).

The Korteweg–de Vries equation is solved by the inverse scattering method; see Items 9 and 10
and the references at the end of this equation.

1. The similarity formula.
Suppose w(x, t) is a solution of the Korteweg–de Vries equation. Then the function

w1 = C2
1w(C1x + 6C1C2t + C3,C3

1 t + C4) + C2,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.���
Reference: P. J. Olver (1986).

2. Traveling-wave solutions. Soliton. Periodic solutions.
2.1. Traveling-wave solution:

w = w(z), z = x − vt,

where the function w(z) defined in implicit form as
∫

dw
√

2w3 + vw2 + C1w + C2
= � z + C3. (1)

Here, v, C1, C2, and C3 are arbitrary constants; to v = 0 there corresponds a stationary solution.
Below are important cases where solution (1) can be written out in explicit form.

2.2. Soliton. The unique solution regular for all real values of z and vanishing as z → � ∞ is
expressed as

w(z) = −
v

2 cosh2[ 1
2
√

v (z − z0)
] , (2)

where z0 is an arbitrary constant.
2.3. Cnoidal waves. There are periodic solutions that are real and regular for any real z:

w(z) = A cn2[p(z − z0), k
]

, A = −2p2k2, v = 4p2(2k2 − 1), (3)
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They depend on an arbitrary positive constant k2 < 1. Here, cn(y, k) is the Jacobian elliptic cosine.
Solution (2) can be obtained from (3) by letting k2

→ 1. The periods of solution (3) are ω1 = 4K
and ω2 = 2K + 2iK∗, where K and K∗ are complete elliptic integrals of the first kind:

K =
∫ 1

0

dt
√

(1 − t2)(1 − k2t2)
, K∗ =

∫ 1

0

dt
√

(1 − t2)(1 − k2
∗
t2)

, k2 + k2
∗

= 1.

2.4. Rational solution. It has the form

w(z) =
2

(z − z0)2 −
v

6
,

where z0 is an arbitrary constant.
3. Two- and N -soliton solutions.
3.1. Two-soliton solution:

w(x, t) = −2
∂2

∂x2 ln
(

1 +B1e
θ1 +B2e

θ2 +AB1B2e
θ1+θ2

)

,

θ1 = a1x − a3
1t, θ2 = a2x − a3

2t, A =
(

a1 − a2

a1 + a2

)2

,

where B1, B2, a1, and a2 are arbitrary constants.���
Reference: R. Hirota (1971, 1972).

3.2. N -soliton solutions:

w(x, t) = −2
∂2

∂x2

{

ln det
[

I + C(x, t)
]

}

.

Here, I is the N ×N identity matrix and C(x, t) the N ×N symmetric matrix with entries

Cmn(x, t) =
√

ρm(t)ρn(t)
pm + pn

exp
[

−(pm + pn)x
]

,

where the normalizing factors ρn(t) are given by

ρn(t) = ρn(0) exp
(

8p3
nt

)

, n = 1, 2, . . . ,N .

The solution involves 2N arbitrary constants pn and ρn(0).
The following asymptotic formula holds:

w(x, t) ≈ −2
N

∑

n=1

p2
n

cosh2[pn
(

x − ξ �n − vnt
)] as t→ � ∞,

where vn = 4p2
n is the speed of the nth soliton and the real constants ξ �n are constrained by

ξ+
n − ξ−

n =
n−1
∑

m=1

p−1
n ln

pn + pm
pn − pm

−
N

∑

m=n+1

p−1
n ln

pn + pm
pn − pm

.

���
Reference: F. Calogero and A. Degasperis (1982).

4. “Soliton + pole” solutions.
4.1. “One soliton + one pole” solution:

w(x, t) = −2p2[cosh−2(pz) − (1 + px)−2 tanh2(pz)
][

1 − (1 + px)−1 tanh(pz)
]−2, z = x − 4p3t − c,

where p and c are arbitrary constants.
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4.2. “N solitons + one pole” solution:

w(x, t) = −2
∂2

∂x2

{

x ln det
[

I + D(x, t)
]

}

.

Here, I is the N ×N identity matrix and D(x, t) the N ×N symmetric matrix with entries

Dmn(x, t) = cm(t)cn(t)
[

(pm + pn)−1 + (pmpnx)−1] exp
[

−(pm + pn)x
]

,

where the normalizing factors cn(t) are given by

cn(t) = cn(0) exp
(

4p3
nt

)

, n = 1, 2, . . . ,N .

The solution involves 2N arbitrary constants pn and cn(0).��	
Reference: F. Calogero and A. Degasperis (1982).

5. Rational solutions.
5.1. The simplest rational solution is as follows:

w(x, t) = 2(x − ξ)−2,

where ξ is an arbitrary constant that can be complex (if it is real, the solution is singular for real
values of x).

5.2. General form of a rational solution:

w(x, t) = 2
N

∑

j=1

[

x − ξj (t)
]−2. (4)

The functions ξj (t) must meet the conditions

N
∑

k=1
j≠k

[

ξj(t) − ξk(t)
]−3 = 0, j = 1, 2, . . . ,N ,

ξj (t) = −12
N

∑

k=1
j≠k

[

ξj(t) − ξk(t)
]−2, j = 1, 2, . . . ,N .

(5)

A solution exists if N = 1
2m(m + 1), m = 1, 2, 3, . . . ; if m > 1, there are no real solutions. In

particular, if m = 2, there are three poles ξj(t) = −e2πij/3(12t)1/3 (j = 1, 2, 3) and solution (4) can
be written out as follows:

w(x, t) =
6x(x3 − 24t)
(x3 + 12t)2 (for N = 3).

A solution for m = 3 (corresponds to N = 6) is given by

w(x, t) = −2
∂2

∂x2

(

x6 + 60x3t − 720t2
)

.

Note that (4) can be rewritten in the equivalent form

w(x, t) = −2
∂2

∂x2

[

lnPN (x, t)
]

, where PN (x, t) =
N
∏

j=1

[

x − ξj(t)
]

.

��	
References: M. J. Ablowitz and H. Segur (1981), F. Calogero and A. Degasperis (1982).
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6. Self-similar solutions.
6.1. Simplest self-similar solution (degenerate solution):

w(x, t) = −
1
6
x − x0

t − t0
.

where x0 and t0 are arbitrary constants.
6.2. Self-similar solution:

w(x, t) =
[

3(t − t0)
]−2/3

f (y), y =
[

3(t − t0)
]−1/3

(x − x0),

where the function f (y) is determined by the third-order ordinary differential equation

f ′′′

yyy − yf ′

y − 2f − 6ff ′

y = 0. (6)

Equation (6) has a first integral

(y + 2f )[f ′′

yy − (y + 2f )f ] − (1 + f ′

y)f ′

y = C,

where C is the constant of integration. A solution of equation (6) can be represented as

f (y) = g′y(y) + g2(y),

where the function g(y) is any solution of the second Painlevé equation

g′′yy − 2g3 − yg = A, A is an arbitrary constant. (7)

For A = 2−2/3, equation (7) has a solution

g(y) =
d

dy

[

lnF
(

−2−1/3y
)

]

,

where the function F = F (z) satisfies the Airy equation F ′′

zz = zF .
��
Reference: F. Calogero and A. Degasperis (1982).

7. General similarity solutions.
7.1. Solution:

w(x, t) = 2ϕ(z) + 2C1t, z = x + 6C1t
2 + C2t,

where C1 and C2 are arbitrary constants, and the function ϕ(z) is determined by the second-order
ordinary differential equation

ϕ′′

zz = 6ϕ2 − C2ϕ − C1z + C3,

where C3 is an arbitrary constant. To the case C1 = −1, C2 = C3 = 0 there corresponds the first
Painlevé equation (if all Cn are nonzero, the equation for ϕ can also be reduced to the first Painlevé
equation).

7.2. Solution:
w = ϕ2F (z) +

1
6ϕ

(ϕ′

tx + ψ′

t), z = ϕ(t)x + ψ(t).

Here, the functions ϕ = ϕ(t) and ψ = ψ(t) are given by

ϕ(t) = (3At + C1)−1/3, ψ(t) = C2(3At + C1)2/3 + C3(3At + C1)−1/3,

whereA,C1,C2, andC3 are arbitrary constants, and the functionF (z) is determined by the ordinary
differential equation

F ′′′

zzz − 6FF ′

z −AF + 2
3A

2z = 0.
��
Reference: P. A. Clarkson and M. D. Kruskal (1989).
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8. Miura transformation and Bäcklund transformations.
8.1. The Korteweg–de Vries equation can be reduced, with the differential change of variable

(Miura transformation)

w =
∂u

∂x
+ u2, (8)

to the form
∂w

∂t
+
∂3w

∂x3 − 6w
∂w

∂x
=

(

∂

∂x
+ 2u

)(

∂u

∂t
+
∂3u

∂x3 − 6u2 ∂u

∂x

)

= 0.

It follows that any solution u = u(x, t) of the modified Korteweg–de Vries equation

∂u

∂t
+
∂3u

∂x3 − 6u2 ∂u

∂x
= 0 (9)

generates a solution (8) of the Korteweg–de Vries equation.��
References: R. M. Miura (1968), F. Calogero and A. Degasperis (1982).

8.2. The Bäcklund transformations

∂u

∂x
= ε(u2 − w), ε = � 1,

∂u

∂t
= −ε

∂2w

∂x2 + 2
∂

∂x
(uw)

(10)

link solutions of the Korteweg–de Vries equation with those of the modified Korteweg–de Vries
equation (9). With ε = 1, the first relation in (10) turns into the Miura transformation (8).��

References: G. L. Lamb (1974), N. H. Ibragimov (1985).

8.3. The auto-Bäcklund transformation expressed via the potential functions ∂ϕ
∂x

= − 1
2w and

∂ϕ̃
∂x

= − 1
2 w̃ has the form

∂

∂x
(ϕ̃ − ϕ) = k2 − (ϕ̃ − ϕ)2,

∂

∂t
(ϕ̃ − ϕ) = 6(ϕ̃ − ϕ)2 ∂

∂x
(ϕ̃ − ϕ) − 6k2 ∂

∂x
(ϕ̃ − ϕ) −

∂3

∂x3 (ϕ̃ − ϕ),

where k is an arbitrary constant.��
Reference: R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris (1982).

9. Gel’fand–Levitan–Marchenko integral equation.
Any rapidly decreasing function F = F (x, y; t) as x→ +∞ that satisfies simultaneously the two

linear equations
∂2F

∂x2 −
∂2F

∂y2 = 0,

∂F

∂t
+

(

∂

∂x
+
∂

∂y

)3

F = 0

generates a solution of the Korteweg–de Vries equation in the form

w = −2
d

dx
K(x,x; t), (11)

where K(x, y; t) is a solution of the linear Gel’fand–Levitan–Marchenko integral equation

K(x, y; t) + F (x, y; t) +
∫

∞

x

K(x, z; t)F (z, y; t) dz = 0. (12)

Time t appears in this equation as a parameter.
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10. Cauchy problem.
Consider the Cauchy problem for the Korteweg–de Vries equation subject to the initial conditions

w = f (x) at t = 0 (−∞ < x <∞), (13)
where the function f (x) is quite rapidly vanishing as |x|→∞. The solution of the Cauchy problem
falls into several stages.

First stage. Initially, a linear eigenvalue problem is solved for the auxiliary ordinary differential
equation

ψ′′

xx −
[

f (x) − λ
]

ψ = 0. (14)
The eigenvalues fall into two types:

λn = −κ
2
n, n = 1, 2, . . . , N (discrete spectrum),

λ = k2, −∞ < k <∞ (continuous spectrum).
(15)

Let theλn = −κ
2
n be discrete eigenvalues and let theψn =ψn(x) be the corresponding normalized

eigenfunctions, which vanish at infinity and are square summable, so that
∫

∞

−∞
ψ2
n(x) dx = 1.

The leading asymptotic term in the expansion of ψn for large x is given by
ψn → cn exp(−κx) as x→∞. (16)

For continuous spectrum, λ = k2, the wave function ψ at infinity is determined by a linear
combination of the exponentials exp( � ikx) (since f → 0 as |x|→∞). The conditions

ψ → e−ikx + b(k)eikx as x→∞,

ψ → a(k)e−ikx as x→ −∞,
(17)

and equation (14) enable us to uniquely determine the transmission and reflection coefficients a(k)
and b(k); note that |a|2 + |b|2 = 1.

Second stage. At the next stage, one considers the linear Gel’fand–Levitan–Marchenko integral
equation (12), where

F (x, y; t) =
1

2π

∫

∞

−∞
b(k)ei[8k

3t−k(x+y)] dk +
N

∑

n=1

c2
ne

8κ
3
nt−κn(x+y). (18)

It involves the constants κn and cn and the function b(k) determined at the first state; see (15)–(17).
It is apparent from (18) that F (x, y; t) = F (x + y; t).

Third stage. The solution of the integral equation (12), (18) is finally substituted into (11) to
give a solution of the Cauchy problem for the Korteweg–de Vries equation with the initial condition
(13).

Remark. Solving the Cauchy problem for the given nonlinear equation is reduced to solving
two linear problems sequentially.���

References: R. M. Miura (1977), F. Calogero and A. Degasperis (1982), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii,
and V. E. Zakharov (1984).

11. Conservation laws and motion integrals.
11.1. The Korteweg–de Vries equation has infinitely many conservation laws. The simplest

conservation laws are expressed as
Dt(w) +Dx

(

wxx − 3w2) = 0,

Dt

( 1
2w

2) +Dx

(

wwxx − 1
2w

2
x − 2w3) = 0,

Dt

(

w2
x + 2w3) +Dx

(

2wxwxxx − w2
xx + 6w2wxx − 12ww2

x − 9w4) = 0,

Dt

(

3tw2 + xw
)

+Dx

[

t
(

6wwxx − 3w2
x − 12w3) − wx + xwxx − 3xw2] = 0,

where Dt = ∂
∂t

, Dx = ∂
∂x

.���
References: G. B. Whitham (1965), R. M. Miura, C. S. Gardner, and M. D. Kruskal (1968), N. H. Ibragimov (1994).
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11.2. The Korteweg–de Vries equation has infinitely many motion integrals:

In =
∫

∞

−∞
Pn(w,wx, . . . ) dx = const, n = 0, 1, 2, . . . ,

where Pn is a polynomial in w and its derivatives; w is assumed to decay rapidly as |x| → ∞. In
particular, the first four polynomials are as follows:

P0 = w, P1 = w2, P2 = w2
x + 2w3, P3 = 1

2

(

w2
xx − 5w2wxx + 5w4).���

References for equation 9.1.1.1: C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura (1967, 1974), R. M. Miura
(1968), P. D. Lax (1968), R. Hirota (1971, 1972), V. E. Zakharov and L. D. Faddeev (1971), C. P. Novikov (1974),
R. K. Bullough and P. J. Caudrey (1980), G. L. Lamb (1980), M. J. Ablowitz and H. Segur (1981), F. Calogero and
A. Degasperis (1982), R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris (1982), S. P. Novikov, S. V. Manakov,
L. B. Pitaevskii, and V. E. Zakharov (1984), G. W. Bluman and S. Kumei (1989), M. J. Ablowitz and P. A. Clarkson (1991),
R. S. Palais (1997).

2.
∂w

∂t
+ a

∂3w

∂x3
+ bw

∂w

∂x
= 0.

Unnormalized Korteweg–de Vries equation.

1◦. Suppose w(x, t) is a solution of the Korteweg–de Vries equation. Then the function

w1 = C2
1w(C1x − bC1C2t + C3,C3

1 t + C4) + C2,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Consider the Cauchy problem with the initial condition

w = f (x) at t = 0 (−∞ < x <∞),

where the function f (x) decays quite rapidly as |x|→∞.
The asymptotic solution as t→∞ (for sufficiently large x) is the sum of solitons

w(x, t) = 2
N

∑

n=1

|λn| cosh−2
[

√

b|λn|
6a

(

x − 2
3 b|λn|t + cn

)

]

,

where the λn are discrete eigenvalues of the linear Schrödinger equation

Ψ
′′

xx +
b

6a
[

λ + f (x)
]

Ψ = 0, Ψ( � ∞) = 0.
���

References: C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura (1974), G. I. Barenblatt (1989).

3◦. The transformation w(x, t) = −
6a
b
u(x, τ ), τ = at leads to the Korteweg–de Vries equation in

canonical form 9.1.1.1:
∂u

∂τ
+
∂3u

∂x3 − 6u
∂u

∂x
= 0.

9.1.2. Cylindrical, Spherical, and Modified Korteweg–de Vries
Equations

1.
∂w

∂t
+

∂3w

∂x3
– 6w

∂w

∂x
+

1
2t

w = 0.

Cylindrical Korteweg–de Vries equation. This is a special case of equation 9.1.2.3 for a = 1, b = −6,
and k = 1

2 .
The transformation

w(x, t) = −
x

12t
−

1
2t
u(z, τ ), x =

z

τ
, t = −

1
2τ 2

leads to the Korteweg–de Vries equation in canonical form 9.1.1.1:
∂u

∂τ
+
∂3u

∂z3 − 6u
∂u

∂z
= 0.

���
References: R. S. Johnson (1979), F. Calogero and A. Degasperis (1982), G. W. Bluman and S. Kumei (1989).
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2.
∂w

∂t
+

∂3w

∂x3
– 6w

∂w

∂x
+

1
t
w = 0.

Spherical Korteweg–de Vries equation. This is a special case of equation 9.1.2.3 for a = 1, b = −6,
and k = 1.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C2
1w

(

C1x + 6C1C2 ln |t| + C3, C3
1 t

)

+ C2t
−1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution linear in x:

w(x, t) =
C1 − x

t(C2 + 6 ln |t|)
.

3◦. Self-similar solution:
w(x, t) = t−2/3u(z), z = xt−1/3,

where the function u = u(z) is determined by the ordinary differential equation

au′′′zzz + buu′z − 1
3 zu

′

z + 1
3u = 0.

3.
∂w

∂t
+ a

∂3w

∂x3
+ bw

∂w

∂x
+

k

t
w = 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C2
1w

(

C1x −
bC1C2

1 − k
t1−k + C3, C3

1 t

)

+ C2t
−k,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution linear in x:

w(x, t) =
(1 − k)x + C1

C2tk + bt
.

3◦. Self-similar solution:
w(x, t) = t−2/3u(z), z = xt−1/3,

where the function u = u(z) is determined by the ordinary differential equation

au′′′zzz + buu′z − 1
3 zu

′

z +
(

k − 2
3

)

u = 0.

4.
∂w

∂t
+

∂3w

∂x3
– 6w2 ∂w

∂x
= 0.

Modified Korteweg–de Vries equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C1x + C2,C3
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Self-similar solution (x0 and t0 are arbitrary constants):

w(x, t) =
[

3(t − t0)
]−1/3

f (y), y =
[

3(t − t0)
]−1/3(x − x0),

where the function f (y) is determined by the third-order ordinary differential equation

f ′′′

yyy − yf ′

y − f − 6f 2f ′

y = 0.
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Integrating yields the second Painlevé equation (a is an arbitrary constant):

f ′′

yy − 2f 3 − yf = a.

3◦. Suppose w(x, t) is a solution of the equation in question. Then the function u(x, t) obtained
with the Miura transformation

u(x, t) =
∂w

∂x
+ w2 (1)

satisfies the Korteweg–de Vries equation 9.1.1.1:

∂u

∂t
+
∂3u

∂x3 − 6u
∂u

∂x
= 0. (2)

In general, the converse is not true: if u(x, t) is a solution of the Korteweg–de Vries equation (2), the function w(x, t)
linked to it with the Miura transformation (1) satisfies the nonlinear integro-differential equation

∂w

∂t
+
∂3w

∂x3 − 6w2 ∂w

∂x
= c(t) exp

[
−2

∫
w(x, t) dx

]
.

4◦. Solutions of the modified Korteweg–de Vries equation

∂w

∂t
+
∂3w

∂x3 − 6σw2 ∂w

∂x
= 0, σ = � 1 (3)

may be obtained from solutions of the linear Gel’fand–Levitan–Marchenko integral equation. Any
function F = F (x, y; t) rapidly decaying as x → +∞ and satisfying simultaneously the two linear
equations

∂F

∂x
−
∂F

∂y
= 0,

∂F

∂t
+

(

∂

∂x
+
∂

∂y

)3

F = 0,
(4)

generates a solution of equation (3) in the form

w = K(x,x; t),

where K(x, y; t) is a solution of the linear Gel’fand–Levitan–Marchenko integral equation,

K(x, y; t) = F (x, y; t) +
σ

4

∫

∞

x

∫

∞

x

K(x, z; t)F (z,u; t)F (u, y; t) dzdu. (5)

Time t appears in (5) as a parameter. It follows from the first equation in (4) thatF (x, y; t)=F (x+y; t).���
References: M. J. Ablowitz and H. Segur (1981), F. Calogero and A. Degasperis (1982).

5◦. Conservation laws:

Dt(w) +Dx

(

wxx − 2w3) = 0,

Dt

( 1
2w

2) +Dx

(

wwxx − 1
2w

2
x − 3

2w
4) = 0,

where Dt = ∂
∂t

and Dx = ∂
∂x

.���
References: G. B. Whitham (1965), R. M. Miura, C. S. Gardner, and M. D. Kruskal (1968).

5.
∂w

∂t
+

∂3w

∂x3
+ 6w2 ∂w

∂x
= 0.

Modified Korteweg–de Vries equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C1x + C2,C3
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.
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2◦. One-soliton solution:

w(x, t) = a +
k2

√

4a2 + k2 cosh z + 2a
, z = kx − (6a2k + k3)t + b,

where a, b, and k are arbitrary constants.
���

Reference: M. J. Ablowitz and H. Segur (1981).

3◦. Two-soliton solution:

w(x, t) = 2
a1e

θ1 + a2e
θ2 +Aa2e

2θ1+θ2 +Aa1e
θ1+2θ2

1 + e2θ1 + e2θ2 + 2(1 −A)eθ1+θ2 +Ae2(θ1+θ2) ,

θ1 = a1 − a3
1t + b1, θ2 = a2 − a3

2t + b2, A =
(

a1 − a2

a1 + a2

)2

,

where a1, a2, b1, and b2 are arbitrary constants.
���

Reference: R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris (1982).

4◦. Rational solutions (algebraic solitons):

w(x, t) = a −
4a

4a2z2 + 1
, z = x − 6a2t,

w(x, t) = a −
12a

(

z4 + 3
2 a

−2z2 − 3
16a

−4 − 24tz
)

4a2
(

z3 + 12t − 3
4 a

−2z
)2 + 3

(

z2 + 1
4 a

−2
)2 ,

where a is an arbitrary constant.
���

References: H. Ono (1976), M. J. Ablowitz and H. Segur (1981).

9.1.3. Generalized Korteweg–de Vries Equation
∂w
∂t

+ a∂3w
∂x3 + f (w) ∂w

∂x
= 0

Preliminary remarks. For f (w) = bw, see equations 9.1.1.1 and 9.1.1.2; for f (w) = bw2, see
equations 9.1.2.4 and 9.1.2.5.

1◦. Equations of this form admit traveling-wave solutions

w = w(z), z = kx + λt,

where k and λ are arbitrary constants, and the function w(z) is determined by the second-order
autonomous ordinary differential equation (C is an arbitrary constant)

αk3w′′

zz + k
∫

f (w) dw − λw = C.

2◦. Conservation laws:

Dt

(

w
)

+Dx

[

αwxx + F0(w)
]

= 0,

Dt

( 1
2w

2) +Dx

[

αwwxx − 1
2αw

2
x + F1(w)

]

= 0,

where

Dt =
∂

∂t
, Dx =

∂

∂x
, F0(w) =

∫

f (w) dw, F1(w) =
∫

wf (w) dw.
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1.
∂w

∂t
+

∂3w

∂x3
+ awk ∂w

∂x
= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C2/k
1 w(C1x + C2,C3

1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution (soliton):

w(x, t) =
A

cosh2/k[Bk(x − 4B2t − C)
] ,

where B and C are arbitrary constants and A =
[

2(k + 1)(k + 2)B2/a
]1/k.

3◦. Self-similar solution:
w(x, t) = t−

2
3k U (z), z = xt−

1
3 ,

where the function U = U (z) is determined by the ordinary differential equation

−
2

3k
U −

1
3
zU ′

z + U ′′′

zzz + aUkU ′

z = 0.

4◦. Conservation laws:

Dtw +Dx

(

wxx +
a

k + 1
wk+1

)

= 0,

Dt

(

w2) +Dx

(

2wwxx − w2
x +

2a
k + 2

wk+2
)

= 0.
���

Reference: M. J. Ablowitz and H. Segur (1981).

2.
∂w

∂t
+

∂3w

∂x3
+ aew ∂w

∂x
= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(C1x + C2,C3
1 t + C3) + 2 ln |C1|,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:
w = w(z), z = x + λt,

where the functionw(z) is determined by the second-order autonomous ordinary differential equation

w′′

zz + λw + aew = C,

and λ and C are arbitrary constants.

3◦. Solution:
w(x, t) = U (ξ) − 2

3 ln t, ξ = xt−
1
3 ,

where the function U = U (ξ) is determined by the ordinary differential equation

U ′′′

ξξξ +
(

aeU − 1
3 ξ

)

U ′

ξ − 2
3 = 0.

3.
∂w

∂t
= a

∂3w

∂x3
+ (b ln w + c)

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = exp
[

C2 − x
bt + C1

+
a

b

1
(bt + C1)2 −

c

b

]

,

where C1 and C2 are arbitrary constants.���
References: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991), V. A. Galaktionov (1999).
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4.
∂w

∂t
= a

∂3w

∂x3
+ (b arcsinh w + c)

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = sinh
[

C2 − x
bt + C1

+
a

b

1
(bt + C1)2 −

c

b

]

,

where C1 and C2 are arbitrary constants.���
Reference: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991).

5.
∂w

∂t
= a

∂3w

∂x3
+ (b arccosh w + c)

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = cosh
[

C2 − x
bt + C1

+
a

b

1
(bt + C1)2 −

c

b

]

,

where C1 and C2 are arbitrary constants.

6.
∂w

∂t
= a

∂3w

∂x3
+ (b arcsin w + c)

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = sin
[

C2 − x
bt + C1

−
a

b

1
(bt + C1)2 −

c

b

]

,

where C1 and C2 are arbitrary constants.���
Reference: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991).

7.
∂w

∂t
= a

∂3w

∂x3
+ (b arccos w + c)

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = cos
[

C2 − x
bt + C1

−
a

b

1
(bt + C1)2 −

c

b

]

,

where C1 and C2 are arbitrary constants.

9.1.4. Equations Reducible to the Korteweg–de Vries Equation

1.
∂w

∂t
+ a

∂3w

∂x3
+ bw

∂w

∂x
= f (t).

The transformation

w = u(z, t) +
∫ t

t0

f (τ ) dτ , z = x − b
∫ t

t0

(t − τ )f (τ ) dτ ,

where t0 is any, leads to an equation of the form 9.1.1.2:

∂u

∂t
+ a

∂3u

∂x3 + bu
∂u

∂x
= 0.
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2.
∂w

∂t
+ a

∂3w

∂x3
+

[

bw2 + f (t)
] ∂w

∂x
= 0.

The transformation

w = ku(z, t), z = a−1/3x − a−1/3
∫

f (t) dt, k =
√

|6a1/3b−1|,

leads to an equation of the form 9.1.2.4 or 9.1.2.5:

∂u

∂t
+
∂3u

∂z3 + 6 sign(ab)u2 ∂u

∂z
= 0.

3.
∂w

∂t
+

∂3w

∂x3
– a

(

∂w

∂x

)2

= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(C1x + 2aC1C2t + C3,C3
1 t + C4) + C2x + aC2

2 t + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. The Bäcklund transformation
∂w

∂x
=

3
a
u,

∂w

∂t
= −

3
a

∂2u

∂x2 +
9
a
u2 (1)

links the equation in question with the Korteweg–de Vries equation 9.1.1.1:

∂u

∂t
+
∂3u

∂x3 − 6u
∂u

∂x
= 0. (2)

Let u = u(x, t) be a solution of equation (2). Then the linear system of first-order equations (1)
enables us to find the corresponding solution w = w(x, t) of the original equation.���

Reference: N. H. Ibragimov (1985).

4.
∂w

∂t
+

∂3w

∂x3
– a

(

∂w

∂x

)2

= f (t).

The substitution w = u(x, t) +
∫

f (t) dt leads to an equation of the form 9.1.4.3:

∂u

∂t
+
∂3u

∂x3 − a
(

∂u

∂x

)2

= 0.

5.
∂w

∂t
+

∂3w

∂x3
– a

(

∂w

∂x

)3

= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the functions

w1 =  w(C1x + C2,C3
1 t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, are also solutions of the equation.

2◦. The Bäcklund transformation
∂w

∂x
= bu,

∂w

∂t
= −b

∂2u

∂x2 + 2bu3, where b =  
√

2/a , (1)

links the equation in question with the modified Korteweg–de Vries equation 9.1.2.4:

∂u

∂t
+
∂3u

∂x3 − 6u2 ∂u

∂x
= 0. (2)

Let u = u(x, t) be a solution of equation (2). Then the linear system of first-order equations (1)
enables us to find the corresponding solution w = w(x, t) of the original equation.���

Reference: N. H. Ibragimov (1985).
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6.
∂w

∂t
+

∂3w

∂x3
– a

(

∂w

∂x

)3

= f (t).

The substitution w = u(x, t) +
∫

f (t) dt leads to an equation of the form 9.1.4.5:

∂u

∂t
+
∂3u

∂x3 − a
(

∂u

∂x

)3

= 0.

7.
∂w

∂t
=

∂3w

∂x3
–

1
8

(

∂w

∂x

)3

–
(

aew + be–w
) ∂w

∂x
.

Solutions can be found from the first-order equation
∂w

∂x
−

4
√

6
(√

a ew/2 +
√

b e−w/2) = 4u, (1)

where the function u = u(x, t) satisfies
∂u

∂t
=
∂3u

∂x3 +
(

λ − 6u2) ∂u

∂x
, λ = −2

√

ab. (2)

Equation (1) can be treated as an ordinary differential equation for x with parameter t. In the special
cases a = 0 or b = 0, equation (2) coincides with the modified Korteweg–de Vries equation 9.1.2.4.!�"

Reference: N. H. Ibragimov (1985).

8.
∂w

∂t
= w3 ∂3w

∂x3
.

Harry Dym equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function
w1 = C1w(C2x + C3,C3

1C
3
2 t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. There are solutions of the following forms:
w = U (z), z = x + λt =⇒ U ′′

zz + 1
2λU

−2 = C;

w = t−λ−1/3U (z), z = xtλ =⇒ U 3U ′′′

zzz − λzU ′

z +
(

λ + 1
3

)

U = 0;

w = e−λtU (z) z = xeλt =⇒ U 3U ′′′

zzz − λzU ′

z + λU = 0;

w = t−1/3U (z), z = x + λ ln |t| =⇒ U 3U ′′′

zzz − λU ′

z + 1
3U = 0;

where λ and C are arbitrary constants. The first solution represents a traveling wave and the second
one is a self-similar solution.

3◦. We now show that the equation in question is connected with the Korteweg–de Vries equation
∂u

∂t
=
∂3u

∂y3 + u
∂u

∂y
. (1)

The substitution

u = 3
(

∂v

∂y

)−1
∂3v

∂y3 −
3
2

(

∂v

∂y

)−2(
∂2v

∂y2

)2

brings (1) to the form
∂v

∂t
=
∂3v

∂y3 −
3
2

(

∂v

∂y

)−1(
∂2v

∂y2

)2

. (2)

Differentiating (2) with respect to y yields

∂2v

∂y∂t
=
∂4v

∂y4 − 3
(

∂v

∂y

)−1
∂2v

∂y2
∂3v

∂y3 +
3
2

(

∂v

∂y

)−2(
∂2v

∂y2

)3

.

The transformation x = v, w = ∂v
∂y

leads to the original equation.!�"
Reference: N. H. Ibragimov (1985).
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9.1.5. Equations of the Form ∂w
∂t

+ a∂3w
∂x3 + f

(
w, ∂w

∂x

)
= 0

I For f (w,u) = bu2 and f (w,u) = bu3, see equations 9.1.4.3 and 9.1.4.5, respectively. Equations
of this form admit traveling-wave solutions, w = w(kx + λt).

1.
∂w

∂t
+ a

∂3w

∂x3
+ bw

∂w

∂x
+ cw = 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

x + bC1e
−ct + C2, t + C3

)

+ cC1e
−ct,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = U (z) + C1e

−ct, z = x + bC1e
−ct + C2t,

where C1 and C2 are arbitrary constants, and the function U (z) is determined by the autonomous
ordinary differential equation

aU ′′′

zzz + (bU + C2)U ′

z + cU = 0.

To the special case C1 = 0 there corresponds a traveling-wave solution.

2.
∂w

∂t
=

∂3w

∂x3
+ a

(

∂w

∂x

)2

+ bw2.

1◦. Generalized separable solutions for ab < 0:

w(x, t) =
C2

(t + C1)2 exp(λx + λ3t) −
1

b(t + C1)
, λ = #

√

−
b

a
,

where C1 and C2 are arbitrary constants.

2◦. Generalized separable solution for ab < 0:

w(x, t) =
1
2

(

1
bt + C1

−
1

bt + C2

)

cosh(λx + λ3t + C3) −
1
2

(

1
bt + C1

+
1

bt + C2

)

, λ =
√

−
b

a
,

where C1, C2, and C3 are arbitrary constants.

3◦. Generalized separable solution for ab > 0:

w(x, t) =
1
2

(

1
bt + C1

−
1

bt + C2

)

sin(λx − λ3t + C3) −
1
2

(

1
bt + C1

+
1

bt + C2

)

, λ =
√

b

a
,

where C1, C2, and C3 are arbitrary constants.$�%
References: V. A. Galaktionov and S. A. Posashkov (1989), A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂w

∂t
+ a

∂3w

∂x3
+ bw

(

∂w

∂x

)k

= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C3−k
1 w(Ck1 x + C2,C3k

1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution linear in x:

w = x(kbt)−1/k + Ct−1/k.

3◦. Self-similar solution:
w = t

k−3
3k U (z), z = xt−

1
3 ,

where the function U = U (z) is determined by the ordinary differential equation
k − 3
3k

U −
1
3
zU ′

z + bU (U ′

z)
k + aU ′′′

zzz = 0.
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4.
∂w

∂t
+ a

∂3w

∂x3
+

(

b1w
2–k

2 + b2w
1–k

2

)(

∂w

∂x

)k

= 0.

Degenerate solution quadratic in x:

w(x, t) =
[

x

2

(

kb1t

2

)−1/k

+ Ct−1/k −
b2

b1

]2

.
&�'

Reference: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991).

5.
∂w

∂t
+ a

∂3w

∂x3
+ (b1 ln w + b2)w1–k

(

∂w

∂x

)k

= 0.

Generalized traveling-wave solutions:

w =















exp
[

−a
k(kb1)−3/k

k − 2
t(k−3)/k −

b2

b1
+ Ct−1/k + (kb1t)−1/kx

]

if k ≠ 2,

exp
[

−a(2b1)−3/2t−1/2 ln t −
b2

b1
+ Ct−1/2 + (2b1t)−1/2x

]

if k = 2,

where C is an arbitrary constant.&�'
Reference: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991).

6.
∂w

∂t
–

∂3w

∂x3
+ (b1 arcsin w + b2)(1 – w2)

1–k
2

(

∂w

∂x

)k

= 0.

Generalized traveling-wave solutions:

w =















sin
[

−
k(kb1)−3/k

k − 2
t(k−3)/k −

b2

b1
+ Ct−1/k + (kb1t)−1/kx

]

if k ≠ 2,

sin
[

−(2b1)−3/2t−1/2 ln t −
b2

b1
+ Ct−1/2 + (2b1t)−1/2x

]

if k = 2,

where C is an arbitrary constant.&�'
Reference: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991).

7.
∂w

∂t
–

∂3w

∂x3
+ (b1 arcsinh w + b2)(1 + w2)

1–k
2

(

∂w

∂x

)k

= 0.

Generalized traveling-wave solutions:

w =















sinh
[

k(kb1)−3/k

k − 2
t(k−3)/k −

b2

b1
+ Ct−1/k + (kb1t)−1/kx

]

if k ≠ 2,

sinh
[

(2b1)−3/2t−1/2 ln t −
b2

b1
+ Ct−1/2 + (2b1t)−1/2x

]

if k = 2,

where C is an arbitrary constant.&�'
Reference: W. I. Fushchich, N. I. Serov, and T. K. Akhmerov (1991).

9.1.6. Equations of the Form ∂w
∂t

+ a∂3w
∂x3 + F

(
x, t, w, ∂w

∂x

)
= 0

1.
∂w

∂t
= a

∂3w

∂x3
+ (bx + c)

∂w

∂x
+ f (w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.
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2◦. Generalized traveling-wave solution:

w = w(z), z = x + Ce−bt,

where C is an arbitrary constant and the function w(z) is determined by the ordinary differential
equation

aw′′′

zzz + (bz + c)w′

z + f (w) = 0.

2.
∂w

∂t
+ a

∂3w

∂x3
+ f (t)w

∂w

∂x
+ g(t)w = 0.

Suppose w(x, t) is a solution of this equation. Then the function

w1 = w
(

x + C1ψ(t) + C2, t
)

− C1ϕ(t),

where

ϕ(t) = exp
[

−
∫

g(t) dt
]

, ψ(t) =
∫

f (t)ϕ(t) dt,

is also a solution of the equation (C1 and C2 are arbitrary constants).

3.
∂w

∂t
= a

∂3w

∂x3
+ [f (t) ln w + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = exp[ϕ(t)x + ψ(t)],

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕ2(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.*

4.
∂w

∂t
= a

∂3w

∂x3
+ [f (t) arcsinh(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

sinh
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕ2(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

5.
∂w

∂t
= a

∂3w

∂x3
+ [f (t) arccosh(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

cosh
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕ2(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

* The constant a in equations 9.1.6.2 to 9.1.6.6 and their solutions can be replaced by an arbitrary function of time,
a = a(t).
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6.
∂w

∂t
= a

∂3w

∂x3
+ [f (t) arcsin(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

sin
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) − aϕ2(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

7.
∂w

∂t
= a

∂3w

∂x3
+ [f (t) arccos(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

cos
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) − aϕ2(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂3w

∂x3
+ b

(

∂w

∂x

)2

+ cw + f (t).

1◦. Degenerate solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕk = ϕk(t) satisfy an appropriate system of ordinary differential equations.

2◦. Solution:
w(x, t) = Aect + ect

∫

e−ctf (t) dt + θ(z), z = x + λt,

where A and λ are arbitrary constants, and the function θ(z) is determined by the autonomous
ordinary differential equation

aθ′′′zzz + b
(

θ′z
)2 − λθ′z + cθ = 0.

3◦. The substitution
w = U (x, t) + ect

∫

e−ctf (t) dt

leads to the simpler equation

∂U

∂t
= a

∂3U

∂x3 + b
(

∂U

∂x

)2

+ cU .

9.1.7. Burgers–Korteweg–de Vries Equation and Other Equations

1.
∂w

∂t
+ w

∂w

∂x
+ a

∂3w

∂x3
= b

∂2w

∂x2
.

Burgers–Korteweg–de Vries equation. It describes nonlinear waves in dispersive-dissipative media
with instabilities, waves arising in thin films flowing down an inclined surface, changes of the
concentration of substances in chemical reactions, etc.(�)

References: Y. Kuramoto and T. Tsuzuki (1976), B. J. Cohen, J. A. Krommes, W. M. Tang, and M. N. Rosenbluth
(1976), V. Ya. Shkadov (1977), J. Topper and T. Kawahara (1978), G. I. Sivashinsky (1983).
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1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x − C1t + C2, t + C3) + C1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution:

w(x, t) =
x + C1

t + C2
.

3◦. Traveling-wave solutions:

w(x, t) = C1 −
12b2

25a(1 + C2ey)2 , y = −
b

5a
x +

(

b

5a
C1 −

6b3

125a2

)

t;

w(x, t) = C1 −
12b2

25a(1 − C2ey)2 , y = −
b

5a
x +

(

b

5a
C1 −

6b3

125a2

)

t;

w(x, t) = C1 +
12b2

25a
1 + 2C2e

z

(1 + C2ez)2 , z =
b

5a
x −

(

b

5a
C1 +

6b3

125a2

)

t;

where C1 and C2 are arbitrary constants.*�+
Reference: N. A. Kudryashov (1990 a).

4◦. Traveling-wave solutions:

w(x, t) = C1 , 12b2

25a
ξ2ϕ(ξ), ξ = C2 exp

[

b

5a
x +

(

6b3

125a2 −
b

5a
C1

)

t

]

,

where the function ϕ(ξ) is defined implicitly by

ξ =
∫

dϕ
√ -

(4ϕ3 − 1)
− C3,

and C1, C2, and C3 are arbitrary constants. For the upper sign, the inversion of this relation leads to
the classical Weierstrass elliptic function, ϕ(ξ) = ℘(ξ + C3, 0, 1).*�+

Reference: N. A. Kudryashov (1990 a).

5◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x − C1t

2 + C2t,

where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the second-order
ordinary differential equation (C3 is an arbitrary constant)

aU ′′

ζζ − bU ′

ζ + 1
2U

2 + C2U = −2C1ζ + C3.

To the special case C1 = 0 there corresponds a traveling-wave solution.

2.
∂w

∂t
= a

∂2

∂x2

(

w–3/2 ∂w

∂x

)

.

Modified Harry Dym equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C2
1C

−2
2 w(C1x + C3,C3

2 t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. The transformation u = w−1/2, τ = at leads to an equation of the form 9.1.4.8:

∂u

∂τ
= u3 ∂

3u

∂x3 .

3◦. The equation is invariant under the transformation

dx̄ = w dx + [a(w−3/2wx)x] dt, dt̄ = dt, w̄ = 1/w.

Page 533

© 2004 by Chapman & Hall/CRC



534 THIRD-ORDER EQUATIONS

TABLE 3
Some integrable nonlinear third-order equations of the form 9.1.7.4

Type of generated equation Form of generated equation Solvable equation of the form (3)

Linear equation ∂w
∂t

= a ∂
3w
∂x3

∂u
∂t

= ∂2

∂z2

(

a
u3

∂u
∂z

)

Korteweg–de Vries
equation 9.1.1.2

∂w
∂t

= a ∂
3w
∂x3 − bw ∂w

∂x
∂u
∂t

= ∂2

∂z2

(

a
u3

∂u
∂z

)

− b
2u2

∂u
∂z

Modified Korteweg–de Vries
equation 9.1.2.4

∂w
∂t

= a ∂
3w
∂x3 − bw2 ∂w

∂x
∂u
∂t

= ∂2

∂z2

(

a
u3

∂u
∂z

)

− 2b
3u3

∂u
∂z

3.
∂w

∂t
=

∂2

∂x2

[

f (w)
∂w

∂x

]

+
a

f (w)
+ b.

Functional separable solution in implicit form:
∫

f (w) dw = at −
1
6
bx3 + C1x

2 + C2x + C3,

where C1, C2, and C3 are arbitrary constants.

4.
∂w

∂t
=

∂2

∂x2

[

f (w)
∂w

∂x

]

+ g(w)
∂w

∂x
.

1◦. Traveling-wave solution:
w = w(z), z = kx + λt,

where k and λ are arbitrary constants, and the function w(z) is determined by the autonomous
ordinary differential equation (C is an arbitrary constant)

k3[f (w)w′

z]′z + kG(w) − λw + C = 0, G(w) =
∫

g(w) dw.

The substitution U (w) = f (w)w′

z leads to a first-order separable equation.

2◦. The transformation

dz = w dx +
{

[f (w)wx]x +G(w)
}

dt, dτ = dt, u = 1/w
(

dz =
∂z

∂x
dx +

∂z

∂t
dt

)

(1)

leads to an equation of the similar form
∂u

∂τ
=
∂2

∂z2

[

Φ(u)
∂u

∂z

]

+ Ψ(u)
∂u

∂z
, (2)

where

Φ(u) =
1
u3 f

(

1
u

)

, Ψ(u) =
1
u
g

(

1
u

)

−G
(

1
u

)

, G(w) =
∫

g(w) dw.

The inverse of transformation (1) is written out as

dx =
1
w
dz −

1
w

{

w[wf (w)wz]z +G(w)
}

dτ , dt = dτ , w = 1/u.

Table 3 lists some solvable equations of the form (2) generated by known solvable third-order
equations.

Equation (2) can be reduced to the form (see equation 9.1.7.5)
∂v

∂τ
= ϕ(v)

∂3v

∂z3 + ψ(v)
∂v

∂z
, (3)

where
v =

∫

wf (w) dw, ϕ(v) = w3f (w), ψ(v) = wg(w) −G(w).
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TABLE 4
Some integrable nonlinear third-order equations of the form 9.1.7.5; k = (8/a)1/2

Type of generated equation Form of generated equation Solvable equation of the form (3)

Linear equation ∂w
∂t

= a ∂
3w
∂x3

∂U
∂t

= kU 3/2 ∂3U
∂z3

Korteweg–de Vries
equation 9.1.1.2

∂w
∂t

= a ∂
3w
∂x3 − bw ∂w

∂x
∂U
∂t

= kU 3/2 ∂3U
∂z3 − bU ∂U

∂z

Modified Korteweg–de Vries
equation 9.1.2.4

∂w
∂t

= a ∂
3w
∂x3 − bw2 ∂w

∂x
∂U
∂t

= kU 3/2 ∂3U
∂z3 − 2bk

3a U
3/2 ∂U

∂z

3◦. Conservation laws:
Dt(w) +Dx

{

−[f (w)wx]x −G(w)
}

= 0,

Dt

[

Φ(w)
]

+Dx

{

−F (w)[f (w)wx]x + 1
2 [f (w)wx]2 − Ψ(w)

}

= 0,

where

Dt =
∂

∂t
, Dx =

∂

∂x
, G(w) =

∫

g(w) dw, F (w) =
∫

f (w) dw,

Φ(w) =
∫

F (w) dw, Ψ(w) =
∫

F (w)g(w) dw.

5.
∂w

∂t
= f (w)

∂3w

∂x3
+ g(w)

∂w

∂x
.

1◦. Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation (C is an arbitrary constant)

w′′

zz =
∫

λ − g(w)
f (w)

dw + C,

which is easy to integrate.

2◦. Conservation law:
Dt

[

ϕ(w)
]

+Dx

[

−wxx − ψ(w)
]

= 0,
where

Dt =
∂

∂t
, Dx =

∂

∂x
, ϕ(w) =

∫

dw

f (w)
, ψ(w) =

∫

g(w)
f (w)

dw. (1)

3◦. The transformation

dz = ϕ(w) dx +
[

wxx + ψ(w)
]

dt, dτ = dt, U =
∫

ϕ(w) dw
(

dz =
∂z

∂x
dx +

∂z

∂t
dt

)

(2)

leads to an equation of the similar form

∂U

∂τ
= F (U )

∂3U

∂z3 +G(U )
∂U

∂z
. (3)

The functions F (U ) and G(U ) in (3) are defined parametrically by

F (U ) = f (w)ϕ3(w), G(U ) = g(w)ϕ(w) − ψ(w), U =
∫

ϕ(w) dw,

where ϕ(w) and ψ(w) are defined in (1).
Table 4 presents some solvable equations of the form (3) generated by known solvable third-order

equations.
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4◦. The substitution ϕ =
∫

dw

f (w)
leads to an equation of the form 9.1.7.4:

∂ϕ

∂t
=
∂2

∂x2

[

F(ϕ)
∂ϕ

∂z

]

+ G(ϕ)
∂ϕ

∂z
,

where the functions F and G are given by

F(ϕ) = f (w), G(ϕ) = g(w), ϕ =
∫

dw

f (w)
.

6.
∂w

∂t
= f (w)

∂3w

∂x3
+

[

g(w) + ax
] ∂w

∂x
+ h(w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−at, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + Ce−at,

where C is an arbitrary constant and the function w(z) is determined by the ordinary differential
equation

f (w)w′′′

zzz + [g(w) + az]w′

z + h(w) = 0.

7. w
∂w

∂t
+ a

∂w

∂x
+ bw

∂3w

∂x3
= 0.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C−2
1 w(C1x + C2,C3

1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:
w = U (ξ), ξ = x + λt,

where λ is an arbitrary constant and the function U = U (ξ) is determined by the second-order
autonomous ordinary differential equation

bU ′′

ξξ + a ln |U | + λU = C1.

3◦. Self-similar solution:
w = t2/3u(z), z = xt−1/3,

where the function u = u(z) is determined by the ordinary differential equation

buu′′′zzz − 1
3 zuu

′

z + au′z + 2
3u

2 = 0.

9.2. Equations Involving the Second Derivative in t

9.2.1. Equations with Quadratic Nonlinearities

1.
∂2w

∂t2
= a

∂3w

∂x3
+ bw

∂2w

∂x2
+ c.

This is a special case of equation 11.3.5.3 with n = 3.
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1◦. Traveling-wave solution:
w(x, t) = u(ξ), ξ = βx + λt,

where β and λ are arbitrary constants, and the function u = u(ξ) is determined by the autonomous
ordinary differential equation

aβ3u′′′ξξξ + (bβ2u − λ2)u′′ξξ + c = 0.

2◦. Solution:
w = U (z) + 4bC2

1 t
2 + 4bC1C2t, z = x + bC1t

2 + bC2t,
where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

aU ′′′

zzz + bUU ′′

zz − b2C2
2U

′′

zz − 2bC1U
′

z + c − 8bC2
1 = 0.

2.
∂2w

∂t2
= a

∂3w

∂x3
+ b

∂

∂x

(

w
∂w

∂x

)

+ c.

This is a special case of equation 11.3.5.3 with n = 3.

1◦. Traveling-wave solution:
w(x, t) = u(ξ), ξ = βx + λt,

where β and λ are arbitrary constants, and the function u = u(ξ) is determined by the autonomous
ordinary differential equation

aβ3u′′′ξξξ + bβ2(uu′ξ)
′

ξ − λ2u′′ξξ + c = 0. (1)

2◦. Solution:
w = U (z) + 4bC2

1 t
2 + 4bC1C2t, z = x + bC1t

2 + bC2t,
where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

aU ′′′

zzz + b(UU ′

z)′z − b2C2
2U

′′

zz − 2bC1U
′

z + c − 8bC2
1 = 0. (2)

Remark. Equations (1) and (2) can each be integrated once with respect to the independent
variable.

3.
∂2w

∂t2
= a

∂3w

∂x3
+ b

(

∂w

∂x

)2

+ f (t).

This is a special case of equation 11.3.3.4 with n = 3.

1◦. Additive separable solution:

w(x, t) = 1
2At

2 +Bt + C +
∫ t

0
(t − τ )f (τ ) dτ + ϕ(x).

Here, A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′′

xxx + b(ϕ′

x)2 −A = 0,
whose order can be reduced with the change of variable U (x) = ϕ′

x.

2◦. The substitution

w = u(x, t) +
∫ t

0
(t − τ )f (τ ) dτ

leads to the simpler equation
∂2u

∂t2
= a

∂3u

∂x3 + b
(

∂u

∂x

)2

.

This equation admits a traveling-wave solution, u = u(kx + λt), and a self-similar solution, u =
t−2/3φ(z), where z = xt−2/3.
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4.
∂2w

∂t2
=

∂3w

∂x3
+ a

(

∂w

∂x

)2

+ bw + f (t).

1◦. Solution:
w(x, t) = ϕ(t) + ψ(z), z = x + λt,

where λ is an arbitrary constant and the functions ϕ(t) and ψ(z) are determined by the ordinary
differential equations

ϕ′′

tt − bϕ − f (t) = 0,

ψ′′′

zzz − λ2ψ′′

zz + a(ψ′

z)2 + bψ = 0.
The solution of the first equation is given by

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
f (τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
f (τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

2◦. The substitution w = u(x, t) + ϕ(t), where the function ϕ(t) is defined in Item 1◦, leads to the
simpler equation

∂2u

∂t2
=
∂3u

∂x3 + a
(

∂u

∂x

)2

+ bu.

5.
∂2w

∂t2
+ k(t)

∂w

∂t
= f (t)w

∂3w

∂x3
+ g(t)

∂2w

∂x2
+ h(t)

∂w

∂x
+ p(t)w + q(t).

Generalized separable solution cubic in x:

w(x, t) = ϕ3(t)x3 + ϕ2(t)x2 + ϕ1(t)x + ϕ0(t),

where the functions ϕn = ϕn(t) are determined by the system of ordinary differential equations

ϕ′′

3 + k(t)ϕ′

3 = [6f (t)ϕ3 + p(t)]ϕ3,
ϕ′′

2 + k(t)ϕ′

2 = [6f (t)ϕ3 + p(t)]ϕ2 + 3h(t)ϕ3,
ϕ′′

1 + k(t)ϕ′

1 = [6f (t)ϕ3 + p(t)]ϕ1 + 6g(t)ϕ3 + 2h(t)ϕ2,
ϕ′′

0 + k(t)ϕ′

0 = [6f (t)ϕ3 + p(t)]ϕ0 + 2g(t)ϕ2 + h(t)ϕ1 + q(t).

6.
∂2w

∂t2
= aw

∂3w

∂x3
+ f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t)(A3x
3 +A2x

2 +A1x) + ψ(t),

whereA1, A2, andA3 are arbitrary constants, and the functions ϕ(t) and ψ(t) are determined by the
system of ordinary differential equations

ϕ′′

tt = 6A3aϕ
2 + f (t)ϕ,

ψ′′

tt = 6A3aϕψ + f (t)ψ + g(t).

7.
∂2w

∂t2
= aw

∂3w

∂x3
+ bw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),
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where the functionsϕ(t) andψ(t) are determined by the system of second-order ordinary differential
equations (C is an arbitrary constant)

ϕ′′

tt = Cϕ2 + bϕψ + f (t)ϕ,

ψ′′

tt = Cϕψ + bψ2 + f (t)ψ + g(t),

and the function Θ(x) satisfies the third-order constant-coefficient linear nonhomogeneous ordinary
differential equation

aΘ′′′

xxx + bΘ = C.

9.2.2. Other Equations

1.
∂2w

∂t2
= a

∂3w

∂x3
+ bw ln w +

[

f (x) + g(t)
]

w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + g(t) + C
]

ϕ = 0,

aψ′′′

xxx +
[

b lnψ + f (x) − C
]

ψ = 0,

where C is an arbitrary constant.

2.
∂2w

∂t2
= a

∂3w

∂x3
+ f (x)w ln w +

[

bf (x)t + g(x)
]

w.

Multiplicative separable solution:
w(x, t) = e−btϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

aϕ′′′

xxx + f (x)ϕ lnϕ +
[

g(x) − b2]ϕ = 0.

3.
∂2w

∂t2
= a

∂3w

∂x3
+ F

(

x,
∂w

∂x

)

+ g(t).

1◦. Additive separable solution:

w(x, t) = C1t
2 + C2t +

∫ t

t0

(t − τ )g(τ ) dτ + ϕ(x),

where C1, C2, and t0 are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′′

xxx + F
(

x,ϕ′

x

)

− 2C1 = 0,

whose order can be reduced with the change of variable u(x) = ϕ′

x.

2◦. The substitution

w = U (x, t) +
∫ t

0
(t − τ )g(τ ) dτ

leads to the simpler equation
∂2U

∂t2
= a

∂3U

∂x3 + F
(

x,
∂U

∂x

)

.
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4.
∂2w

∂t2
= a

∂3w

∂x3
+ F

(

x,
∂w

∂x

)

+ bw + g(t).

1◦. Additive separable solution:
w(x, t) = ϕ(t) + ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − g(t) = 0,

aψ′′′

xxx + F
(

x,ψ′

x

)

+ bψ = 0.

The solution of the first equation is given by

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
g(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
g(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

2◦. The substitution w = U (x, t) + ϕ(t), where the function ϕ(t) is defined in Item 1◦, leads to the
simpler equation

∂2U

∂t2
= a

∂3U

∂x3 + F
(

x,
∂U

∂x

)

+ bU .

5.
∂2w

∂t2
=

∂2

∂x2

[

f (w)
∂w

∂x

]

– a2 f ′(w)
f 3(w)

+ b.

Functional separable solution in implicit form:
∫

f (w) dw = at −
1
6
bx3 + C1x

2 + C2x + C3,

where C1, C2, and C3 are arbitrary constants.

6.
∂2w

∂t2
= F

(

∂2w

∂x2
,
∂3w

∂x3

)

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1, y + C2) + C3xt + C4x + C5t + C6,

where C1, . . . , C6 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w = u(z) + C3x

2 + C4t
2, z = C1x + C2t,

where the function u(z) is determined by the autonomous ordinary differential equation

C2
2u

′′

zz + 2C4 = F (C2
1u

′′

zz + 2C3, C3
1u

′′′

zzz),

whose order can be reduced by two with the change of variable θ(z) = u′′

zz.

9.3. Hydrodynamic Boundary Layer Equations
9.3.1. Steady Hydrodynamic Boundary Layer Equations

for a Newtonian Fluid

1.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= ν

∂3w

∂y3
.

This is an equation of a steady laminar hydrodynamic boundary layer on a flat plate; w is the stream
function, x and y are the longitudinal and normal coordinates, respectively, and ν is the kinematic
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viscosity of the fluid. A similar equation governs the steady-state flow of a plane laminar jet out of
a slot.
Preliminary remarks. The system of hydrodynamic boundary layer equations

u1
∂u1

∂x
+ u2

∂u1

∂y
= ν

∂2u1

∂y2 ,

∂u1

∂x
+
∂u2

∂y
= 0,

where u1 and u2 are the longitudinal and normal components of the fluid velocity, respectively, is reduced to the equation in
question by the introduction of a stream function w such that u1 = ∂w

∂y
and u2 = − ∂w

∂x
..�/

References: H. Schlichting (1981), L. G. Loitsyanskiy (1996).

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = w(x, y + ϕ(x)),
w2 = C1w(C2x + C3,C1C2y + C4) + C5,

where ϕ(x) is an arbitrary function and C1, . . . , C5 are arbitrary constants, are also solutions of the
equation..�/

References: Yu. N. Pavlovskii (1961), L. V. Ovsiannikov (1982).

2◦. Degenerate solutions (linear and quadratic in y):

w(x, y) = C1y + ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

ϕ2(x) + C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function. These solutions are
independent of ν and correspond to inviscid fluid flows..�/

Reference: D. Zwillinger (1989, pp. 396–397).

3◦. Solutions involving arbitrary functions:

w(x, y) =
6νx + C1

y + ϕ(x)
+

C2

[y + ϕ(x)]2 + C3,

w(x, y) = ϕ(x) exp(−C1y) + νC1x + C2,

w(x, y) = C1 exp
[

−C2y − C2ϕ(x)
]

+ C3y + C3ϕ(x) + νC2x + C4,

w(x, y) = 6νC1x
1/3 tanh ξ + C2, ξ = C1

y

x2/3 + ϕ(x),

w(x, y) = −6νC1x
1/3 tan ξ + C2, ξ = C1

y

x2/3 + ϕ(x),

where C1, . . . , C4 are arbitrary constants and ϕ(x) is an arbitrary function.

Special case 1. For C1 =
√
k/ν and ϕ(x) = −

√

kν x, the second solution becomes

w =
√

kν x
[
1 − exp

(
−
√
k/ν y

)]
+ const .

It describes a fluid flow induced by the motion of surface particles at y = 0 with a velocity of u1 |y=0 = kx. The fluid velocity
components in this case meet the boundary conditions

u1 = 0 at x = 0, u1 = kx at y = 0, u2 = 0 at y = 0, u1 → 0 as y → ∞.

.�/
References: N. V. Ignatovich (1993), A. D. Polyanin (2001 a).

4◦. Table 5 lists invariant solutions to the hydrodynamic boundary layer equation that are obtained
with the classical group-theoretic methods. Solution 1 is expressed in additive separable form,
solution 2 is in multiplicative separable form, solution 3 is self-similar, and solution 4 is generalized
self-similar. Solution 5 degenerates at a = 0 into a self-similar solution (see solution 3 with λ = −1).
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TABLE 5
Invariant solutions to the hydrodynamic boundary layer equation (the additive constant is omitted)

No. Solution structure Function F or equation for F Remarks

1 w = F (y) + νλx F (y) =
{

C1 exp(−λy) + C2y if λ ≠ 0,
C1y

2 + C2y if λ = 0 λ is any

2 w = F (x)y−1 F (x) = 6νx + C1 —

3 w = xλ+1F (z), z = xλy (2λ + 1)(F ′

z)2 − (λ + 1)FF ′′

zz = νF ′′′

zzz λ is any

4 w = eλxF (z), z = eλxy 2λ(F ′

z)2 − λFF ′′

zz = νF ′′′

zzz λ is any

5 w = F (z) + a ln |x|, z = y/x −(F ′

z)2 − aF ′′

zz = νF ′′′

zzz
a is any

Equations 3–5 for F are autonomous and generalized homogeneous; hence, their order can be
reduced by two.0�1

References: Yu. N. Pavlovskii (1961), H. Schlichting (1981), L. G. Loitsyanskiy (1996), G. I. Burde (1996).

Special case 2. The Blasius problem on a translational fluid flow with a velocity Ui past a flat plate is characterized by
the boundary conditions

∂xw = ∂yw = 0 at y = 0, ∂yw → Ui as y → ∞, ∂yw = Ui at x = 0.

The form of the solution to this problem (in the domain x ≥ 0, y ≥ 0) is given in the third row of Table 5 with λ = −1/2. The
boundary conditions for F (z) are as follows:

F = F ′

z = 0 at z = 0, F
′

z → Ui as z → ∞.

For details, see Blasius (1908), Schlichting (1981), and Loitsyanskiy (1996).

Special case 3. The Schlichting problem on the axisymmetric flow of a plane laminar jet out of a thin slit is characterized
by the boundary conditions

∂xw = ∂yyw = 0 at y = 0, ∂yw → 0 as y → ∞,

which are supplemented with the integral condition of conservation of momentum
∫

∞

0
(∂yw)2

dy = A (A = const).

The form of the solution to this problem (in the domain x ≥ 0, y ≥ 0) is given in the third row of Table 5 with λ = −2/3. On
integrating the ordinary differential equation for F with appropriate boundary conditions,

F = F ′′

zz = 0 at z = 0, F
′

z → 0 as z → ∞,

and the integral condition ∫
∞

0
(F ′

z)2 = A,

we finally obtain
w(x,y) = k(Aνx)1/3 tanh ξ, ξ = 1

6 k(A/ν2)1/3
yx

−2/3 , k = 32/3.

For details, see the book by Schlichting (1981) and Loitsyanskiy (1996).

Special case 4. Note two cases where the equation specified in row 3 of Table 5 can be integrated.
For λ = −1, the solution can be obtained in parametric form:

F = −
ν

2C1

∫
τ dτ

√

1 + τ 3
+ C2, z = 3C1

∫
dτ

√

1 + τ 3
+ C3.

There is a solution F = 6νz−1.
For λ = − 2

3 , the twofold integration yields the Riccati equation

νF
′

z + 1
6F

2 + C1z + C2 = 0.
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If C1 = 0, it can be readily integrated (since the variables separate); if C1 ≠ 0, the solution can be expressed in terms of the
Bessel functions or order 1/3.

5◦. Generalized separable solution linear in x:

w(x, y) = xf (y) + g(y), (1)

where the functions f = f (y) and g = g(y) are determined by the autonomous system of ordinary
differential equations

(f ′

y)2 − ff ′′

yy = νf ′′′

yyy, (2)
f ′

yg
′

y − fg′′yy = νg′′′yyy. (3)

The order of equation (2) can be reduced by two. Suppose a solution of equation (2) is known.
Equation (3) is linear in g and has two linearly independent solutions:

g1 = 1, g2 = f (y).

The second particular solution follows from the comparison of (2) and (3). The general solution of
equation (2) can be written out in the form

g(y) = C1 + C2f + C3

(

f

∫

ψ dy −
∫

fψ dy

)

,

f = f (y), ψ =
1

(f ′

y)2 exp
(

−
1
ν

∫

f dy

)

;
(4)

see Polyanin and Zaitsev (2003).
It is not difficult to verify that equation (2) has the following particular solutions:

f (y) = 6ν(y + C)−1,

f (y) = Ceλy − λν,
(5)

whereC and λ are arbitrary constants. The first solution in (5) leads, taking into account (1) and (4),
to the first solution of Item 3◦ with ϕ(x) = const. Substituting the second expression of (5) into (1)
and (4), one may obtain another solution.2�3

Reference: A. D. Polyanin (2001 a).

6◦. Generalized separable solution (special case of solution 3 in Item 3◦):

w(x, y) = (a + be−λy)z(x) + cy,

where a, b, c, and λ are arbitrary constants, and the function z = z(x) is defined implicitly by

c ln |z| + aλz = νλ2x.2�3
Reference: N. V. Ignatovich (1993), B. I. Burde (1996).

7◦. Below are two transformations that reduce the order of the boundary layer equation.
7.1. The von Mises transformation

ξ = x, η = w, U (ξ, η) =
∂w

∂y
, where w = w(x, y),

leads to a nonlinear heat equation of the form 1.10.1.1:
∂U

∂ξ
= ν

∂

∂η

(

U
∂U

∂η

)

.

7.2. The Crocco transformation

ξ = x, ζ =
∂w

∂y
, Ψ(ξ, ζ) =

∂2w

∂y2 , where w = w(x, y),

leads to the second-order nonlinear equation

ζ
∂

∂ξ

(

1
Ψ

)

+ ν
∂2

Ψ

∂ζ2 = 0.
2�3

Reference: L. G. Loitsyanskiy (1996).
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TABLE 6
Invariant solutions to the hydrodynamic boundary layer equation
with pressure gradient (a, k, m, and β are arbitrary constants)

No. Function f (x) Form of solution w = w(x, y) Function u or equation for u

1 f (x) = 0 See equation 9.3.1.1 See equation 9.3.1.1

2 f (x) = axm w=x
m+3

4 u(z), z=x
m−1

4 y
m+1

2 (u′z)2 − m+3
4 uu′′zz = νu′′′zzz + a

3 f (x) = aeβx w = e 1
4 βxu(z), z = e 1

4 βxy
1
2β(u′z)2 − 1

4βuu
′′

zz = νu′′′zzz + a

4 f (x) = a w = kx + u(y) u(y)=
{

C1 exp
(

− k
ν
y
)

− a
2k y

2 +C2y if k ≠ 0,
− a

6ν y
3 + C2y

2 + C1y if k = 0

5 f (x) = ax−3 w = k ln |x| + u(z), z = y/x −(u′z)2 − ku′′zz = νu′′′zzz + a

8◦. Conservation law:
Dx

(

w2
y

)

+Dy

(

−wxwy − νwyy
)

= 0,

where Dx = ∂
∂x

and Dy = ∂
∂y

.

2.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= ν

∂3w

∂y3
+ f (x).

This is a hydrodynamic boundary layer equation with pressure gradient. The formula f (x) = UU ′

x

holds true; U = U (x) is the fluid velocity in the stream core* at the interface between the core and
the boundary layer.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions
w1 = w(x, y + ϕ(x)) + C,
w2 = −w(x, −y + ϕ(x)) + C,

where ϕ(x) is an arbitrary function andC is an arbitrary constant, are also solutions of the equation.4�5
References: Yu. N. Pavlovskii (1961), L. V. Ovsiannikov (1982).

2◦. Degenerate solutions (linear and quadratic in y) for arbitrary f (x):

w(x, y) = 6 y
[

2
∫

f (x) dx + C1

]1/2

+ ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

[

ϕ2(x) − 2
∫

f (x) dx
]

+ C2,

where ϕ(x) is an arbitrary function, and C1 and C2 are arbitrary constants. These solutions are
independent of ν and correspond to inviscid fluid flows.4�5

Reference: A. D. Polyanin (2001 a).

3◦. Table 6 lists invariant solutions to the hydrodynamic boundary layer equation with pressure
gradient that are obtained with the classical group-theoretic methods.

Note that the Falkner–Skan problem (see Falkner and Skan, 1931) on a symmetric fluid flow
past a wedge is described by the equation specified in the second row of Table 6. The case m = 1
corresponds to a fluid flow near a stagnation point, and the case m = 0 corresponds to a symmetric
flow past a wedge with an angle of α = 2

3π.4�5
References: Yu. N. Pavlovskii (1961), H. Schlichting (1981), L. G. Loitsyanskiy (1996), G. I. Burde (1996).

* The hydrodynamic problem on the flow of an ideal (inviscid) fluid about the body is solved in the stream core.
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4◦. Generalized separable solution (linear in x) for f (x) = ax + b:

w(x, y) = xF (y) +G(y),

where the functions F = F (y) and G = G(y) are determined by the system of ordinary differential
equations

(F ′

y)2 − FF ′′

yy = νF ′′′

yyy + a, (1)
F ′

yG
′

y − FG′′

yy = νG′′′

yyy + b. (2)

The order of the autonomous equation (1) can be reduced by one. Given a particular solution of
equation (1), the corresponding equation (2) can be reduced with the substitution H(y) = G′

y to a
second-order equation. For F (y) = 7 √a y + C, equation (2) is integrable by quadrature (since, for
b = 0, we know two of its particular solutions: G1 = 1 and G2 = 7 1

2
√

a y2 + Cy).8�9
Reference: A. D. Polyanin (2001 a).

5◦. Solutions for f (x) = −ax−5/3:

w(x, y) =
6νx

y + ϕ(x)
7
√

3a
x1/3 [y + ϕ(x)],

where ϕ(x) is an arbitrary function.8�9
Reference: B. I. Burde (1996).

6◦. Solutions for f (x) = ax−1/3 − bx−5/3:

w(x, y) = 7
√

3b z + x2/3θ(z), z = yx−1/3,

where the function θ = θ(z) is determined by the ordinary differential equation

1
3 (θ′z)2 − 2

3 θθ
′′

zz = νθ′′′zzz + a.
8�9

Reference: B. I. Burde (1996).

7◦. Generalized separable solution for f (x) = aeβx:

w(x, y) = ϕ(x)eλy −
a

2βλ2ϕ(x)
eβx−λy − νλx +

2νλ2

β
y +

2νλ
β

ln |ϕ(x)|,

where ϕ(x) is an arbitrary function and λ is an arbitrary constant.8�9
References: A. D. Polyanin (2001 a, 2002).

8◦. For
f (x) = a2ν2x−3(xgg′x − g2), g = − 1

4a 7 ( 1
16 a

2 + bx2/3)1/2,

there are exact solutions of the form

w(x, y) = aνz + 6νg tanh z, z =
yg

x
.

8�9
Reference: B. I. Burde (1996).

9◦. Below are two transformations that reduce the order of the boundary layer equation.
9.1. The von Mises transformation

ξ = x, η = w, U (ξ, η) =
∂w

∂y
, where w = w(x, y),

leads to the nonlinear heat equation

U
∂U

∂ξ
= νU

∂

∂η

(

U
∂U

∂η

)

+ f (ξ).
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9.2. The Crocco transformation

ξ = x, ζ =
∂w

∂y
, Ψ(ξ, ζ) =

∂2w

∂y2 , where w = w(x, y),

leads to the second-order nonlinear equation

ζ
∂

∂ξ

(

1
Ψ

)

+ ν
∂2

Ψ

∂ζ2 − f (ξ)
∂

∂ζ

(

1
Ψ

)

= 0.
:�;

Reference: L. G. Loitsyanskiy (1996).

10◦. Conservation law:

Dx

[

w2
y − F (x)

]

+Dy

(

−wxwy − νwyy
)

= 0,

where Dx =
∂

∂x
, Dy =

∂

∂y
, and F (x) =

∫

f (x) dx.

3.
∂w

∂z

∂2w

∂x∂z
–

∂w

∂x

∂2w

∂z2
= ν

∂

∂z

(

z
∂2w

∂z2

)

+ f (x).

Preliminary remarks. The system of axisymmetric steady laminar hydrodynamic boundary layer equations

u
∂u

∂x
+ v

∂u

∂r
= ν

(
∂2u

∂r2 +
1
r

∂u

∂r

)
+ f (x), (1)

∂u

∂x
+
∂v

∂r
+
v

r
= 0, (2)

where u and v are the axial and radial fluid velocity components, respectively, and x and r are cylindrical coordinates, can
be reduced to the equation in question by the introduction of a stream function w and a new variable z such that

u =
2
r

∂w

∂r
, v = −

2
r

∂w

∂x
, z =

1
4
r

2.

System (1), (2) is used for describing an axisymmetric jet and a boundary layer on an extensive body of revolution. The
function f (x) is expressed via the longitudinal fluid velocity U = U (x) in the inviscid flow core as f = UU ′

x.:�;
References: F. L. Crabtree, D. Küchemann, and L. Sowerby (1963), H. Schlichting (1981), L. G. Loitsyanskiy (1996).

1◦. Self-similar solution for f (x) = Axk:

w(x, z) = xU (ζ), ζ = zx
k−1

2 ,

where the function U = U (ζ) is determined by the ordinary differential equation

− 1
2 (k + 1)(U ′

ζ)2 + UU ′′

ζζ +A + ν(ζU ′′

ζζ)′ζ = 0.

Special case. An axisymmetric jet is characterized by the values A = 0 and k = −3. In this case, the solution of the
equation just obtained with appropriate boundary conditions is given by

U (ζ) =
2νζ
ζ + C

,

where the constant of integration C can be expressed via the jet momentum.:�;
References: H. Schlichting (1981), L. G. Loitsyanskiy (1996).

2◦. Generalized separable solutions (linear and quadratic in z) for arbitrary f (x):

w(x, z) = < z
[

2
∫

f (x) dx + C1

]1/2

+ ϕ(x),

w(x, z) = C1z
2 + ϕ(x)z +

1
4C1

ϕ2(x) −
1

2C1

∫

f (x) dx − νx + C2,

where ϕ(x) is an arbitrary function and C1 and C2 are arbitrary constants. The first solution is
“inviscid” (independent of ν).:�;

Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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3◦. Functional separable solution for arbitrary f (x):

w(x, z) = 2νx + νF (x)
(

2C1

ξ
+ C2ξ

)

, ξ =
z

F 2(x)
− C1F

′

x(x),

F (x) = = νC2

[

2
∫

f (x) dx + C3

]−1/2

,

where C1, C2, and C3 are arbitrary constants.>�?
Reference: G. I. Burde (1994).

4◦. Functional separable solution for f (x) = ax + b:

w(x, z) = νλϕ(x) +
ν

a
(ax + b)

(

Ce−λξ + λξ − 3
)

, ξ = z − ϕ′

x(x), λ = =
√

a

ν
,

where C and λ are arbitrary constants and ϕ(x) is an arbitrary function.>�?
Reference: G. I. Burde (1994).

5◦. Generalized separable solution (linear in x) for f (x) = ax + b:

w(x, z) = xϕ(z) + ψ(z),

where the functions ϕ = ϕ(z) and ψ = ψ(z) are determined by the system of ordinary differential
equations

(ϕ′

z)2 − ϕϕ′′

zz = ν(zϕ′′

zz)′z + a,
ϕ′

zψ
′

z − ϕψ′′

zz = ν(zψ′′

zz)′z + b.
The first equation has particular solutions ϕ = = √a z + C.>�?

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

6◦. Additive separable solutions for f (x) = a:

w(x, z) = ν(1 − k)x + C1z
k +

a

2ν(k − 2)
z2 + C2z + C3,

w(x, z) = −νx −
a

2ν
z2 ln z + C1z

2 + C2z + C3,

where C1, . . . , k are arbitrary constants.

7◦. Conservation law:

Dx

[

w2
z − F (x)

]

+Dz

(

−wxwz − νzwzz
)

= 0,

where Dx =
∂

∂x
, Dz =

∂

∂z
, and F (x) =

∫

f (x) dx.

9.3.2. Steady Boundary Layer Equations for Non-Newtonian Fluids

1.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= k

(

∂2w

∂y2

)n–1 ∂3w

∂y3
.

This equation describes a boundary layer on a flat plane in the flow of a power-law non-Newtonian
fluid; w is the stream function, x and y are the longitudinal and normal coordinates, and n and k are
rheological parameters (n > 0, k > 0).

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = C1w(C2−n
1 C2n−1

2 x + C3,C2y + C4) + C5,
w2 = w(x, y + ϕ(x)),

where C1, . . . , C5 are arbitrary constants and ϕ(x) is an arbitrary function, are also solutions of the
equation.
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2◦. Additive separable solutions:

w(x, y) =
1

C2
1n(2n − 1)

[

C1(n − 1)y + C2
]

2n−1
n−1 + C3y + C4 − kC1x if n ≠ 1/2,

w(x, y) = −
1
C2

1
ln(C1y + C2) + C3y + C4 + 2kC1x if n = 1/2.

3◦. Multiplicative separable solutions:

w(x, y) =
[

λ(2 − n)x + C1
]

1
2−n F (y) if n ≠ 2,

w(x, y) = C1e
λxF (y) if n = 2,

where F = F (y) is determined by the autonomous ordinary differential equation

λ(F ′

y)2 − λFF ′′

yy = k(F ′′

yy)n−1F ′′′

yyy,

whose order can be reduced by two. The equation for F has a particular solution in the form of a
power-law function, F = An(y + C)βn , where βn = 2n−1

n−2 .

4◦. Self-similar solution (n ≠ 2 and λ is any):

w(x, y) = x
2λn−λ+1

2−n ψ(z), z = xλy, (1)

where the function ψ = ψ(z) is determined by the autonomous ordinary differential equation

λn + λ + 1
2 − n

(ψ′

z)2 −
2λn − λ + 1

2 − n
ψψ′′

zz = k(ψ′′

zz)n−1ψ′′′

zzz , (2)

whose order can be reduced by two.@�A
Reference: Z. P. Shulman and B. M. Berkovskii (1966).

Special case 1. The generalized Blasius problem on a translational flow with an incident velocity Ui past a flat plate is
characterized by the boundary conditions

∂xw = ∂yw = 0 at y = 0, ∂yw → Ui as y → ∞, ∂yw = Ui at x = 0.

A solution to this problem (in the domain x ≥ 0, y ≥ 0) is sought in the form (1) with λ = − 1
n+1 . The boundary conditions

for ψ(z) are the following:
ψ = ψ′z = 0 at z = 0, ψ

′

z → Ui as z → ∞. (3)
In Zaitsev and Polyanin (1989, 1994), exact solutions to problem (2)–(3) are specified for λ = − 1

n+1 with n = 1
5 , 1

4 , 1
2 , 3

5 ,
5
7 , 2.

Special case 2. The generalized Schlichting problem on the symmetric flow of a plane laminar power-law fluid jet out
of a thin slit is characterized by the boundary conditions

∂xw = ∂yyw = 0 at y = 0, ∂yw → 0 as y → ∞,

which are supplemented with the integral condition of conservation of momentum
∫

∞

0
(∂yw)2

dy = A (A = const).

A solution to this problem (in the domain x ≥ 0, y ≥ 0) is sought in the form (1) with λ = − 2
3n

. A solution to equation (2)
for ψ(z) with appropriate boundary conditions and integral condition (see the conditions in Special case 3, Subsection 9.3.1,
where F should be replaced by ψ) can be found in the books by Shulman and Berkovskii (1966) and Polyanin, Kutepov,
et al. (2002).

5◦. Self-similar solution for n = 2 (λ is any):

w(x, y) = xλU (z), z = yx−1/3,

where the function U = U (z) is determined by the autonomous ordinary differential equation

(λ − 1
3 )(U ′

z)2 + λUU ′′

zz = kU ′′

zzU
′′′

zzz,

whose order can be reduced by two.
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6◦. Generalized self-similar solution (λ is any):

w(x, y) = eλ(2n−1)x
Φ(τ ), τ = eλ(2−n)xy,

where the function Φ = Φ(τ ) is determined by the autonomous ordinary differential equation

λ(n + 1)(Φ′

τ )2 − λ(2n − 1)ΦΦ
′′

ττ = k(Φ′′

ττ )n−1
Φ

′′′

τττ ,

whose order can be reduced by two.B�C
Reference: Z. P. Shulman and B. M. Berkovskii (1966).

7◦. Solution for n ≠ 1/2:

w(x, y) = C1 ln |x| + C2 + g(ξ), ξ = x
1

1−2n y,

where the function g = g(ξ) is determined by the autonomous ordinary differential equation

1
1 − 2n

(g′ξ)
2 − C1g

′′

ξξ = k(g′′ξξ)
n−1g′′′ξξξ,

whose order can be reduced by two.

8◦. Solution for n = 1/2:

w(x, y) = C1x + C2 + h(ζ), ζ = eλxy,

where the function h = h(ζ) is determined by the autonomous ordinary differential equation

λ(h′ζ)2 − C1h
′′

ζζ = k(h′′ζζ)−1/2h′′′ζζζ ,

whose order can be reduced by two.

9◦. Conservation law:
Dx

(

nw2
y

)

+Dy

(

−nwxwy − kwnyy
)

= 0,

where Dx = ∂
∂x

and Dy = ∂
∂y

.

2.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= k

(

∂2w

∂y2

)n–1 ∂3w

∂y3
+ f (x).

This is a steady boundary layer equation for a power-law fluid with pressure gradient.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w(x, y + ϕ(x)) + C,

where ϕ(x) is an arbitrary function and C is an arbitrary constant, is also a solution of the equation.B�C
Reference: A. D. Polyanin (2001 a).

2◦. Degenerate solutions (linear and quadratic in y) for any f (x):

w(x, y) = D y
[

2
∫

f (x) dx + C1

]1/2

+ ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

[

ϕ2(x) − 2
∫

f (x) dx
]

+ C2,

where ϕ(x) is an arbitrary function and C1 and C2 are arbitrary constants. These solutions are
independent of k and correspond to inviscid fluid flows.
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3◦. Self-similar solution for f (x) = axm:

w(x, y) = x
2nm+2n−m+1

2(n+1) ψ(z), z = x
2m−n−nm

2(n+1) y,

where the function ψ = ψ(z) is determined by the autonomous ordinary differential equation

nm + n +m + 1
2(n + 1)

(ψ′

z)2 −
2nm + 2n −m + 1

2(n + 1)
ψψ′′

zz = k(ψ′′

zz)n−1ψ′′′

zzz + a.

Note that solving the generalized Falkner–Skan problem on a symmetric power-law fluid flow
past a wedge is reduced to solving the equation just obtained.E�F

Reference: Z. P. Shulman and B. M. Berkovskii (1966).

4◦. Generalized self-similar solution for f (x) = aeβx:

w(x, y) = exp
(

β
2n − 1
2n + 2

x

)

Φ(τ ), τ = exp
(

β
2 − n
2n + 2

x

)

y,

where the function Φ = Φ(τ ) is determined by the autonomous ordinary differential equation

1
2
β(Φ′

τ )2 − β
2n − 1
2n + 2

ΦΦ
′′

ττ = k(Φ′′

ττ )n−1
Φ

′′′

τττ + a.
E�F

Reference: Z. P. Shulman and B. M. Berkovskii (1966).

5◦. Additive separable solution for f (x) = a:

w(x, y) = C1x + h(y),

where the function h = h(y) is determined by the autonomous ordinary differential equation

k(h′′yy)n−1h′′′yyy + C1h
′′

yy + a = 0.

Its general solution can be written out in parametric form:

y = −k
∫ t

C2

un−1 du

C1u + a
, h = k2

∫ t

C3

un−1ϕ(u) du
C1u + a

, where ϕ(u) =
∫ u

C4

vn dv

C1v + a
.

6◦. Multiplicative separable solution for f (x) = ax
n

2−n , n ≠ 2:

w(x, y) = x
1

2−n F (y),

where the function F = F (y) is determined by the autonomous ordinary differential equation

1
2 − n

(F ′

y)2 −
1

2 − n
FF ′′

yy = k(F ′′

yy)n−1F ′′′

yyy + a.

7◦. Self-similar solution for f (x) = axm, n = 2:

w(x, y) = x
1
2m+ 5

6 U (z), z = yx−1/3,

where the function U = U (z) is determined by the autonomous ordinary differential equation

1
2 (m + 1)(U ′

z)2 + 1
6 (3m + 5)UU ′′

zz = kU ′′

zzU
′′′

zzz + a.

8◦. Multiplicative separable solution for f (x) = aeλx, n = 2:

w(x, y) = e
1
2 λxG(y),

where the functionG = G(y) is determined by the autonomous ordinary differential equation

1
2λ(G′

y)2 − 1
2λGG

′′

yy = k(G′′

yy)n−1G′′′

yyy + a.
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9◦. Solution f (x) = ax
2n+1
1−2n , n ≠ 1/2:

w(x, y) = C1 ln |x| + C2 + g(ξ), ξ = x
1

1−2n y,

where the function g = g(ξ) is determined by the autonomous ordinary differential equation

k(g′′ξξ)
n−1g′′′ξξξ + C1g

′′

ξξ −
1

1 − 2n
(g′ξ)

2 + a = 0,

10◦. Solution f (x) = aeλx, n = 1/2:

w(x, y) = C1x + C2 + h(ζ), ζ = e
1
2 λxy,

where the function h = h(ζ) is determined by the autonomous ordinary differential equation

k(h′′ζζ)−1/2h′′′ζζζ + C1h
′′

ζζ − 1
2λ(h′ζ)2 + a = 0.

11◦. Conservation law:

Dx

[

nw2
y − nF (x)

]

+Dy

(

−nwxwy − kwnyy
)

= 0,

where Dx =
∂

∂x
, Dy =

∂

∂y
, and F (x) =

∫

f (x) dx.

3.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
=

∂

∂y

[

f

(

∂2w

∂y2

)]

.

This is an equation of a steady boundary layer on a flat plate in the flow of a non-Newtonian fluid of
general form; w is the steam function, and x and y are the coordinates along and normal to the plate.
Preliminary remarks. The system of non-Newtonian fluid boundary layer equations

u1
∂u1

∂x
+ u2

∂u1

∂y
=
∂

∂y

[
f

(
∂u1

∂y

)]
,

∂u1

∂x
+
∂u2

∂y
= 0,

where u1 and u2 are the longitudinal and normal fluid velocity components, can be reduced to the equation in question by
the introduction of a stream function w such that u1 = ∂w

∂y
and u2 = − ∂w

∂x
.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = C−2
1 w(C3

1x + C2,C1y + C3) + C4,
w2 = w(x, y + ϕ(x)),

where C1, . . . , C4 are arbitrary constants and ϕ(x) is an arbitrary function, are also solutions of the
equation.G�H

Reference: A. D. Polyanin (2001 a).

2◦. Solutions involving arbitrary functions:

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

ϕ2(x) + C2,

w(x, y) = g(z) + C1x + C2, z = y + ϕ(x),

where C1 and C2 are arbitrary constants, and ϕ(x) is an arbitrary function. The function g = g(z) in
the second formula is determined by the autonomous ordinary differential equation

f (g′′zz) + C1g
′

z = C3,
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whose general solution can be written out in parametric form:

g =
1
C2

1

∫

f ′

t(t)
t

[

f (t) − C2
]

dt + C3, z = C4 −
1
C1

∫

f ′

t(t)
t

dt.

3◦. Self-similar solution:
w(x, y) = x2/3ψ(ξ), ξ = yx−1/3,

where the function ψ = ψ(ξ) is determined by the autonomous ordinary differential equation

(ψ′

ξ)
2 − 2ψψ′′

ξξ = 3[f (ψ′′

ξξ)]
′

ξ.

4◦. The von Mises transformation

ξ = x, η = w, U (ξ, η) =
∂w

∂y
, where w = w(x, y),

leads to the second-order nonlinear equation

∂U

∂ξ
=
∂

∂η

[

f

(

U
∂U

∂η

)]

.

It admits, for example, a traveling-wave solution U = U (aξ + bη).

5◦. Conservation law:
Dx

(

w2
y

)

+Dy

[

−wxwy − f (wyy)
]

= 0,

where Dx = ∂
∂x

and Dy = ∂
∂y

.

4.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
=

∂

∂y

[

f

(

∂2w

∂y2

)]

+ g(x).

This is a steady boundary layer equation for a non-Newtonian fluid of general form with pressure
gradient.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w(x, y + ϕ(x)) + C,

where ϕ(x) is an arbitrary function and C is an arbitrary constant, is also a solution of the equation.

2◦. There are degenerate solutions; see Item 2◦ in 9.3.2.2, where f (x) should be replaced by g(x).

3◦. Solution for g(x) = a:

w(x, y) = ζ(z) + C1x + C2, z = y + ϕ(x),

where ϕ(x) is an arbitrary function and C1 and C2 are arbitrary constants. The function ζ = ζ(z) is
determined by the ordinary differential equation

f (ζ ′′zz) + C1ζ
′

z + aζ = C3.

4◦. Self-similar solution for g(x) = a(x + b)−1/3:

w(x, y) = (x + b)2/3ψ(ξ), ξ = y(x + b)−1/3,

where the function ψ = ψ(ξ) is determined by the autonomous ordinary differential equation

(ψ′

ξ)
2 − 2ψψ′′

ξξ = 3[f (ψ′′

ξξ)]
′

ξ + 3a.

5◦. Conservation law:

Dx

[

w2
y −G(x)

]

+Dy

[

−wxwy − f (wyy)
]

= 0,

where Dx =
∂

∂x
, Dy =

∂

∂y
, and G(x) =

∫

g(x) dx.
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9.3.3. Unsteady Boundary Layer Equations for a Newtonian Fluid

1.
∂2w

∂t∂y
+

∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= ν

∂3w

∂y3
.

This equation describes an unsteady hydrodynamic boundary layer on a flat plate; w is the stream
function, x and y are the coordinates along and normal to the plate, respectively, and ν is the
kinematic viscosity of the fluid. A similar equation describes an unsteady flow of a plane laminar
jet out of a thin slit.
Preliminary remarks. The system of unsteady hydrodynamic boundary layer equations

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
= ν

∂2u1

∂y2 ,

∂u1

∂x
+
∂u2

∂y
= 0,

where u1 and u2 are the longitudinal and normal fluid velocity components, can be reduced to the equation in question by
the introduction of a stream function w such that u1 = ∂w

∂y
and u2 = − ∂w

∂x
.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w(x, y + ϕ(x, t), t) +
∂

∂t

∫

ϕ(x, t) dx + χ(t),

w2 = C1w(C2x + C2C3t + C4, C1C2y + C1C2C5t + C6, C2
1C

2
2 t + C7) + C5x − C3y + C8,

where ϕ(x, t) and χ(t) are arbitrary functions and the Cn are arbitrary constants, are also solutions
of the equation.I�J

References: L. I. Vereshchagina (1973), L. V. Ovsiannikov (1982).

2◦. Degenerate solutions linear and quadratic in y:

w = C1y + ϕ(x, t),

w = C1y
2 + ϕ(x, t)y +

1
4C1

ϕ2(x, t) +
∂

∂t

∫

ϕ(x, t) dx,

where ϕ(x, t) is an arbitrary function of two variables and C1 is an arbitrary constant. Here and
henceforth, the additive arbitrary function of time, χ =χ(t), in exact solutions for the stream function
is omitted. These solutions are independent of ν and correspond to inviscid fluid flows.

3◦. Solutions involving arbitrary functions:

w =
6νx + C1

y + ϕ(x, t)
+

C2

[y + ϕ(x, t)]2 +
∂

∂t

∫

ϕ(x, t) dx,

w = C1 exp
[

−C2y − C2ϕ(x, t)
]

+ C3y + C3ϕ(x, t) + νC2x +
∂

∂t

∫

ϕ(x, t) dx,

w = 6νC1x
1/3 tanh ξ +

∂

∂t

∫

ϕ(x, t) dx, ξ = C1
y + ϕ(x, t)
x2/3 ,

w = −6νC1x
1/3 tan ξ +

∂

∂t

∫

ϕ(x, t) dx, ξ = C1
y + ϕ(x, t)
x2/3 ,

where ϕ(x, t) is an arbitrary function of two variables, and C1, C2, and C3 are arbitrary constants.
The construction of these solutions was based on the simpler, stationary solutions specified in 9.3.1.1.

Note also the solution

w = f (x) exp
[

−λy − λg(t)
]

+
[

νλ + g′t(t)
]

x,

where f (x) and g(t) are arbitrary functions and λ is an arbitrary constant. It can be obtained from
the second of the solutions specified above with ϕ(x, t) = − 1

λ
ln f (x) + g(t), C2 = λ, and C3 = 0.I�J

References: G. I. Burde (1995), A. D. Polyanin (2001 b, 2002), A. D. Polyanin and V. F. Zaitsev (2001).
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TABLE 7
Exact solutions of equation (2) in 9.3.3.1

No.
Function F = F (y, t)

(or general form of solution)
Remarks

(or determining equations)

1 F = ψ(t) ψ(t) is an arbitrary function

2 F = y
t+C1

+ ψ(t) ψ(t) is an arbitrary function, C1 is any

3 F = 6ν
y+ψ(t) + ψ′

t(t) ψ(t) is an arbitrary function

4 F = C1 exp
[

−λy + λψ(t)
]

− ψ′

t(t) + νλ ψ(t) is an arbitrary function, C1, λ are any

5 F = F (ξ), ξ = y + λt λF ′′

ξξ + (F ′

ξ)2 − FF ′′

ξξ = νF ′′′

ξξξ

6 F = t−1/2[H(ξ) − 1
2 ξ

]

, ξ = yt−1/2 3
4 − 2H ′

ξ + (H ′

ξ)
2 −HH ′′

ξξ = νH ′′′

ξξξ

4◦. Generalized separable solution linear in x:
w(x, y, t) = xF (y, t) +G(y, t), (1)

where the functions F = F (y, t) and G = G(y, t) are determined from the simpler equations in two
variables

∂2F

∂t∂y
+

(

∂F

∂y

)2

− F
∂2F

∂y2 = ν
∂3F

∂y3 , (2)

∂2G

∂t∂y
+
∂F

∂y

∂G

∂y
− F

∂2G

∂y2 = ν
∂3G

∂y3 . (3)

Equation (2) is solved independently of (3). If F = F (y, t) is a solution of equation (2), then the
functions

F1 = F (y + ψ(t), t) + ψ′

t(t),

F2 = C1F (C1y + C1C2t + C3,C2
1 t + C4) + C2,

where ψ(t) is an arbitrary function and C1, . . . , C4 are arbitrary constants, are also solutions of the
equation.

Given a particular solution F = F (y, t) of equation (2), the corresponding equation (3) can be
reduced, with the substitution U = ∂G

∂y
, to the second-order linear equation

∂U

∂t
− F

∂U

∂y
= ν

∂2U

∂y2 −
∂F

∂y
U . (4)

Table 7 lists exact solutions of equation (2). The ordinary differential equations in the last two
rows, determining a traveling-wave solution and a self-similar one, are both autonomous and, hence,
their order can be reduced.

Table 8 presents transformations that simplify equation (4) corresponding to respective solutions
of equation (2) in Table 7. It is apparent that in the first three cases, solutions of equation (4) are
expressed via solutions of a linear constant-coefficient heat equation. In the other three cases,
equation (4) is reduced to linear equations, which can be solved by the method of separation of
variables.

The fourth equation in Table 8 has the following particular solutions (A and B are any):

Z(η) = A +B
∫

Φ(η) dη, Φ(η) = exp
(

C1

νλ
eη − η

)

;

Z(η, t) = Aνλ2t +A
∫

Φ(η)
[
∫

dη

Φ(η)

]

dη.
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TABLE 8
Transformations of equation (4) for the respective exact solutions of equation (2); the number in

the first column corresponds to the number of the exact solution F = F (y, t) in Table 7

No. Transformation of equation (4) Resulting equation

1 U = u(ζ, t), ζ = y +
∫

ψ(t) dt ∂u
∂t

= ν ∂
2u
∂ζ2

2
U = 1

t+C1
u(z, τ ), τ = 1

3 (t + C1)3 + C2,
z = (t + C1)y +

∫

ψ(t)(t + C1) dt + C3

∂u
∂τ

= ν ∂
2u
∂z2

3 U = ζ−3u(ζ, t), ζ = y + ψ(t) ∂u
∂t

= ν ∂
2u
∂ζ2

4 U = eηZ(η, t), η = −λy + λψ(t) ∂Z
∂t

= νλ2 ∂2Z
∂η2 + (νλ2 − C1λe

η) ∂Z
∂η

5 U = u(ξ, t), ξ = y + λt ∂u
∂t

= ν ∂
2u
∂ξ2 +

[

F (ξ) − λ
]

∂u
∂ξ

− F ′

ξ(ξ)u

6 U = t−1/2u(ξ, τ ), ξ = yt−1/2, τ = ln t ∂u
∂τ

= ν ∂
2u
∂ξ2 +H(ξ) ∂u

∂ξ
+

[

1 −H ′

ξ(ξ)
]

u

For other exact solutions of this equation, see the book by Polyanin (2002), where a more general
equation, ∂tw = f (x)∂xxw + g(x)∂xw, was considered.

Equation 5 in Table 8 has a stationary particular solution u0 = F ′

ξ(ξ) (cf. equation 5 in Table 7).
Consequently, other particular solutions of this equation are given by

u(ξ) = C1F
′

ξ(ξ) + C2F
′

ξ(ξ)
∫

Ψ(ξ) dξ
[F ′

ξ(ξ)]2 , Ψ(ξ) = exp
[

λ

ν
ξ −

1
ν

∫

F (ξ) dξ
]

;

u(ξ, t) = C1νtF
′

ξ(ξ) + C1F
′

ξ(ξ)
∫

Ψ(ξ)Φ(ξ)
[F ′

ξ(ξ)]2 dξ, Φ(ξ) =
∫ [F ′

ξ(ξ)]2

Ψ(ξ)
dξ;

see Polyanin (2002).K�L
References: D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (2000), A. D. Polyanin (2001 b, 2002), A. D. Polyanin and

V. F. Zaitsev (2001, 2002).

Example 1. Solution exponentially dependent on time:

w(x,y, t) = f (y)x + e−λt

∫
g(y) dy,

where the functions f = f (y) and g = g(y) are determined by the system of ordinary differential equations

(f ′y)2 − ff ′′yy = νf ′′′yyy,

−λg + gf ′y − fg′y = νg′′yy.

Example 2. Periodic solution:

w(x, y, t) = f (y)x + sin(λt)
∫
g(y) dy + cos(λt)

∫
h(y) dy,

where the functions f = f (y), g = g(y), and h = h(y) are determined by the system of ordinary differential equations

(f ′y)2 − ff ′′yy = νf ′′′yyy,

−λh + f ′yg − fg′y = νg′′yy,

λg + f ′yh − fh′y = νh′′yy.
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5◦. Generalized separable solution:

w(x, y, t) =
[

A(t)ek1x +B(t)ek2x
]

eλy + ϕ(t)x + ay,

A(t) = C1 exp
[

(νλ2 − ak1)t + λ
∫

ϕ(t) dt
]

,

B(t) = C2 exp
[

(νλ2 − ak2)t + λ
∫

ϕ(t) dt
]

,

where ϕ(t) is an arbitrary function and C1, C2, a, k1, k2, and λ are arbitrary constants.

6◦. Generalized separable solution:

w(x, y, t) = A(t) exp(kx + λy) + B(t) exp(βkx + βλy) + ϕ(t)x + ay,

A(t) = C1 exp
[

(νλ2 − ak)t + λ
∫

ϕ(t) dt
]

,

B(t) = C2 exp
[

(νβ2λ2 − akβ)t + βλ
∫

ϕ(t) dt
]

,

where ϕ(t) is an arbitrary function and C1, C2, a, k, β, and λ are arbitrary constants.
M�N

References: A. D. Polyanin (2001 b), A. D. Polyanin and V. F. Zaitsev (2001).

7◦. “Two-dimensional” solution:

w(x, y, t) =
∫

u(z, t) dz + ϕ(t)y + ψ(t)x, z = kx + λy,

where ϕ(t) and ψ(t) are arbitrary functions, k and λ are arbitrary constants, and the function u(z, t)
is determined by the second-order linear differential equation

∂u

∂t
+

[

kϕ(t) − λψ(t)
] ∂u

∂z
= νλ2 ∂

2u

∂z2 −
1
λ
ϕ′

t(t).

The transformation

u = U (ξ, t) −
1
λ
ϕ(t), ξ = z −

∫

[

kϕ(t) − λψ(t)
]

dt

brings it to the linear heat equation
∂U

∂t
= νλ2 ∂

2U

∂ξ2 .
M�N

References: A. D. Polyanin (2001 b), A. D. Polyanin and V. F. Zaitsev (2001).

8◦. Solutions:

w = eνλ
2t(C1e

λz + C2e
−λz) +

∂

∂t

∫

ϕ(x, t) dx, z = y + ϕ(x, t);

w = e−νλ2t
[

C1 sin(λz) + C2 cos(λz)
]

+
∂

∂t

∫

ϕ(x, t) dx, z = y + ϕ(x, t);

w = C1e
−νλ2z sin(λz − 2νλ2t + C2) +

∂

∂t

∫

ϕ(x, t) dx, z = y + ϕ(x, t),

where ϕ(x, t) is an arbitrary function of two arguments; C1, C2, and λ are arbitrary constants. For
periodic function ϕ(x, t) = ϕ(x, t + T ), the last solution is also periodic, w(x, y, t) = w(x, y, t + T ),
if λ =

√

π/(νT ).
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9◦. “Two-dimensional” solution:

w = W (ξ, η) + a1x + a2y, ξ = k1x + λ1t, η = k2y + λ2t,

where the functionW is determined by the differential equation

(λ1 + a2k1)
∂2W

∂ξ∂η
+ (λ2 − a1k2)

∂2W

∂η2 + k1k2

(

∂W

∂η

∂2W

∂ξ∂η
−
∂W

∂ξ

∂2W

∂η2

)

= νk2
2
∂3W

∂η3 .

In the special case
a1 = λ2/k2, a2 = −λ1/k1,

we have the steady boundary layer equation 9.3.1.1:

∂W

∂η

∂2W

∂ξ∂η
−
∂W

∂ξ

∂2W

∂η2 = β
∂3W

∂η3 , β = ν
k2

k1
.

10◦. “Two-dimensional” solution:

w = V (ξ, η), ξ =
x
√

t
, η =

y
√

t
,

where the function V is determined by the differential equation

−
1
2
∂V

∂η
−

1
2
ξ
∂2V

∂ξ∂η
−

1
2
η
∂2V

∂η2 +
∂V

∂η

∂2V

∂ξ∂η
−
∂V

∂ξ

∂2V

∂η2 = ν
∂3V

∂η3 .

For example, this equation has solutions of the form V = F (η)ξ +G(η).O�P
Reference: L. V. Ovsiannikov (1982).

2.
∂2w

∂t∂y
+

∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= ν

∂3w

∂y3
+ f (x, t).

This equation describes an unsteady hydrodynamic boundary layer with pressure gradient.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w(x, y + ϕ(x, t), t) +
∂

∂t

∫

ϕ(x, t) dx,

w2 = −w(x, −y, t) + ψ(t),

where ϕ(x, t) and ψ(t) are arbitrary functions, are also solutions of the equation.O�P
References: L. I. Vereshchagina (1973), L. V. Ovsiannikov (1982).

2◦. For f (x, t) = g(t), the transformation

w = u(ξ, y, t) − h′t(t)y, ξ = x + h(t), where h(t) = −
∫ t

t0

(t − τ )g(τ ) dτ , (1)

leads to a simpler equation of the form 9.3.3.1:

∂2u

∂t∂y
+
∂u

∂y

∂2u

∂ξ∂y
−
∂u

∂ξ

∂2u

∂y2 = ν
∂3u

∂y3 .

Note that f = g(t) and h = h(t) are related by the simple constraint h′′

tt = −g.
In the general case, transformation (1) brings the equation in question to a similar equation with

the function f (x, t) modified according to

f (x, t)
transformation (1)

−−−−−−−−−−−−→ f (x, t) − g(t).
O�P

Reference: L. V. Ovsiannikov (1982).
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3◦. Degenerate solution (quadratic in y) for any f (x, t):

w(x, y, t) = Cy2 + ϕ(x, t)y +
1

4C
ϕ2(x, t) +

1
2C

∫
[

∂ϕ

∂t
− f (x, t)

]

dx,

whereϕ(x, t) is an arbitrary function of two arguments andC is an arbitrary constant. From now on,
the arbitrary additive function of time ψ = ψ(t) is omitted in exact solutions for the stream function.
These solutions are independent of ν and correspond to inviscid fluid flows.

Degenerate solution (linear in y) for any f (x, t):

w(x, y, t) = ψ(x, t)y + ϕ(x, t),

where ϕ(x, t) is an arbitrary function, and ψ = ψ(x, t) is determined by the first-order partial
differential equation

∂ψ

∂t
+ ψ

∂ψ

∂x
= f (x, t).

For information about the methods of integration and exact solutions of such equations (for various f),
see the books by Kamke (1965) and Polyanin, Zaitsev, and Moussiaux (2002).

Degenerate solutions for f (x, t) = f (x):

w(x, y, t) = Q y
[

2
∫

f (x) dx + C1

]1/2

+ ϕ(x, t),

where ϕ(x, t) is an arbitrary function.

4◦. Generalized separable solution (linear in x) for f (x, t) = f1(t)x + f2(t):

w(x, y, t) = xF (y, t) +G(y, t), (2)

where the functions F = F (y, t) and G = G(y, t) are determined by the simpler equations in two
variables

∂2F

∂t∂y
+

(

∂F

∂y

)2

− F
∂2F

∂y2 = ν
∂3F

∂y3 + f1(t), (3)

∂2G

∂t∂y
+
∂F

∂y

∂G

∂y
− F

∂2G

∂y2 = ν
∂3G

∂y3 + f2(t). (4)

Equation (3) is solved independently of equation (4).
If F = F (y, t) is a solution to equation (3), then the function

F1 = F (y + ψ(t), t) + ψ′

t(t),

where ψ(t) is an arbitrary function, is also a solution of the equation.
Table 9 lists exact solutions of equation (3) for variousf1 = f1(t); two more complicated solutions

of this equation are given at the end of Item 4◦. Note that, for G ≡ 0, solutions (2) specified in the
first and the last rows of Table 9 were treated in the book by Ovsiannikov (1982).

The substitution U = ∂G
∂y

brings equation (4) to the second-order linear equation

∂U

∂t
− F

∂U

∂y
= ν

∂2U

∂y2 −
∂F

∂y
U + f2(t). (5)

Let us dwell on the first solution to (3) specified in Table 9:

F (y, t) = a(t)y + ψ(t), where a′t + a2 = f1(t). (6)

The Riccati equation for a = a(t) is reduced by the substitution a = h′

t/h to the second-order linear
equation h′′tt − f1(t)h = 0. Exact solutions of this equation for various f1(t) can be found in Kamke
(1977) and Polyanin and Zaitsev (2003). In particular, for f1(t) = const we have

a(t) = k
C1 cos(kt) − C2 sin(kt)
C1 sin(kt) + C2 cos(kt)

if f1 = −k2 < 0,

a(t) = k
C1 cosh(kt) + C2 sinh(kt)
C1 sinh(kt) + C2 cosh(kt)

if f1 = k2 > 0.
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TABLE 9
Exact solutions of equation (3) in 9.3.3.2 for various f1(t); ψ(t) is an arbitrary function

Function
f1 = f1(t)

Function F = F (y, t)
(or general form of solution)

Determining equation
(or determining coefficients)

Any F = a(t)y + ψ(t) a′t + a2 = f1(t)

f1(t) = Ae−βt,
A > 0, β > 0

F = Be− 1
2 βt sin[λy + λψ(t)] + ψ′

t(t),
F = Be− 1

2 βt cos[λy + λψ(t)] + ψ′

t(t)
B = R

√

2Aν
β

, λ =
√

β
2ν

f1(t) = Aeβt,
A > 0, β > 0 F = Be 1

2 βt sinh[λy + λψ(t)] + ψ′

t(t) B = R
√

2Aν
β

, λ =
√

β
2ν

f1(t) = Aeβt,
A < 0, β > 0 F = Be 1

2 βt cosh[λy + λψ(t)] + ψ′

t(t) B = R
√

2|A|ν
β

, λ =
√

β
2ν

f1(t) = Aeβt,
A is any, β > 0 F = ψ(t)eλy − Aeβt−λy

4λ2ψ(t) + ψ′

t(t)
λψ(t) − νλ λ = R

√

β

2ν

f1(t) = At−2 F = t−1/2[H(ξ) − 1
2 ξ

]

, ξ = yt−1/2 3
4 −A−2H ′

ξ+(H ′

ξ)
2−HH ′′

ξξ = νH ′′′

ξξξ

f1(t) = A F = F (ξ), ξ = y + λt −A + λF ′′

ξξ + (F ′

ξ)
2 − FF ′′

ξξ = νF ′′′

ξξξ

On substituting solution (6), with arbitrary f1(t), into equation (5), one obtains

∂U

∂t
= ν

∂2U

∂y2 +
[

a(t)y + ψ(t)
]∂U

∂y
− a(t)U + f2(t).

The transformation (Polyanin, 2002)

U =
1

Φ(t)

[

u(z, τ ) +
∫

f2(t)Φ(t) dt
]

, τ =
∫

Φ
2(t) dt + C1,

z = yΦ(t) +
∫

ψ(t)Φ(t) dt + C2, Φ(t) = exp
[
∫

a(t) dt
]

,

leads to the linear heat equation
∂u

∂τ
= ν

∂2u

∂z2 .
S�T

References: D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (2000), A. D. Polyanin (2001 b, 2002), A. D. Polyanin and
V. F. Zaitsev (2001, 2002).

Remark 1. The ordinary differential equations in the last two rows of Table 9 (see the last
column), which determine a self-similar and a traveling-wave solution, are both autonomous and,
hence, their order can be reduced.

Remark 2. Suppose w(x, y, t) is a solution of the unsteady hydrodynamic boundary layer
equation with f (x, t) = f1(t)x + f2(t). Then the function

w1 = w(x + h(t), y, t) − h′t(t)y, where h′′tt − f1(t)h = 0,

is also a solution of the equation.S�T
Reference: L. V. Ovsiannikov (1982).

Remark 3. In the special case f2(t) = 0, equation (4) admits a particular solution G = G(t),
where G(t) is an arbitrary function.
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Example 1+. Solution with f (x, t) = Ax + Be−λt:

w(x, y, t) = xg(y) + e−λt

∫
h(y) dy,

where the functions g = g(y) and h = h(y) are determined by the system of ordinary differential equations

(g′)2 − gg′′ = νg′′′ + A,

−λh + hg′ − gh′ = νh′′ + B.
The prime denotes a derivative with respect to y.

Example 2+. Periodic solution with f (x, t) = Ax + B1 sin(λt) + B2 cos(λt):

w(x,y, t) = xg(y) + sin(λt)
∫
h1(y) dy + cos(λt)

∫
h2(y) dy,

where the functions g = g(y), h1 = h1(y), and h2 = h2(y) are determined by the system of ordinary differential equations

(g′)2 − gg′′ = νg′′′ + A,

−λh2 + g′h1 − gh′1 = νh′′1 + B1,

λh1 + g′h2 − gh′2 = νh′′2 + B2.

Below are two more complex solutions of equation (3).
The solution

F (y, t) = −
γ′t
γ
y + γ3 exp

(

ν

∫

dt

γ2

)(

A cosh
y

γ
+B sinh

y

γ

)

,

where A and B are arbitrary constants and γ = γ(t) is an arbitrary function, corresponds to the
right-hand side of equation (3) in the form

f1(t) = −
γ′′tt
γ

+ 2
(

γ′t
γ

)2

+ (B2 −A2)γ4 exp
(

2ν
∫

dt

γ2

)

.

The solution

F (y, t) = −
γ′t
γ
y + γ3 exp

(

−ν
∫

dt

γ2

)(

A cos
y

γ
+B sin

y

γ

)

,

where A and B are arbitrary constants and γ = γ(t) is an arbitrary function, corresponds to the
right-hand side of equation (3) in the form

f1(t) = −
γ′′tt
γ

+ 2
(

γ′t
γ

)2

+ (A2 +B2)γ4 exp
(

−2ν
∫

dt

γ2

)

.

This solution was obtained in Burde (1995) for the case A = 0.

5◦. Generalized separable solution for f (x, t) = g(x)eβt, β > 0:

w(x, y, t) = ϕ(x, t)eλy + ψ(x, t)e−λy +
1
λ

∂

∂t

∫

ln |ϕ(x, t)| dx − νλx,

ψ(x, t) = −
eβt

2λ2ϕ(x, t)

∫

g(x) dx, λ = U
√

β

2ν
,

where ϕ(x, t) is an arbitrary function of two arguments.V�W
References: A. D. Polyanin (2001 b), A. D. Polyanin and V. F. Zaitsev (2002).

6◦. Generalized separable solutions for f (x, t) = g(x)eβt, β > 0:

w(x, y, t) = U 1
λ

exp
( 1

2βt
)
√

ψ(x) sinh
[

λy + ϕ(x, t)
]

+
∂

∂t

∫

ϕ(x, t) dx,

w(x, y, t) = U 1
λ

exp
( 1

2βt
)
√

ψ(x) cosh
[

λy + ϕ(x, t)
]

+
∂

∂t

∫

ϕ(x, t) dx,

ψ(x) = 2
∫

g(x) dx + C1, λ =
√

β

2ν
,

where ϕ(x, t) is an arbitrary function of two arguments.V�W
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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7◦. Generalized separable solutions for f (x, t) = g(x)e−βt, β > 0:

w(x, y, t) = X 1
λ

exp
(

− 1
2βt

)
√

ψ(x) sin
[

λy + ϕ(x, t)
]

+
∂

∂t

∫

ϕ(x, t) dx,

w(x, y, t) = X 1
λ

exp
(

− 1
2βt

)
√

ψ(x) cos
[

λy + ϕ(x, t)
]

+
∂

∂t

∫

ϕ(x, t) dx,

ψ(x) = 2
∫

g(x) dx + C1, λ =
√

β

2ν
,

where ϕ(x, t) is an arbitrary function of two arguments.Y�Z
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

8◦. Solution for f (x, t) = xg(t):

w(x, y, t) =
ψ′

t

ψ
xy +

(

2ψ′

t

ψ2 − νψ
)

x + ϕ(z) exp(ψy), z =
x

ψ
, ψ = ψ(t),

where ϕ(z) is an arbitrary function and the function ψ = ψ(t) is determined by the second-order
linear ordinary differential equation

ψ′′

tt = g(t)ψ.Y�Z
Reference: D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (2000).

9◦. Generalized separable solution for f (x, t) = aeβx−γt:

w(x, y, t) = ϕ(x, t)eλy −
a

2βλ2ϕ(x, t)
eβx−λy−γt

+
1
λ

∂

∂t

∫

ln |ϕ(x, t)| dx − νλx +
2νλ2 + γ

β

(

y +
1
λ

ln |ϕ(x, t)|
)

,

where ϕ(x, t) is an arbitrary function of two arguments and λ is an arbitrary constant.Y�Z
References: A. D. Polyanin (2001 b), A. D. Polyanin and V. F. Zaitsev (2002).

10◦. Generalized separable solution for f (x, t) = f (t):

w(x, y, t) =
∫

u(z, t) dz + ϕ(t)y + ψ(t)x, z = kx + λy,

where ϕ(t) and ψ(t) are arbitrary functions, k and λ are arbitrary constants, and the function u(z, t)
is determined by the second-order linear equation

∂u

∂t
+

[

kϕ(t) − λψ(t)
] ∂u

∂z
= νλ2 ∂

2u

∂z2 −
1
λ
ϕ′

t(t) +
1
λ
f (t).

The transformation

u = U (ξ, t) −
1
λ
ϕ(t) +

1
λ

∫

f (t) dt, ξ = z −
∫

[

kϕ(t) − λψ(t)
]

dt

brings it to the linear heat equation
∂U

∂t
= νλ2 ∂

2U

∂ξ2 .
Y�Z

References: A. D. Polyanin (2001 b), A. D. Polyanin and V. F. Zaitsev (2002).

11◦. Generalized separable solution for f (x, t) = f (t):

w(x, y, t) = Ce−λy+λϕ(x,t) − a(t)ϕ(x, t) −
∂

∂t

∫

ϕ(x, t) dx + a(t)y + νλx, a(t) =
∫

f (t) dt,

where ϕ(x, t) is an arbitrary function of two arguments; C and λ are arbitrary constants.
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12◦. Generalized separable solution for f (x, t) = f (t):

w(x, y, t) = ϕ(x, t)eλy + ψ(x, t)e−λy + χ(x, t) + a(t)y,

where λ is any, ϕ(x, t) is an arbitrary function of two arguments, and the remaining functions are
given by

ψ(x, t) =
Cνe2νλ2t

ϕ(x, t)

[

x −
∫

a(t) dt
]

, a(t) =
∫

f (t) dt + Ce2νλ2t,

χ(x, t) =
1
λ
a(t) ln |ϕ(x, t)| +

1
λ

∂

∂t

∫

ln |ϕ(x, t)| dx − νλx.

13◦. Solutions for f (x, t) = f (t):

w = eνλ
2t(C1e

λz + C2e
−λz) +

∂

∂t

∫

ϕ(x, t) dx + z
∫

f (t) dt, z = y + ϕ(x, t);

w = e−νλ2t
[

C1 sin(λz) + C2 cos(λz)
]

+
∂

∂t

∫

ϕ(x, t) dx + z
∫

f (t) dt, z = y + ϕ(x, t);

w = C1e
−λz sin(λz − 2νλ2t + C2) +

∂

∂t

∫

ϕ(x, t) dx + z
∫

f (t) dt, z = y + ϕ(x, t),

where ϕ(x, t) is an arbitrary function of two arguments; C1, C2, and λ are arbitrary constants. For

periodic function f (t) = f (t + T ) satisfying the condition
∫ T

0
f (t) dt = 0; the last solution is also

periodic, w(x, y, t) = w(x, y, t + T ), if ϕ(x, t) = ϕ(x) and λ =
√

π/(νT ).

14◦. Solutions for f (x, t) = A:

w = −
A

6ν
z3 + C2z

2 + C1z +
∂

∂t

∫

ϕ(x, t) dx, z = y + ϕ(x, t);

w = kx + C1 exp
(

−
k

ν
z

)

−
A

2k
z2 + C2z +

∂

∂t

∫

ϕ(x, t) dx, z = y + ϕ(x, t),

where ϕ(x, t) is an arbitrary function of two arguments; C1, C2, and k are arbitrary constants.

15◦. Table 10 presents solutions of the unsteady hydrodynamic boundary layer equation with
pressure gradient that depends on two generalized variables (used results of group-theoretic analyses
in Ovsiannikov, 1982).

For f (x, t) = f (k1x + λ1t), there is also a wide class of “two-dimensional” solutions with the
form

w = z(ξ, η) + a1x + a2y, ξ = k1x + λ1t, η = k2y + λ2t,

where the function z is determined by the differential equation

(λ1 + a2k1)
∂2z

∂ξ∂η
+ (λ2 − a1k2)

∂2z

∂η2 + k1k2

(

∂z

∂η

∂2z

∂ξ∂η
−
∂z

∂ξ

∂2z

∂η2

)

= νk2
2
∂3z

∂η3 + f (ξ).

16◦. For
f (x, t) = a′(t)X−1/3 − 1

3a
2(t)X−5/3 − b′′(t), X = x + b(t),

where a(t) and b(t) are some functions, a solution is given by

w = [a(t)X−1/3 − b′(t)]y + 6νXy−1.
[�\

Reference: Burde (1995).
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TABLE 10
Solutions of the unsteady hydrodynamic boundary layer equation that depends on two generalized

variables. Notation: R[z] = νzηηη + zξzηη − zηzξη and g = g(u) is an arbitrary function.

Function f =f (x, t) General form of solution Equation for z = z(ξ, η)

f = f (x + λt) w = z(ξ, y) − λy, ξ = x + λt νzyyy + zξzyy − zyzξy + f (ξ) = 0

f = g(x)t−2 w = z(x, η)t−1/2, η = yt−1/2 νzηηη+zxzηη−zηzxη + 1
2 ηzηη+zη+g(x) = 0

f = eλtg(xe−λt) w = eλtz(ξ, y), ξ = xe−λt νzyyy+zξzyy−zyzξy + λξzξy−λzy+g(ξ) = 0

f = t−n−2g(xtn) w = z(ξ, η)t−(2n+1)/2,
ξ = xtn, η = yt−1/2 R[z] + 1

2 ηzηη − nξzξη + (1 + n)zη + g(ξ) = 0

f = axn w = z(ξ, η)t−(n+3)/(2n−2),
ξ = xt2/(n−1), η = yt−1/2 R[z] + 1

2 ηzηη − 2ξ
n−1 zξη + n+1

n−1 zη + aξn = 0

f = aeλx
w = z(ξ, η)t−1/2,

ξ = x + 2
λ

ln t, η = yt−1/2 R[z] + 1
2 ηzηη − 2

λ
zξη + zη + aeλξ = 0

3.
∂2w

∂z∂t
+

∂w

∂z

∂2w

∂x∂z
–

∂w

∂x

∂2w

∂z2
= ν

∂

∂z

(

z
∂2w

∂z2

)

+ f (x, t).

Preliminary remarks. The system of axisymmetric unsteady laminar boundary layer equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
= ν

(
∂2u

∂r2 +
1
r

∂u

∂r

)
+ f (x, t), (1)

∂u

∂x
+
∂v

∂r
+
v

r
= 0 (2)

where u and v are the axial and radial components of the fluid velocity, respectively, and x and r the axial and radial
coordinates, is reduced to the equation in question by the introduction of a stream function w and a new variable z such that

u =
2
r

∂w

∂r
, v = −

2
r

∂w

∂x
, z =

1
4
r

2.

System (1), (2) describes an axisymmetric jet (f ≡ 0) and a boundary layer on an extensive body of revolution (f ] 0).

1◦. The equation remains the same under the replacement ofw byw+ϕ(t), whereϕ(t) is an arbitrary
function.

2◦. Generalized separable solution (quadratic in z) for arbitrary f (x, t):

w(x, z, t) = Cz2 + ϕ(x, t)z +
1

4C
ϕ2(x, t) +

1
2C

∂

∂t

∫

ϕ(x, t) dx −
1

2C

∫

f (x, t) dx − νx + ψ(t),

where ϕ(x, t) and ψ(t) are arbitrary functions and C is an arbitrary constant.
The equation also has an “inviscid” solution of the form w = ϕ(x, t)z +ψ(x, t), where ψ(x, t) is

an arbitrary function, and the function ϕ = ϕ(x, t) is described by the first-order partial differential
equation ∂tϕ + ϕ∂xϕ = f (x, t).

3◦. Generalized separable solution (linear in x) for f (x, t) = a(t)x + b(t):
w(x, z, t) = xϕ(z, t) + ψ(z, t),

where the functions ϕ = ϕ(z, t) and ψ = ψ(z, t) are described by the system of partial differential
equations

∂2ϕ

∂z∂t
+

(

∂ϕ

∂z

)2

− ϕ
∂2ϕ

∂z2 = ν
∂

∂z

(

z
∂2ϕ

∂z2

)

+ a(t),

∂2ψ

∂z∂t
+
∂ϕ

∂z

∂ψ

∂z
− ϕ

∂2ψ

∂z2 = ν
∂

∂z

(

z
∂2ψ

∂z2

)

+ b(t).
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The first equation has an exact solution ϕ = C(t)z, where the function C = C(t) is determined
by the Riccati equation C ′

t + C2 = a(t). The second equation is reduced by the change of variable
V = ∂ψ

∂z
to a second-order linear equation.

4◦. “Two-dimensional” solution for f (x, t) = f (x + λt):
w(x, z, t) = U (ξ, z) − λz, ξ = x + λt,

where the function U = U (ξ, z) is determined by the differential equation

∂U

∂z

∂2U

∂ξ∂z
−
∂U

∂ξ

∂2U

∂z2 = ν
∂

∂z

(

z
∂2U

∂z2

)

+ f (ξ),

which coincides, up to renaming, with the stationary equation (see equation 9.3.1.3 and its solutions).

5◦. Generalized separable solution (linear in x) for f (x, t) = f (t):

w(x, z, t) = A(t)x +B(t) + z
∫

f (t) dt + u(z, t),

where A(t) and B(t) are arbitrary functions, and the function u = u(z, t) is determined by the
second-order linear parabolic differential equation

∂u

∂t
−A(t)

∂u

∂z
= νz

∂2u

∂z2 .

6◦. Suppose w(x, z, t) is a solution of the unsteady axisymmetric boundary layer equation with
f (x, t) = a(t)x + b(t). Then the function

w1 = w(ξ, z, t) − ϕ′

t(t)z + ψ(t), ξ = x + ϕ(t),

where ψ(t) is an arbitrary function and ϕ = ϕ(t) is a solution of the linear ordinary differential
equation ϕ′′

tt − a(t)ϕ = 0, is also a solution of the equation.

9.3.4. Unsteady Boundary Layer Equations for Non-Newtonian
Fluids

1.
∂2w

∂t∂y
+

∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= k

(

∂2w

∂y2

)n–1 ∂3w

∂y3
.

This equation describes an unsteady boundary layer on a flat plate in a power-law fluid flow; w is
the steam function, and x and y are coordinates along and normal to the plate.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C1w(Cn−2
1 C2n−1

2 x + Cn−2
1 C2n−1

2 C3t, C2y + C2C5t, Cn−1
1 C2n

2 t) + C5x − C3y,
w2 = w(x + C6, y + C7, t + C8) + C9,

w3 = w
(

x, y + ϕ(x, t), t
)

+
∂

∂t

∫

ϕ(x, t) dx + ψ(t),

where the Cn are arbitrary constants and ϕ(x, t) and ψ(t) are arbitrary functions, are also solutions
of the equation.

2◦. Generalized separable solution linear in x:

w(x, y, t) = ψ(t)x +
∫

U (z, t) dz, z = y +
∫

ψ(t) dt,

where ψ(t) is an arbitrary function, and the function U (z, t) is determined by the second-order
differential equation

∂U

∂t
= k

(

∂U

∂z

)n−1
∂2U

∂z2 .

For details about this equation, see 1.6.18.2 with f (x) = const and 1.6.18.3 with f (U ) = kU n−1 (for
n = 2, see Special case in equation 8.1.1.2).
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3◦. Generalized separable solution linear in x:

w(x, y, t) =
xy

t + C1
+ ψ(t)x +

∫

U (y, t) dy,

whereψ(t) is an arbitrary function,C1 is an arbitrary constant, and the functionU (y, t) is determined
by the second-order differential equation

∂U

∂t
= k

(

∂U

∂y

)n−1
∂2U

∂y2 +
[

y

t + C1
+ ψ(t)

]

∂U

∂y
−

1
t + C

U .

With the transformation

U =
1

t + C1
u(ζ, τ ), τ = 1

3 (t + C1)3 + C2, ζ = (t + C1)y +
∫

ψ(t)(t + C1) dt + C3

one arrives at the simpler equation

∂u

∂τ
= k

(

∂u

∂ζ

)n−1
∂2u

∂ζ2 .

For details about this equation, see 1.6.18.2 with f (x) = const and 1.6.18.3 with f (U ) = kU n−1.

4◦. “Two-dimensional” solution:

w(x, y, t) =
∫

v(η, t) dη + ϕ(t)y + ψ(t)x, η = kx + λy,

where ϕ(t) and ψ(t) are arbitrary functions, k and λ are arbitrary constants, and the function v(η, t)
is determined by the second-order differential equation

∂v

∂t
+

[

kϕ(t) − λψ(t)
] ∂v

∂η
= kλ2n

(

∂v

∂η

)n−1
∂2v

∂η2 −
1
λ
ϕ′

t(t).

With the transformation

v = R(ζ, t) −
1
λ
ϕ(t), ζ = η −

∫

[

kϕ(t) − λψ(t)
]

dt

one arrives at the simpler equation

∂R

∂t
= kλ2n

(

∂R

∂ζ

)n−1
∂2R

∂ζ2 .

^�_
Reference for equation 9.3.4.1: A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂2w

∂t∂y
+

∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
=

∂

∂y

[

f

(

∂2w

∂y2

)]

.

This equation describes an unsteady boundary layer on a flat plate in a non-Newtonian fluid flow;
w is the stream function, and x and y are coordinates along and normal to the plate.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w(x, y + ϕ(x, t), t) +
∂

∂t

∫

ϕ(x, t) dx + ψ(t),

w2 = C−2
1 w(C3

1x + C3
1C2t + C3, C1y + C1C4t + C5, C2

1 t + C6) + C4x − C2y + C7,

where ϕ(x, t) and ψ(t) are arbitrary functions and the Cn are arbitrary constants, are also solutions
of the equation.
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2◦. Generalized separable solution linear in x:

w(x, y, t) = ψ(t)x +
∫

U (z, t) dz, z = y +
∫

ψ(t) dt,

where ψ(t) is an arbitrary function and the function U (z, t) is determined by the second-order
differential equation

∂U

∂t
=
∂

∂z

[

f

(

∂U

∂z

)]

.

It admits, for any f = f (v), exact solutions of the following forms:

U (z, t) = H(ζ), ζ = kz + λt =⇒ equation λH = kf (kH ′

ζ) + C;

U (z, t) = az +H(ζ), ζ = kz + λt =⇒ equation λH = kf (kH ′

ζ + a) + C;

U (z, t) =
√

tH(ζ), ζ = z/
√

t =⇒ equation 1
2H − 1

2 ζH
′

ζ = [f (H ′

ζ)]′ζ ,

where a, k, C, and λ are arbitrary constants. Solutions of the first two equations withH = H(ζ) can
be obtained in parametric form; see Kamke (1977) and Polyanin and Zaitsev (2003).

3◦. Generalized separable solution linear in x:

w(x, y, t) =
xy

t + C
+ ψ(t)x +

∫

U (y, t) dy,

where ψ(t) is an arbitrary function,C is an arbitrary constant, and the functionU (y, t) is determined
by the second-order differential equation

∂U

∂t
=
∂

∂y

[

f

(

∂U

∂y

)]

+
[

y

t + C
+ ψ(t)

]

∂U

∂y
−

1
t + C

U .

With the transformation

U =
1

t + C1
u(ζ, τ ), τ = 1

3 (t + C1)3 + C2, ζ = (t + C1)y +
∫

ψ(t)(t + C1) dt + C3

one arrives at the simpler equation

∂u

∂τ
=
∂

∂ζ

[

f

(

∂u

∂ζ

)]

.

For details about this equation, see Item 2◦.

4◦. “Two-dimensional” solution:

w(x, y, t) =
∫

v(η, t) dη + ϕ(t)y + ψ(t)x, η = kx + λy,

where ϕ(t) and ψ(t) are arbitrary functions, k and λ are arbitrary constants, and the function v(η, t)
is determined by the second-order differential equation

∂v

∂t
+

[

kϕ(t) − λψ(t)
] ∂v

∂η
=
∂

∂η

[

f

(

λ2 ∂v

∂η

)]

−
1
λ
ϕ′

t(t).

With the transformation

v = R(ζ, t) −
1
λ
ϕ(t), ζ = η −

∫

[

kϕ(t) − λψ(t)
]

dt

one arrives at the simpler equation

∂R

∂t
=
∂

∂ζ

[

f

(

λ2 ∂R

∂ζ

)]

.

`�a
References for equation 9.3.4.2: A. D. Polyanin (2001 b, 2002), A. D. Polyanin and V. F. Zaitsev (2002).
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3.
∂2w

∂t∂y
+

∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
=

∂

∂y

[

f

(

∂2w

∂y2

)]

+ g(x, t).

This is an unsteady boundary layer equation for a non-Newtonian fluid with pressure gradient.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the function

w1 = w(x, y + ϕ(x, t), t) +
∂

∂t

∫

ϕ(x, t) dx + ψ(t),

where ϕ(x, t) and ψ(t) are arbitrary functions, is also a solution of the equation.

2◦. There are degenerate solutions; see Item 3◦ in 9.3.3.2, where f (x, t) should be substituted
by g(x, t).

3◦. For g(x, t) = g(t), the transformation

w = u(ξ, y, t) − ϕ′

t(t)y, ξ = x + ϕ(t), where ϕ(t) = −
∫ t

t0

(t − τ )g(τ ) dτ ,

leads to a simpler equation of the form 9.3.4.2:
∂2u

∂t∂y
+
∂u

∂y

∂2u

∂ξ∂y
−
∂u

∂ξ

∂2u

∂y2 =
∂

∂y

[

f

(

∂2u

∂y2

)]

.

Note that g = g(t) and ϕ = ϕ(t) are related by the simple equation ϕ′′

tt = −g.

4◦. “Two-dimensional” solution (linear in x) for g(x, t) = g(t):

w(x, y, t) = a(t)x +
∫

U (y, t) dy,

where the function U = U (y, t) is determined by the second-order differential equation
∂U

∂t
− a(t)

∂U

∂y
=
∂

∂y

[

f

(

∂U

∂y

)]

+ g(t).

With the transformation

U = u(ξ, t) +
∫

g(t) dt, ξ = y +
∫

a(t) dt

one arrives at the simpler equation
∂u

∂t
=
∂

∂y

[

f

(

∂u

∂y

)]

.

For details about this equation, see 9.3.4.2, Item 2◦.

5◦. “Two-dimensional” solution (linear in x) for g(x, t) = s(t)x + h(t):

w(x, y, t) =
[

a(t)y + ψ(t)
]

x +
∫

Q(y, t) dy,

where ψ(t) is an arbitrary function and a = a(t) is determined by the Riccati equation
a′t + a2 = s(t),

and the functionQ = Q(y, t) satisfies the second-order equation
∂Q

∂t
=
∂

∂y

[

f

(

∂Q

∂y

)]

+
[

a(t)y + ψ(t)
]∂Q

∂y
− a(t)Q + h(t).

With the transformation

Q =
1

Φ(t)

[

Z(ξ, τ ) +
∫

h(t)Φ(t) dt
]

, τ =
∫

Φ
2(t) dt +A, ξ = yΦ(t) +

∫

ψ(t)Φ(t) dt +B,

where Φ(t) = exp
[
∫

a(t) dt
]

, one arrives at the simpler equation

∂Z

∂τ
=
∂

∂ξ

[

f

(

∂Z

∂ξ

)]

.

For details about this equation, see 9.3.4.2, Item 2◦.
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6◦. “Two-dimensional” solution for g(x, t) = g(t):

w(x, y, t) =
∫

v(η, t) dη + ϕ(t)y + ψ(t)x, η = kx + λy,

where ϕ(t) and ψ(t) are arbitrary functions, k and λ are arbitrary constants, and the function v(η, t)
is determined by the second-order differential equation

∂v

∂t
+

[

kϕ(t) − λψ(t)
] ∂v

∂η
=
∂

∂η

[

f

(

λ2 ∂v

∂η

)]

−
1
λ
ϕ′

t(t) +
1
λ
g(t).

With the transformation

v = R(ζ, t) −
1
λ
ϕ(t) +

1
λ

∫

g(t) dt, ζ = η −
∫

[

kϕ(t) − λψ(t)
]

dt

one arrives at the simpler equation
∂R

∂t
=
∂

∂ζ

[

f

(

λ2 ∂R

∂ζ

)]

.
b�c

References for equation 9.3.4.3: A. D. Polyanin (2001 b, 2002), A. D. Polyanin and V. F. Zaitsev (2002).

9.3.5. Related Equations

1.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂3w

∂y3
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function
w1(x, y) = C1w(x,C1y + ϕ(x)) + C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function, is also a solution of the
equation.
2◦. Degenerate solutions linear and quadratic in y:

w(x, y) = C1y + ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

ϕ2(x) + C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function.
3◦. Generalized separable solution:

w(x, y) = ϕ(x)eλy − λ
∫

f (x) dx + C,

where ϕ(x) is an arbitrary function and C and λ are arbitrary constants.
4◦. Generalized separable solution:

w(x, y) = ϕ(y)
∫

f (x) dx + ψ(y),

where the functions ϕ = ϕ(y) and ψ = ψ(y) are determined by the autonomous system of ordinary
differential equations

(ϕ′

y)2 − ϕϕ′′

yy = ϕ′′′

yyy,

ϕ′

yψ
′

y − ϕψ′′

yy = ψ′′′

yyy.
For exact solutions of this system, see 9.3.1.1, Item 5◦ [equations (2)–(3) with ν = 1].
5◦. Generalized self-similar solution:

w(x, y) = ϕ(x)U (z), z = ψ(x)y
where the functions ϕ = ϕ(x), ψ = ψ(x), and U = U (z) are determined by the system of ordinary
differential equations

(ϕψ)′x = C1f (x)ψ2,
ϕ′

x = C2f (x)ψ,

C1(U ′

z)2 − C2UU
′′

zz = U ′′′

zzz.
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2.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (y)

∂3w

∂y3
+ g(y)x + h(y).

Generalized separable solution linear in x:

w = ϕ(y)x + ψ(y),

where the functions ϕ(y) and ψ(y) are determined by the system of ordinary differential equations

fϕ′′′

yyy + ϕϕ′′

yy − (ϕ′

y)2 + g = 0,

fψ′′′

yyy + ϕψ′′

yy − ϕ′

yψ
′

y + h = 0.

3.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
=

∂

∂y

[

f (y)
∂2w

∂y2

]

+ g(y)x + h(y).

Generalized separable solution linear in x:

w = ϕ(y)x + ψ(y),

where the functions ϕ(y) and ψ(y) are determined by the system of ordinary differential equations

(fϕ′′

yy)′y + ϕϕ′′

yy − (ϕ′

y)2 + g = 0,

(fψ′′

yy)′y + ϕψ′′

yy − ϕ′

yψ
′

y + h = 0.

4.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

( ∂2w

∂y2

)n–1 ∂3w

∂y3
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1(x, y) = C2n−1
1 w(x,C2−n

1 y + ϕ(x)) + C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function, is also a solution of the
equation.

2◦. Multiplicative separable solution:

w(x, y) =
[

(2 − n)
∫

f (x) dx + C
]

1
2−n

θ(y),

whereC is an arbitrary constant and the function θ = θ(y) is determined by the autonomous ordinary
differential equation

(θ′y)2 − θθ′′yy = (θ′′yy)n−1θ′′′yyy.

3◦. Generalized traveling-wave solution:

w = U (z), z = y
[

∫

f (x) dx + C
]

1
1−2n + ϕ(x),

where ϕ(x) is an arbitrary function and the function U = U (z) is determined by the autonomous
ordinary differential equation

(U ′

z)2 = (1 − 2n)(U ′′

zz)n−1U ′′′

zzz.

This equation can be fully integrated.

5.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= F

(

x, w,
∂w

∂y
,
∂2w

∂y2
,
∂3w

∂y3

)

.

This is a special case of equation 11.4.1.5 with n = 3.
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9.4. Equations of Motion of Ideal Fluid (Euler Equations)
9.4.1. Stationary Equations

1.
∂w

∂y

∂

∂x
(∆w) –

∂w

∂x

∂

∂y
(∆w) = 0, ∆w =

∂2w

∂x2
+

∂2w

∂y2
.

Preliminary remarks. The stationary two-dimensional equations of motion of an ideal fluid (Euler equations)

u1
∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
,

u1
∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
,

∂u1

∂x
+
∂u2

∂y
= 0

are reduced to this equation by the introduction of a stream function, w, such that u1 = ∂w
∂y

and u2 = − ∂w
∂x

followed by the
elimination of the pressure p (with the cross differentiation) from the first two equations; the third equation is then satisfied
automatically.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = C1w(C2x + C3,C2y + C4) + C5,
w2 = w(x cosα + y sinα, −x sinα + y cosα),

where C1, . . . , C5 and α are arbitrary constants, are also solutions of the equation.

2◦. Solutions of general form:

w(x, y) = ϕ1(ξ), ξ = a1x + b1y;

w(x, y) = ϕ2(r), r =
√

(x − a2)2 + (y − b2)2;

where ϕ1(ξ) and ϕ2(r) are arbitrary functions; a1, b1, a2, and b2 are arbitrary constants.

3◦. Any solutions of the linear equations

∆w = 0 (Laplace equation),
∆w = C (Poisson equation),
∆w = λw (Helmholtz equation),
∆w = λw + C (nonhomogeneous Helmholtz equation),

where C and λ are arbitrary constants, are also solutions of the original equation. For details about
the Laplace, Poisson, and Helmholtz equations, see the books by Tikhonov and Samarskii (1990)
and Polyanin (2002).

The solutions of the Laplace equation ∆w = 0 correspond to irrotational (potential) solutions of
the Euler equation. Such solutions are discussed in detail in textbooks on hydrodynamics (e.g., see
Sedov, 1980, and Loitsyanskiy, 1996), where the methods of the theory of functions of a complex
variable are extensively used.

4◦. The Jacobian of the functions w and v = ∆w appears on the left-hand side of the equation
in question. The fact that the Jacobian of two functions is zero means that the two functions are
functionally dependent. Hence, v must be a function of w, so that

∆w = f (w), (1)

where f (w) is an arbitrary function. Any solution of the second-order equation (1) for arbitrary
f (w) is a solution of the original equation.

The results of Item 3◦ correspond to special cases of the linear function f (w) = λw + C. For
solutions of equation (1) with some nonlinear f = f (w), see 5.1.1.1, 5.2.1.1, 5.3.1.1, 5.3.2.1, 5.3.3.1,
5.4.1.1, and Subsection S.5.3 (Example 12).
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5◦. Additive separable solutions:

w(x, y) = A1x
2 +A2x +B1y

2 +B2y + C,
w(x, y) = A1 exp(λx) +A2 exp(−λx) +B1 exp(λy) +B2 exp(−λy) + C,
w(x, y) = A1 sin(λx) +A2 cos(λx) +B1 sin(λy) +B2 cos(λy) + C,

whereA1,A2,B1,B2,C, andλ are arbitrary constants. These solutions are special cases of solutions
presented in Item 3◦.

6◦. Generalized separable solutions:

w(x, y) = (Ax +B)e−λy + C,

w(x, y) =
[

A1 sin(βx) +A2 cos(βx)
][

B1 sin(λy) +B2 cos(λy)
]

+ C,

w(x, y) =
[

A1 sin(βx) +A2 cos(βx)
][

B1 sinh(λy) +B2 cosh(λy)
]

+ C,

w(x, y) =
[

A1 sinh(βx) +A2 cosh(βx)
][

B1 sin(λy) +B2 cos(λy)
]

+ C,

w(x, y) =
[

A1 sinh(βx) +A2 cosh(βx)
][

B1 sinh(λy) + B2 cosh(λy)
]

+ C,

w(x, y) = Aeαx+βy +Beγx+λy + C, α2 + β2 = γ2 + λ2,

whereA,B, C,D, k, β, and λ are arbitrary constants. These solutions are special cases of solutions
presented in Item 3◦.

7◦. Solution:
w(x, y) = F (z)x +G(z), z = y + kx,

where k is an arbitrary constant and the functions F = F (z) and G = G(z) are determined by the
autonomous system of third-order ordinary differential equations:

F ′

zF
′′

zz − FF ′′′

zzz = 0, (2)

G′

zF
′′

zz − FG′′′

zzz =
2k

(k2 + 1)
FF ′′

zz. (3)

On integrating the system once, we arrive at the following second-order equations:

(F ′

z)2 − FF ′′

zz = A1, (4)

G′

zF
′

z − FG′′

zz =
2k

k2 + 1

∫

FF ′′

zz dz +A2, (5)

where A1 and A2 are arbitrary constants.
The autonomous equation (4) can be reduced, with the change of variable Z(F ) = (F ′

z)2, to a
first-order linear equation.

The general solution of equation (2), or (4), is given by

F (z) = B1z +B2, A1 = B2
1 ;

F (z) = B1 exp(λz) +B2 exp(−λz), A1 = −4λ2B1B2;

F (z) = B1 sin(λz) +B2 cos(λz), A1 = λ2(B2
1 +B2

2),

where B1, B2, and λ are arbitrary constants.
The general solution of equation (3), or (5), is expressed as

G = C1

∫

F dz −
∫

F

(
∫

ψ dz

F 2

)

dz + C2,

F = F (z), ψ =
2k

k2 + 1

∫

FF ′′

zz dz +A2,

where C1 and C2 are arbitrary constants.
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8◦. There are exact solutions of the following forms:

w(x, y) = xaU (ζ), ζ = y/x;
w(x, y) = eaxV (ρ), ρ = bx + cy;
w(x, y) = W (ζ) + a ln |x|, ζ = y/x;

where a, b, and c are arbitrary constants.

I For other exact solutions, see equation 9.4.1.2.d�e
References for equation 9.4.1.1: A. A. Buchnev (1971), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Ro-

dionov (1999), A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂w

∂θ

∂

∂r
(∆w) –

∂w

∂r

∂

∂θ
(∆w) = 0, ∆w =

1
r

∂

∂r

(

r
∂w

∂r

)

+
1
r2

∂2w

∂θ2
.

Preliminary remarks. Equation 9.4.1.1 is reduced to this equation by passing to polar coordinates r, θ with origin at a
point (x0, y0), where x0 and y0 are any, such that

x = r cos θ + x0, y = r sin θ + y0 (direct transformation),

r =
√

(x − x0)2 + (y − y0)2, tan θ =
y − y0

x − x0
(inverse transformation).

The radial and angular components of the fluid velocity are expressed in terms of the stream functionw as follows: ur = 1
r

∂w
∂θ

and uθ = − ∂w
∂r

.

1◦. Multiplicative separable solution:

w(r, θ) = rλU (θ),

where the function U = U (θ) is determined by the second-order autonomous ordinary differential
equation

U ′′

θθ + λ2U = CU
λ−2
λ (λ and C are any).

Its general solution can be written out in implicit form. In particular, if C = 0, we have

U = A1 sin(λθ) +A2 cos(λθ) if λ ≠ 0,
U = A1θ +A2 if λ = 0.

To λ = 0 there corresponds a solution dependent on the angle θ only.

2◦. Multiplicative separable solution:

w(r, θ) = f (r)g(θ),

where the functions f = f (r) and g = g(θ) are determined by the linear ordinary differential equations

L(f ) = (β − λr−2)f ,
g′′θθ = λg,

where β and λ are arbitrary constants; L(f ) = r−1(rf ′

r)
′

r.

3◦. Solution:
w = bθ + U (ξ), ξ = θ + a ln r, (1)

where the function U = U (ξ) is determined by the ordinary differential equation

abU ′′′

ξξξ = 2bU ′′

ξξ + 2U ′

ξU
′′

ξξ.

The onefold integration yields
abU ′′

ξξ = (U ′

ξ)
2 + 2bU ′

ξ + C1, (2)
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where C1 is an arbitrary constant. The further integration results in

ξ = ab
∫

dz

z2 + 2bz + C1
, z = U ′

ξ.

4◦. Generalized separable solution linear in θ:

w(r, θ) = f (r)θ + g(r).

Here, the functions f = f (r) and g = g(r) are determined by the system of ordinary differential
equations

− f ′

rL(f ) + f [L(f )]′r = 0,
− g′rL(f ) + f [L(g)]′r = 0,

(3)

where L(f ) = r−1(rf ′

r)′r.
System (3) admits first integrals, which allow us to obtain the following second-order linear

ordinary differential equations for f and g:

L(f ) = Af ,
L(g) = Ag +B,

(4)

where A and B are arbitrary constants. For A = 0, the solutions of equations (4) are given by

f (r) = C1 ln r + C2,

g(r) = 1
4Br

2 + C3 ln r + C4.

For A ≠ 0, the solutions of equations (4) are expressed in terms of Bessel functions.

I For other exact solutions, see equation 9.4.1.1.f�g
References for equation 9.4.1.2: A. A. Buchnev (1971), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Ro-

dionov (1999), A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂w

∂z

∂Ew

∂r
–

∂w

∂r

∂Ew

∂z
–

2
r

∂w

∂z
Ew = 0, Ew = r

∂

∂r

(

1
r

∂w

∂r

)

+
∂2w

∂z2
.

Preliminary remarks. The stationary Euler equations written in cylindrical coordinates for the axisymmetric case are
reduced to the equation in question by the introduction of a stream function w such that ur = 1

r
∂w
∂z

and uz = − 1
r

∂w
∂r

, where

r =
√
x2 + y2, and ur and uz are the radial and axial fluid velocity components.

1◦. Any function w = w(r, z) that solves the second-order linear equation Ew = 0 will also be a
solution of the given equation.

2◦. Solutions:
w = ϕ(r),

w = (C1z
2 + C2z + C3)r2 + C4z + C5,

where ϕ(r) is an arbitrary function and C1, . . . , C5 are arbitrary constants.

3◦. Generalized separable solution linear in z:

w(r, z) = ϕ(r)z + ψ(r).

Here, ϕ = ϕ(r) and ψ = ψ(r) are determined by the system of ordinary differential equations

ϕ[L(ϕ)]′r − ϕ′

rL(ϕ) − 2r−1ϕL(ϕ) = 0,

ϕ[L(ψ)]′r − ψ′

rL(ϕ) − 2r−1ϕL(ψ) = 0,
(1)

where L(ϕ) = ϕ′′

rr − r−1ϕ′

r.
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System (1) admits first integrals, which allow us to obtain the following second-order linear
ordinary differential equations for ϕ and ψ:

L(ϕ) = 4C1r
2ϕ,

L(ψ) = 4C1r
2ψ + 4C2r

2,
(2)

where C1 and C2 are arbitrary constants. The substitution ξ = r2 brings (2) to the linear constant-
coefficient equations

ϕ′′

ξξ = C1ϕ,

ψ′′

ξξ = C1ψ + C2.

Integrating yields

ϕ =







A1 cosh(kξ) +B1 sinh(kξ) if C1 = k2 > 0,
A1 cos(kξ) +B1 sin(kξ) if C1 = −k2 < 0,
A1ξ +B1 if C1 = 0,

ψ =







A2 cosh(kξ) +B2 sinh(kξ) − C2/C1 if C1 = k2 > 0,
A2 cos(kξ) +B2 sin(kξ) − C2/C1 if C1 = −k2 < 0,
1
2C2ξ

2 +A2ξ +B2 if C1 = 0,

where A1, B1, A2, and B2 are arbitrary constants.h�i
References for equation 9.4.1.3: A. A. Buchnev (1971), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Ro-

dionov (1999), A. D. Polyanin and V. F. Zaitsev (2002).

9.4.2. Nonstationary Equations

1.
∂

∂t
(∆w) +

∂w

∂y

∂

∂x
(∆w) –

∂w

∂x

∂

∂y
(∆w) = 0, ∆w =

∂2w

∂x2
+

∂2w

∂y2
.

Preliminary remarks. The two-dimensional nonstationary equations of an ideal incompressible fluid (Euler equations)

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
,

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
,

∂u1

∂x
+
∂u2

∂y
= 0

are reduced to the equation in question by the introduction of a stream function w such that u1 = ∂w
∂y

and u2 = − ∂w
∂x

followed
by the elimination of the pressure p (with cross differentiation) from the first two equations.

For stationary equation, see Subsection 9.4.1.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = −w(y, x, t),

w2 = C1w(C2x + C3, C2y + C4, C1C
2
2 t + C5) + C6,

w3 = w(x cosα + y sinα, −x sinα + y cosα, t),

w4 = w(x cosβt + y sinβt, −x sinβt + y cosβt, t) − 1
2β(x2 + y2),

w5 = w(x + ϕ(t), y + ψ(t), t) + ψ′

t(t)x − ϕ′

t(t)y + χ(t),

where C1, . . . , C6, α, and β are arbitrary constants and ϕ(t), ψ(t), and χ(t) are arbitrary functions,
are also solutions of the equation.

2◦. Any solution of the Poisson equation ∆w=C is also a solution of the original equation. Solutions
of the Laplace equation ∆w = 0 describe irrotational (potential) flows of an ideal incompressible
fluid.
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3◦. Solutions of general form:

w(x, y, t) = Q(z) + ψ′

t(t)x − ϕ′

t(t)y, z = C1[x + ϕ(t)] + C2[y + ψ(t)];

w(x, y, t) = Q(z) + ψ′

t(t)x − ϕ′

t(t)y, z = [x + ϕ(t)]2 + [y + ψ(t)]2;

where Q(z), ϕ(t), and ϕ(t) are arbitrary functions; C1 and C2 are arbitrary constants.
Likewise, the formulas of Item 1◦ can be used to construct nonstationary solution based on other,

stationary solutions (see Subsection 9.4.1).

4◦. Generalized separable solution linear in x:

w(x, y, t) = F (y, t)x +G(y, t), (1)

where the functions F (y, t) and G = G(y, t) are determined by the system of one-dimensional
third-order equations

∂3F

∂t∂y2 +
∂F

∂y

∂2F

∂y2 − F
∂3F

∂y3 = 0, (2)

∂3G

∂t∂y2 +
∂G

∂y

∂2F

∂y2 − F
∂3G

∂y3 = 0. (3)

Equation (2) is solved independently of (3). If F = F (y, t) is a solution of equation (2), then the
functions

F1 = F (y + ψ(t), t) + ψ′

t(t),

F2 = C1F (C1y + C1C2t + C3,C2
1 t + C4) + C2,

where ψ(t) is an arbitrary function and C1, . . . , C4 are arbitrary constants, are also solutions of the
equation.

Integrating (2) and (3) with respect to y yields the system of second-order equations

∂2F

∂t∂y
+

(

∂F

∂y

)2

− F
∂2F

∂y2 = f1(t), (4)

∂2G

∂t∂y
+
∂F

∂y

∂G

∂y
− F

∂2G

∂y2 = f2(t), (5)

where f1(t) and f2(t) are arbitrary functions. Equation (5) is linear in G. Then the substitution

G =
∫

U dy − hF + h′ty, where U = U (y, t), F = F (y, t), (6)

and the function h = h(t) is determined by the second-order linear ordinary differential equation

h′′tt − f1(t)h = f2(t), (7)

brings (5) to the first-order linear homogeneous partial differential equation

∂U

∂t
− F

∂U

∂y
= −

∂F

∂y
U . (8)

Thus, whenever a particular solution of equation (2) or (4) is known, finding G is reduced to
solving the linear equations (7) and (8) followed by integrating by formula (6).

Solutions of equation (2) are listed in Table 11. The ordinary differential equations in the last two
rows can be reduced, with the substitution H ′

z = V (H), to first-order separable equations. Table 12
presents the general solutions of equation (5) that correspond to exact solutions of equation (2) in
Table 11.
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TABLE 11
Solutions of equations (2) and (4)

No.
Function F = F (y, t)

(or general form of solutions)
Function f1(t)
in equation (4)

Determining functions
(of determining equation)

1 F = ϕ(t)y + ψ(t) f1(t) = ϕ′

t + ϕ2 ϕ(t) and ψ(t) are arbitrary

2 F = A exp[−λy − λψ(t)] + ψ′

t(t) f1(t) = 0 ψ(t) is arbitrary; A and λ are any

3 F = A sinh[λy + λψ(t)] + ψ′

t(t) f1(t) = A2λ2 ψ(t) is arbitrary; A and λ are any

4 F = A cosh[λy + λψ(t)] + ψ′

t(t) f1(t) = −A2λ2 ψ(t) is arbitrary; A and λ are any

5 F = A sin[λy + λψ(t)] + ψ′

t(t) f1(t) = A2λ2 ψ(t) is arbitrary; A and λ are any

6 F = A cos[λy + λψ(t)] + ψ′

t(t) f1(t) = A2λ2 ψ(t) is arbitrary; A and λ are any

7 F = t−1H(z) + ψ′

t(t), z = y + ψ(t) f1(t) = At−2 −A −H ′

z + (H ′

z)2 −HH ′′

zz = 0

8 F = t−1/2[H(z) − 1
2 z

]

, z = yt−1/2 f1(t) = At−2 3
4 −A − 2H ′

z + (H ′

z)2 −HH ′′

zz = 0

TABLE 12
Solutions of equation (5); Θ(ξ) is an arbitrary function everywhere; the number in

the first column corresponds to the number of an exact solution in Table 11

No. General solution of equation (5) Notation

1 G = 1
Φ2(t) Θ(ξ) + y

Φ(t)

∫

f2(t)Φ(t) dt, ξ = yΦ(t) +
∫

ψ(t)Φ(t) dt Φ(t) = exp
[∫

ϕ(t) dt
]

2 Formula (6), where U = e−λz
Θ(ξ), ξ = t + 1

Aλ
eλz z = y + ψ(t)

3 Formula (6), where U = sinh(λz)Θ(ξ), ξ = t + 1
Aλ

ln
∣

∣tanh λz
2

∣

∣ z = y + ψ(t)

4 Formula (6), where U = cosh(λz)Θ(ξ), ξ = t + 2
Aλ

arctan
(

eλz
)

z = y + ψ(t)

5 Formula (6), where U = sin(λz)Θ(ξ), ξ = t + 1
Aλ

ln
∣

∣tan λz
2

∣

∣ z = y + ψ(t)

6 Formula (6), where U = cos(λz)Θ(ξ), ξ = t + 1
Aλ

ln
∣

∣tan
(

λz
2 + π

4

)
∣

∣ z = y + ψ(t)

7 Formula (6), where U = Θ(ξ)H(z), ξ = t exp
[∫

dz
H(z)

]

z = y + ψ(t)

8 Formula (6), where U = Θ(ξ)H(z) exp
[

− 1
2

∫

dz
H(z)

]

, ξ = t exp
[∫

dz
H(z)

]

z = y
√

t

The general solution of the linear nonhomogeneous equation (7) can be obtained by the formula

h(t) = C1h1(t) + C2h2(t) +
1
W0

[

h2(t)
∫

h1(t)f2(t) dt − h1(t)
∫

h2(t)f2(t) dt
]

, (9)

where h1 = h1(t) and h2 = h2(t) are fundamental solutions of the corresponding homogeneous
equation (with f2 ≡ 0), and W0 = h1(h2)′t − h2(h1)′t is the Wronskian determinant (W0 = const).
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For exact solutions 2–8 in Table 11, one should set

h1 = 1, h2 = t, W0 = 1 for solution 2;

h1 = e−Aλt, h2 = eAλt, W0 = 2Aλ for solutions 3, 5, 6;
h1 = cos(Aλt), h2 = sin(Aλt), W0 = Aλ for solution 4;

h1 = |t|
1
2 −µ, h2 = |t|

1
2 +µ, W0 = 2µ = (1 + 4A)

1
2 for solutions 7, 8

in formula (9).

5◦. Solution:
w(x, y, t) = F (ζ, t)x +G(ζ, t), ζ = y + kx,

where the functions F (ζ, t) and G = G(ζ, t) are determined from the system of one-dimensional
third-order equations

∂3F

∂t∂ζ2 +
∂F

∂ζ

∂2F

∂ζ2 − F
∂3F

∂ζ3 = 0, (10)

∂3G

∂t∂ζ2 +
∂G

∂ζ

∂2F

∂ζ2 − F
∂3G

∂ζ3 =
2k

k2 + 1

(

F
∂2F

∂ζ2 −
∂2F

∂t∂ζ

)

. (11)

Integrating (10) and (11) with respect to ζ yields

∂2F

∂t∂ζ
+

(

∂F

∂ζ

)2

− F
∂2F

∂ζ2 = f1(t), (12)

∂2G

∂t∂ζ
+
∂F

∂ζ

∂G

∂ζ
− F

∂2G

∂ζ2 = Q(ζ, t), (13)

where f1(t) is an arbitrary function, and the function Q(ζ, t) is given by

Q(ζ, t) = −
2k

k2 + 1
∂F

∂t
+

2k
k2 + 1

∫

F
∂2F

∂ζ2 dζ + f2(t), f2(t) is any.

Equation (13) is linear in G. Consequently, the substitution U = ∂G
∂ζ

brings it to the first-order
linear equation

∂U

∂t
− F

∂U

∂ζ
= −

∂F

∂ζ
U +Q(ζ, t). (14)

Equation (10) coincides, up to renaming, with equation (2), whose exact solutions are listed in
Table 11. In these cases, solutions of the corresponding equation (14) can be found by quadrature.

6◦. Solution [special case of a solution of the form (1)]:

w(x, y, t) = exp
[

−λy − λ
∫

ϕ(t) dt
][

C1x + C2 − C1

∫

ψ(t) dt
]

+ ϕ(t)x + ψ(t)y,

where ϕ(t) and ψ(t) are arbitrary functions and C1, C2, and λ are arbitrary constants.

7◦. Generalized separable solution:

w(x, y, t) = e−λy[A(t)eβx +B(t)e−βx] + ϕ(t)x + ψ(t)y,

A(t) = C1 exp
[

−β
∫

ψ(t) dt − λ
∫

ϕ(t) dt
]

,

B(t) = C2 exp
[

β

∫

ψ(t) dt − λ
∫

ϕ(t) dt
]

,

where ϕ(t) and ψ(t) are arbitrary functions and C1, C2, λ, and β are arbitrary constants.
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8◦. Generalized separable solution:

w(x, y, t) = e−λy[A(t) sin(βx) +B(t) cos(βx)
]

+ ϕ(t)x + ψ(t)y,

A(t) = exp
(

−λ
∫

ϕdt

)[

C1 sin
(

β

∫

ψ dt

)

+ C2 cos
(

β

∫

ψ dt

)]

,

B(t) = exp
(

−λ
∫

ϕdt

)[

C1 cos
(

β

∫

ψ dt

)

− C2 sin
(

β

∫

ψ dt

)]

,

where ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions and C1, C2, λ, and β are arbitrary constants.

9◦. Generalized separable solutions:

w(x, y, t) = A(t) exp(k1x + λ1y) +B(t) exp(k2x + λ2y) + ϕ(t)x + ψ(t)y,

A(t) = C1 exp
[

λ1

∫

ϕ(t) dt − k1

∫

ψ(t) dt
]

,

B(t) = C2 exp
[

λ2

∫

ϕ(t) dt − k2

∫

ψ(t) dt
]

,

where ϕ(t) and ψ(t) are arbitrary functions; C1 and C2 are arbitrary constants; and k1, λ1, k2, and
λ2 are arbitrary parameters related by one of the two constraints

k2
1 + λ2

1 = k2
2 + λ2

2 (first family of solutions),
k1λ2 = k2λ1 (second family of solutions).

10◦. Generalized separable solution:

w(x, y, t) =
[

C1 sin(λx) + C2 cos(λx)
][

A(t) sin(βy) +B(t) cos(βy)
]

+ ϕ(t)x,

A(t) = C3 cos
(

β

∫

ϕdt + C4

)

, B(t) = C3 sin
(

β

∫

ϕdt + C4

)

,

where ϕ = ϕ(t) is an arbitrary function and C1, . . . , C4, λ, and β are arbitrary constants.

11◦. Generalized separable solution:

w(x, y, t) =
[

C1 sinh(λx) + C2 cosh(λx)
][

A(t) sin(βy) +B(t) cos(βy)
]

+ ϕ(t)x,

A(t) = C3 cos
(

β

∫

ϕdt + C4

)

, B(t) = C3 sin
(

β

∫

ϕdt + C4

)

,

where ϕ = ϕ(t) is an arbitrary function and C1, . . . , C4, λ, and β are arbitrary constants.

12◦. Solution:

w(x, y, t) = f (z) + g(t)z + ϕ(t)x + ψ(t)y, z = kx + λy +
∫

[

λϕ(t) − kψ(t)
]

dt,

where f (z), g(t), ϕ(t), and ψ(t) are arbitrary functions and k and λ are arbitrary constants.

13◦+. There is a “two-dimensional” solution of the form

w = W (ρ1, ρ2) + c1x + c2y, ρ1 = a1x + a2y + a3t, ρ2 = b1x + b2y + b3t.

14◦+. “Two-dimensional” solution:

w = t(2−k)/k
Ψ(ξ, η), ξ = t−1/k[x cos(λ ln t) − y sin(λ ln t)

]

, η = t−1/k[x sin(λ ln t) + y cos(λ ln t)
]

,

where k and λ are arbitrary constants and the function Ψ(ξ, η) is determined by the differential
equation

−˜∆Ψ +
(

∂Ψ

∂η
−

1
k
ξ − λη

)

∂

∂ξ
˜∆Ψ −

(

∂Ψ

∂ξ
+

1
k
η − λξ

)

∂

∂η
˜∆Ψ = 0, ˜∆ =

∂2

∂ξ2 +
∂2

∂η2 .
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15◦+. “Two-dimensional” solution:

w(x, y, t) =
ϕ′

t(x
2 − y2 + 2ϕxy)
2(1 + ϕ2)

+
y − ϕx
1 + ϕ2 F (ζ, t) − 2G(ζ, t), ζ = x + ϕy,

where ϕ = ϕ(t) is an arbitrary function and the functions F = F (ζ, t) andG =G(ζ, t) are determined
by the differential equations

F
∂3F

∂ζ3 −
∂F

∂ζ

∂2F

∂ζ2 +
2ϕϕ′

t

1 + ϕ2
∂2F

∂ζ2 +
∂3F

∂ζ2t
= 0, (15)

F
∂3G

∂ζ3 −
∂2F

∂ζ2
∂G

∂ζ
+

2ϕϕ′

t

1 + ϕ2
∂2G

∂ζ2 +
∂3G

∂ζ2t
= −

ϕ′

t

(1 + ϕ2)2 ζ
∂2F

∂ζ2 . (16)

Equation (15) is solved independently of equation (16). If F = F (ζ, t) is a solution to (15), then
the function

F1 = F (y + σ(t), t) − σ′

t(t),

where σ(t) is an arbitrary function, is also a solution of the equation.
Integrating (15) and (16) with respect to ζ yields

F
∂2F

∂ζ2 −
(

∂F

∂ζ

)2

+
2ϕϕ′

t

1 + ϕ2
∂F

∂ζ
+
∂2F

∂ζ∂t
= ψ1(t),

F
∂2G

∂ζ2 −
∂F

∂ζ

∂G

∂ζ
+

2ϕϕ′

t

1 + ϕ2
∂G

∂ζ
+
∂2G

∂ζ∂t
=

ϕ′

t

(1 + ϕ2)2

(

F − ζ
∂F

∂ζ

)

+ ψ2(t),

whereψ1(t) andψ2(t) are arbitrary functions. The change of variable u = ∂G
∂ζ

brings the last equation
to a first-order linear equation (for known F ).

Note that equation (15) admits particular solutions of the following forms:

F (ζ, t) = a(t)ζ + b(t),

F (ζ, t) = a(t)e−λζ +
a′t(t)
λa(t)

+
2ϕϕ′

t

λ(1 + ϕ2)
,

where a(t) and b(t) are arbitrary functions and λ is an arbitrary constant.j�k
References for equation 9.4.2.1: A. A. Buchnev (1971), B. J. Cantwell (1978), P. J. Olver (1986), V. K. Andreev,

O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999), D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (1999),
A. D. Polyanin and V. F. Zaitsev (2002).

2.
∂Q

∂t
+

1
r

∂w

∂θ

∂Q

∂r
–

1
r

∂w

∂r

∂Q

∂θ
= 0, Q =

1
r

∂

∂r

(

r
∂w

∂r

)

+
1
r2

∂2w

∂θ2
.

Preliminary remarks. Equation 9.4.4.1 is reduced to the equation in question by passing to the polar coordinate system
with center at a point (x0, y0), where x0 and y0 are any, by the formulas

x = r cos θ + x0, y = r sin θ + y0 (direct transformation),

r =
√

(x − x0)2 + (y − y0)2, tan θ =
y − y0

x − x0
(inverse transformation).

The radial and angular components of the fluid velocity are expressed via the stream function w as follows: ur = 1
r

∂w
∂θ

,
uθ = − ∂w

∂r
.

1◦. Generalized separable solution linear in θ:

w(r, θ, t) = f (r, t)θ + g(r, t), (1)

where the functions f = f (r, t) and g = g(r, t) satisfy the system of equations

L(ft) − r−1frL(f ) + r−1f [L(f )]r = 0, (2)
L(gt) − r−1grL(f ) + r−1f [L(g)]r = 0. (3)

Here, the subscripts r and t denote the corresponding partial derivatives, L(f ) = r−1(rfr)r.
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2◦. For particular solutions to equation (2) of the form

f = ϕ(t) ln r + ψ(t) (4)

where ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions, equation (3) can be reduced, with the change
of variable U = L(g), to the first-order linear equation Ut + r−1fUr = 0. Two families of particular
solutions to this equation are given by

U = Θ(ζ), ζ = r2 − 2
∫

ψ(t) dt (first family of solutions,ϕ = 0),

U = Θ(ζ), ζ =
∫

r dr

ln r
−

∫

ϕ(t) dt (second family of solutions,ψ = 0),

where Θ(ζ) is an arbitrary function. The second term in solution (1) is expressed via U = U (r, t),
provided the first term has the form (4), as follows:

g(r, t) = C1(t) ln r + C2(t) +
∫

Φ(r, t) dr, Φ(r, t) =
1
r

∫

rU (r, t) dr,

where C1(t) and C2(t) are arbitrary functions.

Remark. Equation (2) has also a solution f = −
r2

2(t + C)
.

3◦. “Two-dimensional” solution:

w(r, θ, t) = Ar2t + H(ξ, η), ξ = r cos(θ +At2), η = r sin(θ +At2),

where A is an arbitrary constant and the functionH(ξ, η) is determined by the differential equation

∂H

∂η

∂

∂ξ
˜∆H −

∂H

∂ξ

∂

∂η
˜∆H + 4A = 0, ˜∆ =

∂2

∂ξ2 +
∂2

∂η2 .

I For other exact solutions, see equation 9.4.2.1.l�m
References for equation 9.4.2.2: A. A. Buchnev (1971), P. J. Olver (1986), V. K. Andreev, O. V. Kaptsov, V. V. Pukhna-

chov, and A. A. Rodionov (1999), D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (1999), A. D. Polyanin and V. F. Zaitsev
(2002).

9.5. Other Third-Order Nonlinear Equations

9.5.1. Equations Involving Second-Order Mixed Derivatives

1.
∂2w

∂x∂t
= aw

∂2w

∂x2
+ b

∂3w

∂x3
.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C1w(C1x + aC1ϕ(t),C2
1 t + C2) + ϕ′

t(t),

where C1 and C3 are arbitrary constants and ϕ(t) is an arbitrary function, is also a solution of the
equation.

2◦. There are exact solutions of the following forms:

w = U (z), z = x + λt traveling-wave solution;

w = |t|−1/2V (ξ), ξ = x|t|−1/2 self-similar solution.
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2.
∂2w

∂x∂t
+

(

∂w

∂x

)2

– w
∂2w

∂x2
= ν

∂3w

∂x3
.

This equation occurs in fluid dynamics; see 9.3.3.1, equation (2) and 10.3.3.1, equation (4) with
f1(t) = 0.

1◦. Suppose w = w(x, t) is a solution of the equation in question. Then the functions

w1 = w(x + ψ(t), t) + ψ′

t(t),

w2 = C1w(C1x + C1C2t + C3,C2
1 t + C4) + C2,

where ψ(t) is an arbitrary function and C1, . . . , C4 are arbitrary constants, are also solutions of the
equation.

2◦. Solutions:
w(x, t) =

C1x

C1t + C2
+ ψ(t),

w(x, t) =
6ν

x + ψ(t)
+ ψ′

t(t),

w(x, t) = C1 exp
[

−λx + λψ(t)
]

− ψ′

t(t) + νλ,
where ψ(t) is an arbitrary function and C1, C2, and λ are arbitrary constants. The first solution is
“inviscid” (independent of ν).

3◦. Traveling-wave solution (λ is an arbitrary constant):

w = F (z), z = x + λt,

where the function F (z) is determined by the autonomous ordinary differential equation

λF ′′

zz + (F ′

z)2 − FF ′′

zz = νF ′′′

zzz .

4◦. Self-similar solution:
w = t−1/2[G(ξ) − 1

2 ξ
]

, ξ = xt−1/2,
where the functionG = G(z) is determined by the autonomous ordinary differential equation

3
4 − 2G′

ξ + (G′

ξ)
2 −GG′′

ξξ = νG′′′

ξξξ .

The solutions of Items 3◦ and 4◦ can be generalized using the formulas of Item 1◦.n�o
References: A. D. Polyanin (2001 b, 2002).

3.
∂2w

∂x∂t
+

(

∂w

∂x

)2

– w
∂2w

∂x2
= ν

∂3w

∂x3
+ f (t).

This equation occurs in fluid dynamics; see 9.3.3.2, equation (3) and 10.3.3.1, equation (4).

1◦. Suppose w = w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + ψ(t), t) + ψ′

t(t),

where ψ(t) is an arbitrary function, is also a solution of the equation.

2◦. Degenerate solution (linear in x) for any f (t):

w(x, t) = ϕ(t)x + ψ(t),

where ψ(t) is an arbitrary function, and the function ϕ = ϕ(t) is described by the Riccati equation
ϕ′

t + ϕ2 = f (t). For exact solutions of this equation, see Polyanin and Zaitsev (2003).

3◦. Generalized separable solutions for f (t) = Ae−βt, A > 0, β > 0:

w(x, t) = Be− 1
2 βt sin[λx + λψ(t)] + ψ′

t(t),

w(x, t) = Be− 1
2 βt cos[λx + λψ(t)] + ψ′

t(t),
B = p

√

2Aν
β

, λ =
√

β

2ν
,

where ψ(t) is an arbitrary function.
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4◦. Generalized separable solution for f (t) = Aeβt, A > 0, β > 0:

w(x, t) = Be
1
2 βt sinh[λx + λψ(t)] + ψ′

t(t), B = q
√

2Aν
β

, λ =
√

β

2ν
,

where ψ(t) is an arbitrary function.
5◦. Generalized separable solution for f (t) = Aeβt, A < 0, β > 0:

w(x, t) = Be
1
2 βt cosh[λx + λψ(t)] + ψ′

t(t), B = q
√

2|A|ν
β

, λ =
√

β

2ν
,

where ψ(t) is an arbitrary function.
6◦. Generalized separable solution for f (t) = Aeβt, A is any, β > 0:

w(x, t) = ψ(t)eλx −
Aeβt−λx

4λ2ψ(t)
+
ψ′

t(t)
λψ(t)

− νλ, λ = q
√

β

2ν
,

where ψ(t) is an arbitrary function.
7◦. Self-similar solution for f (t) = At−2:

w(x, t) = t−1/2[u(z) − 1
2 z

]

, z = xt−1/2,
where the function u = u(z) is determined by the autonomous ordinary differential equation

3
4 − A − 2u′z + (u′z)2 − uu′′zz = νu′′′zzz,

whose order can be reduced by one.
8◦. Traveling-wave solution for f (t) = A:

w = w(ξ), ξ = x + λt,
where the function w(ξ) is determined by the autonomous ordinary differential equation

−A + λw′′

ξξ + (w′

ξ)
2 − ww′′

ξξ = νw′′′

ξξξ ,
whose order can be reduced by one.r�s

References: V. A. Galaktionov (1995), A. D. Polyanin (2001 b, 2002).

4.
∂2w

∂x∂t
+

(

∂w

∂x

)2

– w
∂2w

∂x2
= f (t)

∂3w

∂x3
.

1◦. Suppose w = w(x, t) is a solution of this equation. Then the function
w1 = w(x + ψ(t), t) + ψ′

t(t),
where ψ(t) is an arbitrary function, is also a solution of the equation.
2◦. Generalized separable solutions:

w(x, t) =
C1x

C1t + C2
+ ϕ(t),

w(x, t) = ϕ(t)e−λx −
ϕ′

t(t)
λϕ(t)

+ λf (t),

where ϕ(t) is an arbitrary function and C1, C2, and λ are arbitrary constants. The first solution is
degenerate.

I For other equations involving second-order mixed derivatives, see Sections 9.3 and 9.4.

9.5.2. Equations Involving Third-Order Mixed Derivatives

1.
∂3w

∂x2∂y
= aeλw.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = w
(

C1x + C2, C3y + C4
)

+
1
λ

ln(C2
1C3),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.
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2◦. Generalized traveling-wave solution:

w(x, y) = −
3
λ

ln z, z = f (y)x −
1
6
aλf (y)

∫

dy

f 3(y)
,

where f (y) is an arbitrary function.

2.
∂w

∂t
= w

∂w

∂x
+ β

∂3w

∂x2∂t
.

BBM equation (Benjamin–Bona–Mahony equation). It describes long waves in dispersive systems.
1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w( t x + C2, t C1t + C3),
whereC1, C2, andC3 are arbitrary constants, are also solutions of the equation (either plus or minus
signs are taken).
2◦. Traveling-wave solution:

w(x, t) = −a + ℘
(

x − at
2
√

3aβ
+ C1,C2,C3

)

,

where ℘(z,C2,C3) is the Weierstrass elliptic function
(

℘′

z =
√

4℘3 − C2℘ − C3
)

; a, C1, C2, and C3
are arbitrary constants. See also equation 9.5.2.3, Item 2◦ with a = −1, b = β, and k = 1.
3◦. Multiplicative separable solution:

w(x, t) = u(x)/t,
where the function u = u(x) is determined by the autonomous ordinary differential equation
βu′′xx − uu′x − u = 0. Its solution can be written out in parametric form

u =
√

2β(τ − ln |τ | + C1)1/2, x =
1
2

√

2β
∫

dτ

τ (τ − ln |τ | + C1)1/2 + C2.

4◦. Solution:
w(x, t) = U (ξ)/t, ξ = x − a ln |t|,

where the function U = U (ξ) is determined by the autonomous ordinary differential equation
β(aU ′′′

ξξξ + U ′′

ξξ) − (U + a)U ′

ξ − U = 0.
5◦. Conservation laws for β = 1:

Dtw +Dx

(

−wtx − 1
2w

2) = 0,

Dt

( 1
2w

2 + 1
2w

2
x

)

+Dx

(

−wwtx − 1
3w

3) = 0,

Dt

( 1
3w

3) +Dx

(

w2
t − w2

tx − w2wtx − 1
4w

4) = 0,

where Dx = ∂
∂x

and Dt = ∂
∂t

.u�v
References: D. N. Peregrine (1966), T. B. Benjamin, J. L. Bona, and J. J. Mahony (1972), P. O. Olver (1979),

N. H. Ibragimov (1994).

3.
∂w

∂t
+ awk ∂w

∂x
– b

∂3w

∂x2∂t
= 0.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions
w1 = C1w( t x + C2, t Ck1 t + C3),

whereC1, C2, andC3 are arbitrary constants, are also solutions of the equation (either plus or minus
signs are taken).
2◦. Traveling-wave solution (soliton):

w(x, t) =
{

C1(k + 1)(k + 2)
2a

cosh−2
[

k

2
√

b
(x − C1t + C2)

]}1/k

,

where C1 and C2 are arbitrary constants.u�v
Private communications: W. E. Schiesser (2003), S. Hamdi, W. H. Enright, W. E. Schiesser, and J. J. Gottlieb (2003).

3◦. There is a multiplicative separable solution of the form w(x, t) = t−1/kθ(x).
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4.
∂w

∂t
+ awk ∂w

∂x
+ b

∂3w

∂x∂t2
= 0.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w( w C−k

1 x + C2, w Ck1 t + C3),

whereC1, C2, andC3 are arbitrary constants, are also solutions of the equation (either plus or minus
signs are taken).

2◦. Traveling-wave solution (soliton):

w(x, t) =
{

C1(k + 1)(k + 2)
2a

cosh−2
[

k

2
√

bC1
(x − C1t + C2)

]}1/k

,

where C1 and C2 are arbitrary constants.x�y
Private communication: W. E. Schiesser (2003).

3◦. There is a self-similar solution of the form w(x, t) = x2/kU (z), where z = xt.

4◦. Generalized separable solution for k = 1:

w(x, t) =
x + C2

at + C1
+

2ab
(at + C1)2 .

5.
∂3w

∂x2∂t
= kw

∂3w

∂x3
.

This equation is encountered at the interface between projective geometry and gravitational theory.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w
(

C2x + C2kϕ(t),C1C2t + C3
)

+ ϕ′

t(t),

where C1, C2, and C3 are arbitrary constants and ϕ(t) is an arbitrary function, is also a solution of
the equation.

2◦. Degenerate solution:
w(x, t) = Cx2 + ϕ(t)x + ψ(t),

where ϕ(t) and ψ(t) are arbitrary functions and C is an arbitrary constant.

3◦. Self-similar solution:
w(x, t) = t−α−1U (z), z = tαx,

where α is an arbitrary constant and the function U (z) is determined by the ordinary differential
equation (α − 1)U ′′

zz + αzU ′′′

zzz = kUU ′′′

zzz.

4◦. Multiplicative separable solution:

w(x, t) = (Akt +B)−1u(x),

where A and B are arbitrary constants, and the function u(x) is determined by the autonomous
ordinary differential equation uu′′′xxx +Au′′xx = 0.

5◦. There is a first integral:

∂2w

∂x∂t
= kw

∂2w

∂x2 −
k

2

(

∂w

∂x

)2

+ ψ(t),

where ψ(t) is an arbitrary function. For ψ = 0, the substitution u = kw leads to an equation of the
form 7.1.1.2 with a = − 1

2 .x�y
References: V. S. Dryuma (2000), M. V. Pavlov (2001).
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6.
∂3w

∂x2∂t
= f (t)w

∂3w

∂x3
+ g(x, t).

There is a first integral:

∂2w

∂x∂t
= f (t)w

∂2w

∂x2 −
1
2
f (t)

(

∂w

∂x

)2

+
∫

g(x, t) dx + ϕ(t),

where ϕ(t) is an arbitrary function.

7.
∂w

∂y

∂3w

∂x2∂y
–

∂w

∂x

∂3w

∂x∂y2
= 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C1w(C2x + C3,C4y + C5) + C6,

where C1, . . . , C6 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:
w(x, y) = axy + f (x) + g(y);

w(x, y) =
1
λ

[

f (x) + g(y)
]

−
2
λ

ln
∣

∣

∣

∣

b

∫

exp
[

f (x)
]

dx +
aλ

2b

∫

exp
[

g(y)
]

dy

∣

∣

∣

∣

,

w(x, y) = ϕ(z), z = ax + by;
w(x, y) = ψ(ξ), ξ = xy;

where f = f (y), g = g(y), ϕ(z), and ψ(ξ) are arbitrary functions; a, b, and λ are arbitrary constants.

3◦. There are exact solutions of the following forms:

w(x, y) = |x|aF (r), r = y|x|b;
w(x, y) = eaxG(η), η = bx + cy;

w(x, y) = eaxH(ζ), ζ = yebx;
w(x, y) = |x|aU (ρ), ρ = y + b ln |x|;

w(x, y) = V (r) + a ln |x|, r = y|x|b;
w(x, y) = W (ρ) + a ln |x|, ρ = y + b ln |x|;

where a, b, and c are arbitrary constants. Another set of solutions can be obtained by swapping x
and y in the above formulas.

4◦. The left-hand side of the original equation represents the Jacobian of w and v = wxy. The fact
that the Jacobian of two quantities is zero means that these are functionally dependent, i.e., v can be
treated as a function of w:

∂2w

∂x∂y
= Φ(w), (1)

where Φ(w) is an arbitrary function. Any solution of the second-order equation (1) with arbitrary
Φ(w) will be a solution of the original equation.

8.
∂w

∂y

∂3w

∂x3
–

∂w

∂x

∂3w

∂x2∂y
= 0.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions

w1 = C1w(C2x + C3,C4y + C5) + C6,

w2 = w
(

x + ϕ(y), y
)

,

where C1, . . . , C6 are arbitrary constants and ϕ(y) is an arbitrary function, are also solutions of the
equation.
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2◦. Solutions:
w(x, y) = Ax2 + fx + g;
w(x, y) = f exp(Ax) + g exp(−Ax);
w(x, y) = f sin(Ax) + g cos(Ax);
w(x, y) = A ln

[

(x + f )2] +B;

w(x, y) = A ln
[

sin2(fx + g)
]

+B;

w(x, y) = A ln
[

sinh2(fx + g)
]

+B;

w(x, y) = A ln
[

cosh2(fx + g)
]

+B;
w(x, y) = ϕ(z), z = Ax +By;

where f = f (y), g = g(y), and ϕ(z) are arbitrary functions; A and B are arbitrary constants.
3◦. The left-hand side of the original equation represents the Jacobian of w and v = wxx. The fact
that the Jacobian of two quantities is zero means that these are functionally dependent, i.e., v can be
treated as a function of w:

∂2w

∂x2 = ϕ(w), (1)

where ϕ(w) is an arbitrary function. Any solution of the second-order equation (1) with arbitrary
ϕ(w) will be a solution of the original equation.

Integrating (1) yields the general solution of the original equation in implicit form:
∫

[

f (y) + 2
∫

ϕ(w) dw
]−1/2

dw = g(y) z x,

where f = f (y), g = g(y), and ϕ(w) are arbitrary functions.

9.
∂w

∂y

∂3w

∂x3
–

∂w

∂x

∂3w

∂x2∂y
= f (y)

∂w

∂x
.

1◦. Suppose w(x, y) is a solution of this equation. Then the functions
w1 = C−2

1 w(C1x + C2, y) + C3,

w2 = w
(

x + ϕ(y), y
)

,
where C1, C2, and C3 are arbitrary constants and ϕ(y) is an arbitrary function, are also solutions of
the equation.
2◦. Generalized separable solution quadratic in x:

w(x, y) = −
1
2
x2

[
∫

f (y) dy + C
]

+ xϕ(y) + ψ(y),

where ϕ(y) and ψ(y) are arbitrary functions and C is an arbitrary constant.
3◦. Additive separable solutions:

w(x, y) = C1e
kx + C2e

−kx + C3 +
1
k2

∫

f (y) dy,

w(x, y) = C1 cos(kx) + C2 sin(kx) + C3 −
1
k2

∫

f (y) dy,

where C1, C2, C3, and k are arbitrary constants.
4◦. The original equation can be rewritten as the relation where the Jacobian of two functions, w
and v = wxx +

∫
f (y) dy, is equal to zero. It follows that w and v are functionally dependent, i.e., v

can be treated as a function of w:
∂2w

∂x2 +
∫

f (y) dy = ϕ(w), (1)

where ϕ(w) is an arbitrary function. Any solution of the second-order equation (1) with arbitrary
ϕ(w) will be a solution of the original equation.
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Equation (1) may be treated as an ordinary differential equation with independent variable x and
parameter y. Integrating yields the general solution of (1) in implicit form:

∫
[

ψ1(y) − 2w
∫

f (y) dy + 2
∫

ϕ(w) dw
]−1/2

dw = ψ2(y) { x,

where ψ1(y), ψ2(y), and ϕ(w) are arbitrary functions.

10.
∂w

∂y

∂3w

∂x3
–

∂w

∂x

∂3w

∂x2∂y
= f (y)

∂w

∂x
+ g(x)

∂w

∂y
.

First integral:
∂2w

∂x2 = ϕ(w) +
∫

g(x) dx −
∫

f (y) dy,

where ϕ(w) is an arbitrary function. This equation can be treated as a second-order ordinary
differential equation with independent variable x and parameter y.

11.
∂w

∂y

(

∂w

∂x

∂3w

∂y3
–

∂w

∂y

∂3w

∂x∂y2

)

= 2
∂2w

∂y2

(

∂w

∂x

∂2w

∂y2
–

∂w

∂y

∂2w

∂x∂y

)

.

General solution:
w = f

(

ϕ(x)y + ψ(x)
)

,

where ϕ(x), ψ(x), and f (z) are arbitrary functions.
Remark. The equation in question can be represented as the equality of the Jacobian of two

functions, w and v, to zero:

wxvy − wyvx = 0, where v = wyy/w2
y.

12.
∂w

∂x

∂w

∂y

(

∂w

∂x

∂3w

∂x∂y2
–

∂w

∂y

∂3w

∂x2∂y

)

=
∂2w

∂x∂y

[(

∂w

∂x

)2 ∂2w

∂y2
–

(

∂w

∂y

)2 ∂2w

∂x2

]

.

Two forms of representation of the general solution:

w = f
(

ϕ(x) + ψ(y)
)

,

w = f̄
(

ϕ̄(x)ψ̄(y)
)

,

where ϕ(x), ψ(y), ϕ̄(x), ψ̄(y), f (z1), and f̄(z2) are arbitrary functions.
Remark. The equation in question can be represented as the equality of the Jacobian of two

functions to zero:
wxvy − wyvx = 0, where v = wxy/(wxwy).

9.5.3. Equations Involving ∂3w
∂x3 and ∂3w

∂y3

1. a
∂3w

∂x3
+ b

∂3w

∂y3
= (ay3 + bx3)f (w).

Solution:
w = w(z), z = xy,

where the function w(w) is determined by the autonomous ordinary differential equation

w′′′

zzz = f (w).

Remark. The above remains true if the constants a and b in the original equation are replaced
by arbitrary functions a = a(x, y,w,wx,wy, . . . ) and b = b(x, y,w,wx,wy, . . . ).
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2.
∂w

∂y

∂2w

∂x2
+ a

∂w

∂x

∂2w

∂y2
= b

∂3w

∂x3
+ c

∂3w

∂y3
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = w(C1x + C2,C1y + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solutions:

w(x, y) = cλx + C1e
aλy + C2y + C3,

w(x, y) = C1e
λx + C2x + bλy + C3,

w(x, y) = C1e
−aλx +

cλ

a
x + C2e

λy − abλy + C3,

where C1, C2, C3, and λ are arbitrary constants.

3◦. Solution:
w = u(z) + C3x, z = C1x + C2y,

where C1, C2 and C3 are arbitrary constants. The function u(z) is determined by the second-order
autonomous ordinary differential equation (C4 is an arbitrary constant)

C1C2(C1 + aC2)(u′z)2 + 2aC2
2C3u

′

z = 2(bC3
1 + cC3

2 )u′′zz + C4.

To C3 = 0 there corresponds a traveling-wave solution. In this case, the substitution F (u) = (u′

z)2

leads to a first-order linear equation.

4◦. There is a self-similar solution of the form w = w(y/x).

3.
∂2w

∂x2

∂2w

∂y2
= a

∂3w

∂x3
+ b

∂3w

∂y3
.

1◦. Suppose w(x, y) is a solution of this equation. Then the function

w1 = C−1
1 w(C1x + C2,C1y + C3) + C4xy + C5x + C6y + C7,

where C1, . . . , C7 are arbitrary constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, y) = −
aC3

1 + bC3
2

C2
1C

2
2

z(ln |z| − 1), z = C1x + C2y + C3.

3◦. Additive separable solutions:

w(x, y) = 1
2 bC1x

2 + C2x + C3 exp(C1y) + C4y + C5,

w(x, y) = 1
2 aC1y

2 + C2y + C3 exp(C1x) + C4x + C5,

where C1, . . . , C5 are arbitrary constants.

4◦. Solution:
w = U (ζ) + C3x

2 + C4y
2, ζ = C1x + C2y,

where the function U (ζ) is determined by the autonomous ordinary differential equation

(C2
1U

′′

ζζ + 2C3)(C2
2U

′′

ζζ + 2C4) = (aC3
1 + bC3

2 )U ′′′

ζζζ ,

which can be integrated with the substitution F (ζ) = U ′′

ζζ .

5◦. There is a self-similar solution of the form w = xu(y/x).
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Chapter 10

Fourth›Order Equations

10.1. Equations Involving the First Derivative in t

10.1.1. Equations of the Form ∂w
∂t

= a∂4w
∂x4 + F

(

x, t, w, ∂w
∂x

)

1.
∂w

∂t
= a

∂4w

∂x4
+ bw ln w + f (t)w.

1◦. Generalized traveling-wave solution:

w(x, t) = exp
[
Aebtx +Bebt +

aA4

3b
e4bt + ebt

∫
e−btf (t) dt

]
,

where A and B are arbitrary constants.

2◦. Solution:

w(x, t) = exp
[
Aebt + ebt

∫
e−btf (t) dt

]
ϕ(z), z = x + λt,

where A and λ are arbitrary constants, and the function ϕ = ϕ(z) is determined by the autonomous
ordinary differential equation

aϕ′′′′

zzzz − λϕ′

z + bϕ lnϕ = 0,
whose order can be reduced by one.

3◦. The substitution

w(x, t) = exp
[
ebt

∫
e−btf (t) dt

]
u(x, t)

leads to the simpler equation
∂u

∂t
= a

∂4u

∂x4 + bu lnu.

2.
∂w

∂t
= a

∂4w

∂x4
+ f (t)w ln w + [g(t)x + h(t)]w.

This is a special case of equation 11.1.2.5 with n = 4.

3.
∂w

∂t
= a

∂4w

∂x4
+ (bx + c)

∂w

∂x
+ f (w).

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−bt,

where the function w(z) is determined by the ordinary differential equation

aw′′′′

zzzz + (bz + c)w′

z + f (w) = 0.
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4.
∂w

∂t
= aw

∂w

∂x
– b

∂4w

∂x4
.

This equation describes the evolution of nonlinear waves in a dispersive medium; see Rudenko and
Robsman (2002).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C3
1w(C1x + aC1C2t + C3,C4

1 t + C4) + C2,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:
w(x, t) = −

x + C1

at + C2
,

w(x, t) = −
120b

a(x + aC1t + C2)3 + C1.

The first solution is degenerate and the second one is a traveling-wave solution.

3◦. Traveling-wave solution in implicit form:

( 40b
9a

)1/3
∫ C3

1w+C2

0

dη

(1 − η2)2/3 = C1x + aC1C2t + C3.

With C1 = 1 and C2 = C3 = 0, we have the stationary solution obtained in Rudenko and Robsman
(2002).

4◦. Traveling-wave solution (generalizes the second solution of Item 2◦ and the solution of Item 3◦):

w = w(ξ), ξ = x − λt,

where the functionw(ξ) is determined by the third-order autonomous ordinary differential equation

bw′′′

ξξξ = 1
2 aw

2 + λw + C.

Here, C and λ are arbitrary constants.

5◦. Self-similar solution:
w(x, t) = t−3/4u(η), η = xt−1/4,

where the function u(η) is determined by the ordinary differential equation

bu′′′′ηηηη = auu′η + 1
4 ηu

′

η + 3
4u.

6◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x + aC1t

2 + C2t,

where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the third-order
ordinary differential equation

bU ′′′

ζζζ − 1
2 aU

2 + C2U = −2C1ζ + C3.

7◦. Solution:
w = ϕ3F (z) +

1
aϕ

(ϕ′

tx + ψ′

t), z = ϕ(t)x + ψ(t).

Here, the functions ϕ(t) and ψ(t) are defined by

ϕ(t) = (4At + C1)−1/4,

ψ(t) = C2(4At + C1)3/4 + C3(4At + C1)−1/4,

whereA,C1,C2, andC3 are arbitrary constants, and the functionF (z) is determined by the ordinary
differential equation

bF ′′′′

zzzz − aFF ′

z − 2AF + 3
A2

a
z = 0.
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8◦. Let us set a = b = −1 (the original equation can be reduced to this case by appropriate scaling of
the independent variables).

The equation admits a formal series solution of the form

w(x, t) =
1

[x − ϕ(t)]3

∞∑

n=0

wn(t)[x − ϕ(t)]n.

The series coefficients wn = wn(t) are expressed as

w0 = −120, w1 = w2 = 0, w3 = −ϕ′(t), w4 = w5 = 0, w6 = ψ(t),

(n + 1)(n − 6)(n2 − 13n + 60)wn =
n−6∑

m=6

(m − 3)wn−mwm + w′

n−4,

where ϕ(t) and ψ(t) is an arbitrary function. This solution has a singularity at x = ϕ(t).

9◦. If a = b = −1, the equation also admits the formal series solution

w(x, t) =
x

t
+

1
x

∞∑

n=1

(
t

x4

)n−1 n−1∑

k=0

Ankx
2k,

where A1
0 is an arbitrary constant and the other coefficients can be expressed in terms of A1

0 with
recurrence relations. This solution can be generalized with the help of translations in the independent
variables.���

The solutions of Items 8◦ and 9◦ were obtained by V. G. Baydulov (private communication, 2002).

5.
∂w

∂t
= aw

∂w

∂x
– b

∂4w

∂x4
+ f (t).

The transformation

w = u(z, t) +
∫ t

t0

f (τ ) dτ , z = x + a
∫ t

t0

(t − τ )f (τ ) dτ ,

where t0 is any, leads to an equation of the form 10.1.1.4:

∂u

∂t
= au

∂u

∂x
− b

∂4u

∂x4 .

6.
∂w

∂t
= a

∂4w

∂x4
+ bw

∂w

∂x
+ cw.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = w(x + bC1e
ct + C2, t + C3) + C1ce

ct,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w = U (z) + C1ce

ct, z = x + bC1e
ct + C2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

aU ′′′′

zzzz + bUU ′

z − C2U
′

z + cU = 0.

If C1 = 0, we have a traveling-wave solution.

3◦. There is a degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t).
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7.
∂w

∂t
= a

∂4w

∂x4
+ [f (t) ln w + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = exp[ϕ(t)x + ψ(t)],

where

ϕ(t) = −
[∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕ3(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂4w

∂x4
+ b

(
∂w

∂x

)2

.

1◦. Suppose w(x, t) is a solution of this equation. Then the function

w1 = C2
1w(C1x + 2bC1C2t + C3,C4

1 t + C4) + C2x + bC2
2 t + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = C1t + C2 +

∫
θ(z) dz, z = x + λt,

where C1, C2, and λ are arbitrary constants, and the function θ(z) is determined by the third-order
autonomous ordinary differential equation

aθ′′′zzz + bθ2 − λθ − C1 = 0.

To C1 = 0 there corresponds a traveling-wave solution.

3◦. Self-similar solution:
w(x, t) = t−1/2u(ζ), ζ = xt−1/4,

where the function u(ζ) is determined by the ordinary differential equation

au′′′′ζζζζ + b(u′ζ)2 + 1
4 ζu

′

ζ + 1
2u = 0.

4◦. There is a degenerate solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).

9.
∂w

∂t
= a

∂4w

∂x4
+ b

(
∂w

∂x

)2

+ f (t).

The substitution w = U (x, t) +
∫
f (t) dt leads to a simpler equation of the form 10.1.1.8:

∂U

∂t
= a

∂4U

∂x4 + b
(
∂U

∂x

)2

.

10.
∂w

∂t
= a

∂4w

∂x4
+ b

(
∂w

∂x

)2

+ cw + f (t).

1◦. Solution:
w(x, t) = Aect + ect

∫
e−ctf (t) dt + θ(z), z = x + λt,

where A and λ are arbitrary constants, and the function θ(z) is determined by the autonomous
ordinary differential equation

aθ′′′′zzzz + b
(
θ′z

)2 − λθ′z + cθ = 0.
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2◦. There is a degenerate solution of the form

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).

3◦. The substitution
w = U (x, t) + ect

∫
e−ctf (t) dt

leads to the simpler equation

∂U

∂t
= a

∂4U

∂x4 + b
(
∂U

∂x

)2

+ cU .

10.1.2. Other Equations

1.
∂w

∂t
+ w

∂w

∂x
+ α

∂2w

∂x2
+ β

∂3w

∂x3
+ γ

∂4w

∂x4
= 0.

Kuramoto–Sivashinsky equation. It describes nonlinear waves in dispersive-dissipative media with
an instability, waves arising in a fluid flowing down an inclined plane, the evolution of the concen-
tration of a substance in chemical reactions, and others.���

References: Y. Kuramoto and T. Tsuzuki (1976), B. J. Cohen, J. A. Krommes, W. M. Tang, and M. N. Rosenbluth
(1976), V. Ya. Shkadov (1977), J. Topper and T. Kawahara (1978), G. I. Sivashinsky (1983).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x − C1t + C2, t + C3) + C1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution:

w(x, t) =
x + C1

t + C2
,

3◦. Traveling-wave solutions:

w(x, t) = C1 +
[ 15

76

(
16α − β2γ−1) + 15βk + 60γk2]F −

(
15β + 180γk

)
F 2 + 60γF 3,

F = k
[
1 + C2 exp(−kx − λt)

]−1,

where C1 and C2 are arbitrary constants, and the coefficients β, k, and λ are defined by

β = 0, k = �
√

11
19αγ

−1, λ = −C1k − 30
19αk

2 (first set of solutions);

β = � 4
√

αγ, k = �
√
αγ−1, λ = −C1k − 3

2βk
3 (second set of solutions);

β = � 12
√

47

√

αγ, k = �
√

1
47αγ

−1, λ = −C1k − 60
47αk

2 (third set of solutions);

β = � 16
√

73

√

αγ, k = �
√

1
73αγ

−1, λ = −C1k − 90
73αk

2 (fourth set of solutions).���
Reference: N. A. Kudryashov (1989, 1990 b).

Special case. For β = 0, α = γ = 1, C1 = 0, and C2 = 1, we have a solution

w(x, t) = 15
19 k

(
11H

3 − 9H + 2
)
, H = tanh

( 1
2 kx − 15

19 k
2
t
)
, k = �

√
11
19 ,

which describes concentration waves in chemical reactions.���
Reference: J. Kuramoto and T. Tsuzuki (1976).

4◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x − C1t

2 + C2t,
where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the third-order
ordinary differential equation (C3 is an arbitrary constant)

γU ′′′

ζζζ + βU ′′

ζζ + αU ′

ζ + 1
2U

2 + C2U = −2C1ζ + C3.

The special case C1 = 0 corresponds to a traveling-wave solution.
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2.
∂w

∂t
= a

∂

∂x

(
wk ∂3w

∂x3

)
.

With k = 3, this equation occurs in problems on the motion of long bubbles in tubes and on the
spread of drops over a rigid surface; see Bretherton (1962) and Starov (1983).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C2x + C3,Ck1 C
4
2 t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x, t) = A(x + C1t + C2)3/k, A =
[

C1k
3

3a(k − 3)(2k − 3)

]1/k

;

w(x, t) = (Bt + C1)−1/k(x + C2)4/k, B = 8ak−3(k + 4)(k − 4)(2 − k).

3◦. Traveling-wave solution (generalizes the first solution of Item 2◦):

w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w = w(z) is determined by the third-order au-
tonomous ordinary differential equation awkw′′′

zzz − λw = C1. The substitution U (z) = (w′

z)2 leads
to the second-order equation

aU ′′

ww = � 2(λw1−k + C1w
−k)U−1/2.

For its solutions at some values of k and C1, see Polyanin and Zaitsev (2003).

4◦. Self-similar solution:
w(x, t) = t−

4β+1
k u(ξ), ξ = xtβ ,

where β is an arbitrary constant and the function u = u(ξ) is determined by the ordinary differential
equation

−(4β + 1)u + kβξu′ξ = ak(uku′′′ξξξ)′ξ.��	
Reference: V. M. Starov (1983, the case k = 3 was considered).

5◦. Solution:
w(x, t) = (C1t + C2)−1/kV (ζ), ζ = x + C3 ln |C1t + C2|,

where the function V = V (ζ) is determined by the autonomous ordinary differential equation

ak(V kV ′′′

ζζζ )′ζ − kC1C3V
′

ζ + C1V = 0.

Remark. For a special case C3 = 0, we have a solution in multiplicative separable form.

6◦. Generalized self-similar solution:

w(x, t) = e−4βtϕ(η), η = xekβt,

where β is an arbitrary constant and the function ϕ = ϕ(η) is determined by the ordinary differential
equation

−4βϕ + kβηϕ′

η = a(ϕkϕ′′′

ηηη)′η.

3.
∂w

∂t
=

∂3

∂x3

[
f (w)

∂w

∂x

]
+

a

f (w)
+ b.

Functional separable solution in implicit form:
∫
f (w) dw = at −

b

24
x4 + C1x

3 + C2x
2 + C3x + C4,

where C1, . . . , C4 are arbitrary constants.
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10.2. Equations Involving the Second Derivative in t

10.2.1. Boussinesq Equation and Its Modifications

1.
∂2w

∂t2
+

∂

∂x

(
w

∂w

∂x

)
+

∂4w

∂x4
= 0.

Boussinesq equation in canonical form. This equation arises in several physical applications:
propagation of long waves in shallow water, one-dimensional nonlinear lattice-waves, vibrations in
a nonlinear string, and ion sound waves in a plasma.
��

References: Boussinesq (1872), M. Toda (1975), A. C. Scott (1975).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w(C1x + C2, � C2

1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:
w(x, t) = 2C1x − 2C2

1 t
2 + C2t + C3,

w(x, t) = (C1t + C2)x −
1

12C2
1

(C1t + C2)4 + C3t + C4,

w(x, t) = −
(x + C1)2

(t + C2)2 +
C3

t + C2
+ C4(t + C2)2,

w(x, t) = −
x2

t2
+ C1t

3x −
C2

1
54
t8 + C2t

2 +
C4

t
,

w(x, t) = −
(x + C1)2

(t + C2)2 −
12

(x + C1)2 ,

w(x, t) = −3λ2 cos−2[ 1
2λ(x � λt) + C1

]
,

where C1, . . . , C4 and λ are arbitrary constants.

3◦. Traveling-wave solution (generalizes the last solution of Item 2◦):

w = w(ζ), ζ = x + λt,
where the functionw(ζ) is determined by the second-order ordinary differential equation (C1 andC2
are arbitrary constants)

w′′

ζζ + w2 + 2λ2w + C1ζ + C2 = 0.
For C1 = 0, this equation is integrable by quadrature.
��

References: T. Nishitani and M. Tajiri (1982), G. R. W. Quispel, F. W. Nijhoff, and H. W. Capel (1982).

4◦. Self-similar solution:
w =

1
t
U (z), z =

x
√

t
,

where the function U = U (z) is determined by the ordinary differential equation

U ′′′′

zzzz + (UU ′

z)′z + 1
4 z

2U ′′

zz + 7
4 zU

′

z + 2U = 0.
��
Reference: T. Nishitani and M. Tajiri (1982).

5◦. Degenerate solution (generalizes the first four solutions of Item 2◦):

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the autonomous system of
ordinary differential equations

ϕ′′

tt = −6ϕ2,
ψ′′

tt = −6ϕψ,

χ′′

tt = −2ϕχ − ψ2.

Page 595

© 2004 by Chapman & Hall/CRC



596 FOURTH-ORDER EQUATIONS

6◦. Solution:
w = f (ξ) − 4C2

1 t
2 − 4C1C2t, ξ = x − C1t

2 − C2t,

where the function f (ξ) is determined by the third-order ordinary differential equation

f ′′′

ξξξ + ff ′

ξ + C2
2f

′

ξ − 2C1f = 8C2
1ξ + C3, (1)

andC1, C2, and C3 are arbitrary constants. Equation (1) is reduced to the second Painlevé equation.��
References: T. Nishitani and M. Tajiri (1982), G. R. W. Quispel, F. W. Nijhoff, and H. W. Capel (1982), P. A. Clarkson

and M. D. Kruskal (1989).

7◦. Generalized separable solution (generalizes the penultimate solution of Item 2◦):

w = (x + C1)2u(t) −
12

(x + C1)2 ,

where the function u = u(t) is determined by the second-order autonomous ordinary differential
equation

u′′tt = −6u2.

The function u(t) is representable in terms of the Weierstrass elliptic function.��
Reference: P. A. Clarkson and M. D. Kruskal (1989).

8◦. Solution:

w =
1
t
F (z) −

1
4

(
x

t
+ Ct

)2

, z =
x
√

t
−

1
3
Ct3/2,

whereC is an arbitrary constant and the functionF =F (z) is determined by the fourth-orderordinary
differential equation

F ′′′′

zzzz + (FF ′

z)′z + 3
4 zF

′

z + 3
2F − 9

8 z
2 = 0.

Its solutions are expressed via solutions of the fourth Painlevé equation.��
Reference: P. A. Clarkson and M. D. Kruskal (1989).

9◦. Solution:

w(x, t) = (a1t + a0)2U (z) −
(
a1x + b1

a1t + a0

)2

, z = x(a1t + a0) + b1t + b0.

Here, a1, a0, b1, and b0 are arbitrary constants, and the function U = U (z) is determined by the
second-order ordinary differential equation

U ′′

zz + 1
2U

2 = c1z + c2, (2)

where c1 and c2 are arbitrary constants. For c1 = 0, the general solution of equation (2) can be written
out in implicit form. If c1 ≠ 0, the equation is reduced to the first Painlevé equation.��

Reference: P. A. Clarkson and M. D. Kruskal (1989).

10◦. Solution:

w(x, t) = (a1t + a0)2U (z) −
[
a2

1x + λ(a1t + a0)5 + a1b1

a1(a1t + a0)

]2

,

z = x(a1t + a0) +
λ

6a2
1

(a1t + a0)6 + b1t + b0.

Here, a1, a0, b1, and b0 are arbitrary constants, and the function U = U (z) is determined by the
third-order ordinary differential equation

U ′′′

zzz + UU ′

z + 5λU = 50λ2z + c, (3)

where c is an arbitrary constant. Equation (3) is reduced to the second Painlevé equation.��
Reference: P. A. Clarkson and M. D. Kruskal (1989).
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11◦. Solution:

w(x, t) = ϕ2(t)U (z) −
1

ϕ2(t)
[
xϕ′

t(t) + ψ′

t(t)
]2, z = ϕ(t)x + ψ(t).

Here, the functionsϕ = ϕ(t) and ψ =ψ(t) are determined by the autonomous system of second-order
ordinary differential equations

ϕ′′

tt = Aϕ5, (4)
ψ′′

tt = Aϕ4ψ, (5)

whereA is an arbitrary constant and the functionU =U (z) is determined by the fourth-order ordinary
differential equation

U ′′′′

zzzz + UU ′′

zz + (U ′

z)2 +AzU ′

z + 2AU = 2A2z2.

A first integral of equation (4) is given by

(ϕ′

t)
2 = 1

3Aϕ
6 +B,

where B is an arbitrary constant. The general solution of this equation can be expressed in terms of
Jacobi elliptic functions. The general solution of equation (5) can be expressed in terms of ϕ = ϕ(t)
by

ψ = C1ϕ(t) + C2ϕ(t)
∫

dt

ϕ2(t)
,

where C1 and C2 are arbitrary constants.���
References: P. A. Clarkson and M. D. Kruskal (1989), P. A. Clarkson, D. K. Ludlow, and T. J. Priestley (1997).

12◦. The Boussinesq equation is solved by the inverse scattering method. Any rapidly decaying
function F = F (x, y; t) as x→ +∞ and satisfying simultaneously the two linear equations

1
√

3
∂F

∂t
+
∂2F

∂x2 −
∂2F

∂y2 = 0,

∂3F

∂x3 +
∂3F

∂y3 = 0

generates a solution of the Boussinesq equation in the form

w = 12
d

dx
K(x,x; t),

where K(x, y; t) is a solution of the linear Gel’fand–Levitan–Marchenko integral equation

K(x, y; t) + F (x, y; t) +
∫

∞

x

K(x, s; t)F (s, y; t) ds = 0.

Time t appears here as a parameter.���
References: V. E. Zakharov (1973), M. J. Ablowitz and H. Segur (1981), J. Weiss (1984).

2.
∂2w

∂t2
= a

∂

∂x

(
w

∂w

∂x

)
+ b

∂4w

∂x4
.

Unnormalized Boussinesq equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w(C1x + C2, � C2

1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.
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2◦. Solutions:
w(x, t) = 2C1x + 2aC2

1 t
2 + C2t + C3,

w(x, t) = (C1t + C2)x +
a

12C2
1

(C1t + C2)4 + C3t + C4,

w(x, t) =
(x + C1)2

a(t + C2)2 +
C3

t + C2
+ C4(t + C2)2,

w(x, t) =
x2

at2
+ C1t

3x +
aC2

1
54

t8 + C2t
2 +

C4

t
,

w(x, t) =
(x + C1)2

a(t + C2)2 −
12b

a(x + C1)2 ,

w(x, t) =
3λ2

a
cosh−2

[
λ

2
√

b
(x � λt) + C1

]
,

where C1, . . . , C4 and λ are arbitrary constants.

3◦. Traveling-wave solution (generalizes the last solution of Item 2◦):

w = u(ζ), ζ = x + λt,

where the function u = u(ζ) is determined by the second-order ordinary differential equation
(C1 and C2 are arbitrary constants)

bu′′ζζ + au2 − 2λ2u + C1ζ + C2 = 0.

For C1 = 0, this equation is integrable by quadrature.

4◦. Self-similar solution:
w =

1
t
U (z), z =

x
√

t
,

where the function U = U (z) is determined by the ordinary differential equation

2U + 7
4 zU

′

z + 1
4 z

2U ′′

zz = a(UU ′

z)′z + bU ′′′′

zzzz.

5◦. Degenerate solution (generalizes the first four solutions of Item 2◦):

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t),

where the functions ϕ = ϕ(t), ψ = ψ(t), and χ = χ(t) are determined by the autonomous system of
ordinary differential equations

ϕ′′

tt = 6aϕ2,
ψ′′

tt = 6aϕψ,

χ′′

tt = 2aϕχ + aψ2.

6◦. Solution:
w = f (ξ) + 4aC2

1 t
2 + 4aC1C2t, ξ = x + aC1t

2 + aC2t,
where the function f (ξ) is determined by the third-order ordinary differential equation

bf ′′′

ξξξ + aff ′

ξ − a2C2
2f

′

ξ − 2aC1f = 8aC2
1ξ + C3,

and C1, C2, and C3 are arbitrary constants.

7◦. Solution (generalizes the penultimate solution of Item 2◦):

w = (x + C1)2u(t) −
12b

a(x + C1)2 ,

where the function u = u(t) is determined by the second-order autonomous ordinary differential
equation

u′′tt = 6au2.
The function u(t) is expressible in terms of the Weierstrass elliptic function.
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8◦. Solution:

w =
1
t
F (z) +

1
4a

(
x

t
+ Ct

)2

, z =
x
√

t
−

1
3
Ct3/2,

whereC is an arbitrary constant and the functionF = F (z) is determined by the ordinary differential
equation

a(FF ′

z)′z + bF ′′′′

zzzz =
3
4
zF ′

z +
3
2
F +

9
8a
z2.

9◦. See also equation 10.2.1.3, Item 6◦.���
References for equation 10.2.1.2: T. Nishitani and M. Tajiri (1982), G. R. W. Quispel, F. W. Nijhoff, and H. W. Capel

(1982), P. A. Clarkson and M. D. Kruskal (1989).

3.
∂2w

∂t2
=

∂2w

∂x2
+ 6

∂

∂x

(
w

∂w

∂x

)
+

∂4w

∂x4
.

Solutions of this equation can be represented in the form

w(x, t) = 2
∂2

∂x2 (lnu), (1)

where the function u = u(x, t) is determined by the bilinear equation

u
∂2u

∂t2
−

(
∂u

∂t

)2

− u
∂4u

∂x4 + 4
∂u

∂x

∂3u

∂x3 − 3
(
∂2u

∂x2

)2

− u
∂2u

∂x2 +
(
∂u

∂x

)2

= 0. (2)

1◦. One- or two-soliton solutions of the original equation are generated by the following solutions
of equation (2):

u = 1 +A exp
(
kx � kt

√

1 + k2
)
,

u = 1 +A1 exp(k1x +m1t) +A2 exp(k2x +m2t) + A1A2p12 exp
[
(k1 + k2)x + (m1 +m2)t

]
,

where A, A1, A2, k, k1, and k2 are arbitrary constants, and

mi = � ki
√

1 + k2
i , p12 =

3(k1 − k2)2 + (n1 − n2)2

3(k1 + k2)2 + (n1 − n2)2 , ni =
mi

ki
.

���
References: R. Hirota (1973), M. J. Ablowitz and H. Segur (1981).

2◦. Rational solutions are generated by the following solutions of equation (2):

u = x � t,
u = x2 − t2 − 3,

u = (x � t)3 + x � 5t.
���

Reference: M. J. Ablowitz and H. Segur (1981).

3◦. Solution of equation (2):

u = exp(2kx − 2mt) + (Cx −At) exp(kx −mt) −B,

A =
C(2k2 + 1)
√

1 + k2
, B =

C2(4k2 + 3)
12k2(1 + k2)

, m =
√

k2 + k4,

where k and C are arbitrary constants.���
Reference: O. V. Kaptsov (1998).
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4◦. Solutions of equation (2):

u = sin(kx −mt) +Ax +Bt,
u = sin(kx) + C sin(mt) +E cos(mt),

where k and C are arbitrary constants,

m =
√

k2 − k4, A =
√

3m2

3 − 4k2 , B =
A(2k2 − 1)
√

1 − k2
, E =

√
1 − C2 + k2C2 − 4k2

1 − k2 .

���
Reference: O. V. Kaptsov (1998).

5◦. Solution (C is an arbitrary constant):

u = sin(kx) + C exp
(
t
√

k4 − k2
)

+
4k2 − 1

4C(k2 − 1)
exp

(
−t
√

k4 − k2
)
.

���
Reference: O. V. Kaptsov (1998).

6◦. The substitution w = 1
6 (U − 1) leads to an equation of the form 10.2.1.2:

∂2U

∂t2
=
∂

∂x

(
U
∂U

∂x

)
+
∂4U

∂x4 .

4.
∂2w

∂t2
= a

∂2w

∂x2
+ b

∂

∂x

(
w

∂w

∂x

)
+ c

∂4w

∂x4
.

The substitution w = U − (a/b) leads to an equation of the form 10.2.1.2:

∂2U

∂t2
= b

∂

∂x

(
U
∂U

∂x

)
+ c

∂4U

∂x4 .

10.2.2. Equations with Quadratic Nonlinearities

1.
∂2w

∂t2
= a

∂4w

∂x4
+ bw

∂2w

∂x2
+ c.

1◦. Traveling-wave solution:
w(x, t) = u(ξ), ξ = βx + λt,

where β and λ are arbitrary constants, and the function u = u(ξ) is determined by the autonomous
ordinary differential equation

aβ4u′′′′ξξξξ + (bβ2u − λ2)u′′ξξ + c = 0.

2◦. Solution:
w(x, t) = U (z) + bC2

1 t
2 + 2bC1C2t, z = x − 1

2 bC1t
2 − bC2t,

whereC1 andC2 are arbitrary constants, and the functionU =U (z) is determined by the autonomous
ordinary differential equation

aU ′′′′

zzzz + bUU ′′

zz − b2C2
2U

′′

zz + bC1U
′

z + c − 2bC2
1 = 0.

3◦. There is a degenerate solution quadratic in x:

w(x, t) = f2(t)x2 + f1(t)x + f0(t).

2.
∂2w

∂t2
=

∂4w

∂x4
+ aw

∂2w

∂x2
+ b

∂w

∂x
+ c.

This is a special case of equation 11.3.5.3 with n = 4.
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3.
∂2w

∂t2
= a

∂4w

∂x4
+ b

(
∂w

∂x

)2

+ f (t).

This is a special case of equation 11.3.2.2 with n = 4.

1◦. Additive separable solution:

w(x, t) = 1
2At

2 +Bt + C +
∫ t

0
(t − τ )f (τ ) dτ + ϕ(x).

Here, A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′′′

xxxx + b(ϕ′

x)2 −A = 0,
whose order can be reduced with the change of variable U (x) = ϕ′

x.

2◦. The substitution

w = u(x, t) +
∫ t

0
(t − τ )f (τ ) dτ

leads to the simpler equation
∂2u

∂t2
= a

∂4u

∂x4 + b
(
∂u

∂x

)2

.

This equation admits a traveling-wave solution u = u(kx+λt) and a self-similar solution u = t−1φ(z),
where z = xt−1/2.

4.
∂2w

∂t2
=

∂4w

∂x4
+ a

(
∂w

∂x

)2

+ bw + f (t).

1◦. Solution:
w(x, t) = ϕ(t) + ψ(z), z = x + λt,

where λ is an arbitrary constant and the functions ϕ(t) and ψ(z) are determined by the ordinary
differential equations

ϕ′′

tt − bϕ − f (t) = 0,

ψ′′′′

zzzz − λ2ψ′′

zz + a(ψ′

z)2 + bψ = 0.
The general solution of the first equation is given by

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
f (τ ) sinh

[
k(t − τ )

]
dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
f (τ ) sin

[
k(t − τ )

]
dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

2◦. The substitution w = u(x, t) + ϕ(t), where the function ϕ(t) is defined in Item 1◦, leads to the
simpler equation

∂2u

∂t2
=
∂4u

∂x4 + a
(
∂u

∂x

)2

+ bu.

5.
∂2w

∂t2
= aw

∂4w

∂x4
+ f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t)(A4x
4 +A3x

3 +A2x
2 + A1x) + ψ(t),

where A1, A2, A3, and A4 are arbitrary constants, and the functions ϕ(t) and ψ(t) are determined
by the system of ordinary differential equations

ϕ′′

tt = 24A4aϕ
2 + f (t)ϕ,

ψ′′

tt = 24A4aϕψ + f (t)ψ + g(t).
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6.
∂2w

∂t2
= aw

∂4w

∂x4
+ bw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the following system of second-order ordinary
differential equations (C is an arbitrary constant):

ϕ′′

tt = Cϕ2 + bϕψ + f (t)ϕ,

ψ′′

tt = Cϕψ + bψ2 + f (t)ψ + g(t),

and the functionΘ(x) satisfies the fourth-orderconstant-coefficient linear nonhomogeneousordinary
differential equation

aΘ′′′′

xxxx + bΘ = C.

7.
∂2w

∂t2
= aw

∂2w

∂x2
+ b

(
∂w

∂x

)2

+ cw2 – f (t)
∂2w

∂x2
– g(t)

∂4w

∂x4
– h(t)w – p(t).

1◦. Generalized separable solution for c/(a + b) = k2 > 0:

w(x, t) = ϕ1(t) + ϕ2(t) cos(kx) + ϕ3(t) sin(kx),

where the functions ϕn = ϕn(t) are determined by the system of ordinary differential equations

ϕ′′

1 = cϕ2
1 + bk2(ϕ2

2 + ϕ2
3) − h(t)ϕ1 − p(t),

ϕ′′

2 = (2c − ak2)ϕ1ϕ2 + [k2f (t) − k4g(t) − h(t)]ϕ2,

ϕ′′

3 = (2c − ak2)ϕ1ϕ3 + [k2f (t) − k4g(t) − h(t)]ϕ3.

The prime denotes a derivative with respect to t. From the last two equations we haveϕ′′

2/ϕ2 =ϕ′′

3 /ϕ3.
It follows that

ϕ3 = C1ϕ2 + C2ϕ2

∫
dt

ϕ2
2

, (1)

where C1 and C2 are arbitrary constants.

2◦. Generalized separable solution for c/(a + b) = −k2 < 0:

w(x, t) = ϕ1(t) + ϕ2(t) cosh(kx) + ϕ3(t) sinh(kx),

where the functions ϕn = ϕn(t) are determined by the system of ordinary differential equations

ϕ′′

1 = cϕ2
1 + bk2(ϕ2

3 − ϕ2
2) − h(t)ϕ1 − p(t),

ϕ′′

2 = (2c + ak2)ϕ1ϕ2 − [k2f (t) + k4g(t) + h(t)]ϕ2,

ϕ′′

3 = (2c + ak2)ϕ1ϕ3 − [k2f (t) + k4g(t) + h(t)]ϕ3.

The function ϕ3 can be expressed in terms of ϕ2 by formula (1).

3◦. Special case: a/b = − 4
3 and bc < 0.

Generalized separable solution:

w(x, t) = ψ1(t) + ψ2(t) cos(kx) + ψ3(t) cos( 1
2 kx), k =

√
−3c/b.

Here, the functions ψn = ψn(t) are determined by the system of ordinary differential equations

ψ′′

1 = cψ2
1 + bk2ψ2

2 +
(
A + 1

4 bk
2)ψ2

3 − h(t)ψ1 − p(t),

ψ′′

2 = (2c − ak2)ψ1ψ2 +Aψ2
3 +

[
k2f (t) − k4g(t) − h(t)

]
ψ2,

ψ′′

3 =
(
2c − 1

4 ak
2)ψ1ψ3 + bk2ψ2ψ3 +

[ 1
4 k

2f (t) − 1
16 k

4g(t) − h(t)
]
ψ3,

where A = 1
8

[
4c − (a + b)k2].
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There is a more general solution of the form

w(x, t) = ψ1(t) + ψ2(t) cos(kx) + ψ3(t) sin(kx) + ψ4(t) cos( 1
2 kx) + ψ5(t) sin( 1

2 kx),

where k =
√

−3c/b.
4◦. Special case: a/b = − 4

3 and bc > 0.
Generalized separable solution:

w(x, t) = ψ1(t) + ψ2(t) cosh(kx) + ψ3(t) cosh( 1
2 kx), k =

√
3c/b.

Here, the functions ψn = ψn(t) are determined by the system of ordinary differential equations

ψ′′

1 = cψ2
1 − bk2ψ2

2 +
(
A − 1

4 bk
2)ψ2

3 − h(t)ψ1 − p(t),

ψ′′

2 = (2c + ak2)ψ1ψ2 +Aψ2
3 −

[
k2f (t) + k4g(t) + h(t)

]
ψ2,

ψ′′

3 =
(
2c + 1

4ak
2)ψ1ψ3 − k2ψ2ψ3 −

[ 1
4 k

2f (t) + 1
16 k

4g(t) + h(t)
]
ψ3,

where A = 1
8

[
4c + (a + b)k2].

There is a more general solution of the form

w(x, t) = ψ1(t) + ψ2(t) cosh(kx) + ψ3(t) sinh(kx) + ψ4(t) cosh( 1
2 kx) + ψ5(t) sinh( 1

2 kx),

where k =
√

3c/b.���
Reference for equation 10.2.2.5: V. A. Galaktionov (1995).

8.
∂2w

∂t2
= w

∂2w

∂x2
–

3
4

(
∂w

∂x

)2

– a(t)
∂4w

∂x4
– b(t)

∂3w

∂x3
– c(t)

∂2w

∂x2
– d(t)

∂w

∂x
– e(t)w – f (t).

There is a generalized separable solution in the form of a fourth-degree polynomial in x:

w(x, t) = ϕ4(t)x4 + ϕ3(t)x3 + ϕ2(t)x2 + ϕ1(t)x + ϕ0(t).���
Reference: V. A. Galaktionov (1995).

9.
∂2w

∂t2
= f (t)w

∂4w

∂x4
+ g(t)

∂2w

∂x2
+ h(t)

∂w

∂x
+ p(t)w + q(t).

Generalized separable solution in the form of a fourth-degree polynomial in x:

w(x, t) = ϕ4(t)x4 + ϕ3(t)x3 + ϕ2(t)x2 + ϕ1(t)x + ϕ0(t),

where the functions ϕn = ϕn(t) are determined by the system of ordinary differential equations
ϕ′′

4 = (24fϕ4 + p)ϕ4,
ϕ′′

3 = (24fϕ4 + p)ϕ3 + 4hϕ4,
ϕ′′

2 = (24fϕ4 + p)ϕ2 + 12gϕ4 + 3hϕ3,
ϕ′′

1 = (24fϕ4 + p)ϕ1 + 6gϕ3 + 2hϕ2,
ϕ′′

0 = (24fϕ4 + p)ϕ2 + 2gϕ2 + hϕ1 + q.

I For other equations with quadratic nonlinearities, see Subsection 10.2.1.

10.2.3. Other Equations

1.
∂2w

∂t2
= a

∂4w

∂x4
+ bw ln w +

[
f (x) + g(t)

]
w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations
ϕ′′

tt −
[
b lnϕ + g(t) + C

]
ϕ = 0,

aψ′′′′

xxxx +
[
b lnψ + f (x) − C

]
ψ = 0,

where C is an arbitrary constant.
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2.
∂2w

∂t2
= a

∂4w

∂x4
+ f (x)w ln w +

[
bf (x)t + g(x)

]
w.

Multiplicative separable solution:
w(x, t) = e−btϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

aϕ′′′′

xxxx + f (x)ϕ lnϕ +
[
g(x) − b2]ϕ = 0.

3.
∂2w

∂t2
= a

∂4w

∂x4
+ f

(
x,

∂w

∂x

)
+ g(t).

1◦. Additive separable solution:

w(x, t) = C1t
2 + C2t +

∫ t

t0

(t − τ )g(τ ) dτ + ϕ(x),

where C1, C2, and t0 are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ′′′′

xxxx + f
(
x,ϕ′

x

)
− 2C1 = 0,

whose order can be reduced with the change of variable u(x) = ϕ′

x.

2◦. The substitution w = U (x, t) +
∫ t

0
(t − τ )g(τ ) dτ leads to the simpler equation

∂2U

∂t2
= a

∂4U

∂x4 + f
(
x,

∂U

∂x

)
.

4.
∂2w

∂t2
= a

∂4w

∂x4
+ f

(
x,

∂w

∂x

)
+ bw + g(t).

1◦. Additive separable solution:
w(x, t) = ϕ(t) + ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − g(t) = 0,

aψ′′′′

xxxx + f
(
x,ψ′

x

)
+ bψ = 0.

The general solution of the first equation is given by

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
g(τ ) sinh

[
k(t − τ )

]
dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
g(τ ) sin

[
k(t − τ )

]
dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

2◦. The substitution w = U (x, t) + ϕ(t), where the function ϕ(t) is given in Item 1◦, leads to the
simpler equation

∂2U

∂t2
= a

∂4U

∂x4 + f
(
x,

∂U

∂x

)
+ bU .

5.
∂2w

∂t2
=

∂3

∂x3

[
f (w)

∂w

∂x

]
– a2 f ′(w)

f 3(w)
+ b.

Functional separable solution in implicit form:
∫
f (w) dw = at −

1
24
bx4 + C1x

3 + C2x
2 + C3x + C4,

where C1, . . . , C4 are arbitrary constants.
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10.3. Equations Involving Mixed Derivatives
10.3.1. Kadomtsev–Petviashvili Equation

1.
∂

∂x

(
∂w

∂t
+

∂3w

∂x3
– 6w

∂w

∂x

)
+ a

∂2w

∂y2
= 0.

Kadomtsev–Petviashvili equation in canonical form (Kadomtsev and Petviashvili, 1970). It arises in
the theory of long, weakly nonlinear surface waves propagating in the x-direction, with the variation
in y being sufficiently slow.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = C2
1w

(
C1x + 6C1ϕ(t), � C2

1y + C2, C3
1 t + C3

)
+ ϕ′

t(t),

where C1, C2, and C3 are arbitrary constants and ϕ(t) is an arbitrary function, are also solutions of
the equation.

2◦. The time-invariant solutions satisfy the Boussinesq equation 10.2.1.2 (see also 10.2.1.1). The
y-independent solutions satisfy the Korteweg–de Vries equation 9.1.1.1.

3◦. One-soliton solution:

w(x, y, t) = −2
∂2

∂x2 ln
[
1 +Aekx+kpy−k(k2 +ap2)t],

where A, k, and p are arbitrary constants.

4◦. Two-soliton solution:

w(x, y, t) = −2
∂2

∂x2 ln
(
1 +A1e

η1 +A2e
η2 +A1A2Be

η1+η2
)
,

ηi = kix + kipiy − ki(k2
i + ap2

i )t, B =
3(k1 − k2)2 − a(p1 − p2)2

3(k1 + k2)2 − a(p1 − p2)2 ,

where A1, A2, k1, k2, p1, and p2 are arbitrary constants.

5◦. N -soliton solution:

w(x, y, t) = −2
∂2

∂x2 ln det A,

where A is an N ×N matrix with entries

Anm = δnm + fn(y, t)
exp[(pn + qm)x]

pn + qm
, δnm =

{
1 if n = m,
0 if n ≠ m,

fn(y, t) = Cn exp
[√

3/a (q2
n − p2

n)y + 4(p3
n + q3

n)t
]
, n,m = 1, 2, . . . , N ,

and the pn, qm, and Cn are arbitrary constants (Cn > 0).

6◦. Rational solutions:

w(x, y, t) = −2
∂2

∂x2 ln(x + py − ap2t),

w(x, y, t) = −2
∂2

∂x2 ln
[

(x + p1y − ap2
1t)(x + p2y − ap2

2t) +
12

a(p1 − p2)2

]
,

where p, p1, and p2 are arbitrary constants.

7◦. Two-dimensional power-law decaying solution (a = −1):

w(x, y, t) = 4
(x̃ + βỹ)2 − γ2(ỹ)2 − 3/γ2

[
(x̃ + βỹ)2 + γ2(ỹ)2 + 3/γ2

]2 , x̃ = x − (β2 + γ2)t, ỹ = y + 2βt,

where β and γ are arbitrary constants.���
Reference: M. J. Ablowitz and H. Segur (1981).
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8◦. “Two-dimensional” solution:

w = U (z, t) + 1
6 aλ

2, z = x + λy,

whereλ is an arbitrary constant and the functionU =U (z, t) is determined by a third-order differential
equation of the form 9.1.4.1:

∂U

∂t
+
∂3U

∂z3 − 6U
∂U

∂z
= ϕ(t),

with ϕ(t) being an arbitrary function. For ϕ = 0 we have the Korteweg–de Vries equation 9.1.1.1.

9◦. “Two-dimensional” solution:

w = V (ξ, t), ξ = x + C1y − aC2
1 t,

where C1 and C2 are arbitrary constants and the function V = V (ξ, t) is determined by a third-order
differential equation of the form 9.1.4.1:

∂V

∂t
+
∂3V

∂ξ3 − 6V
∂V

∂ξ
= ϕ(t),

with ϕ(t) being an arbitrary function. For ϕ = 0 we have the Korteweg–de Vries equation 9.1.1.1.

10◦+. “Two-dimensional” solution:

w(x, y, t) = u(η, t), η = x +
y2

4at
,

where the function u(η, t) is determined by the third-order differential equation

∂u

∂t
+
∂3u

∂η3 − 6u
∂u

∂η
+

1
2t
u = ψ(t),

withψ(t) being an arbitrary function. Forψ = 0 we have the cylindrical Korteweg–de Vries equation
9.1.2.1.���

References: R. S. Johnson (1979), F. Calogero and A. Degasperis (1982).

11◦+. There is a degenerate solution quadratic in x:

w = x2ϕ(y, t) + xψ(y, t) + χ(y, t).

12◦. The Kadomtsev–Petviashvili equation is solved by the inverse scattering method. Any rapidly
decaying functionF =F (x, z; y, t) as x→+∞ and satisfying simultaneously the two linear equations

√
a

3
∂F

∂y
+
∂2F

∂x2 −
∂2F

∂z2 = 0,

∂F

∂t
+ 4

(
∂3F

∂x3 +
∂3F

∂z3

)
= 0

generates a solution of the Kadomtsev–Petviashvili equation in the form

w = −2
d

dx
K(x,x; y, t),

where K = K(x, z; y, t) is a solution to the linear Gel’fand–Levitan–Marchenko integral equation

K(x, z; y, t) + F (x, z; y, t) +
∫

∞

x

K(x, s; y, t)F (s, z; y, t) ds = 0.

The quantities y and t appear here as parameters.���
References: V. S. Dryuma (1974), V. E. Zakharov and A. B. Shabat (1974), I. M. Krichever and S. P. Novikov (1978),

M. J. Ablowitz and H. Segur (1981), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov (1984), V. E. Adler,
A. B. Shabat, and R. I. Yamilov (2000).
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2.
∂

∂x

(
∂w

∂t
+ a

∂3w

∂x3
+ bw

∂w

∂x

)
+ c

∂2w

∂y2
= 0.

Unnormalized Kadomtsev–Petviashvili equation. The transformation w = −
6a
b
U (x, y, τ ), τ = at

leads to an equation of the form 10.3.1.1:

∂

∂x

(
∂U

∂t
+
∂3U

∂x3 − 6U
∂U

∂x

)
+
c

a

∂2U

∂y2 = 0.

10.3.2. Stationary Hydrodynamic Equations (Navier–Stokes
Equations)

1.
∂w

∂y

∂

∂x
(∆w) –

∂w

∂x

∂

∂y
(∆w) = ν∆∆w, ∆w =

∂2w

∂x2
+

∂2w

∂y2
.

Preliminary remarks. The two-dimensional stationary equations of a viscous incompressible fluid

u1
∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
+ ν∆u1,

u1
∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
+ ν∆u2,

∂u1

∂x
+

∂u2

∂y
= 0

are reduced to the equation in question by the introduction of a stream function w such that u1 = ∂w
∂y

and u2 = − ∂w
∂x

followed
by the elimination of the pressure p (with cross differentiation) from the first two equations. �!

Reference: L. G. Loitsyanskiy (1996).

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = −w(y, x),
w2 = w(C1x + C2, C1y + C3) + C4,
w3 = w(x cosα + y sinα, −x sinα + y cosα),

where C1, . . . , C4 and α are arbitrary constants, are also solutions of the equation. �!
Reference: V. V. Pukhnachov (1960).

2◦. Any solution of the Poisson equation ∆w = C is also a solution of the original equation (these
are “inviscid” solutions). On the utilization of these solutions in the hydrodynamics of ideal fluids,
see Lamb (1945), Batchelor (1970), Lavrent’ev and Shabat (1973), Sedov (1980), and Loitsyanskiy
(1996).

3◦. Solutions in the form of a one-variable function or the sum of functions with different arguments:

w(y) = C1y
3 + C2y

2 + C3y + C4,

w(x, y) = C1x
2 + C2x + C3y

2 + C4y + C5,

w(x, y) = C1 exp(−λy) + C2y
2 + C3y + C4 + νλx,

w(x, y) = C1 exp(λx) − νλx + C2 exp(λy) + νλy + C3,
w(x, y) = C1 exp(λx) + νλx + C2 exp(−λy) + νλy + C3,

where C1, . . . , C5 and λ are arbitrary constants. �!
References: V. V. Pukhnachov (1960), L. G. Loitsyanskiy (1996), A. D. Polyanin (2001 c).
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4◦. Generalized separable solutions:

w(x, y) = A(kx + λy)3 +B(kx + λy)2 + C(kx + λy) +D,

w(x, y) = Ae−λ(y+kx) +B(y + kx)2 + C(y + kx) + νλ(k2 + 1)x +D,

where A, B, C, D, k, β, and λ are arbitrary constants."�#
Reference: V. V. Pukhnachov (1960).

5◦. Generalized separable solutions:

w(x, y) = 6νx(y + λ)−1 +A(y + λ)3 +B(y + λ)−1 + C(y + λ)−2 +D (ν ≠ 0),

w(x, y) = (Ax +B)e−λy + νλx + C,

w(x, y) =
[
A sinh(βx) +B cosh(βx)

]
e−λy +

ν

λ
(β2 + λ2)x + C,

w(x, y) =
[
A sin(βx) +B cos(βx)

]
e−λy +

ν

λ
(λ2 − β2)x + C,

w(x, y) = Aeλy+βx +Beγx + νγy +
ν

λ
γ(β − γ)x + C, γ = $

√
λ2 + β2,

where A, B, C, D, k, β, and λ are arbitrary constants."�#
Reference: A. D. Polyanin (2001 c).

Special case. Setting A=−νλ, B =C =0, λ=
√

k/ν in the second solution, we obtain w =
√

kν x
[
1−exp

(
−
√

k/ν y
)]

.
This solution describes the steady-state motion of a fluid due to the motion of the surface particles at y = 0 with a velocity
u1 |y=0 = kx.

6◦. Generalized separable solution linear in x:

w(x, y) = F (y)x +G(y), (1)

where the functionsF =F (y) andG=G(y) are determined by the autonomous system of fourth-order
ordinary differential equations

F ′

yF
′′

yy − FF ′′′

yyy = νF ′′′′

yyyy, (2)
G′

yF
′′

yy − FG′′′

yyy = νG′′′′

yyyy. (3)

On integrating the equations once, we obtain the system of third-order equations

(F ′

y)2 − FF ′′

yy = νF ′′′

yyy +A, (4)
G′

yF
′

y − FG′′

yy = νG′′′

yyy +B, (5)

where A and B are arbitrary constants. The order of the autonomous equation (4) can be reduced
by one.

Equation (2) has the following particular solutions:

F (y) = ay + b, (6)
F (y) = 6ν(y + a)−1, (7)
F (y) = ae−λy + λν, (8)

where a, b, and λ are arbitrary constants.
In the general case, equation (5) is reduced, with the substitution U = G′

y, to the second-order
linear nonhomogeneous equation

νU ′′

yy + FU ′

y − F ′

yU +B = 0, where U = G′

y. (9)

The corresponding homogeneous equation (with B = 0) has two linearly independent particular
solutions:

U1 =
{
F ′′

yy if F ′′

yy % 0,
F if F ′′

yy ≡ 0,
U2 = U1

∫
Φ dy

U 2
1

, where Φ = exp
(

−
1
ν

∫
F dy

)
; (10)
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10.3. EQUATIONS INVOLVING MIXED DERIVATIVES 609

the first solution follows from the comparison of (2) and (9) with B = 0. Therefore the general
solutions of equations (9) and (3) are given by

U = C1U1 + C2U2 + C3

(
U2

∫
U1

Φ
dy − U1

∫
U2

Φ
dy

)
, G =

∫
U dy + C4, C3 = −

B

ν
; (11)

see Polyanin and Zaitsev (2003).
The general solution of equation (3) corresponding to the particular solution (7) is expressed as

G(y) = C̃1(y + a)3 + C̃2 + C̃3(y + a)−1 + C̃4(y + a)−2,

where C̃1, C̃2, C̃3, and C̃4 are arbitrary constants (these are expressed in terms of C1, . . . , C4).
The general solutions of equation (3) corresponding to the particular solutions (6) and (8) are

given by (10) and (11), respectively.&�'
References: R. Berker (1963), A. D. Polyanin (2001 c).

Special case. A solution of the form (1) with G(y) = kF (y) describes a laminar fluid flow in a plane channel with
porous walls. In this case, equation (3) is satisfied by virtue of (2).&�'

Reference: A. S. Berman (1953).

7◦. Solution (generalizes the solution of Item 6◦):

w(x, y) = F (z)x +G(z), z = y + kx,

where the functionsF =F (z) andG=G(z) are determined by the autonomous system of fourth-order
ordinary differential equations

F ′

zF
′′

zz − FF ′′′

zzz = ν(k2 + 1)F ′′′′

zzzz, (12)

G′

zF
′′

zz − FG′′′

zzz = ν(k2 + 1)G′′′′

zzzz + 4kνF ′′′

zzz +
2k

k2 + 1
FF ′′

zz. (13)

On integrating the equations once, we obtain the system of third-order equations

(F ′

z)2 − FF ′′

zz = ν(k2 + 1)F ′′′

zzz +A, (14)
G′

zF
′

z − FG′′

zz = ν(k2 + 1)G′′′

zzz + ψ(z) +B, (15)

where A and B are arbitrary constants, and the function ψ(z) is defined by

ψ(z) = 4kνF ′′

zz +
2k

k2 + 1

∫
FF ′′

zz dz.

The order of the autonomous equation (14) can be reduced by one.
Equation (12) has the following particular solutions:

F (z) = az + b, z = y + kx,

F (z) = 6ν(k2 + 1)(z + a)−1,

F (z) = ae−λz + λν(k2 + 1),

where a, b, and λ are arbitrary constants.
In the general case, equation (15) is reduced, with the substitution U = G′

z , to a second-order
linear nonhomogeneousequation, a particular solution of which, in the homogeneous caseψ =B = 0,
is given by

U =
{
F ′′

zz if F ′′

zz ( 0,
F if F ′′

zz ≡ 0.

Consequently, the general solution to (15) can be expressed by quadrature; see Polyanin and Zaitsev
(2003).&�'

Reference: A. D. Polyanin (2001 c).
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610 FOURTH-ORDER EQUATIONS

8◦. Self-similar solution:

w =
∫
F (z) dz + C1, z = arctan

(
x

y

)
,

where the function F is determined by the first-order autonomous ordinary differential equation

3ν(F ′

z)2 − 2F 3 + 12νF 2 + C2F + C3 = 0, (16)

and C1, C2, and C3 are arbitrary constants. The general solution of equation (16) can be written out
in implicit form and also can be expressed in terms of the Weierstrass elliptic function.)�*

Reference: L. G. Loitsyanskiy (1996).

9◦. There is an exact solution of the form

w = a ln |x| +
∫
V (z) dz + C1, z = arctan

(
x

y

)
.

To a = 0 there corresponds a self-similar solution of (16).

I For other exact solutions, see equation 10.3.2.4.

2.
∂w

∂y

∂

∂x
(∆w) –

∂w

∂x

∂

∂y
(∆w) = ν∆∆w + f (y), ∆w =

∂2w

∂x2
+

∂2w

∂y2
.

Preliminary remarks. The system

u1
∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
+ ν∆u1 + F (y),

u1
∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
+ ν∆u2,

∂u1

∂x
+

∂u2

∂y
= 0

can be reduced to the equation in question by the introduction of a stream function w such that u1 = ∂w
∂y

and u2 = − ∂w
∂x

.
The above system of equations describes the plane flow of a viscous incompressible fluid under the action of a transverse
force. Here, f (y) = F ′

y(y).
The case F (y) = a sin(λy) corresponds to A. N. Kolmogorov’s model, which is used for describing subcritical and

transitional (laminar-to-turbulent) flow modes.)�*
Reference: O. M. Belotserkovskii and A. M. Oparin (2000).

1◦. Solution in the form of a one-argument function:

w(y) = −
1

6ν

∫ y

0
(y − z)3f (z) dz + C1y

3 + C2y
2 + C3y + C4,

where C1, . . . , C4 are arbitrary constants.

2◦. Additive separable solution for arbitrary f (y):

w(x, y) = −
1

2ν

∫ y

0
(y − z)2

Φ(z) dz + C1e
−λy + C2y

2 + C3y + C4 + νλx,

Φ(z) = e−λz
∫
eλzf (z) dz,

where C1, . . . , C4 and λ are arbitrary constants.
Special case. If f (y) = aβ cos(βy), which corresponds to F (y) = a sin(βy), it follows from the preceding formula with

C1 = C2 = C4 = 0 and B = −νλ that

w(x, y) = −
a

β2(B2 + ν2β2)

[
B sin(βy) + νβ cos(βy)

]
+ Cy − Bx,

where B and C are arbitrary constants. This solution is specified in the book by Belotserkovskii and Oparin (2000); it
describes a flow with a periodic structure.

3◦. Additive separable solution for f (y) = Aeλy +Be−λy:

w(x, y) = C1e
−λx + C2x −

A

λ3(C2 + νλ)
eλy +

B

λ3(C2 − νλ)
e−λy − νλy,

where C1 and C2 are arbitrary constants.
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10.3. EQUATIONS INVOLVING MIXED DERIVATIVES 611

4◦. Generalized separable solution linear in x:

w(x, y) = ϕ(y)x + ψ(y),

where the functions ϕ = ϕ(y) and ψ = ψ(y) are determined by the system of fourth-order ordinary
differential equations

ϕ′

yϕ
′′

yy − ϕϕ′′′

yyy = νϕ′′′′

yyyy, (1)
ψ′

yϕ
′′

yy − ϕψ′′′

yyy = νψ′′′′

yyyy + f (y). (2)

On integrating once, we obtain the system of third-order equations

(ϕ′

y)2 − ϕϕ′′

yy = νϕ′′′

yyy +A, (3)

ψ′

yϕ
′

y − ϕψ′′

yy = νψ′′′

yyy +
∫
f (y) dy +B, (4)

where A and B are arbitrary constants. The order of the autonomous equation (3) can be reduced
by one.

Equation (1) has the following particular solutions:

ϕ(y) = ay + b,

ϕ(y) = 6ν(y + a)−1,

ϕ(y) = ae−λy + λν,

where a, b, and λ are arbitrary constants.
In the general case, equation (4) is reduced, with the substitution U = ψ ′

y, to the second-order
linear nonhomogeneous equation

νU ′′

yy + ϕU ′

y − ϕ′

yU + F = 0, where U = ψ′

y, F =
∫
f (y) dy +B. (5)

The corresponding homogeneous equation (with F = 0) has two linearly independent particular
solutions:

U1 =
{
ϕ′′

yy if ϕ ≠ ay + b,
ϕ if ϕ = ay + b, U2 = U1

∫
Φ dy

U 2
1

, where Φ = exp
(

−
1
ν

∫
ϕdy

)
;

the first solution follows from the comparison of (1) and (5) with F = 0. Consequently, the general
solutions of equations (5) and (2) are given by

U = C1U1 + C2U2 +
1
ν
U1

∫
U2
F

Φ
dy −

1
ν
U2

∫
U1
F

Φ
dy, ψ =

∫
U dy + C4;

see Polyanin and Zaitsev (2003).

3.
(

∂w

∂y
+ ax

)
∂

∂x
(∆w) –

(
∂w

∂x
– ay

)
∂

∂y
(∆w) + 2a∆w = ν∆∆w.

This equation is used for describing the motion of a viscous incompressible fluid induced by two
parallel disks, moving towards each other; see Craik (1989) and equation 10.3.3.2 in the stationary
case.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = −w(y, x),
w2 = w(x + C1, y + C2) − aC2x + aC1y + C3,
w3 = w(x cosβ + y sinβ, −x sinβ + y cosβ),

where C1, C2, C3, and β are arbitrary constants, are also solutions of the equation.
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612 FOURTH-ORDER EQUATIONS

2◦. Any solution of the Poisson equation ∆w = C is also a solution of the original equation (these
are “inviscid” solutions). For details about the Poisson, see, for example, the books by Tikhonov
and Samarskii (1990) and Polyanin (2002).

3◦. Solution dependent on a single coordinate x:

w(x) =
∫ x

0
(x − ξ)U (ξ) dξ + C1x + C2,

where C1 and C2 are arbitrary constants and the function U (x) is determined by the second-order
linear ordinary differential equation

axU ′

x + 2aU = νU ′′

xx.

The general solution to this equation can be found in Polyanin and Zaitsev (2003).
Likewise, we can obtain solutions of the form w = w(y).

4◦. Generalized separable solution linear in x:

w(x, y) = F (y)x +G(y), (1)

where the functions F = F (y) andG =G(y) are determined by the fourth-order ordinary differential
equations

F ′

yF
′′

yy − FF ′′′

yyy + a(3F ′′

yy + yF ′′′

yyy) = νF ′′′′

yyyy, (2)
F ′′

yyG
′

y − FG′′′

yyy + a(2G′′

yy + yG′′′

yyy) = νG′′′′

yyyy. (3)

Equation (2) is solved independently of equation (3). If F = F (y) is a solution to (2), then the
function

F1 = F (y + C) − aC,

where C is an arbitrary constant, is also a solution of the equation.
Integrating (2) and (3) with respect to y yields

(F ′

y)2 − FF ′′

yy + a(2F ′

y + yF ′′

yy) = νF ′′′

yyy + C1, (4)
F ′

yG
′

y − FG′′

yy + a(G′

y + yG′′

yy) = νG′′′

yyy + C2, (5)

where C1 and C2 are arbitrary constants.
Equation (2) has a particular solution

F (y) = Ay +B, (6)

where A and B are arbitrary constants. On substituting (6) into (5) and performing the change of
variable Q = G′′

yy, we obtain the second-order linear ordinary differential equation

−
[
(A − a)y +B

]
Q′

y + 2aQ = νQ′′

yy,

whose general solution can be found in Polyanin and Zaitsev (2003).
Solutions of the form w(x, y) = f (x)y + g(x) can be obtained likewise.+�,

Reference: S. N. Aristov and I. M. Gitman (2002).

5◦. Note that equation (2) has the following particular solutions:

F = ay + C1 exp
(
−2

√
a/ν y

)
+ C2 exp

(
2
√
a/ν y

)
if a > 0,

F = ay + C1 cos
(
2
√

−a/ν y
)

+ C2 sin
(
2
√

−a/ν y
)

if a < 0,

where C1 and C2 are arbitrary constants.
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4.
1
r

∂w

∂θ

∂

∂r
(∆w) –

1
r

∂w

∂r

∂

∂θ
(∆w) = ν∆∆w, ∆w =

1
r

∂

∂r

(
r

∂w

∂r

)
+

1
r2

∂2w

∂θ2
.

Preliminary remarks. Equation 10.3.2.1 is reduced to the equation in question by passing to the polar coordinate system
with origin at (x0, y0), where x0 and y0 are any numbers, according to

x = r cos θ + x0, y = r sin θ + y0 (direct transformation),

r =
√

(x − x0)2 + (y − y0)2, tan θ =
y − y0

x − x0
(inverse transformation).

The radial and angular fluid velocity components are expressed via the stream function w as follows: ur = 1
r

∂w
∂θ

, uθ = − ∂w
∂r

.

1◦. Any solution of the Poisson equation ∆w = C is also a solution of the original equation (these
are “inviscid” solutions).

2◦. Solutions in the form of a one-variable function and the sum of functions with different argu-
ments:

w(r) = C1r
2 ln r + C2r

2 + C3 ln r + C4,

w(r, θ) = Aνθ + C1r
A+2 + C2r

2 + C3 ln r + C4,
where A, C1, . . . , C4 are arbitrary constants.-�.

References: G. B. Jeffery (1915), V. V. Pukhnachov (1960).

3◦. Solution:
w = bθ + U (ξ), ξ = θ + a ln r, (1)

where the function U (ξ) is determined by the autonomous ordinary differential equation

ν(a2 + 1)U (4)
ξ − a(b + 4ν)U ′′′

ξξξ + 2(b + 2ν)U ′′

ξξ + 2U ′

ξU
′′

ξξ = 0.

The onefold integration yields

ν(a2 + 1)U ′′′

ξξξ − a(b + 4ν)U ′′

ξξ + 2(b + 2ν)U ′

ξ + (U ′

ξ)
2 = C1, (2)

whereC1 is an arbitrary constant. Equation (2) is autonomous and independent of U explicitly. The
transformation

z = U ′

ξ, u(z) = U ′′

ξξ

brings it to the Abel equation of the second kind

ν(a2 + 1)uu′z − a(b + 4ν)u + 2(b + 2ν)z + z2 = C1, (3)

which is integrable by quadrature in some cases; for example, in the cases a = 0 and b = −4ν, we
have

νu2 + 2
3 z

3 + 2(b + 2ν)z2 = 2C1z + C2 if a = 0,

ν(a2 + 1)u2 + 2
3 z

3 − 4νz2 = 2C1z + C2 if b = −4ν.
Four other solvable cases for equation (3) are presented in the book by Polyanin and Zaitsev (2003);
(3) is first reduced to a canonical form with the change of variable u = kū, where k = const.

Note that to a = b = 0 in (1)–(3) there corresponds a solution dependent on the angle θ alone;
this solution can be written out in implicit form, see equation 10.3.2.1, Item 8◦.-�.

Reference: L. G. Loitsyanskiy (1996).

4◦. Generalized separable solution linear in θ:

w(r, θ) = f (r)θ + g(r).

Here, f = f (r) and g = g(r) are determined by the system of ordinary differential equations

− f ′

rL(f ) + f [L(f )]′r = νrL2(f ), (4)
− g′rL(f ) + f [L(g)]′r = νrL2(g), (5)

where L(f ) = r−1(rf ′

r)′r.
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A particular solution to (4) is given by f (r) = C1 ln r + C2. The corresponding equation (5) is
reduced, with the substitutionQ = L(g), to a second-order linear equation, which is easy to integrate
(since it has a particular solution Q = 1). Consequently, we obtain an exact solution of system
(4)–(5) in the form

f (r) = C1 ln r + C2, g(r) = C3r
2 + C4 ln r + C5

∫ [∫
rQ(r) dr

]
dr

r
+ C6,

Q(r) =
∫
r(C2/ν)−1 exp

(
C1

2ν
ln2 r

)
dr,

where C1, . . . , C6 are arbitrary constants./�0
References: R. Berker (1963), A. D. Polyanin (2001 c).

5.
1
r

(
∂w

∂z

∂Ew

∂r
–

∂w

∂r

∂Ew

∂z

)
–

2
r2

∂w

∂z
Ew = νE2w,

where Ew = r
∂

∂r

(
1
r

∂w

∂r

)
+

∂2w

∂z2
, E2w = E(Ew).

Preliminary remarks. The stationary Navier–Stokes equations written in cylindrical coordinates for the axisymmetric case
can be reduced to the equation in question by the introduction of a stream function w such that ur = 1

r
∂w
∂z

and uz = − 1
r

∂w
∂r

,
where r =

√
x2 + y2, and ur and uz are the radial and axial fluid velocity components./�0

Reference: J. Happel and H. Brenner (1965).

1◦. Any function w = w(r, z) that solves the second-order linear equation Ew = 0 is also a solution
of the original equation.

2◦. Solutions in the form of a one-argument function and the sum of functions with different
arguments:

w(r) = C1r
4 + C2r

2 ln r + C3r
2 + C4,

w(r, z) = Aνz + C1r
A+2 + C2r

4 + C3r
2 + C4,

where A, C1, . . . , C4 are arbitrary constants.

3◦. Multiplicative separable solution:

w(r, z) = r2f (z),

where the function f = f (z) is determined by the ordinary differential equation (C is an arbitrary
constant):

νf ′′′

zzz + 2ff ′′

zz − (f ′

z)2 = C. (1)

This solution describes an axisymmetric fluid flow towards a plane (flow near a stagnation point)./�0
Reference: H. Schlichting (1981).

4◦. Generalized separable solution quadratic in r (generalizes the solution of Item 3◦):

w(r, z) = r2f (z) +Az +B,

where A and B are arbitrary constants, and the function f = f (z) is determined by the ordinary
differential equation (1).

5◦. Generalized separable solution linear in z:

w(r, z) = ϕ(r)z + ψ(r).

Here, ϕ = ϕ(r) and ψ = ψ(r) are determined by the system of ordinary differential equations

ϕ[L(ϕ)]′r − ϕ′

rL(ϕ) − 2r−1ϕL(ϕ) = νrL2(ϕ), (2)
ϕ[L(ψ)]′r − ψ′

rL(ϕ) − 2r−1ϕL(ψ) = νrL2(ψ), (3)

where L(ϕ) = ϕ′′

rr − r−1ϕ′

r.
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Particular solution of equation (2):

ϕ(r) = C1r
2 + C2,

where C1 and C2 are arbitrary constants. In this case, the change of variable U = L(ψ) brings (3) to
a second-order linear equation.1�2

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

6.
1

r2 sin θ

(
∂w

∂θ

∂Ew

∂r
–

∂w

∂r

∂Ew

∂θ

)
+

1
r2 sin θ

(
2 cot θ

∂w

∂r
–

2
r

∂w

∂θ

)
Ew = νE2w,

where Ew =
∂2w

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂w

∂θ

)
, E2w = E(Ew).

Preliminary remarks. The stationary Navier–Stokes equations written in spherical coordinates for the axisymmetric
case are reduced to the given equation through the introduction of a stream function w such that ur = 1

r2 sin θ

∂w
∂θ

and

uθ = − 1
r sin θ

∂w
∂r

, where r =
√

x2 + y2 + z2, and ur and uθ are the radial and angular fluid velocity components.1�2
References: A. Nayfeh (1973), M. D. Van Dyke (1975).

1◦. Any function w = w(r, θ) that solves the second-order linear equation Ew = 0 is also a solution
of the equation in question.

Example. Solution:
w(r, θ) = (C1r

2 + C2r
−1) sin2

θ,
where C1 and C2 are arbitrary constants.

2◦. Self-similar solution:
w(r, θ) = νrf (ξ), ξ = cos θ,

where the function f = f (ξ) is determined by the first-order ordinary differential equation

2(1 − ξ2)f ′

ξ − f 2 + 4ξf + C1ξ
2 + C2ξ + C3 = 0, (1)

and C1, C2, and C3 are arbitrary constants.
The Riccati equation (1) is reduced, with the change of variable f = −2(1 − ξ2)g′ξ/g, to the

hypergeometric equation
(1 − ξ2)2g′′ξξ + (C1ξ

2 + C2ξ + C3)g = 0,

which, in the case C1ξ
2 + C2ξ + C3 = A(1 − ξ2), has power-law solutions:

g = (1 + ξ)k, k = 1
2

(
1 3 √1 +A

)
.

Special case. In the Landau problem on the outflow of an axisymmetric submerged jet source, the solution of equation (1)
is given by

f (ξ) =
2(1 − ξ2)
B − ξ

(C1 = C2 = C3 = 0),

where the constant of integration B can be expressed via the jet momentum.1�2
References: N. A. Slezkin (1934), L. D. Landau and E. M. Lifshitz (1987), L. G. Loitsyanskiy (1996).

3◦. The homogeneous translational fluid flow with a velocity U0 about a rigid spherical particle of
radius a is characterized by the boundary conditions

w =
∂w

∂r
= 0 at r = a, w → 1

2U0r
2 sin2 θ as r →∞. (2)

The asymptotic solution of the equation in question subject to the boundary conditions (2) for
low Reynolds numbers, Re = aU0/ν → 0, in the domain r/a ≤ O(Re−1) is given by

w

U0
=

1
4

(r − a)2
(

2 +
a

r

)
sin2 θ +

3
32

Re (r − a)2
[

2 +
a

r
−

(
2 +

a

r
+
a2

r2

)
cos θ

]
sin2 θ +O(Re2).

For the case Re = aU0/ν → 0 in the domain r/a ≥ O(Re−1), Oseen asymptotic solution holds true;
specifically,

w

U0
=

1
2
r2 sin2 θ −

3
2 Re

(1 + cos θ)
[
1 − e− 1

2 Re r(1−cos θ)] +O(1).
1�2

References: I. Proudman and J. R. A. Pearson (1957), A. Nayfeh (1973), M. D. Van Dyke (1975).
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10.3.3. Nonstationary Hydrodynamic Equations (Navier–Stokes
equations)

1.
∂

∂t
(∆w) +

∂w

∂y

∂

∂x
(∆w) –

∂w

∂x

∂

∂y
(∆w) = ν∆∆w, ∆w =

∂2w

∂x2
+

∂2w

∂y2
.

Preliminary remarks. The two-dimensional nonstationary equations of a viscous incompressible fluid,
∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
+ ν∆u1,

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
+ ν∆u2,

∂u1

∂x
+

∂u2

∂y
= 0,

are reduced to the equation in question through the introduction of a stream function w such that u1 = ∂w
∂y

and u2 = − ∂w
∂x

followed by the elimination of the pressure p (with cross differentiation) from the first two equations.4�5
Reference: L. G. Loitsyanskiy (1996).

For stationary solutions, see equation 10.3.2.1.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = −w(y, x, t),

w2 = w(C1x + C2, C1y + C3, C2
1 t + C4) + C5,

w3 = w(x cosα + y sinα, −x sinα + y cosα, t),

w4 = w(x cosβt + y sinβt, −x sinβt + y cosβt, t) − 1
2β(x2 + y2),

w5 = w(x + ϕ(t), y + ψ(t), t) + ψ′

t(t)x − ϕ′

t(t)y + χ(t),

where C1, . . . , C4, α, and β are arbitrary constants and ϕ(t), ψ(t), and χ(t) are arbitrary functions,
are also solutions of the equation.4�5

References: V. V. Pukhnachov (1960), B. J. Cantwell (1978), S. P. Lloyd (1981), L. V. Ovsiannikov (1982).

2◦. Any solution of the Poisson equation ∆w = C is also a solution of the original equation (these
are “inviscid” solutions). For details about the Poisson equation, see, for example, the books by
Tikhonov and Samarskii (1990) and Polyanin (2002).

Example of an inviscid solution involving five arbitrary functions:

w = ϕ(t)x2 + ψ(t)xy + [C − ϕ(t)]y2 + a(t)x + b(t)y + c(t).

3◦. Solution dependent on a single space variable:

w = W (x, t),

where the functionW satisfies the linear nonhomogeneous heat equation

∂W

∂t
− ν

∂2W

∂x2 = f1(t)x + f0(t),

and f1(t) and f0(t) are arbitrary functions. Solutions of the form w = V (y, t) are determined by a
similar equation.

4◦. Generalized separable solution linear in x:

w(x, y, t) = F (y, t)x +G(y, t), (1)

where the functions F (y, t) and G = G(y, t) are determined by the system of fourth-order one-
dimensional equations

∂3F

∂t∂y2 +
∂F

∂y

∂2F

∂y2 − F
∂3F

∂y3 = ν
∂4F

∂y4 , (2)

∂3G

∂t∂y2 +
∂G

∂y

∂2F

∂y2 − F
∂3G

∂y3 = ν
∂4G

∂y4 . (3)
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Equation (2) is solved independently of (3). If F = F (y, t) is a solution of equation (2), then the
functions

F1 = F (y + ψ(t), t) + ψ′

t(t),

F2 = C1F (C1y + C1C2t + C3,C2
1 t + C4) + C2,

where ψ(t) is an arbitrary function and C1, . . . , C4 are arbitrary constants, are also solutions of the
equation.

Integrating (2) and (3) with respect to y yields

∂2F

∂t∂y
+

(
∂F

∂y

)2

− F
∂2F

∂y2 = ν
∂3F

∂y3 + f1(t), (4)

∂2G

∂t∂y
+
∂F

∂y

∂G

∂y
− F

∂2G

∂y2 = ν
∂3G

∂y3 + f2(t), (5)

where f1(t) and f2(t) are arbitrary functions. Equation (5) is linear in G. The substitution

G =
∫
U dy − hF + h′ty, where U = U (y, t), F = F (y, t), (6)

and the function h = h(t) satisfies the linear ordinary differential equation

h′′tt − f1(t)h = f2(t), (7)

brings (5) to the linear homogeneous parabolic second-order equation

∂U

∂t
= ν

∂2U

∂y2 + F
∂U

∂y
−
∂F

∂y
U . (8)

Thus, whenever a particular solution of equation (2) or (4) is known, determining the functionG
is reduced to solving the linear equations (7)–(8) followed by computing integrals by formula (6).

Exact solutions of equation (2) are listed in Table 13 (two more complicated solutions are
specified at the end of Item 4◦). The ordinary differential equations in the last two rows, which
determine a traveling-wave solution and a self-similar solution, are autonomous and, therefore, its
order can be reduced. Note that solutions of the form (1) with F (y, t) = Cy/t were treated in
Pukhnachov (1960); these solutions correspond to ϕ(t) = C/t in the first row.

The general solution of the linear nonhomogeneous equation (7) is expressed as

h(t) = C1h1(t) + C2h2(t) +
1
W0

[
h2(t)

∫
h1(t)f2(t) dt − h1(t)

∫
h2(t)f2(t) dt

]
, (9)

where h1 = h1(t) and h2 = h2(t) are fundamental solutions of the corresponding homogeneous
equation (with f2 ≡ 0) and W0 = h1(h2)′t − h2(h1)′t is the Wronskian determinant (in this case,
W0 = const). Table 14 lists fundamental solutions of the homogeneous equation (7) corresponding
to the exact solutions of (2) specified in Table 13.

Equation (8) with any F = F (y, t) has the trivial solution. The expressions in Tables 13–14
together with formulas (6) and (9) with U = 0 describe some exact solutions of the form (1).
Nontrivial solutions of equation (8) generate a wider class of exact solutions.

Table 15 presents transformations that simplify equation (8) for some of the solutions to (2)
or (4) listed in Table 13. It is apparent that solutions to (8) are expressed via solutions to the linear
constant-coefficient heat equation in the first two cases. Equation (8) admits the application of the
method of separation of variables in three other cases.

The third equation in Table 15 has the following particular solutions (B1 and B2 are arbitrary
constants):

Z(η) = B1 +B2

∫
Φ(η) dη, Φ(η) = exp

(
A

νλ
eη − η

)
,

Z(η, t) = B1νλ
2t +B1

∫
Φ(η)

[∫
dη

Φ(η)

]
dη.
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TABLE 13
Solutions of equations (2) and (4); ϕ(t) and ψ(t) are

arbitrary functions, and A and λ are arbitrary constants

No.
Function F = F (y, t)

(or general form of solution)
Function f1(t)
in equation (4)

Determining coefficients
(or determining equation)

1 F = ϕ(t)y + ψ(t) f1(t) = ϕ′

t + ϕ2 N/A

2 F = 6ν
y+ψ(t) + ψ′

t(t) f1(t) = 0 N/A

3 F =A exp
[
−λy − λψ(t)

]
+ ψ′

t(t) + νλ f1(t) = 0 N/A

4 F = Ae−βt sin[λy + λψ(t)] + ψ′

t(t) f1(t) = Be−2βt β = νλ2, B = A2λ2 > 0

5 F = Ae−βt cos[λy + λψ(t)] + ψ′

t(t) f1(t) = Be−2βt β = νλ2, B = A2λ2 > 0

6 F = Aeβt sinh[λy + λψ(t)] + ψ′

t(t) f1(t) = Be2βt β = νλ2, B = A2λ2 > 0

7 F = Aeβt cosh[λy + λψ(t)] + ψ′

t(t) f1(t) = Be2βt β = νλ2, B = −A2λ2 < 0

8 F = ψ(t)eλy − Aeβt−λy

4λ2ψ(t) + ψ′

t(t)
λψ(t) − νλ f1(t) = Aeβt β = 2νλ2

9 F = F (ξ), ξ = y + λt f1(t) = A −A + λF ′′

ξξ + (F ′

ξ)2− FF ′′

ξξ =νF ′′′

ξξξ

10 F = t−1/2[U (ξ) − 1
2 ξ

]
, ξ = yt−1/2 f1(t) = At−2 3

4 −A−2U ′

ξ+(U ′

ξ)
2−UU ′′

ξξ =νU ′′′

ξξξ

For other exact solutions of this equation, see the book by Polyanin (2002), where a more general
solution of the form ∂tw = f (x)∂xxw + g(x)∂xw was considered.6�7

References: R. Berker (1963), A. D. Polyanin (2001 c, 2002), A. D. Polyanin and V. F. Zaitsev (2002).

Special case 1. Solution exponentially dependent on time:

w(x, y, t) = f (y)x + e
−λt

∫
g(y) dy,

where the functions f = f (y) and g = g(y) are determined by the system of ordinary differential equations

(f ′

y)2 − ff
′′

yy = νf
′′′

yyy + C1,

−λg + gf
′

y − fg
′

y = νg
′′

yy + C2,

and C1 and C2 are arbitrary constants.6�7
Reference: N. Rott (1956).

Special case 2. Periodic solution:

w(x, y, t) = f (y)x + sin(λt)
∫

g(y) dy + cos(λt)
∫

h(y) dy,

where the functions f = f (y), g = g(y), and h = h(y) are determined by the solution of ordinary differential equations

(f ′

y)2 − ff
′′

yy = νf
′′′

yyy + C1,

−λh + f
′

yg − fg
′

y = νg
′′

yy + C2,

λg + f
′

yh − fh
′

y = νh
′′

yy + C3.

Below are another two exact solutions of equation (2):

F (y, t) = −
γ′t
γ
y + γ3 exp

(
ν

∫
dt

γ2

)(
A cosh

y

γ
+B sinh

y

γ

)
,

F (y, t) = −
γ′t
γ
y + γ3 exp

(
−ν

∫
dt

γ2

)(
A cos

y

γ
+B sin

y

γ

)
,

Page 618

© 2004 by Chapman & Hall/CRC



10.3. EQUATIONS INVOLVING MIXED DERIVATIVES 619

TABLE 14
Fundamental system of solutions determining the general solution (9) of

the nonhomogeneous equation (7); the number in the first column
corresponds to the respective number of an exact solution in Table 13

No. Fundamental system of solutions Wronskian W0 Notation and remarks

1 h1 = Φ(t), h2 = Φ(t)
∫

dt
Φ2(t) W0 = 1 Φ(t) = exp

[∫
ϕ(t) dt

]

2 h1 = 1, h2 = t W0 = 1 N/A

3 h1 = 1, h2 = t W0 = 1 N/A

4 h1 = I0
(
Aλ
β
e−βt), h2 = K0

(
Aλ
β
e−βt) W0 = β I0(z), K0(z) are modified Bessel

functions; β = νλ2

5 h1 = I0
(
Aλ
β
e−βt), h2 = K0

(
Aλ
β
e−βt) W0 = β I0(z), K0(z) are modified Bessel

functions; β = νλ2

6 h1 = I0
(
Aλ
β
eβt

)
, h2 = K0

(
Aλ
β
eβt

)
W0 = −β I0(z), K0(z) are modified Bessel

functions; β = νλ2

7 h1 = J0
(
Aλ
β
eβt

)
, h2 = Y0

(
Aλ
β
eβt

)
W0 = 2β

π

J0(z), Y0(z) are Bessel functions;
β = νλ2

8 h1 =I0
( 2

√

A
β
eβt/2), h2 =K0

( 2
√

A
β
eβt/2) W0 = − β2

I0(z), K0(z) are modified Bessel
functions; β = 2νλ2

9
h1 = cosh(kt), h2 = sinh(kt)
h1 = cos(kt), h2 = sin(kt)

W0 = k
W0 = k

if A = k2 > 0
if A = −k2 < 0

10
h1 =|t| 1

2 −µ, h2 =|t| 1
2 +µ

h1 = |t| 1
2 , h2 = |t| 1

2 ln |t|
h1 =|t| 1

2 cos(µ ln |t|), h2 =|t| 1
2 sin(µ ln |t|)

W0 = 2µ
W0 = 1
W0 = µ

if A > − 1
4 ; µ = 1

2 |1 + 4A| 1
2

if A = − 1
4

if A < − 1
4 ; µ = 1

2 |1 + 4A| 1
2

whereA andB are arbitrary constants, and γ = γ(t) is an arbitrary function. The first formula of the
two displayed after (3) allows us to generalize the above expressions to obtain solutions involving
two arbitrary functions.

5◦. Solution (generalizes the solution of Item 4◦):

w(x, y, t) = F (ξ, t)x +G(ξ, t), ξ = y + kx,

where k is an arbitrary constant and the functions F (ξ, t) and G = G(ξ, t) are determined from the
system of one-dimensional fourth-order equations

∂3F

∂t∂ξ2 +
∂F

∂ξ

∂2F

∂ξ2 − F
∂3F

∂ξ3 = ν(k2 + 1)
∂4F

∂ξ4 , (10)

∂3G

∂t∂ξ2 +
∂G

∂ξ

∂2F

∂ξ2 − F
∂3G

∂ξ3 = ν(k2 + 1)
∂4G

∂ξ4 + 4νk
∂3F

∂ξ3 +
2k

k2 + 1

(
F
∂2F

∂ξ2 −
∂2F

∂t∂ξ

)
. (11)

Integrating (10) and (11) with respect to ξ yields

∂2F

∂t∂ξ
+

(
∂F

∂ξ

)2

− F
∂2F

∂ξ2 = ν(k2 + 1)
∂3F

∂ξ3 + f1(t), (12)
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TABLE 15
Transformations of equation (8) for the corresponding exact solutions of equation (4);

the number in the first column corresponds to the respective
number of an exact solution F = F (y, t) in Table 13

No. Transformations of equation (8) Resulting equation

1
U = 1

Φ(t)u(z, τ ), τ =
∫

Φ
2(t) dt + C1,

z = yΦ(t) +
∫
ψ(t)Φ(t) dt + C2, Φ(t) = exp

[∫
ϕ(t) dt

] ∂u
∂τ

= ν ∂
2u
∂z2

2 U = ζ−3u(ζ, t), ζ = y + ψ(t) ∂u
∂t

= ν ∂
2u
∂ζ2

3 U = eηZ(η, t), η = −λy − λψ(t) ∂Z
∂t

= νλ2 ∂2Z
∂η2 + (νλ2 −Aλeη) ∂Z

∂η

9 U = u(ξ, t), ξ = y + λt ∂u
∂t

= ν ∂
2u
∂ξ2 +

[
F (ξ) − λ

]
∂u
∂ξ

− F ′

ξ(ξ)u

10 U = t−1/2u(ξ, τ ), ξ = yt−1/2, τ = ln t ∂u
∂τ

= ν ∂
2u
∂ξ2 +H(ξ) ∂u

∂ξ
+

[
1 −H ′

ξ(ξ)
]
u

∂2G

∂t∂ξ
+
∂F

∂ξ

∂G

∂ξ
− F

∂2G

∂ξ2 = ν(k2 + 1)
∂3G

∂ξ3 +Q(ξ, t), (13)

where f1(t) is an arbitrary function, and the function Q(ξ, t) is given by

Q(ξ, t) = 4νk
∂2F

∂ξ2 −
2k

k2 + 1
∂F

∂t
+

2k
k2 + 1

∫
F
∂2F

∂ξ2 dξ + f2(t), f2(t) is any.

Equation (13) is linear in G. The substitution U = ∂G
∂ξ

brings (13) to the second-order linear
equation

∂U

∂t
= ν(k2 + 1)

∂2U

∂ξ2 + F
∂U

∂ξ
−
∂F

∂ξ
U +Q(ξ, t). (14)

Thus, whenever a particular solution of equation (10) or (12) is known, determining the func-
tion G is reduced to solving the second-order linear equation (14). Equation (10) is reduced, by
scaling the independent variables so that ξ = (k2 + 1)ζ and t = (k2 + 1)τ , to equation (2) in which y
and t should be replaced by ζ and τ ; exact solutions of equation (2) are listed in Table 13.8�9

Reference: A. D. Polyanin (2001 c).

6◦. Solutions:
w(x, y, t) = Az3 +Bz2 + Cz + ψ′

t(t)x, z = y + kx + ψ(t);

w(x, y, t) = Ae−λz +Bz2 + Cz + νλ(k2 + 1)x + ψ′

t(t)x,

where A, B, C, k, and λ are arbitrary constants and ψ(t) is an arbitrary function.

7◦. Generalized separable solution [special case of a solution of the form (1)]:

w(x, y, t) = e−λy[f (t)x + g(t)
]

+ ϕ(t)x + ψ(t)y,

f (t) = C1E(t), E(t) = exp
[
νλ2t − λ

∫
ϕ(t) dt

]
,

g(t) = C2E(t) − C1E(t)
∫
ψ(t) dt,

where ϕ(t) and ψ(t) are arbitrary functions and C1, C2, and λ are arbitrary constants.
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8◦. Generalized separable solution:

w(x, y, t) = e−λy[A(t)eβx +B(t)e−βx] + ϕ(t)x + ψ(t)y,

A(t) = C1 exp
[
ν(λ2 + β2)t − β

∫
ψ(t) dt − λ

∫
ϕ(t) dt

]
,

B(t) = C2 exp
[
ν(λ2 + β2)t + β

∫
ψ(t) dt − λ

∫
ϕ(t) dt

]
,

where ϕ(t) and ψ(t) are arbitrary functions and C1, C2, λ, and β are arbitrary constants.

9◦. Generalized separable solution:

w(x, y, t) = e−λy[A(t) sin(βx) +B(t) cos(βx)
]

+ ϕ(t)x + ψ(t)y,

where ϕ(t) and ψ(t) are arbitrary functions, λ and β are arbitrary constants, and the functions A(t)
and B(t) satisfy the linear nonautonomous system of ordinary differential equations

A′

t =
[
ν(λ2 − β2) − λϕ(t)

]
A + βψ(t)B,

B′

t =
[
ν(λ2 − β2) − λϕ(t)

]
B − βψ(t)A.

(15)

The general solution of system (15) is expressed as

A(t) = exp
[
ν(λ2 − β2)t − λ

∫
ϕdt

][
C1 sin

(
β

∫
ψ dt

)
+ C2 cos

(
β

∫
ψ dt

)]
,

B(t) = exp
[
ν(λ2 − β2)t − λ

∫
ϕdt

][
C1 cos

(
β

∫
ψ dt

)
− C2 sin

(
β

∫
ψ dt

)]
,

where ϕ = ϕ(t) and ψ = ψ(t); C1 and C2 are arbitrary constants. In particular, for ϕ =
ν

λ
(λ2 − β2)

and ψ = a, we obtain the periodic solution

A(t) = C1 sin(aβt) + C2 cos(aβt),
B(t) = C1 cos(aβt) − C2 sin(aβt).:�;

Reference: A. D. Polyanin (2001 c).

10◦. Generalized separable solution:

w(x, y, t) = A(t) exp(k1x + λ1y) +B(t) exp(k2x + λ2y) + ϕ(t)x + ψ(t)y,

where ϕ(t) and ψ(t) are arbitrary functions, k1, λ1, k2, and λ2 are arbitrary constants, constrained
by one of the two relations

k2
1 + λ2

1 = k2
2 + λ2

2 (first family of solutions),
k1λ2 = k2λ1 (second family of solutions),

and the functionsA(t) and B(t) satisfy the linear ordinary differential equations

A′

t =
[
ν(k2

1 + λ2
1) + λ1ϕ(t) − k1ψ(t)

]
A,

B′

t =
[
ν(k2

2 + λ2
2) + λ2ϕ(t) − k2ψ(t)

]
B.

These equations can be readily integrated to obtain

A(t) = C1 exp
[
ν(k2

1 + λ2
1)t + λ1

∫
ϕ(t) dt − k1

∫
ψ(t) dt

]
,

B(t) = C2 exp
[
ν(k2

2 + λ2
2)t + λ2

∫
ϕ(t) dt − k2

∫
ψ(t) dt

]
.

:�;
Reference: A. D. Polyanin (2001 c).
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11◦. Generalized separable solution:

w(x, y, t) =
[
C1 sin(λx) + C2 cos(λx)

][
A(t) sin(βy) +B(t) cos(βy)

]
+ ϕ(t)x,

where ϕ(t) is an arbitrary function, C1, C2, λ, and β are arbitrary constants, and the functions A(t)
and B(t) satisfy the linear nonautonomous system of ordinary differential equations

A′

t = −ν(λ2 + β2)A − βϕ(t)B,

B′

t = −ν(λ2 + β2)B + βϕ(t)A.
(16)

The general solution of system (16) is expressed as

A(t) = exp
[
−ν(λ2 + β2)t

][
C3 sin

(
β

∫
ϕdt

)
+ C4 cos

(
β

∫
ϕdt

)]
, ϕ = ϕ(t),

B(t) = exp
[
−ν(λ2 + β2)t

][
−C3 cos

(
β

∫
ϕdt

)
+ C4 sin

(
β

∫
ϕdt

)]
,

where C3 and C4 are arbitrary constants.<�=
Reference: A. D. Polyanin (2001 c).

12◦. Generalized separable solution:

w(x, y, t) =
[
C1 sinh(λx) + C2 cosh(λx)

][
A(t) sin(βy) +B(t) cos(βy)

]
+ ϕ(t)x,

where ϕ(t) is an arbitrary function, C1, C2, λ, and β are arbitrary constants, and the functions A(t)
and B(t) satisfy the linear nonautonomous system of ordinary differential equations

A′

t = ν(λ2 − β2)A − βϕ(t)B,

B′

t = ν(λ2 − β2)B + βϕ(t)A.
(17)

The general solution of system (17) is expressed as

A(t) = exp
[
ν(λ2 − β2)t

][
C3 sin

(
β

∫
ϕdt

)
+ C4 cos

(
β

∫
ϕdt

)]
, ϕ = ϕ(t),

B(t) = exp
[
ν(λ2 − β2)t

][
−C3 cos

(
β

∫
ϕdt

)
+ C4 sin

(
β

∫
ϕdt

)]
,

where C3 and C4 are arbitrary constants.<�=
Reference: A. D. Polyanin (2001 c).

13◦. “Two-dimensional” solution:

w(x, y, t) = u(z, t) + ϕ(t)x + ψ(t)y, z = kx + λy,

where ϕ(t) and ψ(t) are arbitrary functions, k and λ are arbitrary constants, and the function u(z, t)
is determined by the fourth-order linear equation

∂3u

∂t∂z2 +
[
kψ(t) − λϕ(t)

] ∂3u

∂z3 = ν(k2 + λ2)
∂4u

∂z4 .

The transformation

U (ξ, t) =
∂2u

∂z2 , ξ = z −
∫ [

kψ(t) − λϕ(t)
]
dt

brings it to the linear heat equation

∂U

∂t
= ν(k2 + λ2)

∂2U

∂ξ2 .
<�=

Reference: A. D. Polyanin (2001 c).

Page 622

© 2004 by Chapman & Hall/CRC



10.3. EQUATIONS INVOLVING MIXED DERIVATIVES 623

14◦. There are “two-dimensional” solutions of the form

w(x, y, t) = W (ρ1, ρ2) + c1x + c2y, ρ1 = a1x + a2y + a3t, ρ2 = b1x + b2y + b3t.

15◦+. “Two-dimensional” solution (a, b, and c are arbitrary constants):

w(x, y, t) = Z(X ,Y ), X =
x + a
√

t + c
, Y =

y + b
√

t + c
,

where the function Z = Z(X ,Y ) is determined by the differential equation

−∆̄Z +
(
∂Z

∂Y
−

1
2
X

)
∂

∂X
(∆̄Z) −

(
∂Z

∂X
+

1
2
Y

)
∂

∂Y
(∆̄Z) = ν∆̄∆̄Z, ∆̄ =

∂2

∂X2 +
∂2

∂Y 2 .
>�?

Reference: V. V. Pukhnachov (1960).

16◦+. “Two-dimensional” solution:

w(x, y, t) = Ψ(ξ, η), ξ = t−1/2[x cos(k ln t) − y sin(k ln t)
]
, η = t−1/2[x sin(k ln t) + y cos(k ln t)

]
,

where k is an arbitrary constant and the function Ψ(ξ, η) is determined by the differential equation

−∆̃Ψ +
(
∂Ψ

∂η
−

1
2
ξ − kη

)
∂

∂ξ
∆̃Ψ −

(
∂Ψ

∂ξ
+

1
2
η − kξ

)
∂

∂η
∆̃Ψ = ν∆̃∆̃Ψ, ∆̃ =

∂2

∂ξ2 +
∂2

∂η2 .
>�?

Reference: B. J. Cantwell (1978).

17◦+. “Two-dimensional” solution:

w(x, y, t) =
ϕ′

t(x
2 − y2 + 2ϕxy)
2(1 + ϕ2)

+
y − ϕx
1 + ϕ2 F (ζ, t) − 2G(ζ, t), ζ = x + ϕy,

where ϕ = ϕ(t) is an arbitrary function and the functions F = F (ζ, t) andG =G(ζ, t) are determined
by the differential equations

ν(1 + ϕ2)
∂4F

∂ζ4 − F
∂3F

∂ζ3 +
∂F

∂ζ

∂2F

∂ζ2 −
2ϕϕ′

t

1 + ϕ2
∂2F

∂ζ2 −
∂3F

∂ζ2∂t
= 0, (18)

ν(1 + ϕ2)
∂4G

∂ζ4 − F
∂3G

∂ζ3 +
∂2F

∂ζ2
∂G

∂ζ
−

2ϕϕ′

t

1 + ϕ2
∂2G

∂ζ2 −
∂3G

∂ζ2∂t
=

ϕ′

t

(1 + ϕ2)2 ζ
∂2F

∂ζ2 . (19)
>�?

Reference: D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (1999).

Equation (18) is solved independently of equation (19). If F = F (ζ, t) is a solution to (18), the
function

F1 = F (y + σ(t), t) − σ′

t(t),
where σ(t) is an arbitrary function, is also a solution of the equation.

Integrating (18) and (19) with respect to ζ yields

ν(1 + ϕ2)
∂3F

∂ζ3 − F
∂2F

∂ζ2 +
(
∂F

∂ζ

)2

−
2ϕϕ′

t

1 + ϕ2
∂F

∂ζ
−
∂2F

∂ζ∂t
= ψ1(t),

ν(1 + ϕ2)
∂3G

∂ζ3 − F
∂2G

∂ζ2 +
∂F

∂ζ

∂G

∂ζ
−

2ϕϕ′

t

1 + ϕ2
∂G

∂ζ
−
∂2G

∂ζ∂t
=

ϕ′

t

(1 + ϕ2)2

(
ζ
∂F

∂ζ
− F

)
+ ψ2(t),

whereψ1(t) andψ2(t) are arbitrary functions. The change of variable u = ∂G
∂ζ

brings the last equation
to a second-order parabolic linear equation (with known F ).

Note that equation (18) admits particular solutions of the forms

F (ζ, t) = a(t)ζ + b(t),

F (ζ, t) = a(t)e−λζ +
a′t(t)
λa(t)

+
2ϕϕ′

t

λ(1 + ϕ2)
− νλ(1 + ϕ2),

where a(t) and b(t) are arbitrary functions and λ is an arbitrary constant.
I For other exact solutions, see equation 10.3.3.3.

Page 623

© 2004 by Chapman & Hall/CRC



624 FOURTH-ORDER EQUATIONS

2.
∂

∂t
(∆w) +

(
∂w

∂y
+ ax

)
∂

∂x
(∆w) –

(
∂w

∂x
– ay

)
∂

∂y
(∆w) + 2a∆w = ν∆∆w.

Preliminary remarks. The system

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
+ ν∆u1,

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
+ ν∆u2,

∂u1

∂x
+

∂u2

∂y
= 2a,

describing the motion of a viscous incompressible fluid induced by two parallel disks moving towards each other is reduced
to the given equation. Here, a is the relative velocity of the disks, u1 and u2 are the horizontal velocity components, and
u3 = −2az is the vertical velocity component. The introduction of a stream function w such that u1 = ax + ∂w

∂y
and

u2 = ay − ∂w
∂x

followed by the elimination of the pressure p (with the help of cross differentiation) leads to the equation in
question. For a = 0, see equation 10.3.3.1.@�A

Reference: A. Craik (1989).

For stationary solutions, see equation 10.3.2.3.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = −w(y, x, t),
w2 = w(x cosβ + y sinβ, −x sinβ + y cosβ, t),

w3 = w
(
x + ϕ(t), y + ψ(t), t + C

)
+

[
ψ′

t(t) − aψ(t)
]
x +

[
aϕ(t) − ϕ′

t(t)
]
y + χ(t),

where ϕ(t), ψ(t), and χ(t) are arbitrary functions and C and β are arbitrary constants, are also
solutions of the equation.

2◦. Any solution of the Poisson equation ∆w = C is also a solution of the original equation (these
are “inviscid” solutions). For details about the Poisson equation, see, for example, the books by
Tikhonov and Samarskii (1990) and Polyanin (2002).

3◦. Solution dependent on a single coordinate x:

w(x, t) =
∫ x

0
(x − ξ)U (ξ, t) dξ + f1(t)x + f0(t),

where f1(t) and f0(t) are arbitrary functions and the function U (x, t) satisfies the linear nonhomo-
geneous parabolic equation

∂U

∂t
+ ax

∂U

∂x
+ 2aU = ν

∂2U

∂x2 ,

which can be reduced to a linear constant-coefficient heat equation; see Polyanin (2002, page 93).
Solutions of the form w = w(y, t) can be obtained likewise.

4◦. Generalized separable solution linear in x:

w(x, y, t) = F (y, t)x +G(y, t), (1)

where the functions F (y, t) and G = G(y, t) are determined by the system of one-dimensional
fourth-order equations

∂3F

∂t∂y2 +
∂F

∂y

∂2F

∂y2 − F
∂3F

∂y3 + a
(

3
∂2F

∂y2 + y
∂3F

∂y3

)
= ν

∂4F

∂y4 , (2)

∂3G

∂t∂y2 +
∂G

∂y

∂2F

∂y2 − F
∂3G

∂y3 + a
(

2
∂2G

∂y2 + y
∂3G

∂y3

)
= ν

∂4G

∂y4 . (3)

Equation (2) is solved independently of equation (3). If F = F (y, t) is a solution to (2), then the
function

F1 = F
(
y + ψ(t), t

)
+ ψ′

t(t) − aψ(t),
where ψ(t) is an arbitrary function, is also a solution of the equation.
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Integrating (2) and (3) with respect to y yields

∂2F

∂t∂y
+

(
∂F

∂y

)2

− F
∂2F

∂y2 + a
(

2
∂F

∂y
+ y

∂2F

∂y2

)
= ν

∂3F

∂y3 + f1(t), (4)

∂2G

∂t∂y
+
∂F

∂y

∂G

∂y
− F

∂2G

∂y2 + a
(
∂G

∂y
+ y

∂2G

∂y2

)
= ν

∂3G

∂y3 + f2(t), (5)

where f1(t) and f2(t) are arbitrary functions.
Equation (2) has a particular solution

F (y, t) = f1(t)y + f0(t), (6)

where f1 = f1(t) and f0 = f0(t) are arbitrary functions. On substituting (6) into (5), we arrive at a
linear equation whose order can be reduced by two:

∂Q

∂t
−

[
(f1 − a)y + f0

] ∂Q
∂y

+ 2aQ = ν
∂2Q

∂y2 , Q =
∂2G

∂y2 .

The equation forQ can be reduced to a linear constant-coefficient heat equation; see Polyanin (2002,
page 135).

Note that equation (2) has the following particular solutions:

F (y, t) = ay +
[
C1 exp(−λy) + C2 exp(λy)

]
exp

[
(νλ2 − 4a)t

]
,

F (y, t) = ay +
[
C1 cos(λy) + C2 sin(λy)

]
exp

[
−(νλ2 + 4a)t

]
,

(7)

where C1, C2, and λ are arbitrary constants.
Solutions of the form w(x, y, t) = f (x, t)y + g(x, t) can be obtained likewise.
Remark. The results of Items 1◦–4◦ exclusive of formula (7) remain true if a = a(t) is an

arbitrary function in the original equation (in this case, one should set C = 0 in Item 1◦).
I For other exact solutions, see equation 10.3.3.4.

3.
∂Q

∂t
+

1
r

∂w

∂θ

∂Q

∂r
–

1
r

∂w

∂r

∂Q

∂θ
= ν∆Q, Q = ∆w =

1
r

∂

∂r

(
r

∂w

∂r

)
+

1
r2

∂2w

∂θ2
.

Preliminary remarks. Equation 10.3.3.1 is reduced to the given equation by passing to polar coordinates with origin at a
point (x0, y0), where x0 and y0 are any numbers, according to

x = r cos θ + x0, y = r sin θ + y0 (direct transformation),

r =
√

(x − x0)2 + (y − y0)2, tan θ =
y − y0

x − x0
(inverse transformation).

The radial and angular fluid velocity components are expressed in terms of the stream function w as follows: ur = 1
r

∂w
∂θ

and uθ = − ∂w
∂r

.

1◦. Solutions with axial symmetry
w = W (r, t)

are described by the linear nonhomogeneous heat equation

∂W

∂t
−
ν

r

∂

∂r

(
r
∂W

∂r

)
= ϕ(t) ln r + ψ(t), (1)

where ϕ(t) and ψ(t) are arbitrary functions. For particular solutions of equation (1) that occur in
fluid dynamics, see Pukhnachov (1960) and Loitsyanskiy (1996).

2◦. Generalized separable solution linear in θ:

w(r, θ, t) = f (r, t)θ + g(r, t), (2)
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where the functions f = f (r, t) and g = g(r, t) are determined by the differential equations

L(ft) − r−1frL(f ) + r−1f [L(f )]r = νL2(f ), (3)
L(gt) − r−1grL(f ) + r−1f [L(g)]r = νL2(g). (4)

Here, the subscripts r and t denote partial derivatives with respect to r and t, L(f ) = r−1(rfr)r, and
L2(f ) = LL(f ).

Equation (3) has a particular solution of the form

f = ϕ(t) ln r + ψ(t),

where ϕ(t) and ψ(t) are arbitrary functions. In this case, equation (4) is reduced by the change of
variable U = L(g) to a second-order linear equation.

Remark. Equation (3) has also a particular solution f = −
r2

2(t + C)
.

B�C
References: R. Berker (1963), D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (1999).

3◦. Let us consider the case f = ψ(t) in Item 2◦ in more detail. This case corresponds to w =
ψ(t)θ+g(r, t); the existence of such an exact solution was established by Pukhnachov (1960). For g,
we have the equation

∂U

∂t
+
ψ(t)
r

∂U

∂r
=
ν

r

∂

∂r

(
r
∂U

∂r

)
, where U =

1
r

∂

∂r

(
r
∂g

∂r

)
. (5)

Below are some exact solutions of equation (5):

U =
a

t
exp

[
−
r2

4νt
+

1
2ν

∫
ψ(t)
t

dt

]
+ b,

U = r2 + 4νt − 2
∫
ψ(t) dt + a,

U = r4 + p(t)r2 + q(t), p(t) = 16νt − 4
∫
ψ(t) dt + a, q(t) = 2

∫ [
2ν − ψ(t)

]
p(t) dt + b,

where a and b are arbitrary constants. The second and the third solutions are special cases of
solutions having the form

U = r2n +A2n−2(t)r2n−2 + · · · +A2(t)r2 +A0(t)

with n arbitrary constants.
The function g(r, t) can be expressed in terms of U (r, t) by

g(r, t) = C1(t) ln r + C2(t) +
∫

Φ(r, t) dr, Φ(r, t) =
1
r

∫
rU (r, t) dr,

where C1(t) and C2(t) are arbitrary functions.B�C
Reference: A. D. Polyanin and V. F. Zaitsev (2002).

4◦. “Two-dimensional” solution:

w(r, θ, t) = Ar2t + νH(ξ, η), ξ = r cos(θ + At2), η = r sin(θ +At2),

where A is an arbitrary constant and the functionH(ξ, η) is determined by the differential equation

∆̃∆̃H −
∂H

∂η

∂

∂ξ
∆̃H +

∂H

∂ξ

∂

∂η
∆̃H −

4A
ν2 = 0, ∆̃ =

∂2

∂ξ2 +
∂2

∂η2 .

B�C
Reference: D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (1999).
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4.
∂Q

∂t
+ ar

∂Q

∂r
+ 2aQ +

1
r

∂w

∂θ

∂Q

∂r
–

1
r

∂w

∂r

∂Q

∂θ
= ν∆Q,

where Q = ∆w =
1
r

∂

∂r

(
r

∂w

∂r

)
+

1
r2

∂2w

∂θ2
.

Equation 10.3.3.2 is reduced to the given equation by passing to polar coordinates r, θ: x = r cos θ,
y = r sin θ.

1◦. Solutions with axial symmetry,
w = W (r, t),

are described by the linear parabolic equation

∂Q

∂t
+ ar

∂Q

∂r
+ 2aQ =

ν

r

∂

∂r

(
r
∂Q

∂r

)
, Q =

1
r

∂

∂r

(
r
∂W

∂r

)
.

2◦. Generalized separable solution linear in θ:

w(r, θ, t) = f (r, t)θ + g(r, t), (1)

where the functions f = f (r, t) and g = g(r, t) are determined by the differential equations

L(ft) + ar[L(f )]r + 2aL(f ) − r−1frL(f ) + r−1f [L(f )]r = νL2(f ), (2)
L(gt) + ar[L(g)]r + 2aL(g) − r−1grL(f ) + r−1f [L(g)]r = νL2(g). (3)

Here, the subscripts r and t denote partial derivatives with respect to r and t, L(f ) = r−1(rfr)r, and
L2(f ) = LL(f ).

Equation (2) has particular solutions of the form

f = ϕ(t) ln r + ψ(t),

where ϕ(t) and ψ(t) are arbitrary functions. In this case, equation (3) is reduced by the change of
variable U = L(g) to a second-order linear equation.

5.
∂Ew

∂t
+

1
r

(
∂w

∂z

∂Ew

∂r
–

∂w

∂r

∂Ew

∂z

)
–

2
r2

∂w

∂z
Ew = νE2w,

where Ew = r
∂

∂r

(
1
r

∂w

∂r

)
+

∂2w

∂z2
, E2w = E(Ew).

Preliminary remarks. The nonstationary Navier–Stokes equations written in cylindrical coordinates for the axisymmetric
case are reduced to the equation in question by the introduction of a stream function w such that ur = 1

r
∂w
∂z

and uz = − 1
r

∂w
∂r

,

where r =
√

x2 + y2, and ur and uz are the radial and axial fluid velocity components.D�E
Reference: J. Happel and H. Brenner (1965).

1◦. Any function w = w(r, z, t) that solves the second-order linear stationary equation Ew = 0 is
also a solution of the original equation.

2◦. Solution with axial symmetry:

w = U (r, t) + ϕ(t)r2 + ψ(t),

where ϕ(t) and ψ(t) are arbitrary functions and the function U = U (r, t) is determined by the linear
parabolic equation

∂U

∂t
− νr

∂

∂r

(
1
r

∂U

∂r

)
= 0.
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3◦. Generalized separable solution linear in z:

w(r, z, t) = f (r, t)z + g(r, t).

Here, f = f (r, t) and g = g(r, t) satisfy the system

L(ft) + r−1f [L(f )]r − r−1frL(f ) − 2r−2f L(f ) = νL2(f ), (1)
L(gt) + r−1f [L(g)]r − r−1grL(f ) − 2r−2f L(g) = νL2(g), (2)

where L(f ) = frr − r−1fr; the subscripts denote the corresponding partial derivatives.
Particular solution of equation (1):

f (r, t) = C1(t)r2 + C2(t),

whereC1(t) andC2(t) are arbitrary functions. In this case, the change of variableU = L(g) brings (2)
to a second-order linear equation.F�G

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

10.3.4. Other Equations

1.
∂3w

∂t∂x2
+

∂w

∂x

∂2w

∂x2
– w

∂3w

∂x3
= f (t)

∂4w

∂x4
.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w
(
x + ϕ(t), t

)
+ ϕ′

t(t),

where ϕ(t) is an arbitrary function, is also a solution of the equation.

2◦. Multiplicative separable solutions:

w = (Aeλx +Be−λx) exp
[
λ2

∫
f (t) dt

]
,

w = A sin(λx +B) exp
[

−λ2
∫
f (t) dt

]
,

where A, B, and C are arbitrary constants.

3◦. On integrating once with respect to x, we obtain the third-order equation

∂2w

∂t∂x
+

(
∂w

∂x

)2

− w
∂2w

∂x2 = f (t)
∂3w

∂x3 + ϕ(t),

where ϕ(t) is an arbitrary function.

2.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂4w

∂y4
.

This is a special case of equation 11.4.1.2 with n = 4.

3.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂4w

∂y4
+ g(x).

This is a special case of equation 11.4.1.3 with n = 2.
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10.3. EQUATIONS INVOLVING MIXED DERIVATIVES 629

4.
∂2w

∂x∂t
+ f (t)

∂4w

∂x4
+ g(t)

∂

∂x

(
w

∂w

∂x

)
+ h(t)

∂2w

∂y2
= 0.

Generalized Kadomtsev–Petviashvili equation. This is a special case of equation 11.4.1.9.

1◦. Suppose w(x, y, t) is a solution of the equation in question. Then the functions

w1 = w
(
x + ϕ(t), H y + C, t

)
−
ϕ′

t(t)
g(t)

,

where C is an arbitrary constant and ϕ(t) is an arbitrary function, are also solutions of the equation.

2◦. “Two-dimensional” solution:

w(x, y, t) = u(z, t), z = x + C1y − C2
1

∫
h(t) dt + C2,

where C1 and C2 are arbitrary constants and the function u(z, t) is determined by the third-order
differential equation

∂u

∂t
+ f (t)

∂3u

∂z3 + g(t)u
∂u

∂z
= ϕ(t),

with ϕ(t) being an arbitrary function.

3◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, t), ξ = x + θ(t)(y + C1)2, θ(t) =
[

4
∫
h(t) dt + C2

]−1

,

where the function U (ξ, t) is determined by the third-order differential equation

∂U

∂t
+ f (t)

∂3U

∂ξ3 + g(t)U
∂U

∂ξ
+ 2h(t)θ(t)U = ψ(t),

with ψ(t) being an arbitrary function.
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Chapter 11

Equations of Higher Orders

11.1. Equations Involving the First Derivative in t and
Linear in the Highest Derivative

11.1.1. Fifth-Order Equations

1.
∂w

∂t
+ w

∂w

∂x
= a

∂5w

∂x5
.

This is a special case of equation 11.1.3.1 with n = 5 and b = −1.

2.
∂w

∂t
– bwk ∂w

∂x
= a

∂5w

∂x5
.

This is a special case of equation 11.1.3.2 with n = 5.

3.
∂w

∂t
= a

∂5w

∂x5
+ beλw ∂w

∂x
.

This is a special case of equation 11.1.3.3 with n = 5.

4.
∂w

∂t
= a

∂5w

∂x5
+ (b ln w + c)

∂w

∂x
.

This is a special case of equation 11.1.3.4 with n = 5.

5.
∂w

∂t
= a

∂5w

∂x5
+ (b arcsinh w + c)

∂w

∂x
.

This is a special case of equation 11.1.3.5 with n = 2 and k = 1.

6.
∂w

∂t
= a

∂5w

∂x5
+ (b arccosh w + c)

∂w

∂x
.

This is a special case of equation 11.1.3.6 with n = 2 and k = 1.

7.
∂w

∂t
= a

∂5w

∂x5
+ (b arcsin w + c)

∂w

∂x
.

This is a special case of equation 11.1.3.7 with n = 2 and k = 1.

8.
∂w

∂t
= a

∂5w

∂x5
+ (b arccos w + c)

∂w

∂x
.

This is a special case of equation 11.1.3.8 with n = 2 and k = 1.
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9.
∂w

∂t
+ w

∂w

∂x
+ a

∂3w

∂x3
= b

∂5w

∂x5
.

Kawahara’s equation. It describes magnetoacoustic waves in plasma and long water waves under
ice cover.���

References: T. Kawahara (1972), A. V. Marchenko (1988).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions
w1 = w( � x + C1, � t + C2),
w2 = w(x − C3t, t) + C3,

whereC1, C2, andC3 are arbitrary constants, are also solutions of the equation (either plus or minus
signs are taken in the first formula).

2◦. Degenerate solution:

w(x, t) =
x + C1

t + C2
.

3◦. Traveling-wave solutions:

w(x, t) =
105a2

169b cosh4 z
+ 2C1, z = 1

2 kx − (18bk5 + C1k)t + C2, k =
√

a

13b
if ab > 0;

w(x, t) =
105a2

169b sinh4 z
+ 2C1, z = 1

2 kx − (18bk5 + C1k)t + C2, k =
√

a

13b
if ab > 0;

w(x, t) =
105a2

169b cos4 z
+ 2C1, z = 1

2 kx − (18bk5 + C1k)t + C2, k =
√

−
a

13b
if ab < 0,

where C1 and C2 are arbitrary constants.���
Reference: N. A. Kudryashov (1990 a, the first solution was obtained).

4◦. Traveling-wave solution for a = 0:

w(x, t) =
1680b

(x + C1t + C2)4 − C1.

5◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x − C1t

2 + C2t,
where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the fourth-order
ordinary differential equation (C3 is an arbitrary constant)

bU ′′′′

ζζζζ − aU ′′

ζζ − 1
2U

2 − C2U = 2C1ζ + C3.

The special case C1 = 0 corresponds to a traveling-wave solution.

10.
∂w

∂t
+ aw

∂w

∂x
+ b

∂3w

∂x3
= c

∂5w

∂x5
+ kw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x − aC1e
kt + C2, t + C3) + C1ke

kt,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w = U (z) + C1ke

kt, z = x − aC1e
kt + C2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

cU (5)
z − bU ′′′

zzz − aUU ′

z − C2U
′

z + kU = 0.

If C1 = 0, we have a traveling-wave solution.

3◦. There is a degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t).
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11.
∂w

∂t
+ a1

∂w

∂x
+ a2w

∂w

∂x
+ a3

∂w

∂x

∂2w

∂x2
+ a4

∂3w

∂x3
+ a5w

∂3w

∂x3
+ a6

∂5w

∂x5
= 0.

This equation describes long water waves with surface tension (Olver, 1984).

1◦. Traveling-wave solutions:

w(x, t) = A + C1 exp(kx + C2t), k = �
√

−
a2

a3 + a5
, A = −

a6k
5 + a4k

3 + a1k + C2

a5k3 + a2k
;

w(x, t) = A + C1 sinh(kx + C2t + C3), k = �
√

−
a2

a3 + a5
, A = −

a6k
5 + a4k

3 + a1k + C2

a5k3 + a2k
;

w(x, t) = A + C1 cosh(kx + C2t + C3), k = �
√

−
a2

a3 + a5
, A = −

a6k
5 + a4k

3 + a1k + C2

a5k3 + a2k
;

w(x, t) = A + C1 sin(kx + C2t + C3), k = �
√

a2

a3 + a5
, A =

a6k
5 − a4k

3 + a1k + C2

a5k3 − a2k
,

where C1, C2, and C3 are arbitrary constants.

2◦. There are traveling-wave solutions of the following forms:

w(x, t) = A +
B

cosh z
+

C

cosh2 z
,

w(x, t) = A +
B

sinh z
+

C

sinh2 z
,

w(x, t) = A +B
sinh z
cosh z

+
C

cosh2 z
,

w(x, t) = A +
B + C sinh z +D cosh z

(E + cosh z)2 ,

where z = kx + λt + const, and the constants A, B, C, D, E, k, and λ are identified by substituting
these solutions into the original equation.���

References: N. A. Kudryashov and M. B. Sukharev (2001), P. Saucez, A. Vande Wouwer, W. E. Schiesser, and P. Zegeling
(2003).

11.1.2. Equations of the Form ∂w
∂t

= a∂nw
∂xn + f (x, t, w)

1.
∂w

∂t
= a

∂nw

∂xn
+ f (x + bt, w).

Solution:
w = w(ξ), ξ = x + bt,

where the function w(ξ) is determined by the ordinary differential equation

aw
(n)
ξ − bw′

ξ + f (ξ,w) = 0.

2.
∂w

∂t
= a

∂nw

∂xn
+ bw ln w + f (t)w.

1◦. Generalized traveling-wave solution:

w(x, t) = exp
[

Aebtx +Bebt +
aAn

b(n − 1)
enbt + ebt

∫

e−btf (t) dt
]

,

where A and B are arbitrary constants.
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2◦. Solution:

w(x, t) = exp
[

Aebt + ebt
∫

e−btf (t) dt
]

ϕ(z), z = x + λt,

where A and λ are arbitrary constants, and the function ϕ = ϕ(z) is determined by the autonomous
ordinary differential equation

aϕ(n)
z − λϕ′

z + bϕ lnϕ = 0,
whose order can be reduced by one.

3◦. The substitution

w(x, t) = exp
[

ebt
∫

e−btf (t) dt
]

u(x, t)

leads to the simpler equation
∂u

∂t
= a

∂nu

∂xn
+ bu lnu.

3.
∂w

∂t
= a

∂nw

∂xn
+ bw ln w +

[

f (x) + g(t)
]

w.

1◦. Multiplicative separable solution:

w(x, t) = exp
[

Cebt + ebt
∫

e−btg(t) dt
]

ϕ(x),

where C is an arbitrary constant and the function ϕ(t) is determined by the ordinary differential
equation

aϕ(n)
x + bϕ lnϕ + f (x)ϕ = 0.

2◦. The substitution

w(x, t) = exp
[

ebt
∫

e−btg(t) dt
]

u(x, t)

leads to the simpler equation
∂u

∂t
= a

∂nu

∂xn
+ bu lnu + f (x)u.

4.
∂w

∂t
= a

∂nw

∂xn
+ f (t)w ln w + g(t)w.

Generalized traveling-wave solution:

w(x, t) = exp
[

ϕ(t)x + ψ(t)
]

.

Here, the functions ϕ(t) and ψ(t) are given by

ϕ(t) = AeF , ψ(t) = BeF + eF
∫

e−F (aAnenF + g) dt, F =
∫

f dt,

where A and B are arbitrary constants.

5.
∂w

∂t
= a

∂nw

∂xn
+ f (t)w ln w +

[

g(t)x + h(t)
]

w.

Generalized traveling-wave solution:

w(x, t) = exp
[

ϕ(t)x + ψ(t)
]

.

Here, the functions ϕ(t) and ψ(t) are given by

ϕ(t) = AeF + eF
∫

e−F g dt, F =
∫

f dt,

ψ(t) = BeF + eF
∫

e−F (aϕn + h) dt,

where A and B are arbitrary constants.
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6.
∂w

∂t
= a

∂nw

∂xn
+ f (x)w ln w +

[

bf (x)t + g(x)
]

w.

Multiplicative separable solution:
w(x, t) = e−btϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

aϕ(n)
x + f (x)ϕ lnϕ +

[

g(x) + b
]

ϕ = 0.

11.1.3. Equations of the Form ∂w
∂t

= a∂nw
∂xn + f (w) ∂w

∂x
Preliminary remarks. Equations of this form admit traveling-wave solutions:

w = w(z), z = x + λt,

whereλ is an arbitrary constant and the functionw(z) is determined by the (n−1)st-order autonomous
ordinary differential equation (C is an arbitrary constant)

aw(n−1)
z +

∫

f (w) dw − λw = C.

1.
∂w

∂t
= a

∂nw

∂xn
+ bw

∂w

∂x
.

Generalized Burgers–Korteweg–de Vries equation.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = Cn−1
1 w(C1x + bC1C2t + C3,Cn1 t + C4) + C2,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:
w(x, t) = −

x + C1

b(t + C2)
,

w(x, t) = (−1)n
a(2n − 2)!
b(n − 1)!

1
(x + bC1t + C2)n−1 + C1.

The first solution is degenerate and the second one is a traveling-wave solution (a special case of the
solution of Item 3◦).

3◦. Traveling-wave solution:
w = w(ξ), ξ = x + λt,

whereλ is an arbitrary constant and the functionw(ξ) is determined by the (n−1)st-order autonomous
ordinary differential equation

aw
(n−1)
ξ + 1

2 bw
2 = λw + C.

4◦. Self-similar solution:
w(x, t) = t

1−n
n u(η), η = xt−

1
n ,

where the function u(η) is determined by the ordinary differential equation

au(n)
η + buu′η +

1
n
ηu′η +

n − 1
n

u = 0.

5◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x + bC1t

2 + C2t,

where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the (n − 1)st-order
ordinary differential equation

aU
(n−1)
ζ + 1

2 bU
2 − C2U = 2C1ζ + C3.

Page 635

© 2004 by Chapman & Hall/CRC



6◦. Solution:

w = ϕn−1F (z) +
1
bϕ

(ϕ′

tx + ψ′

t), z = ϕ(t)x + ψ(t).

Here, the functions ϕ(t) and ψ(t) are defined by

ϕ(t) = (Ant + C1)−
1
n ,

ψ(t) = C2(Ant + C1)
n−1
n + C3(Ant + C1)−

1
n +

B

A2(n − 1)
,

where A, B, C1, C2, and C3 are arbitrary constants, and the function F (z) is determined by the
ordinary differential equation

aF (n)
z + bFF ′

z +A(n − 2)F +
A2

b
(1 − n)z +

B

b
= 0.

2.
∂w

∂t
= a

∂nw

∂xn
+ bwk ∂w

∂x
.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = Cn−1
1 w(Ck1 x + C2,Cnk1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Self-similar solution:
w(x, t) = t

1−n
nk U (z), z = xt−

1
n ,

where the function U = U (z) is determined by the ordinary differential equation

aU (n)
z + bUkU ′

z +
1
n
zU ′

z +
n − 1
nk

U = 0.

3.
∂w

∂t
= a

∂nw

∂xn
+ beλw ∂w

∂x
.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,Cn1 t + C3) +
n − 1
λ

lnC1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:

w(x, t) = U (z) +
1 − n
nλ

ln t, z = xt−
1
n ,

where the function U = U (z) is determined by the ordinary differential equation

aU (n)
z + beλUU ′

z +
1
n
zU ′

z +
n − 1
nλ

= 0.

4.
∂w

∂t
= a

∂nw

∂xn
+ (b ln w + c)

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = exp
[

x + C2

C1 − bt
+

a

b(n − 2)
1

(C1 − bt)n−1 −
c

b

]

,

where C1 and C2 are arbitrary constants.
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5.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [b arcsinh(kw) + c]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

sinh
[

x + C2

C1 − bt
+

a

b(2n − 1)
1

(C1 − bt)2n −
c

b

]

,

where C1 and C2 are arbitrary constants.

6.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [b arccosh(kw) + c]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

cosh
[

x + C2

C1 − bt
+

a

b(2n − 1)
1

(C1 − bt)2n −
c

b

]

,

where C1 and C2 are arbitrary constants.

7.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [b arcsin(kw) + c]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

sin
[

x + C2

C1 − bt
+

a(−1)n

b(2n − 1)
1

(C1 − bt)2n −
c

b

]

,

where C1 and C2 are arbitrary constants.

8.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [b arccos(kw) + c]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

cos
[

x + C2

C1 − bt
+

a(−1)n

b(2n − 1)
1

(C1 − bt)2n −
c

b

]

,

where C1 and C2 are arbitrary constants.

11.1.4. Equations of the Form ∂w
∂t

= a∂nw
∂xn + f (x, t, w) ∂w

∂x
+ g(x, t, w)

1.
∂w

∂t
= a

∂nw

∂xn
+ (bx + c)

∂w

∂x
+ f (w).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1e
−bt, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + C1e
−bt,

where the function w(z) is determined by the ordinary differential equation

aw(n)
z + (bz + c)w′

z + f (w) = 0.
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2.
∂w

∂t
= a

∂nw

∂xn
+ f (t)

∂w

∂x
+ g(w).

The transformation w = u(z, t), z = x +
∫

f (t) dt leads to the simpler equation

∂u

∂t
= a

∂nu

∂zn
+ g(u),

which has a traveling-wave solution u = u(kz + λt).

3.
∂w

∂t
= a

∂nw

∂xn
+

[

bx + f (t)]
∂w

∂x
+ g(w).

Generalized traveling-wave solution:

w = w(z), z = x + Ce−bt + e−bt
∫

ebtf (t) dt,

where C is an arbitrary constant and the function w(z) is determined by the ordinary differential
equation

aw(n)
z + bzw′

z + g(w) = 0.

4.
∂w

∂t
= a

∂nw

∂xn
+ f (x)

∂w

∂x
+ bw ln w +

[

g(x) + h(t)
]

w.

Multiplicative separable solution:

w(x, t) = exp
[

Cebt + ebt
∫

e−bth(t) dt
]

ϕ(x),

where C is an arbitrary constant and the function ϕ(t) is determined by the ordinary differential
equation

aϕ(n)
x + f (x)ϕ′

x + bϕ lnϕ + g(x)ϕ = 0.

5.
∂w

∂t
= a

∂nw

∂xn
+ bw

∂w

∂x
+ f (t).

The transformation

w = u(z, t) +
∫ t

t0

f (τ ) dτ , z = x + b
∫ t

t0

(t − τ )f (τ ) dτ ,

where t0 is any, leads to an equation of the form 11.1.3.1:
∂u

∂t
= a

∂nu

∂xn
+ bu

∂u

∂x
.

6.
∂w

∂t
= a

∂nw

∂xn
+ bw

∂w

∂x
+ cw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + bC1e
ct + C2, t + C3) + C1ce

ct,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w = U (z) + C1ce

ct, z = x + bC1e
ct + C2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

aU (n)
z + bUU ′

z − C2U
′

z + cU = 0.

For C1 = 0, we have a traveling-wave solution.

3◦. There is a degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t).
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7.
∂w

∂t
= a

∂nw

∂xn
+

[

bw + f (t)
] ∂w

∂x
+ g(t).

The transformation

w = u(z, t) +
∫ t

t0

g(τ ) dτ , z = x +
∫ t

t0

f (τ ) dτ + b
∫ t

t0

(t − τ )g(τ ) dτ ,

where t0 is any, leads to an equation of the form 11.1.3.1:
∂u

∂t
= a

∂nu

∂xn
+ bu

∂u

∂x
.

8.
∂w

∂t
+ a

∂nw

∂xn
+ f (t)w

∂w

∂x
+ g(t)w = 0.

Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w
(

x + C1ψ(t) + C2, t
)

− C1ϕ(t),

where

ϕ(t) = exp
[

−
∫

g(t) dt
]

, ψ(t) =
∫

f (t)ϕ(t) dt,

is also a solution of the equation (C1 and C2 are arbitrary constants).
Remark. This also remains true if a in the equation is an arbitrary function of time, a = a(t).

9.
∂w

∂t
= a

∂nw

∂xn
+ [f (t) ln w + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) = exp[ϕ(t)x + ψ(t)],

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕn−1(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.*

10.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [f (t) arcsinh(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

sinh
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕ2n(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

11.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [f (t) arccosh(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

cosh
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + aϕ2n(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

* In equations 11.1.4.9 to 11.1.4.13 and their solutions, a can be an arbitrary function of time, a = a(t).
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12.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [f (t) arcsin(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

sin
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + a(−1)nϕ2n(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

13.
∂w

∂t
= a

∂2n+1w

∂x2n+1
+ [f (t) arccos(kw) + g(t)]

∂w

∂x
.

Generalized traveling-wave solution:

w(x, t) =
1
k

cos
[

ϕ(t)x + ψ(t)
]

,

where

ϕ(t) = −
[
∫

f (t) dt + C1

]−1

, ψ(t) = ϕ(t)
∫

[g(t) + a(−1)nϕ2n(t)] dt + C2ϕ(t),

and C1 and C2 are arbitrary constants.

11.1.5. Equations of the Form ∂w
∂t

= a∂nw
∂xn + F

(

x, t, w, ∂w
∂x

)

1.
∂w

∂t
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = Cn−2
1 w(C1x + 2bC1C2t + C3,Cn1 t + C4) + C2x + bC2

2 t + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = C1t + C2 +

∫

θ(z) dz, z = x + λt,

whereC1,C2, and λ are arbitrary constants, and the function θ(z) is determined by the (n−1)st-order
autonomous ordinary differential equation

aθ(n−1)
z + bθ2 − λθ − C1 = 0.

To C1 = 0 there corresponds a traveling-wave solution.

3◦. Self-similar solution:
w(x, t) = t

2−n
n u(ζ), ζ = xt−

1
n ,

where the function u(ζ) is determined by the ordinary differential equation

au
(n)
ζ + b(u′ζ)2 +

1
n
ζu′ζ +

n − 2
n

u = 0.

4◦. There is a degenerate solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).
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5◦. The Bäcklund transformation

∂w

∂x
=
u

2
,

∂w

∂t
=
a

2
∂n−1u

∂xn−1 +
b

4
u2 (1)

connects the original equation with the generalized Burgers–Korteweg–de Vries equation 11.1.3.1:

∂u

∂t
= a

∂nu

∂xn
+ bu

∂u

∂x
. (2)

If u = u(x, t) is a solution of equation (2), then the corresponding solutionw =w(x, t) of the original
equation can be found from the linear system of first-order equations (1).

2.
∂w

∂t
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

+ f (t).

1◦. Solution:

w(x, t) = C1t + C2 +
∫

f (t) dt + Θ(z), z = x + λt,

whereC1, C2, and λ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

aΘ(n)
z + b

(

Θ
′

z

)2 − λΘ′

z − C1 = 0.

2◦. The substitution w = U (x, t) +
∫

f (t) dt leads to a simpler equation of the form 11.1.5.1:

∂U

∂t
= a

∂nU

∂xn
+ b

(

∂U

∂x

)2

.

3.
∂w

∂t
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

+ cw + f (t).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1, t) + C2e
ct,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Solution:

w(x, t) = Aect + ect
∫

e−ctf (t) dt + θ(z), z = x + λt,

where A and λ are arbitrary constants, and the function θ(z) is determined by the autonomous
ordinary differential equation

aθ(n)
z + b

(

θ′z
)2 − λθ′z + cθ = 0.

3◦. There is a degenerate solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).

4◦. The substitution w = U (x, t) + ect
∫

e−ctf (t) dt leads to the simpler equation

∂U

∂t
= a

∂nU

∂xn
+ b

(

∂U

∂x

)2

+ cU .
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4.
∂w

∂t
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

+ cw
∂w

∂x
+ kw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ is a root of the quadratic equation bλ2 + cλ + k = 0, and the functions ϕ(t) and ψ(t) are
determined by the system of first-order ordinary differential equations

ϕ′

t = kϕ2 + f (t)ϕ + g(t), (1)
ψ′

t =
[

(cλ + 2k)ϕ + f (t) + aλn
]

ψ. (2)

The Riccati equation (1) is integrable by quadrature in some special cases, for example,

(a) k = 0, (b) g(t) ≡ 0, (c) f (t) = const, g(t) = const .

See also Kamke (1977) and Polyanin and Zaitsev (2003). Whenever a solution of equation (1) is
found, one can obtain the corresponding solution of the linear equation (2).

5.
∂w

∂t
= a

∂nw

∂xn
+ f (x)

(

∂w

∂x

)2

+ g(x) + h(t).

1◦. Additive separable solution:

w(x, t) = At +B +
∫

h(t) dt + ϕ(x).

Here,A andB are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

aϕ(n)
x + f (x)

(

ϕ′

x)2 + g(x) −A = 0.

2◦. The substitution w = U (x, t) +
∫

h(t) dt leads to the simpler equation

∂U

∂t
= a

∂nU

∂xn
+ f (x)

(

∂U

∂x

)2

+ g(x).

6.
∂w

∂t
= a

∂nw

∂xn
+ f (x)

(

∂w

∂x

)2

+ bw + g(x) + h(t).

1◦. Additive separable solution:

w(x, t) = ϕ(x) +Aebt + ebt
∫

e−bth(t) dt.

Here, A is an arbitrary constant and the function ϕ(x) is determined by the ordinary differential
equation

aϕ(n)
x + f (x)(ϕ′

x)2 + bϕ + g(x) = 0.

2◦. The substitution w = U (x, t) + ebt
∫

e−bth(t) dt leads to the simpler equation

∂U

∂t
= a

∂nU

∂xn
+ f (x)

(

∂U

∂x

)2

+ bU + g(x).
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7.
∂w

∂t
= a

∂nw

∂xn
+ f (t)

(

∂w

∂x

)2

+ bf (t)w2 + g(t)w + h(t).

1◦. Generalized separable solutions involving exponentials of x:

w(x, t) = ϕ(t) + ψ(t) exp
( �
x
√

−b
)

, b < 0, (1)

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations with variable coefficients

ϕ′

t = bfϕ2 + gϕ + h, (2)

ψ′

t =
[

2bfϕ + g + a(
� √

−b )n
]

ψ. (3)

The arguments of the functions f , g, and h are not specified.
Equation (2) is a Riccati equation forϕ =ϕ(t) and, hence, can be reduced to a second-order linear

equation. The books by Kamke (1977) and Polyanin and Zaitsev (2003) present a large number of
solutions to this equation for various f , g, and h.

Whenever a solution of equation (2) is known, the corresponding solution of equation (3) is
computed by the formula

ψ(t) = C exp
[

a(
� √

−b )nt +
∫

(2bfϕ + g) dt
]

, (4)

where C is an arbitrary constant.
Note two special integrable cases of equation (2).
Solution of equation (2) for h ≡ 0:

ϕ(t) = eG
(

C1 − b
∫

feG dt

)−1

, G =
∫

g dt,

where C1 is an arbitrary constant.
If the functions f , g, and h are proportional,

g = αf , h = βf (α, β = const),

the solution of equation (2) is expressed as
∫

dϕ

bϕ2 + αϕ + β
=

∫

f dt + C2, (5)

where C2 is an arbitrary constant. On integrating the left-hand side of (5), one may obtain ϕ = ϕ(t)
in explicit form.

2◦. Generalized separable solution (generalizes the solutions of Item 1◦):

w(x, t) = ϕ(t) + ψ(t) exp
(

x
√

−b
)

+ χ(t) exp
(

−x
√

−b
)

, b < 0, (6)

where the functions ϕ(t), ψ(t), and χ(t) are determined by the system of first-order ordinary
differential equations with variable coefficients

ϕ′

t = bfϕ2 + gϕ + h + 4bfψχ, (7)

ψ′

t =
[

2bfϕ + g + a(
√

−b )n
]

ψ, (8)

χ′

t =
[

2bfϕ + g + a(−
√

−b )n
]

χ. (9)

For equations of even order, with n = 2m,m = 1, 2, . . . , it follows from (8) and (9) thatψ(t) and
χ(t) are proportional. Then, by setting ψ(t) = Aθ(t) and χ(t) = Bθ(t), we can rewrite solution (6)
in the form

w(x, t) = ϕ(t) + θ(t)
[

A exp
(

x
√

−b
)

+B exp
(

−x
√

−b
)]

, b < 0, (10)
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where the functions ϕ(t) and θ(t) are determined by the system of ordinary differential equations
ϕ′

t = bf
(

ϕ2 + 4ABθ2) + gϕ + h, (11)

θ′t =
[

2bfϕ + g + (−1)mabm
]

θ. (12)
The function ϕ can be expressed from (12) via θ and then substituted into (11) to obtain a

second-order nonlinear equation for θ. For f , g, h = const, this equation is autonomous and its order
can be reduced.

Note two special cases where solution (10) is expressed in terms of hyperbolic functions:
w(x, t) = ϕ(t) + θ(t) cosh

(

x
√

−b
)

if A = 1
2 , B = 1

2 ;

w(x, t) = ϕ(t) + θ(t) sinh
(

x
√

−b
)

if A = 1
2 , B = − 1

2 .
3◦. Generalized separable solution involving trigonometric functions of x:

w(x, t) = ϕ(t) + ψ(t) cos
(

x
√

b
)

+ χ(t) sin
(

x
√

b
)

, b > 0, (13)
where the functionsϕ(t),ψ(t), andχ(t) are determined by a system of ordinary differential equations
(which is not written out here).

For equations of even order, with n = 2m, m = 1, 2, . . . , there are exact solutions of the form
w(x, t) = ϕ(t) + θ(t) cos

(

x
√

b + c
)

, b > 0, (14)
where c is an arbitrary constant and the functions ϕ(t) and θ(t) are determined by the system of
first-order ordinary differential equations with variable coefficients

ϕ′

t = bf
(

ϕ2 + θ2) + gϕ + h, (15)

θ′t =
[

2bfϕ + g + (−1)mabm
]

θ. (16)
The function ϕ can be expressed from (16) via θ and then substituted into (15) to obtain a

second-order nonlinear equation for θ. For f , g, h = const, this equation is autonomous and its order
can be reduced.��	

References: V. A. Galaktionov (1995), A. D. Polyanin and V. F. Zaitsev (2002).

8.
∂w

∂t
= a

∂nw

∂xn
+ f (w)

(

∂w

∂x

)n

+
[

xg(t) + h(t)
] ∂w

∂x
.

Passing to the new independent variables

τ =
∫

ϕn(t) dt, z = ϕ(t)x +
∫

h(t)ϕ(t) dt, ϕ(t) = exp
[
∫

g(t) dt
]

,

one arrives to the simpler equation
∂w

∂τ
= a

∂nw

∂zn
+ f (w)

(

∂w

∂z

)n

,

which has a traveling-wave solution w = u(kz + λτ ) and a self-similar solution w = v(zτ −1/n).

9.
∂w

∂t
= a

∂nw

∂xn
+ f

(

x,
∂w

∂x

)

+ g(t).

1◦. Additive separable solution:

w(x, t) = At +B +
∫

g(t) dt + ϕ(x).

Here,A andB are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

aϕ(n)
x + f

(

x,ϕ′

x

)

−A = 0.
2◦. The substitution

w = U (x, t) +
∫

g(t) dt

leads to the simpler equation
∂U

∂t
= a

∂nU

∂xn
+ f

(

x,
∂U

∂x

)

.
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10.
∂w

∂t
= a

∂nw

∂xn
+ f

(

x,
∂w

∂x

)

+ bw + g(t).

1◦. Additive separable solution:

w(x, t) = ϕ(x) +Aebt + ebt
∫

e−btg(t) dt.

Here, A is an arbitrary constant and the function ϕ(x) is determined by the ordinary differential
equation

aϕ(n)
x + f

(

x,ϕ′

x

)

+ bϕ = 0.

2◦. The substitution

w = U (x, t) + ebt
∫

e−btg(t) dt

leads to the simpler equation

∂U

∂t
= a

∂nU

∂xn
+ f

(

x,
∂U

∂x

)

+ bU .

11.
∂w

∂t
= a

∂nw

∂xn
+ wf

(

t,
1
w

∂w

∂x

)

.

Multiplicative separable solution:

w(x, t) = A exp
[

λx + aλnt +
∫

f (t,λ) dt
]

,

where A and λ are arbitrary constants.

11.1.6. Equations of the Form ∂w
∂t

=a∂nw
∂xn +F

(

x,t,w, ∂w
∂x

, . . . , ∂n–1w
∂xn–1

)

1.
∂w

∂t
= a

∂nw

∂xn
+ f (t)

i,j<n
∑

i,j=0

bij

∂iw

∂xi

∂jw

∂xj
+

n–1
∑

k=0

gk(t)
∂kw

∂xk
+ h(t).

Here, we adopt the notation: ∂0w
∂x0 ≡ w.

1◦. In the general case, the equation has generalized separable solutions of the form

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ is a root of the algebraic equation
i,j<n
∑

i,j=0

bijλ
i+j = 0.

2◦. Let n be an even number and let all coefficients bij be zero for odd i+j. In this case, the original
equation has also generalized separable solutions of the form

w(x, t) = ϕ1(t) + ψ1(t)
[

A cosh(λx) +B sinh(λx)
]

,

w(x, t) = ϕ2(t) + ψ2(t)
[

A cos(λx) +B sin(λx)
]

,

whereA andB are arbitrary constants, the parameterλ is determined by solving algebraic equations,
and the functions ϕ1(t), ψ1(t) and ϕ2(t), ψ2(t) are found from appropriate systems of first-order
ordinary differential equations.
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2.
∂w

∂t
= a

∂nw

∂xn
+ F

(

x,
∂w

∂x
, . . . ,

∂n–1w

∂xn–1

)

+ g(t).

1◦. Additive separable solution:

w(x, t) = At +B +
∫

g(t) dt + ϕ(x).

Here,A andB are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

aϕ(n)
x + F

(

x,ϕ′

x, . . . ,ϕ(n−1)
x

)

−A = 0,

whose order can be reduced with the substitution U (x) = ϕ′

x.

2◦. The substitution w = u(x, t) +
∫

g(t) dt leads to the simpler equation

∂u

∂t
= a

∂nu

∂xn
+ F

(

x,
∂u

∂x
, . . . ,

∂n−1u

∂xn−1

)

.

3.
∂w

∂t
= a

∂nw

∂xn
+ F

(

x,
∂w

∂x
, . . . ,

∂n–1w

∂xn–1

)

+ bw + g(t).

1◦. Additive separable solution:

w(x, t) = ϕ(x) +Aebt + ebt
∫

e−btg(t) dt.

Here, A is an arbitrary constant and the function ϕ(x) is determined by the ordinary differential
equation

aϕ(n)
x + F

(

x,ϕ′

x, . . . ,ϕ(n−1)
x

)

+ bϕ = 0.

2◦. The substitution w = u(x, t) + ebt
∫

e−btg(t) dt leads to the simpler equation

∂u

∂t
= a

∂nu

∂xn
+ F

(

x,
∂u

∂x
, . . . ,

∂n−1u

∂xn−1

)

+ bu.

4.
∂w

∂t
= a

∂nw

∂xn
+ wF

(

t,
1
w

∂w

∂x
, . . . ,

1
w

∂n–1w

∂xn–1

)

.

Multiplicative separable solution:

w(x, t) = A exp
[

λx + aλnt +
∫

F (t,λ, . . . ,λn−1) dt
]

,

where A and λ are arbitrary constants.

5.
∂w

∂t
= a

∂2nw

∂x2n
+ wF

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2n–2w

∂x2n–2

)

.

Multiplicative separable solutions:

w(x, t) =
[

A cosh(λx) +B sinh(λx)
]

exp
[

aλ2nt +
∫

F (t,λ2, . . . ,λ2n−2) dt
]

,

w(x, t) =
[

A cos(λx) +B sin(λx)
]

exp
[

(−1)naλ2nt + Φ(t)
]

,

Φ(t) =
∫

F
(

t, −λ2, . . . , (−1)n−1λ2n−2) dt,

where A, B, and λ are arbitrary constants.
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11.1.7. Equations of the Form ∂w
∂t

= aw ∂nw
∂xn +f (x, t, w) ∂w

∂x
+g(x, t, w)

1.
∂w

∂t
= aw

∂nw

∂xn
+ f (t)w + g(t).

1◦. Degenerate solution:

w(x, t) = F (t)
(

An−1x
n−1 + · · · +A1x +A0

)

+ F (t)
∫

g(t)
F (t)

dt, F (t) = exp
[
∫

f (t) dt
]

,

where A0, A1, . . . , An−1 are arbitrary constants.

2◦. Generalized separable solution:

w(x, t) = ϕ(t)
(

xn +An−1x
n−1 + · · · +A1x +A0

)

+ ϕ(t)
∫

g(t)
ϕ(t)

dt,

ϕ(t) = F (t)
[

C − an!
∫

F (t) dt
]−1

, F (t) = exp
[
∫

f (t) dt
]

,

where A0, A1, . . . , An−1, and C are arbitrary constants.

2.
∂w

∂t
= aw

∂nw

∂xn
+ f (x)w +

n–1
∑

k=0

bkxk.

Generalized separable solution:

w(x, t) = t
n−1
∑

k=0

bkx
k +

n−1
∑

k=0

Ckx
k −

1
a(n − 1)!

∫ x

x0

(x − ξ)n−1f (ξ) dξ,

where C0, C1, . . . , Cn−1, and x0 are arbitrary constants.

3.
∂w

∂t
= aw

∂nw

∂xn
+ bw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t).

Here, the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations

ϕ′

t = Cϕ2 + bϕψ + f (t)ϕ,

ψ′

t = Cϕψ + bψ2 + f (t)ψ + g(t),

where C is an arbitrary constant and the function Θ(x) satisfies the nth-order linear ordinary
differential equation

aΘ(n)
x + bΘ = C.

4.
∂w

∂t
= aw

∂2nw

∂x2n
– ak2nw2 + f (x)w + b1 sinh(kx) + b2 cosh(kx).

Generalized separable solution linear in t:

w(x, t) = t
[

b1 sinh(kx) + b2 cosh(kx)
]

+ ϕ(x).

Here, the functionϕ(x) is determined from the constant-coefficient linear nonhomogeneousordinary
differential equation

aϕ(2n)
x − ak2nϕ + f (x) = 0.
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5.
∂w

∂t
= aw

∂nw

∂xn
+

[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w.

The transformation

w(x, t) = H(t)u(z, τ ), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

Fn(t)H(t) dt,

where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to the simpler equation
∂u

∂τ
= au

∂nu

∂zn
,

which admits, for example, a traveling-wave solution u = u(kz + λτ ) and a self-similar solution of
the form u = u(ξ), ξ = zτ −1/n.

6.
∂w

∂t
= aw

∂nw

∂xn
+ f (x)w

∂w

∂x
+ g(t)w + h(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t), ψ(t), and Θ(x) are determined by the ordinary differential equations

ϕ′

t = Cϕ2 + g(t)ϕ,

ψ′

t =
[

Cϕ + g(t)
]

ψ + h(t),

aΘ(n)
x + f (x)Θ′

x = C,

where C is an arbitrary constant. On integrating the first two equations successively, one obtains

ϕ(t) = G(t)
[

A − C
∫

G(t) dt
]−1

, G(t) = exp
[
∫

g(t) dt
]

,

ψ(t) = Bϕ(t) + ϕ(t)
∫

h(t)
ϕ(t)

dt,

where A and B are arbitrary constants.

7.
∂w

∂t
= aw

∂nw

∂xn
+ f (x)w

∂w

∂x
+ g(x)w2 + h(t)w.

Multiplicative separable solution:

w(x, t) = ϕ(x)H(t)
[

A +B
∫

H(t) dt
]−1

, H(t) = exp
[
∫

h(t) dt
]

,

where A and B are arbitrary constants, and the function ϕ(x) is determined by the linear ordinary
differential equation

aϕ(n)
x + f (x)ϕ′

x + g(x)ϕ +B = 0.

11.1.8. Other Equations

1.
∂w

∂t
= a

∂n

∂xn

(

wm ∂kw

∂xk

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(C2x + C3,Cm1 C
n+k
2 t + C4),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

Page 648

© 2004 by Chapman & Hall/CRC



2◦. Traveling-wave solution:
w = w(z), z = x + λt,

where λ is an arbitrary constant and the function w(z) is determined by the autonomous ordinary
differential equation a[wmw(k)

z ](n)
z − λw′

z = 0.

3◦. Self-similar solution:
w(x, t) = t−

(n+k)β+1
m u(ξ), ξ = xtβ ,

where β is an arbitrary constant and the function u = u(ξ) is determined by the ordinary differential
equation

−[(n + k)β + 1]u +mβξu′ξ = am[umu(k)
ξ ](n)

ξ .

4◦. Solution:
w(x, t) = (C1t + C2)−1/mV (ζ), ζ = x + C3 ln |C1t + C2|,

where the function V = V (ζ) is determined by the autonomous ordinary differential equation

am[V mV (k)
ζ ](n)

ζ −mC1C3V
′

ζ + C1V = 0.

Remark. For a special case C3 = 0, we have a solution in multiplicative separable form.

5◦. Generalized self-similar solution:

w(x, t) = e−(n+k)βtϕ(η), η = xemβt,

where β is an arbitrary constant and the function ϕ = ϕ(η) is determined by the ordinary differential
equation

−(n + k)βϕ +mβηϕ′

η = a[ϕmϕ(k)
η ](n)

η .

2.
∂w

∂t
= a

∂n

∂xn

(

wm ∂kw

∂xk

)

+
[

xf (t) + g(t)
] ∂w

∂x
+ h(t)w.

The transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫

g(t)F (t) dt, τ =
∫

Fn+k(t)Hm(t) dt,

where the functions F (t) and H(t) are given by

F (t) = exp
[
∫

f (t) dt
]

, H(t) = exp
[
∫

h(t) dt
]

,

leads to a simpler equation of the form 11.1.8.1:

∂u

∂τ
= a

∂n

∂zn

(

um
∂ku

∂zk

)

.

3.
∂w

∂t
= a

∂n

∂xn

(

eλw ∂kw

∂xk

)

+ f (t).

The transformation

w(x, t) = u(x, τ ) + F (t), τ =
∫

exp
[

λF (t)
]

dt, F (t) =
∫

f (t) dt,

leads to the simpler equation
∂u

∂τ
= a

∂n

∂xn

(

eλu
∂ku

∂xk

)

.

It admits, for example, exact solutions of the forms

u = U (kx + λτ ) (traveling-wave solution),

u = V
(

xτ−1/(n+k)) (self-similar solution),

u = ϕ(x) + ψ(τ ) (additive separable solution).
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4.
∂w

∂t
= a

∂n

∂xn

(

eλw ∂kw

∂xk

)

+ f (x)eλw.

Additive separable solution:

w = −
1
λ

ln(λt + C) + ϕ(x),

whereλ andC are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

a
dn

dxn

(

eλϕ
dkϕ

dxk

)

+ f (x)eλϕ + 1 = 0.

For k = 1, it is reduced with the change of variable ψ = eλϕ to a linear equation.

5.
∂w

∂t
=

n
∑

k=0

[fk(t) ln w + gk(t)]
∂kw

∂xk
.

Generalized traveling-wave solution:

w(x, t) = exp[ϕ(t)x + ψ(t)],

where the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the system of first-order ordinary
differential equations

ϕ′

t =
n

∑

k=0

fk(t)ϕk+1,

ψ′

t =
n

∑

k=0

ϕk[fk(t)ψ + gk(t)].

6.
∂w

∂t
=

∂n–1

∂xn–1

[

f (w)
∂w

∂x

]

+
a

f (w)
+ b.

Functional separable solution in implicit form:
∫

f (w) dw = at −
b

n!
xn + Cn−1x

n−1 + · · · + C1x + C0,

where C0, C1, . . . , Cn−1 are arbitrary constants.

7.
∂w

∂t
=

∂n–1

∂xn–1

[

f (w)
∂w

∂x

]

+
g(t)
f (w)

+ h(x).

Functional separable solution in implicit form:
∫

f (w) dw =
∫

g(t) dt −
1

(n − 1)!

∫ x

x0

(x − ξ)n−1h(ξ) dξ + Cn−1x
n−1 + · · · + C1x + C0,

where C0, C1, . . . , Cn−1 are arbitrary constants and x0 is any number.

8.
∂w

∂t
=

∂n

∂xn

[

f (w)
∂kw

∂xk

]

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x + C2,Cn+k
1 t + C3),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. There are solutions of the forms
w(x, t) = u(ξ), ξ = kx + λt (traveling-wave solution),

w(x, t) = z(ζ), ζ = xn+k/t (self-similar solution).
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9.
∂w

∂t
=

∂n

∂xn

[

f (w)
∂kw

∂xk

]

+
[

xg(t) + h(t)
] ∂w

∂x
.

The transformation of the independent variables

z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

Gn+k(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 11.1.8.8:

∂w

∂τ
=
∂n

∂zn

[

f (w)
∂kw

∂zk

]

.

10.
∂w

∂t
= f (w)

( ∂nw

∂xn

)k

+
[

xg(t) + h(t)
] ∂w

∂x
.

The transformation

z = xG(t) +
∫

h(t)G(t) dt, τ =
∫

Gnk(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to the simpler equation
∂w

∂τ
= f (w)

(

∂nw

∂zn

)k

.

It admits a traveling-wave solution and a self-similar solution.

11.
∂w

∂t
=

∂n

∂xn

[

f (x, w)
]

+
g(t)

fw(x, w)
+ h(x).

Solution in implicit form:

f (x,w) =
∫

g(t) dt −
1

(n − 1)!

∫

(x − ξ)n−1h(ξ) dξ + Cn−1x
n−1 + · · · + C1x + C0,

where C0, C1, . . . , Cn−1 are arbitrary constants.

11.2. General Form Equations Involving the First
Derivative in t

11.2.1. Equations of the Form ∂w
∂t

= F
(

w, ∂w
∂x

, . . . , ∂nw
∂xn

)

Preliminary remarks. Consider the equation

∂w

∂t
= F

(

w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

. (1)

1◦. Suppose w(x, t) is a solution of equation (1). Then the function w(x + C1, t + C2), where C1
and C2 are arbitrary constants, is also a solution of the equation.

2◦. In the general case, equation (1) admits a traveling-wave solution

w = w(ξ), ξ = kx + λt, (2)

where k andλ are arbitrary constants, and the functionw(ξ) is determined by the ordinary differential
equation

F
(

w, kw′

ξ , . . . , knw(n)
ξ

)

− λw′

ξ = 0.

Special cases of equation (1) that admit, apart from traveling-wave solutions (2), also other types
of solution are presented in this subsection.
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1.
∂w

∂t
= F

(

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−n
1 w(C1x + C2,Cn1 t + C3) +

n−1
∑

k=0

Akx
k ,

where C1, C2, C3, and the Ak are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = F (A)t +
A

n!
xn + Cn−1x

n−1 + · · · + C1x + C0,

where A, C0, C1, . . . , Cn−1 are arbitrary constants.

3◦. Solution linear in t:

w(x, t) = t
n−1
∑

k=0

Akx
k +

n−1
∑

k=0

Bkx
k +

∫ x

0

(x − ξ)n−1

(n − 1)!
Φ

(n−1
∑

k=0

Akξ
k

)

dξ,

where the Ak and Bk are arbitrary constants and Φ(u) is the inverse of the function F (u).

4◦. Solution:

w(x, t) = A1t +
1
n!
A2x

n +
n−1
∑

m=0

Bmx
m + U (z), z = kx + λt,

whereA1, A2, the Bm, k, and λ are arbitrary constants, and the functionU = U (z) is determined by
the autonomous ordinary differential equation

A1 + λU ′

z = F
(

A2 + knU (n)
z

)

.

5◦. Self-similar solution:
w(x, t) = tΘ(ζ), ζ = xt−1/n,

where the function Θ(ζ) is determined by the ordinary differential equation

nF
(

Θ
(n)
ζ

)

+ ζΘ′

ζ − nΘ = 0.

2.
∂w

∂t
= F

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

Solution:
w(x, t) = At +B + ϕ(ξ), ξ = kx + λt,

whereA,B, k, and λ are arbitrary constants, and the functionϕ(ξ) is determined by the autonomous
ordinary differential equation

F
(

kϕ′

ξ , k2ϕ′′

ξξ , . . . , knϕ(n)
ξ

)

− λϕ′

ξ −A = 0.

3.
∂w

∂t
= F

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ aw.

This is a special case of equation 11.2.2.1 with g(t) = a and Ft = 0.

Page 652

© 2004 by Chapman & Hall/CRC



4.
∂w

∂t
= aw

∂w

∂x
+ F

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + aC1t + C2, t + C3) + C1,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Degenerate solution:

w(x, t) = −
x + C1

aτ
+

1
τ

∫

τF
(

−
1
aτ

, 0, . . . , 0
)

dτ , τ = t + C2.

3◦. Solution:
w(x, t) = U (ζ) + 2C1t, ζ = x + aC1t

2 + C2t,

where C1 and C2 are arbitrary constants and the function U (ζ) is determined by the autonomous
ordinary differential equation

F
(

U ′

ζ ,U ′′

ζζ , . . . ,U (n)
ζ

)

+ aUU ′

ζ = C2U
′

ζ + 2C1.

In the special case C1 = 0, we have a traveling-wave solution.

5.
∂w

∂t
= aw

∂w

∂x
+ F

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ bw.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + aC1e
bt + C2, t + C3) + C1be

bt,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. There is a degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t).

3◦. Traveling-wave solution:
w = w(ξ), ξ = x + λt,

where λ is an arbitrary constant and the function w(ξ) is determined by the autonomous ordinary
differential equation

F
(

w′

ξ ,w′′

ξξ , . . . ,w(n)
ξ

)

+ aww′

ξ − λw′

ξ + bw = 0.

6.
∂w

∂t
= F

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−1
1 w(x + C2,C1t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = tϕ(ξ), ξ = kx + λ ln |t|,

where k and λ are arbitrary constants, and the function ϕ(ξ) is determined by the autonomous
ordinary differential equation

F

(

k

ϕ
ϕ′

ξ,
k2

ϕ
ϕ′′

ξξ , . . . ,
kn

ϕ
ϕ

(n)
ξ

)

= λϕ′

ξ + ϕ.
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7.
∂w

∂t
= wF

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = Ceλtϕ(x),

where C and λ are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

F

(

ϕ′

x

ϕ
,
ϕ′′

xx

ϕ
, . . . ,

ϕ(n)
x

ϕ

)

= λ.

This equation has particular solutions of the form ϕ(x) = eαx, where α is a root of the algebraic (or
transcendental) equation F

(

α,α2, . . . , αn
)

− λ = 0.

3◦. Solution:
w(x, t) = Ceλtψ(ξ), ξ = kx + βt

whereC, k, λ, and β are arbitrary constants, and the functionψ(ξ) is determined by the autonomous
ordinary differential equation

ψF

(

k

ψ
ψ′

ξ,
k2

ψ
ψ′′

ξξ, . . . ,
kn

ψ
ψ

(n)
ξ

)

= βψ′

ξ + λψ.

This equation has particular solutions of the form ψ(ξ) = eµξ .

8.
∂w

∂t
= wβF

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

.

For β = 0, see equation 11.2.1.6, and for β = 1, see 11.2.1.7.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2,Cβ−1
1 t + C3),

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) =
[

(1 − β)At +B
]

1
1−β ϕ(x),

where A and B are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

ϕβ−1F

(

ϕ′

x

ϕ
,
ϕ′′

xx

ϕ
, . . . ,

ϕ(n)
x

ϕ

)

= A.

3◦. Solution:

w(z, t) = (t + C)
1

1−β Θ(z), z = kx + λ ln(t + C),

where C, k, and λ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

Θ
βF

(

k
Θ

′

z

Θ
, k2 Θ

′′

zz

Θ
, . . . , kn

Θ
(n)
z

Θ

)

= λΘ′

z +
1

1 − β
Θ.
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9.
∂w

∂t
= eβwF

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1,C2t + C3) +
1
β

lnC2,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = −
1
β

ln(Aβt +B) + ϕ(x),

where A and B are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

eβϕF
(

ϕ′

x, ϕ′′

xx, . . . , ϕ(n)
x

)

+A = 0.

3◦. Solution:

w(x, t) = −
1
β

ln(t + C) + Θ(ξ), ξ = kx + λ ln(t + C),

where C, k, and λ are arbitrary constants, and the function Θ(ξ) is determined by the autonomous
ordinary differential equation

eβΘF
(

kΘ′

ξ, k
2
Θ

′′

ξξ, . . . , k
n
Θ

(n)
ξ

)

= λΘ′

ξ −
1
β

.

10.
∂w

∂t
= F

(

∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

.

This is a special case of equation 11.2.1.2.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−1
1 w(x + C2,C1t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = At +B + ϕ(ξ), ξ = kx + λt,

whereA,B, k, and λ are arbitrary constants, and the functionϕ(ξ) is determined by the autonomous
ordinary differential equation

F
(

kϕ′′

ξξ/ϕ
′

ξ, . . . , k
n−1ϕ

(n)
ξ /ϕ

′

ξ

)

= λϕ′

ξ +A.

3◦. Solution:
w(x, t) = (t + C1)Θ(z) + C2, z = kx + λ ln |t + C1|,

whereC1,C2, k, andλ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

F
(

kΘ′′

zz/Θ
′

z, . . . , kn−1
Θ

(n)
z /Θ

′

z

)

= λΘ′

z + Θ.

11.
∂w

∂t
=

∂w

∂x
F

(

∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

.

This is a special case of equation 11.2.1.2.
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1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Solution:
w(x, t) = At +B + ϕ(z), z = kx + λt,

whereA,B, k, and λ are arbitrary constants, and the functionϕ(z) is determined by the autonomous
ordinary differential equation

kϕ′

zF
(

kϕ′′

zz/ϕ
′

z , . . . , kn−1ϕ(n)
z /ϕ

′

z

)

= λϕ′

z +A.

3◦. Solution:
w(x, t) = AeβtΘ(ξ) +B, ξ = kx + λt,

where A, B, k, β, and λ are arbitrary constants, and the function Θ(ξ) is determined by the
autonomous ordinary differential equation

kΘ′

ξF
(

kΘ′′

ξξ/Θ
′

ξ, . . . , k
n−1

Θ
(n)
ξ /Θ

′

ξ

)

= λΘ′

ξ + βΘ.

12.
∂w

∂t
=

(

∂w

∂x

)β

F

(

∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

.

This is a special case of equation 11.2.1.2. For β = 0 and β = 1 see equations 11.2.1.10 and 11.2.1.11.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2,Cβ−1
1 t + C3) + C4,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution:

w(x, t) =
[

A(1 − β)t +B
]

1
1−β ϕ(x) + C,

where A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the autonomous
ordinary differential equation

(

ϕ′

x

)β
F

(

ϕ′′

xx/ϕ
′

x, . . . , ϕ(n)
x /ϕ

′

x

)

= Aϕ.

3◦. Solution:

w(x, t) = (t +A)
1

1−β Θ(z) +B, z = kx + λ ln(t +A),

whereA,B, k, and λ are arbitrary constants, and the function Θ(z) is determined by the autonomous
ordinary differential equation

kβ
(

Θ
′

z

)β
F

(

kΘ′′

zz/Θ
′

z, . . . , kn−1
Θ

(n)
z /Θ

′

z

)

= λΘ′

z +
1

1 − β
Θ.

11.2.2. Equations of the Form ∂w
∂t

= F
(

t, w, ∂w
∂x

, . . . , ∂nw
∂xn

)

1.
∂w

∂t
= F

(

t,
∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ g(t)w.

Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x, t) + C exp
[
∫

g(t) dt
]

,

where C is an arbitrary constant, is also a solution of the equation.
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2.
∂w

∂t
= F

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ aw
∂w

∂x
+ g(t).

The transformation

w = u(z, t) +
∫ t

t0

g(τ ) dτ , z = x + a
∫ t

t0

(t − τ )g(τ ) dτ ,

where t0 is any, leads to a simpler equation of the form 11.2.1.4:

∂u

∂t
= au

∂u

∂x
+ F

(

∂u

∂x
,
∂2u

∂x2 , . . . ,
∂nu

∂xn

)

.

3.
∂w

∂t
= F

(

t,
∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ f (t)w
∂w

∂x
+ g(t)w.

Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w
(

x + C1ψ(t) + C2, t
)

+ C1ϕ(t),

where

ϕ(t) = exp
[
∫

g(t) dt
]

, ψ(t) =
∫

f (t)ϕ(t) dt, C1 and C2 are arbitrary constants,

is also a solution of the equation.

4.
∂w

∂t
= wF

(

t,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, t),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = A exp
[

λx +
∫

F (t,λ, . . . ,λn) dt
]

,

where A and λ are arbitrary constants.

5.
∂w

∂t
= wF

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, t),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solutions:

w(x, t) = A exp
[

λx +
∫

F
(

t,λ2, . . . ,λ2n) dt

]

,

w(x, t) =
[

A cosh(λx) +B sinh(λx)
]

exp
[
∫

F
(

t,λ2, . . . ,λ2n) dt

]

,

w(x, t) =
[

A cos(λx) +B sin(λx)
]

exp
[
∫

F
(

t, −λ2, . . . , (−1)nλ2n)

dt

]

,

where A, B, and λ are arbitrary constants.
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6.
∂w

∂t
= f (t)wβ

Φ

(

1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

+ g(t)w.

The transformation

w(x, t) = G(t)u(x, τ ), τ =
∫

f (t)Gβ−1(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 11.2.1.8:

∂u

∂τ
= uβΦ

(

1
u

∂u

∂x
,

1
u

∂2u

∂x2 , . . . ,
1
u

∂nu

∂xn

)

,

which has, for instance, a traveling-wave solution u = u(ax + bτ ) and a multiplicative solution of
the form u = ϕ(x)ψ(τ ).

7.
∂w

∂t
= f (t)eβw

Φ

(

∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ g(t).

The transformation

w(x, t) = u(x, τ ) +G(t), τ =
∫

f (t) exp
[

βG(t)
]

dt, G(t) =
∫

g(t) dt,

leads to a simpler equation of the form 11.2.1.9:

∂u

∂τ
= eβuΦ

(

∂u

∂x
,
∂2u

∂x2 , . . . ,
∂nu

∂xn

)

,

which has, for instance, a traveling-wave solution u = u(ax + bτ ) and an additive separable solution
of the form u = ϕ(x) + ψ(τ ).

8.
∂w

∂t
= f (t)Φ

(

w,
∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ g(t)
∂w

∂x
.

The transformation

w = u(z, τ ), z = x +
∫

g(t) dt, τ =
∫

f (t) dt,

leads to the simpler equation

∂u

∂τ
= Φ

(

u,
∂u

∂z
,
∂2u

∂z2 , . . . ,
∂nu

∂zn

)

,

which has a traveling-wave solution u = u(kz + λτ ).

9.
∂w

∂t
= wΦ0

(

t,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn

)

+
m
∑

k=1

∂kw

∂xk
Φk

(

t,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn

)

.

The equation has a multiplicative solution of the form

w(x, t) = AeλxΘ(t),

where A and λ are arbitrary constants.

10.
∂w

∂t
=wΦ0

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+
m
∑

k=1

∂2kw

∂x2k
Φk

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

.

The equation has multiplicative solutions of the following forms:

w(x, t) = AeλxΘ1(t),

w(x, t) =
[

A cosh(λx) +B sinh(λx)
]

Θ1(t),

w(x, t) =
[

A cos(λx) +B sin(λx)
]

Θ2(t),

where A, B, and λ are arbitrary constants.
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11.2.3. Equations of the Form ∂w
∂t

= F
(

x, w, ∂w
∂x

, . . . , ∂nw
∂xn

)

1.
∂w

∂t
= F

(

x,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

Generalized separable solution linear in t:

w(x, t) = Axt +Bt + C + ϕ(x),

where A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

F
(

x, ϕ′′

xx, . . . , ϕ(n)
x

)

= Ax +B.

2.
∂w

∂t
= F

(

x,
∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

Additive separable solution:
w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

F
(

x, ϕ′

x, ϕ′′

xx, . . . , ϕ(n)
x

)

= A.

3.
∂w

∂t
= F

(

∂w

∂x
, x

∂2w

∂x2
, . . . , xn–1 ∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−1
1 w(C1x,C1t + C2) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

F
(

ϕ′

x, xϕ′′

xx, . . . , xn−1ϕ(n)
x

)

= A.

3◦. Solution:
w(x, t) = tU (z) + C, z = x/t,

where C is an arbitrary constant and the function U (z) is determined by the ordinary differential
equation

F
(

U ′

z, zU ′′

zz, . . . , zn−1U (n)
z

)

+ zU ′

z − U = 0.

4.
∂w

∂t
= ax

∂w

∂x
+ F

(

w,
∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1e
−at, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w = w(z), z = x + Ce−at,

where C is an arbitrary constant and the function w(z) is determined by the ordinary differential
equation

F
(

w,w′

z ,w′′

zz, . . . ,w(n)
z

)

+ azw′

z = 0.
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5.
∂w

∂t
= F

(

w, x
∂w

∂x
, x2 ∂2w

∂x2
, . . . , xn ∂nw

∂xn

)

.

The substitution x = 
 ez leads to an equation of the form 11.2.1.2.

6.
∂w

∂t
= xkF

(

w, x
∂w

∂x
, . . . , xn ∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(C1x,C−k
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Self-similar solution:
w(x, t) = w(z), z = xt1/k ,

where the function w(z) is determined by the ordinary differential equation

kzk−1F
(

w, zw′

z, . . . , znw(n)
z

)

− w′

z = 0.

7.
∂w

∂t
= xkF

(

w, x
∂w

∂x
, . . . , xn ∂nw

∂xn

)

+ ax
∂w

∂x
.

Passing to the new independent variables

z = xeat, τ =
1
ak

(

1 − e−akt),

we obtain an equation of the form 11.2.3.6:

∂w

∂τ
= zkF

(

w, z
∂w

∂z
, . . . , zn

∂nw

∂zn

)

.

8.
∂w

∂t
= eλxF

(

w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1, e−λC1t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w(x, t) = w(z), z = λx + ln t,

where the function w(z) is determined by the ordinary differential equation

ezF
(

w, λw′

z , . . . , λnw(n)
z

)

− w′

z = 0.

9.
∂w

∂t
= wF

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x, t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) = Aeµtϕ(x),

whereA andµ are arbitrary constants, and the functionϕ(x) is determined by the ordinary differential
equation

F
(

x, ϕ′

x/ϕ, ϕ′′

xx/ϕ, . . . , ϕ(n)
x /ϕ

)

= µ.
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10.
∂w

∂t
= wβF

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

.

For β = 1, see equation 11.2.3.9.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x,Cβ−1
1 t + C2),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) =
[

(1 − β)At +B
]

1
1−β ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

ϕβ−1F
(

x, ϕ′

x/ϕ, ϕ′′

xx/ϕ, . . . , ϕ(n)
x /ϕ

)

= A.

11.
∂w

∂t
= eβwF

(

x,
∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x,C1t + C2) +
1
β

lnC1,

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = −
1
β

ln(Aβt +B) + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

eβϕF
(

x, ϕ′

x, ϕ′′

xx, . . . , ϕ(n)
x

)

+A = 0.

12.
∂w

∂t
=

∂w

∂x
F

(

x,
∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

.

1◦. Additive separable solution:

w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

ϕ′

xF
(

x, ϕ′′

xx/ϕ
′

x, . . . , ϕ(n)
x /ϕ

′

x

)

= A.

2◦. Generalized separable solution:

w(x, t) = AeµtΘ(x) +B,

where A, B, and µ are arbitrary constants, and the function Θ(x) is determined by the ordinary
differential equation

Θ
′

xF
(

x, Θ
′′

xx/Θ
′

x . . . , Θ
(n)
x /Θ

′

x

)

= µΘ.
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13.
∂w

∂t
=

(

∂w

∂x

)β

F

(

x,
∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

.

For β = 1, see equation 11.2.3.12.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x,Cβ−1
1 t + C2) + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, t) = At +B + ϕ(x),

whereA andB are arbitrary constants,and the functionϕ(x) is determined by the ordinary differential
equation

(

ϕ′

x

)β
F

(

x, ϕ′′

xx/ϕ
′

x, . . . , ϕ(n)
x /ϕ

′

x

)

= A.

3◦. Generalized separable solution:

w(x, t) =
[

A(1 − β)t + C1
]

1
1−β

[

Θ(x) +B
]

+ C2,

whereA, B, C1, andC2 are arbitrary constants, and the function Θ(x) is determined by the ordinary
differential equation

(

Θ
′

x

)β
F

(

x, Θ
′′

xx/Θ
′

x . . . , Θ
(n)
x /Θ

′

x

)

= AΘ +AB.

11.2.4. Equations of the Form ∂w
∂t

= F
(

x, t, w, ∂w
∂x

, . . . , ∂nw
∂xn

)

1.
∂w

∂t
= F

(

x, t,
∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ g(t)w.

Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x, t) + C exp
[
∫

g(t) dt
]

,

where C are arbitrary constants, is also a solution of the equation.

2.
∂w

∂t
= F

(

ax + bt, w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

.

Solution:
w = w(ξ), ξ = ax + bt,

where the function w(ξ) is determined by the ordinary differential equation

F
(

ξ, w, aw′

ξ, . . . , a
nw

(n)
ξ

)

− bw′

ξ = 0.

3.
∂w

∂t
= F

(

ax + bt,
∂w

∂x
, . . . ,

∂nw

∂xn

)

.

Solution:
w = ϕ(ξ) + Ct, ξ = ax + bt,

where C is an arbitrary constant and the function ϕ(ξ) is determined by the ordinary differential
equation

F
(

ξ, aϕ′

ξ, . . . , a
nϕ

(n)
ξ

)

− bϕ′

ξ − C = 0,

whose order can be reduced with the substitution U (ξ) = ϕ′

ξ .
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4.
∂w

∂t
= f (t)xk

Φ

(

w, x
∂w

∂x
, . . . , xn ∂nw

∂xn

)

+ xg(t)
∂w

∂x
.

Passing to the new independent variables

z = xG(t), τ =
∫

f (t)G−k(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

one arrives at a simpler equation of the form 11.2.3.6:

∂w

∂τ
= zkΦ

(

w, z
∂w

∂z
, . . . , zn

∂nw

∂zn

)

.

5.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t)eλx.

Generalized separable solution:

w(x, t) = eλxE(t)
[

A +
∫

f (t)
E(t)

dt

]

+Be−λxE(t),

E(t) = exp
[
∫

Φ
(

t,λ2, . . . ,λ2n) dt

]

,

where A and B are arbitrary constants.

6.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t)eλx + g(t)e–λx.

Generalized separable solution:

w(x, t) = eλxE(t)
[

A +
∫

f (t)
E(t)

dt

]

+ e−λxE(t)
[

B +
∫

g(t)
E(t)

dt

]

,

E(t) = exp
[
∫

Φ
(

t,λ2, . . . ,λ2n) dt

]

,

where A and B are arbitrary constants.

7.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t) cosh(λx) + g(t) sinh(λx).

Generalized separable solution:

w(x, t) = cosh(λx)E(t)
[

A +
∫

f (t)
E(t)

dt

]

+ sinh(λx)E(t)
[

B +
∫

g(t)
E(t)

dt

]

,

E(t) = exp
[
∫

Φ
(

t,λ2, . . . ,λ2n) dt

]

,

where A and B are arbitrary constants.

8.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t) cos(λx).

Generalized separable solution:

w(x, t) = cos(λx)E(t)
[

A +
∫

f (t)
E(t)

dt

]

+B sin(λx)E(t),

E(t) = exp
[
∫

Φ
(

t, −λ2, . . . , (−1)nλ2n)

dt

]

,

where A and B are arbitrary constants.
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9.
∂w

∂t
= wΦ

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t) cos(λx) + g(t) sin(λx).

Generalized separable solution:

w(x, t) = cos(λx)E(t)
[

A +
∫

f (t)
E(t)

dt

]

+ sin(λx)E(t)
[

B +
∫

g(t)
E(t)

dt

]

,

E(t) = exp
[
∫

Φ
(

t, −λ2, . . . , (−1)nλ2n)

dt

]

,

where A and B are arbitrary constants.

10.
∂w

∂t
= f (t)wβ

Φ

(

x,
1
w

∂w

∂x
,

1
w

∂2w

∂x2
, . . . ,

1
w

∂nw

∂xn

)

+ g(t)w.

The transformation

w(x, t) = G(t)u(x, τ ), τ =
∫

f (t)Gβ−1(t) dt, G(t) = exp
[
∫

g(t) dt
]

,

leads to a simpler equation of the form 11.2.3.10:

∂u

∂τ
= uβΦ

(

x,
1
u

∂u

∂x
,

1
u

∂2u

∂x2 ,
1
u

∂nu

∂xn

)

,

which has a multiplicative separable solution u = ϕ(x)ψ(τ ).

11.
∂w

∂t
= f (t)

(

∂w

∂x

)k

Φ

(

x,
∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

+ g(t)w + h(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations (C is an arbitrary constant)

ϕ′

t = Af (t)ϕk + g(t)ϕ, (1)
ψ′

t = g(t)ψ +Bf (t)ϕk + h(t), (2)

and the function Θ(x) satisfies the nth-order ordinary differential equation
(

Θ
′

x

)k
Φ

(

x, Θ
′′

xx/Θ
′

x, . . . , Θ
(n)
x /Θ

′

x

)

= AΘ +B.

The general solution of system (1), (2) is given by

ϕ(t) = G(t)
[

C +A(1 − k)
∫

f (t)Gk−1(t) dt
]

1
1−k

, G(t) = exp
[
∫

g(t) dt
]

,

ψ(t) = DG(t) +G(t)
∫

[

Bf (t)ϕk(t) + h(t)
] dt

G(t)
,

where A, B, C, and D are arbitrary constants.

12.
∂w

∂t
=

[

f1(t)w + f0(t)
]

(

∂w

∂x

)k

Φ

(

x,
∂2w

∂x2

/

∂w

∂x
, . . . ,

∂nw

∂xn

/

∂w

∂x

)

+ g1(t)w + g0(t).

Generalized separable solution:

w(x, t) = ϕ(t)Θ(x) + ψ(t),
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where the functions ϕ(t) and ψ(t) are determined by the system of first-order ordinary differential
equations (C is an arbitrary constant):

ϕ′

t = Cf1(t)ϕk+1 + g1(t)ϕ, (1)
ψ′

t =
[

Cf1(t)ϕk + g1(t)
]

ψ + Cf0(t)ϕk + g0(t), (2)

and the function Θ(x) satisfies the nth-order ordinary differential equation
(

Θ
′

x

)k
Φ

(

x, Θ
′′

xx/Θ
′

x, . . . , Θ
(n)
x /Θ

′

x

)

= C.

The general solution of system (1), (2) is given by

ϕ(t) = G(t)
[

A − kC
∫

f1(t)Gk(t) dt
]−1/k

, G(t) = exp
[
∫

g1(t) dt
]

,

ψ(t) = Bϕ(t) + ϕ(t)
∫

[

Cf0(t)ϕk(t) + g0(t)
] dt

ϕ(t)
,

where A, B, and C are arbitrary constants.

13.
∂w

∂t
= f (t)eβw

Φ

(

x,
∂w

∂x
,

∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ g(t).

The transformation

w(x, t) = u(x, τ ) +G(t), τ =
∫

f (t) exp
[

βG(t)
]

dt, G(t) =
∫

g(t) dt,

leads to a simpler equation of the form 11.2.3.11:

∂u

∂τ
= eβuΦ

(

x,
∂u

∂x
,
∂2u

∂x2 , . . . ,
∂nu

∂xn

)

,

which has a solution in the additive separable form u = ϕ(x) + ψ(τ ).

14.
∂w

∂t
= wΦ0

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+
m
∑

k=1

∂2kw

∂x2k
Φk

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t)eλx + g(t)e–λx.

There is a generalized separable solution of the form

w(x, t) = eλxϕ(t) + e−λxψ(t).

15.
∂w

∂t
= wΦ0

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+
m
∑

k=1

∂2kw

∂x2k
Φk

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t) cosh(λx) + g(t) sinh(λx).

There is a generalized separable solution of the form

w(x, t) = cosh(λx)ϕ(t) + sinh(λx)ψ(t).

16.
∂w

∂t
= wΦ0

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+
m
∑

k=1

∂2kw

∂x2k
Φk

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2nw

∂x2n

)

+ f (t) cos(λx) + g(t) sin(λx).

There is a generalized separable solution of the form

w(x, t) = cos(λx)ϕ(t) + sin(λx)ψ(t).
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17.
∂w

∂t
= wF (t, ζ0, ζ1, . . . , ζn), ζk =

n
∑

i=k

(–1)i+k

k! (i – k)!
xi–k ∂iw

∂xi
, k = 0, 1, . . . , n.

Multiplicative separable solution:

w(x, t) = (C0 + C1x + · · · + Cnxn)ϕ(t),

where C0, C1, . . . , Cn are arbitrary constants, and the function ϕ = ϕ(t) is determined by the
ordinary differential equation

ϕ′

t = ϕF (t,C0ϕ,C1ϕ, . . . ,Cnϕ).���
Reference: Ph. W. Doyle (1996), the case ∂tF ≡ 0 was treated.

11.3. Equations Involving the Second Derivative in t

11.3.1. Equations of the Form ∂2w
∂t2 = a∂nw

∂xn + f (x, t, w)

1.
∂2w

∂t2
= a

∂nw

∂xn
+ f (x + bt, w).

Solution:
w = w(ξ), ξ = x + bt,

where the function w(ξ) is determined by the ordinary differential equation

aw
(n)
ξ − b2w′′

ξξ + f (ξ,w) = 0.

2.
∂2w

∂t2
= a

∂nw

∂xn
+ bw ln w + f (t)w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + f (t) + C
]

ϕ = 0,

aψ(n)
x +

(

b lnψ − C
)

ψ = 0,

where C is an arbitrary constant.

3.
∂2w

∂t2
= a

∂nw

∂xn
+ bw ln w +

[

f (x) + g(t)
]

w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + g(t) + C
]

ϕ = 0,

aψ(n)
x +

[

b lnψ + f (x) − C
]

ψ = 0,

where C is an arbitrary constant.

4.
∂2w

∂t2
= a

∂nw

∂xn
+ f (x)w ln w +

[

bf (x)t + g(x)
]

w.

Multiplicative separable solution:
w(x, t) = e−btϕ(x),

where the function ϕ(x) is determined by the ordinary differential equation

aϕ(n)
x + f (x)ϕ lnϕ +

[

g(x) − b2]ϕ = 0.
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11.3.2. Equations of the Form ∂2w
∂t2 = a∂nw

∂xn + F
(

x, t, w, ∂w
∂x

)

1.
∂2w

∂t2
= a

∂nw

∂xn
+ f (x)

∂w

∂x
+ bw ln w +

[

g(x) + h(t)
]

w.

Multiplicative separable solution:
w(x, t) = ϕ(t)ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt −
[

b lnϕ + h(t) + C
]

ϕ = 0,

aψ(n)
x + f (x)ψ′

x +
[

b lnψ + g(x) − C
]

ψ = 0,

where C is an arbitrary constant.

2.
∂2w

∂t2
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

+ f (t).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + C1, t) + C2t + C3,

where C1, C2, and C3 are arbitrary constants, is also a solution of the equation.

2◦. Solution:

w(x, t) = C1t
2 + C2t +

∫ t

t0

(t − τ )f (τ ) dτ + θ(z), z = x + λt,

whereC1,C2, t0, andλ are arbitrary constants, and the function θ(z) is determined by the autonomous
ordinary differential equation

aθ(n)
z − λ2θ′′zz + b

(

θ′z
)2 − 2C1 = 0.

3◦. There is a degenerate solution quadratic in x:

w(x, t) = ϕ(t)x2 + ψ(t)x + χ(t).

4◦. The substitution w = U (x, t) +
∫ t

0
(t − τ )f (τ ) dτ leads to the simpler equation

∂2U

∂t2
= a

∂nU

∂xn
+ b

(

∂U

∂x

)2

,

which admits a self-similar solution of the form U = t
2(2−n)
n u(ζ), where ζ = xt−

2
n .

3.
∂2w

∂t2
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

+ cw + f (t).

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w(x + C1, t) + C2 cosh(kt) + C3 sinh(kt) if c = k2 > 0,

w2 = w(x + C1, t) + C2 cos(kt) + C3 sin(kt) if c = −k2 < 0,

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.
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2◦. Solution:
w(x, t) = ϕ(t) + ψ(z), z = x + λt,

where λ is an arbitrary constant and the functions ϕ(t) and ψ(z) are determined by the ordinary
differential equations

ϕ′′

tt − cϕ − f (t) = 0,

aψ(n)
z − λ2ψ′′

zz + b
(

ψ′

z

)2 + cψ = 0.
The general solution of the first equation is expressed as

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
f (τ ) sinh

[

k(t − τ )
]

dτ if c = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
f (τ ) sin

[

k(t − τ )
]

dτ if c = −k2 < 0,

where C1 and C2 are arbitrary constants.

3◦. There is a degenerate solution quadratic in x:

w(x, t) = ϕ2(t)x2 + ϕ1(t)x + ϕ0(t).

4◦. The substitution w = U (x, t) + ϕ(t), where the function ϕ(t) is defined in Item 2◦, leads to the
simpler equation

∂2U

∂t2
= a

∂nU

∂xn
+ b

(

∂U

∂x

)2

+ cU .

4.
∂2w

∂t2
= a

∂nw

∂xn
+ b

(

∂w

∂x

)2

+ cw
∂w

∂x
+ kw2 + f (t)w + g(t).

Generalized separable solution:

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ are roots of the quadratic equation bλ2 + cλ + k = 0, and the functions ϕ(t) and ψ(t) are
determined by the system of ordinary differential equations

ϕ′′

tt = kϕ2 + f (t)ϕ + g(t), (1)
ψ′′

tt =
[

(cλ + 2k)ϕ + f (t) + aλn
]

ψ. (2)

In the special case f (t) = const and g(t) = const, equation (1) has particular solutions of the form
ϕ = const and, due to autonomy, can be integrated by quadrature. Equation (2) is linear in ψ, and,
hence, for ϕ = const, its general solution is expressed in terms of exponentials or sine and cosine.

5.
∂2w

∂t2
= a

∂nw

∂xn
+ f (x)

(

∂w

∂x

)2

+ g(x) + h(t).

1◦. Additive separable solution:

w(x, t) = C1t
2 + C2t +

∫ t

t0

(t − τ )h(τ ) dτ + ϕ(x).

Here, C1, C2, and t0 are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ(n)
x + f (x)

(

ϕ′

x)2 + g(x) − 2C1 = 0.

2◦. The substitution w = U (x, t) +
∫ t

0
(t − τ )h(τ ) dτ leads to the simpler equation

∂2U

∂t2
= a

∂nU

∂xn
+ f (x)

(

∂U

∂x

)2

+ g(x).
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6.
∂2w

∂t2
= a

∂nw

∂xn
+ f (x)

(

∂w

∂x

)2

+ bw + g(x) + h(t).

Additive separable solution:
w(x, t) = ϕ(t) + ψ(x).

Here, the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations
ϕ′′

tt − bϕ − h(t) = 0,

aψ(n)
x + f (x)(ψ′

x)2 + bψ + g(x) = 0.
The general solution of the first equation is given by

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
h(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
h(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

7.
∂2w

∂t2
= a

∂2nw

∂x2n
+ f (t)

(

∂w

∂x

)2

+ bf (t)w2 + g(t)w + h(t).

1◦. Generalized separable solutions involving exponentials of x:
w(x, t) = ϕ(t) + ψ(t) exp

( 
x
√

−b
)

, b < 0, (1)
where the functions ϕ(t) and ψ(t) are determined by the following system of variable-coefficient
second-order ordinary differential equations:

ϕ′′

tt = bfϕ2 + gϕ + h, (2)
ψ′′

tt =
[

2bfϕ + g + (−1)nabn
]

ψ; (3)
the arguments of the functions f , g, and h are not specified.

In the special case of constant f , g, and h, equation (2) has particular solutions of the form
ϕ = const. In this case, the general solution of equation (3) is expressed in terms of exponentials or
sine and cosine.

2◦. Generalized separable solution (generalizes the solutions of Item 1◦):
w(x, t) = ϕ(t) + ψ(t)

[

A exp
(

x
√

−b
)

+ B exp
(

−x
√

−b
)]

, b < 0, (4)
where the functions ϕ(t) and ψ(t) are determined by the following system of variable-coefficient
second-order ordinary differential equations:

ϕ′′

tt = bf
(

ϕ2 + 4ABψ2) + gϕ + h, (5)

ψ′′

tt =
[

2bfϕ + g + (−1)nabn
]

ψ. (6)
One can express ϕ via ψ in (6) and substitute the resulting expression into (5) to obtain a

fourth-order nonlinear equation forψ. For f , g, h = const, this equation is autonomous and its order
can be reduced.

Note two special cases where solution (4) is expressed in terms of hyperbolic functions:

w(x, t) = ϕ(t) + ψ(t) cosh
(

x
√

−b
)

if A = 1
2 , B = 1

2 ;

w(x, t) = ϕ(t) + ψ(t) sinh
(

x
√

−b
)

if A = 1
2 , B = − 1

2 .
3◦. Generalized separable solution involving trigonometric functions of x:

w(x, t) = ϕ(t) + ψ(t) cos
(

x
√

b + c
)

, b > 0,
where the functions ϕ(t) and ψ(t) are determined by the following system of variable-coefficient
second-order ordinary differential equations:

ϕ′′

tt = bf
(

ϕ2 + ψ2) + gϕ + h,

ψ′′

tt =
[

2bfϕ + g + (−1)nabn
]

ψ.���
References: V. A. Galaktionov (1995), A. D. Polyanin and V. F. Zaitsev (2002).
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8.
∂2w

∂t2
= a

∂nw

∂xn
+ f

(

x,
∂w

∂x

)

+ g(t).

1◦. Additive separable solution:

w(x, t) = C1t
2 + C2t +

∫ t

t0

(t − τ )g(τ ) dτ + ϕ(x),

where C1, C2, and t0 are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ(n)
x + f

(

x,ϕ′

x

)

− 2C1 = 0,

whose order can be reduced with the substitution u(x) = ϕ′

x.

2◦. The substitution w = U (x, t) +
∫ t

0
(t − τ )g(τ ) dτ leads to the simpler equation

∂2U

∂t2
= a

∂nU

∂xn
+ f

(

x,
∂U

∂x

)

.

9.
∂2w

∂t2
= a

∂nw

∂xn
+ f

(

x,
∂w

∂x

)

+ bw + g(t).

1◦. Additive separable solution:
w(x, t) = ϕ(t) + ψ(x),

where the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − g(t) = 0,

aψ(n)
x + f

(

x,ψ′

x

)

+ bψ = 0.

The general solution of the first equation is given by

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
g(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
g(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

2◦. The substitution w = U (x, t) + ϕ(t), where the function ϕ(t) is specified Item 1◦, leads to the
simpler equation

∂2U

∂t2
= a

∂nU

∂xn
+ f

(

x,
∂U

∂x

)

+ bU .

10.
∂2w

∂t2
= a

∂nw

∂xn
+ wf

(

t,
1
w

∂w

∂x

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w(x + C2, t),

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Multiplicative separable solution:

w(x, t) = eλxϕ(t),

where λ is an arbitrary constant and the function ϕ(t) is determined by the second-order linear
ordinary differential equation

ϕ′′

tt =
[

aλn + f (t,λ)
]

ϕ.
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11.3.3. Equations of the Form
∂2w
∂t2 = a∂nw

∂xn + F
(

x, t, w, ∂w
∂x

, . . . , ∂n–1w
∂xn–1

)

1.
∂2w

∂t2
= a

∂nw

∂xn
+ bw

∂2w

∂x2
+ c.

1◦. Traveling-wave solution:
w(x, t) = u(ξ), ξ = kx + λt,

where k and λ are arbitrary constants, and the function u = u(ξ) is determined by the autonomous
ordinary differential equation

aknu
(n)
ξ + (bk2u − λ2)u′′ξξ + c = 0.

2◦. Solution:
w = U (z) + 4bC2

1 t
2 + 4bC1C2t, z = x + bC1t

2 + bC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

aU (n)
z + bUU ′′

zz − b2C2
2U

′′

zz − 2bC1U
′

z = 8bC2
1 − c.

3◦. There is a degenerate solution quadratic in x:

w(x, t) = f2(t)x2 + f1(t)x + f0(t).

2.
∂2w

∂t2
= a

∂nw

∂xn
+ b

∂

∂x

(

w
∂w

∂x

)

+ c.

1◦. Traveling-wave solution:
w(x, t) = u(ξ), ξ = kx + λt,

where k and λ are arbitrary constants, and the function u = u(ξ) is determined by the autonomous
ordinary differential equation

aknu
(n)
ξ + bk2(uu′ξ)

′

ξ − λ2u′′ξξ + c = 0.

2◦. Solution:
w = U (z) + 4bC2

1 t
2 + 4bC1C2t, z = x + bC1t

2 + bC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

aU (n)
z + b(UU ′

z)′z − b2C2
2U

′′

zz − 2bC1U
′

z = 8bC2
1 − c.

3◦. There is a degenerate solution quadratic in x:

w(x, t) = f2(t)x2 + f1(t)x + f0(t).

3.
∂2w

∂t2
= a

∂nw

∂xn
+ f (t)

i,j<n
∑

i,j=0

bij

∂iw

∂xi

∂jw

∂xj
+

n–1
∑

k=0

gk(t)
∂kw

∂xk
+ h(t).

Here, we adopt the notation
∂0w

∂x0 ≡ w.

1◦. In the general case, the equation has generalized separable solutions of the form

w(x, t) = ϕ(t) + ψ(t) exp(λx),

where λ is a root of the algebraic equation
i,j<n
∑

i,j=0

bijλ
i+j = 0.

Page 671

© 2004 by Chapman & Hall/CRC



2◦. Let n be an even number and let all coefficients bij be zero for odd i+j. In this case, the original
equation has also generalized separable solutions of the form

w(x, t) = ϕ1(t) + ψ1(t)
[

A cosh(λx) +B sinh(λx)
]

,

w(x, t) = ϕ2(t) + ψ2(t)
[

A cos(λx) +B sin(λx)
]

,

whereA andB are arbitrary constants, the parameterλ is determined by solving algebraic equations,
and the functions ϕ1(t), ψ1(t) and ϕ2(t), ψ2(t) are found from appropriate systems of first-order
ordinary differential equations.

4.
∂2w

∂t2
= a

∂nw

∂xn
+ F

(

x,
∂w

∂x
, . . . ,

∂n–1w

∂xn–1

)

+ g(t).

1◦. Additive separable solution:

w(x, t) = 1
2At

2 +Bt + C +
∫ t

0
(t − τ )g(τ ) dτ + ϕ(x).

Here, A, B, and C are arbitrary constants, and the function ϕ(x) is determined by the ordinary
differential equation

aϕ(n)
x + F

(

x,ϕ′

x, . . . ,ϕ(n−1)
x

)

−A = 0,

whose order can be reduced with the substitution U (x) = ϕ′

x.

2◦. The substitution

w = u(x, t) +
∫ t

0
(t − τ )g(τ ) dτ

leads to the simpler equation

∂2u

∂t2
= a

∂nu

∂xn
+ F

(

x,
∂u

∂x
, . . . ,

∂n−1u

∂xn−1

)

.

5.
∂2w

∂t2
= a

∂nw

∂xn
+ F

(

x,
∂w

∂x
, . . . ,

∂n–1w

∂xn–1

)

+ bw + g(t).

1◦. Additive separable solution:
w(x, t) = ϕ(t) + ψ(x).

Here, the functions ϕ(t) and ψ(x) are determined by the ordinary differential equations

ϕ′′

tt − bϕ − g(t) = 0,

aψ(n)
x + F

(

x,ψ′

x, . . . ,ψ(n−1)
x

)

+ bψ = 0.

The general solution of the first equation is expressed as

ϕ(t) = C1 cosh(kt) + C2 sinh(kt) +
1
k

∫ t

0
g(τ ) sinh

[

k(t − τ )
]

dτ if b = k2 > 0,

ϕ(t) = C1 cos(kt) + C2 sin(kt) +
1
k

∫ t

0
g(τ ) sin

[

k(t − τ )
]

dτ if b = −k2 < 0,

where C1 and C2 are arbitrary constants.

2◦. The substitution w = u(x, t) +ϕ(t), where the function ϕ(t) is specified in Item 1◦, leads to the
simpler equation

∂2u

∂t2
= a

∂nu

∂xn
+ F

(

x,
∂u

∂x
, . . . ,

∂n−1u

∂xn−1

)

+ bu.

Page 672

© 2004 by Chapman & Hall/CRC



6.
∂2w

∂t2
= a

∂nw

∂xn
+ wF

(

t,
1
w

∂w

∂x
, . . . ,

1
w

∂n–1w

∂xn–1

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C1w(x + C2, t),

where C1 and C2 are arbitrary constants, are also solutions of the equation.

2◦. Multiplicative separable solution:

w(x, t) = eλxϕ(t),

where λ is an arbitrary constant and the function ϕ(t) is determined by the second-order linear
ordinary differential equation

ϕ′′

tt =
[

aλn + F (t,λ, . . . ,λn−1)
]

ϕ.

7.
∂2w

∂t2
= a

∂2nw

∂x2n
+ wF

(

t,
1
w

∂2w

∂x2
, . . . ,

1
w

∂2n–2w

∂x2n–2

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C1w(x + C2, t),

where C1 and C2 are arbitrary constants, is also a solution of the equation.

2◦. Multiplicative separable solution:

w(x, t) =
[

A cosh(λx) +B sinh(λx)
]

ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ(t) is determined by the second-order
linear ordinary differential equation

ϕ′′

tt = Φ(t)ϕ, Φ(t) = aλ2n + F
(

t,λ2, . . . ,λ2n−2).

3◦. Multiplicative separable solution:

w(x, t) =
[

A cos(λx) +B sin(λx)
]

ϕ(t),

where A, B, and λ are arbitrary constants, and the function ϕ(t) is determined by the second-order
linear ordinary differential equation

ϕ′′

tt = Φ(t)ϕ, Φ(t) = (−1)naλ2n + F
(

t, −λ2, . . . , (−1)n−1λ2n−2).

11.3.4. Equations of the Form ∂2w
∂t2 =aw ∂nw

∂xn +f (x, t, w) ∂w
∂x

+g(x, t, w)

1.
∂2w

∂t2
= aw

∂nw

∂xn
+ f (x)w +

n–1
∑

k=0

bkxk.

Generalized separable solution:

w(x, t) = 1
2 t

2
n−1
∑

k=0

bkx
k + t

n−1
∑

k=0

Akx
k +

n−1
∑

k=0

Bkx
k −

1
a(n − 1)!

∫ x

0
(x − ξ)n−1f (ξ) dξ,

where A0, A1, . . . , An−1 and B0, B1, . . . , Bn−1 are arbitrary constants.
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2.
∂2w

∂t2
= aw

∂nw

∂xn
+ f (t)w + g(t).

Generalized separable solution:
w(x, t) = ϕ(t)

(

Anx
n + · · · +A1x

)

+ ψ(t),
where A1, . . . , An are arbitrary constants, and the functions ϕ(t) and ψ(t) are determined by the
system of ordinary differential equations

ϕ′′

tt = Anan!ϕ2 + f (t)ϕ,
ψ′′

tt = Anan!ϕψ + f (t)ψ + g(t).

3.
∂2w

∂t2
= aw

∂nw

∂xn
+ bw2 + f (t)w + g(t).

Generalized separable solution:
w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the following system of second-order ordinary
differential equations (C is an arbitrary constant):

ϕ′′

tt = Cϕ2 + bϕψ + f (t)ϕ,

ψ′′

tt = Cϕψ + bψ2 + f (t)ψ + g(t),
and the function Θ(x) satisfies the nth-order constant-coefficient linear ordinary differential equation

aΘ(n)
x + bΘ = C.

4.
∂2w

∂t2
= aw

∂2nw

∂x2n
– ak2nw2 + f (x)w + b1 sinh(kx) + b2 cosh(kx).

Generalized separable solution quadratic in t:
w(x, t) = 1

2 (t + C)2[b1 sinh(kx) + b2 cosh(kx)
]

+ ϕ(x).
Here, C is an arbitrary constant and the function ϕ(x) is found from the constant-coefficient linear
nonhomogeneous ordinary differential equation

aϕ(2n)
x − ak2nϕ + f (x) = 0.

5.
∂2w

∂t2
= aw

∂nw

∂xn
+ f (x)w

∂w

∂x
+ g(t)w + h(t).

Generalized separable solution:
w(x, t) = ϕ(t)Θ(x) + ψ(t),

where the functions ϕ(t), ψ(t), and Θ(x) are determined by the ordinary differential equations
ϕ′′

tt = Cϕ2 + g(t)ϕ,

ψ′′

tt =
[

Cϕ + g(t)
]

ψ + h(t),

aΘ(n)
x + f (x)Θ′

x = C,
and C is an arbitrary constant.

6.
∂2w

∂t2
= aw

∂nw

∂xn
+ f (x)w

∂w

∂x
+ g(x)w2 + h(t)w.

Multiplicative separable solution:
w(x, t) = ϕ(x)ψ(t),

where the functions ϕ(t) and ψ(t) are determined by the ordinary differential equations
aϕ(n)

x + f (x)ϕ′

x + g(x)ϕ − C = 0,

ψ′′

tt − Cψ2 − h(t)ψ = 0,
and C is an arbitrary constant.
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11.3.5. Equations of the Form ∂2w
∂t2 = F

(

x, t, w, ∂w
∂x

, . . . , ∂nw
∂xn

)

1.
∂2w

∂t2
=

∂n–1

∂xn–1

[

f (w)
∂w

∂x

]

– a2 f ′(w)
f 3(w)

+ b.

Functional separable solution in implicit form:
∫

f (w) dw = at −
b

n!
xn + Cn−1x

n−1 + · · · + C1x + C0,

where C0, C1, . . . , Cn−1 are arbitrary constants.

2.
∂2w

∂t2
= F

(

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = C−2n
1 w(C2

1x + C2,Cn1 t + C3) +
n−1
∑

k=0

(Akt +Bk)xk,

where C1, C2, C3, the Ak, and the Bk are arbitrary constants, is also a solution of the equation.

2◦. Generalized separable solution in the form of an nth-degree polynomial in x:

w(x, t) =
1
n!

(C1t + C2)xn +
n−1
∑

k=0

(Akt +Bk)xk +
∫ t

0
(t − ξ)F (C1ξ + C2) dξ,

where C1, C2, the Ak, and the Bk are arbitrary constants.

3◦. Generalized separable solution quadratic in t:

w(x, t) =
1
2
t2
n−1
∑

k=0

Akx
k + t

n−1
∑

k=0

Bkx
k +

n−1
∑

k=0

Ckx
k +

∫ x

0

(x − ξ)n−1

(n − 1)!
Φ

(n−1
∑

k=0

Akξ
k

)

dξ,

where the Ak, Bk, and Ck are arbitrary constants, and Φ(u) is the inverse of the function F (u).

4◦. Solution:

w(x, t) =
1
2
A1t

2 +
1
n!
A2x

n +
n−1
∑

m=0

(Bmt + Cm)xm + ϕ(ζ), ζ = kx + λt,

where A1, A2, the Bm, the Cm, k, and λ are arbitrary constants, and the function ϕ = ϕ(ζ) is
determined by the autonomous ordinary differential equation

A1 + λ2ϕ′′

ζζ = F
(

A2 + knϕ(n)
ζ

)

.

5◦. Self-similar solution:
w = t2U (z), z = xt−2/n,

where the function U = U (z) is determined by the ordinary differential equation

2U +
2(2 − 3n)

n2 zU ′

z +
4
n2 z

2U ′′

zz = F (U (n)
z ).
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3.
∂2w

∂t2
= aw

∂2w

∂x2
+ F

(

∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Degenerate solution linear in x:

w = (C1t + C2)x + C3t + C4 +
∫ t

0
(t − τ )F (C1τ + C2, 0, . . . , 0) dτ .

2◦. Traveling-wave solution:
w(x, t) = u(ξ), ξ = kx + λt,

where k and λ are arbitrary constants, and the function u = u(ξ) is determined by the autonomous
ordinary differential equation

(ak2u − λ2)u′′ξξ + F (ku′ξ, k
2u′′ξξ, . . . , k

nu
(n)
ξ ) = 0.

3◦. Solution:
w = U (z) + 4aC2

1 t
2 + 4aC1C2t, z = x + aC1t

2 + aC2t,
where C1 and C2 are arbitrary constants and the function U (z) is determined by the autonomous
ordinary differential equation

(aU − a2C2
2 )U ′′

zz − 2aC1U
′

z + F (U ′

z,U ′′

zz, . . . ,U (n)
z ) = 8aC2

1 .

4.
∂2w

∂t2
= (aw + bx)

∂2w

∂x2
+ F

(

∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

The substitution w = u − (b/a)x leads to an equation of the form 11.3.5.3:

∂2u

∂t2
= au

∂2u

∂x2 + F
(

∂u

∂x
−
b

a
,
∂2u

∂x2 , . . . ,
∂nu

∂xn

)

.

5.
∂2w

∂t2
= F

(

x, t,
∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ aw.

Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = w(x, t) + C1 cosh(kt) + C2 sinh(kt) if a = k2 > 0,

w2 = w(x, t) + C1 cos(kt) + C2 sin(kt) if a = −k2 < 0,

where C1 and C2 are arbitrary constants, are also solutions of the equation.

11.4. Other Equations
11.4.1. Equations Involving Mixed Derivatives

1.
∂2w

∂x∂t
+

(

∂w

∂x

)2

– w
∂2w

∂x2
= f (t)

∂nw

∂xn
.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1(x, t) = w
(

x + ϕ(t), t
)

+ ϕ′

t(t),

where ϕ(t) is an arbitrary function, is also a solution of the equation.

2◦. Generalized separable solution:

w = ϕ(t)eλx +
1
λ

ϕ′

t(t)
ϕ(t)

− λn−2f (t),

where ϕ(t) is an arbitrary function and λ is an arbitrary constant.
Remark. This equation with n = 3 occurs in fluid dynamics; see 9.3.3.1, equation (2) and

10.3.3.1, equation (4) with f1(t) = 0.
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2.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂nw

∂yn
.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1(x, y) = Cn−2
1 w(x,C1y + ϕ(x)) + C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function, is also a solution of the
equation.

2◦. Degenerate solution:

w(x, y) =
n−1
∑

k=0

Ck
[

y + ϕ(x)
]k,

where ϕ(x) is an arbitrary function and the Ck are arbitrary constants.

3◦. Generalized separable solution:

w(x, y) = ϕ(x)eλy − λn−2
∫

f (x) dx + C,

where ϕ(x) is an arbitrary function and C and λ are arbitrary constants.

4◦. Generalized separable solution:

w(x, y) = ϕ(y)
∫

f (x) dx + ψ(y),

where the functions ϕ = ϕ(y) and ψ = ψ(y) are determined by the autonomous system of ordinary
differential equations

(ϕ′

y)2 − ϕϕ′′

yy = ϕ(n)
y ,

ϕ′

yψ
′

y − ϕψ′′

yy = ψ(n)
y .

5◦. Generalized self-similar solution:

w(x, y) = ϕ(x)U (z), z = ψ(x)y

where the functions ϕ = ϕ(x), ψ = ψ(x), and U = U (z) are determined by the system of ordinary
differential equations

(ϕψ)′x = C1f (x)ψn−1,

ϕ′

x = C2f (x)ψn−2,

C1(U ′

z)2 − C2UU
′′

zz = U (n)
z .

6◦. See also equation 11.4.1.3 with g(x) = 0.
Remark. This equation with n = 3 occurs in fluid dynamics; see 9.3.1.1 with f (x) = const.���

Reference: A. D. Polyanin and V. F. Zaitsev (2002).

3.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

∂2nw

∂y2n
+ g(x).

This is a special case of equation 11.4.1.5.
Generalized separable solution:

w(x, y) = ϕ(x)eλy −
1

2λ2ϕ(x)

[
∫

g(x) dx + C1

]

e−λy − λ2n−2
∫

f (x) dx + C2,

where ϕ(x) is an arbitrary function and C1, C2, and λ are arbitrary constants.
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4.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= f (x)

( ∂2w

∂y2

)k–1 ∂nw

∂yn
.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1(x, y) = C2k+n−4
1 w

(

x,C2−k
1 y + ϕ(x)

)

+ C2,

where C1 and C2 are arbitrary constants and ϕ(x) is an arbitrary function, is also a solution of the
equation.

2◦. Generalized traveling-wave solution:

w = U (z), z = y
[

∫

f (x) dx + C
]

1
4−2k−n + ϕ(x),

where ϕ(x) is an arbitrary function and the function U = U (z) is determined by the autonomous
ordinary differential equation

(U ′

z)2 = (4 − 2k − n)(U ′′

zz)k−1U (n)
z .

3◦. Multiplicative separable solution:

w(x, y) =
[

(2 − k)
∫

f (x) dx + C
]

1
2−k

θ(y),

where the function θ(y) is determined by the autonomous ordinary differential equation

(θ′y)2 − θθ′′yy = (θ′′yy)k−1θ(n)
y .

5.
∂w

∂y

∂2w

∂x∂y
–

∂w

∂x

∂2w

∂y2
= F

(

x, w,
∂w

∂y
, . . . ,

∂nw

∂yn

)

.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1(x, y) = w
(

x, y + ϕ(x)
)

,

where ϕ(x) is an arbitrary function, is also a solution of the equation.

2◦. Suppose the right-hand side of the equation is independent of x explicitly. Then there is a
generalized traveling-wave solution of the form

w = w(z), z = y + ϕ(x),

whereϕ(x) is an arbitrary function, and the functionw(z) is determined by the autonomous ordinary
differential equation F

(

w,w′

z , . . . ,w(n)
z

)

= 0.

3◦. Suppose the right-hand side of the equation is independent of x and w explicitly. Then there is
an exact solution of the form

w = Cx + g(z), z = y + ϕ(x),

where ϕ(x) is an arbitrary function, C is an arbitrary constant, and the function g(z) is determined
by the autonomous ordinary differential equation F

(

g′z, . . . , g(n)
z

)

+ Cg′′zz = 0.

4◦. The von Mises transformation

ξ = x, η = w, u(ξ, η) =
∂w

∂y
, where w = w(x, y),

reduces the order of the equation by one. Formulas for computing derivatives:

∂w

∂y
= u,

∂2w

∂y2 = u
∂u

∂η
,
∂w

∂y

∂2w

∂x∂y
−
∂w

∂x

∂2w

∂y2 = u
∂u

∂ξ
,
∂3w

∂y3 = u
∂

∂η

(

u
∂u

∂η

)

,
∂

∂y
= u

∂

∂η
.

���
Reference: A. D. Polyanin and V. F. Zaitsev (2002).
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6.
∂2w

∂x∂t
= a(t)w

∂2w

∂x2
+ F

(

t,
∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + ϕ(t), t) +
ϕ′

t(t)
a(t)

,

where ϕ(t) is an arbitrary function, is also a solution of the equation.

2◦. Degenerate solution linear in x:

w(x, t) = ϕ(t)x + ψ(t),

where ψ(t) is an arbitrary function, and ϕ(t) is determined by the first-order ordinary differential
equation ϕ′

t = F (t,ϕ, 0, . . . , 0).

3◦. For a = const and F = F (wx,wxx, . . . ,w(n)
x ), the equation has a traveling-wave solution

w = U (z), z = kx + λt,

where k and λ are arbitrary constants, and the function U (z) is determined by the autonomous
ordinary differential equation

kλU ′′

zz = ak2UU ′′

zz + F
(

kU ′

z, k2U ′′

zz, . . . , knU (n)
z

)

.

7.
∂n+1w

∂xn∂y
= aeλw.

Generalized Liouville equation.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = w
(

C1x + C2, C3y + C4
)

+
1
λ

ln(Cn1 C3),

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. Generalized traveling-wave solution:

w(x, y) = −
n + 1
λ

ln z, z = ϕ(y)x +
aλ(−1)n+1

(n + 1)!
ϕ(y)

∫

dy

[ϕ(y)]n+1 ,

where ϕ(y) is an arbitrary function.

8.
∂k+1w

∂xk∂t
= a(t)w

∂k+1w

∂xk+1
+ F

(

t,
∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the function

w1 = w(x + ϕ(t), t) +
ϕ′

t(t)
a(t)

,

where ϕ(t) is an arbitrary function, is also a solution of the equation for k = 1, 2, . . .

2◦. For a = const and F = F (wx,wxx, . . . ,w(n)
x ), the equation has a traveling-wave solution

w = U (z), z = βx + λt,

where β and λ are arbitrary constants, and the function U (z) is determined by the autonomous
ordinary differential equation

λβkU (k+1)
z = aβk+1UU (k+1)

z + F
(

βU ′

z,β2U ′′

zz, . . . ,βnU (n)
z

)

.
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9.
∂2w

∂x∂t
= F

(

t,
∂w

∂x
,
∂2w

∂x2
, . . . ,

∂nw

∂xn

)

+ g(t)
∂2w

∂y2
.

1◦. “Two-dimensional” solution:

w(x, y, t) = u(z, t), z = x + C1y + C2
1

∫

g(t) dt + C2,

where C1 and C2 are arbitrary constants and the function u(z, t) is determined by the differential
equation

∂2u

∂z∂t
= F

(

t,u,
∂u

∂z
,
∂2u

∂z2 , . . . ,
∂nu

∂zn

)

.

2◦. “Two-dimensional” solution:

w(x, y, t) = U (ξ, t), ξ = x + ϕ(t)(y + C1)2, ϕ(t) = −
[

4
∫

g(t) dt + C2

]−1

,

where the function U (ξ, t) is determined by the differential equation
∂2U

∂ξ∂t
= F

(

t,U ,
∂U

∂ξ
,
∂2U

∂ξ2 , . . . ,
∂nU

∂ξn

)

+ 2g(t)ϕ(t)
∂U

∂ξ
.

11.4.2. Equations Involving ∂nw
∂xn and ∂mw

∂ym

1. a
∂nw

∂xn
+ b

∂nw

∂yn
= (ayn + bxn)f (w).

Solution:
w = w(z), z = xy,

where the function w(z) is determined by the autonomous ordinary differential equation
w(n)
z = f (w).

Remark. This remains true if the constants a and b in the equation are replaced by arbitrary
functions a = a(x, y,w,wx,wy, . . .) and b = b(x, y,w,wx,wy, . . .).

2. F

(

x,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn
;

1
w

∂w

∂y
, . . . ,

1
w

∂mw

∂ym

)

= 0.

Multiplicative separable solution:
w(x, y) = Aeλyϕ(x),

whereA and λ are arbitrary constants, and the functionϕ(x) is determined by the nth-order ordinary
differential equation

F
(

x,ϕ′

x/ϕ, . . . ,ϕ(n)
x /ϕ;λ, . . . ,λm

)

= 0.

3. F

(

x,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn
;

1
w

∂2w

∂y2
, . . . ,

1
w

∂2mw

∂y2m

)

= 0.

1◦. Multiplicative separable solution:
w(x, y) =

[

A cosh(λy) +B sinh(λy)
]

ϕ(x),
where A, B, and λ are arbitrary constants, and the function ϕ(x) is determined by the nth-order
ordinary differential equation

F
(

x,ϕ′

x/ϕ, . . . ,ϕ(n)
x /ϕ;λ2, . . . ,λ2m)

= 0.
2◦. Multiplicative separable solution:

w(x, y) =
[

A cos(λy) +B sin(λy)
]

ϕ(x),
where A, B, and λ are arbitrary constants, and the function ϕ(x) is determined by the nth-order
ordinary differential equation

F
(

x,ϕ′

x/ϕ, . . . ,ϕ(n)
x /ϕ; −λ2, . . . , (−1)mλ2m)

= 0.
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4. F1

(

x,
∂w

∂x
, . . . ,

∂nw

∂xn

)

+ F2

(

y,
∂w

∂y
, . . . ,

∂mw

∂ym

)

= kw.

Additive separable solution:
w(x, y) = ϕ(x) + ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

F1
(

x,ϕ′

x, . . . ,ϕ(n)
x

)

− kϕ = C,

F2
(

y,ψ′

y, . . . ,ψ(m)
y

)

− kψ = −C,

where C is an arbitrary constant.

5. F1

(

x,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn

)

+ wkF2

(

y,
1
w

∂w

∂y
, . . . ,

1
w

∂mw

∂ym

)

= 0.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

ϕ−kF1
(

x,ϕ′

x/ϕ, . . . ,ϕ(n)
x /ϕ

)

= C,

ψkF2
(

y,ψ′

y/ψ, . . . ,ψ(m)
y /ψ

)

= −C,

where C is an arbitrary constant.

6. F1

(

x,
∂w

∂x
, . . . ,

∂nw

∂xn

)

+ eλwF2

(

y,
∂w

∂y
, . . . ,

∂mw

∂ym

)

= 0.

Additive separable solution:
w(x, y) = ϕ(x) + ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

e−λϕF1
(

x,ϕ′

x, . . . ,ϕ(n)
x

)

= C,

eλψF2
(

y,ψ′

y, . . . ,ψ(m)
y

)

= −C,

where C is an arbitrary constant.

7. F1

(

x,
1
w

∂w

∂x
, . . . ,

1
w

∂nw

∂xn

)

+ F2

(

y,
1
w

∂w

∂y
, . . . ,

1
w

∂mw

∂ym

)

= k ln w.

Multiplicative separable solution:
w(x, y) = ϕ(x)ψ(y).

Here, the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

F1
(

x,ϕ′

x/ϕ, . . . ,ϕ(n)
x /ϕ

)

− k lnϕ = C,

F2
(

y,ψ′

y/ψ, . . . ,ψ(m)
y /ψ

)

− k lnψ = −C,

where C is an arbitrary constant.

8. F

(

ax + by, w,
∂w

∂x
, . . . ,

∂nw

∂xn
,

∂w

∂y
, . . . ,

∂mw

∂ym

)

= 0.

Solution:
w = w(ξ), ξ = ax + by,

where the function w(ξ) is determined by the ordinary differential equation

F
(

ξ, w, aw′

ξ, . . . , a
nw

(n)
ξ , bw′

ξ , . . . , bmw(m)
ξ

)

= 0.
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9. F

(

ax + by,
∂w

∂x
, . . . ,

∂nw

∂xn
,

∂w

∂y
, . . . ,

∂mw

∂ym

)

= 0.

Solution:
w = ϕ(ξ) + Cx, ξ = ax + by,

where C is an arbitrary constant and the function ϕ(ξ) is determined by the ordinary differential
equation

F
(

ξ, aϕ′

ξ + C, a2ϕ′′

ξξ , . . . , anϕ(n)
ξ , bϕ′

ξ, . . . , b
mϕ

(m)
ξ

)

= 0.

10.
∂n

∂xn

{

[

a1x + b1y + f (w)
] ∂mw

∂xm

}

+
∂n

∂yn

{

[

a2x + b2y + g(w)
] ∂mw

∂ym

}

= 0.

Solutions are sought in the traveling-wave form

w = w(z), z = Ax +By,

where the constants A and B are evaluated from the algebraic system of equations

a1A
n+m + a2B

n+m = A,
b1A

n+m + b2B
n+m = B.

The desired function w(z) is determined by the mth-order ordinary differential equation
[

z +An+mf (w) +Bn+mg(w)
]

w(m)
z = C0 + C1z + · · · + Cn−1z

n−1,

where C0, C1, . . . , Cn−1 are arbitrary constants.

11. (a1x + b1y)
∂nw

∂xn
+ (a2x + b2y)

∂nw

∂yn
= F

(

w,
∂w

∂x
, . . . ,

∂mw

∂xm
,

∂w

∂y
, . . . ,

∂kw

∂yk

)

.

Generalized traveling-wave solution:

w = w(z), z = Ax +By,

where the constants A and B are evaluated from the algebraic system of equations

a1A
n + a2B

n = A,
b1A

n + b2B
n = B,

and the desired function w(z) is determined by the ordinary differential equation

zw(n)
z = F

(

w, Aw′

z , . . . ,Amw(m)
z , Bw′

z , . . . ,Bkw(k)
z

)

.

Remark. If the right-hand side of the equation is also dependent on mixed derivatives, solutions
are constructed likewise.
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Supplements

Exact Methods for Solving
Nonlinear Partial Differential Equations

S.1. Classification of Second-Order Semilinear Partial
Differential Equations in Two Independent Variables

S.1.1. Types of Equations. Characteristic Equation
Consider a second-order semilinear partial differential equation in two independent variables of the
form

a(x, y)
∂2w

∂x2 + 2b(x, y)
∂2w

∂x∂y
+ c(x, y)

∂2w

∂y2 = F
(

x, y,w,
∂w

∂x
,
∂w

∂y

)

, (1)

where a, b, and c are some functions ofx and y that have continuous derivatives up to the second-order
inclusive.

Given a point (x, y), equation (1) is said to be

parabolic if b2 − ac = 0,

hyperbolic if b2 − ac > 0,

elliptic if b2 − ac < 0

at this point.
In order to reduce equation (1) to a canonical form, one should first write out the characteristic

equation
a dy2 − 2b dx dy + c dx2 = 0,

which splits into two equations

a dy −
(

b +
√

b2 − ac
)

dx = 0, (2)

and
a dy −

(

b −
√

b2 − ac
)

dx = 0, (3)

and find their general integrals.

S.1.2. Canonical Form of Parabolic Equations (Case b2 – ac = 0)
In this case, equations (2) and (3) coincide and have a common general integral,

ϕ(x, y) = C.

By passing from x, y to new independent variables ξ, η in accordance with the relations

ξ = ϕ(x, y), η = η(x, y),
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where η = η(x, y) is any twice differentiable function that satisfies the condition of nondegeneracy
of the Jacobian D(ξ,η)

D(x,y) in a given domain, we reduce equation (1) to the canonical form

∂2w

∂η2 = F1

(

ξ, η,w,
∂w

∂ξ
,
∂w

∂η

)

. (4)

As η, one can take η = x or η = y. Often η = η(x, y) is selected so as to simplify the right-hand
side of equation (4) as much as possible. In the special case F1 = ∂ξw, we have the classical linear
heat equation.

It is apparent that, the transformed equation (4) has only one highest-derivative term.
Remark. In the degenerate case where the function F1 is independent of the derivative ∂ξw,

equation (4) is an ordinary differential equation for η, in which ξ serves as a parameter.

S.1.3. Canonical Form of Hyperbolic Equations (Case b2 – ac > 0)
The general integrals

ϕ(x, y) = C1, ψ(x, y) = C2

of equations (2) and (3) are real and different. These integrals determine two different families of
real characteristics.

By passing from x, y to new independent variables ξ, η in accordance with the relations

ξ = ϕ(x, y), η = ψ(x, y),

we reduce equation (1) to
∂2w

∂ξ∂η
= F2

(

ξ, η,w,
∂w

∂ξ
,
∂w

∂η

)

.

This is the so-called first canonical form of a hyperbolic equation.
The transformation

ξ = t + z, η = t − z
brings this equation to another canonical form,

∂2w

∂t2
−
∂2w

∂z2 = F3

(

t, z,w,
∂w

∂t
,
∂w

∂z

)

, (5)

where F3 = 4F2. This is the so-called second canonical form of a hyperbolic equation.
In the special case F3 = 0, equation (5) is the classical linear wave equation.

S.1.4. Canonical Form of Elliptic Equations (Case b2 – ac < 0)
In this case, the general integrals of equations (2) and (3) are complex conjugate; these determine
two families of complex characteristics.

Let the general integral of equation (2) have the form

ϕ(x, y) + iψ(x, y) = C, i2 = −1,

where ϕ(x, y) and ψ(x, y) are real-valued functions.
By passing from x, y to new independent variables ξ, η in accordance with the relations

ξ = ϕ(x, y), η = ψ(x, y),

we reduce equation (1) to the canonical form

∂2w

∂ξ2 +
∂2w

∂η2 = F4

(

ξ, η,w,
∂w

∂ξ
,
∂w

∂η

)

.

In the special case F4 = 0, we have the linear Laplace equation.

Page 684

© 2004 by Chapman & Hall/CRC
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S.2. Transformations of Equations of Mathematical
Physics

S.2.1. Point Transformations
Let w = w(x, y) be a function of independent variables x and y. In general, a point transformation
is defined by the formulas

x = X(ξ, η,u), y = Y (ξ, η,u), w = W (ξ, η,u), (1)

where ξ and η are new independent variables, u = u(ξ, η) is a new dependent variable, and the
functions X , Y , W may be either given or unknown (have to be found).

A point transformation not only preserves the order or the equation to which it is applied but
also mostly preserves the structure of the equation, since the highest-order derivatives of the new
variables are linearly dependent on the highest-order derivatives of the original variables.

Transformation (1) is invertible if

det







∂X
∂x

∂X
∂y

∂X
∂w

∂Y
∂x

∂Y
∂y

∂Y
∂w

∂W
∂x

∂W
∂y

∂W
∂w






≠ 0.

In the general case, a point transformation (1) reduces a second-order equation with two inde-
pendent variables

F

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)

= 0 (2)

to an equation

G

(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η
,
∂2u

∂ξ2 ,
∂2u

∂ξ∂η
,
∂2u

∂η2

)

= 0. (3)

If u = u(ξ, η) is a solution of equation (3), then formulas (1) define the corresponding solution of
equation (2) in parametric form.

Point transformations are employed to simplify equations and their reduction to known equations.
Sometimes, point transformations can be used for the reduction of nonlinear equations to linear ones.

Example 1. The equation

∂w

∂t
= a

∂

∂x

(
w
m ∂w

∂x

)
+
[
xf (t) + g(t)

] ∂w
∂x

+ h(t)w

can be simplified to obtain
∂u

∂τ
=
∂

∂z

(
u
m ∂u

∂z

)

with the help of the transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫
g(t)F (t) dt, τ =

∫
F

2(t)Hm(t) dt,

where

F (t) = exp
[∫

f (t) dt
]

, H(t) = exp
[∫

h(t) dt
]

.

Example 2. The nonlinear equation

∂w

∂t
=
∂2w

∂x2 + a
(
∂w

∂x

)2
+ f (x, t)

can be reduced to the linear equation
∂u

∂t
=
∂2u

∂x2 + af (x, t)u

for the function u = u(x, t) by means of the transformation u = exp(aw).
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S.2.2. Hodograph Transformation
In some cases, nonlinear equations and systems of partial differential equations can be simplified by
means of the hodograph transformation.

1◦. For an equation with two independent variables x, t and an unknown function w = w(x, t), the
hodograph transformation consists in representing the solution in implicit form

x = x(t,w) (4)

or t = t(x,w). Thus, t andw are treated as independent variables, while x is taken to be the dependent
variable. The hodograph transformation (4) does not change the order of the equation and belongs
to the class of point transformations (equivalently, it can be represented as x = w̃, t = ˜t, w = x̃).

2◦. For a system of two equations with two independent variables x, y and two dependent variables
w =w(x, y), v = v(x, y), the hodograph transformation implies thatw, v are treated as the independent
variables and x, y as the dependent variables. In other words, one looks for a solution in the form

x = x(w, v), y = y(w, v). (5)

The hodograph transformation is used in gas dynamics and the theory of jets for the linearization
of equations and finding solutions of certain boundary value problems.

Below we consider some applications of the hodograph transformation to solving specific
equations of mathematical physics.

Example 3. Consider the nonlinear second-order equation

∂w

∂t

(
∂w

∂x

)2
= f (t,w)

∂2w

∂x2 . (6)

Let us seek its solution in implicit form. Differentiating relation (4) with respect to both variables as an implicit function and
taking into account that w = w(x, t), we get

1 = xwwx (differentiation in x),
0 = xwwt + xt (differentiation in t),

0 = xwww2
x + xwwxx (double differentiation in x),

where the subscripts indicate the corresponding partial derivatives. We solve these relations to express the “old” derivatives
through the “new” ones,

wx =
1
xw

, wt = −
xt

xw
, wxx = −

w2
xxww

xw
= −

xww

x3
w

.

Substituting these expressions into (6), we obtain the following second-order linear equation:

∂x

∂t
= f (t,w)

∂2x

∂w2 .

Example 4. Let us represent the equation

∂2w

∂x2 +
∂

∂y

[
f (w)

∂w

∂y

]
= 0 (7)

as the following system of equations:
∂w

∂x
=
∂v

∂y
, −f (w)

∂w

∂y
=
∂v

∂x
. (8)

We now take advantage of the hodograph transformation (5), which amounts to taking w, v as the independent variables
and x, y as dependent variables. Differentiating each relation in (5) with respect to x and y (as composite functions) and
eliminating the partial derivatives xw , xv , yw , yv from the resulting relations, we obtain

∂x

∂w
=

1
J

∂v

∂y
,
∂x

∂v
= −

1
J

∂w

∂y
,
∂y

∂w
= −

1
J

∂v

∂x
,
∂y

∂v
=

1
J

∂w

∂x
, where J =

∂w

∂x

∂v

∂y
−
∂w

∂y

∂v

∂x
. (9)

Using (9) to eliminate the derivatives wx, wy, vx, vy from (8), we arrive at the system

∂y

∂v
=
∂x

∂w
, −f (w)

∂x

∂v
=
∂y

∂w
. (10)
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Let us differentiate the first equation in w and the second in v, and then eliminate the mixed derivative ywv . As a result, we
obtain the following linear equation for the function x = x(w, v):

∂2x

∂w2 + f (w)
∂2x

∂v2 = 0. (11)

Similarly, from system (10), we obtain another linear equation for the function y = y(w, v),

∂2y

∂v2 +
∂

∂w

[
1

f (w)
∂y

∂w

]
= 0. (12)

Given a particular solution x = x(w,v) of equation (11), we substitute this solution into system (10) and find y = y(w, v)
by straightforward integration. Eliminating v from (5), we obtain an exact solution w =w(x, y) of the nonlinear equation (7).

1◦. Equation (11) with an arbitrary f (w) admits a simple particular solution, namely,

x = C1wv + C2w + C3v + C4, (13)

where C1, . . . , C4 are arbitrary constants. Substituting this solution into system (10), we obtain

∂y

∂v
= C1v + C2,

∂y

∂w
= −(C1w + C3)f (w). (14)

Integrating the first equation in (14) yields y = 1
2C1v

2 + C2v + ϕ(w). Substituting this solution into the second equation
in (14), we find the function ϕ(w), and consequently

y = 1
2C1v

2 + C2v −
∫

(C1w + C3)f (w) dw + C5. (15)

Formulas (13) and (15) define an exact solution of equation (7) in parametric form (v is the parameter).

2◦. In a similar way, one can construct a more complex solution of equation (7) in parametric form,

x = C1v
2 + C2wv + C3v + C4w − 2C1

∫ w

a

(x − t)f (t) dt + C5,

y = 1
2C2v

2 + C4v − 2C1v

∫
f (w) dw −

∫
(C2w + C3)f (w) dw + C6.

3◦. Using a particular solution of equation (12), we obtain another exact solution of equation (7):

x = − 1
2C1v

2 − C2v + C1

∫
F (w)dw + C3w + C4,

y = (C1v + C2)F (w) + C3v + C5, F (w) =
∫
f (w) dw.

See also 5.4.4.8 for a more general equation and some other solutions.

Example 5. Consider the system of gas dynamic type equations

f1(w, v)
∂w

∂x
+ f2(w, v)

∂w

∂y
+ f3(w, v)

∂v

∂x
+ f4(w, v)

∂v

∂y
= 0,

g1(w, v)
∂w

∂x
+ g2(w,v)

∂w

∂y
+ g3(w, v)

∂v

∂x
+ g4(w, v)

∂v

∂y
= 0.

Treating w, v as the independent variables and x, y as the dependent ones, we arrive at the following system of linear
equations (the calculations are similar to those of Example 4):

f1(w, v)
∂y

∂v
− f2(w, v)

∂x

∂v
− f3(w, v)

∂y

∂w
+ f4(w, v)

∂x

∂w
= 0,

g1(w, v)
∂y

∂v
− g2(w, v)

∂x

∂v
− g3(w, v)

∂y

∂w
+ g4(w, v)

∂x

∂w
= 0.

���
References for Subsection S.2.2: N. E. Kochin, I. A. Kibel’, and N. V. Roze (1963), B. L. Rozhdestvenskii and

N. N. Yanenko (1983), A. M. Siddiqui, P. N. Kaloni, and O. P. Chandna (1985), G. G. Chernyi (1988), R. Courant and
D. Hilbert (1989), P. A. Clarkson, A. S. Fokas, and M. J. Ablowitz (1989), V. F. Zaitsev and A. D. Polyanin (2001 b).
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S.2.3. Contact Transformations. Legendre and Euler
Transformations

S.2.3-1. General form of contact transformations.

Consider functions of two variables w = w(x, y). A common property of contact transformations is
the dependence of the original variables on the new variables and their first derivatives:

x = X
(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η

)

, y = Y
(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η

)

, w = W
(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η

)

. (16)

The functions X , Y , and W cannot be arbitrary and are selected so as to ensure that the first
derivatives of the original variables depend only on the transformed variables and, possibly, their
first derivatives,

∂w

∂x
= U

(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η

)

,
∂w

∂y
= V

(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η

)

. (17)

Contact transformations (16)–(17) do not increase the order of the equations to which they are
applied.

We now outline the procedure for finding the functions U and V in (17) and the relations that must hold for the functions
X, Y , and W in (16).

Let us differentiate the first and second expressions in (16) with respect to x and y as composite functions taking into
account that u = u(ξ, η). Thus, we obtain the following four relations:

(
∂X

∂ξ
+
∂X

∂u
p +

∂X

∂p
pξ +

∂X

∂q
pη

)
∂ξ

∂x
+
(
∂X

∂η
+
∂X

∂u
q +

∂X

∂p
qξ +

∂X

∂q
qη

)
∂η

∂x
= 1,

(
∂Y

∂ξ
+
∂Y

∂u
p +

∂Y

∂p
pξ +

∂Y

∂q
pη

)
∂ξ

∂x
+
(
∂Y

∂η
+
∂Y

∂u
q +

∂Y

∂p
qξ +

∂Y

∂q
qη

)
∂η

∂x
= 0,

(
∂X

∂ξ
+
∂X

∂u
p +

∂X

∂p
pξ +

∂X

∂q
pη

)
∂ξ

∂y
+
(
∂X

∂η
+
∂X

∂u
q +

∂X

∂p
qξ +

∂X

∂q
qη

)
∂η

∂y
= 0,

(
∂Y

∂ξ
+
∂Y

∂u
p +

∂Y

∂p
pξ +

∂Y

∂q
pη

)
∂ξ

∂y
+
(
∂Y

∂η
+
∂Y

∂u
q +

∂Y

∂p
qξ +

∂Y

∂q
qη

)
∂η

∂y
= 1,

(18)

where p = ∂u
∂ξ

, q = ∂u
∂η

, and pη = qξ ; the subscripts ξ and η denote the corresponding partial derivatives. The first two

relations in (18) constitute a system of linear algebraic equations for ∂ξ

∂x
and ∂η

∂x
, and the other two relations form a system

of linear algebraic equations for ∂ξ

∂y
and ∂η

∂y
. Having solved these systems, we find the derivatives: ∂ξ

∂x
= A, ∂η

∂x
= B,

∂ξ

∂y
= C, ∂η

∂y
= D. Then, differentiating the third relation in (16) with respect to x and y, we express U = ∂w

∂x
and V = ∂w

∂y

in terms of the new variables to obtain

U = A
(
∂W

∂ξ
+
∂W

∂u
p +

∂W

∂p
pξ +

∂W

∂q
pη

)
+ B
(
∂W

∂η
+
∂W

∂u
q +

∂W

∂p
qξ +

∂W

∂q
qη

)
,

V = C
(
∂W

∂ξ
+
∂W

∂u
p +

∂W

∂p
pξ +

∂W

∂q
pη

)
+ D

(
∂W

∂η
+
∂W

∂u
q +

∂W

∂p
qξ +

∂W

∂q
qη

)
.

Relations (17) require that U and W should be independent of the second derivatives, i.e.,
∂U

∂pξ

=
∂V

∂pξ

=
∂U

∂pη
=
∂V

∂pη
=
∂U

∂qη
=
∂V

∂qη
= 0 (pη ≡ qξ),

which results in additional relations for the functions X, Y , W .

In general, a contact transformation (16)–(17) reduces a second-order equation in two indepen-
dent variables

F

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)

= 0 (19)

to an equation of the form

G

(

ξ, η,u,
∂u

∂ξ
,
∂u

∂η
,
∂2u

∂ξ2 ,
∂2u

∂ξ∂η
,
∂2u

∂η2

)

= 0. (20)

In some cases, equation (20) turns out to be more simple than (19). If u = u(ξ, η) is a solution of
equation (20), then formulas (16) define the corresponding solution of equation (19) in parametric
form.
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S.2.3-2. Legendre transformation.

An important special case of contact transformations is the Legendre transformation defined by the
relations

w(x, y) + u(ξ, η) = xξ + yη, x =
∂u

∂ξ
, y =

∂u

∂η
, (21)

where u is the new dependent variable and ξ, η are the new independent variables.
Differentiating the first relation in (21) with respect to x and y and taking into account the other

two relations, we obtain the first derivatives:

∂w

∂x
= ξ,

∂w

∂y
= η. (22)

With (21)–(22), we find the second derivatives

∂2w

∂x2 = J
∂2u

∂η2 ,
∂2w

∂x∂y
=
∂2w

∂y∂x
= −J

∂2u

∂ξ∂η
,

∂2w

∂y2 = J
∂2u

∂ξ2 ,

where

J =
∂2w

∂x2
∂2w

∂y2 −
(

∂2w

∂x∂y

)2

,
1
J

=
∂2u

∂ξ2
∂2u

∂η2 −
(

∂2u

∂ξ∂η

)2

.

The Legendre transformation (21), with J ≠ 0, allows us to rewrite a general second-order
equation with two independent variables

F

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)

= 0 (23)

in the form

F

(

∂u

∂ξ
,
∂u

∂η
, ξ
∂u

∂ξ
+ η

∂u

∂η
− u, ξ, η, J

∂2u

∂η2 , −J
∂2u

∂ξ∂η
, J
∂2u

∂ξ2

)

= 0. (24)

Sometimes equation (24) may be simpler than (23).
Let u = u(ξ, η) be a solution of equation (24). Then the formulas

w = ξ
∂u

∂ξ
+ η

∂u

∂η
− u(ξ, η), x =

∂u

∂ξ
, y =

∂u

∂η

define the corresponding solution of equation (23) in parametric form.
Remark. The Legendre transformation may result in the loss of solutions for which J = 0.

Example 6. The Legendre transformation (21) reduces the nonlinear equation

f

(
∂w

∂x
,
∂w

∂y

)
∂2w

∂x2 + g
(
∂w

∂x
,
∂w

∂y

)
∂2w

∂x∂y
+ h
(
∂w

∂x
,
∂w

∂y

)
∂2w

∂y2 = 0

to the following linear equation with variable coefficients:

f (ξ, η)
∂2u

∂η2 − g(ξ, η)
∂2u

∂ξ∂η
+ h(ξ, η)

∂2u

∂ξ2 = 0.

S.2.3-3. Euler transformation.

The Euler transformation belongs to the class of contact transformations and is defined by the
relations

w(x, y) + u(ξ, η) = xξ, x =
∂u

∂ξ
, y = η. (25)

Differentiating the first relation in (25) with respect to x and y and taking into account the other two
relations, we find that

∂w

∂x
= ξ,

∂w

∂y
= −

∂u

∂η
. (26)
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Differentiating these expressions in x and y, we find the second derivatives:

wxx =
1
uξξ

, wxy = −
uξη

uξξ
, wyy =

u2
ξη − uξξuηη

uξξ
. (27)

The subscripts indicate the corresponding partial derivatives.
The Euler transformation (25)–(27) is employed in finding solutions and linearization of certain

nonlinear partial differential equations.
The Euler transformation (25) allows us to reduce a general second-order equation with two

independent variables

F

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)

= 0 (28)

to the equation

F

(

uξ, η, ξuξ − u, ξ, −uη,
1
uξξ

, −
uξη

uξξ
,
u2
ξη − uξξuηη

uξξ

)

= 0. (29)

In some cases, equation (29) may become simpler than equation (28).
Let u = u(ξ, η) be a solution of equation (29). Then formulas (25) define the corresponding

solution of equation (28) in parametric form.
Example 7. The equation

∂w

∂y

∂2w

∂x2 = f
(
y,
∂w

∂x

)

can be linearized with the help of the Euler transformation (25)–(27) to obtain

∂u

∂η
= −f (η, ξ)

∂2u

∂ξ2 .

Example 8. The equation
∂2w

∂x∂y
= f
(
y,
∂w

∂x

)
∂w

∂y

∂2w

∂x2

can be linearized by the Euler transformation (25)–(27) to obtain

∂2u

∂ξ∂η
= f (η, ξ)

∂u

∂η
.

���
References for Subsection S.2.3: M. G. Kurenskii (1934), N. H. Ibragimov (1985, 1994), H. Stephani (1989), B. J. Cant-

well (2002), A. D. Polyanin and V. F. Zaitsev (2002).

S.2.4. Bäcklund Transformations. Differential Substitutions

S.2.4-1. Bäcklund transformations.

1◦. Let w = w(x, y) be a solution of the equation

F1

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)

= 0, (30)

and let u = u(x, y) be a solution of another equation

F2

(

x, y,u,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2 ,
∂2u

∂x∂y
,
∂2u

∂y2

)

= 0. (31)

Equations (30) and (31) are said to be related by the Bäcklund transformation

Φ1

(

x, y,w,
∂w

∂x
,
∂w

∂y
,u,

∂u

∂x
,
∂u

∂y

)

= 0,

Φ2

(

x, y,w,
∂w

∂x
,
∂w

∂y
,u,

∂u

∂x
,
∂u

∂y

)

= 0
(32)
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if the compatibility of the pair (30), (32) implies equation (31), and the compatibility of the pair
(31), (32) implies (30). If, for some specific solution u = u(x, y) of equation (31), one succeeds
in solving equations (32) for w = w(x, y), then this function w = w(x, y) will be a solution of
equation (30). Relations (32) are also called differential constraints.

Bäcklund transformations may preserve the form of equations* (such transformations are used
for obtaining new solutions) or establish relations between solutions of different equations (such
transformations are used for obtaining solutions of one equation from solutions of another equation).

2◦. For two nth-order evolution equations of the forms

∂w

∂t
= F1

(

x,w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

,

∂u

∂t
= F2

(

x,u,
∂u

∂x
, . . . ,

∂nu

∂xn

)

,

a Bäcklund transformation is often sought in the form of a differential constraint

Φ

(

x,w,
∂w

∂x
, . . . ,

∂mw

∂xm
,u,

∂u

∂x
, . . . ,

∂ku

∂xk

)

= 0

containing derivatives in only one variable x (the second variable, t, is present implicitly through
the functions w, u). This constraint can be regarded as an ordinary differential equation in one of
the dependent variables.

S.2.4-2. Differential substitutions.

In mathematical physics, apart from the Bäcklund transformations, one often resorts to the so-called
differential substitutions. For second-order differential equations, differential substitutions have the
form

w = Ψ

(

x, y,u,
∂u

∂x
,
∂u

∂y

)

.

A differential substitution increases the order of an equation (if it is inserted into an equation
for w) and allows us to obtain solutions of one equation from those of another. The relationship
between the solutions of the two equations is generally not invertible and is, in a sense, unilateral. A
differential substitution may be obtained as a consequence of a Bäcklund transformation (although
this is not always the case).

S.2.4-3. Examples of Bäcklund transformations and differential substitutions.

Example 9. The Burgers equation
∂w

∂t
= w

∂w

∂x
+
∂2w

∂x2 (33)

is related to the heat equation
∂u

∂t
=
∂2u

∂x2 (34)

by the Bäcklund transformation
∂u

∂x
−

1
2
uw = 0,

∂u

∂t
−

1
2
∂(uw)
∂x

= 0.
(35)

Eliminating w from (35), we obtain equation (34).

* In such cases, these are referred to as auto-Bäcklund transformations.
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Conversely, let u(x, t) be a nonzero solution of the heat equation (34). Dividing (34) by u, differentiating the resulting
equation with respect to x, and taking into account that (ut/u)x = (ux/u)t, we obtain

(
ux

u

)

t

=
(
uxx

u

)

x

.

Hence, taking into account the relations that follow from the first equation in (35),

ux

u
=
w

2
=⇒

uxx

u
−
(
ux

u

)2
=
wx

2
=⇒

uxx

u
=
wx

2
+

1
4
w

2,

we obtain the Burgers equation (34).
Remark. The first relation in (35) can be rewritten as the differential substitution (the Hopf–Cole transformation)

w =
2ux
u

. (36)

Substituting (36) into (33), we obtain the equation

2utx
u

−
2utux
u2 =

2uxxx
u

−
2uxuxx
u2 ,

which can be converted to
∂

∂x

[
1
u

(
∂u

∂t
−
∂2u

∂x2

)]
= 0.

Thus, using formula (36), one can transform each solution of the linear heat equation (34) into a solution of the Burgers
equation (33). The converse is not generally true. Indeed, a solution of equation (33) generates a solution of the more general
equation

∂u

∂t
−
∂2u

∂x2 = f (t)u,

where f (t) is a function of t.

Example 10. The nonlinear Schrödinger equation with a cubic nonlinearity

i
∂w

∂t
+
∂2w

∂x2 + |w|2w = 0,

where w is a complex-valued function of real variables x and t (i2 = −1), is invariant under the Bäcklund transformation

∂w

∂x
−
∂w̃

∂x
= iaf1 −

i

2
f2g1,

∂w

∂t
−
∂w̃

∂t
=

1
2
g1

(
∂w

∂x
+
∂w̃

∂x

)
− ag2 +

i

4
f1
(
|f1 |2 + |f2 |2

)
.

Here, we have used the notation

f1 = w − w̃, f2 = w + w̃, g1 = iε
(
b − 2|f1 |2

)1/2, g2 = i
(
af1 − 1

2 f2g1
)
,

where a and b are arbitrary real constants, ε = � 1.

Example 11. The Korteweg–de Vries equation

∂w

∂t
+ 6w

∂w

∂x
+
∂3w

∂x3 = 0

and the modified Korteweg–de Vries equation

∂u

∂t
− 6u2 ∂u

∂x
+
∂3u

∂x3 = 0

are related by the Bäcklund transformation

∂u

∂x
= ε(w + u2), ε = � 1,

∂u

∂t
= ε

∂2w

∂x2 − 2
∂

∂x
(uw).

(37)

The first relation in (37) is a Miura transformation which can be rewritten as a differential substitution by solving (37)
for w.
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S.2.4-4. Bäcklund transformations based on conservation laws.

Consider a differential equation written as a conservation law,

∂

∂x

[

F

(

w,
∂w

∂x
,
∂w

∂y
, . . .
)]

+
∂

∂y

[

G

(

w,
∂w

∂x
,
∂w

∂y
, . . .

)]

= 0. (38)

The Bäcklund transformation

dz = F (w,wx,wy, . . .) dy −G(w,wx,wy, . . .) dx, dη = dy (39)
(

dz =
∂z

∂x
dx +

∂z

∂y
dy =⇒

∂z

∂x
= −G,

∂z

∂x
= F

)

determines the passage from the variablesx and y to the new independent variables z and η according
to the rule

∂

∂x
= −G

∂

∂z
,

∂

∂y
=
∂

∂η
+ F

∂

∂z
.

Here, F and G are the same as in (38). The transformation (39) preserves the order of the equation
under consideration.

Remark. Often one may encounter transformations (39) that are supplemented with a transfor-
mation of the unknown function in the form u = ϕ(w).

Example 12. Consider the third-order nonlinear equation

∂w

∂t
=
∂2

∂x2

[
f (w)

∂w

∂x

]
, (40)

which represents a special case of equation (38) for y = t, F = [f (w)wx]x, and G = −w.
In this case, transformation (39) has the form

dz = wdx + [f (w)wx]x dt, dη = dt (41)
and determines a transformation from the variables x and y to the new independent variables z and η according to the rule

∂

∂x
= w

∂

∂z
,

∂

∂t
=
∂

∂η
+ [f (w)wx]x

∂

∂z
.

Applying transformation (41) to equation (40), we obtain

∂w

∂η
= w2 ∂2

∂z2

[
wf (w)

∂w

∂z

]
. (42)

The substitution w = 1/u reduces (42) to an equation of the form (40),

∂u

∂η
=
∂2

∂z2

[
1
u3 f

(
1
u

)
∂u

∂z

]
.

In the special case of f (w) = aw−3, the nonlinear equation (40) is reduced to the linear equation uη = auzzz by the
transformation (41).���

References for Subsection S.2.4: G. L. Lamb (1974), R. M. Miura (1976), R. L. Anderson and N. H. Ibragimov (1979),
A. S. Fokas and R. L. Anderson (1979), A. S. Fokas and B. Fuchssteiner (1981), M. J. Ablowitz and H. Segur (1981),
N. H. Ibragimov (1985, 1994), H. Stephani (1989), B. J. Cantwell (2002).

S.3. Traveling-Wave Solutions and Self-Similar
Solutions. Similarity Methods

S.3.1. Preliminary Remarks
There are a number of methods for the construction of exact solutions to equations of mathematical
physics that are based on the reduction of the original equations to equations in fewer dependent
and/or independent variables. The main idea is to find such variables and, by passing to them,
to obtain simpler equations. In particular, in this way, finding exact solutions of some partial
differential equations in two independent variables may be reduced to finding solutions of appropriate
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ordinary differential equations (or systems of ordinary differential equations). Naturally, the ordinary
differential equations thus obtained do not give all solutions of the original partial differential
equation, but provide only a class of solutions with some specific properties.

The simplest classes of exact solutions described by ordinary differential equations involve
traveling-wave solutions and self-similar solutions. The existence of such solutions is due to the
invariance of the equations in question under translations and scaling transformations.

Traveling-wave solutions and self-similar solutions often occur in various applications. Below
we consider some characteristic features of such solutions.

It is assumed that the unknown w depends on two variables, x and t, where t plays the role of
time and x is a spatial coordinate.

S.3.2. TravelingWave Solutions. Invariance of Equations Under
Translations

1◦. Traveling-wave solutions, by definition, are of the form

w(x, t) = W (z), z = x + λt, (1)

where λ plays the role of the wave propagation velocity (the sign of λ can be arbitrary and the
value λ = 0 corresponds to a stationary solution). Traveling-wave solutions are characterized by
the fact that the profiles of these solutions at different time instants are obtained from one another
by appropriate shifts (translations) along the x-axis. Consequently, a Cartesian coordinate system
moving with a constant speed can be introduced in which the profile of the desired quantity is
stationary.

A traveling-wave solution is found by directly substituting the representation (1) into the original
equation and taking into account the relationswx =W ′,wt =λW ′, etc. (the prime denotes a derivative
with respect to z).

Traveling-wave solutions occur for equations that do not explicitly involve independent variables,

F

(

w,
∂w

∂x
,
∂w

∂t
,
∂2w

∂x2 ,
∂2w

∂x∂t
,
∂2w

∂t2
, . . .
)

= 0. (2)

Substituting (1) into (2), we obtain an autonomous ordinary differential equation for the func-
tion W (z):

F (W ,W ′,λW ′,W ′′,λW ′′,λ2W ′′, . . .) = 0,

where λ is an arbitrary constant.

2◦. It should be observed that equations of the form (2) are invariant (i.e., preserve their form) under
translations in both independent variables:

x = x̄ + C1, t = t̄ + C2, (3)

where C1 and C2 are arbitrary constants. The property of the invariance of specific equations under
translation transformations (3) is inseparably linked with the existence of traveling-wave solutions
of such equations (the former implies the latter).

Traveling-wave solutions are simplest invariant solutions, i.e., solutions whose properties are
due to the fact that the equations are invariant under certain transformations (containing arbitrary
constants).

Example 1. The nonlinear heat equation

∂w

∂t
=
∂

∂x

[
f (w)

∂w

∂x

]
(4)

admits a traveling-wave solution. Substituting (1) into (4), we arrive at the ordinary differential equation

[f (W )W ′]′ − λW ′ = 0.
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Integrating this equation twice yields its solution in implicit form:
∫

f (W ) dW
λW + C1

= z + C2,

where C1 and C2 are arbitrary constants.

Example 2. Consider the homogeneous Monge–Ampère equation
(
∂2w

∂x∂t

)2
−
∂2w

∂x2
∂2w

∂t2
= 0. (5)

Inserting (1) into this equation, we obtain an identity. Therefore, equation (5) admits solutions of the form

w = W (x + λt),

where W (z) is an arbitrary function and λ is an arbitrary constant.

S.3.3. SelfSimilar Solutions. Invariance of Equations Under Scaling
Transformations

By definition, a self-similar solution is a solution of the form

w(x, t) = tαU (ζ), ζ = xtβ . (6)

The profiles of these solutions at different time instants are obtained from one another by a similarity
transformation (like scaling).

Self-similar solutions exist if the scaling of the independent and dependent variables,

t = Ct̄, x = Ckx̄, w = Cmw̄, where C ≠ 0 is an arbitrary constant, (7)

for some k andm, is equivalent to the identical transformation. This means that the original equation

F (x, t,w,wx,wt,wxx,wxt,wtt, . . .) = 0, (8)

when subjected to transformation (7), turns into the same equation in the new variables,

F (x̄, t̄, w̄, w̄x̄, w̄t̄, w̄x̄x̄, w̄x̄t̄, w̄t̄t̄, . . .) = 0. (9)

In practice, the above existence criterion is checked: if a pair of k and m in (7) has been found
such that (9) holds true, there is a self-similar solution of the form (6), where

α = m, β = −k. (10)

These relations follow from the condition that the scaling transformation (7) must preserve the form
of the variables (6):

w = tαU (ζ), ζ = xtβ =⇒ w̄ = t̄αU (ζ̄), ζ̄ = x̄t̄β .

The method of constructing self-similar solutions on the basis of scaling transformations (7)
is called the similarity method. It is significant that these transformations involve the arbitrary
constant C as a parameter.

Example 3. Consider the heat equation with a nonlinear power-law source term

∂w

∂t
= a

∂2w

∂x2 + bwn. (11)

The scaling transformation (7) converts equation (11) into

C
m−1 ∂w̄

∂t̄
= aCm−2k ∂

2w̄

∂x̄2 + bCmnw̄n.

Equating the powers of C yields the following system of linear algebraic equations for the constants k and m:

m − 1 = m − 2k = mn.
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This system admits a unique solution: k = 1
2 , m = 1

1−n . Using this solution together with relations (6) and (10), we obtain
self-similar variables in the form

w = t1/(1−n)
U (ζ), ζ = xt−1/2.

Inserting these into (11), we arrive at the following ordinary differential equation for the function U (ζ):

aU
′′

ζζ +
1
2
ζU

′

ζ +
1

n − 1
U + bUn = 0.

Example 4. Consider the nonlinear equation

∂2w

∂t2
= a

∂

∂x

(
w
n ∂w

∂x

)
, (12)

which occurs in problems of wave and gas dynamics. Inserting (7) into (12) yields

C
m−2 ∂

2w̄

∂t̄2
= aCmn+m−2k ∂

∂x̄

(
w̄
n ∂w̄

∂x̄

)
.

Equating the powers of C results in a single linear equation, m − 2 = mn +m − 2k. Hence, we obtain k = 1
2mn + 1, where

m is arbitrary. Further, using (6) and (10), we find self-similar variables:

w = tmU (ζ), ζ = xt−
1
2 mn−1 , m is arbitrary.

Substituting these into (12), one obtains an ordinary differential equation for the function U (ζ).

Remark. Traveling-wave solutions are closely related to self-similar solutions. Indeed, taking

w = lnu, W = lnF , t = ln τ , x = ln y

in (1), we obtain a representation of a traveling wave in self-similar form, u=F (x+λt)=F
(

ln(yτλ)
)

=
F1(yτλ).

S.3.4. Exponential SelfSimilar Solutions. Equations Invariant Under
Combined Translation and Scaling

By definition, an exponential self-similar solution is a solution of the form

w(x, t) = eαtV (ξ), ξ = xeβt. (13)

An exponential self-similar solution exists if the equation under consideration is invariant under
the transformation

t = t̄ + lnC, x = Ckx̄, w = Cmw̄, where C > 0 is an arbitrary constant, (14)

for some k and m. Transformation (14) is a combination of a shift in t and scaling in x and w.
Observe that these transformations contain an arbitrary constant C as a parameter.

In practice, the above existence criterion is checked: if a pair of k andm in (14) has been found
such that the equation remains the same, then there exists an exponential self-similar solution with
the new variables having the form (13), where

α = m, β = −k. (15)

These relations follow from the condition that the scaling transformation (14) must preserve the
form of the variables of (13):

w = eαtV (ξ), ξ = xeβt =⇒ w̄ = eαt̄V (ξ̄), ξ̄ = x̄eβt̄.

Remark. Solutions of the form (13) are sometimes called limit self-similar solutions.

Example 5. Let us show that the nonlinear heat equation

∂w

∂t
= a

∂

∂x

(
w
n ∂w

∂x

)
(16)
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TABLE 16
Invariant solutions found by using combining translations

and scaling (C, C1, and C2 are arbitrary constants)

No. Form of solution Invariant transformation Relations for coefficients

1 w=U (z), z=αx+βy t= t̄+C1, x= x̄+C2 α and β are arbitrary constants

2 w= tαU (z), z=xtβ t=Ct̄, x=Ckx̄, w=Cmw̄ α=m, β =−k

3 w=eαtU (z), z=xeβt t= t̄+lnC, x=Ckx̄, w=Cmw̄ α=m, β =−k

4 w= tαU (z), z=x+β ln t t=Ct̄, x= x̄+k lnC, w=Cmw̄ α=m, β =−k

admits an exponential self-similar solution. Substituting (14) into (16) yields

C
m ∂w̄

∂t̄
= aCmn+m−2k ∂

∂x̄

(
w̄
n ∂w̄

∂x̄

)
.

Equating the exponents of C, we obtain one linear equation, m = mn + m − 2k. Hence, we have k = 1
2mn, where m is

arbitrary. Further, using formulas (13) and (15) and taking (without loss of generality) m = 2, which is equivalent to scaling
of time t, we find the new variables:

w = e2t
V (ξ), ζ = xe−nt. (17)

Inserting these into (16), we obtain an ordinary differential equation for the function V (ξ):
a(V nV ′

ξ )′ξ + nξV ′

ξ − 2V = 0.

Example 6. With this method, it can be shown that equation (12) also admits an exponential self-similar solution of
the form (17).

Table 16 lists invariant solutions which can be found by combining translation and scaling of
the independent variables and scaling of the dependent variable. Apart from traveling-wave (row 1),
self-similar (row 2), and exponential self-similar (row 3) solutions considered above, the last row in
the table describes another invariant solution. Below we give an example that illustrates the method
for the construction of such a solution.

Example 7. Let us show that the nonlinear heat equation (16) admits a solution having the form specified in the fourth
row of Table 16. To that end, we use the transformation

t = Ct̄, x = x̄ + k lnC, w = Cmw̄
to obtain

C
m−1 ∂w̄

∂t̄
= aCmn+m ∂

∂x̄

(
w̄
n ∂w̄

∂x̄

)
.

Equating the powers of C yields one linear equation, m − 1 = mn + m. Hence, we find that m = −1/n and k may be
arbitrary. Therefore (see row 4 in Table 16), equation (16) has a solution of the form

w = t−1/n
U (z), z = x + β ln t, where β is arbitrary. (18)

Substituting (18) into (16), we arrive at the autonomous differential equation

a(UnU ′

z)′z − βU ′

z +
1
n
U = 0.

The value β = 0 corresponds to an additively separable solution.

The examples considered in Section S.3 show that the construction of exact solutions by means
of reducing the dimension of a partial differential equation is possible, provided that the equation
in question is invariant under certain transformations (containing one or more arbitrary parameters)
or, in other words, the equation possesses a certain symmetry. Below, in Section S.7, we describe a
more general approach to the construction of exact solutions. This approach is based on the methods
of group-theoretic analysis of differential equations. These methods provide a regular procedure for
obtaining invariant solutions of an analogous or more complex structure.��	

References for Section S.3: P. W. Bridgman (1931), W. F. Ames (1972), G. W. Bluman and J. D. Cole (1974), G. I. Baren-
blatt and Ya. B. Zel’dovich (1972), W. F. Ames, R. J. Lohner, and E. Adams (1981), L. Dresner (1983), G. I. Barenblatt
(1989), L. I. Sedov (1993).
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S.4. Method of Generalized Separation of Variables
S.4.1. Introduction

S.4.1-1. Preliminary remarks. Multiplicative and additive separable solutions.

Separation of variables is the most common approach to solve linear equations of mathematical
physics. For equations in two independent variables x, y and a dependent variable w, this approach
involves searching for exact solutions in the form of the product of functions depending on different
arguments:

w(x, t) = ϕ(x)ψ(t). (1)

The integration of a few classes of first-order nonlinear partial differential equations is based on
searching for exact solutions in the form of the sum of functions depending on different arguments:

w(x, t) = ϕ(x) + ψ(t). (2)

Some second- and higher-order nonlinear equations of mathematical physics also have exact
solutions of the form (1) or (2). Such solutions are called multiplicative separable and additive
separable, respectively.
��

References: D. Zwillinger (1989), A. N. Tikhonov and A. A. Samarskii (1990), A. D. Polyanin (2002), A. D. Polyanin,
V. F. Zaitsev, and A. Moussiaux (2002).

S.4.1-2. Simple cases of variable separation in nonlinear partial differential equations.

In isolated cases, the separation of variables in nonlinear equations is carried out following the
same technique as in linear equations. Specifically, an exact solution is sought in the form of the
product or sum of functions depending on different arguments. On substituting it into the equation
and performing elementary algebraic manipulations, one obtains an equation with the two sides
dependent on different variables (for equations with two variables). Then one concludes that the
expressions on each side must be equal to the same constant quantity, called a separation constant.
Below we consider specific examples.

Example 1. The heat equation with a power nonlinearity

∂w

∂t
= a

∂

∂x

(
w
k ∂w

∂x

)
(3)

has a multiplicative separable solution. Substituting (1) into (3) yields

ϕψ
′

t = aψk+1(ϕkϕ′

x)′x.

Separating the variables by dividing both sides by ϕψk+1, we obtain

ψ′

t

ψk+1 =
a(ϕkϕ′

x)′x
ϕ

.

The left-hand side depends on t alone and the right-hand side on x alone. This is possible only if

ψ′

t

ψk+1 = C,
a(ϕkϕ′

x)′x
ϕ

= C, (4)

whereC is an arbitrary constant (separation constant). On solving the ordinary differential equations (4), we obtain a solution
of equation (3) with the form (1).

The procedure for constructing a separable solution (1) of the nonlinear equation (3) is identical to that used in solving
linear equations [in particular, equation (3) with k = 0]. We refer to the cases of similar separation of variables as simple
separable cases.

Example 2. The wave equation with an exponential nonlinearity

∂2w

∂t2
= a

∂

∂x

(
e
λw ∂w

∂x

)
(5)

has an additive separable solution. On substituting (2) into (5) and dividing by eλψ, we arrive at the equation

e
−λψ

ψ
′′

tt = a(eλϕϕ′

x)′x,
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whose left-hand side depends on t alone and the right-hand side on x alone. This is possible only if

e
−λψ

ψ
′′

tt = C, a(eλϕϕ′

x)′x = C, (6)
where C is an arbitrary constant. Solving the ordinary differential equations (6) yields a solution of equation (5) with the
form (2).

Example 3. The steady-state heat equation in an anisotropic medium with a logarithmic source

∂

∂x

[
f (x)

∂w

∂x

]
+
∂

∂y

[
g(y)

∂w

∂y

]
= aw lnw (7)

has a multiplicative separable solution
w = ϕ(x)ψ(y). (8)

On substituting (8) into (7), dividing by ϕψ, and rearranging individual terms of the resulting equation, we obtain

1
ϕ

[f (x)ϕ′

x]′x − a lnϕ = −
1
ψ

[g(y)ψ′

y ]′y + a lnψ.

The left-hand side of this equation depends only on x and the right-hand only on y. By equating both sides to a constant
quantity, one obtains ordinary differential equations for ϕ(x) and ψ(y).��

References: L. V. Ovsiannikov (1982), A. D. Polyanin (2002, Supplement B).

S.4.1-3. Examples of nontrivial variable separation in nonlinear partial differential equations.

Unlike linear equations, the variables in nonlinear equations often separate differently. We exemplify
this below.

Example 4. Consider the equation with a cubic nonlinearity

∂w

∂t
= f (t)

∂2w

∂x2 + w
(
∂w

∂x

)2
− aw3, (9)

where f (t) is an arbitrary function, a > 0. We look for exact solutions in the product form. We substitute (1) into (9) and
divide the resulting equation by f (t)ϕ(x)ψ(t) to obtain

ψ′

t

fψ
=
ϕ′′

xx

ϕ
+
ψ2

f
[(ϕ′

x)2 − aϕ2]. (10)

In the general case, this expression cannot be represented as the sum of two functions depending on different arguments.
This however does not mean that equation (9) has no solutions of the form (1).

1◦. One can make sure by direct check that the functional-differential equation (10) has solutions

ϕ(x) = C exp
( �
x
√

a
)
, ψ(t) = exp

[
a

∫
f (t) dt

]
, (11)

where C is an arbitrary constant. Solutions (11) for ϕ make the expression in square brackets in (10) vanish, which allows
the separation of variables.

2◦. There is a more general solution of the functional-differential equation (10):

ϕ(x) = C1 exp
(
x
√

a
)

+ C2 exp
(
−x

√

a
)
,

ψ(t) = eF
(
C3 + 8aC1C2

∫
e

2F
dt

)−1/2
, F = a

∫
f (t) dt,

where C1, C2, and C3 are arbitrary constants. The function ϕ = ϕ(x) is such that both x-dependent expressions in (10) are
constant simultaneously:

ϕ
′′

xx/ϕ = const, (ϕ′

x)2 − aϕ2 = const .

It is this circumstance that makes it possible to separate the variables.
Note that the function ψ = ψ(t) satisfies the Bernoulli equation ψ′

t = af (t)ψ − 4aC1C2ψ
3.

Example 5. Consider the third-order equation with a quadratic nonlinearity

∂w

∂y

∂2w

∂x2 + a
∂w

∂x

∂2w

∂y2 = b
∂3w

∂x3 + c
∂3w

∂y3 . (12)

We look for additive separable solutions
w = f (x) + g(y). (13)

Substituting (13) into (12) yields
g
′

yf
′′

xx + af ′xg
′′

yy = bf ′′′xxx + cg′′′yyy. (14)
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This expression cannot be rewritten as the equality of two functions depending on different arguments.
It is not difficult to see that the functional-differential equation (14) is satisfied

if g′y = C1 =⇒ g(y) = C1y + C2, f (x) = C3 exp(C1x/b) + C4x (case 1),

if f ′x = C1 =⇒ f (x) = C1x + C2, g(y) = C3 exp(aC1y/c) + C4y (case 2),

where C1,C2,C3, andC4 are arbitrary constants. In both cases, two terms of the four in (14) vanish, which makes it possible
to separate the variables.

In addition, equation (12) has a more complicated solution of the form (13):

w = C1e
−aλx +

cλ

a
x + C2e

λy − abλy + C3,

where C1, C2, C3, and λ are arbitrary constants. The mechanism of separation of variables is different here: both nonlinear
terms on the left-hand side in (14) contain terms which cannot be rewritten in additive form but are equal in magnitude and
have unlike signs. In adding, the two terms cancel out, thus resulting in separation of variables:

g′yf
′′

xx = C1C2a
2λ3eλy−aλx − C1b(aλ)3e−aλx

+
af ′xg

′′

yy = −C1C2a
2λ3eλy−aλx + C2cλ

3eλy

g′yf
′′

xx + af ′xg′′yy = −C1b(aλ)3e−aλx + C2cλ
3eλy = bf ′′′xxx + cg′′′yyy

.

Example 6. Consider the second-order equation with a cubic nonlinearity

(1 + w2)
(
∂2w

∂x2 +
∂2w

∂y2

)
− 2w

(
∂w

∂x

)2
− 2w

(
∂w

∂y

)2
= aw(1 − w2). (15)

We seek an exact solution of this equation in the product form

w = f (x)g(y). (16)

Substituting (16) into (15) yields

(1 + f2
g

2)(gf ′′xx + fg′′yy) − 2fg[g2(f ′x)2 + f2(g′y)2] = afg(1 − f2
g

2). (17)

This expression cannot be rewritten as the equality of two functions with different arguments. Nevertheless, equation (15)
has solutions of the form (16). One can make sure by direct check that the functions f = f (x) and g = g(y) satisfying the
nonlinear ordinary differential equations

(f ′x)2 = Af4 + Bf2 + C,

(g′y)2 = Cg4 + (a − B)g2 + A,
(18)

where A, B, and C are arbitrary constants, reduce equation (17) to an identity; to verify this, one should use the relations
f ′′xx = 2Af3 + Bf and g′′yy = 2Cg3 + (a − B)g that follow from (18).

Remark. By the change of variable u = 4 arctanw equation (15) can be reduced to a nonlinear heat equation with a
sinusoidal source, ∆u = a sinu.

The examples considered above illustrate some specific features of separable solutions to non-
linear equations. Sections S.4.2–S.4.4 outline fairly general methods for constructing similar and
more complicated solutions to nonlinear partial differential equations.���

References: R. Steuerwald (1936), A. D. Polyanin (2002, Supplement B).

S.4.2. Structure of Generalized Separable Solutions

S.4.2-1. General form of solutions. The classes of nonlinear equations considered.

To simplify the presentation, we confine ourselves to the case of mathematical physics equations in
two independent variables x, y and a dependent variable w (one of the independent variables can
play the role of time).

Linear separable equations of mathematical physics admit exact solutions in the form

w(x, y) = ϕ1(x)ψ1(y) + ϕ2(x)ψ2(y) + · · · + ϕn(x)ψn(y), (19)

where the wi = ϕi(x)ψi(y) are particular solutions; the functions ϕi(x), as well as the functions
ψi(y), with different numbers i are not related to one another.
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Many nonlinear partial differential equations with quadratic or power nonlinearities,

f1(x)g1(y)Π1[w] + f2(x)g2(y)Π2[w] + · · · + fm(x)gm(y)Πm[w] = 0, (20)

also have exact solutions of the form (19). In (20), the Πi[w] are differential forms that are the
products of nonnegative integer powers of the function w and its partial derivatives ∂xw, ∂yw,
∂xxw, ∂xyw, ∂yyw, ∂xxxw, etc. We will refer to solutions (19) of nonlinear equations (20) as
generalized separable solutions. Unlike linear equations, in nonlinear equations the functionsϕi(x)
with different subscripts i are usually related to one another [and to functions ψj(y)]. In general, the
functions ϕi(x) and ψj(y) in (19) are not known in advance and are to be identified. Subsections
S.4.1-2 and S.4.1-3 give examples of exact solutions (19) to nonlinear equations (20) for some simple
cases with n = 1 or n = 2 (for ψ1 = ϕ2 = 1).

Note that most common of the generalized separable solutions are solutions of the special form

w(x, y) = ϕ(x)ψ(y) + χ(x);

the independent variables on the right-hand side can be swapped. In the special case χ(x) = 0, this
is a multiplicative separable solution, and if ϕ(x) = 1, this is an additive separable solution.

Remark. Expressions of the form (19) are often used in applied and computational mathematics
for constructing approximate solutions to differential equations by the Galerkin method (and its
modifications).

S.4.2-2. General form of functional-differential equations.

In general, on substituting expression (19) into the differential equation (20), one arrives at a
functional-differential equation

Φ1(X)Ψ1(Y ) + Φ2(X)Ψ2(Y ) + · · · + Φk(X)Ψk(Y ) = 0 (21)

for the ϕi(x) and ψi(y). The functionals Φj(X) and Ψj(Y ) depend only on x and y, respectively,

Φj(X) ≡ Φj

(

x,ϕ1,ϕ′

1,ϕ′′

1 , . . . ,ϕn,ϕ′

n,ϕ′′

n

)

,

Ψj(Y ) ≡ Ψj

(

y,ψ1,ψ′

1,ψ′′

1 , . . . ,ψn,ψ′

n,ψ′′

n

)

.
(22)

Here, for simplicity, the formulas are written out for the case of a second-order equation (20); for
higher-order equations, the right-hand sides of relations (22) will contain higher-order derivatives
of ϕi and ψj .

Further, Subsections S.4.3 and S.4.4 outline two different methods for solving functional-
differential equations of the form (21), (22).

Remark. Unlike ordinary differential equations, equation (21)–(22) involves several functions
(and their derivatives) with different arguments.���

References for Subsection S.4.2: S. S. Titov (1988), V. A. Galaktionov and S. A. Posashkov (1989, 1994), V. A. Galak-
tionov (1995), A. D. Polyanin (2002, Supplement B).

S.4.3. Solution of FunctionalDifferential Equations by
Differentiation

S.4.3-1. Description of the method.

Below we describe a procedure for constructing solutions to functional-differential equations. It
involves three successive stages.
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1◦. Assume that Ψk � 0. We divide equation (21) by Ψk and differentiate with respect to y. This
results in a similar equation but with fewer terms:

˜Φ1(X)˜Ψ1(Y ) + ˜Φ2(X)˜Ψ2(Y ) + · · · + ˜Φk−1(X)˜Ψk−1(Y ) = 0,
˜Φj(X) = Φj(X), ˜Ψj(Y ) = [Ψj(Y )/Ψk(Y )]′y.

We continue the above procedure until we obtain a separable two-term equation

̂Φ1(X)̂Ψ1(Y ) + ̂Φ2(X)̂Ψ2(Y ) = 0. (23)

Three cases must be considered.
Nondegenerate case: |̂Φ1(X)| + |̂Φ2(X)| � 0 and |̂Ψ1(Y )| + |̂Ψ2(Y )| � 0. Then equation (23) is

equivalent to the ordinary differential equations

̂Φ1(X) + ĈΦ2(X) = 0, C ̂Ψ1(Y ) − ̂Ψ2(Y ) = 0,

where C is an arbitrary constant. The equations ̂Φ2 = 0 and ̂Ψ1 = 0 correspond to the limit case
C =∞.

Two degenerate cases:

̂Φ1(X) ≡ 0, ̂Φ2(X) ≡ 0 =⇒ ̂Ψ1,2(Y ) are any;
̂Ψ1(Y ) ≡ 0, ̂Ψ2(Y ) ≡ 0 =⇒ ̂Φ1,2(X) are any.

2◦. The solutions of the two-term equation (23) should be substituted into the original functional-
differential equation (21) to “remove” redundant constants of integration [these arise because equa-
tion (23) is obtained from (21) by differentiation].

3◦. The case Ψk ≡ 0 should be treated separately (since we divided the equation by Ψk at the first
stage). Likewise, we have to study all other cases where the functionals by which the intermediate
functional-differential equations were divided vanish.

Remark 1. The functional-differential equation (21) can happen to have no solutions.

Remark 2. At each subsequent stage, the number of terms in the functional-differential equation
can be reduced by differentiation with respect to either y or x. For example, we can assume at the
first stage that Φk � 0. On dividing equation (21) by Φk and differentiating with respect to x, we
again obtain a similar equation that has fewer terms.

S.4.3-2. Examples of constructing exact generalized separable solutions.

Below we consider specific examples illustrating the application of the above method to constructing
exact generalized separable solutions of nonlinear equations.

Example 7. Let us consider the nth-order nonlinear equation

∂w

∂y

∂2w

∂x∂y
−
∂w

∂x

∂2w

∂y2 = f (x)
∂nw

∂yn
, (24)

where f (x) is an arbitrary function. In the special case n = 3 and f (x) = const, it coincides with the equation of a steady
boundary layer on a flat plate for the stream function (see Schlichting, 1981, and Loitsyanskiy, 1996).

We look for generalized separable solutions to equation (24) in the form

w(x,y) = ϕ(x)ψ(y) + χ(x). (25)

On substituting (25) into (24) and cancelling by ϕ, we arrive at the functional-differential equation

ϕ
′

x[(ψ′

y)2 − ψψ′′

yy] − χ′

xψ
′′

yy = f (x)ψ(n)
y . (26)

We divide (26) by f = f (x) and then differentiate with respect to x to obtain

(ϕ′

x/f )′x[(ψ′

y)2 − ψψ′′

yy] − (χ′

x/f )′xψ
′′

yy = 0. (27)
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Nondegenerate case. On separating the variables in (27), we get

(χ′

x/f )′x = C1(ϕ′

x/f )′x,

(ψ′

y)2 − ψψ′′

yy − C1ψ
′′

yy = 0.

Integrating yields

ψ(y) = C4e
λy − C1, ϕ(x) is any, χ(x) = C1ϕ(x) + C2

∫
f (x) dx + C3, (28)

where C1, . . . , C4, and λ are constants of integration. On substituting (28) into (26), we establish the relationship between
constants to obtain C2 = −λn−2 . Ultimately, taking into account the aforesaid and formulas (25) and (28), we arrive at a
solution of equation (24) of the form (25):

w(x, y) = ϕ(x)eλy − λn−2
∫
f (x) dx + C,

where ϕ(x) is an arbitrary function, C and λ are arbitrary constants (C = C3, C4 = 1).
Degenerate case. It follows from (27) that

(ϕ′

x/f )′x = 0, (χ′

x/f )′x = 0, ψ(y) is any. (29)
Integrating the first two equations in (29) twice yields

ϕ(x) = C1

∫
f (x) dx + C2, χ(x) = C3

∫
f (x) dx + C4, (30)

where C1, . . . , C4 are arbitrary constants.
Substituting (25) into (26) and taking into account (30), we arrive at an ordinary differential equation for ψ = ψ(y):

C1(ψ′

y)2 − (C1ψ + C3)ψ′′

yy = ψ(n)
y . (31)

Formulas (25) and (30) together with equation (31) determine an exact solution of equation (24).

Example 8. The two-dimensional stationary equations of motion of a viscous incompressible fluid are reduced to a
single fourth-order nonlinear equation for the stream function (see Loitsyanskiy, 1996):

∂w

∂y

∂

∂x
(∆w) −

∂w

∂x

∂

∂y
(∆w) = ν∆∆w, ∆w =

∂2w

∂x2 +
∂2w

∂y2 . (32)

We seek exact separable solutions of equation (32) in the form

w = f (x) + g(y). (33)
Substituting (33) into (32) yields

g
′

yf
′′′

xxx − f ′xg
′′′

yyy = νf ′′′′xxxx + νg′′′′yyyy. (34)
Differentiating (34) with respect to x and y, we obtain

g
′′

yyf
′′′′

xxxx − f ′′xxg
′′′′

yyyy = 0. (35)

Nondegenerate case. If f ′′xx � 0 and g′′yy � 0, we separate the variables in (35) to obtain the ordinary differential equations

f
′′′′

xxxx = Cf ′′xx, (36)
g
′′′′

yyyy = Cg′′yy, (37)
which have different solutions depending on the value of the integration constant C.

1◦. Solutions of equations (36) and (37) for C = 0:

f (x) = A1 + A2x + A3x
2 + A4x

3,

g(y) = B1 + B2y + B3y
2 + B4y

3,
(38)

where the Ak and Bk are arbitrary constants (k = 1, 2, 3, 4). On substituting (38) into (34), we evaluate the integration
constants. Three cases are possible:

A4 = B4 = 0, An,Bn are any numbers (n = 1, 2, 3);
Ak = 0, Bk are any numbers (k = 1, 2, 3, 4);
Bk = 0, Ak are any numbers (k = 1, 2, 3, 4).

The first two sets of constants determine two simple solutions (33) of equation (32):

w = C1x
2 + C2x + C3y

2 + C4y + C5,

w = C1y
3 + C2y

2 + C3y + C4,

where C1, . . . , C5 are arbitrary constants.
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2◦. Solutions of equations (36) and (37) for C = λ2 > 0:

f (x) = A1 + A2x + A3e
λx + A4e

−λx,

g(y) = B1 + B2y + B3e
λy + B4e

−λy.
(39)

Substituting (39) into (34), dividing by λ3, and collecting terms, we obtain

A3(νλ − B2)eλx + A4(νλ + B2)e−λx + B3(νλ + A2)eλy + B4(νλ − A2)e−λy = 0.

Equating the coefficients of the exponentials to zero, we find

A3 = A4 = B3 = 0, A2 = νλ (case 1),
A3 = B3 = 0, A2 = νλ, B2 = −νλ (case 2),
A3 = B4 = 0, A2 = −νλ, B2 = −νλ (case 3).

(The other constants are arbitrary.) These sets of constants determine three solutions (33) of equation (32):

w = C1e
−λy + C2y + C3 + νλx,

w = C1e
−λx + νλx + C2e

−λy − νλy + C3,

w = C1e
−λx − νλx + C2e

λy − νλy + C3,

where C1, C2, C3, and λ are arbitrary constants.

3◦. Solution of equations (36) and (37) for C = −λ2 < 0:

f (x) = A1 + A2x + A3 cos(λx) + A4 sin(λx),
g(y) = B1 + B2y + B3 cos(λy) + B4 sin(λy).

(40)

Substituting (40) into (34) does not yield new real solutions.

Degenerate cases. If f ′′xx ≡ 0 or g′′yy ≡ 0, equation (35) becomes an identity for any g = g(y) or f = f (x), respectively.
These cases should be treated separately from the nondegenerate case. For example, if f ′′

xx ≡ 0, we have f (x) = Ax + B,
where A and B are arbitrary numbers. Substituting this f into (34), we arrive at the equation −Ag′′′yyy = νg′′′′yyyy. Its general
solution is given by g(y) = C1 exp(−Ay/ν) + C2y

2 + C3y + C4. Thus, we obtain another solution (33) of equation (32):

w = C1e
−λy + C2y

2 + C3y + C4 + νλx (A = νλ, B = 0).

Example 9. Consider the second-order nonlinear parabolic equation

∂w

∂t
= aw

∂2w

∂x2 + b
(
∂w

∂x

)2
+ c. (41)

We look for exact separable solutions of equation (41) in the form

w = ϕ(t) + ψ(t)θ(x). (42)
Substituting (42) into (41) and collecting terms yields

ϕ
′

t − c + ψ′

tθ = aϕψθ′′xx + ψ2[
aθθ

′′

xx + b(θ′x)2]. (43)

On dividing this relation by ψ2 and differentiating with respect to t and x, we obtain

(ψ′

t/ψ
2)′tθ

′

x = a(ϕ/ψ)′tθ
′′′

xxx.

Separating the variables, we arrive at the ordinary differential equations

θ
′′′

xxx = Kθ′x, (44)
(ψ′

t/ψ
2)′t = aK(ϕ/ψ)′t, (45)

where K is an arbitrary constant. The general solution of equation (44) is given by

θ =

{
A1x

2 + A2x + A3 if K = 0,
A1e

λx + A2e
−λx + A3 if K = λ2 > 0,

A1 sin(λx) + A2 cos(λx) + A3 if K = −λ2 < 0,
(46)

where A1, A2, and A3 are arbitrary constants. Integrating (45) yields

ψ =
B

t + C1
, ϕ(t) is any if K = 0,

ϕ = Bψ +
1
aK

ψ′

t

ψ
, ψ(t) is any if K ≠ 0,

(47)

whereB is an arbitrary constant. On substituting solutions (46) and (47) into (43), one can “remove” the redundant constants
and define the functions ϕ and ψ. Below we summarize the results.
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1◦. Solution for a ≠ −b and a ≠ −2b:

w =
c(a + 2b)
2(a + b)

(t + C1) + C2(t + C1)− a
a+2b −

(x + C3)2

2(a + 2b)(t + C1)
(corresponds to K = 0),

where C1, C2, and C3 are arbitrary constants.

2◦. Solution for b = −a:

w =
1
aλ2

ψ′

t

ψ
+ ψ(A1e

λx + A2e
−λx) (corresponds to K = λ2 > 0),

where the function ψ = ψ(t) is determined from the autonomous ordinary differential equation

Z
′′

tt = acλ2 + 4a2
λ

4
A1A2e

2Z , ψ = eZ ,

whose solution can be found in implicit form. In the special case A1 = 0 or A2 = 0, we have ψ = C1 exp
( 1

2 acλ
2t2 + C2t

)
.

3◦. Solution for b = −a:

w = −
1
aλ2

ψ′

t

ψ
+ ψ[A1 sin(λx) + A2 cos(λx)] (corresponds to K = −λ2 < 0),

where the function ψ = ψ(t) is determined from the autonomous ordinary differential equation

Z
′′

tt = −acλ2 + a2
λ

4(A2
1 + A2

2)e2Z , ψ = eZ ,

whose solution can be found in implicit form.
Remark. The structure of solutions to equation (41) was obtained by Galaktionov (1995) by a different method (see

Subsection S.4.6, Example 14).���
References for Subsection S.4.3: A. D. Polyanin (2002, Supplement B), A. D. Polyanin and V. F. Zaitsev (2002).

S.4.4. Solution of FunctionalDifferential Equations by Splitting

S.4.4-1. Preliminary remarks. Description of the method.

As one reduces the number of terms in the functional-differential equation (21)–(22) by differentia-
tion, redundant constants of integration arise. These constants must be “removed” at the final stage.
Furthermore, the resulting equation can be of a higher-order than the original equation. To avoid
these difficulties, it is convenient to reduce the solution of the functional-differential equation to the
solution of a bilinear functional equation of a standard form and solution of a system of ordinary
differential equations. Thus, the original problem splits into two simpler problems. Below we
outline the basic stages of the splitting method.

1◦. At the first stage, we treat equation (21) as a purely functional equation that depends on two
variables X and Y , where Φn = Φn(X) and Ψn = Ψn(Y ) are unknown quantities (n = 1, . . . , k).

It can be shown that the bilinear functional equation (21) has k − 1 different solutions:

Φi(X) = Ci,1Φm+1(X) + Ci,2Φm+2(X) + · · · + Ci,k−mΦk(X), i = 1, . . . ,m;
Ψm+j(Y ) = −C1,jΨ1(Y ) − C2,jΨ2(Y ) − · · · − Cm,jΨm(Y ), j = 1, . . . , k − m;

m = 1, 2, . . . , k − 1;
(48)

where the Ci,j are arbitrary constants. The functions Φm+1(X), . . . , Φk(X), Ψ1(Y ), . . . , Ψm(Y )
on the right-hand sides of equations (48) are defined arbitrarily. It is apparent that for fixed m,
solution (48) contains m(k −m) arbitrary constants.

2◦. At the second stage, we successively substitute the Φi(X) and Ψj(Y ) of (22) into all solu-
tions (48) to obtain systems of ordinary differential equations* for the unknown functions ϕp(x)
and ψq(y). Solving these systems, we get generalized separable solutions of the form (19).

Remark 1. It is important that, for fixed k, the bilinear functional equation (21) used in the
splitting method is the same for different classes of original nonlinear mathematical physics equa-
tions.

* Such systems are usually overdetermined.
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Original equation: ( , , , ,F x  y  w  wx w w w wy xx xy yy, , , , ...) = 0

Define solution structure: = ( ) ( ) + ... +w x y1 1j y j yn n( ) ( )x y

Write out the functional-differential equation

Obtain: (i) functional equation, (ii) determining system of ODEs

Solve the functional equation: ( ) ( ) + ... +1 1x yF Y F Yk kx y(( ) ) = 0

Solve the determining system of ordinary differential equations

Write out generalized separable solution of original equation

Search for generalized
separable solutions

Substitute into
original equation

Apply splitting
procedure

Treat functional
equation (i)

Substitute the and

in determining system (ii)

F Y
m m

Find the and from the

determining system of ODEs

j y
m m

Figure 1. General scheme for constructing generalized separable solutions by the splitting method. Abbreviation: ODE
stands for ordinary differential equation.

Remark 2. For fixedm, solution (48) containsm(k −m) arbitrary constants Ci,j . Given k, the
solutions having the maximum number of arbitrary constants are defined by

Solution number Number of arbitrary constants Conditions on k

m = 1
2 k

1
4 k

2 if k is even,

m = 1
2 (k � 1) 1

4 (k2 − 1) if k is odd.
It is these solutions of the bilinear functional equation that most frequently result in nontrivial
generalized separable solution in nonlinear partial differential equations.

Remark 3. The bilinear functional equation (21) and its solutions (48) play an important role
in the method of functional separation of variables.

For visualization, the main stages of constructing generalized separable solutions by the splitting
method are displayed in Fig. 1.

S.4.4-2. Solutions of simple functional equations and their application.

Below we give solutions to two simple bilinear functional equations of the form (21) that will be
used subsequently for solving specific nonlinear partial differential equations.

1◦. The functional equation
Φ1Ψ1 + Φ2Ψ2 + Φ3Ψ3 = 0, (49)

where the Φi are all functions of the same argument and the Ψi are all functions of another argument,
has two solutions:

Φ1 = A1Φ3, Φ2 = A2Φ3, Ψ3 = −A1Ψ1 −A2Ψ2;
Ψ1 = A1Ψ3, Ψ2 = A2Ψ3, Φ3 = −A1Φ1 −A2Φ2.

(50)
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The arbitrary constants are renamed as follows: A1 = C1,1 and A2 = C2,1 in the first solution, and
A1 = −1/C1,2 and A2 = C1,1/C1,2 in the second solution. The functions on the right-hand sides of
the equations in (50) are assumed to be arbitrary.

2◦. The functional equation

Φ1Ψ1 + Φ2Ψ2 + Φ3Ψ3 + Φ4Ψ4 = 0, (51)

where the Φi are all functions of the same argument and the Ψi are all functions of another argument,
has a solution

Φ1 = A1Φ3 +A2Φ4, Φ2 = A3Φ3 +A4Φ4,
Ψ3 = −A1Ψ1 −A3Ψ2, Ψ4 = −A2Ψ1 −A4Ψ2

(52)

dependent on four arbitrary constants A1, . . . , A4; see solution (48) with k = 4, m = 2, C1,1 = A1,
C1,2 = A2, C2,1 = A3, and C2,2 = A4. The functions on the right-hand sides of the equations in (50)
are assumed to be arbitrary.

Equation (51) has also two other solutions

Φ1 = A1Φ4, Φ2 = A2Φ4, Φ3 = A3Φ4, Ψ4 = −A1Ψ1 −A2Ψ2 −A3Ψ3;
Ψ1 = A1Ψ4, Ψ2 = A2Ψ4, Ψ3 = A3Ψ4, Φ4 = −A1Φ1 −A2Φ2 −A3Φ3

(53)

involving three arbitrary constants. In the first solution, A1 = C1,1, A2 = C2,1, and A3 = C3,1, and in
the second solution, A1 = −1/C1,3, A2 = C1,1/C1,3, and A3 = C1,2/C1,3.

Solutions (53) will sometimes be called degenerate, to emphasize the fact that they contain fewer
arbitrary constants than solution (52).

Example 10. Consider the nonlinear hyperbolic equation

∂2w

∂t2
= a

∂

∂x

(
w
∂w

∂x

)
+ f (t)w + g(t), (54)

where f (t) and g(t) are arbitrary functions. We look for generalized separable solutions of the form

w(x, t) = ϕ(x)ψ(t) + χ(t). (55)
Substituting (55) into (54) and collecting terms yields

aψ
2(ϕϕ′

x)′x + aψχϕ′′

xx + (fψ − ψ′′

tt)ϕ + fχ + g − χ′′

tt = 0.

This equation can be represented as a functional equation (51) in which

Φ1 = (ϕϕ′

x)′x, Φ2 = ϕ′′

xx, Φ3 = ϕ, Φ4 = 1,

Ψ1 = aψ2, Ψ2 = aψχ, Ψ3 = fψ − ψ′′

tt, Ψ4 = fχ + g − χ′′

tt.
(56)

On substituting (56) into (52), we obtain the following overdetermined system of ordinary differential equations for the
functions ϕ = ϕ(x), ψ = ψ(t), and χ = χ(t):

(ϕϕ′

x)′x = A1ϕ + A2, ϕ
′′

xx = A3ϕ + A4,

fψ − ψ′′

tt = −A1aψ
2 − A3aψχ, fχ + g − χ′′

tt = −A2aψ
2 − A4aψχ.

(57)

The first two equations in (57) are consistent only if

A1 = 6B2, A2 = B2
1 − 4B0B2, A3 = 0, A4 = 2B2, (58)

where B0, B1, and B2 are arbitrary constants, and the solution is given by

ϕ(x) = B2x
2 + B1x + B0. (59)

On substituting the expressions (58) into the last two equations in (57), we obtain the following system of equations for ψ(t)
and χ(t):

ψ
′′

tt = 6aB2ψ
2 + f (t)ψ,

χ
′′

tt = [2aB2ψ + f (t)]χ + a(B2
1 − 4B0B2)ψ2 + g(t).

(60)

Relations (55), (59) and system (60) determine a generalized separable solution of equation (54). The first equation
in (60) can be solved independently; it is linear if B2 = 0 and is integrable by quadrature for f (t) = const. The second
equation in (60) is linear in χ (for ψ known).

Equation (54) does not have other solutions with the form (55) if f and g are arbitrary functions and ϕ � 0, ψ � 0, and
χ � 0.
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Remark. It can be shown that equation (54) has a more general solution with the form (Galaktionov, 1995)

w(x, y) = ϕ1(x)ψ1(t) + ϕ2(x)ψ2(t) + ψ3(t), ϕ1(x) = x2, ϕ2(x) = x, (61)
where the functions ψi = ψi(t) are determined by the ordinary differential equations

ψ
′′

1 = 6aψ2
1 + f (t)ψ1,

ψ
′′

2 = [6aψ1 + f (t)]ψ2 ,

ψ
′′

3 = [2aψ1 + f (t)]ψ3 + aψ2
2 + g(t).

(62)

(The prime denotes a derivative with respect to t.) The second equation in (62) has a particular solution ψ2 = ψ1. Hence, its
general solution can be represented as (see Polyanin and Zaitsev, 2003)

ψ2 = C1ψ1 + C2ψ1

∫
dt

ψ2
1

.

The solution obtained in Example 10 corresponds to the special case C2 = 0.

Example 11. Consider the nonlinear equation

∂2w

∂x∂t
+
(
∂w

∂x

)2
− w

∂2w

∂x2 = ν
∂3w

∂x3 , (63)

which arises in hydrodynamics [see 9.3.3.1, equation (2) and 10.3.3.1, equation (4) with f1(t) = 0].
We look for exact solutions of the form

w = ϕ(t)θ(x) + ψ(t). (64)
Substituting (64) into (63) yields

ϕ
′

tθ
′

x − ϕψθ′′xx + ϕ2[(θ′x)2 − θθ′′xx
]

− νϕθ′′′xxx = 0.

This functional-differential equation can be reduced to the functional equation (51) by setting

Φ1 = ϕ′

t, Φ2 = ϕψ, Φ3 = ϕ2, Φ4 = νϕ,

Ψ1 = θ′x, Ψ2 = −θ′′xx, Ψ3 = (θ′x)2 − θθ′′xx, Ψ4 = −θ′′′xxx.
(65)

On substituting these expressions into (52), we obtain the system of equations

ϕ
′

t = A1ϕ
2 + A2νϕ, ϕψ = A3ϕ

2 + A4νϕ,

(θ′x)2 − θθ′′xx = −A1θ
′

x + A3θ
′′

xx, θ
′′′

xxx = A2θ
′

x − A4θ
′′

xx.
(66)

It can be shown that the last two equations in (66) are consistent only if the function θ and its derivative are linearly
dependent,

θ
′

x = B1θ + B2. (67)
The six constants B1, B2, A1, A2, A3, and A4 must satisfy the three conditions

B1(A1 + B2 − A3B1) = 0,
B2(A1 + B2 − A3B1) = 0,

B
2
1 + A4B1 − A2 = 0.

(68)

Integrating (67) yields

θ =

{
B3 exp(B1x) −

B2

B1
if B1 ≠ 0,

B2x + B3 if B1 = 0,
(69)

where B3 is an arbitrary constant.
The first two equations in (66) lead to the following expressions for ϕ and ψ:

ϕ =





A2ν

C exp(−A2νt) − A1
if A2 ≠ 0,

−
1

A1t + C
if A2 = 0,

ψ = A3ϕ + A4ν, (70)

where C is an arbitrary constant.
Formulas (69), (70) and relations (68) allow us to find the following solutions of equation (63) with the form (64):

w =
x + C1

t + C2
+ C3 if A2 = B1 = 0, B2 = −A1;

w =
C1e

−λx + 1
λt + C2

+ νλ if A2 = 0, B1 = −A4, B2 = −A1 − A3A4;

w = C1e
−λ(x+βνt) + ν(λ + β) if A1 = A3 = B2 = 0, A2 = B2

1 + A4B1;

w =
νβ + C1e

−λx

1 + C2e−νλβt + ν(λ − β) if A1 = A3B1 − B2, A2 = B2
1 + A4B1,

where C1, C2, C3, β, and λ are arbitrary constants (these can be expressed in terms of the Ak and Bk).

Page 708

© 2004 by Chapman & Hall/CRC



S.4. METHOD OF GENERALIZED SEPARATION OF VARIABLES 709

The analysis of the second solution (53) of the functional equation (51) leads to the following two more general solutions
of the differential equation (63):

w =
x

t + C1
+ ψ(t),

w = ϕ(t)e−λx −
ϕ′

t(t)
λϕ(t)

+ νλ,

where ϕ(t) and ψ(t) are arbitrary functions, and C1 and λ are arbitrary constants.���
References for Subsection S.4.4: E. R. Rozendorn (1984), A. D. Polyanin (2002, Supplement B), A. D. Polyanin and

A. I. Zhurov (2002).

S.4.5. Simplified Scheme for Constructing Generalized Separable
Solutions

S.4.5-1. Description of the simplified scheme.

To construct exact solutions of equations (20) with quadratic or power nonlinearities that do not
depend explicitly on x (all fi constant), it is reasonable to use the following simplified approach. As
before, we seek solutions in the form of finite sums (19). We assume that the system of coordinate
functions {ϕi(x)} is governed by linear differential equations with constant coefficients. The most
common solutions of such equations are of the forms

ϕi(x) = xi, ϕi(x) = eλix, ϕi(x) = sin(αix), ϕi(x) = cos(βix). (71)

Finite chains of these functions (in various combinations) can be used to search for separable
solutions (19), where the quantities λi, αi, and βi are regarded as free parameters. The other system
of functions {ψi(y)} is determined by solving the nonlinear equations resulting from substituting (19)
into the equation under consideration.

This simplified approach lacks the generality of the methods outlined in Subsections S.4.2–S.4.4.
However, specifying one of the systems of coordinate functions, {ϕi(x)}, simplifies the procedure
of finding exact solutions substantially. The drawback of this approach is that some solutions of
the form (19) can be overlooked. It is significant that the overwhelming majority of generalized
separable solutions known to date, for partial differential equations with quadratic nonlinearities,
are determined by coordinate functions (71) (usually with n = 2).

S.4.5-2. Examples of constructing exact solutions of higher-order equations.

Below we consider specific examples that illustrate the application of the above simplified scheme
to constructing generalized separable solutions of higher-order nonlinear equations.

Example 12. The equations of a laminar boundary layer on a flat plate are reduced to a single third-order nonlinear
equation for the stream function (see Schlichting, 1981, and Loitsyanskiy, 1996):

∂w

∂y

∂2w

∂x∂y
−
∂w

∂x

∂2w

∂y2 = ν
∂3w

∂y3 . (72)

We look for generalized separable solutions with the form

w(x,y) = xψ(y) + θ(y), (73)

which corresponds to the simplest set of functions ϕ1(x) = x, ϕ2(x) = 1 with n = 2 in formula (19). On substituting (73)
into (72) and collecting terms, we obtain

x[(ψ′)2 − ψψ′′ − νψ′′′] + [ψ′
θ
′ − ψθ′′ − νθ′′′] = 0.

(The prime denotes a derivative with respect to y.) To meet this equation for any x, one should equate both expressions in
square brackets to zero. This results in a system of ordinary differential equations for ψ = ψ(y) and θ = θ(y):

(ψ′)2 − ψψ′′ − νψ′′′ = 0,

ψ
′
θ
′ − ψθ′′ − νθ′′′ = 0.

Page 709

© 2004 by Chapman & Hall/CRC
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For example, this system has an exact solution

ψ =
6ν

y + C1
, θ =

C2

y + C1
+

C3

(y + C1)2 + C4,

where C1, C2, C3, and C4 are arbitrary constants.
Other generalized separable solutions of equation (72) can be found in Subsection 9.3.1; see also Example 7 with n = 3

and f (x) = ν.

Example 13. Consider the nth-order nonlinear equation

∂w

∂y

∂2w

∂x∂y
−
∂w

∂x

∂2w

∂y2 = f (x)
∂nw

∂yn
, (74)

where f (x) is an arbitrary function. In the special case n = 3 with f (x) = ν = const, this equation coincides with the boundary
layer equation (72).

We look for generalized separable solutions of the form

w(x,y) = ϕ(x)eλy + θ(x), (75)

which correspond to the set of functions ψ1(y) = eλy, ψ2(y) = 1 in (19). On substituting (75) into (74) and rearranging
terms, we obtain

λ
2
e
λy
ϕ[θ′x + λn−2

f (x)] = 0.

This equation is met if

θ(x) = −λn−2
∫
f (x) dx + C, ϕ(x) is any, (76)

where C is an arbitrary constant. (The other case, ϕ = 0 and θ is any, is of little interest.) Formulas (75) and (76) define an
exact solution of equation (74),

w(x, y) = ϕ(x)eλy − λn−2
∫
f (x) dx + C, (77)

which involves an arbitrary function ϕ(x) and two arbitrary constants C and λ.
Note that solution (77) with n = 3 and f (x) = const was obtained by Ignatovich (1993) by a more complicated approach.

Example 14. Consider the nth-order nonlinear equation

∂2w

∂x∂t
+
(
∂w

∂x

)2
− w

∂2w

∂x2 = f (t)
∂nw

∂xn
, (78)

where f (t) is an arbitrary function. In the special case n = 3 and f (t) = const, it coincides with equation (63).
We look for exact solutions of the form

w = ϕ(t)eλx + ψ(t). (79)
On substituting (79) into (78), we have

ϕ
′

t − λϕψ = λn−1
f (t)ϕ.

We now solve this equation for ψ and substitute the resulting expression into (79) to obtain a solution of equation (78) in the
form

w = ϕ(t)eλx +
1
λ

ϕ′

t(t)
ϕ(t)

− λn−2
f (t),

where ϕ(t) is an arbitrary function and λ is an arbitrary constant.���
References for Subsection S.4.5: A. D. Polyanin (2002, Supplement B), A. D. Polyanin and V. F. Zaitsev (2002).

S.4.6. Titov–Galaktionov Method

S.4.6-1. Description of the method. Linear subspaces invariant under a nonlinear operator.

Consider the nonlinear evolution equation

∂w

∂t
= F [w], (80)

where F [w] is a differential operator of the form

F [w] ≡ F
(

w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

. (81)
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Definition. A finite-dimensional linear subspace
� �
k =

{

ϕ1(x), . . . ,ϕk(x)
}

(82)

formed by linear combinations of linearly independent functionsϕ1(x), . . . ,ϕk(x) is called invariant
under the operator F if F [

� �
k] ⊆

� �
k. This means that there exist functions f1, . . . , fk such that

F

[ k
∑

i=1

Ciϕi(x)
]

=
k
∑

i=1

fi(C1, . . . ,Ck)ϕi(x) (83)

for arbitrary constants C1, . . . ,Ck.

Let the linear subspace (82) be invariant under the operator F . Then equation (80) possesses
generalized separable solutions of the form

w(x, t) =
k
∑

i=1

ψi(t)ϕi(x). (84)

Here, the functionsψ1(t), . . . ,ψk(t) are described by the autonomous system of ordinary differential
equations

ψ′

i = fi(ψ1, . . . ,ψk), i = 1, . . . , k, (85)

where the prime denotes a derivative with respect to t.
The following example illustrates the scheme for constructing generalized separable solutions.
Example 15. Consider the nonlinear second-order parabolic equation

∂w

∂t
= a

∂2w

∂x2 +
(
∂w

∂x

)2
+ kw2 + bw + c. (86)

Obviously, the nonlinear differential operator F [w] = awxx + (wx)2 + kw2 + bw + c for k > 0 has a two-dimensional
invariant subspace

� �
2 =
{

1, cos(x
√

k )
}

. Indeed, for arbitrary C1 and C2 we have

F
[
C1 + C2 cos(x

√

k )
]

= k(C2
1 + C2

2 ) + bC1 + c + C2(2kC1 − ak + b) cos(x
√

k ).

Therefore, there is a generalized separable solution of the form

w(x, t) = ψ1(t) + ψ2(t) cos(x
√

k ), (87)
where the functions ψ1(t) and ψ2(t) are determined by the autonomous system of ordinary differential equations

ψ
′

1 = k(ψ2
1 + ψ2

2 ) + bψ1 + c,

ψ
′

2 = ψ2(2kψ1 − ak + b).
(88)

Remark 1. For k > 0, the nonlinear differential operator F [w] has a three-dimensional invariant subspace� �
3 =
{

1, sin(x
√

k ), cos(x
√

k )
}

.

Remark 2. For k < 0, the nonlinear differential operator F [w] has a three-dimensional invariant subspace� �
3 =
{

1, sinh(x
√

k ), cosh(x
√

k )
}

.

Remark 3. A more general equation (86), with a=a(t), b= b(t), and c= c(t) being arbitrary functions, and k = const < 0,
also admits a generalized separable solution of the form (87), where the functions ψ1(t) and ψ2(t) are determined by the
system of ordinary differential equations (88).

S.4.6-2. Some generalizations.

Likewise, one can consider a more general equation of the form

L1[w] = L2[U ], U = F [w], (89)

where L1[w] and L2[U ] are linear differential operators with respect to t,

L1[w] ≡
m1
∑

i=0

ai(t)
∂iw

∂ti
, L2[U ] ≡

m2
∑

j=0

bj(t)
∂jU

∂tj
, (90)
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and F [w] is a nonlinear differential operator with respect to x,

F [w] ≡ F
(

t,w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

, (91)

and may depend on t as a parameter.
Let the linear subspace (82) be invariant under the operator F , i.e., for arbitrary constants

C1, . . . ,Ck the following relation holds:

F

[ k
∑

i=1

Ciϕi(x)
]

=
k
∑

i=1

fi(t,C1, . . . ,Ck)ϕi(x). (92)

Then equation (89) possesses generalized separable solutions of the form (84), where the
functions ψ1(t), . . . ,ψk(t) are described by the system of ordinary differential equations

L1
[

ψi(t)
]

= L2
[

fi(t,ψ1, . . . ,ψk)
]

, i = 1, . . . , k. (93)

Example 16. Consider the equation

a2(t)
∂2w

∂t2
+ a1(t)

∂w

∂t
=
∂w

∂x

∂2w

∂x2 , (94)

which, in the special case of a2(t) = k2 and a1(t) = k1/t, is used for describing transonic gas flows (where t plays the role
of a spatial variable).

Equation (94) is a special case of equation (89), where L1[w] = a2(t)wtt + a1(t)wt, L2[U ] = U , and F [w] = wxwxx.
It can be shown that the nonlinear differential operator F [w] = wxwxx admits the three-dimensional invariant subspace� �

3 =
{

1, x3/2,x3}. Therefore, equation (94) possesses generalized separable solutions of the form

w(x, t) = ψ1(t) + ψ2(t)x3/2 + ψ3(t)x3,

where the functions ψ1(t), ψ2(t), and ψ3(t) are described by the system of ordinary differential equations

a2(t)ψ′′

1 + a1(t)ψ′

1 = 9
8ψ

2
2 ,

a2(t)ψ′′

2 + a1(t)ψ′

2 = 45
4 ψ2ψ3,

a2(t)ψ′′

3 + a1(t)ψ′

3 = 18ψ2
3 .

Remark. The operator F [w] also has a four-dimensional invariant subspace
� �

4 =
{

1,x,x2,x3}, which corresponds
to a generalized separable solution of the form

w(x, t) = ψ1(t) + ψ2(t)x + ψ3(t)x2 + ψ4(t)x3.

See also Example 17 with a0(t) = 0, k = 1, and n = 2.

Example 17. Consider the more general nth-order equation

a2(t)
∂2w

∂t2
+ a1(t)

∂w

∂t
+ a0(t)w =

(
∂w

∂x

)k
∂nw

∂xn
. (95)

The nonlinear operator F [w] = (wx)kw(n)
x has a two-dimensional invariant subspace

� �
2 =
{

1,ϕ(x)
}

, where the function
ϕ(x) is determined by the autonomous ordinary differential equation (ϕ′

x)kϕ(n)
x = ϕ. Therefore, equation (95) possesses

generalized separable solutions of the form

w(x, t) = ψ1(t) + ψ2(t)ϕ(x),

where the functions ψ1(t) and ψ2(t) are described by two independent ordinary differential equations

a2(t)ψ′′

1 + a1(t)ψ′

1 + a0(t)ψ1 = 0,

a2(t)ψ′′

2 + a1(t)ψ′

2 + a0(t)ψ2 = ψk+1
2 .

Many other examples of this type, as well as some modifications and generalizations of the
method described here, can be found in the literature cited below. The basic difficulty of using the
Titov–Galaktionov method for the construction of exact solutions of specific equations consists in
finding linear subspaces which are invariant under a given nonlinear operator. Moreover, the original
equation may be of a different type than the equations considered here (it is not always possible to
single out a suitable nonlinear operator F [w]).�� 

References for Subsection S.4.6: S. S. Titov (1988), V. A. Galaktionov and S. A. Posashkov (1994), V. A. Galaktionov
(1995), V. A. Galaktionov, S. A. Posashkov, and S. R. Svirshchevskii (1995), S. R. Svirshchevskii (1995, 1996).
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S.5. Method of Functional Separation of Variables
S.5.1. Structure of Functional Separable Solutions
Suppose a nonlinear equation forw =w(x, y) is obtained from a linear mathematical physics equation
for z = z(x, y) by a nonlinear change of variable w = F (z). Then, if the linear equation for z admits
separable solutions, the transformed nonlinear equation for w will have exact solutions of the form

w(x, y) = F (z), where z =
n
∑

m=1

ϕm(x)ψm(y). (1)

It is noteworthy that many nonlinear partial differential equations that are not reducible to linear
equations have exact solutions of the form (1) as well. We will call such solutions functional
separable solutions. In general, the functions ϕm(x), ψm(y), and F (z) in (1) are not known in
advance and are to be identified.

Main idea: the functional-differential equation resulting from the substitution of (1) in the origi-
nal partial differential equation should be reduced to the standard bilinear functional equation (21) of
Subsection S.4.2, or to a functional-differential equation of the form (21)–(22) of Subsection S.4.2.

Remark 1. In functional separation of variables, searching for solutions in the forms w =
F
(

ϕ(x) + ψ(y)
)

and w = F
(

ϕ(x)ψ(y)
)

leads to equivalent results, because the two forms are
functionally equivalent. Indeed, we have F

(

ϕ(x)ψ(y)
)

= F1
(

ϕ1(x) +ψ1(y)
)

, where F1(z) = F (ez),
ϕ1(x) = lnϕ(x), and ψ1(y) = lnψ(y).

Remark 2. In constructing functional separable solutions with the form w = F
(

ϕ(x) + ψ(y)
)

,
it is assumed that ϕ ! const and ψ ! const.

Remark 3. The function F (z) can be determined by a single ordinary differential equation or
by an overdetermined system of equations; both possibilities must be taken into account.

S.5.2. Special Functional Separable Solutions

S.5.2-1. Generalized traveling-wave solutions. Examples.

To simplify the analysis, some of the functions in (1) can be specified a priori and the other functions
will be defined in the analysis. We call such solutions special functional separable solutions.

Consider functional separable solutions of the form (1) in the special case where the composite
argument z is linear in one of the independent variables (e.g., in x). We substitute (1) into the
equation under study and eliminate x using the expression of z to obtain a functional-differential
equation with two arguments. In many cases, this equation can be solved by the methods outlined
in Subsections S.4.2–S.4.4.

Below are the simplest functional separable solutions of special forms (x and y can be swapped):

w = F (z), z = ψ1(y)x + ψ2(y) (z is linear in x);

w = F (z), z = ψ1(y)x2 + ψ2(y) (z is quadratic in x);

w = F (z), z = ψ1(y)eλx + ψ2(y) (z contains an exponential of x).

The first solution will be called a generalized traveling-wave solution. In the last formula, eλx can
be replaced by cosh(ax + b), sinh(ax + b), or sin(ax + b) to obtain another three modifications.

After substituting any of the above expressions into the original equation, one should eliminate x
with the help of the expression for z. This will result in a functional-differential equation with two
arguments, y and z. Its solution may be obtained in some cases with the methods outlined in
Subsections S.4.2–S.4.4.
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Original equation: ( , , ,t  w  wxw H w wt xx x= , ..., )
( )n

Define solution structure: = ( ), where = ( ) + ( )w F z z t x tj y

Write out the functional-differential equation in two arguments

Obtain: (i) functional equation, (ii) determining system of ODEs

Solve the functional equation: ( ) ( ) + ... +1 1z tF Y F Y
k k

z t(( ) ) = 0

Solve the determining system of ordinary differential equations

Write out generalized traveling-wave solution of original equation

Search for generalized
traveling-wave solutions

Substitute into original equation

and replace byx z( - )/y j

Apply splitting procedure

Treat functional equation (i)

Substitute the and

in determining system (ii)

F Y
m m

Find the functions , andj  y F

Figure 2. Algorithm for constructing generalized traveling-wave solutions for evolution equations. Abbreviation: ODE
stands for ordinary differential equation.

For visualization, the general scheme for constructing generalized traveling-wave solutions for
evolution equations is displayed in Fig. 2.

Remark 1. The algorithm presented in Fig. 2 can also be used for finding exact solutions of the
more general form w = σ(t)F (z) +ϕ1(t)x +ψ2(t), where z = ϕ1(t)x +ψ2(t). For an example of this
sort of solution, see Subsection S.6.3 (Example 6).

Remark 2. A generalized separable solution (see Section S.4) is a functional separable solution
of the special form corresponding to F (z) = z.

We consider below examples of nonlinear equations that admit functional separable solutions of
the special form where the argument z is linear or quadratic in one of the independent variables.

Example 1. Consider the nonstationary heat equation with a nonlinear source

∂w

∂t
=
∂2w

∂x2 + F (w). (2)

We look for functional separable solutions of the special form

w = w(z), z = ϕ(t)x + ψ(t). (3)

The functions w(z), ϕ(t), ψ(t), and F (w) are to be determined.
On substituting (3) into (2) and on dividing by w′

z , we have

ϕ
′

tx + ψ′

t = ϕ2 w
′′

zz

w′

z

+
F (w)
w′

z

. (4)

We express x from (3) in terms of z and substitute into (4) to obtain a functional-differential equation with two variables,
t and z,

−ψ′

t +
ψ

ϕ
ϕ
′

t −
ϕ′

t

ϕ
z + ϕ2 w

′′

zz

w′

z

+
F (w)
w′

z

= 0,
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which can be treated as the functional equation (51) in Subsection S.4.4 where

Φ1 = −ψ′

t +
ψ

ϕ
ϕ
′

t, Φ2 = −
ϕ′

t

ϕ
, Φ3 = ϕ2, Φ4 = 1,

Ψ1 = 1, Ψ2 = z, Ψ3 =
w′′

zz

w′

z

, Ψ4 =
F (w)
w′

z

.

Substituting these expressions into relations (52) of Subsection S.4.4 yields the system of ordinary differential equations

−ψ′

t +
ψ

ϕ
ϕ
′

t = A1ϕ
2 + A2, −

ϕ′

t

ϕ
= A3ϕ

2 + A4,

w′′

zz

w′

z

= −A1 − A3z,
F (w)
w′

z

= −A2 − A4z,
(5)

where A1, . . . , A4 are arbitrary constants.
Case 1. For A4 ≠ 0, the solution of system (5) is given by

ϕ(t) = "
(
C1e

2A4t −
A3

A4

)−1/2
,

ψ(t) = −ϕ(t)
[
A1

∫
ϕ(t) dt + A2

∫
dt

ϕ(t)
+ C2

]
,

w(z) = C3

∫
exp
(
− 1

2A3z
2 − A1z

)
dz + C4,

F (w) = −C3(A4z + A2) exp
(
− 1

2A3z
2 − A1z

)
,

(6)

where C1, . . . , C4 are arbitrary constants. The dependence F = F (w) is defined by the last two relations in parametric form
(z is considered the parameter). If A3 ≠ 0 in (6), the source function is expressed in terms of elementary functions and the
inverse of the error function.

In the special case A3 = C4 = 0, A1 = −1, and C3 = 1, the source function can be represented in explicit form as

F (w) = −w(A4 lnw + A2). (7)

Solutions of equation (2) in this case were obtained by Dorodnitsyn (1982) with group-theoretic methods.
Case 2. For A4 = 0, the solution to the first two equations in (5) is given by

ϕ(t) = " 1
√

2A3t + C1
, ψ(t) =

C2
√

2A3t + C1
−
A1

A3
−
A2

3A3
(2A3t + C1),

and the solutions to the other equations are determined by the last two formulas in (6) where A4 = 0.

Example 2. Consider the more general equation

∂w

∂t
= a(t)

∂2w

∂x2 + b(t)
∂w

∂x
+ c(t)F (w).

We look for solutions in the form (3). In this case, only the first two equations in system (5) will change, and the functions
w(z) and F (w) will be given by (6).

Example 3. The nonlinear heat equation

∂w

∂t
=
∂

∂x

[
G(w)

∂w

∂x

]
+ F (w)

has also solutions of the form (3). The unknown quantities are governed by system (5) in which w′′

zz must be replaced by
[G(w)w′

z]′z . The functions ϕ(t) and ψ(t) are determined by the first two formulas in (6). One of the two functions G(w) and
F (w) can be assumed arbitrary and the other is identified in the course of the solution. The special case F (w) = const yields
G(w) = C1e

2ke + (C2w + C3)ekw .
Functional separable solutions (3) of the given equation are discussed in more detail in 1.6.15.2, Items 3◦ and 4◦; some

other solutions are also specified there.

Example 4. We can treat the nth-order nonlinear equation

∂w

∂t
=
∂nw

∂xn
+ F (w)

likewise. As before, we look for solutions in the form (3). In this case, the quantities ϕ2 and w′′

zz in (5) must be replaced by
ϕn and w(n)

z , respectively. In particular, for A3 = 0, apart from equations with logarithmic nonlinearities of the form (7), we
obtain other equations.
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Example 5. For the nth-order nonlinear equation

∂w

∂t
=
∂nw

∂xn
+ F (w)

∂w

∂x
,

the search for exact solutions of the form (3) leads to the following system of equations for ϕ(t), ψ(t), w(z), and F (w):

−ψ′

t +
ψ

ϕ
ϕ
′

t = A1ϕ
n + A2ϕ, −

ϕ′

t

ϕ
= A3ϕ

n + A4ϕ,

w
(n)
z

w′

z

= −A1 − A3z, F (w) = −A2 − A4z,

where A1, . . . , A4 are arbitrary constants.
In the case n = 3, we assume A3 = 0 and A1 > 0 to find in particular that F (w) = −A2 − A4 arcsin(kw).
Some functional separable solutions (3) of the given equation can be found in Subsection 11.1.3.

Example 6. In addition, searching for solutions of equation (2) with z quadratically dependent on x,

w = w(z), z = ϕ(t)x2 + ψ(t), (8)

also makes sense here. Indeed, on substituting (8) into (2), we arrive at an equation that contains terms with x2 and does not
contain terms linear in x. Eliminating x2 from the resulting equation with the aid of (8), we obtain

−ψ′

t +
ψ

ϕ
ϕ
′

t + 2ϕ −
ϕ′

t

ϕ
z + 4ϕz

w′′

zz

w′

z

− 4ϕψ
w′′

zz

w′

z

+
F (w)
w′

z

= 0.

To solve this functional-differential equation with two arguments, we apply the splitting method outlined in Subsection S.4.4.
It can be shown that, for equations (2), this equation has a solution with a logarithmic nonlinearity of the form (7).

Example 7. Consider the mth-order nonlinear equation

∂w

∂y

∂2w

∂x∂y
−
∂w

∂x

∂2w

∂y2 = f (x)
(
∂2w

∂y2

)n−1
∂mw

∂ym
,

which, in the special case of f (x) = const and m = 3, describes a boundary layer of a power-law fluid on a flat plate; w is
the stream function, x and y are coordinates along and normal to the plate, and n is a rheological parameter (the value n = 1
corresponds to a Newtonian fluid). Searching for solutions in the form

w = w(z), z = ϕ(x)y + ψ(x),

leads to the equation ϕ′

x(w′

z)2 = f (x)ϕ2n+m−3(w′′

zz)n−1w(m)
z , which is independent of ψ. Separating the variables and

integrating yields

ϕ(x) =
[∫

f (x) dx + C
] 1

4−2n−m
, ψ(x) is arbitrary,

and the function w = w(z) is determined by solving the ordinary differential equation (w′

z)2 = (4 − 2n −m)(w′′

zz)n−1w(m)
z .

Example 8. Consider the equation
∂n+1w

∂xn∂y
= f (w). (9)

We look for functional separable solutions of the special form

w = w(z), z = ϕ(y)x + ψ(y). (10)

We substitute (10) in (9), eliminate x with the expression for z, divide the resulting equation by w(n+1)
z , and rearrange terms

to obtain the functional-differential equation with two arguments

ϕ
n
ψ
′

y − ϕn−1
ψϕ

′

y + ϕn−1
ϕ
′

y

(
z + n

w
(n)
z

w
(n+1)
z

)
−
f (w)

w
(n+1)
z

= 0. (11)

It is reduced to a three-term bilinear functional equation, which has two solutions (see Subsection S.4.4). Accordingly, we
consider two cases.

1◦. First, we set the expression in parentheses and the last fraction in (11) equal to constants. On rearranging terms, we
obtain

(z − C1)w(n+1)
z + nw(n)

z = 0,

C2w
(n+1)
z − f (w) = 0,

ϕ
n
ψ
′

y − ϕn−1
ψϕ

′

y + C1ϕ
n−1

ϕ
′

y − C2 = 0,
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where C1 and C2 are arbitrary constants. Setting C1 = 0, which corresponds to a translation in z and renaming ψ, and
integrating yields

w = A ln |z| + Bn−1z
n−1 + · · · + B1z + B0,

f (w) = AC2n! (−1)nz−n−1 ,

ψ(y) = C2ϕ(y)
∫

dy

[ϕ(y)]n+1 + C3ϕ(y),

(12)

where A, the Bm, and C3 are arbitrary constants and ϕ(y) is an arbitrary function.
The first two formulas in (12) give a parametric representation of f (w). In the special case of Bn−1 = · · · = B0 = 0, on

eliminating z, we arrive at the exponential dependence

f (w) = αeβw, α = AC2n! (−1)n , β = −(n + 1)/A.

By virtue of (12), the corresponding solution of equation (9) will have functional arbitrariness.

2◦. In the second case, (11) splits into three ordinary differential equations:

ϕ
n−1

ϕ
′

y = C1,

ϕ
n
ψ
′

y − ϕn−1
ψϕ

′

y = C2,

(C1z + C2)w(n+1)
z + C1nw

(n)
z − f (w) = 0,

(13)

where C1 and C2 are arbitrary constants. The solutions of the first two equations are given by

ϕ = (C1nt + C3)1/n, ψ = C4(C1nt + C3)1/n −
C2

C1
.

Together with the last equation in (13), these formulas define a self-similar solution of the form (10).#�$
References for Subsection S.5.2-1: A. D. Polyanin (2002, Supplement B), A. D. Polyanin and A. I. Zhurov (2002),

A. D. Polyanin and V. F. Zaitsev (2002).

S.5.2-2. Solution by reduction to equations with quadratic (or power) nonlinearities.

In some cases, solutions of the form (1) can be searched for in two stages. First, one looks for a
transformation that would reduce the original equation to an equation with a quadratic (or power)
nonlinearity. Then the methods outlined in Subsections S.4.2–S.4.4 are used for finding solutions
of the resulting equation.

Sometimes, quadratically nonlinear equations can be obtained using the substitutions

w(z) = zλ (for equations with power nonlinearities),
w(z) = λ ln z (for equations with exponential nonlinearities),

w(z) = eλz (for equations with logarithmic nonlinearities),

where λ is a constant to be determined. This approach is equivalent to specifying the form of the
function F (z) in (1) a priori.

Galaktionov and Posashkov (1989, 1994) and Galaktionov (1995) describe a large number of
nonlinear equations of different type that can be reduced with similar transformations to equations
with quadratic nonlinearities.

Example 9. The nonlinear heat equation with a logarithmic source

∂w

∂t
= a

∂2w

∂x2 + f (t)w lnw + g(t)w

can be reduced by the change of variable w = ez to the quadratically nonlinear equation

∂z

∂t
= a

∂2z

∂x2 + a
(
∂z

∂x

)2
+ f (t)z + g(t),

which admits separable solutions with the form

z = ϕ1(x)ψ1(t) + ϕ2(x)ψ2(t) + ψ3(t),

where ϕ1(x) = x2 and ϕ2(x) = x, and the functions ψk(t) are determined by an appropriate system of ordinary differential
equations.#�$

References for Subsection S.5.2-2: V. A. Galaktionov and S. A. Posashkov (1989, 1994), V. A. Galaktionov (1995),
A. D. Polyanin (2002, Supplement B), A. D. Polyanin and V. F. Zaitsev (2002).
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718 EXACT METHODS FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

S.5.3. Differentiation Method

S.5.3-1. Basic ideas of the method. Reduction to a standard equation.

In general, the substitution of expression (1) into the nonlinear partial differential equation under
study leads to a functional-differential equation with three arguments—two arguments are usual,
x and y, and the third is composite, z. In many cases, the resulting equation can be reduced by
differentiation to a standard functional-differential equation with two arguments (either x or y is
eliminated). To solve the two-argument equation, one can use the methods outlined in Subsec-
tions S.4.2–S.4.4.

S.5.3-2. Examples of constructing functional separable solutions.

Below we consider specific examples illustrating the application of the differentiation method for
constructing functional separable solutions of nonlinear equations.

Example 10. Consider the nonlinear heat equation

∂w

∂t
=
∂

∂x

[
F (w)

∂w

∂x

]
. (14)

We look for exact solutions with the form

w = w(z), z = ϕ(x) + ψ(t). (15)

On substituting (15) into (14) and dividing by w′

z, we obtain the functional-differential equation with three variables

ψ
′

t = ϕ′′

xxF (w) + (ϕ′

x)2
H(z), (16)

where

H(z) = F (w)
w′′

zz

w′

z

+ F

′

z(w), w = w(z). (17)

Differentiating (16) with respect to x yields

ϕ
′′′

xxxF (w) + ϕ′

xϕ
′′

xx[F ′

z(w) + 2H(z)] + (ϕ′

x)3
H

′

z = 0. (18)

This functional-differential equation with two variables can be treated as the functional equation (49) of Subsection S.4.4.
This three-term functional equation has two different solutions. Accordingly, we consider two cases.

Case 1. The solutions of the functional-differential equation (18) are determined from the system of ordinary differential
equations

F

′

z + 2H = 2A1F , H
′

z = A2F ,

ϕ
′′′

xxx + 2A1ϕ
′

xϕ
′′

xx + A2(ϕ′

x)3 = 0,
(19)

where A1 and A2 are arbitrary constants.
The first two equations (19) are linear and independent of the third equation. Their general solution is given by

F =





eA1z(B1e
kz + B2e

−kz) if A2
1 > 2A2,

eA1z(B1 + B2z) if A2
1 = 2A2,

eA1z[B1 sin(kz) + B2 cos(kz)] if A2
1 < 2A2,

H = A1F − 1
2 F

′

z , k =
√

|A2
1 − 2A2 |. (20)

Substituting H of (20) into (17) yields an ordinary differential equation for w = w(z). On integrating this equation, we
obtain

w = C1

∫
e
A1z |F (z)|−3/2

dz + C2, (21)

where C1 and C2 are arbitrary constants. The expression of F in (20) together with expression (21) define the function
F = F (w) in parametric form.

Without full analysis, we will study the case A2 = 0 (k = A1) and A1 ≠ 0 in more detail. It follows from (20) and (21)
that

F (z) = B1e
2A1z + B2, H = A1B2, w(z) = C3(B1 + B2e

−2A1z)−1/2 + C2 (C1 = A1B2C3). (22)
Eliminating z yields

F (w) =
B2C

2
3

C2
3 − B1w2 . (23)
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The last equation in (19) with A2 = 0 has the first integral ϕ′′

xx + A1(ϕ′

x)2 = const. The corresponding general solution is
given by

ϕ(x) = −
1

2A1
ln
[
D2

D1

1
sinh2(A1

√

D2 x + D3
)
]

for D1 > 0 and D2 > 0;

ϕ(x) = −
1

2A1
ln
[

−
D2

D1

1
cos2

(
A1

√

−D2 x + D3
)
]

for D1 > 0 and D2 < 0;

ϕ(x) = −
1

2A1
ln
[

−
D2

D1

1
cosh2(A1

√

D2 x + D3
)
]

for D1 < 0 and D2 > 0;

(24)

where D1, D2, and D3 are constants of integration. In all three cases, the following relations hold:

(ϕ′

x) = D1e
−2A1ϕ + D2, ϕ

′′

xx = −A1D1e
−2A1ϕ. (25)

We substitute (22) and (25) into the original functional-differential equation (16). With reference to the expression of z
in (15), we obtain the following equation for ψ = ψ(t):

ψ
′

t = −A1B1D1e
2A1ψ + A1B2D2.

Its general solution is given by

ψ(t) =
1

2A1
ln

B2D2

D4 exp(−2A2
1B2D2t) + B1D1

, (26)

where D4 is an arbitrary constant.
Formulas (15), (22) forw, (24), and (26) define three solutions of the nonlinear equation (14) with F (w) of the form (23)

[recall that these solutions correspond to the special case A2 = 0 in (20) and (21)].

Case 2. The solutions of the functional-differential equation (18) are determined from the system of ordinary differential
equations

ϕ
′′′

xxx = A1(ϕ′

x)3, ϕ
′

xϕ
′′

xx = A2(ϕ′

x)3,

A1F + A2(F ′

z + 2H) + H′

z = 0.
(27)

The first two equations in (27) are consistent in the two cases

A1 = A2 = 0 =⇒ ϕ(x) = B1x + B2,

A1 = 2A2
2 =⇒ ϕ(x) = −

1
A2

ln |B1x + B2 |.
(28)

The first solution in (28) eventually leads to the traveling-wave solution w = w(B1x +B2t) of equation (14) and the second
solution to the self-similar solution of the form w = w̃(x2/t). In both cases, the function F (w) in (14) is arbitrary.%�&

References: P. W. Doyle and P. J. Vassiliou (1998), A. D. Polyanin (2002, Supplement B), A. D. Polyanin and V. F. Zaitsev
(2002).

Remark. The more general nonlinear heat equation

∂w

∂t
=
∂

∂x

[
F (w)

∂w

∂x

]
+ G(w)

has also solutions of the form (15). For the unknown functions ϕ(x) and ψ(t), we have the functional-differential equation
in three variables

ψ
′

t = ϕ′′

xxF (w) + (ϕ′

x)2
H(z) + G(w)/w′

z,

where w = w(z) and H(z) is defined by (17). Differentiating with respect to x yields

ϕ
′′′

xxxF (w) + ϕ′

xϕ
′′

xx[F ′

z (w) + 2H(z)] + (ϕ′

x)3
H

′

z + ϕ′

x[G(w)/w′

z]′z = 0.

This functional-differential equation in two variables can be treated as the bilinear functional equation (51) of Subsection S.4.4
with Φ1 = ϕ′′′

xxx, Φ2 = ϕ′

xϕ
′′

xx, Φ3 = (ϕ′

x)3, and Φ4 = ϕ′

x.
See also Estévez, Qu, and Zhang (2002), where a more general equation was considered.

Example 11. Consider the nonlinear Klein–Gordon equation

∂2w

∂t2
−
∂2w

∂x2 = F (w). (29)

We look for functional separable solutions in additive form:

w = w(z), z = ϕ(x) + ψ(t). (30)
Substituting (30) into (29) yields

ψ
′′

tt − ϕ′′

xx +
[
(ψ′

t)
2 − (ϕ′

x)2]
g(z) = h(z), (31)

where
g(z) = w′′

zz/w
′

z , h(z) = F

(
w(z)

)
/w

′

z. (32)
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720 EXACT METHODS FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

On differentiating (31) first with respect to t and then with respect to x and on dividing by ψ′

tϕ
′

x, we have

2(ψ′′

tt − ϕ′′

xx) g′z +
[
(ψ′

t)
2 − (ϕ′

x)2]
g
′′

zz = h′′zz.

Eliminating ψ′′

tt − ϕ′′

xx from this equation with the aid of (31), we obtain
[
(ψ′

t)
2 − (ϕ′

x)2](g′′zz − 2gg′z) = h′′zz − 2g′zh. (33)
This relation holds in the following cases:

g
′′

zz − 2gg′z = 0, h
′′

zz − 2g′zh = 0 (case 1),

(ψ′

t)
2 = Aψ + B, (ϕ′

x)2 = −Aϕ + B − C, h
′′

zz − 2g′zh = (Az + C)(g′′zz − 2gg′z) (case 2),
(34)

where A, B, and C are arbitrary constants. We consider both cases.

Case 1. The first two equations in (34) enable one to determine g(z) and h(z). Integrating the first equation once yields
g′z = g2 + const. Further, the following cases are possible:

g = k, (35a)
g = −1/(z + C1), (35b)
g = −k tanh(kz + C1), (35c)
g = −k coth(kz + C1), (35d)
g = k tan(kz + C1), (35e)

where C1 and k are arbitrary constants.
The second equation in (34) has a particular solution h = g(z). Hence, its general solution in expressed by (e.g., see

Polyanin and Zaitsev (2003))

h = C2g(z) + C3g(z)
∫

dz

g2(z)
, (36)

where C2 and C3 are arbitrary constants.
The functions w(z) and F (w) are found from (32) as

w(z) = B1

∫
G(z) dz + B2, F (w) = B1h(z)G(z), where G(z) = exp

[∫
g(z) dz

]
, (37)

and B1 and B2 are arbitrary constants (F is defined parametrically).
Let us dwell on the case (35b). According to (36),

h = A1(z + C1)2 +
A2

z + C1
, (38)

where A1 = −C3/3 and A2 = −C2 are any numbers. Substituting (35b) and (38) into (37) yields

w = B1 ln |z + C1 | + B2, F = A1B1(z + C1) +
A2B1

(z + C1)2 .

Eliminating z, we arrive at the explicit form of the right-hand side of equation (29):

F (w) = A1B1e
u + A2B1e

−2u, where u =
w − B2

B1
. (39)

For simplicity, we set C1 = 0, B1 = 1, and B2 = 0 and denote A1 = a and A2 = b. Thus, we have

w(z) = ln |z|, F (w) = aew + be−2w , g(z) = −1/z, h(z) = az2 + b/z. (40)
It remains to determine ψ(t) and ϕ(x). We substitute (40) into the functional-differential equation (31). Taking into

account (30), we find

[ψ′′

ttψ − (ψ′

t)
2 − aψ3 − b] − [ϕ′′

xxϕ − (ϕ′

x)2 + aϕ3] + (ψ′′

tt − 3aψ2)ϕ − ψ(ϕ′′

xx + 3aϕ2) = 0. (41)
Differentiating (41) with respect to t and x yields the separable equation*

(ψ′′′

ttt − 6aψψ′

t)ϕ
′

x − (ϕ′′′

xxx + 6aϕϕ′

x)ψ′

t = 0,

whose solution is determined by the ordinary differential equations

ψ
′′′

ttt − 6aψψ′

t = Aψ′

t,

ϕ
′′′

xxx + 6aϕϕ′

x = Aϕ′

x,

where A is the separation constant. Each equation can be integrated twice, thus resulting in

(ψ′

t)
2 = 2aψ3 + Aψ2 + C1ψ + C2,

(ϕ′

x)2 = −2aϕ3 + Aϕ2 + C3ϕ + C4,
(42)

* To solve equation (41), one can use the solution of equation (51) in Subsection S.4.4 [see (52)].
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TABLE 17
Nonlinear Klein–Gordon equations ∂ttw − ∂xxw = F (w) admitting functional separable solutions of the form w = w(z),

z = ϕ(x) + ψ(t). Notation: A, C1, and C2 are arbitrary constants; σ = 1 for z > 0 and σ = −1 for z < 0

No. Right-hand side F (w) Solution w(z) Equations for ψ(t) and ϕ(x)

1 aw lnw + bw ez
(ψ′

t)
2 = C1e

−2ψ + aψ − 1
2 a + b +A,

(ϕ′

x)2 = C2e
−2ϕ − aϕ + 1

2 a +A

2 aew + be−2w ln |z|
(ψ′

t)
2 = 2aψ3 +Aψ2 +C1ψ +C2,

(ϕ′

x)2 = −2aϕ3 +Aϕ2 −C1ϕ +C2 + b

3 a sinw + b
(

sinw ln tan
w

4
+ 2 sin

w

4

)
4 arctan ez

(ψ′

t)
2 = C1e

2ψ +C2e
−2ψ + bψ + a +A,

(ϕ′

x)2 = −C2e
2ϕ −C1e

−2ϕ − bϕ +A

4 a sinhw + b
(

sinhw ln tanh
w

4
+ 2 sinh

w

2

)
2 ln
∣∣∣∣coth

z

2

∣∣∣∣
(ψ′

t)
2 = C1e

2ψ +C2e
−2ψ − σbψ + a +A,

(ϕ′

x)2 = C2e
2ϕ +C1e

−2ϕ + σbϕ +A

5 a sinhw + 2b
(

sinhw arctan ew/2 + cosh
w

2

)
2 ln
∣∣∣∣tan

z

2

∣∣∣∣
(ψ′

t)
2 = C1 sin 2ψ +C2 cos 2ψ + σbψ + a +A,

(ϕ′

x)2 = −C1 sin 2ϕ +C2 cos 2ϕ − σbϕ +A

where C1, . . . ,C4 are arbitrary constants. Eliminating the derivatives from (41) with the aid of (42), we find that the arbitrary
constants are related by C3 = −C1 and C4 = C2 + b. So, the functions ψ(t) and ϕ(x) are determined by the first-order
nonlinear autonomous equations

(ψ′

t)
2 = 2aψ3 + Aψ2 + C1ψ + C2,

(ϕ′

x)2 = −2aϕ3 + Aϕ2 − C1ϕ + C2 + b.
The solutions of these equations are expressed in terms of elliptic functions.

For the other cases in (35), the analysis is performed in a similar way. Table 17 presents the final results for the cases
(35a)–(35e).

Case 2. Integrating the third and fourth equations in (34) yields

ψ = ' √B t + D1, ϕ = ' √B − C t + D2 if A = 0;

ψ =
1

4A
(At + D1)2 −

B

A
, ϕ = −

1
4A

(Ax + D2)2 +
B − C
A

if A ≠ 0;
(43)

where D1 and D2 are arbitrary constants. In both cases, the function F (w) in equation (29) is arbitrary. The first row in (43)
corresponds to the traveling wave solution w = w(kx + λt). The second row leads to a solution of the form w = w(x2 − t2).(�)

References: A. M. Grundland and E. Infeld (1992), J. Miller and L. A. Rubel (1993), R. Z. Zhdanov (1994), V. K. Andreev,
O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).

Example 12. The nonlinear stationary heat (diffusion) equation

∂2w

∂x2 +
∂2w

∂y2 = F (w)

is analyzed in much the same way as the nonlinear Klein–Gordon equation considered in Example 11. The final results are
listed in Table 18; the traveling wave solutions w = w(kx + λt) and solutions of the form w = w(x2 + y2), existing for
any F (w), are omitted.(�)

References: A. M. Grundland and E. Infeld (1992), J. Miller and L. A. Rubel (1993), R. Z. Zhdanov (1994), V. K. Andreev,
O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).

S.5.4. Splitting Method. Reduction to a Functional Equation with
Two Variables

S.5.4-1. Splitting method. Reduction to a standard functional equation.

The procedure for constructing functional separable solutions,which is based on the splitting method,
involves several stages outlined below.

1◦. Substitute expression (1) into the nonlinear partial differential equation under study. This results
in a functional-differential equation with three arguments—the first two are usual, x and y, and the
third is composite, z.
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TABLE 18
Nonlinear equations ∂xxw + ∂yyw = F (w) admitting functional separable solutions of the form w = w(z),
z = ϕ(x) + ψ(y). Notation: A, C1, and C2 are arbitrary constants; σ = 1 for z > 0, σ = −1 for z < 0

No. Right-hand side F (w) Solution w(z) Equations for ϕ(x) and ψ(y)

1 aw lnw + bw ez
(ϕ′

x)2 =C1e
−2ϕ + aϕ − 1

2 a + b +A,

(ψ′

y)2 =C2e
−2ψ + aψ − 1

2 a −A

2 aew + be−2w ln |z|
(ϕ′

x)2 = 2aϕ3 +Aϕ2 +C1ϕ +C2,

(ψ′

y)2 = 2aψ3 −Aψ2 +C1ψ −C2 − b

3 a sinw + b
(

sinw ln tan
w

4
+ 2 sin

w

4

)
4 arctan ez

(ϕ′

x)2 =C1e
2ϕ +C2e

−2ϕ + bϕ + a +A,

(ψ′

y)2 =C2e
2ψ +C1e

−2ψ + bψ −A

4 a sinhw + b
(

sinhw ln tanh
w

4
+ 2 sinh

w

2

)
2 ln
∣∣∣∣coth

z

2

∣∣∣∣
(ϕ′

x)2 =C1e
2ϕ +C2e

−2ϕ − σbϕ + a +A,

(ψ′

y)2 = −C2e
2ψ −C1e

−2ψ − σbψ −A

5 a sinhw + 2b
(

sinhw arctan ew/2 + cosh
w

2

)
2 ln
∣∣∣∣tan

z

2

∣∣∣∣
(ϕ′

x)2 =C1 sin 2ϕ +C2 cos 2ϕ + σbϕ + a +A,

(ψ′

y)2 =C1 sin 2ψ −C2 cos 2ψ + σbψ −A

2◦. Reduce the functional-differential equation to a purely functional equation with three arguments
x, y, and z with the aid of elementary differential substitutions (by selecting and renaming terms
with derivatives).

3◦. Reduce the three-argument functional-differential equation by the differentiation method to
the standard functional equation with two arguments (either x or y is eliminated) considered in
Subsection S.4.2.

4◦. Construct the solutions of the two-argument functional equation using the formulas given in
Subsection S.4.4.

5◦. Solve the (overdetermined) systems formed by the solutions of Item 4◦ and the differential
substitutions of Item 2◦.

6◦. Substitute the solutions of Item 5◦ into the original functional-differential equation of Item 1◦

to establish the relations for the constants of integration and determine all unknown quantities.

7◦. Consider all degenerate cases possibly arising due to the violation of assumptions adopted in
the previous analysis.

Remark. Stage 3◦ is the most difficult here; it may not always be realizable.

The splitting method reduces solving the three-argument functional-differential equation to (i) solv-
ing a purely functional equation with three arguments (by reducing it to a standard functional
equation with two arguments) and (ii) solving systems of ordinary differential equations. Thus, the
initial problem splits into several simpler problems. Examples of constructing functional separable
solutions by the splitting method are given in Subsection S.5.5.

S.5.4-2. Three-argument functional equations of special form.

The substitution of expression (1) with n = 2 into a nonlinear partial differential equation often leads
to functional-differential equations of the form

Φ1(x)Ψ1(y, z) + · · · + Φk(x)Ψk(y, z) + Ψk+1(y, z) + Ψk+2(y, z) + · · · + Ψn(y, z) = 0, (44)

where the Φj(x) and Ψj(y, z) are functionals dependent on the variables x and y, z, respectively,

Φj(x) ≡ Φj

(

x,ϕ,ϕ′

x,ϕ′′

xx

)

, Ψj(y, z) ≡ Ψj

(

y,ψ,ψ′

y,ψ′′

yy,F ,F ′

z,F ′′

zz

)

. (45)

(These expressions apply to a second-order equation.)

Page 722

© 2004 by Chapman & Hall/CRC



S.5. METHOD OF FUNCTIONAL SEPARATION OF VARIABLES 723

It is reasonable to solve equation (44) by the splitting method. At the first stage, we treat (44)
as a purely functional equation, thus disregarding (45). Assuming that Ψ1 * 0, we divide (44) by Ψ1
and differentiate with respect to y to obtain a similar equation but with fewer terms containing Φm:

Φ2(x)Ψ(2)
2 (y, z) + · · · + Φk(x)Ψ(2)

k (y, z) + Ψ
(2)
k+1(y, z) + · · · + Ψ

(2)
n (y, z) = 0, (46)

where Ψ
(2)
m = ∂

∂y

(

Ψm/Ψ1
)

+ ψ′

y
∂
∂z

(

Ψm/Ψ1
)

. We continue this procedure until an equation inde-
pendent of x explicitly is obtained:

Ψ
(k+1)
k+1 (y, z) + · · · + Ψ

(k+1)
n (y, z) = 0, (47)

where Ψ
(k+1)
m = ∂

∂y

(

Ψ
(k)
m /Ψ

(k)
k

)

+ ψ′

y
∂
∂z

(

Ψ
(k)
m /Ψ

(k)
k

)

.
Relation (47) can be regarded as an equation with two independent variables y and z. If

Ψ
(k+1)
m (y, z) = Qm(y)Rm(z) for all m = k + 1, . . . ,n, then equation (47) can be solved using the

results of Subsections S.4.2–S.4.4.

S.5.5. Solutions of Some Nonlinear Functional Equations
and Their Applications

In this subsection, we discuss several types of three-argument functional equations that arise most
frequently in the functional separation of variables in nonlinear equations of mathematical physics.
The results are used for constructing exact solutions for some classes of nonlinear heat and wave
equations.

S.5.5-1. The functional equation f (x) + g(y) = Q(z), where z = ϕ(x) + ψ(y).

Here, one of the two functions f (x) and ϕ(x) is prescribed and the other is assumed unknown, also
one of the functions g(y) and ψ(y) is prescribed and the other is unknown, and the function Q(z) is
assumed unknown.*

Differentiating the equation with respect to x and y yields Q′′

zz = 0. Consequently, the solution
is given by

f (x) = Aϕ(x) +B, g(y) = Aψ(y) −B + C, Q(z) = Az + C, (48)

where A, B, and C are arbitrary constants.

S.5.5-2. The functional equation f (t) + g(x) + h(x)Q(z) +R(z) = 0, where z = ϕ(x) + ψ(t).

Differentiating the equation with respect to x yields the two-argument equation

g′x + h′xQ + hϕ′

xQ
′

z + ϕ′

xR
′

z = 0. (49)

Such equations were discussed in Subsections S.4.2–S.4.4. Hence, the following relations hold [see
formulas (51) and (52) in Subsection S.4.4]:

g′x = A1hϕ
′

x +A2ϕ
′

x,
h′x = A3hϕ

′

x +A4ϕ
′

x,
Q′

z = −A1 −A3Q,
R′

z = −A2 −A4Q,

(50)

where A1, . . . , A4 are arbitrary constants. By integrating system (50) and substituting the resulting
solutions into the original functional equation, one obtains the results given below.

* In similar equations with a composite argument, it is assumed that ϕ(x) + const and ψ(y) + const.
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Case 1. If A3 = 0 in (50), the corresponding solution of the functional equation is given by

f = − 1
2A1A4ψ

2 + (A1B1 +A2 + A4B3)ψ −B2 −B1B3 −B4,

g = 1
2A1A4ϕ

2 + (A1B1 +A2)ϕ +B2,
h = A4ϕ +B1,
Q = −A1z +B3,

R = 1
2A1A4z

2 − (A2 +A4B3)z +B4,

(51)

where the Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(t) are arbitrary functions.
Case 2. If A3 ≠ 0 in (50), the corresponding solution of the functional equation is

f = −B1B3e
−A3ψ +

(

A2 −
A1A4

A3

)

ψ −B2 −B4 −
A1A4

A2
3

,

g =
A1B1

A3
eA3ϕ +

(

A2 −
A1A4

A3

)

ϕ +B2,

h = B1e
A3ϕ −

A4

A3
,

Q = B3e
−A3z −

A1

A3
,

R =
A4B3

A3
e−A3z +

(

A1A4

A3
−A2

)

z +B4,

(52)

where the Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(t) are arbitrary functions.
Case 3. In addition, the functional equation has the two degenerate solutions:

f = A1ψ +B1, g = A1ϕ +B2, h = A2, R = −A1z −A2Q −B1 −B2, (53a)

where ϕ = ϕ(x), ψ = ψ(t), and Q = Q(z) are arbitrary functions, A1, A2, B1, and B2 are arbitrary
constants, and

f = A1ψ + B1, g = A1ϕ +A2h +B2, Q = −A2, R = −A1z −B1 −B2, (53b)

where ϕ = ϕ(x), ψ = ψ(t), and h = h(x) are arbitrary functions, A1, A2, B1, and B2 are arbitrary
constants. The degenerate solutions (53a) and (53b) can be obtained directly from the original
equation or its consequence (49) using formulas (53) in Subsection S.4.4.

Example 13. Consider the nonstationary heat equation with a nonlinear source

∂w

∂t
=
∂2w

∂x2 + F (w). (54)

We look for exact solutions of the form

w = w(z), z = ϕ(x) + ψ(t). (55)

Substituting (55) into (54) and dividing by w′

z yields the functional-differential equation

ψ
′

t = ϕ′′

xx + (ϕ′

x)2 w
′′

zz

w′

z

+
F (w(z))
w′

z

.

We rewrite it as the functional equation S.5.5-2 in which

f (t) = −ψ′

t, g(x) = ϕ′′

xx, h(x) = (ϕ′

x)2, Q(z) = w′′

zz/w
′

z , R(z) = f (w(z))/w′

z. (56)

We now use the solutions of equation S.5.5-2. On substituting the expressions of g and h of (56) into (51)–(53), we
arrive at overdetermined systems of equations for ϕ = ϕ(x).

Case 1. The system
ϕ
′′

xx = 1
2A1A4ϕ

2 + (A1B1 + A2)ϕ + B2,

(ϕ′

x)2 = A4ϕ + B1
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following from (51) and corresponding to A3 = 0 in (50) is consistent in the cases

ϕ = C1x + C2 for A2 = −A1C
2
1 , A4 = B2 = 0, B1 = C2

1 ,

ϕ = 1
4A4x

2 + C1x + C2 for A1 = A2 = 0, B1 = C2
1 − A4C2, B2 = 1

2A4,
(57)

where C1 and C2 are arbitrary constants.
The first solution in (57) with A1 ≠ 0 leads to a right-hand side of equation (54) containing the inverse of the error

function [the form of the right-hand side is identified from the last two relations in (51) and (56)]. The second solution in (57)
corresponds to the right-hand side F (w) = k1w lnw + k2w in (54). In both cases, the first relation in (51) is, taking into
account that f = −ψ′

t, a first-order linear solution with constant coefficients, whose solution is an exponential plus a constant.
Case 2. The system

ϕ
′′

xx =
A1B1

A3
e
A3ϕ +

(
A2 −

A1A4

A3

)
ϕ + B2,

(ϕ′

x)2 = B1e
A3ϕ −

A4

A3
,

following from (52) and corresponding to A3 ≠ 0 in (50) is consistent in the following cases:

ϕ = , √−A4/A3 x + C1 for A2 = A1A4/A3, B1 = B2 = 0,

ϕ = −
2
A3

ln |x| + C1 for A1 = 1
2A

2
3, A2 = A4 = B2 = 0, B1 = 4A−2

3 e
−A3C1 ,

ϕ = −
2
A3

ln
∣∣cos

( 1
2

√
A3A4 x + C1

)∣∣ + C2 for A1 = 1
2A

2
3, A2 = 1

2A3A4, B2 = 0, A3A4 > 0,

ϕ = −
2
A3

ln
∣∣sinh

( 1
2

√
−A3A4 x + C1

)∣∣ + C2 for A1 = 1
2A

2
3, A2 = 1

2A3A4, B2 = 0, A3A4 < 0,

ϕ = −
2
A3

ln
∣∣cosh

( 1
2

√
−A3A4 x + C1

)∣∣ + C2 for A1 = 1
2A

2
3, A2 = 1

2A3A4, B2 = 0, A3A4 < 0,

where C1 and C2 are arbitrary constants. The right-hand sides of equation (54) corresponding to these solutions are
represented in parametric form.

Case 3. Traveling wave solutions of the nonlinear heat equation (54) and solutions of the linear equation (54) with
F

′

w = const correspond to the degenerate solutions of the functional equation (53).
Remark. It may be reasonable to look for more complicated solutions of equation (54) of the form

w = w(z), z = ϕ(ξ) + ψ(t), ξ = x + at.

Substituting these expressions into equation (54) yields the functional equation S.5.5-2 again, in which (x must be replaced
by ξ)

f (t) = −ψ′

t, g(ξ) = ϕ′′

ξξ − aϕ′

ξ , h(ξ) = (ϕ′

ξ)2, Q(z) = w′′

zz/w
′

z , R(z) = f (w(z))/w′

z.

Further, one should follow the same procedure of constructing the solution as in Example 13.

Example 14. Likewise, one can analyze the more general equation

∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+ F (w). (58)

It arises in convective heat/mass exchange problems (a = const and b = const), problems of heat transfer in inhomogeneous
media (b = a′x ≠ const), and spatial heat transfer problems with axial or central symmetry (a = const and b = const /x).

Searching for exact solutions of equation (58) in the form (55) leads to the functional equation S.5.5-2 in which

f (t) = −ψ′

t, g(x) = a(x)ϕ′′

xx + b(x)ϕ′(x), h(x) = a(x)(ϕ′

x)2, Q(z) = w′′

zz/w
′

z, R(z) = f (w(z))/w′

z .

Substituting these expressions into (51)–(53) yields a system of ordinary differential equations for the unknowns.

Remark. In Examples 13 and 14, different equations were all reduced to the same functional
equation. This demonstrates the utility of the isolation and independent analysis of individual types
of functional equations, as well as the expedience of developing methods for solving functional
equations with a composite argument.

S.5.5-3. The functional equation f (t) + g(x)Q(z) + h(x)R(z) = 0, where z = ϕ(x) + ψ(t).

Differentiating with respect to x yields the two-argument functional-differential equation

g′xQ + gϕ′

xQ
′

z + h′xR + hϕ′

xR
′

z = 0, (59)

which coincides with equation (51) in Subsection S.4.4, up to notation.
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Nondegenerate case. Equation (59) can be solved using formulas (52) in Subsection S.4.4. In
this way, we arrive at the system of ordinary differential equations

g′x = (A1g +A2h)ϕ′

x,
h′x = (A3g +A4h)ϕ′

x,
Q′

z = −A1Q −A3R,
R′

z = −A2Q −A4R,

(60)

where A1, . . . , A4 are arbitrary constants.
The solution of equation (60) is given by

g(x) = A2B1e
k1ϕ +A2B2e

k2ϕ,

h(x) = (k1 −A1)B1e
k1ϕ + (k2 −A1)B2e

k2ϕ,

Q(z) = A3B3e
−k1z +A3B4e

−k2z,

R(z) = (k1 −A1)B3e
−k1z + (k2 −A1)B4e

−k2z,

(61)

where B1, . . . , B4 are arbitrary constants and k1 and k2 are roots of the quadratic equation

(k −A1)(k −A4) −A2A3 = 0. (62)

In the degenerate case k1 = k2, the terms ek2ϕ and e−k2z in (61) must be replaced by ϕek1ϕ and
ze−k1z, respectively. In the case of purely imaginary or complex roots, one should extract the real
(or imaginary) part of the roots in solution (61).

On substituting (61) into the original functional equation, one obtains conditions that must be
met by the free coefficients and identifies the function f (t), specifically,

B2 = B4 = 0 =⇒ f (t) = [A2A3 + (k1 −A1)2]B1B3e
−k1ψ,

B1 = B3 = 0 =⇒ f (t) = [A2A3 + (k2 −A1)2]B2B4e
−k2ψ,

A1 = 0 =⇒ f (t) = (A2A3 + k2
1)B1B3e

−k1ψ + (A2A3 + k2
2)B2B4e

−k2ψ.

(63)

Solution (61), (63) involves arbitrary functions ϕ = ϕ(x) and ψ = ψ(t).
Degenerate case. In addition, the functional equation has two degenerate solutions,

f = B1B2e
A1ψ, g = A2B1e

−A1ϕ, h = B1e
−A1ϕ, R = −B2e

A1z −A2Q,

where ϕ = ϕ(x), ψ = ψ(t), and Q = Q(z) are arbitrary functions, A1, A2, B1, and B2 are arbitrary
constants; and

f = B1B2e
A1ψ, h = −B1e

−A1ϕ −A2g, Q = A2B2e
A1z, R = B2e

A1z,

where ϕ = ϕ(x), ψ = ψ(t), and g = g(x) are arbitrary functions, andA1, A2,B1, andB2 are arbitrary
constants. The degenerate solutions can be obtained immediately from the original equation or its
consequence (59) using formulas (53) in Subsection S.4.4.

Example 15. For the first-order nonlinear equation

∂w

∂t
= F (w)

(
∂w

∂x

)2
+ G(x),

the search for exact solutions in the form (55) leads to the functional equation S.5.5-3 in which

f (t) = −ψ′

t, g(x) = (ϕ′

x)2, h(x) = G(x), Q(z) = F (w)w′

z , R(z) = 1/w′

z , w = w(z).

Example 16. For the nonlinear heat equation (14) [see Example 10 in S.5.3-2] the search for exact solutions in the
form w = w(z), where z = ϕ(x) + ψ(t), leads to the functional equation (16), which coincides with equation S.5.5-3 if

f (t) = −ψ′

t, g(x) = ϕ′′

xx, h(x) = (ϕ′

x)2, Q(z) = F (w), R(z) =
[F (w)w′

z]′z
w′

z

, w = w(z).
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S.5.5-4. The equation f1(x) + f2(y) + g1(x)P (z) + g2(y)Q(z) + R(z) = 0, z = ϕ(x) + ψ(y).

Differentiating with respect to y and dividing the resulting relation by ψ′

yP
′

z and differentiating
with respect to y again, one arrives at the functional equation with two arguments, y and z, that is
discussed in Subsections S.4.2–S.4.4 [see equation (21) and its solutions (48)].

Example 17. Consider the following equation of steady-state heat transfer in an anisotropic inhomogeneous medium
with a nonlinear source:

∂

∂x

[
a(x)

∂w

∂x

]
+
∂

∂y

[
b(y)

∂w

∂y

]
= F (w). (64)

The search for exact solutions in the form w = w(z), z = ϕ(x) + ψ(y), leads to the functional equation S.5.5-4 in which

f1(x) = a(x)ϕ′′

xx + a′x(x)ϕ′

x, f2(y) = b(y)ψ′′

yy + b′y(y)ψ′

y , g1(x) = a(x)(ϕ′

x)2, g2(y) = b(y)(ψ′

y )2,

P (z) = Q(z) = w′′

zz/w
′

z, R(z) = −F (w)/w′

z , w = w(z).

Here we confine ourselves to studying functional separable solutions existing for arbitrary right-hand side F (w).
With the change of variable z = ζ2, we look for solutions of equation (64) in the form

w = w(ζ), ζ
2 = ϕ(x) + ψ(y). (65)

Taking into account that ∂ζ
∂x

= ϕ′

x
2ζ and ∂ζ

∂y
=
ψ′

y

2ζ , we find from (64)

[
(aϕ′

x)′x + (bψ′

y)′y
]w′

ζ

2ζ
+
[
a(ϕ′

x)2 + b(ψ′

y)2] ζw
′′

ζζ − w′

ζ

4ζ3 = F (w), F (w) = F

(
w(ζ)

)
. (66)

For this functional-differential equation to be solvable we require that the expressions in square brackets be functions of ζ:

(aϕ′

x)′x + (bψ′

y)′y = M (ζ), a(ϕ′

x)2 + b(ψ′

y)2 = N (ζ).

Differentiating the first relation with respect to x and y yields the equation (M ′

ζ/ζ)′ζ = 0, whose general solution is
M (ζ) = C1ζ

2 +C2. Likewise, we findN (ζ) = C3ζ
2 +C4. Here, C1, . . . ,C4 are arbitrary constants. Consequently, we have

(aϕ′

x)′x + (bψ′

y)′y = C1(ϕ + ψ) + C2, a(ϕ′

x)2 + b(ψ′

y)2 = C3(ϕ + ψ) + C4.

The separation of variables results in a system of ordinary differential equations for ϕ(x), a(x), ψ(y), and b(y):

(aϕ′

x)′x − C1ϕ − C2 = k1, (bψ′

y)′y − C1ψ = −k1,

a(ϕ′

x)2 − C3ϕ − C4 = k2, b(ψ′

y)2 − C3ψ = −k2.

This system is always integrable by quadrature and can be rewritten as

(C3ϕ + C4 + k2)ϕ′′

xx + (C1ϕ + C2 + k1 − C3)(ϕ′

x)2 = 0, a = (C3ϕ + C4 + k2)(ϕ′

x)−2;

(C3ψ − k2)ψ′′

yy + (C1ψ − k1 − C3)(ψ′

y)2 = 0, b = (C3ψ − k2)(ψ′

y)−2.
(67)

Here, the equations for ϕ and ψ do not involve a and b and, hence, can be solved independently. Without full analysis of
system (67), we note a special case where the system can be solved in explicit form.

For C1 = C2 = C4 = k1 = k2 = 0 and C3 = C ≠ 0, we find

a(x) = αeµx, b(y) = βeνy , ϕ(x) =
Ce−µx

αµ2 , ψ(y) =
Ce−νy

βν2 ,

where α, β, µ, and ν are arbitrary constants. Substituting these expressions into (66) and taking into account (65), we obtain
the ordinary differential equation for w(ζ)

w
′′

ζζ −
1
ζ
w

′

ζ =
4
C

F (w).

System (67) has other solutions as well; these lead to various expressions of a(x) and b(y). Table 19 lists the cases where
these functions can be written in explicit form (the traveling-wave solution, which corresponds to a = const and b = const, is
omitted). In general, the solution of system (67) enables one to represent a(x) and b(y) in parametric form.
-�.

References for Subsection S.5.5: V. F. Zaitsev and A. D. Polyanin (1996), A. D. Polyanin and A. I. Zhurov (1998),
A. D. Polyanin (2002, Supplement B), A. D. Polyanin and V. F. Zaitsev (2002).
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TABLE 19
Functional separable solutions of the form w = w(ζ), ζ2 = ϕ(x) + ψ(y), for heat

equations in an anisotropic inhomogeneous medium with an arbitrary nonlinear source.
Notation: C, α, β, µ, ν, n, and k are free parameters (C ≠ 0, µ ≠ 0, ν ≠ 0, n ≠ 2, and k ≠ 2)

Heat equation Functions ϕ(x) and ψ(y) Equation for w =w(ζ)

∂

∂x

(
αx

m ∂w

∂x

)
+
∂

∂y

(
βy
n ∂w

∂y

)
=F (w) ϕ =

Cx2−m

α(2−m)2 , ψ =
Cy2−n

β(2−n)2
w

′′

ζζ +
4−mn

(2−m)(2−n)
1
ζ
w

′

ζ =
4
C

F (w)

∂

∂x

(
αe
µx ∂w

∂x

)
+
∂

∂y

(
βe
νy ∂w

∂y

)
=F (w) ϕ =

C

αµ2 e
−µx, ψ =

C

βν2 e
−νy

w
′′

ζζ −
1
ζ
w

′

ζ =
4
C

F (w)

∂

∂x

(
αe
µx ∂w

∂x

)
+
∂

∂y

(
βy
n ∂w

∂y

)
=F (w) ϕ =

C

αµ2 e
−µx, ψ =

Cy2−n

β(2−n)2
w

′′

ζζ +
n

2−n
1
ζ
w

′

ζ =
4
C

F (w)

∂

∂x

(
αx

2 ∂w

∂x

)
+
∂

∂y

(
βy

2 ∂w

∂y

)
= F (w) ϕ = µ ln |x|, ψ = ν ln |y| Equation (66); both expressions

in square brackets are constant

α
∂2w

∂x2 +
∂

∂y

(
βy

2 ∂w

∂y

)
=F (w) ϕ = µx, ψ = ν ln |y| Equation (66); both expressions

in square brackets are constant

S.6. Generalized Similarity Reductions of Nonlinear
Equations

S.6.1. Clarkson–Kruskal Direct Method: a Special Form for
Similarity Reduction

S.6.1-1. Simplified scheme. Examples of constructing exact solutions.

Prior to giving a description of the Clarkson–Kruskal direct method in the general case, consider a
simplified scheme.

The basic idea of the method is the following: for an equation with the unknown function
w = w(x, t), an exact solution is sought in the form

w = f (t)u(z) + g(x, t), z = ϕ(t)x + ψ(t). (1)

The functions f (t), g(x, t), ϕ(t), and ψ(t) are found in the subsequent analysis and are chosen in
such a way that, ultimately, the function u(z) would satisfy a single ordinary differential equation.

Below we consider some cases in which it is possible to construct exact solutions of nonlinear
equations of the form (1).

Example 1. Consider the generalized Burgers–Korteweg–de Vries equation

∂w

∂t
= a

∂nw

∂xn
+ bw

∂w

∂x
. (2)

We seek its exact solution in the form (1). Inserting (1) into (2), we obtain

afϕ
n
u

(n)
z + bf2

ϕuu
′

z + f (bgϕ − ϕ′

tx − ψ′

t)u
′

z + (bfgx − f ′t)u + ag(n)
x + bggx − gt = 0. (3)

Equating the functional coefficients of u(n)
z and uu′z in (3), we get

f = ϕn−1 . (4)
Further, equating the coefficient of u′z to zero, we obtain

g =
1
bϕ

(ϕ′

tx + ψ′

t). (5)

Inserting the expressions (4) and (5) into (3), we arrive at the relation

ϕ
2n−1(au(n)

z + buu′z) + (2 − n)ϕn−2
ϕ
′

tu +
1
bϕ2

[
(2ϕ2

t − ϕϕtt)x + 2ϕtψt − ϕψtt
]

= 0.
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Dividing each term by ϕ2n−1 and then eliminating x with the help of the relation x = (z − ψ)/ϕ, we obtain

au
(n)
z + buu′z + (2 − n)ϕ−n−1

ϕ
′

tu +
1
b
ϕ

−2n−2(2ϕ2
t − ϕϕtt)z +

1
b
ϕ

−2n−2(ϕψϕtt − ϕ2
ψtt + 2ϕϕtψt − 2ψϕ2

t) = 0. (6)

Let us require that the functional coefficient of u and the last term be constant,

ϕ
−n−1

ϕ
′

t = −A, ϕ
−2n−2(ϕψϕtt − ϕ2

ψtt + 2ϕϕtψt − 2ψϕ2
t) = B,

where A and B are arbitrary. As a result, we arrive at the following system of ordinary differential equations for ϕ and ψ:

ϕt = −Aϕn+1 ,

ψtt + 2Aϕnψt + A2(1 − n)ϕ2n
ψ = −Bϕ2n .

(7)

Using (6) and (7), we obtain an equation for u(z),

au
(n)
z + buu′z + A(n − 2)u +

A2

b
(1 − n)z +

B

b
= 0. (8)

For A ≠ 0, the general solution of equations (7) has the form

ϕ(t) = (Ant + C1)−
1
n ,

ψ(t) = C2(Ant + C1)
n−1
n + C3(Ant + C1)−

1
n +

B

A2(n − 1)
,

(9)

where C1, C2, and C3 are arbitrary constants.
Formulas (1), (4), (5), and (9), together with equation (8), describe an exact solution of the generalized Burgers–

Korteweg–de Vries equation (2).
In the special case of n = 3 and a = b = −1, the solution constructed above turns into the solution obtained by Clarkson

and Kruskal (1989).

Example 2. Consider the Boussinesq equation

∂2w

∂t2
+
∂

∂x

(
w
∂w

∂x

)
+ a

∂4w

∂x4 = 0. (10)

Just as in Example 1, we seek its solutions in the form (1), where the functions f (t), g(x, t), ϕ(t), and ψ(t) are found in the
subsequent analysis. Substituting (1) into (10) yields

afϕ
4
u
′′′′ + f2

ϕ
2
uu

′′ + f (z2
t + gϕ2)u′′ + f2

ϕ
2(u′)2 + (fztt + 2fgxϕ + 2ftzt)u′

+ (fgxx + ftt)u + gtt + ggxx + g2
x + ag(4)

x = 0. (11)
Equating the functional coefficients of u′′′′ and uu′′, we get

f = ϕ2. (12)
Equating the functional coefficient of u′′ to zero and taking into account (12), we obtain

g = −
1
ϕ2 (ϕ′

tx + ψ′

t)
2. (13)

Substituting the expressions (12) and (13) into (11), we arrive at the relation

ϕ
6(au′′′′ + uu′′ + u′2) + ϕ2(xϕtt + ψtt)u′ + 2ϕϕttu −

[
ϕ

−2(ϕtx + ψt)2]
tt

+ 6ϕ−4
ϕ

2
t(ϕtx + ψt)2 = 0.

Let us perform the double differentiation of the expression in square brackets and then divide all terms by ϕ6. Excluding x
with the help of the relation x = (z − ψ)/ϕ, we get

au
′′′′ + uu′′ + (u′)2 + ϕ−5(ϕttz + ϕψtt − ψϕtt)u′ + 2ϕ−5

ϕttu + · · · = 0. (14)
Let us require that the functional coefficient of u′ be a function of only one variable, z, i.e.,

ϕ
−5(ϕttz + ϕψtt − ψϕtt) = ϕ−5

ϕttz + ϕ−5(ϕψtt − ψϕtt) ≡ Az + B,

where A and B are arbitrary constants. Hence, we obtain the following system of ordinary differential equations for the
functions ϕ and ψ:

ϕtt = Aϕ5,

ψtt = (Aψ + B)ϕ4.
(15)

Let us eliminate the second and the third derivatives of the functions ϕ and ψ from (14). As a result, we arrive at the following
ordinary differential equation for the function u(z):

au
′′′′ + uu′′ + (u′)2 + (Az + B)u′ + 2Au − 2(Az + B)2 = 0. (16)

Formulas (1), (12), and (13), together with equations (15)–(16), describe an exact solution of the Boussinesq equation
(10).
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S.6.1-2. Description of the Clarkson–Kruskal method. A special form for similarity reduction.

1◦. The basic idea of the method is the following: for an equation with the unknown function
w = w(x, t), an exact solution is sought in the form

w(x, t) = f (x, t)u(z) + g(x, t), z = z(x, t). (17)

The functions f (x, t), g(x, t), and z(x, t) are determined in the subsequent analysis, so that ultimately
one obtains a single ordinary differential equation for the function u(z).

2◦. Inserting (17) into a nonlinear partial differential equation with a quadratic or a power nonlin-
earity, we obtain

Φ1(x, t)Π1[u] + Φ2(x, t)Π2[u] + · · · + Φm(x, t)Πm[u] = 0. (18)

Here, the Πk[u] are differential forms that are the products of nonnegative integer powers of the
function u and its derivatives u′z, u′′zz, etc., and the Φk(x, t) depend on the functions f (x, t), g(x, t),
and z(x, t) and their partial derivatives with respect to x and t. Suppose that the differential form
Π1[u] contains the highest-order derivative with respect to z. Then the function Φ1(x, t) is used as
a normalizing factor. This means that the following relations should hold:

Φk(x, t) = Γk(z)Φ1(x, t), k = 1, . . . ,m, (19)

where the Γk(z) are functions to be determined.

3◦. The representation of a solution in the form (17) has “redundant” generality and the functions
f , g, u, and z are ambiguously determined. In order to remove the ambiguity, we use the following
three degrees of freedom in the determination of the above functions:

(a) if f = f (x, t) has the form f = f0(x, t)Ω(z), then we can take Ω ≡ 1, which corresponds to
the replacement u(z)→ u(z)/Ω(z);

(b) if g = g(x, t) has the form g = g0(x, t)+f (x, t)Ω(z), then we can take Ω ≡ 0, which corresponds
to the replacement u(z)→ u(z) − Ω(z);

(c) if z = z(x, t) is determined by an equation of the form Ω(z) = h(x, y), where Ω(z) is any
invertible function, then we can take Ω(z) = z, which corresponds to the replacement z → Ω

−1(z).

4◦. Having determined the functions Γk(z), we substitute (19) into (18) to obtain an ordinary
differential equation for u(z),

Π1[u] + Γ2(z)Π2[u] + · · · + Γm(z)Πm[u] = 0. (20)

Below we illustrate the main points of the Clarkson–Kruskal direct method by an example.
Example 3. We seek a solution of the Boussinesq equation (10) in the form (17). We have

afz
4
xu

′′′′ + a(6fz2
xzxx + 4fxz3

x)u′′′ + f2
z

2
xuu

′′ + · · · = 0. (21)
Here, we have written out only the first three terms and have omitted the arguments of the functions f and z. The functional
coefficients of u′′′′ and uu′′ should satisfy the condition [see (19)]:

f
2
z

2
x = afz4

xΓ3(z),

where Γ3(z) is a function to be determined. Hence, using the degree of freedom mentioned in Item 3◦(a), we choose

f = z2
x, Γ3(z) = 1/a. (22)

Similarly, the functional coefficients of u′′′′ and u′′′ must satisfy the condition

6fz2
xzxx + 4fxz3

x = fz4
xΓ2(z), (23)

where Γ2(z) is another function to be determined. Hence, with (22), we find

14 zxx/zx = Γ2(z)zx.

Integrating with respect to x yields

ln zx = I(z) + ln ϕ̃(t), I(z) =
1
14

∫
Γ2(z) dz,
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where ϕ̃(t) is an arbitrary function. Integrate again to obtain
∫
e

−I(z)
dz = ϕ̃(t)x + ψ̃(t),

where ψ̃(t) is another arbitrary function. We have a function of z on the left, and therefore, using the degree of freedom
mentioned in Item 3◦(c), we obtain

z = xϕ(t) + ψ(t), (24)
where ϕ(t) and ψ(t) are to be determined.

From formulas (22)–(24) it follows that
f = ϕ2(t), Γ2(z) = 0. (25)

Substituting (24) and (25) into (17), we obtain a solution of the form (1) with the function f defined by (12). Thus, the
general approach based on the representation of a solution in the form (17) ultimately leads us to the same result as the
approach based on the more simple formula (1).

Remark 1. In a similar way, it can be shown that formulas (1) and (17) used for the construction
of an exact solution of the generalized Burgers–Korteweg–de Vries equation (2) lead us to the same
result.

Remark 2. The above examples clearly show that it is more reasonable to perform the ini-
tial analysis of specific equations on the basis of the simpler formula (1) rather than the general
formula (17)./�0

References for Subsection S.6.1: P. A. Clarkson and M. D. Kruskal (1989), D. Arrigo, P. Broadbridge, and J. M. Hill
(1993), P. A. Clarkson, D. K. Ludlow, and T. J. Priestley (1997), D. K. Ludlow, P. A. Clarkson, and A. P. Bassom (1999,
2000).

S.6.2. Clarkson–Kruskal Direct Method: the General Form for
Similarity Reduction

S.6.2-1. General form of solutions.

The basic idea of the method is the following: for an equation with the unknown functionw =w(x, t),
an exact solution is sought in the form

w(x, t) = F
(

x, t,u(z)
)

, z = z(x, t). (26)

The functions F (x, t,u) and z(x, t) should be chosen so as to obtain ultimately a single ordinary
differential equation for u(z). Unlike formulas (1) and (17), the relationship between the functions
w and u in (26) can be nonlinear.

Below we illustrate the main features of the Clarkson–Kruskal direct method by examples.

S.6.2-2. Examples with applications of the Clarkson–Kruskal direct method.

Example 4. Consider once again the Boussinesq equation (10). Substituting (26) into (10), we get

aFuz
4
xu

′′′′ + 4aFuuz4
xu

′
u
′′′ + a(4Fxuz3

x + 6Fuz2
xzxx)u′′′ + · · · = 0. (27)

Here, we have written out only the first three principal terms and omitted the arguments of the functions F and z. In order
to ensure that (27) is reducible to an ordinary differential equation for u = u(z), the ratios of the functional coefficients of
u′u′′′, u′′′, . . . to the coefficient of the highest-order derivative u′′′′ must be functions of z and u, i.e.,

4aFuuz4
x

aFuz
4
x

= Γ2(z,u),
a(4Fxuz3

x + 6Fuz2
xzxx)

aFuz
4
x

= Γ3(z,u), . . .

From the first relation we have
Fuu/Fu = Γ2(z,u).

Integrating twice with respect to u yields

F (x, t,u) = f (x, t)Θ(z,u) + g(x, t), (28)

where f (x, t) and g(x, t) are arbitrary functions of two arguments, Θ =
∫

exp
(∫

Γ2 du
)
du.
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Denoting Θ(z,u(z)) = U (z) in (28) and using the representation (26), we arrive at a solution which, up to notation,
coincides with (17). Therefore, if we seek a similarity reduction of the Boussinesq equation (10) in the general form (26),
we are naturally led to the special form (17).

Example 5. Consider the Harry–Dym equation

∂w

∂t
+ 2

∂3

∂x3
1

√

w
= 0. (29)

Let us seek a similarity reduction in the form (26). Inserting the expression (26) into (29), we arrive at the relation

−F −3/2
Fuz

3
xu

′′′ +
(
−3F −3/2

Fuu + 9
2F

−5/2
F

2
u

)
z

3
xu

′
u
′′ + · · · = 0.

The ratio of the functional coefficients of u′u′′ and u′′′ must be a function of z and u, i.e.,

3
Fuu

Fu
−

9
2
Fu

F
= Γ(z,u).

The double integration yields
F

−1/2(x, t,u) = f (x, t)Θ(z,u) + g(x, t), (30)
where f (x, t) and g(x, t) are arbitrary functions of two arguments, Θ = −

∫
exp
( 1

3
∫

Γ du
)
du. From (26) and (30) it follows

that one can seek similarity reductions of the Harry-Dym equation (29) in the form

w
−1/2(x, t) = f (x, t)U (z) + g(x, t), z = z(x, t).

1�2
References for Subsection S.6.2: P. A. Clarkson and M. D. Kruskal (1989), D. Arrigo, P. Broadbridge, and J. M. Hill

(1993), D. Levi and P. Winternitz (1989), P. Olver (1994).

S.6.3. Some Modifications and Generalizations

S.6.3-1. Similarity reductions based on the ideas of the generalized separation of variables.

1◦. The Clarkson–Kruskal direct method based on the representation of solutions in the forms (17)
and (26) attaches particular significance to the function u = u(z), because the choice of the other
functions is meant to ensure a single ordinary differential equation for u(z). However, in some
cases it is reasonable to combine these methods with the ideas of the generalized and functional
separation of variables, with all determining functions being regarded as equally important. Then,
the function u(z) is described by an overdetermined system of equations.

2◦. Exact solutions of nonlinear partial differential equations with quadratic or power nonlinearities
may be sought in the form (1) with g(x, t) = g1(t)x + g0(t). Substituting (1) into an equation
under consideration, we replace x by the expression x = [z − ψ(t)]/ϕ(t). As a result, we obtain a
functional-differential equation with two arguments, t and z. Its solution can sometimes be obtained
by the differentiation and splitting methods outlined in Subsections S.4.2–S.4.4.

Example 6. Consider the equation of an axisymmetric steady hydrodynamic boundary layer

∂w

∂y

∂2w

∂x∂y
−
∂w

∂x

∂2w

∂y2 = a
∂

∂y

(
y
∂2w

∂y2

)
+ F (x), (31)

which, obviously, coincides with equation 9.3.1.3 in suitable notation.
Its solution is sought in the form (for convenience, we introduce a coefficient a)

w(x, y) = af (x)u(z) + ag(x), z = ϕ(x)y + ψ(x). (32)
Let us substitute this expression into equation (31) and eliminate y, using the relation ϕ(x)y = z − ψ(x). After the division
by a2ϕ2f , we arrive at the functional-differential equation

(zu′′zz)′z − ψu′′′zzz + f ′xuu
′′

zz + g′xu
′′

zz −
(fϕ)′x
ϕ

(u′z)2 +
F

a2fϕ2 = 0. (33)

General methods for solving such equations are outlined in Section S.4. Here we use a simplified scheme for the
construction of exact solutions. Assume that the functional coefficients of uu′′

zz, u′′zz, (u′z)2, and 1 are linear combinations
of the coefficients 1 and ψ of the highest-order terms (zu′′zz)′z and u′′′zzz, respectively. We have

f
′

x = A1 + B1ψ,

g
′

x = A2 + B2ψ,

−(fϕ)′x/ϕ = A3 + B3ψ,

F/(a2
fϕ

2) = A4 + B4ψ,

(34)
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where the Ak and Bk are arbitrary constants. Let us substitute the expressions of (34) into (33) and sum up the terms
proportional to ψ (it is assumed that ψ ≠ const). Equating the functional coefficient of ψ to zero, we obtain the following
overdetermined system

(zu′′zz)′z + A1uu
′′

zz + A2u
′′

zz + A3(u′z)2 + A4 = 0, (35)
−u′′′zzz + B1uu

′′

zz + B2u
′′

zz + B3(u′z)2 + B4 = 0. (36)
Case 1. Let

A1 = A3 = A4 = 0, A2 = −n. (37)
Then, the solution of equation (35) has the form

u(z) =
C1

n(n + 1)
z
n+1 + C2z + C3, (38)

where C1, C2, and C3 are integration constants. The solution (38) of equation (35) can be a solution of equation (36) only if
the following conditions are satisfied:

n = −2, B1 = B3, C1 = −4/B1, C
2
2 = −B4/B1, C3 = −B2/B1. (39)

Let us insert the coefficients (37), (39) into system (34). Integrating yields

g(x) = 2x − C3f , ϕ =
C4

f2 , ψ = −
C1

4
f
′

x, F = −(aC2C4)2 f
′

x

f3 , (40)

where f = f (x) is an arbitrary function.
Formulas (32), (38), (40) define an exact solution of the axisymmetric boundary layer equation (31).
Case 2. For

B1 = B3 = B4 = 0, B2 = −λ, A2 = 0, A3 = −A1, A4 = λ2
/A1 (41)

a common solution of system (35), (36) can be written in the form

u(z) =
1
A1

(C1e
−λz + λz − 3). (42)

A solution of system (34) with coefficients (41) is described by the formulas

f = A1x + C2, ϕ = C3, ψ = −
1
λ
g
′

x, F =
(aC3λ)2

A1
(A1x + C2), (43)

where C1, C2, and C3 are arbitrary constants and g = g(x) is an arbitrary function.
Formulas (32), (42), (43) define an exact solution of the axisymmetric boundary layer equation (31).
Case 3. System (35)–(36) also admits solutions of the form

u(z) = C1z
2 + C2z + C3,

with constants C1, C2, and C3 related to the An and Bn. For the corresponding solutions of equation (31), see 9.3.1.3.3�4
References: G. I. Burde (1994, 1995), A. D. Polyanin and V. F. Zaitsev (2002).

Example 7. Consider the equation with a cubic nonlinearity

∂w

∂t
+ σw

∂w

∂x
= a

∂2w

∂x2 + b3w
3 + b2w

2 + b1w + b0. (44)

Let us seek its solution in the form
w(x, t) = f (x, t)u(z) + λ, z = z(x, t), (45)

where the functions f = f (x, t), z = z(x, t), and u = u(z), as well as the constant λ, are to be determined. Substituting (45)
into the equation, we obtain

afz
2
xu

′′ − σf2
zxuu

′ + (afzxx + 2afxzx − σλfzx − fzt)u′ + b3f
3
u

3

+ (3b3λf
2 + b2f

2 − σffx)u2 + (3b3λ
2
f + 2b2λf + b1f + afxx − σλfx − ft)u

+ b3λ
3 + b2λ

2 + b1λ + b0 = 0.

(46)

From the overdetermined system of ordinary differential equations resulting from the condition of proportionality of the three
functions u′′, uu′, and u3 and that of the two functions u′ and u2, it follows that

u(z) = 1/z, (47)
where the constant factor is taken equal to unity [this factor can be included in f , since formula (45) contains the product of
u and f ]. Let us substitute (47) into (46) and represent the resulting expression as a finite expansion in negative powers of z.
Equating the functional coefficient of z−3 to zero, we obtain

f = βzx, (48)
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where β is a root of the quadratic equation
b3β

2 + σβ + 2a = 0. (49)
Equating the functional coefficients of the other powers of z to zero and taking into account (48), we find that

zt − (3a + βσ)zxx + (σλ + βb2 + 3βb3λ)zx = 0 (coefficient of z−2),

zxt − azxxx + σλzxx − (b1 + 2λb2 + 3b3λ
2)zx = 0 (coefficient of z−1),

b3λ
3 + b2λ

2 + b1λ + b0 = 0 (coefficient of z0).

(50)

Here, the first two linear partial differential equations form an overdetermined system for the function z(x, t), while the last
cubic equation serves for the determination of the constant λ.

Using (45), (47), and (48), we can write out a solution of equation (44) in the form

w(x, t) =
β

z

∂z

∂x
+ λ. (51)

Let β be a root of the quadratic equation (49), and λ be a root of the last (cubic) equation in (50). According to the
value of the constant b3, one should consider two cases.

1◦. Case b3 ≠ 0. From the first two equations in (50), one obtains

zt + p1zxx + p2zx = 0,
zxxx + q1zxx + q2zx = 0,

where

p1 = −βσ − 3a, p2 = λσ + βb2 + 3βλb3, q1 = −
βb2 + 3βλb3

βσ + 2a
, q2 = −

3b3λ
2 + 2b2λ + b1

βσ + 2a
.

Four situations are possible.
1.1. For q2 ≠ 0 and q2

1 ≠ 4q2, we have

z(x, t) = C1 exp(k1x + s1t) + C2 exp(k2x + s2t) + C3,

kn = − 1
2 q1 5 1

2

√
q2

1 − 4q2, sn = −k2
np1 − knp2,

where C1, C2, and C3 are arbitrary constants; n = 1, 2.
1.2. For q2 ≠ 0 and q2

1 = 4q2,

z(x, t) = C1 exp(kx + s1t) + C2(kx + s2t) exp(kx + s1t) + C3,

k = − 1
2 q1, s1 = − 1

4 p1q
2
1 + 1

2 p2q1, s2 = − 1
2 p1q

2
1 + 1

2 p2q1.

1.3. For q2 = 0 and q1 ≠ 0,

z(x, t) = C1(x − p2t) + C2 exp[−q1x + q1(p2 − p1q1)t] + C3.

1.4. For q2 = q1 = 0,
z(x, t) = C1(x − p2t)2 + C2(x − p2t) − 2C1p1t + C3.

2◦. Case b3 = 0, b2 ≠ 0. The solutions are determined by (51), where

β = −
2a
σ

, z(x, t) = C1 + C2 exp
[
Ax + A

(
b1σ

2b2
+

2ab2

σ

)
t

]
, A =

σ(b1 + 2b2λ)
2ab2

,

and λ = λ1,2 are roots of the quadratic equation b2λ
2 + b1λ + b0 = 0.6�7

References: M. C. Nucci and P. A. Clarkson (1992), N. A. Kudryashov (1993).

S.6.3-2. Similarity reductions in equations with three or more independent variables.

The procedure of the construction of exact solutions to nonlinear equations with three or more inde-
pendent variables sometimes involves (at intermediate stages) the solution of functional-differential
equations considered in Subsections S.4.2–S.4.4.

Example 8. Consider the nonlinear nonstationary wave equation anisotropic in one of the directions

∂2w

∂t2
= a

∂2w

∂x2 +
∂

∂y

[
(bw + c)

∂w

∂y

]
. (52)

Let us seek its solution in the form
w = U (z) + f (x, t), z = y + g(x, t). (53)

Substituting (53) into equation (52), we get

[(bU + ag2
x − g2

t + bf + c)U ′

z]′z + (agxx − gtt)U ′

z + afxx − ftt = 0.
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Suppose that the functions f and g satisfy the following overdetermined system of equations:

afxx − ftt = C1, (54)
agxx − gtt = C2, (55)

ag
2
x − g2

t + bf = C3, (56)
where C1, C2, and C3 are arbitrary constants. Then the function U (z) is determined by the autonomous ordinary differential
equation

[(bU + c + C3)U ′

z]′z + C2U
′

z + C1 = 0. (57)
The general solutions of equations (54)–(55) are expressed as

f = ϕ1(ξ) + ψ1(η) − 1
2C1t

2,

g = ϕ2(ξ) + ψ2(η) − 1
2C2t

2,

ξ = x + t
√

a, η = x − t
√

a.

Let us insert these expressions into equation (56) and then eliminate t with the help of the formula t =
ξ − η
2
√

a
. After simple

transformations, we obtain a functional-differential equation with two arguments,

bϕ1(ξ) + C2ξϕ
′

2(ξ) − kξ2 − C3 + bψ1(η) + C2ηψ
′

2(η) − kη2 + ψ′

2(η)[4aϕ′

2(ξ) − C2ξ] + η[2kξ − C2ϕ
′

2(ξ)] = 0, (58)
where

k =
1

8a
(bC1 + 2C2

2 ).

Equation (58) can be solved by the splitting method described in Section S.4. According to the simplified scheme, set

bϕ1(ξ) + C2ξϕ
′

2(ξ) − kξ2 − C3 = A1,

4aϕ′

2(ξ) − C2ξ = A2,

2kξ − C2ϕ
′

2(ξ) = A3,

(59)

where A1, A2, and A3 are constants. The common solution of system (59) has the form

ϕ1(ξ) = −
C2

2
8ab

ξ
2 −

BC2

b
ξ +

A1 + C3

b
, ϕ2(ξ) =

C2

8a
ξ

2 + Bξ (60)

and corresponds to the following values of the constants:

A1 is arbitrary, A2 = 4aB, A3 = −BC2, B is arbitrary, C1 = −
C2

2
b

, C2 and C3 are arbitrary, k =
C2

2
8a

. (61)

From (58) and (59) we obtain an equation that establishes a relation between the functions ψ1 and ψ2,

A1 + bψ1(η) + C2ηψ
′

2(η) − kη2 + A2ψ
′

2(η) + A3η = 0. (62)
Hence, taking into account (61), we get

ψ1(η) = −
1
b

(C2η + 4aB)ψ′

2(η) +
1
b

(
C2

2
8a
η

2 + BC2η − A1

)
, ψ2(η) is an arbitrary function.

Ultimately, we find the functions that determine solution (53):

f (x, t) = −
C2

2
2
√

a b
xt +

C2
2

2b
t

2 −
2
√

aBC2

b
t +

C3

b
−

1
b

(C2η + 4aB)ψ′

2(η),

g(x, t) =
C2

8a
(
x

2 + 2
√

a xt − 3at2
)

+ B(x +
√

a t) + ψ2(η).

Remark 1. For other solutions of this equation, see 4.1.3.1.

Remark 2. In the special case of a = 1, b < 0, and c > 0, equation (52) describes spatial transonic flows of an ideal
polytropic gas (Pokhozhaev, 1989).

S.7. Group Analysis Methods
S.7.1. Classical Method for Symmetry Reductions
The group analysis methods (also referred to as Lie group methods) suggest a regular procedure for
identifying symmetries of an equation and allow us to find the following:
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(i) transformations under which the equation is invariant (i.e., turns into exactly the same
equation after these transformations),

(ii) new variables (both dependent and independent), in which the structure of the equation is
much simplified.

The transformations mentioned in item (i) map a solution of the equation into the same or another
solution of the same equation. In the former case, we have an invariant solution, which can be found
by reducing the original equation to another equation in fewer new variables. In the second case,
noninvariant solutions can be “multiplied,” so as to form a family of solutions.

Remark. The methods of group analysis may be regarded as a wide generalization of the
similarity methods described in Section S.3.

S.7.1-1. Local one parameter Lie group of transformations. Invariance condition.

We will consider transformations of the following second-order partial differential equation:

F

(

xi,w,
∂w

∂xi
,
∂2w

∂xi∂xj

)

= 0, i, j = 1, . . . ,n, (1)

where x = (x1, . . . ,xn) are independent variables andw is a dependent variable (unknown function).
Consider a set of transformations of the (n + 1)-dimensional Euclidean space

Tε =
{

x̄i = ϕi(x,w, ε), x̄i|ε=0 = xi,
w̄ = ψ(x,w, ε), w̄|ε=0 = w,

(2)

where the ϕi and ψ are smooth functions of their arguments and ε is a real parameter. This set of
transformations is called a one-parameter continuous point Lie group of transformations, G, if for
all ε1 and ε2, we have Tε1 ◦ Tε2 = Tε1+ε2 , i.e., the successive application of two transformations of
the form (1) with parameters ε1 and ε2 is equivalent to a single transformation of the same form with
parameter ε1 + ε2.

Let G be a group of transformations of a set M in the (n + 1)-dimensional Euclidean space, and
let u = (x,w) be a point of that set. The set G(u) formed by all images Tu, as T ranges within the
entire group G, is called the orbit of the point u. The set M is called invariant under a group of
transformations if the orbit of each point u of M belongs to M , i.e., G(M ) = M . In other words,
any point of an invariant set remains in that set under arbitrary transformations of the group, i.e., the
set is mapped into itself.

Below, we consider local one-parameter continuous point Lie groups of transformations (briefly,
point groups) that correspond to the infinitesimal transformation (2) as ε → 0. Expanding the
functions x̄ and w̄ from (2) into the Taylor series in powers of the parameter ε about the point ε = 0
and neglecting the second- and higher-order terms, we obtain

x̄i ' xi + ξi(x,w)ε, w̄ ' w + ζ(x,w)ε, (3)

where
ξi(x,w) =

∂ϕi(x,w, ε)
∂ε

∣

∣

∣

ε=0
, ζ(x,w) =

∂ψ(x,w, ε)
∂ε

∣

∣

∣

ε=0
.

The vector (ξ, ζ) is tangent (at the point (x,w)) to the curve formed by the transformed points
(x̄, w̄) .

The first-order linear differential operator

X = ξi(x,w)
∂

∂xi
+ ζ(x,w)

∂

∂w
, (4)

corresponding to the infinitesimal transformation (3), is called the infinitesimal operator (or in-
finitesimal generator) of the group (here and in what follows, summation over repeated indices is
assumed).
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By definition, a universal invariant (briefly, invariant) of the group (2) and the operator (4) is a
function I0(x,w) satisfying the condition I0(x̄, w̄) = I0(x,w). The expansion in powers of the small
parameter ε yields the following linear partial differential equation for I0:

XI0 = ξi(x,w)
∂I0

∂xi
+ ζ(x,w)

∂I0

∂w
= 0. (5)

It follows that the group (2) and the operator (4) haven functionally independent universal invariants.
This means that any function F (x,w) which is invariant under the group (2) can be represented as a
function of n invariants, which play the role of new variables.

In the new variables (2), the first and second derivatives take the form
∂w̄

∂x̄i
'

∂w

∂xi
+ ζiε,

∂2w̄

∂x̄i∂x̄j
'

∂2w

∂xi∂xj
+ ζijε.

(6)

Here, the coordinates of the first and second prolongations ζi and ζij are defined by
ζi = Di(ζ) − pjDi(ξj),
ζij = Dj(ζi) − qikDj(ξk),

(7)

where the following brief notation is used for the partial derivatives: pi =
∂w

∂xi
, qij =

∂2w

∂xi∂xj
;

Di =
∂

∂xi
+ pi

∂

∂w
+ qij

∂

∂pj
+ · · · is the operator of total differentiation with respect to xi.

Let us prove the first set of formulas (6) for the coordinates of the first prolongation. For simplicity, consider the case
of two independent variables x and y. Then formulas (3) can be written as

x̄ ' x + ξ1(x, y,w)ε, ȳ ' y + ξ2(x, y,w)ε, w̄ ' w + ζ(x, y,w)ε. (8)
Obviously,

w̄x = w̄x̄x̄x + w̄ȳȳx, w̄y = w̄x̄x̄y + w̄ȳȳy . (9)
Differentiating relations (8) with respect to x and y, we obtain

x̄x = 1 + Dxξ1ε, x̄y = Dyξ1ε,
ȳx = Dxξ2ε, ȳy = 1 + Dyξ2ε,
w̄x = wx + Dxζε, w̄y = wy + Dyζε.

(10)

In order to calculate w̄x̄, we eliminate w̄ȳ from (9) and then replace the derivatives x̄x, x̄y, ȳx, ȳy , w̄x, w̄y by the
corresponding expressions from (10) to obtain

w̄x̄ =
wx + ε(Dxζ + wxDyξ2 − wyDxξ2) + ε2(DxζDyξ2 − Dxξ2Dyζ)

1 + ε(Dxξ1 + Dyξ2) + ε2(Dxξ1Dyξ2 − Dxξ2Dyξ1)
.

Using the expansion in powers of ε, we find that
w̄x̄ ' wx + ζ1ε, ζ1 = Dxζ − wxDxξ1 − wyDxξ2,

as required. In a similar way, one can calculate ζ2 and the coordinates of the second prolongation ζij .

Let us require that equation (1) be invariant (i.e., preserve its form) under the transformations in
question,

F

(

x̄i, w̄,
∂w̄

∂x̄i
,
∂2w̄

∂xi∂x̄j

)

= 0.

Let us expand this expression into a series in powers of the small parameter ε → 0. Taking into
account that the leading term of the expansion (1) is zero, using (3) and (6), and retaining only the
first-order terms, we obtain

X
2
F

(

xi,w,
∂w

∂xi
,
∂2w

∂xi∂xj

)
∣

∣

∣

∣

F=0
= 0, (11)

where X
2

is the twice prolonged operator,

X
2

= ξi(x,w)
∂

∂xi
+ ζ(x,w)

∂

∂w
+ ζi

∂

∂pi
+ ζij

∂

∂qij
.

Relation (11) is called the invariance condition.
Remark. The invariant I0, which is a solution of equation (5), also satisfies the equation X

2
I0 = 0.
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S.7.1-2. Group analysis of second-order nonlinear equations in two independent variables.

Consider the second-order equation in two independent variables

∂2w

∂y2 = H
(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y

)

. (12)

In this case, the infinitesimal operator (4) has the form

X = ξ(x, y,w)
∂

∂x
+ η(x, y,w)

∂

∂y
+ ζ(x, y,w)

∂

∂w
,

where we have used the notation ξ = ξ1 and η = ξ2.
The coordinates of the first prolongation are given by

ζ1 = Dx(ζ) − wxDx(ξ) − wyDx(η),
ζ2 = Dy(ζ) − wxDy(ξ) − wyDy(η),

which, after suitable calculations, become

ζ1 = ζx + (ζw − ξx)wx − ηxwy − ξww2
x − ηwwxwy,

ζ2 = ζy − ξywx + (ζw − ηy)wy − ξwwxwy − ηww2
y .

(13)

The coordinates of the second prolongation are expressed as

ζ11 = Dx(ζ1) − wxxDx(ξ) − wxyDx(η),
ζ12 = Dy(ζ1) − wxxDy(ξ) − wxyDy(η),
ζ22 = Dy(ζ2) − wxyDy(ξ) − wyyDy(η),

or, after calculations,

ζ11 = ζxx + (2ζwx − ξxx)wx − ηxxwy + (ζww − 2ξwx)w2
x − 2ηwxwxwy

− ξwww3
x − ηwww2

xwy + (ζw − 2ξx − 3ξwwx − ηwwy)wxx − 2(ηx + ηwwx)wxy,

ζ12 = ζxy + (ζwy − ξxy)wx + (ζwx − ηxy)wy − ξwyw2
x

− (ζww − ξwx − ηwy)wxwy − ηwxw2
y − ξwww2

xwy − ηwwwxw2
y

− (ξy + ξwwy)wxx + (ζw − ξx − ηy − 2ξwwx − 2ηwwy)wxy − (ηx + ηwwx)wyy,

ζ22 = ζyy − ξyywx + (2ζwy − ηyy)wy − 2ξwywxwy + (ζww − 2ηwy)w2
y

− ξwwwxw2
y − ηwww3

y − 2(ξy + ξwwy)wxy + (ζw − 2ηy − ξwwx − 3ηwwy)wyy.

(14)

The invariance condition (11) for equation (12) reads

ζ22 = ξ
∂H

∂x
+ η

∂H

∂y
+ ζ

∂H

∂w
+ ζ1

∂H

∂wx
+ ζ2

∂H

∂wy
+ ζ11

∂H

∂wxx
+ ζ12

∂H

∂wxy
, (15)

and in the expressions (13) and (14) of the coordinates of the first and second prolongations,ζi and ζij ,
the derivative ∂2w

∂y2 should be replaced by the function H , in accordance with equation (12). The
resulting equation can be rewritten as a polynomial in the “independent variables” represented by
the remaining derivatives (wx, wy , wxx, and wxy in our case):

∑

Ak1k2k3k4 (wx)k1 (wy)k2 (wxx)k3 (wxy)k4 = 0, (16)

where the functional coefficients Ak1k2k3k4 depend only on x, y,w, ξ, η, ζ and the derivatives of the
functions ξ, η, ζ and are independent of the derivatives of w. Relation (16) holds if all Ak1k2k3k4 = 0.
Thus, the invariance condition is split and can be rewritten as an overdetermined determining system,
which is obtained by equating to zero the functional coefficients of the “independent variables”
represented by the remaining derivatives wx,wy,wxx,wxy, of which the unknown functions ξ, η, ζ
are independent.
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It should be noted that the functional coefficientsAk1k2k3k4 and the determining system are linear
with respect to the desired quantities ξ, η, ζ.

Below we illustrate the above procedure by examples.
Example 1. Consider the two-dimensional stationary heat equation with a nonlinear source

∂2w

∂x2 +
∂2w

∂y2 − f (w) = 0, (17)

which corresponds to the right-hand side H = f (w) − wxx of equation (12).
Let us insert H = f (w) − wxx into the invariance condition (15), taking into account the expressions (13) and (14) for

the coordinates of the first and second prolongations. Now, replacing wyy by f (w) −wxx [a consequence of equation (17)]
and equating the coefficients of the remaining derivatives to zero, we obtain the following system:

wxwxx: ξw = 0,
wywxx: ηw = 0,
wxx: ξx − ηy = 0,
wxy: ξy + ηx = 0,

w
2
x: ζww − 2ξwx = 0,

wxwy: ηwx + ξwy = 0,
wx: 2ζwx − ξxx − ξyy − ξwf (w) = 0,

w
2
y: ζww − 2ηwy = 0,

wy: 2ζwy − ηxx − ηyy − 3ηwf (w) = 0,

1: ζxx + ζyy − f ′(w)ζ + f (w)(ζw − 2ηy) = 0.

Here, the first column contains combinations of derivatives and the second column contains the corresponding coefficients
(up to constant factors); the coefficients of wywxy, wxwxy, w3

x, w2
xwy, wxw2

y, and w3
y are omitted, since these coincide

with some of the equations of the system or are their differential consequences. Using the first, the second, and the fifth
equations, we find that ξ = ξ(x, y), η = η(x, y), ζ = aw + b(x, y), and a = const. Ultimately, the system becomes

ξx − ηy = 0,
ξy + ηx = 0,

bxx + byy − awf ′(w) − bf ′(w) + f (w)(a − 2ηy) = 0.

(18)

Obviously, for an arbitrary function f , we have a = b = ηy = 0, and therefore, ξ = C1y + C2, η = −C1x + C3, and ζ = 0.
Successively, taking one of the constants equal to unity and the others equal to zero, we find that the original equation admits
three operators

X1 = ∂x, X2 = ∂y, X3 = y∂x − x∂y. (19)
The first two operators correspond to all possible translations along the axes x and y, and the third operator corresponds to a
rotation.

Consider more closely the third equation of system (18). If

(aw + b)f ′(w) − f (w)(a − 2ηy) = 0, (20)
then there may exist other solutions of system (18) which lead to operators other than (19). We should investigate two cases:
a ≠ 0 and a = 0.

Case 1. Solving equation (20) for a ≠ 0, we get

f (w) = C(aw + b)1− 2γ
a ,

where γ = ηy = const and b = const. Therefore, for f (w) = wk equation (17) admits an additional operator

X4 = x∂x + y∂y +
2

1 − k
w∂w ,

which describes nonuniform scaling.
Case 2. For a = 0, the solution has the form

f (w) = Ceλw,

where λ = const. Then b = −2ηy/λ and the functions ξ and η satisfy the first two equations in (18), which coincide with
the Cauchy–Riemann equations for analytic functions. These conditions hold for the real and the imaginary parts of any
analytic function f (z) = ξ(x, y) + iη(x, y) of the complex variable z = x + iy. In particular, for b = const and f (w) = ew ,
the following additional operator is admitted:

X4 = x∂x + y∂y − 2∂w ,

which corresponds to scaling in x and y combined with a translation in w.
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Example 2. Consider the nonlinear heat equation
∂w

∂t
=
∂

∂x

[
f (w)

∂w

∂x

]
. (21)

The invariance condition is obtained by applying the operator X
2

= ξ∂x + η∂t + ζ∂w + ζ1∂wx + ζ2∂wt + ζ11∂wxx to the
equation

wt − f (w)wxx − f ′(w)(wx)2 = 0.
Using the expressions (13) and (14) for the coordinates of the first and the second prolongations ζ1 and ζ11 for y = t, and
replacing wt in the invariance condition by the right-hand side of equation (21), let us equate to zero the coefficients of
different powers of the remaining derivatives. We obtain the following system:

wxwxx: 2f (w)
(
ηwxf (w) + ξw

)
+ f ′(w)ηx = 0,

wxx: ζf
′(w) − f2(w)ηxx − f (w)(2ξx − ηt) = 0,

wxwxt: f (w)ηw = 0,
wxt: f (w)ηx = 0,

w
4
x: f

′(w)ηw + f (w)ηww = 0,

w
3
x: 2[f ′(w)]2

ηx + f (w)ξww + f ′(w)ξw + 2f (w)f ′(w)ηwx = 0,

w
2
x: f (w)ζww + f ′′(w)ζ − 2f (w)ξwx − f ′(w)(2ξx − ηt) + f ′(w)ζw − f (w)f ′(w)ηww = 0,

wx: 2f (w)ζwx + 2f ′(w)ζx − f (w)ξxx + ξt = 0,
1: ζt − f (w)ζxx = 0.

Here, the first column lists combinations of derivatives and the second column contains the corresponding functional
coefficients (up to a constant factor); identical expressions and those obtained by differentiation are omitted. Since f (w) 8 0,
the third and the fourth equations of the system imply that η = η(t). Then, from the first and the second equations we have

ξ = ξ(x, t), ζ =
f (w)(2ξx − ηt)

f ′(w)
.

Taking into account the relations obtained above, we can rewrite the system in the form
[ff ′f ′′′ − f (f ′′)2 + (f ′)2

f
′′](2ξx − ηt) = 0,

f [4ff ′′ − 7(f ′)2
ξxx − (f ′)2

ξt = 0,
2fξxxx − 2ξxt + ηtt = 0

(the equations have been divided by common factors which are always nonzero). In the general case, for arbitrary f (w),
the first equation implies that 2ξx − ηt = 0, and the second equation implies that ξt = 0. From the third equation, we get
ξ = C1 + C2x, and therefore, η = 2C2t + C3. It follows that for arbitrary f (w), equation (21) admits three operators:

X1 = ∂x, X2 = ∂t, X3 = 2t∂t + x∂x.
Likewise, it can be shown that for the following specific f there arise additional operators:
1. f = ew: X4 = x∂x + 2∂w .
2. f = wk, k ≠ 0, −4/3: X4 = kx∂x + 2w∂w .
3. f = w−4/3: X4 = 2x∂x − 3w∂w, X5 = x2∂x − 3xw∂w.

Example 3. Consider the nonlinear wave equation
∂2w

∂t2
=
∂

∂x

[
f (w)

∂w

∂x

]
. (22)

Let us use the invariance condition (15) for y = t and H = f (w)wxx + f ′(w)(wx)2. We substitute the expressions (13)
and (14) of the coordinates of the first and the second prolongations, at y = t, and replace wtt in the invariance condition by
the right-hand side of equation (22), and then equate the coefficients of different powers of the remaining derivatives to zero.
Thus, we obtain the following system (identical expressions and those obtained by differentiation are omitted):

wxwxx: f (w)ξw = 0,
wtwxx: f (w)ηw = 0,

wxx: f
′(w)ζ + 2f (w)(ηt − ξx) = 0,

wxt: f (w)ηx − ξt = 0,

w
3
x: f

′(w)ξw + f (w)ξww = 0,

w
2
xwt: f (w)ηww − f ′(w)ηw = 0,

w
2
x: f (w)ζww + f ′(w)ζw + f ′′(w)ζ − 2f (w)ξwx − 2f ′(w)(ξx − ηt) = 0,

wxwt: 2f ′(w)ηx + 2f (w)ηwx − 2ξwt = 0,

wx: 2f ′(w)ζx − f (w)ξxx + 2f (w)ζwx + ξtt = 0,

w
2
t : ζww − 2ηwt = 0,

wt: f (w)ηxx + 2ζwt − ηtt = 0,
1: ζtt − f (w)ζxx = 0.
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Since f (w) ≠ const, the first two equations yield ξ = ξ(x, t), η = η(x, t). Therefore, the tenth equation of the system takes
the form ζww = 0 and we obtain the expression ζ = a(x, t)w + b(x, t). As a result, there remain the following equations of
the system:

wf
′(w)a(x, y) + f ′(w)b(x, y) + 2f (w)(ηt − ξx) = 0,

f
′(w)a(x, y) + wf ′′(w)a(x, y) + f ′′(w)b(x, y) − 2f ′(w)(ξx − ηt) = 0,

2f ′(w)(axw + bx) − f (w)ξxx + 2f (w)ax = 0,
2at − ηtt = 0,
attw + btt − f (w)(axxw + bxx) = 0.

For an arbitrary function f (w), we obtain a = b = 0, ηtt = 0, and ξx − ηt = 0. The integration yields three operators:

X1 = ∂x, X2 = ∂t, X3 = x∂x + t∂t.

Likewise, it can be shown that for the following specific f , there are additional operators:
1. f = ew: X4 = x∂x + 2∂w .
2. f = wk, k ≠ 0, −4/3, −4: X4 = kx∂x + 2w∂w .
3. f = w−4/3: X4 = 2x∂x − 3w∂w, X5 = x2∂x − 3xw∂w.
4. f = w−4: X4 = x∂x − w∂w, X5 = t2∂x + tw∂w .

S.7.1-3. Finding exact solutions with the help of an admissible group. Invariant solutions.

1◦. Suppose that we know a solution w of an equation under investigation. Then every admissible
group generates a one-parameter family of solutions, namely the orbit Tw, except for the case in
which the solution is transformed into itself under the action of the group transformations (see
Item 2◦).

2◦. A solution w = w(x, y) of equation (12) is called invariant under a groupG if the corresponding
orbit Tw is an invariant set.

LetG be a one-parametergroup admitted by equation (12) and let I1 = I1(x, y) and I2 = I2(x, y,w)
be two functionally independent invariants of the groupG.

Invariant solutions are sought in the form

I2 = Φ(I1), (23)

where Φ is a function to be determined. Solving (23) for w and substituting the result into (12), we
obtain an ordinary differential equation for the function Φ.

A well-known and very important special class of invariant solutions is represented by self-
similar solutions which are constructed on the basis of invariants of extension groups.

For the sake of illustration, the general scheme of the construction of invariant solutions of
second-order evolution equations is represented in Figure 3. Here, we omit the first-order partial
differential equation for the determination of the group invariants (because we can proceed directly
to the corresponding characteristic system of ordinary differential equations).

Example 4. Again, consider the stationary heat equation with a nonlinear source

∂2w

∂x2 +
∂2w

∂y2 = f (w).

1◦. Let us examine the case f = wk, in which the equation admits an additional operator (see Example 1):

X4 = x∂x + y∂y +
2

1 − k
w∂w .

In order to find invariants of this operator, one should consider the linear first-order partial differential equation X4I = 0
which can be written out in complete form as

x
∂I

∂x
+ y

∂I

∂y
+

2
1 − k

w
∂I

∂w
= 0.

The corresponding characteristic system of ordinary differential equations

dx

x
=
dy

y
=

1 − k
2

dw

w

admits the first integrals
y/x = C1, x

2/(k−1)
w = C2,
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Original equation: ( , , , ,x  t  w  wxw H wt xx= )

Write out invariance condition: = + + + +2 1 11H H H H Hx t w w wx xx
z x h z z z

Split with respect to powers of remaining derivatives , ,w w
xx xtw

x

Solve the determining system of PDEs for , ,x  h  z(overdetermined)

Write out the characteristic system of ODEs: / = / = /dx dt dwx h z

Find the first integrals: ( , , ) = andI x  t  w C1 1 I x  t  w C2 2( , , ) =

From the original equation, obtain ODE for ( )I1F = F

Calculate the coordinates
of the prolonged operator

Replace byw H
t

Derive the determining system of PDEs

Find the functions , , andx  h z

Solve the characteristic system

Search for invariant solution

in the form = ( )I I2 1F

Figure 3. Algorithm for the construction of invariant solutions of second-order evolution equations. Here, ODE stands for
ordinary differential equation and PDE for partial differential equation; ξ = ξ(x, t,w), η = η(x, t,w), and ζ = ζ(x, t,w)

where C1 and C2 are arbitrary constants. Therefore, I1 = y/x and I2 = x2/(k−1)w are invariants of the operator X4.
Setting I2 = Φ(I1) and expressing w, we find that

w = x−2/(k−1)
Φ(y/x), (24)

where Φ(z) is a function to be determined in the further analysis. Substituting (24) into the original equation (17), we obtain
a second-order ordinary differential equation that determines a two-parameter family of invariant solutions

(k − 1)2(z2 + 1)Φ′′

zz + 2(k2 − 1)zΦ′

z + 2(k + 1)Φ − (k − 1)2
Φ
k = 0,

where z = y/x. Its general solution can be found by quadrature (in parametric form):
{
z = tanQ,
Φ = τ (tan2 Q + 1)1/(1−k),

where Q = (k2 − 1)
∫

dτ√
2(k − 1)2τk+1 − 4(k + 1)τ 2 + A1

+ A2,

A1 and A2 are arbitrary constants and τ is the parameter.

2◦. The functions u = x2 +y2 andw are invariants of the operator X3 of (19) for the nonlinear heat equation in question. The
substitution w = w(u), u = x2 + y2, yields an ordinary differential equation which describes rotationally invariant solutions
of the original equation,

uw
′′

uu + w′

u = 1
4 f (w).

Remark. In applications, one often takes the polar radius r =
√
x2 + y2 to be an invariant instead of u = x2 + y2.

Example 5. Consider the nonlinear heat equation (21).

1◦. For an arbitrary function f (w), the equation admits the operator (see Example 2)

X3 = 2t∂t + x∂x.

The invariants are found from the linear first-order partial differential equation X3I = 0, which, in complete form, reads

2t
∂I

∂t
+ x

∂I

∂x
+ 0

∂I

∂w
= 0.
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The corresponding characteristic system of ordinary differential equations
dx

x
=
dt

2t
=
dw

0
admits the first integrals

xt
−1/2 = C1, w = C2,

where C1 and C2 are arbitrary constants. Therefore, the functions I1 = xt−1/2 and I2 = w are invariants of the operator X3.
Taking I2 = Φ(I1), we get

w = Φ(z), z = xt−1/2, (25)
where Φ(z) is a function to be determined in the further analysis. Substituting (25) into the original equation (21), we arrive
at the second-order ordinary differential equation

2[f (Φ)Φ′

z]′z + zΦ′

z = 0,
which describes an invariant (self-similar) solution.
2◦. Let us examine the case f (w) = wk, in which the equation admits the operator

X4 = kx∂x + 2w∂w .
The invariants are described by the linear first-order partial differential equation X4I = 0, which, in complete form, reads

0
∂I

∂t
+ kx

∂I

∂x
+ 2w

∂I

∂w
= 0.

The corresponding characteristic system of ordinary differential equations
dt

0
=
dx

kx
=
dw

2w
admits the first integrals

t = C1, x
−2/k

w = C2,
where C1 and C2 are arbitrary constants. Therefore, the functions I1 = t and I2 = x−2/kw are invariants of the operator X4.

Setting I2 = Ψ(I1) and expressing w, we find that

w = x2/k
Ψ(t), (26)

where Ψ(t) is a function to be determined in the further analysis. Substituting (26) into the original equation (21), we arrive
at the first-order ordinary differential equation

2kΨ′

t = 2a(k + 2)Ψk+1.
Integrating yields

Ψ(t) =
[
A −

2a(k + 2)
k

t

]−1/k
,

where A is an arbitrary constant. Thus, the scaling-invariant solution of equation (21) for f (w) = wk has the form

w(x, t) = x2/k
[
A −

2a(k + 2)
k

t

]−1/k
.

Example 6. Consider the nonlinear wave equation (22). For an arbitrary f (w), this equation admits the operator (see
Example 3)

X3 = t∂t + x∂x.
The invariants are found from the linear first-order partial differential equation X3I = 0, which, in complete form, reads as
follows:

t
∂I

∂t
+ x

∂I

∂x
+ 0

∂I

∂w
= 0.

The corresponding characteristic system of ordinary differential equations
dx

x
=
dt

t
=
dw

0
admits the first integrals

xt
−1 = C1, w = C2,

where C1 and C2 are arbitrary constants. Therefore, the functions I1 = xt−1 and I2 = w are invariants of the operator X3.
Taking I2 = Φ(I1), we have

w = Φ(y), y = xt−1. (27)
The function Φ(y) is sought by substituting (27) into the original equation (22) to obtain the ordinary differential equation

[f (Φ)Φ′

y]′y = (yΦ′

y)′y,

which determines an invariant (self-similar) solution. Obviously, the last equation admits the first integral f (Φ)Φ′

y = yΦ′

y +C.9�:
References for Subsection S.7.1: L. V. Ovsiannikov (1962, 1982), G. W. Bluman and J. D. Cole (1974), J. M. Hill (1982,

1992), N. H. Ibragimov (1985, 1994), P. J. Olver (1986, 1995), D. H. Sattinger and O. L. Weaver (1986), G. W. Bluman and
S. Kumei (1989), H. Stephani (1989), W. I. Fushchich, V. M. Stelen, and N. I. Serov (1993), G. Gaeta (1994), A. M. Vinogradov
and I. S. Krasilshchik (1997), G. Baumann (2000), P. A. Clarkson (2000), P. E. Hydon (2000), P. P. Kiryakov, S. I. Senashov,
and A. N. Yakhno (2001), B. J. Cantwell (2002), D. M. Klimov and V. F. Zhuravlev (2002).
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S.7.2. Nonclassical Method for Symmetry Reductions

S.7.2-1. Description of the method. Invariant surface condition.

Consider a second-order equation in two independent variables of the form

∂2w

∂y2 = H
(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y

)

. (28)

The results of the classical group analysis (see Subsection S.7.1) can be substantially extended
if, instead of finding invariants of an admissible infinitesimal operator X by means of solving the
characteristic system of equations

dx

ξ(x, y,w)
=

dy

η(x, y,w)
=

dw

ζ(x, y,w)
,

one imposes the corresponding invariant surface condition (Bluman and Cole, 1969)

ξ(x, y,w)
∂w

∂x
+ η(x, y,w)

∂w

∂y
= ζ(x, y,w). (29)

Equation (28) and condition (29) are supplemented by the invariance condition

X
2

[

∂2w

∂y2 −H
(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y

)]

= 0, (30)

which coincides with equation (15) from Subsection S.7.1.
All three equations (28)–(30) are used for the construction of exact solutions of the original

equation (28). It should be observed that in this case, the determining equations obtained for the
unknown functions ξ(x, y,w), η(x, y,w), and ζ(x, y,w) by the splitting procedure are nonlinear.
The symmetries determined by the invariant surface (29) are called nonclassical.

Figure 4 is intended to clarify the general scheme for constructing of exact solutions of a
second-order evolution equation by the nonclassical method on the basis of the invariant surface
condition (29).

S.7.2-2. Examples: the Fitzhugh–Nagumo equation and a nonlinear wave equation.

Example 1. Consider the Fitzhugh–Nagumo equation

∂w

∂t
=
∂2w

∂x2 + w(1 − w)(w − a). (31)

Without loss of generality, we set η = 1 in the invariant surface condition (29) with y = t, thus assuming that η ≠ 0. We have

∂w

∂t
+ ξ(x, t,w)

∂w

∂x
= ζ(x, t,w). (32)

The invariance condition is obtained by a procedure similar to the classical algorithm (see Subsection S.7.1). Namely, we
apply the operator X

2
= ξ∂x+η∂t+ζ∂w +ζ1∂wx +ζ2∂wt +ζ11∂wxx to equation (31) and take into account the expressions (13)

and (14) for the coordinates of the first and the second prolongations ζ1 and ζ11 for y = t. Next, we substitute wxx from (31)
and then wt from (32) into the invariance condition. Consequently, there remains only one “independent” variable, wx.
Splitting with respect to powers of this variable yields the following determining system of only four equations:

w
3
x: ξww = 0,

w
2
x: ζww − 2(ξwx − ξξw) = 0,

wx: 2ζwx − 2ξwζ − 3w(w − a)(w − 1)ξw − ξxx + 2ξξx + ξt = 0,

1: ζt − ζxx + 2ξxζ + (2ξx − ζw)w(w − a)(w − 1) + [3w2 − 2(a + 1)w + a]ζ = 0.

It can be seen that the employment of the invariant surface condition (29) substantially increases our freedom in choosing the
coordinates ξ, η, ζ.
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Original equation: ( , , , ,x  t  w  wxw H wt xx= )

Invariance condition: = + + + +2 1 11H H H H Hx t w w wx xx
z x h z z z

Split the resulting expression in powers of remaining derivative wx

Solve the determining system for , ,x  h  z (one usually sets = 1)h

Characteristic system of ODEs corresponding to (2): / = / = /dx dt dwx h z

Find the first integrals: ( , , ) = andI x  t  w C1 1 I x  t  w C2 2( , , ) =

From the original equation, obtain an ODE for ( )I1F = F

Impose the invariant surface condition

Eliminate andw w
t xx

from (1) (3)-

Derive the determining system of PDEs

Find the functions , , andx  h z

Solve the characteristic system

Search for an invariant solution

in the form = ( )I I2 1F

Write out corresponding 1st-order quasilinear PDE: + =w wx t
x h z

Calculate the coordinates
of the prolonged operator

(1)

(2)

(3)

Figure 4. Algorithm for the construction of exact solutions by a nonclassical method for second-order evolution equations.
Here, ODE stands for ordinary differential equation and PDE for partial differential equation.

1◦. Let a = −1. In this case, equation (31) reduces to the Newell–Whitehead equation

wt = wxx + w − w3.
Computing the coordinates yields

ξ = α(x, t), η = 1, ζ = −αxw,
where the function α(x, t) satisfies the system

αt − 3αxx + 2ααx = 0, αxt − αxxx + 2α2
x + 2αx = 0, (33)

and the associated invariant surface condition is
wt + αwx + αxw = 0. (34)

The transformation α = −3(ln ϕ)x reduces the equations of (33) into the linear equations
ϕt = 3ϕxx, ϕxt = ϕxxx + ϕx,

respectively. The solution that satisfies the two equations simultaneously is expressed as

α(x, t) = −
3
√

2
C1 exp

[ 1
2 (
√

2 x + 3t)
]

− C2 exp
[ 1

2 (−
√

2 x + 3t)
]

C1 exp
[ 1

2 (
√

2 x + 3t)
]

+ C2 exp
[ 1

2 (−
√

2 x + 3t)
]

+ C3
.

Finally, the invariant surface condition (34) gives the exact solution

w(x, t) =
{
C1 exp

[ 1
2 (
√

2 x + 3t)
]

− C2 exp
[ 1

2 (−
√

2 x + 3t)
]}
h
(
z;

√

2
2
)
, (35)

where
z = C1 exp

[ 1
2 (
√

2 x + 3t)
]

+ C2 exp
[ 1

2 (−
√

2 x + 3t)
]

+ C3,
the function h(z;k) is the Jacobi elliptic function satisfying the ordinary differential equation

(h′z)2 = h4 + (2k2 − 1)h2 + k2(k2 − 1), (36)
and C1, C2, and C3 are arbitrary constants.
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2◦. Let a = 1/2. Calculating the coordinates yields

ξ = α(x, t), η = 1, ζ = −αx
(
w − 1

2
)
,

where the function α(x, t) satisfies the system

αt − 3αxx + 2ααx = 0, 2αxt − 2αxxx + 4α2
x + αx.

In exactly the same manner, we arrive at the exact solution

w(x, t) = 1
2
{
C1 exp

[ 1
8 (2

√

2 x + 3t)
]

− C2 exp
[ 1

8 (−2
√

2 x + 3t)
]}
h
(
z;

√

2
2
)
,

where
z = C1 exp

[ 1
8 (2

√

2 x + 3t)
]

+ C2 exp
[ 1

8 (−2
√

2 x + 3t)
]

+ C3,

the function h(z;k) is the Jacobi elliptic function satisfying the ordinary differential equation (36); C1, C2, and C3 are
arbitrary constants.

3◦. Let a = 2. Calculating the coordinates yields

ξ = α(x, t), η = 1, ζ = −αx
(
w − 1

2
)
,

where the function α(x, t) satisfies system (33). In this case, we obtain solution (35).

4◦. Let a be an arbitrary constant. Calculating the coordinates yields

ξ =
√

2
2 (3w − a − 1), η = 1, ζ = − 3

2w(w − a)(w − 1).

The associated invariant surface condition becomes

wt +
√

2
2 (3w − a − 1)wx + 3

2w(w − a)(w − 1) = 0. (37)
Eliminating wt from (31) and (37), we obtain the equation

wxx =
√

2
2 (a + 1 − 3w)wx − 1

2w(w − a)(w − 1), (38)

which, by the substitution w =
√

2 (lnϕ)x, is reduced to the linear equation

2ϕxxx −
√

2 (1 + a)ϕxx + aϕx = 0.

Solving this equation, we arrive at a solution of equation (38) in the form

w(x, t) =
aψ1(t) exp

(√

2
2 ax

)
+ ψ2(t) exp

(√

2
2 x
)

ψ1(t) exp
(√

2
2 ax

)
+ ψ2(t) exp

(√

2
2 x
)

+ ψ3(t)
,

where the functions ψi(t), i = 1, 2, 3, are found by the substitution of the expression of w(x, t) into (37). Finally, we obtain
a solution of equation (31),

w(x, t) =
aC1 exp

[ 1
2 (
√

2 ax + a2t)
]

+ C2(t) exp
[ 1

2 (
√

2 x + t)
]

C1 exp
[ 1

2 (
√

2ax + a2t)
]

+ C2(t) exp
[ 1

2 (
√

2 x + t)
]

+ C3 exp(at)
,

where C1, C2, and C3 are arbitrary constants.

5◦. Let a be an arbitrary constant. Another set of coordinates is possible (it differs from that of Item 4◦ by the sign of ξ),
namely,

ξ = −
√

2
2 (3w − a − 1), η = 1, ζ = − 3

2w(w − a)(w − 1),

and the associated invariant surface condition is

wt −
√

2
2 (3w − a − 1)wx + 3

2w(w − a)(w − 1) = 0.

A similar procedure yields a solution of equation (31),

w(x, t) =
aC1 exp

[ 1
2 (
√

2 ax + a2t)
]

+ C2(t) exp
[ 1

2 (
√

2 x + t)
]

C1 exp
[ 1

2 (
√

2 ax + a2t)
]

+ C2(t) exp
[ 1

2 (
√

2 x + t)
]

+ C3 exp
[ 1

2 (
√

2 (a + 1)x + at)
] ,

where C1, C2, and C3 are arbitrary constants.

6◦. Let a be an arbitrary constant and η ≡ 0. Calculating the coordinates yields

ξ = 1, η = 0, ζ = ζ(x, t,w),

where ζ satisfies the equation

2ζζxw + ζ2
ζww + ζxx + w(w − a)(w − 1)ζw − ζt − [3w2 − 2(a + 1)w + a]ζ = 0, (39)

and the associated invariant surface condition is
wx = ζ. (40)
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Eliminating wx and wxx from (31) and (40), we obtain

wt = ζζw + ζx − w(w − a)(w − 1). (41)
Whenever a solution of equation (39) is known, we can integrate equation (40) to obtain exact solutions of the original
equation (31).

Example 2. Consider the nonlinear wave equation

∂2w

∂t2
= w

∂2w

∂x2 . (42)

Let us supplement this equation with the invariant surface condition (32) with y = t. The invariance condition can be obtained
from (15) by taking into account formulas for the coordinates of the prolonged operator (13)–(14) and the relations y = t,
η = 1, andH =wwxx. Next, we insertwtt of (42) and thenwt of (32) into the invariance condition. As a result, there remain
two “independent” variables: wx and wxx. The splitting in powers of these variables yields the following determining
system:

wxwxx: (ξ2 − w)ξw = 0,
wxx: 2ξξt + 2wξx + 2ξξwζ − ζ = 0,

w
3
x: (ξ2 − w)ξww = 0,

w
2
x: (ξ2 − w)ζww + 2wξwx + 2ξξwt + 2ξξwwζ = 0,

wx: wξxx − 2wζwx − 2ξwtζ − ξwwζ − 2ξζwt − 2ξζζww − ξtt = 0,

1: ζtt − wζxx + 2ζζwt + ζ2
ζww .

From the first equation it follows that either (i) ξ = ξ(x, t) or (ii) ξ =
√

w. Case (ii) corresponds to ζ = 0 and is not considered
in what follows. In case (i), it turns out that the third and the fourth equations are satisfied and the second equation implies
that ζ = 2wξx + 2ξξt. The further substitution of the obtained functions into the fifth and the sixth equations, after the
splitting in powers of w, yields

ξ = αt + β, ζ = 2α(αt + β),

where α and β are arbitrary constants. To be specific, we take α = 2 and β = 0 and write out the characteristic system of
ordinary differential equations:

dt

1
=
dx

2t
=
dw

8t
.

Consequently, first integrals are: C1 = x − t2 and C2 = w − 4t2. According to the scheme represented in Figure 4, we seek
an invariant solution in the form w − 4t2 = Φ(x − t2). Inserting

w = Φ(z) + 4t2, z = x − t2, (43)
into (42), we obtain an autonomous ordinary differential equation for Φ = Φ(z):

ΦΦ
′′

zz + 2Φ′

z = 8.

This equation is easy to integrate, since its order can be reduced, upon which it turns into a separable equation. As a result,
we can find an exact solution of equation (42) of the form (43).;�<

References for Subsection S.7.2: G. W. Bluman and J. D. Cole (1969), P. J. Olver and Ph. Rosenau (1987), D. Levi and
P. Winternitz (1989), M. C. Nucci and P. A. Clarkson (1992), D. Arrigo, P. Broadbridge, and J. M. Hill (1993), P. A. Clarkson,
D. K. Ludlow, and T. J. Priestley (1997).

S.8. Differential Constraints Method
S.8.1. Description of the Method

S.8.1-1. Preliminary remarks. A simple example.

In Subsections S.4.1 and S.4.3, we have considered examples of additive separable solutions of
nonlinear equations in the form

w(x, y) = ϕ(x) + ψ(y). (1)

At the initial stage, the functions ϕ(x) and ψ(y) are assumed arbitrary and are to be determined in
the subsequent analysis.

Differentiating the expression (1) with respect to y, we obtain

∂w

∂y
= f (y) (f = ψ′

y). (2)

Conversely, relation (2) implies a representation of the solution in the form (1).
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Further, differentiating (2) in x, we get

∂2w

∂x∂y
= 0. (3)

Conversely, from (3) we obtain a representation of the solution in the form (1).
Thus, the problem of finding exact solutions of the form (1) for a specific partial differential

equation may be replaced by an equivalent problem of finding exact solutions of the given equation
supplemented with the condition (2) or (3). Such supplementary conditions in the form of one or
several differential equations will be called differential constraints.

Prior to giving a general description of the differential constraints method, we demonstrate its
features by a simple example.

Example 1. Consider the third-order nonlinear equation

∂w

∂y

∂2w

∂x∂y
+ a

∂w

∂x

∂2w

∂y2 = b
∂3w

∂y3 , (4)

which, for a = −1, occurs in the theory of the hydrodynamic boundary layer (see Subsection 9.3.1). Let us seek a solution of
equation (4) satisfying the linear first-order differential constraint

∂w

∂x
= ϕ(y). (5)

Here, the function ϕ(y) cannot be arbitrary, in general, but must satisfy the condition of compatibility of equations (4) and (5).
The compatibility condition is a differential equation for ϕ(y) and is a consequence of equations (4), (5) and those obtained
by their differentiation.

Successively differentiating (5) with respect to different variables, we calculate the derivatives
wxx = 0, wxy = ϕ′

y, wxxy = 0, wxyy = ϕ′′

yy, wxyyy = ϕ′′′

yyy. (6)
Differentiating (4) with respect to x yields

w
2
xy + wywxxy + awxxwyy + awxwxyy = bwxyyy. (7)

Substituting the derivatives of the functionw from (5) and (6) into (7), we obtain the following third-order ordinary differential
equation for ϕ:

(ϕ′

y)2 + aϕϕ′′

yy = bϕ′′′

yyy, (8)
which represents the compatibility condition for equations (4) and (5).

In order to construct an exact solution, we integrate equation (5) to obtain
w = ϕ(y)x + ψ(y). (9)

The function ψ(y) is found by substituting (9) into (4) and taking into account the condition (9). As a result, we arrive at the
ordinary differential equation

ϕ
′

yψ
′

y + aϕψ′′

yy = bψ′′′

yyy. (10)
Finally, we obtain an exact solution of the form (9), with the functions ϕ and ψ described by equations (8) and (10).

Remark 1. It is easier to obtain the above solution by directly substituting expression (9) into the original equation (4).
Remark 2. The above results can be extended to a more general case of equation (4) containing arbitrary functions

a = a(y) and b = b(y).

S.8.1-2. General description of the differential constraints method.

The procedure of the construction of exact solutions to nonlinear equations of mathematical physics
by the differential constraints method consists of several steps described below.

1◦. In the general case, the identification of particular solutions of the equation

F

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2 , . . .
)

= 0 (11)

is performed by supplementing this equation with an additional differential constraint

G

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2 , . . .
)

= 0. (12)

The form of the differential constraint (12) may be prescribed on the basis of: (i) a priori
considerations (for instance, it may be required that the constraint should represent a solvable
equation); (ii) certain properties of the equation under consideration (for instance, it may be required
that the constraint should follow from symmetries of the equation or the corresponding conservation
laws).
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2◦. In general, the thus obtained overdetermined system (11)–(12) requires a compatibility analysis.
If the differential constraint (12) is specified on the basis of a priori considerations, it should allow
for sufficient freedom in choosing functions (i.e., involve arbitrary determining functions). The
compatibility analysis of system (11)–(12) should provide conditions that specify the structure of
the determining functions. These conditions (compatibility conditions) are written as a system of
ordinary differential equations (or a system of partial differential equations).

In simplest cases,* the compatibility analysis is performed by means of differentiating (possibly,
several times) equations (11) and (12) with respect to x and y and eliminating the highest-order
derivatives from the resulting differential relations and equations (11)–(12) (see Examples 1 and 3).
As a result, one arrives at an equation involving powers of lower-order derivatives. Equating the
coefficients of all powers of the derivatives to zero, one obtains compatibility conditions connecting
the functional coefficients of equations (11) and (12).

3◦. One solves the system of differential equations obtained in Item 2◦ for the determining functions.
Then these functions are substituted into the differential constraint (12) to obtain an equation of the
form

g

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2 , . . .
)

= 0. (13)

A differential constraint (13) that is consistent with equation (11) under consideration is called an
invariant manifold of equation (11).

4◦. One should find the general solution of: (i) equation (13) or (ii) some equation that follows from
equations (11) and (13). The solution thus obtained will involve some arbitrary functions {ϕm}
(these may depend on x and y, as well as w). Note that in some cases, one can use, instead of the
general solution, some particular solutions of equation (13) or equations that follow from (13).

5◦. The solution obtained in Item 4◦ should be substituted into the original equation (11). As a
result, one arrives at a functional-differential equation from which the functions {ϕm} should be
found. Having found the {ϕm}, one should insert these functions into the solution from Item 4◦.
Thus, one obtains an exact solution of the original equation (11).

Remark 1. Should the choice of a differential constraint be inadequate, equations (11) and (12)
may happen to be incompatible (having no common solutions).

Remark 2. There may be several differential constraints of the form (12).

Remark 3. At the last three steps of the differential constraints method, one has to solve various
equations (systems of equations). If no solution can be constructed at one of those steps, one fails
to construct an exact solution of the original equation.

For the sake of clarity, the general scheme of the differential constraints method is represented
in Figure 5.=�>

References for Subsection S.8.1: N. N. Yanenko (1964), A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko (1984),
V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).

S.8.2. FirstOrder Differential Constraints

S.8.2-1. Second-order evolution equations.

Consider a general second-order evolution equation solved for the highest-order derivative:

∂2w

∂x2 = F
(

x, t,w,
∂w

∂x
,
∂w

∂t

)

. (14)

* In the general case, for the investigation of overdetermined systems one should utilize methods based on: (i) the Cartan
algorithm or (ii) the Janet–Spenser–Kuranishi algorithm. A description of these algorithms and other relevant information
regarding the theory of overdetermined systems can be found, for instance, in the works of M. Kuranishi (1967), J. F. Pommaret
(1978), A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko (1984).
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Original equation: ( , , , ,F x  y  w  wx w w w wy xx xy yy, , , , ...) = 0

Find conditions for the equations = 0  and = 0F Gcompatibility

Solve the equations for the determining functions

Find an invariant manifold: ( , , , , , , , , ...) = 0g x  y  w  w w w w wx y xx xy yy

Insert resulting solution (with arbitrariness) into original equation

Obtain an exact solution of the original equation

Introduce a supplementary equation

Perform compatibility analysis
of the two equations

Obtain equations
for the determining functions

Insert the solution into the
differential constraint

Solve the equation = 0  forg w

Determine the unknown functions
and constants

Differential constraint: ( , , , , , , , , ...) = 0G x  y  w  w w w w wx y xx xy yy

Figure 5. Algorithm for the construction of exact solutions by the differential constraints method

Let us supplement this equation with a first-order differential constraint

∂w

∂t
= G
(

x, t,w,
∂w

∂x

)

. (15)

The condition of compatibility of these equations is obtained by differentiating (14) with respect
to t once and differentiating (15) with respect to x twice, and then equating the two resulting
expressions for the third derivatives wxxt:

DtF = D2
xG. (16)

Here, Dt and Dx are the total differentiation operators with respect to t and x:

Dt =
∂

∂t
+ wt

∂

∂w
+ wxt

∂

∂wx
+ wtt

∂

∂wt
, Dx =

∂

∂x
+ wx

∂

∂w
+ wxx

∂

∂wx
+ wxt

∂

∂wt
. (17)

The partial derivativeswt, wxx, wxt, andwtt in (17) should be expressed in terms of x, t, w, andwx
by means of the relations (14), (15) and those obtained by differentiation of (14), (15). As a result,
we get

wt = G, wxx = F , wxt = DxG =
∂G

∂x
+ wx

∂G

∂w
+ F

∂G

∂wx
,

wtt = DtG =
∂G

∂t
+ G

∂G

∂w
+ wxt

∂G

∂wx
=
∂G

∂t
+ G

∂G

∂w
+
(

∂G

∂x
+ wx

∂G

∂w
+ F

∂G

∂wx

)

∂G

∂wx
.

(18)

In the expression for F , the derivative wt should be replaced by G by virtue of (15).
Example 2. From the class of nonlinear heat equations with a source

∂w

∂t
=
∂

∂x

[
f (w)

∂w

∂x

]
+ g(w), (19)
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let us single out equations possessing invariant manifolds of the simplest form

∂w

∂t
= ϕ(w). (20)

Equations (19) and (20) are special cases of (14) and (15) with

F =
wt − f ′(w)w2

x − g(w)
f (w)

=
ϕ(w) − g(w) − f ′(w)w2

x

f (w)
, G = ϕ(w).

The functions f (w), g(w), and ϕ(w) are unknown in advance and are to be determined in the subsequent analysis.
Using (18) and (17), we find partial derivatives and the total differentiation operators:

wt = ϕ, wxx = F , wxt = ϕ′
wx, wtt = ϕϕ′,

Dt =
∂

∂t
+ ϕ

∂

∂w
+ ϕ′

wx
∂

∂wx
+ ϕϕ′

∂

∂wt
, Dx =

∂

∂x
+ wx

∂

∂w
+ F

∂

∂wx
+ ϕ′

wx
∂

∂wt
.

We insert the expressions of Dx and Dt into the compatibility conditions (16) and rearrange terms to obtain

f

[
(fϕ)′

f

]
′

w
2
x +

ϕ − g
f

ϕ
′ − ϕ

(
ϕ − g
f

)
′

= 0.

In order to ensure that this equality holds true for any wx, one should take
[

(fϕ)′

f

]
′

= 0,
ϕ − g
f

ϕ
′ − ϕ

(
ϕ − g
f

)
′

= 0. (21)

Nondegenerate case. Assuming that the function f =f (w) is given, we obtain a three-parameter solution of equations (21)
for the functions g(w) and ϕ(w):

g(w) =
a + cf
f

(∫
f dw + b

)
, ϕ(w) =

a

f

(∫
f dw + b

)
, (22)

where a, b, and c are arbitrary constants.
We substitute ϕ(w) of (22) into equation (20) and integrate to obtain

∫
f dw = θ(x)eat − b. (23)

Differentiating (23) with respect to x and t, we get wt = aeatθ/f and wx = eatθ′x/f . Substituting these expressions
into (19) and taking into account (22), we arrive at the equation θ′′xx + cθ = 0, whose general solution is given by

θ =





C1 sin
(
x
√

c
)

+ C2 cos
(
x
√

c
)

if c > 0,

C1 sinh
(
x
√−c

)
+ C2 cosh

(
x
√−c

)
if c < 0,

C1x + C2 if c = 0,

(24)

where C1 and C2 are arbitrary constants. Formulas (23)–(24) describe exact solutions (in implicit form) of equation (19)
with f (w) arbitrary and g(w) given by (22).

Degenerate case. There also exists a two-parameter solution of equations (21) for the functions g(w) and ϕ(w) (as
above, f is assumed arbitrary):

g(w) =
b

f
+ c, ϕ(w) =

b

f
,

where b and c are arbitrary constants. This solution can be obtained from (22) by renaming variables, b→ b/a and c→ ac/b,
and letting a → 0. After simple calculations, we obtain the corresponding solution of equation (19) in implicit form:

∫
f dw = bt −

1
2
cx

2 + C1x + C2.

?�@
Reference: V. A. Galaktionov (1994).

The example given below shows that calculations may be performed without the use of the
general formulas (16)–(18).

Example 3. Consider the problem of finding second-order nonlinear equations

∂w

∂t
=
∂2w

∂x2 + f1(w)
∂w

∂x
+ f0(w) (25)

admitting first-order invariant manifolds of the form

∂w

∂t
= g1(w)

∂w

∂x
+ g0(w). (26)
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Equations (25) and (26) are special cases of (14) and (15) for F = wt − f1(w)wx − f0(w) and G = g1(w)wx + g0(w).
The functions f1(w), f0(w), g1(w), and g0(w) are unknown in advance and are to be determined in the subsequent analysis.

First, we calculate derivatives. Equating the right-hand sides of (25) and (26), we get

wxx = h1wx + h0, where h1 = g1 − f1, h0 = g0 − f0. (27)
Here and in what follows, the argument of the functions f1, f0, g1, g0, h1, and h0 is omitted. Differentiating (26) with
respect to x twice and using the expression (27) for wxx, we find the mixed derivatives

wxt = g1wxx + g′1w
2
x + g′0wx = g′1w

2
x + (g1h1 + g′0)wx + g1h0,

wxxt = g′′1 w
3
x + (g1h

′

1 + 3g′1h1 + g′′0 )w2
x + (g1h

′

0 + 3g′1h0 + g1h
2
1 + g′0h1)wx + (g1h1 + g′0)h0,

(28)

where the prime denotes a derivative with respect to w. Differentiating (27) with respect to t and using the expressions (26)
and (28) for wt and wxt, we obtain

wxxt = h1wxt + h′1wxwt + h′0wt = (g1h
′

1 + g′1h1)w2
x + (g1h

2
1 + g′0h1 + g0h

′

1 + g1h
′

0)wx + g1h0h1 + g0h
′

0. (29)
We equate the expressions for the third derivative wxxt from (28) and (29) and collect terms with the same power ofwx

to obtain an invariance condition in the form

g
′′

1 w
3
x + (2g′1h1 + g′′0 )w2

x + (3g′1h0 − g0h
′

1)wx + g′0h0 − g0h
′

0 = 0. (30)
For condition (30) to hold we require that the coefficients of like powers of wx be zero:

g
′′

1 = 0, 2g′1h1 + g′′0 = 0, 3g′1h0 − g0h
′

1 = 0, g
′

0h0 − g0h
′

0 = 0.

The general solution of this system of ordinary differential equations is given by the following formulas:

g1 = C1w + C2, g0 = −C2
1C3w

3 − C1C4w
2 + C5w + C6, h1 = 3C1C3w + C4, h0 = C3g0, (31)

where C1, . . . , C6 are arbitrary constants. Using formulas (27) for h0 and h1 together with (31), we find the unknown
functions involved in equations (25) and (26):

f1(w) = C1(1 − 3C3)w + C2 − C4, f0(w) = (−C2
1C3w

3 − C1C4w
2 + C5w + C6)(1 − C3),

g1(w) = C1w + C2, g0(w) = −C2
1C3w

3 − C1C4w
2 + C5w + C6.

(32)

Let us dwell on the special case of

C1 = −k, C2 = C4 = 0, C3 = −1/k, C5 = ak, C6 = bk

in (32), where a, b, and k are arbitrary constants (k ≠ 0). The corresponding equation (25) and the invariant manifold (26)
have the form

wt = wxx − (k + 3)wwx + (k + 1)(w3 + aw + b), (33)
wt = −kwwx + k(w3 + aw + b). (34)

The general solution of the first-order quasilinear equation (34) can be written out in implicit form; it involves the integral
I(w) =

∫
w(w3 + aw + b)−1 dw and its inversion. Due to its complex structure, this solution is inconvenient for the

construction of exact solutions of equation (33).
In this situation, instead of (34) one can use equations obtained from (33) and (34) by eliminating the derivative wt:

wxx = 3wwx − w3 − aw − b. (35)
This ordinary differential equation coincides with (27), where h1 and h0 are expressed by (31). The substitution w = −Ux/U
transforms (35) into a third-order linear equation with constant coefficients,

Uxxx + aUx − b = 0, (36)
whose solutions are determined by the roots of the cubic equation λ3 + aλ − b = 0. In particular, if all its roots λn are real,
then the general solutions of equations (35) and (36) are given by

w = −Ux/U , U = r1(t) exp(λ1x) + r2(t) exp(λ2x) + r3(t) exp(λ3x). (37)
The functions rn(t) are found by substituting (37) into equation (33) or (34).

Note that equation (33) was studied in more detail by another method in Subsection S.6.3 (see Example 7 with a = 1
and b2 = 0).

Remark 1. In the general case, for a given function F , the compatibility condition (16) is
a nonlinear partial differential equation for the function G. This equation admits infinitely many
solutions (by the theorem about the local existence of solutions). Therefore, the second-order partial
differential equation (14) admits infinitely many compatible first-order differential constraints (15).

Remark 2. In the general case, the solution of the first-order partial differential equation (15)
reduces to the solution of a system of ordinary differential equations; see Kamke (1965) and Polyanin,
Zaitsev, and Moussiaux (2002).
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S.8.2-2. Second-order hyperbolic equations.

In a similar way, one can consider second-order hyperbolic equations of the form

∂2w

∂x∂t
= F

(

x, t,w,
∂w

∂x
,
∂w

∂t

)

, (38)

supplemented by a first-order differential constraint (15). Assume that Gwx
≠ 0.

The compatibility condition for these equations is obtained by differentiating (38) with respect
to t and (15) with respect to t and x, and then equating the resulting expressions of the third
derivative wxtt to one another:

DtF = Dx[DtG]. (39)

Here, Dt and Dx are the total differential operators of (17) in which the partial derivatives
wt, wxx, wxt, and wtt must be expressed in terms of x, t, w, and wx with the help of relations (38)
and (15) and those obtained by differentiating (38) and (15).

Let us show how the second derivatives can be calculated. We differentiate (15) with respect to x
and replace the mixed derivative by the right-hand side of (38) to obtain the following expression
for the second derivative with respect to x:

∂G

∂x
+ wx

∂G

∂w
+ wxx

∂G

∂wx
= F

(

x, t,w,
∂w

∂x
,
∂w

∂t

)

=⇒
∂2w

∂x2 = H1

(

x, t,w,
∂w

∂x

)

. (40)

Here and in what follows, we have taken into account that (15) allows us to express the derivative
with respect to t through the derivative with respect to x. Further, differentiating (15) with respect
to t yields

∂2w

∂t2
=
∂G

∂t
+wt

∂G

∂w
+wxt

∂G

∂wx
=
∂G

∂t
+G

∂G

∂w
+F

∂G

∂wx
=⇒

∂2w

∂t2
=H2

(

x, t,w,
∂w

∂x

)

. (41)

Replacing the derivativeswt,wxt,wxx, andwtt in (17) by their expressions from (15), (38), (40),
and (41), we find the total differential operators Dt and Dx, which are required for the compatibility
condition (39).

Example 4. Consider the nonlinear equation

∂2w

∂x∂t
= f (w) (42)

with two different first-order differential constraints.
Case 1. Let us supplement (42) with a quasilinear differential constraint of the form

∂w

∂t
= g(w)

∂w

∂x
.

Simple calculations combined with the compatibility conditions (39), where F = f (w) and G = g(w)wx, lead us to the
expression

3fg′wx + [gg′′ − (g′)2]w3
x = 0.

Equating the coefficients of like powers of wx to zero, we find that g = const. This corresponds to a traveling-wave solution
of equation (42), w = w(kx + λt).

Case 2. Now let us supplement equation (42) by a differential constraint with a quadratic nonlinearity in derivatives,

∂w

∂t

∂w

∂x
= g(w). (43)

Calculations with the help of the compatibility condition (39), where F = f (w) and G = g(w)/wx, lead us to an expression
relating the functions f = f (w) and g = g(w):

gg
′′ − (g′)2 − 2f ′g + 3fg′ − 2f2 = 0. (44)

It can be shown that the differential constraint (43), together with the compatibility condition (44), yields a self-similar
solution w = w(xt) of equation (42); here, x and t can be replaced by x + C1 and t + C2.
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S.8.2-3. Second-order equations of general form.

Consider a second-order hyperbolic equation of the general form

F(x, t,w,wx,wt,wxx,wxt,wtt) = 0 (45)

with a first-order differential constraint

G(x, t,w,wx,wt) = 0. (46)

Let us successively differentiate equations (38) and (39) with respect to both variables so as to
obtain differential relations involving second and third derivatives. We get

DxF = 0, DtF = 0, DxG = 0, DtG = 0, Dx[DxG] = 0, Dx[DtG] = 0, Dt[DtG] = 0. (47)

The compatibility condition for (45) and (46) can be found by eliminating the derivatives wt, wxx,
wxt, wtt, wxxx, wxxt, wxtt, and wttt from the nine equations of (45)–(47). In doing so, we obtain
an expression of the form

H(x, t,w,wx) = 0. (48)

If the left-hand side of (48) is a polynomial in wx, then the compatibility conditions result from
equating the functional coefficients of the polynomial to zero.A�B

References for Subsection S.8.2: A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko (1984), V. A. Galaktionov (1994),
P. J. Olver (1994), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).

S.8.3. Second and HigherOrder Differential Constraints
Constructing exact solutions of nonlinear partial differential equations with the help of second- and
higher-order differential constraints requires finding exact solutions of these differential constraints.
The latter is generally rather difficult or even impossible. For this reason, one employs some special
differential constraints that involve derivatives with respect to only one variable. In practice, one
considers second-order ordinary differential equations in, say, x and the other variable, t, is involved
implicitly or is regarded as a parameter, so that integration constants depend on t.

The problem of compatibility of a second-order evolution equation

∂w

∂t
= F1

(

x, t,w,
∂w

∂x
,
∂2w

∂x2

)

with a similar differential constraint

∂w

∂t
= F2

(

x, t,w,
∂w

∂x
,
∂2w

∂x2

)

may be reduced to a problem with the first-order differential constraint considered in Subsec-
tion S.8.2-1. To that end, one should first eliminate the second derivative wxx from the equations.
Then, the resulting first-order equation is examined together with the original equation (or the
original differential constraint).

Example 5. From the class of nonlinear heat equations with a source

∂w

∂t
=
∂

∂x

[
f1(w)

∂w

∂x

]
+ f2(w) (49)

one singles out equations that admit invariant manifolds of the form

∂2w

∂x2 = g1(w)
(
∂w

∂x

)2
+ g2(w). (50)

The functions f2(w), f1(w), g2(w), and g1(w) are to be determined in the further analysis.
Eliminating the second derivative from (49) and (50), we obtain

∂w

∂t
= ϕ(w)

(
∂w

∂x

)2
+ ψ(w), (51)
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where
ϕ(w) = f1(w)g1(w) + f ′1(w), ψ(w) = f1(w)g2(w) + f2(w). (52)

The condition of invariance of the manifold (50) under equation (49) is obtained by differentiating (50) with respect to t:

wxxt = 2g1wxwxt + g′1w
2
xwt + g′2wt.

The derivatives wxxt,wxt, andwt should be eliminated from this relation with the help of equations (50) and (51) and those
obtained by their differentiation. As a result, we get

(2ϕg2
1 + 3ϕ′

g1 + ϕg′1 + ϕ′′)w4
x + (4ϕg1g2 + 5ϕ′

g2 + ϕg′2 − g1ψ
′ − ψg′1 + ψ′′)w2

x + 2ϕg2
2 + ψ′

g2 − ψg′2 = 0.
Equating the coefficients of like powers of wx to zero, one obtains three equations, which, for convenience, may be written
in the form

(ϕ′ + ϕg1)′ + 2g1(ϕ′ + ϕg1) = 0,

4g2(ϕ′ + ϕg1) + (ϕg2 − ψg1)′ + ψ′′ = 0,

ϕ = − 1
2 (ψ/g2)′.

(53)

The first equation can be satisfied by taking ϕ′ +ϕg1 = 0. The corresponding particular solution of system (53) has the form

ϕ = −
1
2
µ
′, ψ = µg2, g1 = −

µ′′

µ′
, g2 =

(
2C1 +

C2
√

|µ|

)
1
µ′

, (54)

where µ = µ(w) is an arbitrary function.
Taking into account (52), we find the functional coefficients of the original equation (49) and the invariant set (50):

f1 =
(
C3 −

1
2
w

)
µ
′, f2 = (µ − f1)g2, g1 = −

µ′′

µ′
, g2 =

(
2C1 +

C2
√

|µ|

)
1
µ′

. (55)

Equation (50), together with (55), admits the first integral

w
2
x =

[
4C1µ + 4C2

√
|µ| + 2σ′t(t)

] 1
(µ′)2 , (56)

where σ(t) is an arbitrary function. Let us eliminate w2
x from (51) by means of (56) and substitute the functions ϕ and ψ

from (54) to obtain the equation
µ
′
wt = −C2

√
|µ| − σ′t(t). (57)

Let us dwell on the special case C2 = C3 = 0. Integrating equation (57) and taking into account that µt = µ′wt yields
µ = −σ(t) + θ(x), (58)

where θ(x) is an arbitrary function. Substituting (58) into (56) and taking into account the relation µx = µ′wx, we obtain

θ
2
x − 4C1θ = 2σt − 4C1σ.

Equating both sides of this equation to zero and integrating the resulting ordinary differential equations, we find the functions
on the right-hand side of (58):

σ(t) = A exp(2C1t), θ(x) = C1(x + B)2, (59)
where A and B are arbitrary constants. Thus, an exact solution of equation (49) with the functions f1 and f2 from (55) can
be represented in implicit form for C2 = C3 = 0 as follows:

µ(w) = −A exp(2C1t) + C1(x + B)2.
In the solution and the determining relations (55), the function µ(w) can be chosen arbitrary.

Example 6. Consider the problem of finding nonlinear second-order equations
∂w

∂t
= f2(w)

∂2w

∂x2 + f1(w)
∂w

∂x
+ f0(w)

admitting invariant manifolds of the form
∂2w

∂x2 = g1(w)
∂w

∂x
+ g0(w).

The compatibility analysis of these equations leads us to the following relations for the determining functions:
f2(w) is an arbitrary function,
f1(w) = C1w + C2 − (3C1C3w + C4)f2(w),

f0(w) = (−C2
1C3w

3 − C1C4w
2 + C5w + C6)[1 − C3f2(w)],

g1(w) = 3C1C3w + C4,

g0(w) = C3(−C2
1C3w

3 − C1C4w
2 + C5w + C6),

where C1, . . . , C6 are arbitrary constants.

Section S.8.4 contains examples of second- and third-order differential constraints that are
essentially equivalent to most common structures of exact solutions.

Note that third- or higher-order differential constraints are rarely used, since they lead to cum-
bersome computations and rather complex equations (often, the original equations are simpler).C�D

References for Subsection S.8.3: A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko (1984), V. A. Galaktionov (1994),
V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov (1999).
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TABLE 20
Second-order differential constraints corresponding to some

classes of exact solutions representable in explicit form

No. Type of solution Structure of solution Differential constraints

1 Additive separable solution w=ϕ(x)+ψ(y) wxy=0

2 Multiplicative separable solution w=ϕ(x)ψ(y) wwxy−wxwy=0

3 Generalized separable solution w=ϕ(x)y2+ψ(x)y+χ(x) wyy−f (x)=0

4 Generalized separable solution w=ϕ(x)ψ(y)+χ(x)
wyy−f (y)wy=0
wxy−g(x)wy=0

5 Functional separable solution w=f (z), z=ϕ(x)y+ψ(x) wyy−g(w)w2
y=0

6 Functional separable solution w=f (z), z=ϕ(x)+ψ(y) wwxy−g(w)wxwy=0

TABLE 21
Third-order differential constraints corresponding to some
classes of exact solutions representable in explicit form

Type of solution Structure of solution Differential constraint

Generalized separable w=ϕ(x)y2+ψ(x)y+χ(x) wyyy=0

Generalized separable w=ϕ(x)ψ(y)+χ(x) wywxyy−wxywyy=0

Functional separable w=f
(

ϕ(x)y+ψ(x)
)

wy(wxwyyy−wywxyy)=2wyy(wxwyy−wywxy)

Functional separable w=f
(

ϕ(x)+ψ(y)
)

wxwywxyy−wywxxy=wxy(w2
xwyy−w2

ywxx)

S.8.4. Connection Between the Differential Constraints Method and
Other Methods

The differential constraints method is one of the most general methods for the construction of
exact solutions to nonlinear partial differential equations. Many other methods can be treated as its
particular cases.*

S.8.4-1. Generalized and functional separation of variables versus differential constraints.

Table 20 lists examples of second-order differential constraints which are essentially equivalent to
most common forms of separable solutions. For functional separable solutions (rows 5 and 6), the
function g can be expressed through f .

Table 21 lists examples of third-order differential constraints which may be regarded as equivalent
to direct specification of most common forms of functional separable solutions.

* The basic difficulty of applying the differential constraints method is due to the great generality of its statements and
the necessity of selecting differential constraints suitable for specific classes of equations. This is why for the construction
of exact solutions of nonlinear equations, it is often preferable to use more simple (but less general) methods.
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Searching for a generalized separable solution of the form w(x, y) = ϕ1(x)ψ1(y) + · · · +
ϕn(x)ψn(y), with 2n unknown functions, is equivalent to prescribing a differential constraint of
order 2n; in general, the number of unknown functions ϕi(x), ψi(y) corresponds to the order of the
differential equation representing the differential constraint.

For the types of solutions listed in Tables 20 and 21, it is preferable to use the methods of
generalized and functional separation of variables, since these methods require less steps where it
is necessary to solve intermediate differential equations. Furthermore, the method of differential
constraints is ill-suited for the construction of exact solutions of higher (arbitrary) order equations.

S.8.4-2. Generalized similarity reductions and differential constraints.

Consider a generalized similarity reduction based on a prescribed form of the desired solution,

w(x, t) = F
(

x, t,u(z)
)

, z = z(x, t), (60)

whereF (x, t,u) and z(x, t) should be selected so as to obtain ultimately a single ordinary differential
equation for u(z); see Subsection S.6.2.

Let us show that employing the solution structure (60) is equivalent to searching for a solution
with the help of a first-order quasilinear differential constraint

ξ(x, t)
∂w

∂t
+ η(x, t)

∂w

∂x
= ζ(x, t,w). (61)

Indeed, first integrals of the characteristic system of ordinary differential equations

dt

ξ(x, t)
=

dx

η(x, t)
=

dw

ζ(x, t,w)

have the form
z(x, t) = C1, ϕ(x, t,w) = C2, (62)

where C1 and C2 are arbitrary constants. Therefore, the general solution of equation (61) can be
written as follows:

ϕ(x, t,w) = u
(

z(x, t)
)

, (63)

where u(z) is an arbitrary function. On solving (63) forw, we obtain a representation of the solution
in the form (60).E�F

Reference: P. J. Olver (1994).

S.8.4-3. Group analysis and differential constraints.

The group analysis method for differential equations can be restated in terms of the differential
constraints method. This can be demonstrated by the following example with a general second-
order equation

F

(

x, y,w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)

= 0. (64)

Let us supplement equation (64) with two differential constraints

ξ
∂w

∂x
+ η

∂w

∂y
= ζ, (65)

ξ
∂F

∂x
+ η

∂F

∂y
+ ζ

∂F

∂w
+ ζ1

∂F

∂wx
+ ζ2

∂F

∂wy
+ ζ11

∂F

∂wxx
+ ζ12

∂F

∂wxy
+ ζ22

∂F

∂wyy
= 0, (66)

where ξ = ξ(x, y,w), η = η(x, y,w), and ζ = ζ(x, y,w) are unknown functions, and the coordinates
of the first and the second prolongations ζi and ζij are defined by formulas (13) and (14) of
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Subsection S.7.1. The differential constraint (66) coincides with the invariance condition for equation
(64); see (11) in Subsection S.7.1.

The method for the construction of exact solutions to equation (64) based on using the first-order
partial differential equation (65) and the invariance condition (66) corresponds to the nonclassical
method of group analysis (see Subsection S.7.2).

Remark. When the classical schemes of group analysis are employed, one first considers two
equations, (64) and (66). From these, one eliminates one of the highest-order derivatives, say wyy,
while the remaining derivatives (wx, wy , wxx, and wxy) are assumed “independent.” The resulting
expression splits into powers of independent derivatives (see Subsection S.7.1). As a result, one
arrives at an overdetermined system of equations, from which the functions ξ, η, and ζ are found.
Then, these functions are inserted into the quasilinear first-order equation (65), whose solution allows
us to determine the general form of a solution (this solution contains some arbitrary functions). Next,
using (64), one can refine the structure of the solution obtained on the preceding step.

The classical scheme may result in the loss of some solutions, since at the first step of splitting
it is assumed that the first derivatives wx and wy are independent, whereas these derivatives are in
fact linearly dependent due to equation (65).G�H

References for Subsection S.8.4: S. V. Meleshko (1983), V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Ro-
dionov (1999).

S.9. Painlevé Test for Nonlinear Equations of
Mathematical Physics∗

S.9.1. Movable Singularities of Solutions of Ordinary Differential
Equations

1◦. The connection between the structure of differential equations and singularities of their solutions
was established more than a hundred years ago. The singularities of solutions of linear ordinary
differential equations are completely determined by singularities of the coefficients of the equations.
Since the position of such singularities does not depend on integration constants, they are called
fixed singularities. In the case of nonlinear equations, their solutions may also possess movable
singularities, whose position depends on the initial conditions (integration constants).

Below, we give simplest examples of first-order ordinary differential equations and their solutions
with movable singularities.

Equation Solution Type of singularity of the solution

u′z = −u2 u = 1/(z − z0) movable pole
u′z = 1/u u = 2

√

z − z0 algebraic branch point
u′z = e−u u = ln(z − z0) logarithmic branch point

u′z = −u ln2 u u = exp[1/(z − z0)] essentially singular point

Algebraic branch points, logarithmic branch points, and essentially singular points are called “critical
singular points.”

2◦. In 1884, L. L. Fuchs established the following fact: the first-order nonlinear differential equation

u′z = R(z,u),

where the functionR is rational in the second argument and analytic with respect to the first, admits
solutions without movable critical points (other than movable poles) only if it coincides with the
general Riccati equation u′z = A0(z) +A1(z)u +A2(z)u2.

* Section S.9 was written by V. G. Baydulov and V. A. Gorodtsov.
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3◦. The second-order ordinary differential equations (in the complex plane) of the form

u′′zz = R(z,u,u′z),

where R = R(z,u,w) is a rational function of u and w and is analytic in z, were classified by
P. Painlevé (1900) and B. Gambier (1910). These authors showed that all equations of this form
whose solutions have no movable critical points (other than fixed singular points and movable poles)
can be divided into 50 classes. The equations of 44 out of these classes can be integrated by
quadrature or their order can be reduced. The remaining 6 classes, in canonical form, are irreducible
and are called Painlevé equations (their solutions are called Painlevé transcendents).

4◦. The first Painlevé equation has the form

u′′zz = 6u2 + z.

The equation has a movable pole z0; in its neighborhood, the solutions can be represented by the
series

u =
1

(z − z0)2 +
∞
∑

n=2

an(z − z0)n,

a2 = − 1
10 z0, a3 = − 1

6 , a4 = C, a5 = 0, a6 = 1
300 z

2
0 ,

where z0 and C are arbitrary constants; the coefficients an (n ≥ 7) are uniquely determined by z0
and C.

The second Painlevé equation is expressed as

u′′zz = 2u3 + zu + a.

In a neighborhood of the movable pole z0, its solutions admit the following expansions:

u =
m

z − z0
+

∞
∑

n=1

bn(z − z0)n,

b1 = − 1
6mz0, b2 = − 1

4 (m + α), b3 = C, b4 = 1
72 z0(m + 3α),

b5 = 1
3024

[

(27 + 81α2 − 2z3
0)m + 108α − 216Cz0

]

,

where m = I 1; z0 and C are arbitrary constants; and the coefficients bn (n ≥ 6) are uniquely
determined by z0 and C.

More detailed information about the Painlevé equations can be found in the literature cited at
the end of this subsection. It should be observed that the solution of the fourth Painlevé equation
has a movable pole, while the solutions of the third, the fifth, and the sixth Painlevé equations have
fixed logarithmic branch points.

Remark. In 1888, S. V. Kowalevskaya succeeded in integrating the equations of motion of a rigid body having a fixed
point and subject to gravity, in a case previously unknown. She examined solutions of a system of six first-order nonlinear
ordinary differential equations. Solutions were sought in the form of series expansions in powers of each unknown quantity
with movable poles,

u = (z − z0)−n[
a0 + a1(z − z0) + · · ·

]
.

The generality of the solution was ensured by a suitable (corresponding to the order of the system) number of arbitrary
coefficients in the expansions and the free parameter z0.

It should be mentioned that the studies of S. V. Kowalevskaya preceded the works of Painlevé on the classification of
second-order ordinary differential equations, where similar expansions were used.
J�K

References for Subsection S.9.1: V. V. Golubev (1950), G. M. Murphy (1960), A. R. Its and V. Yu. Novokshenov (1986),
M. Tabor (1989), V. I. Gromak and N. A. Lukashevich (1990), A. R. Chowdhury (2000), V. I. Gromak (2002), A. D. Polyanin
and V. F. Zaitsev (2003).
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S.9.2. Solutions of Partial Differential Equations with a Movable
Pole. Description of the Method

By analogy with ordinary differential equations, solutions of partial differential equations may be
sought in the form of power series expansions with movable pole singularities. The position of the
pole is given by an arbitrary function.

For simplicity of exposition, we consider equations of mathematical physics in two independent
variables x, t and a dependent variable w, assuming that the equations do not explicitly depend on
x or t.

1◦. Simplest scheme. A solution is sought near a singular manifold x − x0(t) = 0 as the following
series (Jimbo, Kruskal, and Miwa, 1982):

w(x, t) =
1
εα

∞
∑

n=0

wn(t)εn, ε = x − x0(t). (1)

Here, the exponent α is a positive integer (this ensures that the movable singularity is of the pole
type), and the function x0(t) is assumed arbitrary.

The expression (1) is substituted into the equation under consideration. First, by equating the
leading singular terms, one finds the exponent α and the leading term u0(t) of the series. Then,
the terms with the same powers of ε are collected. Equating the resulting coefficients of the same
powers of ε to zero, one obtains a system of ordinary differential equations for the functions wn(t).

The thus obtained solutions are general, provided that series (1) contains arbitrary functions
whose number is equal to the order of the equation under consideration.

2◦. General scheme. The Painlevé test. A solution of a partial differential equation is sought in a
neighborhood of the singular manifold ε(x, t) = 0 in the form of a generalized series symmetric with
respect to the independent variables (Weiss, Tabor, and Carnevalle, 1983):

w(x, t) =
1
εα

∞
∑

n=0

wn(x, t)εn, ε = ε(x, t), (2)

where εtεx ≠ 0. Here and in what follows, the subscripts x and t denote the corresponding partial
derivatives.

Series (1) is a special case of the expansion (2), provided the equation of the singular manifold,
ε(x, t) = 0, is solvable for the variable x.

The requirement that there are no movable critical points implies that α is a positive integer.
The solution will be general if the total number of arbitrary functions among the wn(x, t) and ε(x, t)
coincides with the order of the equation.

Substituting (2) into the equation, collecting terms with the same powers of ε, and equating them
to zero, we obtain the following recurrence relations for the expansion coefficients:

PN (n)wn = fn(w0,w1, . . . ,wn−1, εt, εx, . . . ).

Here, the PN (n) is a polynomial of degreeN of the integer argument n,

PN (n) = (n + 1)(n − j1)(n − j2) . . . (n − jN−1),

and N is the order of the equation under consideration.
If the roots of the polynomial j1, j2, . . . , jN−1 (called resonances) are nonnegative integers and

the compatibility conditions

fn=jk = 0 (k = 1, 2, . . . ,N − 1)

hold, then one says that the conditions of the Painlevé test hold for the equation under consideration.
Equations satisfying these conditions are often regarded as integrable equations (this is confirmed
by the fact that in many known cases, such equations can be reduced to linear equations).
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3◦. For the initial verification of the Painlevé conditions for a specific equation, it is convenient to
use a simplified scheme based on the expansion (1). The relations (wn)x = 0 and εx = 1 ensure some
important simplifications of technical character, as compared with the expansion (2).

The more general expansion (2) entails more cumbersome but more informative computations.
It can be effectively used at the second step of the investigation, after the conditions of the Painlevé
test have been verified. This helps to clarify many important properties of the equations and their
solutions and find the form of the Bäcklund transformation that linearizes the original equation.L�M

References for Subsection S.9.2: M. Jimbo, M. D. Kruskal, and T. Miwa (1982), J. Weiss, M. Tabor, and G. Carnevalle
(1983), J. Weiss (1983, 1984, 1985), W.-H. Steeb and N. Euler (1988), R. Conte (1989, 1999), R. Conte and M. Musette
(1989, 1993), M. Tabor (1989), M. Musette (1998).

S.9.3. Examples of the Painlevé Test Applications
In this section, we consider some examples of equations of mathematical physics. For their analysis,
we first resort to the simplest and then the general scheme of the Painlevé test application based on
series (1) and (2) from Section S.9.2.

Example 1. Consider the Burgers equation

∂w

∂t
+ w

∂w

∂x
= ν

∂2w

∂x2 .

1◦. Substituting the leading term of the expansion (1) into this equation, we obtain

w′

0
(x − x0)α

+
αw0x

′

0
(x − x0)α+1 −

αw2
0

(x − x0)2α+1 =
να(α + 1)w0

(x − x0)α+2 ,

where x0 = x0(t) and w0 = w0(t); the prime denotes a derivative with respect to t. Retaining the leading singular terms
(omitting the first two terms on the left), we find that

α = 1, w0 = −2ν (n = 0).

The Burgers equation, upon the insertion of series (1) in it and the collection of terms with the same powers of
ε = x − x0(t), takes the form

wt + wwx − νwxx =
∞∑

n=0

En(t)εn−3 = 0, where En(t) = −(n + 1)(n − 2)νwn + · · · .

Here, in the expression for En(t), the terms containing w0, . . . ,wn−1 and x0(t) are omitted.
It is clear that there is a single resonance, n = 2; the compatibility condition holds only in this case (the sum of the terms

with lowest-subscript coefficients in the recurrence relation vanishes) and the function w2(t) remains arbitrary. This can be
seen from the structure of the following recurrence relations:

−E0/w0 = w0 + 2ν = 0 (n = 0),
−E1/w0 = w1 + εt = 0 (n = 1),

E2 = (w0)t = 0 (n = 2).

The relation for n = 2 is a consequence of the preceding relations and does not contain w2.
Thus, the Burgers equation satisfies the conditions of the Painlevé test, and its solution contains two arbitrary functions,

as required. Collecting terms with like powers of x − x0(t), we can write out the solution in the form

w(x, t) = −
2ν

x − x0(t)
+ x′0(t) + w2(t)[x − x0(t)]2 + · · · ,

where x0(t) and w2(t) are arbitrary functions.

2◦. For the purpose of subsequent analysis of the Burgers equation, let us take advantage of the general expansion (2), where
wn = wn(x, t) and ε = ε(x, t). From the condition of balance of the leading terms, we obtain

α = 1, w0 = −2νεx (n = 0).

The recurrence relations for the next three terms of the expansion have the form

w1εx − νεxx + εt = 0 (n = 1),
(w1εx − νεxx + εt)x = 0 (n = 2),

(w1)t − ν(w1)xx + w1(w1)x + (w0w2)x + (εt − νεxx)w2

− 2νεx(w2)x + εx(w1w2 + w0w3) − 2νε2
xw3 = 0 (n = 3).
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Setting w2 = w3 = 0 in these formulas, we obtain a consistent truncated series of (2) with zero higher-order coefficients
(wk = 0 for k ≥ 2). The remaining relations allow us to represent the solution in the form

w =
w0

ε
+ w1, w0 = −2νεx,

εt + w1εx = νεxx, (w1)t + w1(w1)x = ν(w1)xx.

These relations represent a Bäcklund transformation and allow us to use solutions w1 = w1(x, t) of the Burgers equation
for the construction of its other solutions w = w(x, t). Taking, for example, w1 = 0 to be the initial solution, we obtain the
well-known Cole–Hopf transformation

w = −2ν
εx

ε
,

which reduces the nonlinear Burgers equation to the linear heat equation

εt = νεxx.

Example 2. Consider the Korteweg–de Vries equation

∂w

∂t
+ w

∂w

∂x
+
∂3w

∂x3 = 0.

1◦. Substituting the leading term of the expansion (1) into this equation yields

w′

0
(x − x0)α

+
αw0x

′

0
(x − x0)α+1 −

αw2
0

(x − x0)2α+1 −
α(α + 1)(α + 2)w0

(x − x0)α+3 = 0,

where x0 = x0(t) and w0 = w0(t). From the condition of balance of the leading terms, we find that

α = 2, w0 = −12 (n = 0).

Upon the insertion of the expansion (1), the Korteweg–de Vries equation can be represented in the form

wt + wwx + wxxx =
∞∑

n=0

En(t)εn−5 = 0, where En(t) = (n + 1)(n − 4)(n − 6)wn + · · · .

From the expression for En(t), it follows that there are two resonances, n = 4 and n = 6. Writing out explicitly the first
seven equations for the coefficients in the expansion (1), we see that the compatibility condition holds for the resonances,

w0 + 12 = 0 (n = 0),
w1 = 0 (n = 1),

εt + w2 = 0 (n = 2),
w3 = 0 (n = 3),

(w1)t = 0 (n = 4),
εtt + 6w5 = 0 (n = 5),

(w3)t + w2
3 + 2w1w5 = 0 (n = 6).

The relations for n = 4 and n = 6 are consequences of the preceding ones and do not contain w4 and w6. Therefore, the
Korteweg–de Vries equation satisfies the conditions of the Painlevé test. The three arbitrary functions w4(t),w6(t), and x0(t)
ensure the required generality of the solution of the third-order equation.

2◦. Now, let us obtain a consequence of the general expansion by truncating series (2). Inserting the truncated series with
w3 = w4 = · · · = 0 into the Korteweg–de Vries equation, we arrive at the Bäcklund transformation

w =
w0

ε2 +
w1

ε
+ w2 = 12(ln ε)xx + w2,

εtεx + w2ε
2
x + 4εxεxxx − 3ε2

xx = 0,
εxt + w2εxx + εxxx = 0,
(w2)t + w2(w2)x + (w2)xxx = 0.

Eliminating w2 from the second and the third equations, we obtain an equation for the function ε, which can be reduced to a
system of linear equations by means of several transformations.N�O

References: J. Weiss, M. Tabor, and G. Carnevalle (1983), M. Tabor (1989), J. Weiss (1993).

Example 3. Consider the Kadomtsev–Petviashvili equation

∂

∂x

(
∂w

∂t
+ w

∂w

∂x
+
∂3w

∂x3

)
+ a

∂2w

∂y2 = 0,

which can be regarded as an integrable generalization of the Korteweg–de Vries equation of a higher dimension and a higher
order.
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1◦. In many-dimensional cases, one utilizes an analogue of the expansion (1):

w(x, y, t) =
1
εα

∞∑

n=0

wn(y, t)εn, ε = x − x0(y, t). (3)

Equating the leading singular terms for the Kadomtsev–Petviashvili equation, we obtain the same result as that for the
Korteweg–de Vries equation,

α = 2, w0 = −12 (n = 0).

Substituting the expansion (3) into the original equation, we obtain

wtx + wwxx + w2
x + wxxxx + awyy =

∞∑

n=0
ε
n−6

En(y, t) = 0,

En(y, t) = (n + 1)(n − 4)(n − 5)(n − 6)wn + · · · .

It is apparent that there are three resonances: n = 4, 5, 6. In order to verify the conditions of the Painlevé test, let us
write out recurrence relations for the first seven terms of the expansion,

E0 = 10w0(w0 + 12) = 0 (n = 0),
E1 = 12w1(w0 + 2) = 0 (n = 1),

E2 = 3[2(εt + aε2
y + w2)w0 + w2

1] = 0 (n = 2),

E3 = a(w1)yy − 2(w0)t − 4a(w0)yεy − 2[aw0εyy − (εt + aε2
y + w2)w1 − w3w0] = 0 (n = 3),

E4 = a(w0)yy − (w1)t − 2a(w1)yεy − aw1εyy = 0 (n = 4),
E5 = a(w1)yy = 0 (n = 5),

E6 = a(w2)yy +
{

(w3)t + 2a(w3)yεy + aw3εyy)

+ 2[(εt + aε2
y + w2w4 + 1

2w
2
3 + w5w1 + (w0 + 12)w6]

}
= 0 (n = 6).

The last three relations (corresponding to resonances), in view of the preceding relations, hold identically and do not contain
w4,w5,w6. There are four arbitrary functions (ε,w4,w5,w6) in the solution of the forth-order equation under consideration,
which indicates that the Painlevé property holds.

2◦. The utilization of the general expansion, with the series truncated so that wn = 0 for n > 2, leads us to the Bäcklund
transformation (for simplicity, we set a = 1)

w = 12(ln ε)xx + w2,

εtεx + 4εxεxxx − 3ε2
xx + ε2

y + w2ε
2
x = 0,

εxt + εxxxx + εyy − w2εxx = 0,

(w2)tx + w2(w2)xx + (w2)2
x + (w2)xxxx + (w2)yy = 0.

Eliminating w2 from the second and the third equations, we obtain an equation for the function ε, which allows us to pass to
a solution of a system of linear equations.

Example 4. Consider the model system of equations (Gorodtsov, 1998, 2000)

∂w

∂t
+ w

∂w

∂x
= −

1
2
∂c2

∂x
+ ν

∂2w

∂x2 ,

∂c

∂t
+
∂(wc)
∂x

= χ
∂2c

∂x2

that describes convective mass transfer of an active substance in a viscous fluid in the case where the flow is affected by
the substance through the pressure quadratically dependent on its concentration. Such equations are used for describing
one-dimensional flows of electrically conducting fluids in a magnetic field with high magnetic pressure.

1◦. By analogy with the expansion (1), let us represent the desired quantities in the form

w(x, t) =
1
εα

∞∑

n=0

wn(t)εn, c(x, t) =
1
εβ

∞∑

n=0

cn(t)εn, ε ≡ x − x0(t).

Equating the leading singular terms of the equations, we find that

α = β = 1, w0 = −χ, c
2
0 = χ(2ν − χ).

Let us write the recurrence relations for the series terms in matrix form
(

−(n − 2)[χ + ν(n − 1)] (n − 2)c0
(n − 2)c0 −(n − 2)nχ

)(
wn

cn

)
=
(
fn−1
gn−1

)
.
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The quantities fn−1, gn−1 depend on the functions w0, . . . ,wn−1, c0, . . . , cn−1, x0. The condition of unique solvability of
the matrix equation for the specified higher-order coefficients is violated if the characteristic determinant is equal to zero (the
case of degenerate matrix), and then these coefficients may turn out to be arbitrary. Thus, the resonances are determined
from the condition

νχ(n + 1)(n − 2)2(n − 2 + χ/ν) = 0.

All these resonances are positive integers (except for the special resonance n = −1) only if the Prandtl number is equal to
unity, Pr ≡ ν/χ = 1. One resonance, n = 1, is simple, and the other, n = 2, is multiple, so that the overall number of
resonances is equal to four.

Writing out the first three recurrence relations

c
2
0 + w0(w0 + 2ν) = 0, w0 + ν = 0 (n = 0),
c0c1 + w0(εt + w1) = 0, w0c1 + c0(εt + w1) = 0 (n = 1),
(w0)t = 0, (c0)t = 0 (n = 2),

we see that the compatibility condition holds for the resonance n = 1, since the two relations for n = 1 coincide by virtue
of the expressions for n = 0 (w0 = P c0). The multiple resonance n = 2 also satisfies the compatibility condition, since
both coefficients w0, c0 are constant. Therefore, the Painlevé property takes place for the equations of a fluid with an active
substance (for ν/χ = 1).

2◦. Using the general expansion with the series truncated so that w2 = w3 = · · · = 0 and c2 = c3 = · · · = 0, we obtain a
Bäcklund transformation for the equations of a fluid with an active substance

w =
w0

ε
+ w1, c =

c0

ε
+ c1,

w0 = −νεx, c0 = P νεx, εt + (w1 Q c1)εx = νεxx,
(w1)t + w1(w1)x = −c1(c1)x + ν(w1)xx, (c1)t + (w1c1)x = ν(c1)xx.

Comparing this with the Bäcklund transformation for the Burgers equation, we see that if, in the above transformation, we
pass to the new variables equal to the sum and the difference of the original variables, we obtain identical equations. Indeed,
passing to such variables in the original equations with unit Prandtl number, we obtain a pair of identical Burgers equations,

st + ssx = νsxx, s = w + c,
rt + rrx = νrxx, r = w − c,

each of which reduces to the linear heat equation (see Example 1).

Numerous investigations show that many known integrable nonlinear equations of mathematical
physics possess the Painlevé property. Some new equations with this property have also been
found. During the verification of the conditions of the Painlevé test for more complex equations
and systems, resonances with higher n may arise. In such situations, analytical solution becomes
more and more difficult. However, the Painlevé test is highly adapted for algorithmization and
allows for the utilization of symbolic computation methods. For example, the Maple software has
been successfully used to obtain a complete classification of integrable cases of the equations of
shallow water with dissipation and dispersion of lower orders [see Klimov, Baydulov, and Gorodtsov
(2001)].R�S

References for Subsection S.9.3: M. Jimbo, M. D. Kruskal, and T. Miwa (1982), J. Weiss, M. Tabor, and G. Carnevalle
(1983), J. Weiss (1983, 1984, 1985), W.-H. Steeb and N. Euler (1988), R. Conte (1989, 1999), R. Conte and M. Musette
(1989, 1993), M. Tabor (1989), M. Musette (1998).

S.10. Inverse Scattering Method
S.10.1. Lax Pair Method

S.10.1-1. Basic idea of the method. The Lax pair.

Consider the nonlinear evolution equation

∂w

∂t
= F(w), (1)

with the right-hand side F(w) depending on the function w and its derivatives in x.
The basic idea of the method consists in representing equation (1) in the form

∂L
∂t

= LM − ML. (2)
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Here, L and M are linear differential operators in x (these operators are called the Lax pair) whose
coefficients depend on w and its derivatives with respect to x. The right-hand side of equation (2)
is the commutator of the operators L and M. This commutator will be denoted by [L, M].

Suppose that the operators L and M satisfy equation (2). Consider two auxiliary linear differential
equations. The first corresponds to an eigenvalue problem and contains derivatives with respect to
the spatial variable x alone,

Lϕ = λϕ (3)

(here, the variable t is involved implicitly through the function w and is regarded as a parameter).
The second auxiliary equation describes the time-evolution of an eigenfunction,

∂ϕ

∂t
= −Mϕ. (4)

The operator equation (2) may be regarded as the compatibility condition for equations (3)
and (4), provided that the eigenvalues λ are independent of time t. Indeed, differentiating (3)
with respect to t, we get Ltϕ + Lϕt = λϕt. Substituting (4) into this expression, we obtain
Ltϕ− LMϕ = −λMϕ. Next, taking into account the relations λMϕ = M(λϕ) and λϕ = Lϕ, we arrive
at the equation Ltϕ = LMϕ − MLϕ, which is equivalent to (2).

The above procedure shows how the analysis of the original nonlinear equation (1) can be
reduced to the examination of two simpler linear equations (3) and (4).

Example 1. Let us show that a Lax pair for the Korteweg–de Vries equation

∂w

∂t
+
∂3w

∂x3 − 6w
∂w

∂x
= 0 (5)

can be defined as

L =
∂2

∂x2 − w, M = 4
∂3

∂x3 − 6w
∂

∂x
− 3

∂w

∂x
. (6)

It is easy to verify that

LM(ϕ) = 4ϕxxxxx − 10wϕxxx − 15wxϕxx + (6w2 − 12wxx)ϕx + (3wwx − 3wxxx)ϕ,

ML(ϕ) = 4ϕxxxxx − 10wϕxxx − 15wxϕxx + (6w2 − 12wxx)ϕx + (9wwx − 4wxxx)ϕ,
LM(ϕ) − ML(ϕ) = (wxxx − 6wwx)ϕ,

(7)

where ϕ(x) is an arbitrary function. From (6) and (7) it follows that

Lt = −wt, LM − ML = wxxx − 6wwx.

Substituting these expressions into (2), we arrive at the Korteweg–de Vries equation (5).

S.10.1-2. The Cauchy problem.

The procedure for solving the Cauchy problem for equation (1) with the initial condition

w = w0(x) at t = 0 (8)

involves four steps outlined below.

1◦. First, one finds the Lax pair representation (2) for the evolution equation (1), which is often the
most difficult part of the calculation.

2◦. Using the initial condition (8), one evaluates the operator L at t = 0 and substitutes it into
equation (3). Then the resulting equation is employed to find the eigenvalues λn and the initial
values of the eigenfunctions ϕn(x, 0). Note that the spectrum of the Sturm–Liouville problem
determined by equation (3) consists, in general, of two components: continuous part and several
discrete eigenvalues.

3◦. One finds the time-evolution of the eigenfunctions ϕn(x, t) by solving (4).
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4◦. One determines w(x, t) by solving an inverse problem and taking into account that the eigen-
functions ϕn(x, t) satisfy equation (3) for t > 0.

Remark. The procedure for solving the Cauchy problem for various nonlinear equations is
detailed in the literature cited below. For the solution of the Cauchy problem for the Korteweg–de
Vries equation (5), see Subsection 9.1.1, Item 10◦.T�U

References for Subsection S.10.1: P. D. Lax (1968), V. E. Zakharov and A. B. Shabat (1972), M. J. Ablowitz and H. Segur
(1981), F. Calogero and A. Degasperis (1982), R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris (1982), S. P. Novikov,
S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov (1984), L. D. Faddeev and L. A. Takhtajan (1987), K. Chadan, D. Colton,
L. Paivarinta, and W. Rundell (1997), M. J. Ablowitz and P. A. Clarkson (1991), R. Pike and P. Sabatier (2002).

S.10.2. Method Based on the Compatibility Condition for Two Linear
Equations

Consider two linear equations

ϕx = Aϕ, (9)
ϕt = Bϕ, (10)

where ϕ is an n-dimensional vector and A, B are n × n-matrices. Let us differentiate equations (9)
and (10) in t andx, respectively, and eliminate the mixed derivativeϕxt from the resulting equations.
Next, replacing the derivatives ϕx and ϕt by the right-hand sides of (9) and (10), we obtain

At − Bx + [A, B] = 0, (11)

where [A, B] = AB − BA. It turns out that for a given A, there is a simple deductive procedure
for finding B. As a result of that procedure, the compatibility condition (11) turns into a nonlinear
evolution equation (see Ablowitz and Segur, 1981).

In what follows, we restrict our investigation to the special case of a two-component vector-

valued function ϕ =
(

ϕ1
ϕ2

)

.

Assume that the matrix A has the form

A = iλ
(

1 0
0 −1

)

+ i
(

0 q

r 0

)

, i2 = −1, (12)

where λ is a spectral parameter, and q and r are (complex-valued) functions of two real variables,
x and t. The matrix B should be chosen so that (11) could be reduced to given partial differential
equations.

Example 2. Choosing B in the form

B = 2iλ2
(

1 0
0 −1

)
+ 2iλ

(
0 q

r 0

)
+
(

0 qx

−rx 0

)
− i
(
qr 0
0 −qr

)
,

we see that (11) is equivalent to the following system of equations:

irt + rxx + 2qr2 = 0,

iqt − qxx − 2qr2 = 0.

Hence, taking q = r or q = −r (the bar over a symbol denotes the complex conjugate), we obtain the nonlinear Schrödinger
equations

irt + rxx + 2|r|2r = 0 (if q = r),

irt + rxx − 2|r|2r = 0 (if q = −r).

Example 3. Take r = q = 1
2wx in (12) and consider the matrix

B =
1

4iλ

(
cosw −i sinw
i sinw − cosw

)
.

For the function w from (11) we obtain the sine-Gordon equation:

wxt = sinw.
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Example 4. Take r = −q = − 1
2wx in (12) and consider the matrix

B =
1

4iλ

(
coshw −i sinhw

−i sinhw − coshw

)
.

In this case, (11) is reduced to the sinh-Gordon equation:

wxt = sinhw.
V�W

References for Subsection S.10.2: M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur (1974), M. J. Ablowitz
and H. Segur (1981), F. Calogero and A. Degasperis (1982), R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris
(1982), S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov (1984), K. Chadan, D. Colton, L. Paivarinta, and
W. Rundell (1997), M. J. Ablowitz and P. A. Clarkson (1991), R. Pike and P. Sabatier (2002).

S.10.3. Method Based on Linear Integral Equations
Below we outline the approach proposed by Zakharov and Shabat (1974) based on using linear
integral equations of the form

K(x, y) = F (x, y) +
∫

∞

x

K(x, z)N (x; z, y) dz, y ≥ x, (13)

where the functionsF ,N , andK can depend on some additional parameters other than the specified
arguments. In each specific case, the functionN is explicitly expressed through F .

Define an operator Ax such that

Axf (y) =
{∫

∞

x
f (z)N (x; z, y) dz if y ≥ x,

0 if y < x

and assume that for each chosen N , it is possible to prove that the operator I − Ax is invertible
and its inverse, (I − Ax)−1, is continuous, where I is the identity operator. The following three
steps represent an algorithm for finding a nonlinear equation that can then be solved by the inverse
scattering method.

1◦. The function F satisfies the following two linear ordinary (or partial) differential equations:

LiF = 0, i = 1, 2. (14)

2◦. The functionK is related to F by equation (13), which can be rewritten as

(I − Ax)K = F . (15)

3◦. Applying the operators Li involved in (14) to equation (15), we obtain

Li(I − Ax)K = 0, i = 1, 2.

This equation can be rewritten in the form

(I − Ax)(LiK) = Ri, i = 1, 2,

where Ri contains all nonzero terms of the commutator [Li, (I − Ax)]. Moreover, (13) and (14)
should be chosen so that Ri could be represented in the form

Ri = (I − Ax)Mi(K), i = 1, 2,

where Mi(K) is a nonlinear functional ofK. But the operator I − Ax is invertible, and therefore, the
functionK satisfies the nonlinear differential equations

LiK − Mi(K) = 0, i = 1, 2. (16)

It follows that each solution of the linear integral equation (13) is a solution of the nonlinear
differential equation (16).
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Example 5. Let us consider the integral equation

K(x, y) = F (x, y) +
∫

∞

x

K(x, z)F (z,y) dz (17)

and write out some identities to be used in the sequel,

∂
n
x

∫
∞

x

K(x, z)F (z, y) dz =
∫

∞

x

F (z,y)∂nxK(x, z) dz + An, (18)
∫

∞

x

K(x, z)∂nxF (z, y) dz = (−1)n
∫

∞

x

F (z,y)∂nzK(x, z) dz + Bn, (19)

where the An are defined by the recurrence relations

A1 = −K(x,x)F (x, y), An = (An−1)x − F (x,y)[∂n−1
x K(x, z)]z=x,

and
B1 = −K(x,x)F (x, y), B2 = −K(x,x)∂xF (x,y) + [∂zK(x, z)]z=xF (x, y), . . .

Let us introduce an operator L1 and require that F satisfy the linear equation

L1F ≡ (∂2
x − ∂2

y)F (x, y) = 0. (20)
Applying the operator L1 to (17) and taking into account (18), (19), we obtain

(∂2
x − ∂2

y)K(x, y) =
∫

∞

x

F (x, z)(∂2
x − ∂2

y)K(x, z) dz − 2F (x, y)
d

dx
K(x,x).

Using the equation F = (I − Ax)K and taking into account that the operator I − Ax is invertible, we finally get

(∂2
x − ∂2

y)K(x, y) + u(x)K(x,y) = 0, (21)
where the function u(x) is defined by

u(x) = 2
d

dx
K(x,x). (22)

Require that F satisfy the linear equation

L2F = (∂t + (∂x + ∂y)3)F = 0 (23)
and apply the operator L2 to (17) to obtain

(
∂t + (∂x + ∂y)3)

K(x, y) =
(
∂t + (∂x + ∂y)3)

∫
∞

x

K(x, z)F (z,y) dz.

A procedure similar to the above calculations for the operator L1 yields

Kt + (∂x + ∂y)3
K + 3u(∂x + ∂y)K = 0. (24)

For the characteristic y = x, equation (24) can be rewritten in terms of u = 2(d/dx)K(x,x). Differentiating (24) with respect
to x and rearranging terms, we arrive at the Korteweg–de Vries equation

ut + 6uux + uxxx = 0.

Any function F satisfying the linear equations (20), (23) and rapidly decaying as x → +∞ generates a solution of the
Korteweg–de Vries equation. To this end, one should solve the linear integral equation (17) for function K and express u
through K by formula (22).

Example 6. Consider the integral equation

K(x, y) = F (x, y) +
σ

4

∫
∞

x

∫
∞

x

K(x, z)F (z,u)F (u,y) dz du, (25)

where σ = X 1. Here and in what follows, the coefficients are chosen with a view to simplifying the calculations. Let the
operator L1 have the form

L1F = (∂x − ∂y)F = 0, (26)
which implies that

F (x, y) = F
(
x + y

2

)
.

Shifting the lower limit of integration to zero, we rewrite equation (25) in the form

K(x, y) = F
(
x + y

2

)
+
σ

4

∫
∞

0

∫
∞

0
K(x,x + ζ)F

( 2x + ζ + η
2

)
F

(
x + η + y

2

)
dζ dη, (27)

or, equivalently,

[(I − σAx)K](x,y) = F
(
x + y

2

)
,
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where the operator Ax is defined by

Axf (y) =
1
4

∫
∞

0

∫
∞

0
f (ζ)F

( 2x + ζ + η
2

)
F

(
x + η + y

2

)
dζ dη.

Introducing the function

K2(x, z) =
∫

∞

0
K(x,x + ζ)F

(
x + ζ + z

2

)
dζ (28)

we can rewrite equation (25) as

K(x,y) = F
(
x + y

2

)
+
σ

4

∫
∞

0
K2(x,x + η)F

(
x + η + y

2

)
dη. (29)

Applying the operator L1 of (26) to equation (29), and the operator ∂x + ∂z to (28), and taking into account the invertibility
of I − σAx, we find, after appropriate calculations, that

(∂x + ∂y)K2(x, y) = −2K(x,x)K(x, y), (30)

(∂x − ∂y)K(x, y) = −
σ

2
K(x,x)K2(x, y). (31)

Applying the operator ∂x + ∂y to (27), we get

F
′

(
x + y

2

)
= (I − σAx)

[
(∂x + ∂y)K(x, y) +

σ

2
K2(x,x)K(x,y)

]
. (32)

Let us require that the function F satisfy the second linear equation

L2F = (∂t + (∂x + ∂y)3)F = 0. (33)
Applying the operator L2 to equation (27) and taking into account the above auxiliary relations (30)–(32), we ultimately find
that

[∂t + (∂x + ∂y)3]K(x, y) = 3σK(x,x)K(x, y)∂xK(x,x) + 3σK2(x,x)(∂x + ∂y)K(x, y) (34)
for y ≥ x. Now, by setting q(x, t) = K(x,x; t), we rewrite equation (34), for y = x, in terms of the dependent variable q to
obtain the modified Korteweg–de Vries equation

qt + qxxx = 6σq2
qx. (35)

Thus, each solution of the equations LiF = 0, i = 1, 2, with a sufficiently fast decay rate as x→ ∞ determines a solution of
equation (35). Note that we have to solve the linear integral equation (25) at an intermediate step.Y�Z

References for Subsection S.10.3: V. E. Zakharov and A. B. Shabat (1974), M. J. Ablowitz and H. Segur (1981),
M. J. Ablowitz and P. A. Clarkson (1991).

S.11. Conservation Laws
S.11.1. Basic Definitions and Examples
Consider a partial differential equation with two independent variables

F

(

x, t,w,
∂w

∂x
,
∂w

∂t
,
∂2w

∂x2 ,
∂2w

∂x∂t
,
∂2w

∂x2 , . . .
)

= 0. (1)

A conservation law for this equation has the form

∂T

∂t
+
∂X

∂x
= 0, (2)

where

T = T
(

x, t,w,
∂w

∂x
,
∂w

∂t
, . . .

)

, X = X
(

x, t,w,
∂w

∂x
,
∂w

∂t
, . . .

)

. (3)

The left-hand side of the conservation law (2) must vanish for all (sufficiently smooth) solutions
of equation (1). In simplest cases, the substitution of relations (3) into the conservation law (2)
followed by differentiation and elementary transformations leads to a relation that coincides with (1)
up to a functional factor. The quantities T and X in (2) are called a density and a flow, respectively.

If the total variation of the quantityX on the interval a ≤ x ≤ b is equal to zero, i.e.,X(a) =X(b),
then the following “integral of motion” takes place:

∫ b

a

T dx = const (for all t). (4)
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For many specific equations, relations of the form (4) have a clear physical meaning and are used
for approximate analytical solution of the corresponding problems, as well as for the verification of
results obtained by numerical methods.

For nonstationary equations with n spatial variables x1, . . . ,xn, conservation laws have the form

∂T

∂t
+

n
∑

k=1

∂Xk

∂xk
= 0.

Partial differential equations can have several (sometimes infinitely many) conservation laws or
none at all.

Example 1. The Korteweg–de Vries equation

∂w

∂t
+
∂3w

∂x3 + 6w
∂w

∂x
= 0

admits infinitely many conservation laws of the form (2). The first three are determined by

T1 = w, X1 = 3w2 + wxx;

T2 = w2, X2 = 4w3 + 2wwxx − w2
x;

T3 = 2w3 − w2
x, X3 = 9w4 + 6w2

wxx − 12ww2
x − 2wxwxxx + w2

xx,

where the subscripts denote partial derivatives with respect to x.

Example 2. The sine-Gordon equation
∂2w

∂x∂t
− sinw = 0

also has infinitely many conservation laws. The first three are described by the formulas

T1 = w2
x, X1 = 2 cosw;

T2 = w4
x − 4w2

xx, X2 = 4w2
x cosw;

T3 = 3w6
x − 12w2

xw
2
xx + 16w3

xwxxx + 24w2
xxx, X3 = (2w4

x − 24w2
xx) cosw.

Example 3. The Monge–Ampère equation
(
∂2w

∂x∂y

)2
−
∂2w

∂x2
∂2w

∂y2 =
1
x4 f

(
y

x

)
,

where f (z) is an arbitrary function, admits the conservation law

∂

∂x

(
∂w

∂x

∂2w

∂y2

)
+
∂

∂y

(
−
∂w

∂x

∂2w

∂x∂y
+

1
x3

∫ y/x

C

f (z) dz
)

= 0.

[�\
References for Subsection S.11.1: G. B. Whitham (1965), R. M. Miura, C. S. Gardner, and M. D. Kruskal (1968),

M. D. Kruskal, R. M. Miura, C. S. Gardner, and N. J. Zabusky (1970), A. C. Scott, F. Y. Chu, and D. W. McLaughlin (1973),
J. L. Lamb (1974), R. K. Dodd and R. K. Bullough (1977), P. J. Olver (1986), N. H. Ibragimov (1994), S. E. Harris (1996),
A. M. Vinogradov and I. S. Krasilshchik (1997), A. N. Kara and F. M. Mahomed (2002), B. J. Cantwell (2002).

S.11.2. Equations Admitting Variational Formulation. Noetherian
Symmetries

Here, we consider second-order equations in two independent variables, x and y, and an unknown
function, w = w(x, y). We will deal with equations admitting the variational formulation of mini-
mizing a functional of the form

Z[w] =
∫

S

L(x, y,w,wx,wy) dx dy. (5)

The function L = L(x, y,w,wx,wy) is called a Lagrangian.
It is well known that a minimum of the functional (5) corresponds to the Euler–Lagrange equation

∂L

∂w
−Dx

(

∂L

∂wx

)

−Dy

(

∂L

∂wy

)

= 0, (6)
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where Dx and Dy are the total differential operators in x and y. Therefore, the original equation
must be a consequence of equation (6).

A symmetry that preserves the differential form Ω =L(x, y,w,wx,wy) dx dy is called a Noethe-
rian symmetry of the LagrangianL. In order to obtain Noetherian symmetries, one should find point
transformations

x̄ = f1(x, y,w, ε), ȳ = f2(x, y,w, ε), w̄ = g(x, y,w, ε) (7)

such that preserve the differential form, Ω̄ = Ω, i.e.,

L̄ dx̄ dȳ = Ldx dy. (8)

Calculating the differentials dx̄, dȳ and taking into account (7), we obtain

dx̄ = Dxf1 dx, dȳ = Dyf2 dy,

and therefore, relation (8) can be rewritten as

(L − L̄Dxf1Dyf2) dx dy = 0,

which is equivalent to
L − L̄Dxf1Dyf2 = 0. (9)

Let us associate the point transformation (7) with the prolongation operator

X = ξ∂x + η∂y + ζ∂w + ζ1∂wx
+ ζ2∂wy

,

where the coordinates of the first prolongation, ζ1 and ζ2, are defined by formulas (13) from
Subsection S.7.1. Then, by the usual procedure, from (9) one obtains the invariance condition in the
form

X(L) + L(Dxξ +Dyη) = 0. (10)
Noetherian symmetries are determined by (10).

Each Noetherian symmetry operatorX generates a conservation law,

Dx

(

Lξ + (ζ − ξwx − ηwy)
∂L

∂wx

)

+Dy

(

Lη + (ζ − ξwx − ηwy)
∂L

∂wy

)

= 0.

Example 4. The equation of minimal surfaces

(1 + w2
y)wxx − 2wxwywxy + (1 + w2

x)wyy = 0
corresponds to the functional

Z[w] =
∫

S

√
1 + w2

x + w2
y dx dy

with Lagrangian L =
√

1 + w2
x + w2

y. The admissible point operators

X1 = ∂x, X2 = ∂y , X3 = x∂x + y∂y + w∂w , X4 = y∂x − x∂y , X5 = ∂w
are found by the procedure described in detail in Section S.7.1-2. These operators determine Noetherian symmetries and
correspond to conservation laws:

X1: Dx

(
L − wx

∂L

∂wx

)
+ Dy

(
−wx

∂L

∂wy

)
= 0,

X2: Dx

(
−wy

∂L

∂wx

)
+ Dy

(
L − wy

∂L

∂wy

)
= 0,

X3: Dx

(
Lx + (w − xwx − ywy)

∂L

∂wx

)
+ Dy

(
Ly + (w − xwx − ywy)

∂L

∂wy

)
= 0,

X4: Dx

(
Ly + (ywx − xwy)

∂L

∂wx

)
+ Dx

(
−Ly + (ywx − xwy)

∂L

∂wy

)
= 0,

X5: Dx

(
wx√

1 + w2
x + w2

y

)
+ Dy

(
wy√

1 + w2
x + w2

y

)
= 0.

]�^
References for Subsection S.11.2: A. M. Vinogradov (1984), P. J. Olver (1986), J. A. Cavalcante and K. Tenenblat

(1988), N. H. Ibragimov (1994), A. M. Vinogradov and I. S. Krasilshchik (1997).
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S.12. Hyperbolic Systems of Quasilinear Equations∗

S.12.1. Conservation Laws. Some Examples
The main mathematical models in continuum mechanics and theoretical physics have the form of
systems of conservation laws. Usually mass, momentum, and energy for phases and/or components
are conserved.

We consider systems of conservation laws with the form

∂G(u)
∂t

+
∂F(u)
∂x

= 0, (1)

where u = u(x, t) is a vector function of two scalar variables, and F = F(u) and G = G(u) are vector
functions,

u = (u1, . . . ,un)T, ui = ui(x, t);

F = (F1, . . . ,Fn)T, Fi = Fi(u);

G = (G1, . . . ,Gn)T, Gi = Gi(u).

Here and henceforth, (u1, . . . ,un)T stands for a column vector with components u1, . . . ,un.
For any F and G system (1) admits the following particular solutions:

u = C,

where C is an arbitrary constant vector.
Example 1. Consider a single quasilinear equation of the special form

∂u

∂t
+
∂F (u)
∂x

= 0, (2)

which is a special case of (1) with n = 1, G(u) = u, and F = F (u).
Equation (2) represents a law of conservation of mass (or another quantity) and is often encountered in gas dynamics,

fluid mechanics, wave theory, acoustics, multiphase flows, and chemical engineering. This equation is a model for numerous
processes of mass transfer, including sorption and chromatography, two-phase flows in porous media, flow of water in river,
road traffic development, flow of liquid films along inclined surfaces, etc. The independent variables t and x in equation (2)
usually play the role of time and the spatial coordinate, respectively, u = u(x, t) is the density of the quantity being transferred,
and F (u) is the flux of u.

Example 2. A one-dimensional ideal adiabatic (isentropic) gas flow is governed by the system of two equations

∂ρ

∂t
+
∂(ρv)
∂x

= 0, (3)

∂(ρv)
∂t

+
∂(ρv2 + p(ρ))

∂x
= 0. (4)

Here, ρ = ρ(x, t) is the density, v = v(x, t) is the velocity, and p is the pressure. Equation (3) represents the law of conservation
of mass in fluid mechanics and is referred to as a continuity equation. Equation (4) represents the law of conservation of
momentum. The equation of state is given in the form p = p(ρ). For an ideal polytropic gas, p = Aργ , where the constant γ
is the adiabatic exponent.

Remark. System (3)–(4) with ρ = h and p(ρ) = 1
2 gh

2, where v is the horizontal velocity averaged over the height h
of the water level and g is the acceleration due to gravity, governs the dynamics of shallow water.

The origin of hyperbolic systems of conservation laws as mathematical models for physical
phenomena is discussed extensively in the literature. The classical treatises by Courant and Hilbert
(1989), Landau and Lifshitz (1987), and Whitham (1974) and also a recent comprehensive mono-
graph by Dafermos (2000) should be mentioned. Conservation law systems for various gas flow
regimes in Eulerian and Lagrangian coordinates are treated in the monographs Courant and Friedrichs
(1985), Landau and Lifshitz (1987), Logan (1994), and Zel’dovich and Raizer (1968). Gas flows
with chemical reactions (combustion and phase transitions) are discussed in the books by Zel’dovich
and Raizer (1966, 1967), Zel’dovich, Barenblatt, Librovich, and Makhviladze (1985). Hyperbolic

* Section S.12 was written by P. G. Bedrikovetsky and A. P. Pires.
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systems for chromatography are dealt with in Rhee, Aris, and Amundson (1970, 1986, 1989). The
monographs Hanyga (1985) and Kulikovskii and Sveshnikova (1995) give a comprehensive presen-
tation of the theory of elastic media. Both Barenblatt, Entov, and Ryzhik (1991) and Bedrikovetsky
(1993) discuss hyperbolic systems for two-phase multi-component flows in porous media describing
oil recovery processes. Traffic flow and shallow water mechanics are treated in Logan (1994) and
Whitham (1974).

Methods of analytical integration for self-similar Riemann problems are presented in the mono-
graphs by Smoller (1983) and Dafermos (2000); non-self-similar problem integration methods for
wave interactions are given in Glimm (1989), LeVeque (2002), and Bedrikovetsky (1993).

S.12.2. Cauchy Problem, Riemann Problem, and InitialBoundary
Value Problem

Cauchy problem (t ≥ 0, −∞ < x < ∞). Find a function u = u(x, t) that solves system (1) for t > 0
and satisfies the initial condition

u = ϕ(x) at t = 0, (5)

where ϕ(x) is a prescribed vector function. The Cauchy problem is also often referred to as an
initial value problem.

Riemann problem (t ≥ 0, −∞ < x < ∞). Find a function u = u(x, t) that solves system (1) for
t > 0 and satisfies the following initial condition of a special form:

u =
{

uL if x < 0
uR if x > 0 at t = 0. (6)

Here, uL and uR are two prescribed constant vectors.
Initial-boundary value problem (t ≥ 0, x ≥ 0). Find a function u = u(x, t) that solves system (1)

for t > 0 and x > 0 and satisfies the following conditions:

u = ϕ(x) at t = 0 (initial condition),
u = ψ(t) at x = 0 (boundary condition).

Here, ϕ(x) and ψ(t) are prescribed vector functions.

S.12.3. Characteristic Lines. Hyperbolic Systems. Riemann
Invariants

Let us show that some systems of conservation laws can be represented as systems of ordinary
differential equations along curves x = x(t) called characteristic curves.

Differentiating both sides of system (1) yields

∂u
∂t

+ A
∂u
∂x

= 0, (7)

where A = ˜G−1(u)˜F(u), ˜F(u) is the matrix with entries ∂Fi

∂uj
, ˜G(u) is the matrix with entries ∂Gi

∂uj
, and

˜G−1 is the inverse of the matrix ˜G.
Let us multiply each scalar equation in (7) by bi = bi(u) and take the sum. On rearranging terms

under the summation sign, we obtain

n
∑

i=1

bi
∂ui

∂t
+

n
∑

i,j=1

bjaji
∂ui

∂x
= 0, (8)

where the aij = aij(u) are the entries of the matrix A.
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If b = (b1, . . . , bn) is a left eigenvector of the matrix A(u) that corresponds to an eigenvalue
λ = λ(u), so that

n
∑

j=1

bjaji = λbi,

then equation (8) can be rewritten in the form
n
∑

i=1

bi

(

∂ui

∂t
+ λ

∂ui

∂x

)

= 0. (9)

Thus, system (7) is transformed to a linear combination of total derivatives of the unknowns ui with
respect to t along the direction (λ, 1) on the plane (x, t), i.e., the total time derivatives are taken
along the trajectories having the velocity λ:

n
∑

i=1

bi
dui

dt
= 0,

dx

dt
= λ, (10)

where
bi = bi(u), λ = λ(u), x = x(t),

dui

dt
=
∂ui

∂t
+
dx

dt

∂ui

∂x
.

Equations (10) are called differential relations on characteristics. The second equation in (10)
explains why an eigenvalue λ is called a characteristic velocity.

The system of quasilinear equations (7) is called hyperbolic if the following two conditions are
satisfied:

1◦. All eigenvalues λk = λk(u) (k = 1, . . . ,n) of the matrix A(u) are real.

2◦. There is a basis {b1, . . . , bn} ⊂ En formed by n left eigenvectors of A(u) and subjected to a
normalization condition; the symbol En stands for the n-dimensional Euclidean space.

Let us assume that the n×n hyperbolic system (7) has n distinct eigenvalues λk(u), k = 1, . . . ,n.
A trajectory x(t) with velocity λk(u) that is a solution of system (10) is called the kth characteristic
direction. The eigenvectors bk(u) that correspond to the eigenvaluesλk(u), respectively, are linearly
independent.

If all eigenvalues are distinct for any u = (u1, . . . ,un)T
⊂ R

n, they can be enumerated in order
of increasing values, so that λ1(u) < · · · < λn(u), and system (7) is called strictly hyperbolic.

If all characteristic velocities λ = λk of the hyperbolic system (7) are positive, the following
initial-boundary value problem can be posed:

u = uL at t = 0, u = uR at x = 0.

Remark 1. If the hyperbolic system (7) is linear and the coefficients of the matrix A are constant,
then the eigenvalues λk are constant and the characteristic lines in the (x, t) plane become straight
lines:

x = λkt + const .

Since all eigenvalues λk are different, the general solution of system (7) can be represented as the
sum of particular solutions as follows:

u = φ1(x − λ1t)r1 + · · · + φn(x − λnt)rn, (11)

where the φk(ξk) are arbitrary functions, ξk = x − λkt, and rk is the right eigenvector of A corre-
sponding to the eigenvalue λk , k = 1, . . . ,n. The particular solutions uk = φk(x − λkt)rk are called
traveling wave solutions. Each of these solutions represents a wave that travels in the rk-direction
with velocity λk .

Remark 2. The characteristic form (9) of the hyperbolic system (7) forms the basis for the
numerical characteristics method which allows the solution of system (7) in its domain of continuity.
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Figure 6. Characteristic velocity for a single quasilinear (hyperbolic) equation (2).

Suppose that we already have a solution u(x, t) for all values of x and a fixed time t. To construct a
solution at a point (x, t + ∆t), we find the points (x − λk∆t, t) from which the characteristics arrive
at the point (x, t + ∆t). Since the u(x − λk∆t, t) are known, relations (10) can be regarded as a
system of n linear equations in the n unknowns u(x, t + ∆t). Thus, a solution for the time t + ∆t

can be found.
Consider small perturbations of a solution to system (7). Substitute u = u0 + δu into (7), where

u0 = u0(x, t) is a solution of system (7) and δu = (δu1, . . . , δun)T is a small perturbation, |u0|� |δu|.
Neglecting the terms of higher order than the first term in |δu|, we obtain a system of linear equations
in the form

∂δui

∂t
+

n
∑

j=1

aij
∂δuj

∂x
= −

n
∑

j,k=1

∂aij

∂uk

∂uj

∂x
δuk, i = 1, . . . ,n, (12)

where the aij = aij(u0) are the entries of the matrix A at the point u0. If u0 is a constant vector, then
the right-hand side of the linearized equation (12) is zero and its general solution can be represented
as a superposition of n traveling waves; see formula (11).

Example 3. For the case of a single hyperbolic equation (2), relations (10) become

du

dt
= 0,

dx

dt
= F ′(u). (13)

It has been taken into account here that λ = F ′(u); the prime denotes the derivative with respect to u.
The second equation in (13) shows that the characteristic velocity equals the tangent to the flux function at the point

u = u(x, t); see Fig. 6. There is one characteristic velocity for one equation, and the unknown function is constant along the
characteristic (first equation in (13)). Therefore, the characteristic velocity is also constant (second equation in (13)), and the
characteristic is a straight line. This allows the construction of an exact solution to a Cauchy problem for (2) whenever the
characteristic velocity of the initial condition (5) increases monotonically in x, [F ′(ϕ(x))]′ = F ′′(ϕ)ϕ′(x) > 0. In this case,
a unique characteristic straight line crosses an arbitrary point (x, t), and the solution is constant along this line. As a result,
the solution can be represented in the parametric form

x = ζ + F ′
(
ϕ(ζ)

)
t,

u = ϕ(ζ).
(14)

The first equation in (14) is a transcendental equation in the unknown ζ = ζ(x, t), and the second one allows the
calculation of the unknown u = u(x, t) from the initial condition (5).

Example 4. Adiabatic gas flow is governed by the system of equations (3)–(4). The vector u and the matrix A(u),
which arise in the transformed system (7), become

u =
(
ρ

v

)
, A =

(
v ρ

p′/ρ v

)
,

where p′ = p′(ρ). The eigenvalues and the corresponding left eigenvectors are

λ = v _ √p′, b =
(√

p′, _ ρ).
The linear combination of the equations (3)–(4) with coefficients bi is:

√
p′
dρ

dt
_ ρ dv

dt
≡ _ ρ d

dt

(
v _
∫ √

p′

ρ
dρ

)
= 0.
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r

R1 = const R2 = const

v

Figure 7. Loci of points where Riemann invariants are constant.

For an ideal polytropic gas, with p = Aργ , the eigenvalues and the corresponding left eigenvectors are:

λ = v ` √Aγργ−1, b =
(√

Aγργ−1, ` ρ).
In this case, the differential relations on the characteristics (10) become

√
Aγργ−1 dρ

dt
` ρ dv

dt
≡ ` ρ d

dt

(
v ` 2

√
Aγργ−1

γ − 1

)
= 0,

dx

dt
= v ` √Aγργ−1.

(15)

The relations on the characteristics (10) can be simplified if system (7) admits Riemann invari-
ants. Consider the differential bki (u) dui, where bk(u) is a left eigenvector corresponding to the
eigenvalue λk(u). Assume that this differential admits an integrating multiplier µk(u) or, in other
words, the differential can be represented in the form

n
∑

i=1

bki (u) dui = µk(u) dRk(u).

The function Rk(u) is called the kth Riemann invariant. The integrating multiplier µk(u) can be
found from Maxwell’s relations:

∂

∂uj

(

bki
µk

)

=
∂

∂ui

(

bkj

µk

)

.

From (10) it follows that each Riemann invariant is constant along the corresponding characteristic
curve.

Two Riemann invariants can always be constructed for a system of two equations, since the
differential of two variables always admits an integrating multiplier. In this case, the change of
variables

ui = ui(R1,R2), i = 1, 2,
brings the hyperbolic system to

∂Ri

∂t
+ λi(R1,R2)

∂Ri

∂x
= 0, i = 1, 2. (16)

Example 5. As follows from (13), the Riemann invariant for the single equation (2) is the density u(x, t), which is
constant along characteristics.

Example 6. Let us consider an adiabatic gas flow (see Example 4). From (15) it follows that the Riemann invariants
are:

R = v `
∫ √

p′

ρ
dρ.

For an ideal polytropic gas, with p = Aργ , the Riemann invariants are constant along characteristics:

R = v ` 2
√
Aγργ−1

γ − 1
= const along

dx

dt
= v ` √Aγργ−1. (17)

Figure 7 shows lines of Ri = const on the phase plane (v, ρ).
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Example 7. The system of equations describing one-dimensional longitudinal oscillations of an elastic bar consists of
the equations of balance of mass and momentum:

∂u

∂t
−
∂v

∂x
= 0,

∂v

∂t
−
∂σ(u)
∂x

= 0.

Here, u is the deformation gradient (strain), v is the strain rate, and σ(u) is the stress.
The eigenvalues and the corresponding left eigenvectors are given by

λ = a √σ′(u), b =
(√

σ′(u), b 1
)
.

The Riemann invariants are constant along characteristics:

R = v b
∫ √

σ′(u) du = const along
dx

dt
= a √σ′(u).

c�d
References for Subsection S.12.3: I. M. Gelfand (1959), P. Lax (1973), G. B. Whitham (1974), A. Jeffrey (1976), F. John

(1982), B. L. Rozhdestvenskii and N. N. Yanenko (1983), J. Smoller (1983), R. Courant and D. Hilbert (1985), D. Serre
(1996), C. M. Dafermos (2000), A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov (2001), R. J. LeVeque (2002).

S.12.4. SelfSimilar Continuous Solutions. Rarefaction Waves
The transformation (x, t) → (kx, kt), where k is any positive number, changes neither system (1)
nor the initial conditions (6). From the uniqueness of the Riemann problem solution it follows that
the unknown u(x, t) depends on a single variable, ξ = x/t. Without loss of generality, we consider
the case G(u) = u. The substitution of the self-similar form u(x, t) = u(ξ) into (1) yields

(

˜F − ξI
) du
dξ

= 0, (18)

where ˜F = ˜F(u) is the matrix with entries Fij = ∂Fi

∂uj
and I is the identity matrix.

Hence, the velocity vector for the continuous solution u(ξ) is a right eigenvector of the matrix ˜F
for any point u, and the corresponding eigenvalue equals the self-similar coordinate:

ξ = λk,
du
dξ

= αrk. (19)

Here, λk = λk(u) is a root of the algebraic equation det |˜F − λI| = 0, rk = rk(u) is a solution of
the corresponding degenerate linear system of equations

(

˜F − λI
)

r = 0, and α = α(u) is a positive
function, which will be defined below.

Differentiating both sides of the first equation (19) with respect to ξ yields

α =
1

〈∇λk , rk〉
, 〈∇λk , rk〉 =

∂λk

∂u1
rk1 + · · · +

∂λk

∂un
rkn.

Here, 〈x, y〉 stands for the scalar product of two vectors x and y in the n-dimensional Euclidean
space.

Anyn×n hyperbolic system allows forn continuous solutions (of system (18)) corresponding to
n characteristic velocities λ = λk . The continuous solutions are determined by n systems of ordinary
differential equations. Each system is represented by a phase portrait in the n-dimensional u-space.
A solution/trajectory which corresponds to a characteristic velocity λk is called a kth rarefaction
wave.

Example 8. On calculating the multiplier α for equation (2), one obtains a rarefaction wave expression:

ξ = F ′(u),
du

dξ
=

1
F ′′(u)

. (20)

Equations (20) show that the self-similar coordinate ξ is an eigenvalue, which is equal to the tangent to the flux function
at the point u = u(ξ); see Fig. 6, where λ = ξ. The trajectory (u(ξ),F (u(ξ)) in the plane (u,F ) lies on the graph of the flux
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Figure 8. Mapping from the plane (x, t) to the hodograph plane (u1,u2) and further to the plane of Riemann invariants
(R1,R2): (a) characteristics in two centered rarefaction waves; (b) trajectories of two families of rarefaction waves; (c)
Riemann invariants are constant along the characteristics and along rarefaction waves for 2 × 2 systems.

function F = F (u). As follows from (20), u = u(ξ) increases in the intervals of concavity of the curve F = F (u), F ′′(u) > 0;
see Fig. 6.

Let us show that the Riemann invariants are constant along the rarefaction waves for 2 × 2
hyperbolic systems. The substitution of the self-similar solution form u = u(ξ), ξ = x/t, into
system (16) results in the following system of two ordinary differential equations:

[

ξ − λi(R1,R2)
] dRi

dξ
= 0, i = 1, 2. (21)

The equality ξ = λ1(R1,R2) takes place along the first rarefaction wave. Hence, the first factor
in the second equation of (21) is nonzero. Therefore, the second factor in the second equation of (21)
is zero. It follows that R2 = const along the first rarefaction wave. Along the second rarefaction
wave, R1 is constant. Figure 8a shows two rarefaction wave families that correspond to speeds
λ1 and λ2. A continuous solution of a 2 × 2 system ui = ui(x, t), i = 1, 2, realizes the mapping
(x, t)→ (u1,u2). The inverse of a characteristic with speed λi is the curveRi(u1,u2) = const (see
Fig. 8b). The expressionsRi =Ri(u1,u2) realize the mapping (u1,u2)→ (R1,R2). The inverse of
a characteristic with speed λi is a set of straight lines that are parallel to the Ri-axis (see Fig. 8c).

Example 9. For an adiabatic gas flow [see system (3)–(4)], the rarefaction waves are found from (19) by calculating
the right eigenvectors of the matrix A(u) and the function α(u) (see Example 4) to obtain

dρ

dξ
= e ρ

ρ(
√

p′ )′ +
√

p′
,

dv

dξ
=

√

p′

ρ(
√

p′ )′ +
√

p′
, p = p(ρ). (22)

Here, the upper sign corresponds to the first eigenvalue and the lower sign, to the second eigenvalue.
Eliminating ξ from system (22), we obtain the first-order separable equation

dv

dρ
= e

√

p′(ρ)
ρ

. (23)

Integrating (23) yields

v f
∫ √

p′(ρ)
ρ

dρ = const . (24)

The left-hand side of (24) taken with the minus sign is equal to the second Riemann invariant, and that taken with the
plus sign is equal to the first Riemann invariant. Hence, the second Riemann invariant is constant along the first rarefaction
wave and the first Riemann invariant is constant along the second rarefaction wave.

The expressions for Riemann invariants for an ideal polytropic gas are given by formula (17). The trajectories of the
rarefaction waves are given by the lines where the Riemann invariants are constant. Figure 7 presents the rarefaction waves
for the first characteristic speed (solid lines), where the second Riemann invariant is constant. The dashed lines show the
rarefaction waves of the second characteristic speed, where the first Riemann invariant is constant. The arrows show the
directions of increasing the self-similar coordinate. Both v and ρ increase along the first rarefaction in the direction shown in
Fig. 7, and the first eigenvalue λ1 = v +

√
Aγργ−1 also increases. Along the second rarefaction, v increases and ρ decreases,

and, hence, the second eigenvalue λ2 = v −
√
Aγργ−1 increases.g�h

References for Subsection S.12.4: P. Lax (1973), G. B. Whitham (1974), A. Jeffrey (1976), F. John (1982), B. L. Rozhde-
stvenskii and N. N. Yanenko (1983), R. Courant and R. Friedrichs (1985), R. J. LeVeque (2002).
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Figure 9. Illustration to Rankine–Hugoniot and Lax conditions for a shock wave in a scalar conservation law (2).

S.12.5. Shock Waves. Rankine–Hugoniot Jump Conditions
In general, the basic hyperbolic equations (1) are obtained from continuity equations, i.e., balances
of mass, momentum, and energy for continuous flows. Continuous solutions of these equations were
studied in Subsections S.12.3 and S.12.4. We now derive balance conditions on shocks.

Let us consider a discontinuity along a trajectory xf(t) and obtain the mass balance condition
along a discontinuity (shock wave). The region x > xf(t) is conventionally assumed to lie ahead
of the shock, and the region x < xf(t) is assumed to lie behind the shock. The shock speed D is
determined by the relation

D =
dxf

dt
.

To refer the value of a quantity, A, behind the shock, the minus superscript will be used, A−,
since this value corresponds to negative x in the initial value formulation. Likewise, the value of A
ahead of the shock will be denotedA+. In particular, the density and the velocity ahead of the shock
are denoted ρ+ and v+, while those behind the shock are ρ− and v−.

For an abitrary system of the form (1), the balance equations for a shock can be represented as

[Gi(u)]D = [Fi(u)], i = 1, . . . ,n, (25)

where [A] = A+ − A− stands for the jump of a quantity A at the shock. The equations of (25) are
called the Rankine–Hugoniot jump conditions.

Example 10. The Rankine–Hugoniot condition for the single equation (2) reads as follows:

[u]D = [F ]. (26)
The shock speed is equal to the slope of the line connecting the points (u−,F (u−)) and (u+,F (u+)) in the (u,F ) plane (see
Fig. 9).

Example 11. The Rankine–Hugoniot conditions for an isentropic gas flow (3)–(4) follow from (25). We have

[ρ]D = [ρv],

[ρv]D = [ρv2 + p(ρ)].
(27)

Eliminating the shock speed D from (27), we obtain the equation

[v] = i
√

[ρ][p(ρ)]
ρ−ρ+ . (28)

Each of the signs before the square root in (28) corresponds to a branch of the locus of points that can be connected with a
given point (v−, ρ−) by a shock (see Fig. 10a). For an ideal polytropic gas (p = Aργ ), relations (28) can be transformed to

v
+ − v− = i

√
A(ρ+ − ρ−)

(
(ρ+)γ − (ρ−)γ

)

ρ−ρ+ . (29)

Let us determine the set of states (v+ , ρ+) reachable by a shock from a given point (v− , ρ−). Express the point (v+, ρ+)
ahead of the shock via the solution of the transcendental system (27) to obtain

v
+ = v+(v−, ρ−,D), ρ

+ = ρ+(v−, ρ−,D). (30)

Page 779

© 2004 by Chapman & Hall/CRC



780 EXACT METHODS FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

(  )a (  )b

v
-

v
+

r
-

r
+

v
-

v
+

r
-

r
+

Figure 10. Loci of points that can be connected by a shock wave: (a) with a given state (v− , ρ−) and (b) with a given state
(v+, ρ+). The solid lines correspond, respectively, to the minus and plus sign in formula (29) before the radical for cases (a)
and (b).

The graphs of the solution determined by (29), or (28), are shown in Figs. 10a and 10b. The solid lines correspond to
the minus sign before the radical and represent stable (evolutionary) shocks, while the dashed lines correspond to the plus
sign and represent unstable (nonevolutionary) shocks; see the next subsection.

Consider the locus of points u+ and a rarefaction wave trajectory near a point u− in the space
u = (u1, . . . ,un)T. These two curves have the same tangent vector at the point u−. In order to prove
this fact, let us consider small-amplitude shocks. Setting Gi(u) = ui in (25) and retaining only the
leading term in the expansion in powers of |u+ − u−|� 1, we obtain

(˜F −DI)[u] = 0,

where the same notation as in (18) is used. Hence, the vector [u] is a right eigenvector of the matrix
˜F = ˜F(u). Therefore, it coincides with the rarefaction wave vector. The shock speed D tends to an
eigenvalue at the point u+ (or u−).

The set of points, or the locus of states, u+ = u+(u−,D) is a solution of the transcendental system
of n equations (25). In general, the transcendental system has n roots. It follows that there should
exist n shock curves u+ = u+(u−,D). We call a curve the ith shock if it is tangent to the ith rarefaction
wave at u−.j�k

References for Subsection S.12.5: O. A. Oleinik (1957), I. M. Gelfand (1959), P. Lax (1973), A. G. Kulikovskii (1979),
C. M. Dafermos (1983), B. L. Rozhdestvenskii and N. N. Yanenko (1983), J. Smoller (1983), R. Courant and R. Friedrichs
(1985), L. D. Landau and E. M. Lifshitz (1987), D. J. Logan (1994), E. Godlewski and P.-A. Raviart (1996), A. G. Kulikovskii,
N. V. Pogorelov, and A. Yu. Semenov (2001), A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux (2002).

S.12.6. Evolutionary Shocks. Lax Condition (Various Formulations)
In general, discontinuities of solutions are surfaces where conditions are imposed that relate the
quantities on both sides of the surfaces. For hyperbolic systems in the conservation-law form (1),
these relations have the form (25) and involve the discontinuity velocity D.

The evolutionary conditions are necessary conditions for unique solvability of the problem
of the discontinuity interaction with small perturbations depending on the x-coordinate normal
to the discontinuity surface. For hyperbolic systems, a one-dimensional small perturbation can be
represented as a superposition of nwaves, each being a traveling wave propagating at a characteristic
velocity λ li . This allows us to classify all these waves into incoming and outgoing ones, depending
on the sign of the difference λ li −D. Incoming waves are fully determined by the initial conditions,
while outgoing ones must be determined from the linearized boundary conditions at the shock.

We consider below the stability of a shock with respect to a small perturbation. This kind of
stability is determined by incoming waves. For this reason, we focus below on incoming waves.
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Let m+ and m− be the numbers of incoming waves from the right and left of the shock,
respectively. It can be shown that if the relation

m+ +m− − 1 = n (31)

holds, the problem of the discontinuity interaction with small perturbations is uniquely solvable.
Relation (31) is called the Lax condition. If (31) holds, the corresponding discontinuity is called
evolutionary; otherwise, it is called nonevolutionary. For evolutionary discontinuities, small in-
coming perturbations generate small outgoing perturbations and small changes in the discontinuity
velocity.

For a single equation (2), it follows from (31) that the two waves on both sides of an evolutionary
discontinuity must be incoming.

If
m+ +m− − 1 > n,

then either such discontinuities do not exist or the perturbed quantities cannot be uniquely determined
(the given conditions are underdetermined).

If
m+ +m− − 1 < n,

then the problem of the discontinuity interaction with small perturbations has no solution in the
linear approximation. Previous studies of various physical problems have shown that the interaction
of nonevolutionary discontinuities with small perturbations results in their disintegration into two or
more evolutionary discontinuities.

The evolutionary condition (31) can be rewritten in the form of inequalities relating the shock
speed D and the velocities λ mi of small disturbances. Let us enumerate the characteristic velocities
on both sides of the discontinuity so that

λ1(u) ≤ λ2(u) ≤ · · · ≤ λn(u).

A shock is called a k-shock if both kth characteristics are incoming:

if i > k, then D < λ mi ;

if i < k, then D > λ mi ;
if i = k, then λ+

i < D < λ−
i .

(32)

Below is another, equivalent statement of the Lax condition: n + 1 inequalities out of the 2n
inequalities

λ+
k ≤ D ≤ λ−

k (k = 1, . . . ,n) (33)

must hold.
Example 12. The Lax condition (33) for a single equation (2) takes the form

F
′(u+) ≤ D ≤ F ′(u−). (34)

From the Rankine–Hugoniot condition for one scalar equation (26) it follows that the shock speed D on the plane (u,F ) is
equal to the slope of the line segment connecting the “plus” and “minus” points.

The graphical interpretation of condition (34) in the plane (u,F ) is as follows: the slope of the segment connecting the
points with coordinates (u−,F (u−)) and (u+,F (u+)) is less than the slope of the flux curve F (u) at the point (u−,F (u−))
and greater than the slope of F (u) at the point (u+,F (u+)) (see Fig. 9).

Example 13. The Lax condition for the adiabatic gas flow equations (3)–(4) are obtained by substituting the eigenvalue
expressions λ = v n √

p′(ρ) (see Example 4) into inequalities (33). We have

v
+ n √p′(ρ+) < D < v− n √p′(ρ−). (35)

The shock evolutionarity requires that three of the four inequalities in (35) hold. Substituting the equation of state for a
polytropic ideal gas, p = Arγ , into (35), we obtain the following evolutionarity criterion:

v
+ n √Aγ(ρ+)γ−1 < D < v− n √Aγ(ρ−)γ−1. (36)
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For the adiabatic gas flow system (3), (4), the solution vector is u = (ρ, v)T. Figure 10a shows the locus of points u+

that can be connected by a shock to the point u−; it is divided into the evolutionary part (solid line) and nonevolutionary part
(dashed line). It can be shown that a shock issuing from the point (v−, ρ−) and passing through any point (v+, ρ+) of the solid
part of the locus of first-family shocks obeys the Lax conditions (36). The shock speed D of the first family decreases from
λ1(u−), for points u+ tending to point u−, to v− as ρ+

→ 0 and v+
→ −∞. Along the locus of the second-family shocks, the

speed decreases from λ2(u−), for points u+ tending to u−, to −∞ as ρ+
→ ∞ and v+

→ −∞.
Figure 10b depicts the locus of points u− that can be connected by a shock to the point u+. The evolutionary part of

the locus is shown by a solid line; the dashed line shows the nonevolutionary part. The shock speed D of the first family
increases from λ1(u+), for points u− tending to u+, to ∞ as ρ−

→ ∞ and v−
→ ∞. Along the locus of the second family

shocks, the speed increases from λ2(u+), for points u− tending to u+, to v+ as ρ−
→ 0 and v−

→ ∞.o�p
References for Subsection S.12.6: O. A. Oleinik (1957), I. M. Gelfand (1959), P. Lax (1973), A. G. Kulikovskii (1979),

C. M. Dafermos (1983), B. L. Rozhdestvenskii and N. N. Yanenko (1983), L. D. Landau and E. M. Lifshitz (1987), D. J. Logan
(1994), E. Godlewski and P.-A. Raviart (1996), A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov (2001).

S.12.7. Solutions for the Riemann Problem
In this section, we consider system (1) having a special form, with G(u) = u. The solution of the
corresponding Riemann problem (1), (6) is self-similar:

u = u(ξ), ξ = x/t. (37)

The substitution of (37) into system (1) leads to the system of ordinary differential equations
(18) with the following boundary conditions:

u→ uL as ξ → −∞, u→ uR as ξ →∞.

A trajectory of solution (37) in the space u = (u1, . . . ,un)T is called a solution path. The path
is parametrized by the self-similar coordinate ξ. The path connects the point u = uL with the point
u = uR. The self-similar coordinate ξ monotonically increases along the path varying from −∞ at
u = uL to +∞ at u = uR. The path consists of continuous segments representing solutions of the
ordinary differential equation (18) (rarefaction waves), line segments that connect two points u−

and u+ satisfying the Rankine–Hugoniot conditions (25) and evolutionary conditions (33), and rest
points u(ξ) = const.

Consider an example of a solution consisting of two shocks and one rarefaction. The structural
formula* for the solution path is uL → 1 — 2→ uR; specifically,

u(x, t) =



















uL if −∞ < x/t < D1,
u1 if D1 < x/t < λ2(u1),
u(2)(ξ) if λ2(u1) < x/t < λ2(u2),
u2 if λ2(u2) < x/t < D2,
uR if D2 < x/t <∞.

The shock speed D1 (resp., D2) can be found from the Hugoniot condition by setting u− = uL

and u+ = u1 (resp., u− = u2 and u+ = uR). Points 1 and 2 are located on the same rarefaction curve.
The vector u(2)(ξ) is a second-family rarefaction wave, which is described by the system of ordinary
differential equations (18) with ξ = λ2(u).

Figure 11a depicts a sequence of rarefactions and shocks in the plane (x, t). Figure 11b shows
the profile of the solution component ui along the x-axis. The self-similar curves u = u(ξ) coincide
with the profiles u(x, t = 1). For t > 1, the graphs of u(x, t) are obtained from the self-similar curves
by extending them along the axis x by a factor of t.

Example 14. Let us discuss the solution to the Riemann problem for a single equation (2) for various forms of the flux
function. For concave flux function, with F ′′(u) > 0, any shock uL → uR with uL > uR satisfies the Lax condition (34).
Hence, the solution to the Riemann problem (2), (6) is given by

u(x, t) =
{
uL if −∞ < x/t < D,
uR if D < x/t < ∞,

D =
F (uL) − F (uR)

uL − uR
.

* In structural formulas like uL → 1 — 2 → uR, the symbol “→” stands for a shock wave and “—” stands for a rarefaction.
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Figure 11. Solution for the Riemann problem: (a) centered waves in the (x, t) plane; (b) the ui profile.
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Figure 12. Graphical solution to the Riemann problem for a single conservation law (2).

For convex flux function, F ′′(u) < 0, any shock uL → uR with uL > uR does not satisfy the Lax condition (34). The
solution to the Riemann problem is given by a rarefaction wave:

u(x, t) =





uL if −∞ < x/t < DL = F ′(uL),
x/t = F ′(u) if DL < x/t < DR = F ′(uR),
uR if DR < x/t < ∞.

Note that here the solution in the intermediate region is defined implicitly: x/t = F ′(u).
For convex flux function, F ′′(u) < 0, the solution to the Riemann problem with uL > uR is given by a rarefaction wave;

the solution for the case uL < uR is given by a shock uL → uR. The solution to the Riemann problem (2), (6) for arbitrary
flux function corresponds to the convex envelope of the curve F (u) inside the interval [uL,uR] for the case uL < uR. Shocks
correspond to line segments between tangent points (e.g., points 1 and 2, 3 and 4, u′

L and 5, 6 and 7, and 8 and u′R in Fig. 12).
Rarefactions correspond to segments of the density function between tangent points (e.g., points uL and 1, 2 and 3, and
4 and uR in Fig. 12).

The solution to the Riemann problem can be expressed by structural formulas where an arrow stands for a jump and a
dash stands for a rarefaction wave. The solution for the case uL < uR, which corresponds to a convex envelope, in Fig. 12
can be expressed by the following structural formula: uL — 1 → 2 — 3 → 4 — uR. The solution is given by

u(x, t) =





uL, −∞ < x/t < F ′(uL),
g(x/t), F ′(uL) < x/t < F ′(u1),
g(x/t), F ′(u1) = F ′(u2) < x/t < F ′(u3),
g(x/t), F ′(u3) = F ′(u4) < x/t < F ′(uR),
uR, F ′(uR) < x/t < ∞,

where the function u = g(ξ) is determined by the inversion of the relation ξ = F ′(u).
For the case u′L > u′R, the solution corresponds to the concave envelope (Fig. 12). The corresponding structural formula

is: u′L → 5 — 6 → 7 — 8 → u′R.

Example 15. The solution to the Riemann problem for strictly hyperbolic systems of two equations with arbitrary
initial data can be obtained graphically from the phase portrait for two families of rarefactions (Fig. 7) and for loci of shocks
(Figs. 10a and 10b). There are four types of solutions shown in Fig. 13 and outlined below.
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Figure 13. Four different cases for the evolution of a discontinuity in gas dynamics; point L has the coordinates (v−, ρ−) and
points Rn have the coordinates (v+ , ρ+).
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Figure 14. Shock tube problem: the initial distributions of the gas velocities and densities in the tube.
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Figure 15. Decay of density discontinuity in the shock tube: (a) the gas density on the left is lower than that on the right; (b)
the gas density on the right is lower than that on the left.

1◦. If the right pointR, with coordinates (v+ , ρ+), lies above the locus of the second rarefaction and below the first rarefaction
(R = R1), the solution is given by two rarefaction waves: L — M1 — R1, where M1 is the intersection point of the loci of
the rarefactions through points L and R1.

2◦. If point R lies above both the locus of the first rarefaction and that of the second shock (R = R2), the solution is given
by the second shock and the first rarefaction: L → M2 — R2, where M2 is the intersection point of the locus of the first
rarefaction that passes through point R2 and of the locus of the second shock through point L.

3◦. If point R is located below both the locus of the second rarefaction and that of the first shock (R = R3), the solution is
given by the second rarefaction and the first shock: L — M3 → R3, where M3 is the intersection point of the locus of the
second rarefaction that passes through point L and the locus of the first shock through point R3.

4◦. If point R lies below the locus of the second shock and above the locus of the first shock (R = R4), the solution is given
by two shocks: L → M4 → R4, where M4 is the intersection point of the shocks loci that pass through points L and R4.
This solution is given by

ρ =

{
ρL if −∞ < ξ < D1,
ρM4 if D1 < ξ < D2,
ρR4 if D2 < ξ < +∞,

v =

{
vL if −∞ < ξ < D1,
vM4 if D1 < ξ < D2,
vR4 if D2 < ξ < +∞,

where ξ = x/t; the shock speedsD1,D2 and the intermediate point (ρM4 , vM4 ) are calculated from the Hugoniot conditions
in the form (28) or (29).

Problem 1. Let us consider the so-called shock tube problem (see Fig. 14). An impermeable membrane separates the
two parts of the tube and it is suddenly removed at the time t = 0. The gas is at rest in the initial state, vL = vR = 0. The
sequence of a shock and a rarefaction on the plane (x, t) is shown in Fig. 15a for the case ρL < ρR. It corresponds to the case
where the pressure in the tube on the left (x < 0) is lower than that on the right (x > 0). The shock races into a quiescent low
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Figure 16. Constant velocity piston motion in a tube.
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Figure 17. Solution of the piston problem: (a) shock wave in the (x, t) plane; (b) shock locus in the phase plane.

pressure gas. The solution is of the type 2◦ above:

ρ =





ρL if 0 < ξ < D,

ρ1 if D < ξ < v1 +
√
Aγρ

γ−1
1 ,

ρ̃(ξ) if v1 +
√
Aγρ

γ−1
1 < ξ < vR +

√
Aγρ

γ−1
R ,

ρR if vR +
√
Aγρ

γ−1
R < ξ < +∞,

v =





vL if 0 < ξ < D,

v1 if D < ξ < v1 +
√
Aγρ

γ−1
1 ,

ṽ(ξ) if v1 +
√
Aγρ

γ−1
1 < ξ < vR +

√
Aγρ

γ−1
R ,

vR if vR +
√
Aγρ

γ−1
R < ξ < +∞,

where (ρ1, v1) is the intersection point of the locus of the first rarefaction passing through point R and that of the second
shock passing through point L, and the functions ρ̃ = ρ̃(ξ) and ṽ = ṽ(ξ) are determined by solving the algebraic equations

ξ = ṽ +
√
Aγρ̃γ−1 , ṽ −

2
γ − 1

√
Aγρ̃γ−1 = vR −

2
γ − 1

√
Aγρ

γ−1
R .

The functions ρ̃(ξ) and ṽ(ξ) can be represented in explicit form.
A type 3◦ solution occurs in the case vL = vR = 0 and ρL > ρR. The wave motion is shown in Fig. 15b and the solution

is given by

ρ =





ρL if 0 < ξ < vL −
√
Aγρ

γ−1
L ,

ρ̃(ξ) if vL −
√
Aγρ

γ−1
L < ξ < v1 −

√
Aγρ

γ−1
1 ,

ρ1 if v1 −
√
Aγρ

γ−1
1 < ξ < D,

ρR if D < ξ < ∞,

v =





vL if 0 < ξ < vL −
√
Aγρ

γ−1
L ,

ṽ(ξ) if vL −
√
Aγρ

γ−1
L < ξ < v1 −

√
Aγρ

γ−1
1 ,

v1 if v1 −
√
Aγρ

γ−1
1 < ξ < D,

vR if D < ξ < ∞,

where (ρ1, v1) is the intersection point of the locus of the second rarefaction passing through point L and that of the first
shock through point R, and the functions ρ̃ = ρ̃(ξ) and ṽ = ṽ(ξ) are determined by solving the algebraic equations

ξ = ṽ −
√
Aγρ̃γ−1, ṽ +

2
γ − 1

√
Aγρ̃γ−1 = vL +

2
γ − 1

√
Aγρ

γ−1
R .

Problem 2. Now let us discuss an adiabatic gas flow in a tube in front of an impermeable piston moving with a velocity vL
(see Fig. 16). The initial state is defined by prescribing initial values of the velocity and density:

v = 0, ρ = ρR at ξ = ∞. (38)
The piston is impermeable; therefore, the gas velocity in front of the shock is equal to the piston velocity (Fig. 17a):

v = vL at ξ = vL. (39)
The gas density in front of the piston is unknown in this problem.

Figure 17b shows the locus of points that can be connected by a shock to the point (vR = 0, ρR). This locus is a
first-family shock. The intersection of the locus with the line v = vL defines the value ρL. Hence, ρL can be found from the
equation

v
2
L =

[p(ρL) − p(ρR)](ρL − ρR)
ρLρR

, (40)
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which has been obtained by taking the square of equation (28). There exists a root ρL of (40) such that ρL > ρR. Hence, the
gas is compressed ahead of the piston (Fig. 17a). The expression for the shock speed can be found from the first Hugoniot
condition (27):

D =
ρLvL

ρL − ρR
> vL. (41)

The shock speed exceeds the piston velocity of (41) for ρL > ρR. Both characteristics of the first family as well as the
characteristic ahead of the shock from the second family arrive at the shock, so that the Lax condition is satisfied. It can be
proved that there are no other configurations that satisfy the initial-boundary value conditions (38), (39).q�r

References for Subsection S.12.7: I. M. Gelfand (1959), P. Lax (1973), T. P. Liu (1974), C. M. Dafermos (1983, 2000),
B. L. Rozhdestvenskii and N. N. Yanenko (1983), J. Smoller (1983), H. Rhee, R. Aris, and N. R. Amundson (1986, 1989),
D. J. Logan (1994).

S.12.8. InitialBoundary Value Problems of Special Form
Consider an initial-boundary value problem for hyperbolic system (1) with initial and boundary
conditions of the special form:

u = ui at t = 0, u = ub at x = 0. (42)

Here, ui and ub are prescribed constant vectors (x ≥ 0, t ≥ 0).
The transformation (x, t)→ (kx, kt) with any positive k preserves both system (1) and conditions

(42). Therefore, the solution of the initial-boundary value problem (1), (42) is self-similar:

u = u(ξ), ξ = x/t. (43)

The substitution of (43) into system (1) with G(u) = u yields the system of ordinary differential
equations (18) with the following boundary conditions:

u = ub at ξ = 0, u→ ui as ξ →∞. (44)

The solution to problem (18), (44) can be constructed in a similar way as the solution to the
Riemann problem and consists of portions with constant u, shocks, and rarefaction waves.

Example 16. Consider equation (2) with the initial and boundary conditions (42) where u =u. In petroleum engineering,
this problem is used as a model for the displacement of oil by water in reservoirs. Here u is the water saturation (volumetric
water fraction in pore space), F (u) is the dimensionless water flux (so-called fractional flow function which represents the
water flux fraction in the total two-phase flux). The initial condition of (42) corresponds to the initial water saturation in the
reservoir and the boundary condition means that only water flows through the inlet cross-section.

We assume that the function F (u) satisfies the conditions

F (ui) = 0, F (ub) = 1, F
′(u) > 0 for ui < u < ub, F

′′(ui) > 0, F
′′(ub) < 0.

The solution of problem (2), (42) consists of constant value segments, u = ub and u = ui, a rarefaction wave, and a
shock:

u(x, t) =

{
ub if 0 < x/t < Db = F ′(ub),
g(x/t) if Db < x/t < Df = F (uf)/(uf − ui),
ui if Df < x/t < ∞,

where uf is determined by the transcendental equation

F (uf) = (uf − ui)F ′(uf)

and the continuous solution u = g(ξ) is obtained by the inversion of the relation ξ = F ′(u). Note that the above solution is
defined implicitly in the intermediate region (rarefaction wave region).q�r

References for Subsection S.12.8: S. E. Buckley and M. C. Leverett (1942), G. B. Whitham (1974), B. L. Rozhdestvenskii
and N. N. Yanenko (1983), P. G. Bedrikovetsky (1993), A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux (2002).

S.12.9. Examples of Nonstrict Hyperbolic Systems
We now consider several examples of nonstrict hyperbolic systems of the form (7), for which the
matrix A has coincident eigenvalues, λi(u) = λj (u) for i ≠ j, in some domain.

Example 17. Let us discuss the Riemann problem for the 2 × 2 hyperbolic system

∂s

∂t
−
∂

∂x
(s − c − 2)2 = 0, (45)

∂(cs)
∂t

+
∂

∂x

{
c[1 − (s − c − 2)2]

}
= 0 (46)
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Figure 18. Graphical solution for the Riemann problem (45)–(47).

with initial conditions
s =
{ 4 if x < 0,

1 if x > 0, c =
{ 1 if x < 0,

0 if x > 0, at t = 0. (47)

This is a model system for a two-phase multicomponent flow through porous media in the gravitational field.
We are going first to classify the elementary waves for system (45), (46) and then to construct the solution of the

problem (45)–(47) from these elements.

1◦. Differentiating both sides of system (45), (46), we find the 2 × 2 matrix A of (7) in the form

A =




−2(s − c − 2) 2(s − c − 2)

0
1 − (s − c − 2)2

s


 .

The eigenvalues of A are:

λ1 = −2(s − c − 2), λ2 =
1 − (s − c − 2)2

s
. (48)

Figure 18 shows the graphs of the function f (s, c) = 1 − (s − c − 2)2 for two fixed values of c: c = 0 and c = 1. From (48)
it follows that the first eigenvalue is equal to the slope of a curve f = f (s, c = const). The second eigenvalue is equal to the
slope of the line segment linking the point (s, f ) with the origin of coordinates. Points 5 and 6 are the points of tangency of
the curves c = 1 and c = 0 and the straight lines through the origin of coordinates, respectively. The eigenvalues λ1 and λ2
of (48) are equal at points 5 and 6. The locus of points with equal eigenvalues (48) for 0 < c < 1 is shown in Fig. 18 by the
dashed line linking points 5 and 6. The first eigenvalue is higher than the second one in the area below the dashed curve,
while in the area above the dashed curve, the inequality λ1 < λ2 holds.

From the Rankine–Hugoniot conditions (25) it follows that system (45), (46) allows for two types of shocks: shocks
without jumps of c (so-called s-shocks),

Ds =
(s+ − c − 2)2 − (s− − c − 2)2

s− − s+ , c
+ = c− = c, (49)

and shocks with jumps of c (so-called c-shocks),

Dc =
1 − (s+ − c+ − 2)2

s+ =
1 − (s− − c− − 2)2

s− . (50)

The calculation of the right eigenvector (19) for the first eigenvalue (48) shows that c is constant along the first-family
rarefactions. These rarefactions are called s-waves. The calculation of (19) for the second-family rarefactions shows that
they degenerate into c-shocks.

Hence, system (45), (46) allows for three elementary waves: an s-shock, a c-shock, and a rarefaction s-wave.
The solution of the problem (45)–(47) is self-similar, i.e., can be found in the form (37). The initial conditions (47) for

the self-similar coordinate ξ = x/t become

s = 4, c = 1 as ξ → −∞; s = 1, c = 0 as ξ → ∞. (51)
2◦. Let us calculate several values that will be helpful for solving problem (45), (46), (51).

The values of λ1 at points 1 and 4 (denote them by D1 and D4) can be calculated from (48): D1 = 2 and D4 = −2. The
coordinate s5 of point 5 follows from the condition of equality of the two eigenvalues of (48) on the curve c = 1: s5 = 2

√

2.
The slope D5 of the curve c = 1 at point 5 is equal to λ1 at this point: D5 = 6 − 4

√

2. Let us plot the intersection point
(point 7) of the straight line 0–5 and the curve c = 0. The coordinate of point 7 is: s7 = 3

√

2 − 3, and the slope D7 of the
straight line 7–1 is: D7 = 8 − 5

√

2.
The solution of the problem (51) must connect point 4 with point 1. Both the s-shock and the c-shock from point 4 are

unstable, so it is possible to exit from point 4 just by the s-wave. The point that would be reached by s-wave from point 4
could be located before or after point 5. In the former case, the c-shock from the curve c = 1 to the curve c = 0 is unstable for
any point behind the shock located between points 4 and 5. In the latter case, the c-shock from the curve c = 1 to the curve
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Figure 19. Construction of a graphical solution for the displacement of oil by a chemical additive.

c = 0 is stable if the point behind the shock lies between points 5 and 2; nevertheless, the value ξ in this interval exceeds the
shock speed, so the sequence of an s-wave and a forthcoming c-shock is not allowed. The only possibility left is a c-shock
from tangent point 5.

The solution consists of an s-wave, a c-shock, and an s-wave; the structural formula is: 4 — 5 → 7 — 1.
Finally, we can write out the solution in the form

s(x, t) =





4 if −∞ < x/t < D4,
s1(ξ) if D4 < x/t < D5,
s7 if D5 < x/t < D7,
s

2(ξ) if D7 < x/t < D1,
1 if D1 < x/t < ∞;

c(x, t) =
{

1 if −∞ < x/t < D5,
0 if D5 < x/t < ∞,

(52)

where s1(ξ) = 3 − 1
2 ξ, s2(ξ) = 2 − 1

2 ξ, and ξ = x/t.
System (45), (46) is not strictly hyperbolic, and consequently both an s-wave and an s-shock are present in the solution

of the Riemann problem (47).

Example 18. A two-phase immiscible flow of oil and water with a chemical additive in water is governed by a 2 × 2
system

∂s

∂t
+
∂f (s, c)
∂x

= 0,

∂
(
cs + a(c)

)

∂t
+
∂
(
cf (s, c)

)

∂x
= 0.

(53)

Here, s is the water saturation, c is the additive concentration, f (s, c) is the water flux, and a(c) is the adsorbed chemical
concentration, the so-called sorption isotherm.

The function f (s, c) satisfies the following conditions:

f (s, c) = 0 for 0 < s < si; f
′

s (s, c) > 0, f
′

c(s, c) < 0 for si < s < s
0(c); f (s, c) = 1 for s

0(c) < s < 1.

The graphs of f (s, c) at c = 1 and c = 0 are presented in Fig. 19.
The dependence f = f (s, c) allows us to choose either (s, c) or (s, f ) to be the unknown functions in system (53).
The problem of oil displacement by an aqueous solution of a chemical admixture is described by system (53) and the

following initial and boundary conditions:

s = si, c = 0 at t = 0,

s = s
0(1), c = 1 at x = 0.

(54)

The solution of problem (53), (54) is obtained by the same method as in Example 17.
The initial-boundary value problem (54) can be transformed to the following boundary value problem for the self-similar

coordinate:
s = s

0(1), c = 1 at ξ = 0; s = si, c = 0 at ξ → ∞. (55)
The point at ξ = 0 lies on the curve c = 1, the point at x → ∞ is located on the curve c = 0 (Fig. 19).

The self-similar path (s(ξ),f (ξ)) should connect the points (s0(1), 1) and (si, 0) on the plane (s, f ); see Fig. 19.
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Figure 20. Graphical construction of the solution for the displacement of oil by a chemical additive in the case of high
sorption of the additive.

System (53) can be reduced to an equivalent system of the form (7) with matrix

A =



f ′s (s, c) f ′c(s, c)

0
f (s, c)

s + a′(c)


 . (56)

The eigenvalues of system (53) are evaluated as

λ1(s, c) = f ′s , λ2(s, c) =
f

s + a′(c)
. (57)

Right eigenvectors corresponding to the first and second eigenvalues (57) are given by

r1 =
(

1
0

)
, r2 =

( f

s + a′
− f ′s

f ′c

)
. (58)

Let us take the unknown s in the ordinary differential equations for rarefaction waves (19) to be the independent variable,
so we look for a solution of (19) in the form f = f (s), ξ = ξ(s). The equations for the s-waves and c-waves (first and second
families of rarefactions) read

df

ds
= f ′s = ξ, (59)

df

ds
=

f

s + a′
= ξ. (60)

From (59) it follows that the first eigenvalue is equal to the slope of the curve f = f (s, c = const); see Fig. 19. The second
eigenvalue (60) is equal to the slope of the line segment connecting the points (s, f ) and (−a′(c), 0).

From the Rankine–Hugoniot conditions (25) it follows that system (53) admits two types of shocks: shocks without
jumps of c (so-called s-shocks),

D =
f (s+, c) − f (s+, c)

s+ − s− , c
+ = c− = c, (61)

and shocks with c-jumps (so-called c-shocks),

D =
f (s+, c+)
s+ + σ

=
f (s−, c−)
s− + σ

, σ =
a(c+) − a(c−)
c+ − c− . (62)

The case of a convex sorption isotherm is presented in Fig. 19. Point 2 is the tangent point of the curve c = 1 and the straight
line through point Oc with coordinates (−[a]/[c], 0). The shock 2 → 3 is evolutionary.

Let us plot the tangent point 4 of the curve c = 0 and the straight line through si. Figure 19 shows the case where point 4
is located above point 3, which corresponds to low sorption.

The solution consists of an s-wave and two shocks; the structural formula is: s
0(1) — 2 → 3 → si. The speeds D2

and D3 of the shocks 2 → 3 and 3 → si are calculated by formulas (62) and (61), respectively. The solution is given by

s(x, t) =





s
1(ξ) if 0 < x/t < D2,

s3 if D2 < x/t < D3,
si if D3 < x/t < ∞;

c(x, t) =
{

1 if 0 < x/t < D2,
0 if D2 < x/t < ∞;

(63)

where the function s
1(ξ) is determined by the inversion of the relation ξ = f ′s (s1).

Figure 19 shows the correspondence between the solution image on the planes (s, f ) and (s, ξ), ξ = x/t. The continuous
curve s = s1(ξ) of (63) corresponds to the motion along the curve c = 1 from the point s0(1) to point 2; the slope of the curve
c = 1 at a point s is equal to the coordinate ξ that corresponds to the value s of the curve s = s1(ξ). The shocks 2 → 3 and
3 → si on the plane (s, f ) correspond to discontinuities in the curve s = s(ξ) at the points ξ = D2 and ξ = D3. If sorption is
high, and point 4 is located below point 3, as in Fig. 20, the structural formula for the solution is: s

0(1) — 2 → 3 — 4 → si.

Example 19. If the sorption isotherm in (53) is concave, the transition from c = 1 to c = 0 occurs by a c-wave. The
structural formula is: s

0(1) — 2 — 3 → si.
If the sorption isotherm in (53) has inflection points, the transition from c = 1 to c = 0 occurs by a sequence of c-shocks

and c-waves that correspond to a concave envelope of the sorption isotherm (see Fig. 21).
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Figure 21. Graphical solution for the displacement of oil by a chemical solution in the case of the sorption isotherm having
inflection points.

Example 20. A two-phase (liquid–gas) three-component incompressible flow in porous media is governed by the
system

∂C

∂t
+
∂U

∂x
= 0,

∂

∂t

[
α(g2)C + β(g2)

]
+
∂

∂x

[
α(g2)U + β(g2)

]
= 0.

(64)

Here, the following notation is adopted:

C = l1s +g1(1 − s), U = l1f (s, g2) +g1[1 −f (s, g2)], α(g2) =
l2 − g2

l1 − g1
, β(g2) = g2 −αg1, ln = ln(g2), g1 = g1(g2), (65)

where s = s(x, t) is the liquid saturation, ln and gn are the volume concentrations of the nth component in the liquid and
gas phases respectively, and f (s, g2) is the liquid phase flux. The independent concentration in this system is g2, the other
concentrations are functions of g2. The unknowns in system (64) are s and g2 or C and g2.

The functions f , U , l1, and g1 satisfy the following conditions:

f (0, g2) = 0, f (1, g2) = 1, ∂f

∂s
(s, g2) > 0, ∂U

∂g2
(C, g2) < 0, g

′

1(g2) > 0, l
′

1(g2) < 0.

System (64) is analogous to system (53) analysed in Example 18.
The problem of the displacement of oil with composition A by gas with composition B corresponds to the initial and

boundary conditions
C = CA, g2 = g2A at t = 0; C = 0, g2 = g2B at x = 0. (66)

The solution of problem (64)–(66) is expressed as

C(x, t) =





0 if 0 < ξ < D2,
C(ξ) if D2 < ξ < D3,
C4 if D3 < ξ < D4,
CA if D4 < ξ < ∞,

g2(x, t) =
{
g2B if 0 < ξ < D3,
g2A if D3 < ξ < ∞,

(67)

where ξ = x/t, the function C(ξ) is the inverse of the function ξ = ∂U
∂C

(C, g2B), and the constants D2,D3,D4, C4 (and also
C2 and C3) are determined by the following transcendental equations:

D2 =
∂U

∂C
(C2, g2B) =

U (C2, g2B)
C2

;

D3 =
∂U

∂C
(C3, g2B) =

U (C3, g2B) + k
C3 + k

=
U (C4, g2A) + k

C4 + k
, k =

β(g2A) − β(g2B)
α(g2A) − α(g2B)

;

D4 =
U (C4, g2A) − U (CA, g2A)

C4 − CA
.

The structural formula for solution (67) is: (0, g2B) → (C2, g2B) — (C3, g2B) → (C4, g2A) → (CA, g2A).s�t
References for Subsection S.12.9: C. Wachmann (1964), L. W. Lake (1989), P. G. Bedrikovetsky and M. L. Chumak

(1992a, 1992b).
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