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Abstract: The induced pluripotent stem cells (iPSCs), generated from transcription factor-induced reprogramming, hold 

the great promise as the next generation materials for regenerative medicine. Intensive follow-up studies have 

accumulated a large amount of high-throughput data in transcription, proteomics, methylation, and other levels, which 

makes the computational studies feasible. Here we briefly review the recent bioinformatics efforts to study iPSCs. 

Specifically, we will summarize several comparison studies to determine how closely human iPSCs resemble human 

embryonic stem cells (ESCs) from sequence, gene expression profile, chromatin structure, DNA methylation, proteomics, 

and function aspects. Then computational methods to assess iPSC’s pluripotency in a cost-effective yet accurate way are 

introduced. Finally, we will indicate the further biomolecular network studies to understand the underlying mechanism for 

cell reprogramming and the dynamics within this biological process. 
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INDUCED PLURIPOTENT STEM CELL AND ITS 

SIGNIFICANCE 

 Embryonic Stem cell (ESC) is important due to the 
following two properties. One is the self-renewal, which is 
the ability to go through numerous cycles of cell 
division while maintaining the undifferentiated state. The 
other one is pluripotency, which is the capacity 
to differentiate into specialized cell types [1]. The ability to 
give rise to any mature cell type makes the medical 
researchers believe that ESC has the potential to dramatically 
change the treatment of human disease. However, ESCs, 
available only from 5 to 7-day-old embryos, have raised 
moral and ethical issues and are limited in number. 

 Recently, induced pluripotent stem cells (iPSCs) have 
shed new lights upon the above dilemma. iPSC is a type 
of pluripotent stem cell artificially derived from an 
adult somatic cell, and is similar to natural pluripotent stem 
cells, such as ESC, in many aspects. The success of iPSCs 
demonstrates that the cell can be reprogrammed to a 
pluripotent state by the enforced expression of defined 
factors (Sox2, Oct4, Klf4, and c-Myc) [2-4]. To date, 
somatic cells from diverse adult tissues (i.e., endoderm, 
mesoderm, and ectoderm origins) have been successfully 
reprogrammed to iPSCs by multiple strategies, including 
drug-inducible systems, virus-free transposon mediated, 
recombinant proteins, and miRNAs. Similar to the ESCs, 
iPSCs have the ability of self-renewal and differentiation and 
can be potentially used on maintaining the growth of human 
organs and metabolism, repairing the body’s aging, and 
curing diseases [5, 6]. Furthermore, iPSCs do not have 
restrictions on the ethics and source materials. Therefore, 
this remarkable discovery has attracted great attention for its 
potential applications to drug screening and analyses of 
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disease mechanisms, and even as next generation materials 
for regenerative medicine. In addition, the mechanism under 
cell reprogramming provides far-reaching implications for 
biological sciences [5, 6]. 

OVERVIEW OF BIOINFORMATICS STUDIES ON 

IPSCs 

 In recent five years, induced pluripotent stem cells are 
widely studied, for their potential therapeutic use and 
inherent biological interest. As a result, a large amount of 
high-throughput data has been accumulated in transcription, 
proteomics, methylation, and other levels. In Table 1, we 
summarize the available gene expression data for iPSCs. 
And Table 2 illustrates the available epigenetics data for 
iPSCs. 

 The large scale data make the bioinformatics studies on 
iPSCs feasible and provide plenty resources for information 
mining. Here we will briefly review the recent 
bioinformatics efforts to study iPSCs. As illustrated in Fig. 
(1), the exiting studies can be organized according to three 
key scientific questions for iPSC study. It’s well known that 
ESC has full pluripotency and we named it as pluripotent 
state I. Then ESC changes to somatic cells through natural 
differentiation and development to a differentiated state, 
which can be artificially reprogrammed to an induced 
pluripotent state by over-expressing four transcriptional 
factors, which we name it as pluripotent state II. Pluripotent 
state I gains its pluripotency by nature while pluripotent state 
II gets its plutipotency by artificial cell reprogramming. 
Naturally we will ask whether the pluripotent state I is 
identical with pluripotent state II. This question is central to 
the safe application of iPSC in medicine and bioinformatics 
study can provide important hints to the final answer by 
comparing two states’ high-throughput measurements. Then 
the next related big question is that what’s the real definition 
and standard for iPSCs. Since there are many ways to induce 
iPSCs and standardization is necessary to assess the induced 
pluripotent cells before safe application. Here 
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standardization is the process of establishing a technical 
standard, which could be a standard definition and 
standard test method. Bioinformatics method has the 
advantage in low-cost to use the high-throughput data to 
standardize iPSCs. One step further, reprogramming 
phenomenon is interesting in biological science and 
bioinformatics (systems biology) study is useful to reveal the 
regulatory mechanism underlying cell reprogramming. 

 In essence, existing bioinformatics studies are driven by 
the rapidly accumulated high-throughput data and the three 
key questions in Fig. (1). This review is organized into three 
parts by summarizing the researches around the above three 
questions. Specifically, we will summarize several 
comparison studies to determine how closely human iPSCs 
resemble human ESCs from sequence, gene expression 
profile, chromatin structure, DNA methylation, proteomics, 
and function aspects. Then computational methods to assess 
iPSC’s pluripotency in a cost-effective yet accurate way are 
introduced. Finally, we will discuss the further biomolecular 
network studies to understand the underlying mechanism for 
cell reprogramming and the dynamics within this biological 
process. 

 

TO BE OR NOT TO BE: THAT IS THE QUESTION 

 The first fundamental unresolved issue is whether and 
how the generated iPSCs are molecularly and functionally 
similar to ESCs. For mouse, a lot of progresses have been 
made in recent years. Many mouse iPSCs is shown to 
uniformly express pluripotency markers and can activate an 
Oct4-GFP reporter, but most lines are incapable of tetraploid 
complementation, which is the gold standard of a bona fide 
pluripotent stem cell line [5,6]. Thus, the consistent 
conclusion based on these experiments is that current 
transcription factor-mediated reprogramming methods fail to 
fully recreate authentic embryonic pluripotency in the 
majority of differentiated mouse cells [7]. 

 However, the question remains in human: are human 
iPSCs (hiPSC) molecularly and functionally exactly the 
same as human ESCs (hESC), or to what content have they 
inherited the incomplete pluripotency. It is currently not 
possible to use embryo complementation-based measures to 
assess the pluripotency of hiPSCs, so instead 
characterization and comparison based on high-throughput 
data is still the only feasible method. As far as we know, 
several studies have conducted sequence [8], gene  
 

Table 1. The Available Gene Expression Data for iPSCs 

 

GEO ID Author Year Refercnec Platform # of Samples  Organism Data Type 

GSE16654 Chin et al. 2009 Cell Stem Cell,5,111-123 Affymetrix 36 Human 
Expression profiling; Non-coding 

RNA profiling 

GSE12390 Maherali et al. 2008 Cell Stem Cell,3(3):340-345 Affymetrix 21 Human Expression profiling 

GSE13828 Ebert et al. 2009 Nature,457(7227):277-280. Affymetrix 10 Human Expression profiling 

GSE14711 Soldner et al. 2009 Cell,136(5):964-77 Affymetrix 11 Human Expression profiling 

GSE15175 Yu et al. 2009 Science, 324(5928):797-801 Affymetrix 16 Human Expression profiling 

GSE15176 Yu et al. 2009 Science, 324(5928):797-801 Affymetrix 12 Human Expression profiling 

GSE16093 Kim et al. 2009 Cell Stem Cell, 4(6):472-476 Affymetrix 5 Human Expression profiling 

GSE9832  Park et al. 2007 Nature, 451(7175):141-146 Affymetrix 16 Human Expression profiling 

GSE23402 Guenther et al. 2010 Cell Stem Cell, 7(2):249-57 Affymetrix 72 Human 
Genome binding/occupancy 
profiling by high throughput 

sequencing;Expression profiling  

GSE9709  Masaki et al. 2007 Stem Cell Res, 1(2):105-15  Affymetrix 13 Human Expression profiling 

GSE22392 Chin et al. 2010 Cell Stem Cell,7, 263-269 Affymetrix 10 Human Expression profiling 

GSE25970 Bock et al. 2011 Cell, 144(3):439-52  Affymetrix 43 Human Expression profiling 

 

Table 2. The Available Epigenetics Data for iPSCs 

 

Author Year Reference Data Cell type Organism Methods 

Chin et al. 2009 Cell Stem Cell, 5, 111-123 Histone H3k27me3 Histone H3k4me3  ES, iPS Human ChIP-chip 

Broad Institute 2010 BI Human Reference Epigenome Mapping Project DNA methylation ES, iPS Human ChIP-Seq 

Guenther et al. 2010 Cell Stem Cell, 7(2):249-57 Histone H3k27me3 Histone H3k4me3  ES, iPS Human ChIP-Seq 

Masaki et al. 2007 Stem Cell Res, 1(2):105-15  Histone H3k27me3 Histone H3k4me3  ES, iPS Human ChIP-chip 

Bock et al. 2011 Cell,144(3):439-452  DNA methylation ES, iPS Human ChIP-chip 

Takahashi et al. 2007 Cell, 131, 861-872  DNA methylation HDF, iPS Human ChIP-chip 
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expression profile [9-15], chromatin structure [12], function 
[16], and DNA methylation [11,17] comparison of iPSC 
lines and ESCs to determine how closely hiPSCs resemble 
hESCs. 

 For example, it remains controversial whether the 
generated hiPSCs are transcriptionally similar (gene 
expression comparison) to embryonic stem cells. Chin et al. 
conducted a transcriptional comparison of five hiPSC lines 
and three hESC lines. Their results demonstrated that gene 
expression signature, a group of genes were consistently 
differentially expressed between hiPSC and hESC lines, are 
transcriptionally distinct from the hESC lines. And they 
concluded that hiPSCs should be treated as a unique subtype 
of pluripotent cell [10]. 

 Recently, Guenther et al. have rigorously compared six 
hiPSC lines and six hESC lines and found only a few genes 
are consistently differentially expressed. Based on their 
results, hiPSCs have accurately reinstalled the transcriptional 
and epigenetic controls of ESCs and the variations observed 
do not serve to distinguish hiPSCs and hESCs [12]. Almost 
at the same time, Newman and Cooper collected data of 17 
hESC lines and 67 hiPSC lines, which were produced in 7 
independent experiments [13]. They then performed an 
unsupervised transcriptome clustering and found that hiPSCs 
are not grouped together with hESCs. Instead, hiPSCs and 
hESC lines tend to be clustered together if they are cultured 
in the same laboratory. Their analysis provided evidence that 
the observed difference is caused by the unique laboratory's 
culture condition and there are no consistent transcriptional 
differences between hiPSCs and hESCs. 

 As a prompt response, Chin et al. sticked to their original 
conclusions that the differences between hiPSCs and hESCs 
exist in gene expression [11]. Importantly, Chin et al. remind 
us that the lineage and genetic background of the starting cell 
type will significantly impact the properties of the resulting 
hiPSCs. 

 To solid the bioinformatic tools in the above analysis, Li 
et al. [18] recently applied the weighted P-value methods to 
a set of microarray data from published literature [10-15]. 

They aimed to integrate these data and find differentially 
expressed genes between hiPSC and hESC. A relatively 
smaller list of significant genes was found. They further 
combined their method with RankProd [19] and GeneMeta 
[20] and produced a top significantly different gene list. 
Pathway analysis of this list was done based on functional 
annotation clustering analysis using DAVID. Top functions 
are as follows, extracellular region, signal peptide, 
glycoprotein, cell migration, skeletal, face, head 
development, cell adhesion, extracellular matrix, 
endochondral bone morphogenesis, negative regulation of 
DNA binding, and blood vessel development. 

 In addition to RNA levels, epigenetic analyses have 
shown significant differences in the DNA methylation 
patterns between hiPSCs and hESCs [11,17,21]. Epigenetic 
reprogramming is a critical event in the generation of iPSCs 
[23]. In fact, the transcriptional memory of hiPSCs could be 
partially explained by the incomplete DNA methylation at 
the promotor regions of somatic genes. In addition, non-
coding miRNAs have an important role in the underlying 
mechanisms of cell reprogramming. miRNA profiles 
between hESCs and hiPSCs were compared and a signature 
in the expression of the miR-371/372/373 cluster was found 
[22]. Finally, genetic integrity was also studied and it was 
found that the reprogramming process could induce several 
genomic abnormalities [10]. 

 Meanwhile, proteomic and phosphoproteomic similarity 
of hESCs and hiPSCs at the protein level is also addressed. 
Douglas H Phanstiel et al. combined isobaric tagging, high-
mass-accuracy mass spectrometry, and a recently developed 
software tool to compare two ESC lines, one iPSC line, and 
one fibroblast cell line. Rigorous statistical analysis revealed 
significant and functionally related differences between 
proteins and phosphorylation sites in hESCs and hiPSCs, 
which may reflect residual regulation characteristic of 
iPSCs’ somatic origin [24]. Javier Munoz et al. present an 
in-depth quantitative mass spectrometry-based analysis of 
hESCs, two different hiPSCs and their precursor fibroblast 
cell lines. Their results confirmed the high similarity of 
hESCs and hiPSCS at the proteome level. A small group of 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Illustration of cell reprogramming and the main scientific questions for bioinformatics study on iPSCs. ESC changes to somatic cells 

through natural differentiation and development. And the differentiated state can be artificially reprogrammed to induced pluripotent state by 

over-expressing four transcriptional factors. In essence, the bioinformatics studies are driven by the rapidly accumulated high-throughput 

data and the three key scientific questions. This review is organized into three parts by summarizing the researches around these questions. 
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58 proteins, mainly related to metabolism, antigen 
processing, and cell adhesion, was found significantly 
differentially expressed between hiPSCs and hESCs [25]. 

 Taken together, the above discussion concerns the extent 
of pluripotency of hiPSCs, and shows this is a topic that has 
substantial implications for the use of hiPSCs in the 
laboratory and the clinic [12-15]. Whatever, it is 
fundamentally urgent to find the cause for the considerable 
discrepancies between the results reported by these previous 
studies, especially from the two aspects, the lineage and 
genetic background of the starting cell type and lab-specific 
induction and culture conditions. Furthermore, it remains an 
open problem that whether these differences are going to be 
consequential. Furthermore, these results show that 
similarity based on high throughput profile is still the 
convenient and economic way when we are attempting to 
ascertain the pluripotency of hiPSCs. Therefore it’s in 
pressing need for more bioinformatics studies. 

COMPUTATIONALLY STANDARDIZE THE IPSCs 

 Another related question is how to standardize the iPSCs, 
i.e., to assess iPSC’s pluripotency, utility, and clinical safety 
of iPSCs. The experimental standard for pluripotency is 
based on the ability to generate a complex variety of tissues 
in tumors. However, the generation of teratomas is 
technically challenging, resource-intensive, primarily 
qualitative and difficult to standardize. Additionally given 
the rapid increase in generation of iPSC in many ways, there 
is a pressing need for a cost-effective, animal-free alternative 
to the teratoma assay for assessing pluripotency in human 
cells. Particularly, the low cost and accessibility of 
microarray-based gene expression datasets makes tran-
scription profiling an attractive alternative. The above 
analysis clearly shows that a well-designed expression 
microarray experiment can capture the fact about what 
happens to cells under reprogramming. This allows to use 
microarray data to standardize hiPSCs [11]. In addition, 
computational methods based on microarray data hold the 
promise to be able to delineate stem cell phenotypes and 
further predict the presence or absence of pluripotent 
features for unknown samples of cells. 

 Franz-Josef Müller et al. proposed a robust open-access 
bioinformatic method, PluriTest, to assess pluripotency in 
human cells based on their gene expression profiles [26]. 
Starting from the training gene expression data with 
appropriate transformation and normalization, they used 
nonnegative matrix factorization (NMF) for dimension 
reduction and to identify unexpected patterns engrained in 
the datasets under a machine learning framework. Then the 
pluripotency of an unknown, potentially pluripotent sample 
is assessed by comparison of a ‘query gene expression 
profile’ from the sample to the model derived from the 
training dataset. 

 To provide an informative and practically useful method 
for high-throughput cell-line characterization, Bock et al. 
computationally integrated several genomic assays into a 
scorecard [11] that measures the quality and utility of any 
human pluripotent cell line. Their scorecard is the 
combination of deviation scorecard and lineage scorecard. 
The deviation scorecard is based on Tukey’s outlier filter, 

denoting all genes as putative outliers whose DNA 
methylation or gene expression level is significantly 
different. The lineage scorecard performs a parametric gene 
set enrichment analysis on t-scores obtained from a pairwise 
comparison between the iPSCs of interest and the reference 
of ESCs. 

 Similarly, Zhang B. et al. presented a novel supervised 
method for the assessment of the quality of iPSCs by 
estimating the gene expression profile using a 2-D 
‘‘Differentiation-index coordinate’’. It consists of two 
‘‘developing lines’’ that reflects the directions of ESC 
differentiation and the changes of cell states during 
differentiation. Moreover, the Distance index is defined to 
indicate the qualities of iPSCs, which based on the projection 
distance of iPSCs-ESCs and iPSCs-fibroblasts [27]. 

 The characterization of hiPS cell lines can be carried out 
from different levels varying from sequence, epigenetic 
factors such as DNA methylation and chromatin structures, 
transcriptome, proteome, and even function. These sources 
are all important to finally standardize hiPSCs but they are 
important in different ways. Firstly, the current framework 
for gene expression data could be applied to any unbiased 
high-content dataset, such as global DNA methylation 
analysis or RNA sequencing data, provided that there is 
sufficient representation of a defined target phenotype in the 
training dataset. Secondly, integration of multi-layer data 
sources is expected to provide more reliable assessment. As 
a proof of concept study, Bock et al. showed that combining 
DNA methylation and gene expression profiling with 
bioinformatic comparison provides a quick and 
comprehensive method for excluding iPSC lines that could 
be problematic for an intended application. Thirdly, the 
current supervised framework will be further extended to 
unsupervised and transparent predictive model, where ESCs 
serve as a typical class to have pluripotency instead of gold-
standard. 

NETWORK BIOLOGY STUDY ON CELL 

REPROGRAMMING MECHANISM 

 Understanding the mechanism underlying cell 
reprogramming is one of the key steps for iPSCs before 
safely moving to clinical applications. Currently the 
underlying mechanism for cell reprogramming remains 
unknown and the regulatory interactions within this 
biological process have not been worked out. In particular 
from the biomolecular network viewpoint [28-35], it is not 
clear how the four factors initialize the reprogramming 
process, propagate the information in a fine tuned way, and 
finally lead to the dramatic phenotype changes. 

 Networks, especially gene regulatory networks, naturally 
serve as the powerful tool to understand the cell 
reprogramming mechanism. The reasons are in two folds. 
First, gene regulation is one of the dominant factors for the 
mechanistic picture of cell reprogramming. It’s well-known 
that reprogramming is initialized by introducing four 
transcriptional factors, which will activate or depress 
thousand of targets and then trigger the dramastic change of 
gene expression landscape. If we can reconstruct the 
regulatory interactions during the reprogramming process, 
we then know how these factors regulate each other and 
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interact with epigenetic control factors to form a large gene 
regulatory network. Furthermore it helps to understand how 
the four factors propagate the cell reprogramming 
information in the gene regulatory network and lead to the 
dramatic phenotype changes. Secondly, a large amount of 
data has been accumulated in transcription level and makes 
the inference of large scale gene regulatory network feasible 
(Tables 1 and 2). Those well-designed high throughput 
experiments can bring us rich information under cell 
reprogramming and help to reveal the causal regulatory 
relationships among genes. 

REVERSE ENGINEERING STRATEGY 

 The central task for network study is to reverse 
engineering gene regulatory networks in an accurate and 
reliable manner by analyzing and integrating the available 
high throughput data for iPSCs. As illustrated in Fig. (2), 
integration of dynamical data and static data from different 
level will infer the active network underlying the multi-step 
reprogramming procedure, and finally lead to the 
understanding of mechanism. 

 Currently, there are several existing efforts to study gene 
regulatory networks for cell reprogramming. One direction is 
to apply the biological technologies to obtain the location 
(ChIP-chip/ChIP-Seq) data sets to reconstruct a part of this 
network [36]. In Table 3, we listed the current available 
regulatory interaction data by ChIP-chip or ChIP-Seq for 
iPSCs. One potential limitation for application is that the 
assembled network from experimental data is largely biased 
to the well-known factors. 

 Recently, a novel framework called “network screening” 
has been applied to detect the active subnetworks for cell 
reprogramming by integrating ChIP-chip data or existing 
molecular interactions with conditional gene expression data 
[37]. These reconstructed networks demonstrate their power 
to reveal important biological insights, for example to find 
new important genes in reprogramming. 

 However, the limitations of those reconstructed network 
are also clear. Firstly, those networks are from existing 
knowledge, are small in scale, and are only part of the 

whole-genome network. They can only offer very limited 
information since cell reprogramming is such a dramatic 
phenotype change to lead to about 10,000 differentially 
expressed genes [37]. A large, even whole genome, 
regulatory network is necessary for a mechanistic picture. 
Secondly, current networks are reconstructed by using static 
data, i. e., the gene expression data and location data are 
measured after the cells get the pluripotency. As a result, 
those networks fail to capture the dynamic process during 
the induction. 

 As a pilot study, Duren Zhana et al. employed a 
mathematical modeling or systems biology method to 
reconstruct whole-genome regulatory networks [38]. 
Particularly, they computationally analyzed newly published 
time course gene expression data during reprogramming 
[39]. The expression data is from [39] and measure 
throughout reprogramming of MEF to iPSC using a Dox-
inducible promoter. In this data, MEFs were treated with 
Dox in mES media to turn on the Oct4, Klf4, cMyc, Sox2. 
Total RNA was extracted at day 0 (no Dox), day 2, 5, 8, 11, 
16 and 21 (with Dox) and day 30 (Dox-independent 
secondary iPS). Temporal analysis of this time course data 
revealed that reprogramming is a multi-step process that is 
characterized by initiation, maturation, and stabilization 
phases. From gene regulatory network perspective, further 
analysis on this dynamic data is expected to understand the 
process of reprogramming and in particular the master 
regulators and regulatory interactions that control 
progression to a stable pluripotent state [38]. 

FORWARD ENGINEERING STRATEGY 

 One fascinating aspect of network study is to provide a 
mechanistic picture of cellular reprogramming for 
comprehensive understanding. As illustrated in Fig. (3), 
simplified biological network serves as the starting point for 
theoretical studies based on differential equations, further 
helps to understand the mechanisms of how cellular 
reprogramming is achieved. With the network information, 
epigenetic landscape can be defined and estimated to explain 
cell differentiation during development and cell fate 
reprogramming. The landscape concept has been widely 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Reverse engineering the dynamical networks during cell reprogramming, by integrating multi-layer omics data, helps to understand 

the cell reprogramming mechanism. 
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appreciated in protein folding/binding and more recently in 
genetic network analysis [40]. It has been shown as powerful 
model for theoretical understanding of development from a 
global and dynamical system viewpoint. One challenge is 
that the current methods of calculating network landscapes 
are time consuming and thus limited to small networks 
(often <20 genes) [40]. 

 As a pioneering example, Chang et al. curated a network 
model (52 proteins and 124 interactions, including 85 
activations and 39 repressions) to reconstruct cell 
reprogramming landscape. They firstly collected evidence 
from literature and manually constructed a genetic network 
involved in regulating pluripotency and hESC 
differentiation. Then the cell reprogramming landscape is 
computationally estimated, and finally reprogramming 
recipes are systematically searched to improve 
reprogramming efficiency. This work demonstrates that it is 
feasible to estimate the landscape in the cell-state space and 
monitor the trajectory of cellular reprogramming from a 
differentiated cell to an iPSC. In this sense, this work 
provides not only practical recipes for iPSC generation but 
also theoretical understanding of the reprogramming process. 

Though the network is limited in size, it shows the power of 
network study in cell reprogramming mechanism by 
introducing landscape concept. 

CONCLUSION 

 Taken together, we demonstrated that bioinformatics 
efforts (computational biology or systems biology study) are 
helpful to clarify the differences between iPSCs and ESCs 
and to further reveal the cell reprogramming mechanism. We 
believe that the availability of this large compendium data 
will further drive bioinformatics studies and will finally 
provide a valuable baseline for the stem cell community to 
study gene regulation, cell reprogramming modeling, and 
integration with the public data resources in complex 
diseases, such as cancer stem cell. 
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Table 3. The Available Regulatory Interaction Data for iPSCs 

 

Number of Target Genes 
Author Year Reference Methods Cell Type Orgnism 

Oct4 Sox2 Klf4 cMyc 

Boyer et al. 2005 Cell, 122(6):947-56 ChIP-chip ES Human 623 1279 / / 

Loh et al. 2006 Nat Genet, 38(4):431-40 ChIP-chip ES Mouse 1083 / / / 

Chen et al. 2008 Cell,133(6):1106-17 ChIP-Seq ES Mouse / / / / 

Jiang et al. 2008 Nat Cell Biol, 10(3):353-60 ChIP-chip ES Mouse / / 894 / 

Kim et al. 2008 Cell, 132(6):1049-61 ChIP-chip ES Mouse 783 819 1790 3542 

Liu et al. 2008 Cell Res, 18(2):1177-1189 ChIP-chip ES Mouse 904 864 1505 869 

Sridharan et al. 2009 Cell,136,364-377 ChIP-chip ES, piPS, iPS Mouse 847, 772, 1125 1026, 662, 755  1382, 771, 1207  2051, 1317, 2040 

Huang et al. 2009 Cell Res, 19:1127–1138 ChIP-chip iPS Mouse 1388 1372 1832 2531 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Network is a powerful tool to study the dynamics from systems level by network landscape concept. 
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