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Just-in-time compilation

Introduction

Ways of running programs on a computer

#include <stdio.h>

int main() {
  start();
  int i=0x2F;
  while(i!=0) {
    doStuff();
    i--;
  }
  exit();
  return 0;
}

Compiler

0110001
1110001
1101001
1101011
0110111
0111000
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source code executable binary

0x30FA
0x110A
0x3159
0x110A
0x15AD
0x0012
0x3A11
0x1100
0x0111
0xB110
0xA100
0xD103

Compiler Virtual
machine

def abs(x):
  if x>0
    return x
  elif
    return -x

def square(x):
  return x*x
  
num=input("number")
print("absolute value")
print abs(num)

 

source code byte code
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Just-in-time compilation

Introduction

JIT compilation

I translation of code after program has started
I mostly referring to compilation to native code

Reason to do it: gaining a performance boost

faster slower

native machine 
code

interpreted
byte code

interpreted source 
code
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Just-in-time compilation

Implementation

What code parts to compile?

First idea: compile whole program at startup
problems:

I much CPU time needed to compile at start up

I huge memory usage

I doing possibly unnecessary work

Observation on many programs: most time is spent executing small
parts of the code(hot parts)
Task for JIT compilation: find these hot parts
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Just-in-time compilation

Implementation

Method-based just-in-time compilation

Find good trade off between compilation time and runtime
improvements

Byte or source code often consists of numerous methods.

This leads to a basic technique:

I find often executed methods

I translate these methods to native machine code and execute
it instead of interpreting the methods again
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Just-in-time compilation

Implementation

Method-based just-in-time compilation

Compile the most executed methods

compile and
install translation

method call
increment counter

interpret
hot

method
translation

exists

execute

yes

no yes

no
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Just-in-time compilation

Implementation

Method-based just-in-time compilation

problem: hot methods can contain rarely used code

1 public void doStuff(String arg) {

2 if(arg=="") { // first error case

3 ..error solving code..

4 }

5 else if(arg.length()> BUFFER_SIZE) { // second error case

6 ..error solving code..

7 }

8 .. actually make something ..

9 }
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Just-in-time compilation

Implementation

Tracing just-in-time compilation

Assumptions:

I programs spend most of the time in loops

I in most iterations similar sequences of code(trace) are
executed

Find traces and leave executing more rarely used code to the
interpreter
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Just-in-time compilation

Implementation

Tracing just-in-time compilation

Find and compile hot traces

compile and
install translation

trace while
interpreting

detect loop
increment counter

interpret hot loop
translation

exists

execute

yes

no yes

no
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Just-in-time compilation

Implementation

Tracing just-in-time compilation

Amount of hot code
Profiling system server program:

bytes 4,695,780
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Just-in-time compilation

Implementation

Optimization

Unoptimized native code not that fast but we need fast code!
This leads to a difficult situation:

I optimizing the emitted native code benefits the programs
performance

I applying optimizations needs valuable CPU time during the
runtime

Find good trade off between run time improvement, compilation
and optimization time
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Just-in-time compilation

Implementation

Optimization

Questions of applying optimizations often resolved like this:

I if program needs much CPU time only do few optimizations
and schedule further optimization to later time

I in periods where CPU is not busy scheduled code optimization
can be done

By this proceeding delays at runtime are avoided and heavily
optimized code can be gained after some time.
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Just-in-time compilation

Evaluation

Advantages

I speed up for nearly every type of program (compared to pure
interpreting)

I can even produce native code exactly fitting to the CPU (e.g.
using instruction set extensions)

I most JIT implementations don’t require activation by the user
and run in the background
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Just-in-time compilation

Evaluation

Lua vs. LuaJIT
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Just-in-time compilation

Evaluation

Disadvantages

I interpreter and compiler parts both have to be developed and
maintained

I security issues could allow executing of arbitrary code

I can cause short delays on start up of the program

I after all statically compiled programs use to be faster in the
normal case
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Just-in-time compilation

Evaluation

Java vs. C
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Just-in-time compilation

Examples for JIT compilation systems

HotSpot by Oracle I most common Java virtual machine on
desktop and server

I method based JIT compilation of Java
byte code

I highly optimized

I historically developed because
execution of Java programs was too
slow
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Just-in-time compilation

Examples for JIT compilation systems

Dalvik by Google
I common virtual machine for Android

systems

I tracing based JIT compilation

I optimized for mobile devices with
small memory
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Just-in-time compilation

Examples for JIT compilation systems

Pypy
I faster than standard Python

implementation CPython

I tracing based JIT compilation

I optimized for speed and compatibility
with CPython

I written in Python
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Just-in-time compilation

Conclusion

I interpreted or byte code interpreted languages nearly always
benefit of using just-in-time compilation regarding execution
speed

I if pure speed is needed and memory usage has to be low a
statically compiled language should be used
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Just-in-time compilation

Conclusion
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Just-in-time compilation

Conclusion

Thanks for the attention
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