
Just-in-time compilation

Just-in-time compilation

Kai Frerich

Seminar on Languages for Scientific Computing
Rheinisch-Westfälische Technische Hochschule Aachen

22. November 2012

1 / 23

Just-in-time compilation

Overview

Introduction

Implementation
Method-based just-in-time compilation
Tracing just-in-time compilation
Optimization

Evaluation

Examples for JIT compilation systems

Conclusion

2 / 23

Just-in-time compilation

Introduction

Ways of running programs on a computer

#include <stdio.h>

int main() {
 start();
 int i=0x2F;
 while(i!=0) {
 doStuff();
 i--;
 }
 exit();
 return 0;
}

Compiler

0110001
1110001
1101001
1101011
0110111
0111000
1111000
0101111
0011101
0111000
0101011
0110111

source code executable binary

0x30FA
0x110A
0x3159
0x110A
0x15AD
0x0012
0x3A11
0x1100
0x0111
0xB110
0xA100
0xD103

Compiler Virtual
machine

def abs(x):
 if x>0
 return x
 elif
 return -x

def square(x):
 return x*x

num=input("number")
print("absolute value")
print abs(num)

source code byte code
3 / 23

Just-in-time compilation

Introduction

JIT compilation

I translation of code after program has started
I mostly referring to compilation to native code

Reason to do it: gaining a performance boost

faster slower

native machine
code

interpreted
byte code

interpreted source
code

4 / 23

Just-in-time compilation

Implementation

What code parts to compile?

First idea: compile whole program at startup
problems:

I much CPU time needed to compile at start up

I huge memory usage

I doing possibly unnecessary work

Observation on many programs: most time is spent executing small
parts of the code(hot parts)
Task for JIT compilation: find these hot parts

5 / 23

Just-in-time compilation

Implementation

Method-based just-in-time compilation

Find good trade off between compilation time and runtime
improvements

Byte or source code often consists of numerous methods.

This leads to a basic technique:

I find often executed methods

I translate these methods to native machine code and execute
it instead of interpreting the methods again

6 / 23

Just-in-time compilation

Implementation

Method-based just-in-time compilation

Compile the most executed methods

compile and
install translation

method call
increment counter

interpret
hot

method
translation

exists

execute

yes

no yes

no

7 / 23

Just-in-time compilation

Implementation

Method-based just-in-time compilation

problem: hot methods can contain rarely used code

1 public void doStuff(String arg) {

2 if(arg=="") { // first error case

3 ..error solving code..

4 }

5 else if(arg.length()> BUFFER_SIZE) { // second error case

6 ..error solving code..

7 }

8 .. actually make something ..

9 }

8 / 23

Just-in-time compilation

Implementation

Tracing just-in-time compilation

Assumptions:

I programs spend most of the time in loops

I in most iterations similar sequences of code(trace) are
executed

Find traces and leave executing more rarely used code to the
interpreter

9 / 23

Just-in-time compilation

Implementation

Tracing just-in-time compilation

Find and compile hot traces

compile and
install translation

trace while
interpreting

detect loop
increment counter

interpret hot loop
translation

exists

execute

yes

no yes

no

10 / 23

Just-in-time compilation

Implementation

Tracing just-in-time compilation

Amount of hot code
Profiling system server program:

bytes 4,695,780

co
de

396,230
8% of code

hot
m

et
hods

103,966
2% of code

hot
tra

ce
s

11 / 23

Just-in-time compilation

Implementation

Optimization

Unoptimized native code not that fast but we need fast code!
This leads to a difficult situation:

I optimizing the emitted native code benefits the programs
performance

I applying optimizations needs valuable CPU time during the
runtime

Find good trade off between run time improvement, compilation
and optimization time

12 / 23

Just-in-time compilation

Implementation

Optimization

Questions of applying optimizations often resolved like this:

I if program needs much CPU time only do few optimizations
and schedule further optimization to later time

I in periods where CPU is not busy scheduled code optimization
can be done

By this proceeding delays at runtime are avoided and heavily
optimized code can be gained after some time.

13 / 23

Just-in-time compilation

Evaluation

Advantages

I speed up for nearly every type of program (compared to pure
interpreting)

I can even produce native code exactly fitting to the CPU (e.g.
using instruction set extensions)

I most JIT implementations don’t require activation by the user
and run in the background

14 / 23

Just-in-time compilation

Evaluation

Lua vs. LuaJIT

4

8

12

16

speed ratio

pid
ig

its

bin
ar

y
tre

es

�LuaJIT �Lua source: luajit.org/performance x86.html 15 / 23

Just-in-time compilation

Evaluation

Disadvantages

I interpreter and compiler parts both have to be developed and
maintained

I security issues could allow executing of arbitrary code

I can cause short delays on start up of the program

I after all statically compiled programs use to be faster in the
normal case

16 / 23

Just-in-time compilation

Evaluation

Java vs. C

2

4

6

8

seconds

pid
ig

its

bin
ar

y
tre

es

�Java �C source: shootout.alioth.debian.org/ 17 / 23

Just-in-time compilation

Examples for JIT compilation systems

HotSpot by Oracle I most common Java virtual machine on
desktop and server

I method based JIT compilation of Java
byte code

I highly optimized

I historically developed because
execution of Java programs was too
slow

18 / 23

Just-in-time compilation

Examples for JIT compilation systems

Dalvik by Google
I common virtual machine for Android

systems

I tracing based JIT compilation

I optimized for mobile devices with
small memory

19 / 23

Just-in-time compilation

Examples for JIT compilation systems

Pypy
I faster than standard Python

implementation CPython

I tracing based JIT compilation

I optimized for speed and compatibility
with CPython

I written in Python

20 / 23

Just-in-time compilation

Conclusion

I interpreted or byte code interpreted languages nearly always
benefit of using just-in-time compilation regarding execution
speed

I if pure speed is needed and memory usage has to be low a
statically compiled language should be used

21 / 23

Just-in-time compilation

Conclusion

references

J. Aycock: A Brief History of Just-In-Time, ACM Computing
Surveys, Vol. 35, No. 2 (2003)

C. Rohlf and Y. Ivnitskiy Attacking Clientside JIT Compilers

B. Cheng and B. Buzbee A JIT Compiler for Android’s Dalvik
VM Google Tech Talk, San Francisco(2003)

Java vs. C shootout.alioth.debian.org/

Lua vs. LuaJIT luajit.org/

22 / 23

Just-in-time compilation

Conclusion

Thanks for the attention

23 / 23

	Introduction
	Implementation
	Method-based just-in-time compilation
	Tracing just-in-time compilation
	Optimization

	Evaluation
	Examples for JIT compilation systems
	Conclusion

