
Comparison SortComparison Sort

A Comparison Sort is a sorting algorithm where the final order is
determined only by comparisons between the input elements.

- In Insertion Sort, the proper position to insert the current element is
found by comparing the current element with the elements in the sorted
sub-array.

- In Heap Sort, the Heapify procedure determines where to place items
based on their comparisons with adjacent items (parent-child) in the
tree.

- In Merge Sort, the merge procedure chooses an item from one of two
arrays after comparing the top items from both arrays.

- In Quicksort, the Partition procedure compares each item of the
subarray, one by one, to the pivot element to determine whether or not
to swap it with another element.

'

&

$

%CS404/504 Computer Science

1Design and Analysis of Algorithms: Lecture 9

Summary for Comparison Sort AlgorithmsSummary for Comparison Sort Algorithms

Sorting Worst Best Average

Methods Case Case Case Applications

InsertionSort n2 n n2 Very fast
when n < 50

MergeSort nlgn nlgn nlgn Need extra space; good
for linked lists.

HeapSort nlgn nlgn nlgn Good for real-time appl.

QuickSort n2 nlgn nlgn Practical and fast

'

&

$

%CS404/504 Computer Science

2Design and Analysis of Algorithms: Lecture 9

Decision Tree ModelDecision Tree Model

- Each comparison sort algorithm can be viewed abstractly in

terms of a decision tree.

- It is a rooted binary tree where internal nodes represent

comparisons between two keys and leaves represent sorted

outputs.

A comparison Sort algorithm + an input size n

↔ a decision tree.

'

&

$

%CS404/504 Computer Science

3Design and Analysis of Algorithms: Lecture 9

Insertion Sort AlgorithmInsertion Sort Algorithm

INSERTION-SORT(A)

1 for j:=2 to length of A do

2 key := A[j]

3 /* put A[j] into A[1..j-1] */

4 i := j -1

5 while (i > 0 AND A[i] > key)

6 A[i+1] := A[i]

7 i:=i - 1

8 A[i+1] := key

'

&

$

%CS404/504 Computer Science

4Design and Analysis of Algorithms: Lecture 9

The Decision Tree Corresponding to Insertion
Sort (n = 3)

The Decision Tree Corresponding to Insertion
Sort (n = 3)

a <= b

b <= c b > c

b ca
a > b

c:a

a, c, b c, a, b

a <= c

b, c, a

a > c

b <= c b > c

c:b

c, b, a

b:a

c:b

a <= c

a, b, c

a > c

b, a, c

a, b b, a

Second Iteration

First Iteration

c:a

'

&

$

%CS404/504 Computer Science

5Design and Analysis of Algorithms: Lecture 9

Another Example: Bubble SortAnother Example: Bubble Sort

Bubble elements to their proper place in the array by

comparing elements i and i + 1, and swapping if A[i] > A[i + 1].

- last position has the largest element (loop invariant).

- then bubble every element except the last one towards its

correct position.

- then repeat until done or until the end of quarter.

- whichever comes first ...

'

&

$

%CS404/504 Computer Science

6Design and Analysis of Algorithms: Lecture 9

Illustration of Bubble SortIllustration of Bubble Sort

Input: 4 2 5 3 4 2 5 3

2 4 5 3

2 4 5 3

2 4 3 5

2 4 3 5

2 4 3 5

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

Another input: 3 2 1 3 2 1

2 3 1

2 1 3

1 2 3

'

&

$

%CS404/504 Computer Science

7Design and Analysis of Algorithms: Lecture 9

The Decision Tree Corresponding to Bubble
Sort (n = 3)

The Decision Tree Corresponding to Bubble
Sort (n = 3)

a <= b

b <= c b > c

b ca
a > b

a:c

a, c, b c, a, b b, c, a

a > c

b <= c b > c

b:c

c, b, a

a:b

b:c

a <= c

a, b, c

a > c

b, a, c
a, c, b b, c, a

a <= c

First Iteration

Second Iteration

a:c

'

&

$

%CS404/504 Computer Science

8Design and Analysis of Algorithms: Lecture 9

Lower Bound for Comparison-based SortingLower Bound for Comparison-based Sorting

The decision trees of comparison-based sorting algorithms:

- Each internal node contains a comparison.

- Each leaf contains a permutation. All the leaf nodes

produce a correctly sorted sequence.

- Algorithm execution = a path from the root to a leaf.

- Worst-case number of comparisons = height of tree.

- Idea: If we find a lower bound on the height of the decision

tree, we will have a lower bound on the running time of any

comparison-based sorting algorithm.

'

&

$

%CS404/504 Computer Science

9Design and Analysis of Algorithms: Lecture 9

A Necessary Condition for Any Correct
Comparison Sorting Algorithm

A Necessary Condition for Any Correct
Comparison Sorting Algorithm

Given an input size n, there are n! possible orderings of the

elements, so the corresponding decision tree needs to have at

least n! leaf nodes to produce these permutations.

a cb

'

&

$

%CS404/504 Computer Science

10Design and Analysis of Algorithms: Lecture 9

Lower Bound on the Height of a Decision
Tree

Lower Bound on the Height of a Decision
Tree

Theorem: Any decision tree that sorts n elements has height

Ω(nlgn).

- Suppose the decision tree has height h.

- A binary tree of height h has at most 2h leaves.

- The decision tree must have at least n! leaves, hence:

2h ≥ l ≥ n! ⇒ h ≥ lg(n!).

- Claim: lg(n!) = Θ(nlgn) (see hw 1).

- Therefore h ≥ Θ(nlgn) ⇒ h = Ω(nlgn).

'

&

$

%CS404/504 Computer Science

11Design and Analysis of Algorithms: Lecture 9

