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and
8. 00(s + 1 . 5)+ 12. 00(s + 4) 4.47337

s2+ 2s + 5 s2 + 4s + 13 s + 4

Deriving the element values from the above, we
finally obtain the lattice shown in Fig. 6. This lattice
has the desired transfer impedance.

CONCLUSION
A simple method has been demonstrated for the real-

ization of any minimum-phase or nonminimum-phase
transfer impedance as an open-circuited lattice. The
arms of the lattice are of a simple form and contain no
mutual inductance. Any inductance used in the lattice
always appears with an associated series resistance so
that low-Q coils may be used in building the network.
The procedure presented allows a measure of control
over the Q's of the coils used in the final network.

OHMS, HENRYS, FARADS

Fig. 6-Lattice obtained for illustrative example where Z12 = p/q.
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Summary-The equations characterizing a systems problem may
be expressed as a network of directed branches. (The block diagram
of a servomechanism is a familiar example.) A study of the topologi-
cal properties of such graphs leads to techniques which have proven
useful, both for the discussion of the general theory of feedback and
for the solution of practical analysis problems.

I. INTRODUCTION
A SIGNAL FLOW GRAPH is a network of di-

rected branches which connect at nodes. Branch
jk originates at node j and terminates upon node

k; its direction is indicated by an arrowhead. A simple
flow graph is shown in Fig. 1(a). This particular graph
contains nodes 1, 2, 3, and branches 12, 13, 23, 32, and
33. The flow graph may be interpreted as a signal trans-
mission system in which each node is a tiny repeater
station. The station receives signals via the incoming
branches, combines the information in some manner,
and then transmits the result along each outgoing
branch. If the resulting signal at node j is called xj, the
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flow graph of Fig. 1(a) implies the existence of a set of
explicit relationships

xi = a specified quantity or a parameter

X2 = f2(x1, X3),

X3 = f3(Xl, X2, X3). (1)

(a) )

(b) (c)

Fig. 1 Flow graphs.

The first equation alone would be represented as a single
isolated node; whereas the second and third, each taken
by itself, have the graphs shown in Fig. 1(b) and Fig.
1(c). The second equation, for example, states that sig-
nal X2 is directly influenced by signals xi and Xs, as indi-
cated by the presence of branches 12 and 32 in the
graph.

This report will be concerned with flow graph topol-
ogy, which exposes the structure (Gestalt) of the associ-
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ated functional relationships, and with the manipulative
techniques by which flow graphs may be transformed or.
reduced, thereby solving or programming the solution
of the accompanying equations. Specialization to linear
flow graphs yields results which are useful for the dis-
cussion of the general theory of feedback in linear sys-
tems, as well as for the solution of practical linear analy-
sis problems. Subsequent reports will deal with the
formal matrix theory of flow graphs, with sensitivity
and stability considerations, and with more detailed
applications to practical problems. The purpose here is
to present the fundamentals, together with simple il-
lustrative examples of their use.

II. THE TOPOLOGY OF FLOW GRAPHS

Topology has to do with the form and structure of a
geometrical entity but not with its precise shape or size.
The topology of electrical networks, for example, is
concerned with the interconnection pattern of the cir-
cuit elements but not with the characteristics of the
elements themselves. Flow graphs differ from electrical
network graphs in that their branches are directed. In
accounting for branch directions it is necessary to take
an entirely different line of approach from that adopted
in electrical network topology.

A. Classification of paths, branches, and nodes
As a signal travels through some portion of a flow

graph, traversing a number of successive branches in
their indicated directions, it traces out a path. In Fig. 2,
the sequences 1245, 2324, and 23445 constitute paths,
as do many other combinations. In general, there may
be many different paths originating at a designated
node j and terminating upon node k, or there may be
only one, or none. For example, no path from node 4
to node 2 appears in Fig. 2. If the nodes of a flow graph
are numbered in a chosen order from 1 to n, then one
may speak of a forward path as any path along which
the sequence of node numbers is increasing, and a back-
ward path as one along which the numbers decrease.
An open path is one along which the same node is not
encountered more than once. Forward and backward
paths are evidently open.

4O 05

3

Fig. 2-A flow graph with three feedback branches and four
cascade branches.

Any path which returns to its starting node is said
to be closed. Feedback now enters directly into the dis-
cussion for the first time with the definition of a feed-
back loop as any set of branches which forms a closed
path. The flow graph of Fig. 2 has closed paths 232 (or

323) and 44. Multiple encirclements such as 23232 or
444 also constitute closed paths but these are topo-
logically trivial. Notice that some paths, such as 12324,
are neither open nor closed.
One may now classify the branches of a flow graph as

either feedback or cascade branches. A feedback branch
is one which appears in a feedback loop. All others are
called cascade branches. Returning to Fig 2, it is seen
that 23, 32, and 44 are the only feedback branches
present. If each branch in a flow graph is imagined to be
a one-way street, then a lost automobilist who obeys
the law may drive through Feedback Street any number
of times but he can traverse Cascade Boulevard only
once as he wanders about in the graph.
The nodes in a flow graph are evidently susceptible

to the same classification as branches; that is, a feedback
node is one which enters a feedback loop. Two nodes or
branches are said to be coupled if they lie in a common
feedback loop. Any node not in a feedback loop is called
a cascade node. Two special types of cascade nodes are
of interest. These are sources and sinks. A source is a
node from which one or more branches radiate but upon
which no branches terminate. A sink is just the opposite,
a node having incoming branches but no outgoing
branches. Fig. 2 exhibits feedback nodes 2, 3, 4, a source
1, and a sink 5. It is possible, of course, for a cascade
node to be neither a source nor a sink. The intermediate
nodes in a simple chain of branches are examples.

B. Cascade graphs
A cascade graph is a flow graph containing only cas-

cade branches. It is always possible to number the nodes
of a cascade graph in a chosen sequence, called the
order of flow, such that no backward paths exist. For
proof of this, observe that a cascade graph must have
at least one source node. Choose a source, number it one,
and then remove it, together with all its radiating
branches. This removal leaves a new cascade graph
having, itself, at least one source. Again choose a source,
number it two, and continue the process until only iso-
lated nodes remain. These remaining nodes are the
sinks of the original graph and they are numbered last.
It is evident this procedure establishes an order of flow.

(a)

2 4

3 5

2 4

6

3 5
(b)4 5

I 6

2 3
(C)

Fig. 3-Cascade graphs.

Fig. 3 shows two simple cascade graphs whose nodes
have been numbered in flow order. The numbering of
graph 3(a) is unique, whereas other possibilities exist for
graph 3(b); the scheme shown in graph 3(c) offers one
example.
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C. Feedback graphs

A feedback graph is a flow graph containing one or
more feedback nodes. A feedback unit is defined as a
flow graph in which every pair of nodes is coupled. It
follows that a feedback unit contains only feedback
nodes and branches. If all cascade branches are re-
moved from a feedback graph, the remaining feedback
branches form one or more separate feedback units
which are said to be imbedded or contained in the original
flow graph. The graph of Fig. 1, for example, contains
the single unit shown in Fig. 4(a), whereas the two units
shown in Fig. 4(b) and (c) are imbedded in the graph
of Fig. 2.

D. The residue of a graph

A cascade graph represents a set of equations which
may be solved by explicit operations alone. Fig. 5, for
example, has the associated set

X2 = f2(Xl)

X3 = f3(xI, X2)

X4 = f4(X2, X3). (2)

Given the value of the source x1, one obtains the value
of X4 by direct substitution

X4 = f4{f2(XI) , J3 [xl, f2(xl) ]} = F4(xl) . (3)

(a)

2

3
(b)

2 3

(d)

2 3

(f)

(c)

(e)

(g)

Fig. 4-Feedback units.

In general, there may be s different sources. Once an
order of flow is established, a knowledge of the source
variables xi, X2, * * *, x, fixes the value of x,+1, since no
backward paths from later nodes to x8+1 can exist.
Similarly, with X2, X1, * * , xs+l known Xs+2 is deter-
mined explicitly, and so on to the last node xn. A cascade
graph is immediately reducible, therefore, to a residual
form in which only sources and sinks appear. The residu-
al form of Fig. 5 is the single branch shown in Fig. 6(a),
which represents (3). Had two sources and two sinks
appeared in the original graph, the residual graph would
have contained, at most, four branches, as indicated by
Fig. 6(b).

3
4

2

Fig. 5-A cascade graph.

The units shown in Fig. 4(d) and (e) each possess
three principal feedback loops. The number of loops,
however, is not of great moment. A more important
characteristic is a number called the index. Preparatory
to its definition, let one introduce the operation of node-
splitting, which separates a given node into a source and
a sink. All branch tails appearing at the given node
must, of course, go with the source and all branch noses
with the sink. The result of splitting node 2 in Fig. 4(d)
is shown in Fig. 4(f). Similarly, Fig. 4(g) shows node
1 of Fig. 4(e) in split form. The original node num-
ber may be retained for both parts of the split node,
indicating the sink by a prime. Splitting effectively in-
terrupts all paths passing through a given node and
makes cascade branches of all branches connected to
that node.
The index of a feedback unit can now be conven-

iently defined as the minimum number of node-splittings
required to interrupt all feedback loops in the unit. For
the determination of index, splitting a node is equiva-
lent to removing that node, together with all its con-
necting branches.
The index of the graph in Fig. 4(d) is unity, since all

feedback loops pass through node 2. Graph 4(e), on the
other hand, is of index two.

(a)

SINK

1 44
SOURCE SOURCE

SINK
(b)

Fig. 6-Residual forms of a cascade graph.

Unlike those associated with a cascade graph, the
equations of a feedback graph are not soluble by explicit
operations. Consider the simple example shown in Fig. 1.
An attempt to express X3 as an explicit function of xi
fails because of the closed chain of dependency between
X2 and X3. Elimination of X2 from (1) by substitution
yields

X3 = f3 [XI, f2(X1, X3), X3] = F3(xl, X3). (4)
Although a feedback graph cannot be reduced to

sources and sinks by explicit means, certain superfluous
nodes may be eliminated, leaving a minimum number of
essential implicit relationships exposed.

In any contemplated process of graph reduction, the
nodes to be retained in the new graph are called residual
nodes. It is convenient to define a residual path as one
which runs from a residual node to itself or to another
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residual node, without passing through any residual
nodes. The residual graph, or residue, has a branch jk if,
and only if, the original graph has one or more residual
paths from j to k. This completely defines the residue
of any flow graph for a specified set of residual nodes.
We are interested here in a reduction which can be

accomplished by explicit operations alone. The defini-
tion of index implies the existence of a set of index
nodes, equal in number to the index of a graph, whose
splitting interrupts all feedback loops in the graph. The
set is not necessarily unique. Once a set of index nodes
has been chosen, however, all other nodes except sources
and sinks may be eliminated by direct substitution,
leaving a residual graph in which only sources, sinks,
and index nodes appear. Such a graph shall be called the
index-residue of the original graph.

Fig. 7 shows a flow graph (a) and its index-residue
(b). Residual nodes are blackened. Branch 25 in (b)
accounts for the presence of residual paths 245 and 235
in (a). All paths from 2 to 6 in (a) pass through residual
node 5. Hence graph 7(a) has no residual paths from 2
to 6, since a residual path, by definition, may not pass
through a residual node. Accordingly, graph 7(b) has no
branch 26. Fig. 7(c) illustrates an alternate choice of
index nodes and Fig. 7(d) shows the resulting index-
residue. Choice (a) is apparently advantageous in that
it leads to a simpler residue.

1 2 4

(a)

3 5 6
2 4

3 5 6

(b) 5 6

3~~~6

Fig. 7-Feedback graphs and their index-residues.

2 3
-(a)

2 3 3

(b)

-40-,I 2 3

(c)

Fig. 8-Retention of a desired node as a sink.

A minor dilemma arises in the reduction process if
one desires, for some reason, to preserve a node which is
neither an index node nor a sink. In Fig. 8(a), for exam-
ple, suppose that an eventual solution for X3 in terms of
xi is required. A node corresponding to variable x3 must
be retained in the residual graph. Apparently, no further
reduction is possible. The simple device shown in Fig.
8(b) may be employed, however, to obtain the residue
(c). The trick is to connect node 3 to a sink through a

branch representing the equation X3 =X3. The original
node 3 then disappears in the reduction, leaving the

desired value of X3 available at the sink. This trick is
simple but topologically nontrivial.

E. The condensation of a graph

The concept of an order of flow may be applied, in
modified form, to a feedback graph as well as to a
cascade graph. Consider the feedback graph in Fig.
9(a), which contains two feedback units. If each im-
bedded feedback unit is encircled and treated as a single
supernode, then the graph condenses to the form shown
in Fig. 9(b), where supernodes are indicated by squares.
Since the condensation is a cascade structure, an order
of flow prevails. Within each supernode the order is
arbitrary, but we shall agree to number the internal
nodes consecutively.

II ~~~~2,3 4

~~ ~ 5 5

L_-_.J (a)J(b)
Fig. 9-The condensation of a flow graph.

The index-residue of a flow graph shows the mini-
mum number of essential variables which cannot be
eliminated from the associated equations by explicit
operations. The condensation of the residue programs
the solution for these variables. In Fig. 9(b), for exam-
ple, the condensatian directs us to specify the value of
xi, to solve a pair of simultaneous equations for X2 and
X3, to solve a single equation for X4, and to compute x6
explicitly. The complexity of the solution, without re-
gard for the specific character of the mathematical opera-
tions involved, is indicated by the number of feedback
units and the index of each, since the index of a feed-
back unit is the minimum number of simultaneous
equations determining the variables in that unit.

Carrying the condensation one step further, the basic
structural character of a given flow graph may be in-
dicated by a simple listing of its nodes in the order of
condensed signal flow, with residual nodes underlined
and feedback units overlined. The sequence

1 2 3 4 5 6 7 8 9 10 11 12

for example, states that nodes 1 and 2 are sources, 7 and
11 are cascade nodes, and 12 is a sink. Also, nodes 3, 4,
5, 6 lie in a feedback unit of index two, having index
nodes 4 and 5. Finally, nodes 8, 9, 10 comprise a later
feedback unit of index one, 8 being the index node.

F. The inversion of a path
A single constraint or relationship among a number

of variables appears topologically as a cascade graph
containing one sink and one or more sources. Fig. 10(a)
is an elementary example. At least in principle, nothing
prevents the solving of the equation in Fig. 10(a) for
one of the independent variables, say xi, to obtain the
form shown in Fig. 10(b). In terms of the flow graph,
it may be said, that branch 14 has been inverted.
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By definition, the inversion of a branch is ac-
complished by interchanging the nose and tail of that
branch and, in moving the nose, carrying along all other
branch noses which touch it. The tails of other branches
are left undisturbed. The inversion of a path is effected
by inverting each of its branches.

1 4 1 4

x4 = xI x2 + x3 x4 - x3

(a) (b)

Fig. 10-Inversion of a branch.

Fig. 11 shows (a) a flow graph, (b) the inversion of an
open path 1234, and (c) the inversion of a feedback
loop 343. To obtain (c) from (a), for example, first
change the directions of branches 34 and 43. Then grasp
branch p by its nose and move the nose to node 4,
leaving the tail where it is. Finally, the nose of branch
q is shifted to node 3. Branches 12 and 32 are unchanged
since they have properly minded their own business
and kept their noses out of the path inversion. Topo-
logically, the two parallel branches running from 4 to 3
are redundant. One such branch is sufficient to indicate
the dependency of X3 upon X4.

q

2 3 4

(a)

2 3 4

(b) 1234

PI

2 3 4
q'

(c) 343

Fig. 11 Path inversions.

The inversion of an open path is significant only if
that path starts from a source. Otherwise, two expres-
sions are obtained for the same variable and two nodes
with the same number would be needed in the graph.
In addition, inversion is not applicable to a feedback
loop which intersects itself. The reason is that two of the
path branches would terminate upon a common node.
Hence the inversion of one would move the other,
thereby destroying the path to be inverted. Such paths
as 234 and 23432 in Fig. 11(a), therefore, are not candi-
dates for inversion.
The process of inversion, as might be expected, influ-

ences the topological properties of a flow graph. Of
greatest interest here is the effect upon the index.
Graphs (a), (b), and (c) of Fig. 11 have indices of two,
zero, and one, respectively. In general, paths parallel
to a given path contribute to the formation of feedback
loops when the given path is inverted, and conversely.

Hence, should one wish to accomplish a reduction of
index, he should choose for inversion a forward path
having many attached backward paths but few parallel
forward paths.

III. THE ALGEBRA OF LINEAR FLOW GRAPHS
A linear flow graph is one whose associated equations

are linear. The basic linear flow graph is shown in Fig. 12.
Quantities a and b are called the branch transmissions,
or branch gains. Thinking of the flow graph as a signal
transmission system, each branch may be associated
with a unilateral amplifier or link. In traversing any
branch the signal is multiplied, of course, by the gain
of that branch. Each node acts as an adder and ideal
repeater which sums the incoming signals algebraically
and then transmits the resulting signal along each out-
going branch.

x

z

y b

z = ax + by
Fig. 12-The basic linear flow graph.

A. Elementary transformations
Fig. 13 illustrates certain elementary transformations

or equivalences. The cascade transformation (a) elim-
inates a node, as does the start-to-mesh transformation
(c), of which (a) is actually a special case. The parallel or
multipath transformation (b) reduces the number of

(a)
a b

a

(b)
b

(c)
a

d

ob

a+b

- a b

ob cb

ad < cd

Fig. 13-Elementary transformations.

branches. These basic equivalences permit reduction to
an index-residue and give, as a result of the process,
the values of branch gains appearing in the residual
graph. Fig. 14 offers an illustration. The residual nodes
are the source 1, the sink 4, and the index node 2. Node
3 could be chosen instead of node 2, but this would lead
to a more complicted residue. The star-to-mesh equiva-
lence eliminates node 3 in graph 14(a) to give graph
14(b). The multipath transformation then yields the
residue (c).
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For more complicated structures the repeated use of
many successive elementary transformations is tedious.
Fortunately, it is possible under certain conditions to
recognize the branch gains of a residue by direct inspec-
tion of the original diagram. In order to provide a sound
basis for the more direct process, a path gain shall be
defined as the product of the branch gains along that
path. In addition, the residual gain Gjk is defined as the
algebraic sum of the gains of all different residual paths
from j to k. As defined previously, a residual path must
not pass through any of the residual nodes which are to
be retained in the new graph. It follows that each branch
gain of the residue is equal to the corresponding residual
gain Gjk of the original graph. Moreover, if the residual
graph is an index-residue, then each Gjk is the gain of a
cascade structure and contains only sums of products of
the original branch gains. For index-residues, therefore,
the gains Gjk are relatively easy to evaluate by inspec-
tion.

932
1 912 3 4
_w _

924

(a)

923932

23 934

924

(b)

923 932

912 924g923 934 4

2
(c)

Fig. 14-Reduction to an index-residue by elementary
transformations.

one might be tempted to include in G15, is not residual,
since it passes through node 3.

B. The effect of a self-loop
When a feedback graph is simplified to a residue con-

taining only sources, sinks, and index nodes, one or
more self-loops appear. The effect of a self-loop at any
node upon the signal passing through that node may
be studied in terms of Fig. 16(a). The signal existing at
the central node is transmitted along the outgoing paths
as indicated by the detached arrows. The signal return-
ing via the self-loop is gx, where g is the branch gain
of the self-loop. Since signals entering the node must add
algebraically to give x, it follows that the external signal
entering from the left must be (1 -g)x. The node and
self-loop, therefore, may be replaced by a single branch
(b) whose gain is -the reciprocal of (1 -g). When several
branches connect at the node, as in Fig. 16(c), it is easy
to see that the proper replacement is that shown in
Fig. 16(d). Quantity g is usually referred to as the loop
gain and 1 -g is called the loop difference.

\ /X

(a) (1-g)x X x

(c ) "

-

(b)

(d ) I

Fig. 16 Replacement of a self-loop by a branch.

The feedback graph of Fig. 15(a), for example, has an
index-residue (b) containing four branches. By inspec-
tion of the original graph, the residual gains are found
to be

Gn3= g12g23

G15= gl2g25

G33 = g32g23 + g34g42g23 + g34g43

Approaching the self-loop effect from another view-
point, Fig. 16(b) may be treated as the residual form
of Fig. 16(a). This is not, of course, an index-residue.
The gain G of (b) is the sum of the gains of all residual
paths from the source to the sink in (a). One path passes
directly through the node, the second path traverses the
loop once before leaving, the third path circles the loop
twice, and so on. Hence the residual gain is given by
the infinite geometrical series

G35 = g34g46 + g32g25 + g34g42g25.

942

925

(a)

G 33

G 15

(b)

Fig. 15-Reduction to an index-residue by inspection.

Notice that there are three different residual paths from
node 3 to itself and also from 3 to 5. Be very careful to
account for all of them. There is only one residual path
from 1 to 5, however, and this is 125. Path 12345, which

(5) 1
G =+ g + g2+g3+ - . - = 1 -g (6)

which sums to the familiar result. The convergence of
this series, for gf < 1, poses no dilemma in view of the
validity of analytic continuation. The result holds for
all values of g except the singular point g =1, near
which the transmission G becomes arbitrarily large.
The self-loop-to-branch transformation places in evi-

dence the basic effect of feedback as a contribution to
the denominator of an expression for the gain of a
graph in terms of branch gains. In this algebra, feedback
is associated with division or, more generally, with the
inversion of a matrix whose determinant is not iden-
tically equal to unity.
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C. The general index-residue of index one

If attention be restricted to a single source and a
single sink, then the most general index-residue of index
one, or first-index-residue, is that shown in Fig. 17(a).
Other sources or sinks in the system may be considered
separately, without loss of generality, since the system
is linear and superposition applies. A knowledge of the
self-loop-to-branch transformation enables one to write
the (source to sink) gain of graph 17(a) by inspection.
The gain is

bc
G = d + -- * (7)

1-a

When the total index of the graph is greater than one,
as in Fig. 17(b), it is still a simple matter to find the
gain, provided each imbedded feedback unit is only of
first index. For graph 17(b)

Suppose that the self-loops are temporarily removed,
leaving the simple imbedded ring shown in (b). Graph
(b) exhibits five open paths from source to sink, namely
i, ab, cd, afd, ceb; and the last four of these encounter
the feedback loop ef. Hence the gain of graph (b) is

(10)
ab + cd + afd + ceb

G = i+- 1
1 -ef

Now, in order to account for the self-loops g and h in
graph 19(a), each path gain appearing in (10) need only
be divided by the loop difference (1 -g) if that path
passes through the upper node, and by (1-h) if it
passes through the lower node. Paths afb, ceb, and ef, of
course, pass through both nodes, and their gains must
be divided by both loop differences. The resulting modi-
fication of (10) yields the gain of the general second-
index-residue

ef bcf
G = g + -~ +

1 -d (I1-a)(Il-d) (8)
G= i+

With practice, the gain of a graph such as that of Fig.
15(a) can be written at a glance, without bothering to
make an actual sketch of the residue. The principal
source of error lies in the possibility of overlooking a

residual path.

ab cd afd + ceb

1- g I1-h (1 -g)(1 -h)
1-- ef

(1 - g)(1 - h)

Ga

b(c

(a)

a d

bc

b)
( b)

Fig. 17-Residues having first-index feedback units.

Of special interest is the theorem that if each feed-
back unit in a graph is a simple ring of branches, the
gain of that graph is equal to the sum of the gains of all
open paths from source to sink, each divided by the loop
differences of feedback loops encountered by that path.
For illustration, this theorem shall be applied to the
graph shown in Fig. 18. There are nine different open

paths from the source to the sink and each one makes
contact with the feedback loop. The resulting gain is

ah+bdh+cgdh+aei+bdei+cgdei+aefj+bdefj+ j
1- defg

(a) (b)

Fig. 19-The general second-index-residue with and without
self-loops.

The derivation of this formula is important only as a

demonstration of the power of the method. To find the
source-to-sink gain of any graph whose feedback units
are no worse than second index, we reduce to an index-
residue; temporarily remove the self-loops; express the
gain as the sum of open path gains, each divided by the
loop differences of feedback loops touching that path;
and modify the result to account for the original self-
loops.

bo

pl b b3

k1 92 03 k2

(a)

b2 . 93 b0 g1

b . b 3

klgl 92 93 k2

(b)

Fig. 18-A simple ring imbedded in a graph.

D. The general index-residue of index two

Again taking one source and one sink at a time, the
most general second-index-residue shown in Fig. 19, will
be considered.

Fig. 20-A three-stage feedback amplifier diagram.

The importance of the method justifies a final exam-

ple. Fig. 20(a) shows the feedback diagram of a three-
stage amplifier having local feedback around each stage
and external feedback around the entire amplifier. With
the self-loops temporarily removed, the gain of the
residue (b) is

G = k1gIg2g3k2 (12)
1 - g2(b2 + g3bog1)

(1 1)
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Since all paths appearing in (12) touch both index nodes,
the actual gain of the amplifier is

kik2g1g2g3
(1 - big,)(I - b3g3)

1 - g2(b2 + bog1g3)
(1 - big,)(1 - b3g3)

kik2g1g2g3
( (13)

(I1- big,)(1-b393)- 92(b2 + bog193)

E. Graphs of higher index
The formal reduction process for an arbitrary feed-

back graph involves a cycle of two steps. First, reduction
to an index-residue; and second, replacement of any
one of the self-loops by its equivalent branch. Exactly
n such cycles are required for reduction to cascade form,
where n is the total index of the original graph. Trans-
formation of more than one self-loop at a time is often
convenient, even though this may increase the total
number of self-loop transformations required in later
steps. In practice, of course, the formal procedure
should be modified to take advantage of the peculiarities
of the structure being reduced. The process effectively
ends when the index has been reduced to two, since the
evaluation of gain by inspection of the index-residue
then becomes tractable.

kl bl b2 b3 b4 b5

2 1 2 3 4 05

(b)

(a)

Fig. 21-Simple high-index structures.

Fig. 21 shows two graphs containing high-index feed-
back units. With the self-loops removed from the circular
structure (a), the gain is equal to that of the single open
forward path k1a4k3 divided by the loop difference of the
closed path k2a4, and we have

kia4k3
G -

1 -k2al
(14)

Since both paths pass through every index node, the
reintroduction of the self-loops yields

last four loops of the chain removed, the gain is

k1k2
G =

1- alb,
(16)

Now, the addition of loop a2b2 modifies the path gain
a1b1 to give

k1k2
G=-

a1b1
1-

1 - a2b2

(17)

Addition of the remaining elements leads to the con-
tinued fraction

k1k2
a1b1

1-
a2b2

1-

1-
a3b3

a4b4
1-

1 - arb5

(18)

F. Loop gain and loop difference
Thus far loop gain has been spoken of only in con-

nection with feedback units of the simple ring type. A
more general concept of loop gain will now be intro-
duced. The loop gain of a node shall be defined as the
gain between the source and sink created by splitting
that node. In terms of signal flow, the loop gain of a
node is just the signal returned to that node per unit
signal transmitted by that node. The loop difference of a
node is by definition equal to one minus the loop gain
of that node. The symbol T shall be used for loop gains
and D for loop differences. In the graph of Fig. 22(a),
for example, the loop gain of node 1 is equal to the gain
from 1 to 1' in graph (b), which shows node 1 split into
a source 1 and a sink 1'. By inspection

bc
Ti= a+

1-d
bc

Di= 1- a -
1-d

(19)

Another quantity of interest is the loop gain of a
branch. Preparatory to its definition, replace the branch
in question by an equivalent cascade of two branches,
whose path gain is the same as the original branch gain.

a b d

(0) (b )

Fig. 22-The loop gain of a node.

k1a4k3
(1- b)5 kia4k3

k2a4 (1-b)I - k2a4
1-

(1-b)
The feedback chain shown in Fig. 21(b) is of third

index. Instead of reducing it to an index-residue, take
advantage of the simplicity of the chain structure to
write the gain by a more direct method. First, with the

This creates a new node, called an interior node of the
branch. The loop gain of a branch may now be defined
as the loop gain of an interior node of that branch. To
find the loop gain of branch b in Fig. 22(a), for instance,
first introduce an interior node 3 as shown in Fig.
23(a). The loop gain of branch b is the gain from 3 to 3'
in (b),

bc
T12(or Tb) = -a)(1-d) (20)
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The loop gain of a branch can be designated by either a
single or double subscript, whichever is a more conven-
ient specification of the branch. The double subscript is
usually preferable, since it avoids confusion with the
loop gain of a node. The loop gain of a given node (or
branch) evidently involves only the gains of branches
which are coupled to that node (or branch). Hence, in
computing T, we need to consider only the feedback
unit containing the node (or branch) of interest.

b 3d ~bY 3'

( a) ( b)

Fig. 23-The loop gain of a branch.

Having defined the loop gain of a node, the simple
self-loop equivalence may be extended to a more general
form which may be stated as follows. If an external sig-
nal xo is injected into node k of a flow graph, as shown
in Fig. 24, the injection gain from the external source
to node k is

Xk 1 1
Gk = -= _ ~. (21)

XO 1 -Tk Dk

xo VCREMAINDER \
OF THE

k GRAPH I

Fig. 24--Injection at node k.

The very nature of the reduction process for an ar-
bitrary (finite) graph implies that the gain is a rational
function of the branch gains. In other words, the gain
can always be expressed as a fraction whose numerator
and denominator are each algebraic sums of various
branch gain products. Moreover, the gain G is a linear
rational function of any one of the branch gains g. Thus

G ag + bcg+d- (22)cg+ d

where quantities a, b, c, d are made up of other branch
gains. To prove this, insert two new interior nodes
into the specified branch g, as shown in Fig. 25(a) and
(b), and then consider the residue (c), which contains
only the source, the sink, and the two interior nodes.
The gain of this residue evidently can be expressed as a
linear rational function of g. It is also apparent that if
branch g is directly connected to either the source or the
sink, or to both, then the source-to-sink gain G is a
linear function of the branch gain g, that is,

have the character of gains. Any loop difference Dk is a
rational function of the branch gains, a linear rational
function of any single branch gain, and a linear function
of the gain of any branch connected directly to node k.

g

'\ (a)1 ' (b)

(C)

Fig. 25-The graph gain as a function of a particular branch gain.

We shall now derive an important fundamental prop-
erty of loop differences which is of general interest.
Consider an arbitrary graph containing nodes 1, 2,
3, * * , n,andletnodesm+1,mm+2, . . . n-1,nbere-
moved, together with their connecting branches, so that
only nodes 1, 2, 3, * , m remain. Now suppose that
the graph is reduced to a residue showing only nodes
rn-1, and m, as in Fig. 26. Branches a, b, c, d account

a b d

m- c m

Fig. 26-A residue showing nodes mr-I and m.

for all coupling among nodes 1, 2, 3, * , m of the
original graph. Sources and sinks may be ignored, of
course, since only feedback branches are of interest in
loop difference calculations. Define the partial loop dif-
ference Dk' as the loop difference of node k with only the
first k nodes taken into account. By inspection of Fig. 26

bc
Din' = 1 - d -

1-a

Dm_lt= 1 - aZ

(24)

(25)

and

Dm_l'Dm-I =(1 -a)(1 - d) - bc. (26)

If the numbers of nodes m-1 and m are interchanged in
Fig. 26, then

= 1 - a - wbc
Dmt'= 1-a1 -

1=-1d

DM-I' = 1- d

(27)

(28)

and the product given in (26) is unaltered. Since this
result holds for any value of m, and since a sequence may
be transformed into any other sequence by repeated
adjacent interchanges (1234 can become 4321, for exam-
ple, by adjacent interchanges 1243, 2143, 2413, 4213,
4231, 4321), it follows that the product

Am = D1'D2'D3' .. Dm-l'Dm'

where a and b depend upon other branch gains.
The foregoing results apply equally well to loop gains

and loop differences, since T and D, by their definitions,

is independent of the order in which the first m nodes
are numbered. With all n nodes present, Dn' =Dn and

A = D1'D2'Ds'- * * D,,1D,. (30)

G = ag+ b (23)
(29)
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Quantity A, which shall be called the determinant of the
graph, is invariant for any order of node numbering.
Equation (30) shows that the determinant of any graph
is the product of the determinants of its imbedded feed-
back units, and that the determinant of a cascade graph
is unity.
The dependence of A upon the branch gains may be

deduced as follows. Let g be any branch directly con-
nected to node n, whence it follows that Dn is a linear
function of branch gain g and that the partial loop differ-
ences Dk' are independent of g. Hence A is a linear func-
tion of g. Since the numbering of nodes is arbitrary, A
must be a linear function of any given branch gain in
the graph. The determinant A, therefore, is composed
of an algebraic sum of products of branch gains, with
no branch gain appearing more than once in a single
product.
From (29) and (30) it follows that Dn is the ratio of

A to Avn'. Since the node number is arbitrary,

A
Dk =-

Ak
(31)

where Ak is to be computed with node k removed. Once
A is expressed in terms of branch gains, Ak may be
found by nullifying the gains of branches connected to
node k.
The introduction of an interior node into any branch

leaves the value of A unaltered. To prove this the new
node may be numbered zero, whence Do'= 1 and the
other partial loop differences are unchanged. It follows
directly that the loop difference of any branch jk is
given by

A
Djk = - (32)

where jk is to be computed with branch jk removed,
that is, with gjk = 0.

Incidentally, by writing the linear equations associ-
ated with the flow graph and then evaluating the injec-
tion gain Gk by Kramer's rule (that is, by inverting the
matrix of the equations), it is found from (21) and (31)
that A is just the value of the determinant of these
equations.

larger graph. The signal entering node 2 via branch b is
bx3. The contribution arriving from branch a, then,
must be X2-bx3, since the sum of these two contribu-
tions is equal to x2. Hence, given x2 and x3, the required
value of x1 is that indicated by graph (b).
The general scheme is readily apparent and may be

stated as follows. The inversion of any branch jk is ac-
complished by reversing that branch and inverting its
gain, and shifting any other branch ik having the same
nose location k to the new position ij and dividing its
gain by the negative of the original branch gain gjk

For gain calculations, the usefuless of inversion lies
in the fact that the inversion of a source-to-sink path
yields a new graph whose source-to-sink gain is the
inverse of the original source-to-sink gain. Since in-
version may accomplish a reduction of index, the in-
verse gain may be much easier to find by inspection.

bo
kg

I I_
kl 91 92 93 k2

(a)

Fig. 28-The result of path inversion in Fig. 20(a).

For illustration, path k1g9g2g3k2 shall be inverted in Fig.
20(a) to obtain the graph shown in Fig. 28. The new
graph is a cascade structure of zero index. By inspection
of the new graph, the inverse gain of the original graph is

1 F( 1 b3\/ 1 b1\ b2 bol
---II--- 'I--- - ---I ~~~(33)G k2Lg3g2 g2 g1k1 kJ g3g1ki kJ

Simplification yields
1tri/(l\/)1 b2 1
G=~1~2[g~ bk -

) - ~-boj (34)G kpvk2 t2 be i 3w 193
which proves to be identical with (13).

3

b

Oab
2

X2 = axI + bx3
(a)

b
a

Xi a a X2 - a X3

(b)

Fig. 27-Branch inversion in a linear graph.

G. Inverse gains
We have seen how the structure of a flow graph

is altered by the inversion of a path. For linear graphs
it is profitable to continue with an inquiry into the
quantitative effects of inversion. Fig. 27(a) shows two
branches which may be imagined to form part of a

Fig. 29-The result of path inversion in Fig. 21(a).

A simpler example is offered by Fig. 21(a). Inversion
of the open source-to-sink path gives the structure
shown in Fig. 29. By inspection of the new graph, it is
found

-= 1 1r b 4 1 _bA k21
G ks LX- a / \ki ki/ ki

(1-b)5 k2
k1k3a4 kik3

which checks (15).

(35)
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H. Normalization
In the general analysis of an electrical network it is

often convenient to alter the impedance level or the fre-
quency scale by a suitable transformation of element
values. A similar normalization sometimes proves useful
for linear flow graph analysis. The self-evident normali-
zatiQn rule may be stated as follows. If each branch gain
gjk is multiplied by a scale factor fjk, with the scale fac-
tors so chosen that the gains of all closed paths are un-
altered, then the gain of the graph is multiplied by
fl2f23 finn, where 1, 2, 3, . . ., m, n is any path from
the source 1 to the sink n.

Fig. 30 illustrates a typical normalization. Graph (a)
might represent a two-stage amplifier with isolation be-
tween the two stages, local feedback around each stage,
and external feedback around both stages. The nor-
malization shown in (b) brings out very clearly the
fact that certain branch gains may be taken as unity
without loss of generality.

h bcdh

a b c d e abcde

(a) (b)

Fig. 30-Normalization.

IV. ILLUSTRATIVE APPLICATIONS OF FLOW GRAPH
TECHNIQUES

The usefulness of flow graph techniques for the solu-
tion of practical analysis problems is limited by two
factors: ability to represent the physical problem in the
form of a suitable graph, and facility in manipulating
the graph. The first factor has not yet been considered.
It can be turned to now with the necessary background
material at hand.
The process of constructing a graph is one of tracing

a succession of causes and effects through the physical
system. One variable is expressed as an explicit effect
due to certain causes; they, in turn, are recognized as
effects due to still other causes. In order to be associated
with a single node, each variable must play a dependent
role only once. A link in the chain of dependency is lim-
ited in extent only by one's perception of the problem.
The formulation may be executed in a few complicated
steps or it may be subdivided into a larger number of
simple ones, depending upon one's judgment and knowl-
edge of the particular system under consideration. No
specific rules can be given for the best approach to an
analysis problem. Therein lies the challenge and the
possibility of an elegant solution. Whatever the ap-
proach, flow graphs offer a structural visualization of the
interrelations among the chosen variables. It is quite
possible, of course, to construct an incorrect graph, just
as it is entirely possible to write a set of equations which
do not properly represent the physical problem. The
direct formulation of a flow graph from a physical prob-
lem, without actually writing the chosen equations, re-
quires some practice before confidence is gained. It is
hoped that the following examples, taken mostly from
electronic circuit analysis, will be suggestive.

0I p8Eg
1E

( a )

(a)

A. Voltage gain calculations

Fig. 31(a) shows the low-frequency linear incremental
approximate model of a cathode follower. Suppose that
we want to find the gain E2/Ej in terms of the circuit
constants. By proceeding cautiously in small steps,
the graph shown in Fig. 31(b) might be constructed.
This graph states that E,=E1-E2, E' =iE0-E2,
I=E'/r,, and E2=RkI,. Alternatively, were one able
to recognize at the outset the direct dependence of Es
upon E0, then graph 31(c) could have been sketched by
inspection of the circuit. The more extensive one's
powers of perception, the simpler the formulation.
Powerful perception (or a familiarity with the cathode
follower) would permit one to construct graph 31(d)
directly from the network shown in Fig. 31(a). The
reader is invited to evaluate the gains of graphs 31(b)
and (c) by inspection, and compare them with (d).

I P 7~R,,

El Eg E Ip E2 E2

( b)

-1

El Eq FPRk E2 E2
rp Rk

(c )

E u Rk 2
rp - (p-1) Rk

(d)

Fig. 31-Flow graphs for a cathode follower.

Another example is offered by the amplifier of Fig.
32(a). For convenience of illustration, the impedances
and the transconductance have been given numerical
values. In this circuit the grid voltage influences the
output voltage both by transconductance action and by
direct coupling through the grid-to-plate impedance.
To avoid confusion between the actual voltage E, and
the factor E, appearing in the transconductance current
it is very helpful to designate one of them with a prime
while setting up the graph. This distinction splits node
E,. It is a simple matter to complete the graph with a
unity-gain branch representing the equation E,'=E,
which effectively rejoins the node.
The direct application of superposition, with voltage

E1 and current 5E,' treated as independent electrical
sources, each influencing the dependent quantities E,
and E2, leads to graph (b) of Fig. 32. The gain from E,'
to Eg for example, is the product of a transconductance
5, a current division ratio 4/9, and an impedance 2, as
measured with E1 = 0.
An alternative approach, actually equivalent to classi-

cal network formulation on the electrical-node-pair-
voltage basis, gives graph 32(c). Here E2 is expressed as
a function of Eg and Eg'. In accordance with superposi-
tion, the gain from Eg' to E2 must be computed with
E,=0 (rather than E1=0, as in the previous graph).
Hence, in this particular calculation, the impedance pre-
sented to the current source does not include element 2.
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The other independent electrical-node-pair voltage Eg
is expressed in terms of El and E2, as shown.
Graph 32(d), a third possibility, is actually the sim-

plest and most elegant of the three. Responding to a
certain physical appeal, express E2 in terms of the
electrical sources, as in graph 32(b). Taking advantage

2 3
t *t

E ;5 CE/ 4 E2
A ~~~~~~~~-1

(o)

2
5

3 7
3 E8 Eg

7

(c)

40

7
E

100
b) Eg Eg9

(b) -

4
9

(d)

Fig. 32-An amplifier with grid-to-plate impedance.

present problem. Notice that the structure of Fig. 33(b)
is obtainable directly from that of Fig. 32(b) by inver-
sion of the source-to-sink branch.
The three gains of interest in Fig. 33(b) are

SE\
ZO= (-) = the impedance without feedback.

T28C= KE')E = the short-circuit ioop gain= T1.

(36)

(37)

Tgo c= = the open-circuit loop gain= Tj+ T2 (38)
I=n O

The terminal impedance is given by the graph gain

Zo I T,z= =zo(lT)
1

T2 \1-T - T2
1-

1-T

(39)

which may be identified as the well-known feedback
formula

of the fact that E2 and SE,' are across the same electrical
node-pair, formulate E, in terms of E1 and E2 as in
graph 32(c). This has topological appeal, since the re-
sulting feedback loop touch6s both open paths from
E1 to E2. As a result, the graph gain is obtained as a
simple function of the branch gains. The verification of
graphs (b), (c), and (d) of Fig. 32 and the evaluation of
their gains is suggested as an exercise for the reader. The
answer is - 8/7. If symbols are substituted for the nu-
merical element values in the circuit, the suitability of
the structure of Fig. 32(d) for this particular problem
becomes more apparent.

(a) (b)

Fig. 33-The circuit and graph for terminal impedance formulation.

B. The impedance formula
Suppose that the input or output impedance Z of an

electronic circuit is influenced by a certain tube trans-
conductance in such a manner that the effect is not im-
mediately obvious. To find Z one must introduce a set
of variables and write the equations relating them.
Choose the terminal current and voltage, I and E = IZ,
together with the grid voltage E, of the offending tube,
as shown in Fig. 33(a). The graphical structure which
naturally suggests itself, perhaps, is that of the previous
problem, Fig. 32(b), with a source I and a sink E.
Since E and I are located at the same pair of terminals,
however, it is just as easy to express E, in terms of E,,'
and E, rather than E,' and I. This choice gives graph
(b) of Fig. 33, which is particularly convenient for the

Z.= Zo.
i1 - T goo

(40)

The conclusion is that flow graph methods provide a
relatively uncluttered derivation of this classical result.

(a) (b)

Fig. 34-The effect of load impedance upon input inpedance.

Flow graph representation also brings out the simi-
larities between feedback formulas for electronic circuits
and compensation theorems for passive networks. Con-
sider, for comparison, the determination of the input
impedance of the circuit shown in Fig. 34(a).

Superposition tells us that the branch gains of the
accompanying graph, Fig. 34(b), have the physical in-
terpretations

/E\
Z10C= open-circuit input impedance= a.

ZE2
Z2OC= (-)= open-circuit output impedance

=bc+d.
/E:2

= ( short-circuit output impedance =d.

By analogy with the previous problem
Z28c

1+-
ZLr ZL + Z2@Zi = ZIC ZiOc c.
Z2 ZL L+Z20C
ZL

(41)

(42)

(43)

(44)
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C. A wave reflection problem
The transmission line shown in Fig. 35(a) has two

shunt discontinuities spaced 0 electrical radians apart.
A voltage wave of complex amplitude A is incident upon
the first discontinuity from the left. It is desired to find
the resulting reflection B and the transmitted wave E.
Let C, D, C', D' be the waves traveling in opposite direc-
tions just to the right of the first obstacle and just to the
left of the second. In addition, let r and t denote the per
unit reflection or transmission of a single discontinuity.

r',t,' r2 ,'2
A C CG E

B D D'

(a)

A tI C a-is C' t2 E

r, r r2B _

B IF De-is( De

( b)

Fig. 35-Two discontinuities on a transmission line.

The accompanyinrg graph 35(b) is self-explanatory.
The only feedback loop present is the simple ring
CC'D'DC. By inspection of this graph, the over-all re-
flection and transmission coefficients are

B 112r26e-i2

A 1 - r1r2e-j2O
A 1E tlt2e-ia
A 1- rir2e-i2l

(45)

(46)

applies. By designing the incremental circuit for infinite
gain, the transfer curve becomes vertical at point p, and
the switching interval is made desirably small.
Assume for simplicity that the voltage divider feeding

the second grid has a resistance much greater than R,
(or let R1 denote the combined parallel resistance). Now
attempt to formulate E1 in terms of Eo and Ek by super-
position. When Ek-0, the ratio El/Eo is simply the gain
of a grounded-cathode stage. Similarly, with Eo 0,
the first tube becomes a grounded-grid stage driven by
Ek. This gives branches 01 and kl in the flow graph
shown in Fig. 36(d). Branches 12 and k2 follow the
same pattern for the second tube. Now Ek can be formu-
lated in a convenient manner. One possibility is the
computation of the two tube currents - E/R1 and
-E2/R2, whose sum may be multiplied by Rk to obtain
Ek, as shown.
The resulting graph is of index one, and either Ek or

Ik may be taken as the index node. The index-residue
would have the familiar form shown in Fig. 17(a). For
infinite gain one need only specify that the loop gain of
node Ek (or node I*, or branch Rk) must be unity. By
inspection of the graph, the three paths entering Tk are
kl2k, klk, and-k2k. Hence

Tk = Rk k(.i +1).2R,
L(rp, + R1)(rp2 + R2)

I1+ 1 _ 2 + I -

rp1+ R1 rp2+ R2
(47)

e2

NO. 2 CUTOFF

p

NO.I
CUTOfF

° Ne

SWITCHING INTERVAL

(a) ( b)

Eg9EoEf
Egi

(c) (d)

Fig. 36-A cathode-coupled limiter.

D. A limiter design problem

Fig. 36(a) shows a vacuum-tube circuit commonly
employed as a two-way limiter or level selector. The
static transfer curve shown in Fig. 36(b) exhibits a

high-gain central region limited on each side by cutoff.
In the neighborhood of point p, where both tubes are

conducting, the linear incremental circuit of Fig. 36(c)

It is a simple matter to solve (47) for the desired value
of the voltage divider parameter k.

V. CONCLUDING REMARKS

The flow graph offers a visual structure, a universal
graphical language, a common ground upon which
causal relationships among a number of variables may
be laid out and compared. From this viewpoint the
similarity between two physical problems arises not
from the arrangement of physical elements or the di-
mensions of the variables but rather from the structure
of the set of relationships which we care to write.
The organization of the problem comes from within

our minds and feedback is present only if we perceive a
closed chain of dependency. The challenge facing us at
the start of an analysis problem is to express the per-
tinent relationships as a meaningful and elegant flow
graph. The topological properties of the graph may then
be exploited in the manipulations and reductions lead-
ing to a solution.
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