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1. Introduction

Class field theory is the description of abelian extensions of global fields and local fields.
The label “class field” refers to a field extension satisfying a technical property that is
historically related to ideal class groups, and one of the main theorems is that class fields
are the same as abelian extensions.

Three themes in number theory at the end of the 19th century led to class field theory:
relations between abelian extensions and ideal class groups, density theorems for primes
(and L-functions), and reciprocity laws. We will outline how class field theory developed
from these initial ideas through the work of Kronecker, Weber, Hilbert, Takagi, Artin,
Hasse, and Chevalley. One point concerning chronology: while we usually attribute results
to mathematicians in years according to the appearance of the published papers, the actual
work was often done earlier (e.g., Takagi’s fundamental paper in 1920 was based on work
he had carried out several years earlier, with its publishing outside of Japan being delayed
by World War I).

Some general surveys on the development of class field theory are [3], [4] (a more detailed
version of [3], but not as accessible), [6], [8], [9], and the beginning of Part 2 of [10]. At
the start of each section, particular references for that material are indicated. References
to original papers are not given here, but can be found by consulting the cited sources.

Concerning notation, generally L/K will be an extension of number fields, with rings of
integers OL and OK , and E/F will be an extension of local fields. The set of primes in K
which split completely in L is Spl(L/K). Given a place v on K and a place w lying over it
in L, D(w|v) and I(w|v) are the associated decomposition and inertia groups.1

I thank Franz Lemmermeyer, Peter Roquette, Jean-Pierre Serre, and counselors at the
PROMYS program (particularly Dustin Clausen) for their comments.

2. Beginnings (Kronecker)

References: [12], [14], [20].

In 1853, Kronecker announced what is now called the Kronecker–Weber theorem.

Theorem 2.1 (Kronecker–Weber). Every finite abelian extension of Q lies in a cyclotomic
field Q(ζm) for some m.

Kronecker’s proof, by his own admittance, had difficulties with extensions of 2-power
degree. The first accepted proof was by Weber in 1886, but it also had an error at 2 which
went unnoticed for about 90 years. The first correct proof was Hilbert’s in 1896. It’s
worth saying something about the strategy of the proof because of its relation to Hilbert’s

1In the literature these are also denoted Z(w|v) and T (w|v) from the German: Zerlegungsgruppe and
Trägheitsgruppe.
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later ideas on class field theory. Hilbert starts with an abelian extension L/Q and uses his
recently developed theory of higher ramification groups to show L lies in a succession of
fields of the form Fn(ζn) where Fn is a subfield of L (so Fn is necessarily abelian over Q) such
that the ramification in Fn/Q can be made smaller in exchange for adjoining appropriate
roots of unity. Eventually Fn is an abelian unramified extension of Q, so Fn = Q since Q
has no proper unramified extensions (abelian or not). At this point we have L ⊂ Q(ζn) and
the proof is complete.

Abelian extensions of Q(i) were constructed by Abel (1829), using special values of the
lemniscatic elliptic function sl(z), whose period lattice is essentially Z[i]. (Abel was following
up on suggestions of Gauss in the Disquisitones Arithmeticae that there is a theory of arc
division on the lemniscate which parallels the theory of arc division on the circle using roots
of unity.) Extending Abel’s work, Kronecker was able to generate abelian extensions of any
imaginary quadratic field using special values of elliptic and modular functions. In a letter
to Dedekind in 1880, Kronecker’s described his “Jugendtraum” (dream of youth)2 as the
hope that every finite abelian extension of an imaginary quadratic field lies in one of the
extensions he had found. As a particular example, he expected that every finite abelian
extension of Q(i) lies in a field Q(i, sl(ω/m)), where ω ≈ 2.622 is the lemniscatic analogue of

π. This is similar to the Kronecker-Weber theorem, with sl(ω/m) analogous to ζm = e2πi/m.
An important case of Kronecker’s work uses the j-function: if K is imaginary quadratic

and we write OK = Z + Zτ1, where τ1 is in the upper half-plane, Kronecker showed the
number j(τ1) is algebraic over K and its K-conjugates are of the form j(τ1), . . . , j(τh) where
the lattices Z + Zτi are fractional ideals in K representing the different ideal classes of K.
Kronecker proved the field K(j(τ1)) is a Galois extension of K whose Galois group is iso-
morphic to the ideal class group of K. How can the ideal class group of K be identified with
the Galois group of K(j(τ1))/K? Let a fractional ideal b act on j(τi) using multiplication
in the class group: if b(Z+Zτi) = Z+Zτi′ in Cl(K) then set σb(j(τi)) = j(τi′). This action
of fractional ideals on the j-values descends to an action of the ideal class group on the
j-values.

Example 2.2. Let K = Q(
√
−31). The class number is 3 and ideals representing the

different ideal classes are (1), p2, p2, where p2 = 2Z + (1+
√
−31
2 )Z and p2 is the conjugate

ideal of p2. Scaling each ideal to be a lattice of the form Z+Zτ for τ in the upper half-plane,

three values of τ are 1+
√
−31
2 , 1+

√
−31
4 , and −1+

√
−31

4 . The values of the j-function at these
three numbers are the roots of the cubic polynomial

X3 + 39491307X2 − 58682638134X + 1566028350940383.

Its discriminant is −31 ·(319 ·112 ·133 ·17 ·23 ·29)2, so its splitting field over Q is Q(γ,
√
−31),

where γ = j(1+
√
−31
2 ) ≈ −39492793.9115. The extensionK(γ)/K is a cubic Galois extension

generated by a special value of the j-function.

Kronecker called K(j(τ)), where OK = Z+Zτ , the “species” associated to K, continuing
the co-opting of taxonomic terminology in number theory (earlier examples being class,
order, and genus). In examples, Kronecker observed the species of K is not just an extension
of K with Galois group isomorphic to the ideal class group, but has two other properties:
it is unramified over K and every ideal of K becomes principal in it. Hilbert will include
these properties as part of his general conjectures on Hilbert class fields.

2Kronecker was 56 at the time, and was in his 30s when he worked on the Kronecker–Weber theorem and
relations between modular functions and imaginary quadratic fields.
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In addition to the construction of abelian extensions, Kronecker set off another path to
class field theory in an 1880 paper on densities of primes and factorization of polynomials.
For a polynomial f(X) ∈ Z[X], Kronecker considered the number np of roots of f(X) mod p
in Fp as p varies. For example, if f(X) = X2 + 1 then n2 = 1 and np = 0 or 2 for odd p,
depending on p modulo 4. So on average, np is 1.

Theorem 2.3 (Kronecker, 1880). If f(X) has r irreducible factors in Z[X] then the average
value of np is r:

lim
s→1+

∑
p np/p

s∑
p 1/ps

= r.

The use of a density with Dirichlet series rather than as limx→∞(
∑

p≤x np)/#{p ≤ x}
is no surprise: the Prime Number theorem was still 16 years in the future, so a rigorous
notion of density at the time could not use denominator #{p ≤ x}.

Corollary 2.4. Let K/Q be a Galois extension. The set of primes which split completely
in K has density 1/[K : Q].

Proof. Write K = Q(α) for an algebraic integer α. Let f(X) ∈ Z[X] be the minimal
polynomial of α over Q. Because the roots of f(X) are polynomials in α with rational
coefficients, if f(X) mod p has a root then it splits completely (for all but finitely many
p), which means np = deg f = [K : Q] if np 6= 0. Letting A be the set of primes p such
np = [K : Q], Kronecker’s theorem says in this case

lim
s→1+

∑
p∈A 1/ps∑
p 1/ps

=
1

[K : Q]
,

so the (Dirichlet) density of the p where f(X) mod p splits completely is 1/[K : Q]. Since
f(X) mod p splits completely if and only if p splits completely in K (with finitely many
exceptions), the primes which split completely in K have density 1/[K : Q]. �

Example 2.5. Kronecker used Corollary 2.4 to prove irreducibility of the nth cyclotomic
polynomial by the following analytic method. Let K = Q(ζn), which is Galois over Q
since all nth roots of unity are powers of ζn. Let f(X) be the minimal polynomial of
ζn in Z[X]. By Corollary 2.4, the set of primes which split completely in K has density
1/[K : Q] = 1/ deg f(X). What are these primes? For all but finitely many p, p splits
completely in K if and only if f(X) splits completely in Fp[X], which is equivalent (for
any p not dividing n) to there being a primitive nth root of unity in Fp. That means
n|(p− 1), or p ≡ 1 mod n. So a prime p splits completely in K if and only if p ≡ 1 mod n,
with perhaps a finite number of exceptions. By Dirichlet’s theorem, the set of primes p
satisfying p ≡ 1 mod n has density 1/ϕ(n). Therefore deg f(X) = ϕ(n). Since ζn is a root
of the nth cyclotomic polynomial Φn(X), which has degree ϕ(n) and is monic in Z[X], this
proves f(X) = Φn(X), so Φn(X) is irreducible in Q[X].

Kronecker’s paper included two influential conjectures on sets of primes. The first one
asked for the density of the set of primes p such that f(X) mod p has a fixed number of
roots in Fp, where f(X) ∈ Z[X]. When the number of roots is deg f then f(X) mod p
splits completely and Kronecker found that density. He was unable to prove the existence
of these densities in general, but he conjectured they exist and described some properties the
densities should have. The existence of these densities was first established by Frobenius,
and in his work on this problem Frobenius introduced (1896) the Frobenius element of a
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prime ideal3 and conjectured what later became the Chebotarev density theorem. We will
see the importance of this result when we discuss Artin’s work on class field theory.

Kronecker’s second conjecture was that a Galois extension of Q is characterized by the set
of primes in Q which split completely in the extension (e.g., Q(i) is the only Galois extension
of Q in which the split primes are p ≡ 1 mod 4). He considered this idea as an arithmetic
“boundary value theorem,” just as Cauchy’s integral formula determines a complex analytic
function inside a disc from its values on the boundary. For a finite extension L/K, denote
the set of primes in K that split in L as Spl(L/K), so Kronecker had proved Spl(L/K) has
Dirichlet density 1/[L : K] when L/K is Galois. (Strictly, he proved this only for K = Q,
but the argument is similar for any number field, replacing a sum over prime numbers in
the density with a sum over prime ideals of K.) Kronecker’s conjecture was proved by M.
Bauer in 1903 for Galois extensions of any number field, not just Q.

Theorem 2.6 (Bauer). Let L1 and L2 be finite Galois extensions of a number field K.
Then L1 ⊂ L2 if and only if Spl(L2/K) ⊂ Spl(L1/K). In particular, L1 = L2 if and only if
Spl(L1/K) = Spl(L2/K).

Proof. If L1 ⊂ L2 then easily Spl(L2/K) ⊂ Spl(L1/K). Conversely, if Spl(L2/K) ⊂
Spl(L1/K), consider the extension L1L2/K. It is Galois, and Spl(L1L2/K) = Spl(L1/K)∩
Spl(L2/K). From the hypothesis, Spl(L1/K)∩Spl(L2/K) = Spl(L2/K), so Spl(L1L2/K) =
Spl(L2/K). Computing the Dirichlet density of both sides, we get 1/[L1L2 : K] = 1/[L2 : K]
by Corollary 2.4. Thus L1L2 = L2, so L1 ⊂ L2. �

Changing a set of primes by a finite amount does not affect its density, so Bauer’s theorem
is true with the inclusion and equality of sets of split primes being true up to finitely
many exceptions. For example, the only Galois extension of Q whose split primes are
{p ≡ 1 mod 4} up to finitely many exceptional primes is Q(i). Allowing finitely many
exceptional primes in Bauer’s theorem is important when we use it in the context of Weber’s
definition of a class field below.

Although Bauer’s theorem tells us that a Galois extension L/K is determined (as an
extension of K) by the primes in K which split completely in L, this doesn’t give us a
simple rule for describing the set of split primes. When L/K is abelian, class field theory
will give a simple rule for Spl(L/K) in terms of generalized congruences.

3. Splitting Laws (Weber)

Reference: [1].

In his 1891 book on elliptic functions and algebraic numbers, H. Weber introduced the
label “class field” for the species of Kronecker, so at first a class field was just a particular
abelian (conjecturally unramified) extension of an imaginary quadratic field, whose Galois
group is isomorphic to the ideal class group of the base field. In 1897, Weber extended the
concept of ideal class group: for any number field K and nonzero ideal m in OK , let Im
be the group of fractional ideals in K relatively prime to m and let P+

m be the group of
principal fractional ideals (α/β) where α and β are nonzero integers in K such that

• (α) and (β) are relatively prime to m,
• α ≡ β mod m.

3The construction of Frobenius elements was made by Frobenius in 1880 and independently found by
Dedekind, according to correspondence between them in 1882.
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• α/β is totally positive (that is, under all real embeddings of K, if there are any,
α/β has positive image).

Example 3.1. An ideal is in P+
(1) if it has a totally positive generator. In Q(

√
2), the ideal

(
√

2) is in P+
(1) even though

√
2 is not totally positive, since another generator

√
2(1+

√
2) is

totally positive. In Q(
√

3), (
√

3) 6∈ P+
(1) since

√
3u is not totally positive for any u ∈ Z[

√
3]×:

all units in Z[
√

3] have norm 1, so
√

3u has norm −3 and therefore can’t be totally positive.

The index [Im : P+
m ] is finite. Any intermediate group

P+
m ⊂ H ⊂ Im

is called an ideal group with modulus m and the quotient Im/H is called a generalized ideal
class group. If m = (1) and P is the group of principal fractional ideals, then P+

(1) ⊂
P ⊂ I(1) and I(1)/P is the ideal class group. When K = Q and m = mZ, Im/P

+
m
∼=

(Z/mZ)× (send each fractional ideal (a/b)Z, with positive generator a/b, to the congruence
class ab−1 mod m). Equivalence classes of quadratic forms, under the operation of Gauss
composition, are isomorphic to certain generalized ideal class groups of quadratic fields.

Considering Im/H as a generalization of (Z/mZ)×, Weber sought an analogue of Dirich-
let’s theorem (1837) that every congruence class in (Z/mZ)× contains infinitely many
primes: does each coset of Im/H contain infinitely many prime ideals? To solve this, Weber
adapted Dirichlet’s method, whose key tool was L-functions of characters χ : (Z/mZ)× →
C×, defined by

L(s, χ) =
∏

(p,m)=1

1

1− χ(p)p−s
=

∑
(n,m)=1

χ(n)

ns

for Re(s) > 1. The series converges (conditionally) for Re(s) > 0 when χ is nontrivial, and
the heart of Dirichlet’s argument is the proof that L(1, χ) 6= 0 for all nontrivial χ. Weber
introduced an L-function for characters ψ : Im/H → C×:

(3.1) L(s, ψ) =
∏
p-m

1

1− ψ(p) Np−s
=

∑
(a,m)=1

ψ(a)

Nas

for Re(s) > 1. When ψ is trivial, this is essentially the Dedekind zeta-function of K. By
studying the behavior of L(s, ψ) as s→ 1+ for all characters ψ of Im/H, Weber proved the
following result.

Theorem 3.2 (Weber). For a nonzero ideal m in OK and ideal group H with modulus
m, assume there is a Galois extension L/K such that Spl(L/K) ⊂ H with finitely many
exceptions. Then

(3.2) [Im : H] ≤ [L : K].

If Spl(L/K) = H with finitely many exceptions then [Im : H] = [L : K] and there are
infinitely many primes in each coset of Im/H.

Definition 3.3 (Weber, 1908). For a nonzero ideal m in OK and ideal group H with
modulus m, the class field over K for H is a Galois extension L/K such that for primes
p - m in K,

(3.3) p splits completely in L⇐⇒ p ∈ H.
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A class field over K, for Weber, is an extension of K whose set of split primes are (up to
finitely many exceptions) the prime ideals in an ideal group. We have to allow finitely many
exceptions because an ideal group with modulus m contains no prime dividing m (they are
not in Im) and some of the prime factors of m may split in the extension.

Theorem 3.2 tells us what class fields can be good for: their existence implies the infini-
tude of primes in cosets of generalized ideal class groups. Bauer’s theorem (allowing finitely
many exceptional primes) tells us the class field L/K for H is unique if it exists.

Example 3.4. The extension Q(i)/Q is the class field for P+
(4) since p splits in Q(i) if and

only if p ≡ 1 mod 4 (where p is a positive prime).

Example 3.5. The extension Q(
√

2)/Q is the class field for {P+
8 ,−P

+
(8)}, since p splits in

Q(
√

2) if and only if p ≡ ±1 mod 8.

Weber needed the existence of class fields to prove his extension of Dirichlet’s theorem
to generalized ideal class groups. For certain ideal groups H from imaginary quadratic K,
Weber could prove the existence of a class field L/K and an isomorphism of Gal(L/K) with
Im/H, but the existence of class fields for ideal groups over number fields beyond Q and
imaginary quadratics was left open.

4. Unramified Extensions (Hilbert)

References: [12], [18], [21].

Hilbert’s ideas about abelian extensions of number fields developed from his careful study
of three families of examples: quadratic and cyclotomic extensions of general number fields
and Kummer extensions of cyclotomic fields. One of his goals was to develop reciprocity
laws in number fields, building on his conception (1897) of the quadratic reciprocity law
over Q as a product formula:

∏
v(a, b)v = 1 for any a and b in Q×, where (a, b)v is the

v-adic Hilbert symbol:

(a, b)v =

{
1, if a = x2 − by2 is solvable in Qv,

−1, otherwise.

This is equivalent to quadratic reciprocity, but nicer in two respects: the prime 2 is on the
same footing as the other primes and there are no positivity or relative primality constraints
on a and b. There are several new aspects being used in this version of quadratic reciprocity:
emphasis on norms rather squares, p-adic equations4 rather than congruences modulo p, and
the infinite places on an equal footing with the finite places. Ultimately all three ideas will
appear in class field theory, and none are present in Weber’s work.

The Hilbert symbol makes sense on any number field K (replacing completions of Q with
completions of K in the definition), so Hilbert proposed a quadratic reciprocity law on K:∏
v(a, b)v = 1 for a and b in K× with v running over all the places of K. Hilbert’s proof of

this formula broke down for number fields which admit a quadratic extension unramified at
all primes. This doesn’t mean the result is wrong for those fields, only that the proof doesn’t
work. An obstruction like this had happened before: Kummer’s p-th power reciprocity
law in Q(ζp) (1859) was restricted to regular primes (p - h(Q(ζp))), which Hilbert could

4Hilbert wrote congruences modulo arbitrarily high powers of p, as the p-adics did not yet exist, although
they were just on the verge of existence: Hensel’s first paper on them appeared in 1897.
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interpret as avoiding the cases when Q(ζp) has an abelian unramified extension of degree
p. Hilbert’s proof of the Kronecker-Weber theorem succeeded in part because Q has no
(abelian) unramified extensions larger than Q. It is perhaps this experience which drove
Hilbert’s interest in unramified abelian extensions, as an obstacle in proofs. Thinking about
analogies between number fields and Riemann surfaces (e.g., prime ideals correspond to
points and unramified extensions of number fields correspond to unbranched coverings of
Riemann surfaces), Hilbert was led to the following conjecture.

Conjecture 4.1 (Hilbert, 1898). For any number field K there is a unique finite extension
K ′/K such that

(1) K ′/K is Galois and Gal(K ′/K) ∼= Cl(K),
(2) K ′/K is unramified at all places, and every abelian extension of K with this property

is a subfield of K ′,
(3) for any prime p of K, the residue field degree fp(K

′/K) is the order of p in Cl(K),
(4) every ideal of K is principal in K ′.

Condition (3) implies that a prime in K splits in K ′ if and only if it is principal in K,
so K ′ is a class field over K in Weber’s sense for the ideal group of all principal fractional
ideals in K. The field K ′ is called the Hilbert class field of K, but Hilbert just called it a
“class field.” Kronecker’s species of an imaginary quadratic field is its Hilbert class field.5

Example 4.2. The extensions

Q(
√

10,
√

2)

2

Q(
√
−23, α)

3

Q(
√
−31, β)

3

Q(
√
−14,

√
2
√

2− 1)

4

Q(
√

10) Q(
√
−23) Q(

√
−31) Q(

√
−14)

are all examples of Hilbert class fields over the base fields, with α3 − α − 1 = 0 and
β3 +β+ 1 = 0. In particular, each of these extensions has degree equal to the class number
of the base field and the Galois group of the extension is isomorphic to the ideal class group
of the base field. The third example is the same as Q(

√
−31, γ) in Example 2.2, since

β := −16480503γ2 + 11239722γ − 24150771 is a root of X3 +X + 1.

Hilbert proved Conjecture 4.1 whenever h(K) = 2 and he formulated Conjecture 4.1 as
a natural generalization of that work. In 1907, Furtwängler proved the first two parts of
Conjecture 4.1 in general and later used this to prove a p-th power reciprocity law in all
number fields (which for p = 2 is a quadratic reciprocity law). He proved the third part in
1911. The fourth part, which extends an observation of Kronecker for imaginary quadratic
fields, was proved by Furtwängler (1930) after Artin reduced it to a purely group-theoretic
statement related to the iterated Hilbert class field K ′′ = (K ′)′, which is a Galois extension
of K that is usually not abelian.

5Hilbert’s notion of class field was an abelian extension unramified at all prime ideals, allowing ramification at
infinity. For instance, Q(

√
3) and Q(

√
6) have class number 1 but Q(

√
3, i)/Q(

√
3) and Q(

√
6,
√
−2)/Q(

√
6)

are unramified at all prime ideals in Z[
√

3] and Z[
√

6]; there is ramification at infinity. Conjecture 4.1 by
Hilbert was about the “Hilbert class field in the narrow sense,” whose Galois group is isomorphic to the
narrow ideal class group where fractional ideals are identified only if their ratio is a principal ideal having a
totally positive generator. The narrow class numbers of Q(

√
3) and Q(

√
6) are 2. Our version of Conjecture

4.1 includes unramifiedness at the infinite places since that’s what the Hilbert class field means today.
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5. Class Field Theory Proved (Takagi)

References: [5], [7], [15]

T. Takagi studied in Germany during 1898–1901, partly with Hilbert in Göttingen. In
his 1903 thesis, Takagi proved the Jugendtraum for base field Q(i) using values of the
lemniscatic function, as Kronecker had envisioned. His proof was an adaptation to Q(i) of
Hilbert’s proof of the Kronecker–Weber theorem. In 1914, R. Fueter proved that for any
imaginary quadratic field K, viewed as a subfield of C, every odd degree abelian extension of
K inside of C is a subfield of some K(e2πir, j(τ)), where r ∈ Q and τ ∈ K (with Im(τ) > 0).
In other words, all odd degree abelian extensions of K are inside fields generated over K by
special values of two analytic functions at algebraic numbers: the exponential function e2πiz

at rational numbers and the j-function at numbers in K. Fueter also gave a counterexample
for extensions of even degree: Q( 4

√
1 + 2i) has degree 4 over Q(i) and is a cyclic extension,

but it lies in no field of the form Q(i, e2πir, j(τ)) for r ∈ Q and τ ∈ Q(i).
Takagi read the work of Furtwängler on the Hilbert class field and Fueter on the Jugend-

traum over imaginary quadratic fields. When World War I broke out in 1914, scientific
contact between Germany (the only place where algebraic number theory was under serious
study) and Japan ceased. Working in isolation, Takagi combined the work of Furtwängler
and Fueter with an inductive procedure to prove the existence of class fields in full generality,
and nearly everything else that was expected about them.

Takagi began with a new definition of a class field, using norms of ideals rather than
splitting laws and also incorporating infinite places into the modulus. (Note the influence
of Hilbert’s ideas on norms and infinite places.)

Definition 5.1. For a finite extension of number fields L/K and a prime P of L, let
p = P ∩K be the prime below it in K and set the norm of P in K to be

NL/K(P) := pf(P|p).

Extend the norm by multiplicativity to all fractional ideals in L.

This notion of norm is compatible with the ring-theoretic norm on principal fractional
ideals: NL/K(xOL) = NL/K(x)OK for x ∈ L×. Throughout class field theory, groups of
norm-values play a key role.

The link between Weber’s and Takagi’s viewpoints is that when L/K is Galois and p is
unramified in L, p splits in L (Weber) if and only if p is the norm of some ideal from L
(Takagi).

Definition 5.2. A K-modulus is a formal product m = mfm∞, where mf (the “finite part”)
is a nonzero ideal in OK and m∞ is a formal product of real embeddings of K. A fractional
ideal of K is called relatively prime to m when it is relatively prime to mf .

Let Im be the fractional ideals relatively prime to m and Pm be the principal fractional
ideals (α/β) where α and β are nonzero integers in K such that

• (α) and (β) are relatively prime to m,
• α ≡ β mod mf ,
• v(α/β) > 0 for all real embeddings v|m∞.

Any intermediate group Pm ⊂ H ⊂ Im is called an ideal group with modulus m. For a
finite extension L/K, set

Nm(L/K) := {a in K : a = NL/K(A) for a fractional ideal A in L, a is rel. prime to m}.
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and
Hm(L/K) := Pm Nm(L/K).

What is the purpose of the group Hm(L/K)? We want to create an ideal group using
norms of ideals, but Nm(L/K) need not contain Pm. Multiplying by Pm gives us a group
that contains Pm and thus becomes an ideal group. Put differently, the subgroup of Im/Pm

generated by cosets of Nm(L/K) is Hm(L/K)/Pm, so this quotient group is the “norm
subgroup” of Im/Pm that Takagi is focusing on. It eventually turns out that every subgroup
of Im/Pm is such a norm subgroup for some finite abelian extension of K.

What is the connection between Weber’s and Takagi’s ideal groups? For a general number
field K and nonzero ideal m, Weber’s P+

m equals Takagi’s Pm∞, where ∞ is the product
of all real places of the number field. Takagi has a more general construction than Weber
since Takagi allows varying sign conditions in his modulus. (Weber had largely worked over
imaginary quadratic fields, where there are no real places, so he had no motivation to be
sensitive to varying sign conditions.)

When m is a K-modulus and L/K is Galois, the primes of K not dividing m which split
in L lie in Nm(L/K) ⊂ Hm(L/K), so Spl(L/K) ⊂ Hm(L/K) except perhaps for primes
dividing m. Therefore Theorem 3.2 (whose proof works with any K-modulus in place of the
nonzero ideals in OK) implies

(5.1) [Im : Hm(L/K)] ≤ [L : K].

Definition 5.3 (Takagi). A Galois extension of number fields L/K is called a class field
when (5.1) is an equality for some K-modulus m. Any such m is called an admissible
modulus for L/K.

For all m the left side of (5.1) is no larger than the right side, so admissibility is a kind of
optimal property. For some extensions there could be an inequality for all m (that is, there
may be no admissible modulus at all).

Example 5.4. We saw in Example 3.4 that Q(i)/Q is a class field in Weber’s sense.
Now we will show it is a class field in Takagi’s sense, with admissible modulus 4∞. Since
N4∞(Q(i)/Q) ⊂ P4∞ (essentially because an odd sum of two integral squares is 1 mod 4),
H4∞(Q(i)/Q) = P4∞, and [I4∞ : P4∞] = #(Z/4Z)× = 2 = [Q(i) : Q], so the upper bound
is reached.

To define a class field, Weber picks any ideal group H and seeks a corresponding (class)
field L/K, which should exist and be abelian, while Takagi picks any L/K and sees if there
is an ideal group H making (5.1) an equality (which may not happen).

It is useful to know the relations among all admissible moduli for an extension L/K.
Any multiple of an admissible modulus is admissible.6 To prove this, if m|m′ then Im′ ⊂ Im,
Pm′ ⊂ Pm, and Nm′(L/K) ⊂ Nm(L/K), so Hm′(L/K) ⊂ Hm(L/K). The natural map
Im′/Hm′ → Im/Hm is onto,7 so (5.1) with modulus m′ implies [Im′ : Hm′ ] = [L : K] if
[Im : Hm] = [L : K]. For any two admissible K-moduli, their least common multiple is
admissible. Going the other way, the greatest common factor of two admissible moduli is

6Using Weber’s definition of a class field for an ideal group, call an ideal m in OK admissible for L/K if there
is an ideal group with modulus m in Weber’s sense whose class field in Weber’s sense is L. The notions of
admissible for Weber and Takagi ultimately turn out to coincide, but it’s a good exercise to check directly
from the definition that any multiple of an admissible modulus in Weber’s sense is admissible.
7This means any coset in Im/Hm contains an ideal relatively prime to m′ when m|m′. It generalizes the fact
that if m|n then the natural map (Z/nZ)× → (Z/mZ)× is onto.
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admissible (this is somewhat more delicate to show, since not every factor of an admissible
modulus is admissible), so we can speak about the least admissible modulus: there is a
K-modulus that is admissible for L/K and the admissible moduli for L/K are precisely the
multiples of it. The least admissible modulus for L/K is called the conductor of L/K and
is denoted fL/K from the German word Führer.8

Example 5.5. The extension Q(i)/Q has admissible modulus 4∞, but neither 2∞ nor 4
are admissible for Q(i)/Q since [I2∞ : P2∞] and [I4 : P4] equal 1 rather than 2, so the
conductor of Q(i)/Q is 4∞.

Theorem 5.6 (Takagi, 1920). Let K be a number field.

(1) (Existence) To each ideal group H there is a class field over K.
(2) (Isomorphism) If H is an ideal group with modulus m and has class field L/K, then

Gal(L/K) ∼= Im/H.
(3) (Completeness) Any finite abelian extension of K is a class field.
(4) (Comparison) If H1 and H2 are ideal groups with common modulus m and they have

class fields L1 and L2 (inside a common algebraic closure of K), then L1 ⊂ L2 ⇐⇒
H2 ⊂ H1.

(5) (Conductor) For any finite abelian extension L/K, the places of K appearing in the
conductor fL/K are the ramified places for L/K.

(6) (Decomposition) If H is an ideal group with modulus m and class field L/K, then
any prime p - m is unramified in L and the residue field degree fp(L/K) equals the
order of p in Im/H.

Some parts of this theorem had been proved earlier by Weber (comparison, and in some
cases isomorphism).

Here are two immediate consequences of Takagi’s theorem.

• A new proof of the first three parts of Conjecture 4.1 on the Hilbert class field.
Taking m = (1) and H = P(1), Im/H is the ideal class group of K, so the existence,
isomorphism, and decomposition theorems imply the first and third parts of Conjec-
ture 4.1. To prove the second part of Conjecture 4.1, let K ′/K be any finite abelian
extension unramified at all places of K. By the conductor theorem, fK′/K = (1),
so by the completeness theorem K ′ is the class field of an ideal group H ′ such that
P(1) ⊂ H ′ ⊂ I(1). Since P(1) = H, we get H ⊂ H ′, which implies K ′ ⊂ K by the
comparison theorem. The last part of Conjecture 4.1, that all ideals in K becomes
principal in the Hilbert class field of K, does not follow from Takagi’s work, so it
remained an open problem.
• A generalization of the Kronecker–Weber theorem to every number field K: for each
K-modulus m there is a finite abelian extension Km such that every finite abelian
extension of K is contained in some Km. These fields Km are defined through
the existence theorem: let Km be the class field over K of the ideal group Pm.
This definition uniquely determines Km by the comparison theorem (two abelian
extensions that are class fields to the same ideal group must be equal). Now if we
choose any finite abelian extension L/K, the completeness theorem tells us that
there is a K-modulus m such that L is the class field to an ideal group H where

8This technical meaning for Führer used to be translated as leader in the early 1930s. See the review of
Fueter’s book on complex multiplication in the 1931 Bulletin of the Amer. Math. Society, page 655.
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Pm ⊂ H ⊂ Im. By the comparison theorem, the containment Pm ⊂ H implies
L ⊂ Km, so every finite abelian extension of K lies in one of the field Km.

The fields Km are called ray class fields over K, and they are analogous to cyclo-
tomic fields over Q, except that their definition is extremely indirect. When K = Q
and m ≥ 1, the class field over Q of Pm∞ is Q(ζm) and the class field over Q of
Pm is the maximal real subfield Q(ζm + ζ−1m ) of Q(ζm), so the ray class fields of
Q are cyclotomic fields (and their maximal real subfields). For most number fields
K, there is no systematic way to write down its ray class fields. In particular, the
fields Km are generally not cyclotomic extensions of K, or contained in cyclotomic
extensions of K.

One way to see ray class fields of K don’t all lie in cyclotomic extensions of K
when K 6= Q was pointed out in [13]: if K 6= Q then there are many quadratic
(hence abelian) extensions L/K that are not in any cyclotomic extension of K, so
a ray class field over K that contains L is not in any cyclotomic extension of K.
To create such a quadratic extension, let p be an odd prime number that splits
completely in K. (There are infinitely many of these primes, for any K.9) Pick a
prime p of K lying over p. By the Chinese remainder theorem there is an α ∈ OK
such that α ∈ p − p2 and α ≡ 1 mod q for any prime q in K other than p that
lies over p. Since ordp(α) = 1, α is not a square in K. Set L := K(

√
α), which is

quadratic over K. From the way we chose α, the extension L/K is ramified at p
and unramified at any of the other primes in K lying over p. Check as an exercise
that if K ⊂ F ⊂ K(ζm) and some prime in K lying over p is unramified in F
then every prime in K lying over p is unramified in F . (For this, we just need
that p is unramified in K, not that it splits completely.) The field L violates that
property, so L is not in any cyclotomic extension of K. We have proved that the
naive generalization of the Kronecker-Weber theorem to any number field besides Q
is false: when K 6= Q, there are abelian extensions of K which are not contained in a
cyclotomic extension of K, and we can even choose such extensions to be quadratic.

Now we make some comments on the different parts of Takagi’s theorem.
Takagi proved the existence theorem from a counting argument, starting with the cyclic

case. To this day, all proofs of class field theory use a reduction to the cyclic case. The
complicated index calculations Takagi used in this proof were later streamlined by Herbrand.

The isomorphism and completeness theorems say the technically defined class fields over
K are the same as the finite abelian extensions of K. Takagi at first didn’t believe the
completeness theorem was really possible, i.e., that every finite abelian extension is a class
field. He wrote that trying to explain why this idea should be wrong almost led him to
a nervous breakdown. At that time nobody else in Japan was studying algebraic number
theory, so Takagi had no local colleagues who could check his work. Takagi did not prove
the isomorphism theorem with an explicit isomorphism, but only obtained it indirectly
(finite abelian groups have enough numerical invariants to make this possible, e.g., two
cyclic groups are abstractly isomorphic as soon as we know they have the same size). Artin
later contributed the essential ingredient to class field theory by writing down a natural and
explicit isomorphism from the Galois group to the ideal group.

9We won’t really need the full strength of p splitting completely in K. It will be sufficient that p is unramified
in K and has at least two primes lying over it in K. Taking it to split completely is the easiest way to make
those two properties hold.



12 KEITH CONRAD

In Takagi’s proof of the completeness theorem, he used (5.1) and an inequality that is its
reverse for abelian L/K:

(5.2) [Im : Hm(L/K)] ≥ [L : K]

for some m. Note (5.1) is valid for all Galois extensions, while (5.2) is stated only for abelian
extensions (and in fact is not true for any other extensions). Takagi proved (5.2) only for
cyclic extensions of prime degree, which sufficed for his inductive proof. Later Hasse found
a proof of (5.2) that did not need a restriction to prime degree. Unlike the proof of (5.1),
which uses Weber’s L-functions, the proof of (5.2) is purely algebraic and its ideas go back
to work of Gauss on quadratic forms.

The comparison theorem resembles Galois theory as long as we focus on class fields with
a common admissible modulus m. (These are the fields between K and the class field over
K for Pm.) Their corresponding ideal groups with modulus m are the subgroups between
Pm and Im. However, if we start to consider all class fields at once, then we run into a
comparison problem: the admissible moduli for two class fields might not be the same, so
we have to pass to a common admissible modulus for the two extensions before we can
compare them by their ideal groups. This is like comparing two abelian extensions of Q by
Galois theory only after embedding them in a common cyclotomic field, so it’s not a far-out
idea at all. If we want a bijection between all ideal groups in K and all class fields over K,
in the spirit of Galois theory, we need to identify together the ideal groups that have the
same class field. When does this happen? If H and H ′ are ideal groups for K defined with
moduli m and m′ (that is, Pm ⊂ H ⊂ Im and Pm′ ⊂ H ⊂ Im′), call H and H ′ equivalent if
there is a modulus m′′ divisible by both m and m′ such that the natural homomorphisms
Im′′ → Im/H and Im′′ → I ′m/H

′ have the same kernel, which says H ∩ Im′′ = H ′ ∩ Im′′ . Two
ideal groups in K which are equivalent in this sense have the same class field over K, and
the correspondence between class fields over K and ideal groups in K up to equivalence is
a bijection. This notion of equivalent ideal groups goes back to Weber, and is awkward.
When we pass to the language of ideles later, all equivalent ideal groups will merge into a
single subgroup of the ideles, making class field theory simpler.

The conductor theorem suggests the conductor and discriminant of an abelian extension
are related, since their prime factors agree.

Theorem 5.7 (Hasse). Let L/K be abelian and m be an admissible modulus for L/K. For
any character χ of Im/Hm, let Lχ be the class field to kerχ and set fχ to be the conductor
of Lχ/K. Then the discriminant of L/K is given by the formulas

disc(L/K) =
∏
χ

fχ,f ,

where χ runs over all characters of Im/Hm and fχ,f is the finite part of fχ.

This is the conductor-discriminant formula (or Führerdiskriminantenproduktformel). It
expresses the discriminant of an abelian extension L/K in terms of conductors of cyclic
subextensions Lχ/K (the Galois group of Lχ/K is isomorphic to the image of χ, which is a
cyclic group). Hasse’s proof used complex analysis, specifically the decomposition of ζL(s)
into a product of Weber L-functions for the characters of Im/Hm. In addition to writing
disc(L/K) as a product of the finite parts of the fχ, Hasse showed the conductor fL/K is
their least common multiple (retaining the infinite places).
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Example 5.8. When [L : K] = 2, disc(L/K) is the finite part of fL/K . In particular, if

L = Q(
√
d) for squarefree d, the conductor of L has finite part |d| or 4|d|, which proves

4|d|∞ is an admissible modulus for Q(
√
d).

The decomposition theorem shows a prime p - m splits in L if and only if p ∈ H, so
Weber’s and Takagi’s notions of class field agree. Takagi’s definition in terms of norms
rather than prime splitting just happens to be more convenient than Weber’s as a starting
point to prove theorems.

The decomposition theorem also tells us a special property of abelian extensions: the
primes which split in the extension are described by “congruence conditions.” For instance,
the primes p splitting in Q(

√
6) satisfy p ≡ 1, 5, 19, 23 mod 24. (This follows from quadratic

reciprocity.) These congruence classes are a subgroup of the units mod 24. To see what this
turns into for a general abelian extension L/K, we appeal to the completeness theorem: L is
a class field over K for some modulus m, so a prime p of K not dividing m splits completely
in L if and only if p lies in Hm (since p is unramified in L and the order of p in Im/Hm is
its residue field degree). Therefore the primes not dividing m which are in Spl(L/K) are
those in the subgroup Hm/Pm of Im/Pm, and lying in a subgroup should be thought of as
generalized congruence conditions. Since class fields over K are the same thing as abelian
extensions, splitting in an abelian extension is described by congruences. Amazingly, the
converse is also true by class field theory. To show this, we extend Bauer’s theorem.

Lemma 5.9 (Bauer, 1916). Let L1 and L2 be finite extensions of a number field K, with
L2/K Galois. Then L1 ⊂ L2 if and only if Spl(L2/K) ⊂ Spl(L1/K).

Proof. Let L̃1/K be the Galois closure of L1/K. Since L2/K is Galois, L1 ⊂ L2 if and only

if L̃1 ⊂ L2. Also a prime splits completely in an extension if and only if it splits completely

in the Galois closure, so Spl(L1/K) = Spl(L̃1/K). Now we can invoke Bauer’s theorem
given earlier (Theorem 2.6) for a pair of Galois extensions. �

Theorem 5.10. Let L/K be a finite extension of number fields and assume there is a K-
modulus m and a finite set S of primes in K containing all p|m such that whether or not a
prime p 6∈ S splits in L is determined by the coset of p in Im/Pm. Then L/K is an abelian
extension.

Proof. Let Rm be the class field over K of Pm, so a prime in K not dividing m splits in
Rm if and only if it is in Pm. Consider the composite extension LRm/K. The set of primes
in K splitting in a finite extension of K is infinite, so there is a prime q 6∈ S which splits
in LRm. Since q splits in Rm and doesn’t divide m, q ∈ Pm. For any prime p 6∈ S which
splits in Rm, p ∈ Pm (by the definition of Rm), so p = q in Im/Pm and therefore p splits in
L by hypothesis. Hence the primes of Spl(Rm/K) ⊂ Spl(L/K) except perhaps for primes
dividing m, so L ⊂ Rm by Lemma 5.9. (Here we need that Rm/K is Galois.) Since Rm/K
is abelian, the subextension L/K is abelian. �

Corollary 5.11. For a number field L/Q and m ∈ Z+, the following conditions are equiv-
alent:

(1) for any positive prime p not dividing m, the splitting of p in L/Q is determined by
a congruence condition on p mod m,

(2) L ⊂ Q(ζm).

Both Weber and Takagi defined class fields as Galois extensions with a certain additional
property (using prime splitting or group indices). In 1929, A. Scholz showed the Galois
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property can be dropped, as a non-Galois extension L/K has [Im : Hm(L/K)] < [L : K] for
all K-moduli m, so L/K can’t be a class field. Thus (5.1) holds for all finite extensions,
while (5.2) is still only true for abelian extensions. (The largest size of [Im : Hm(L/K)] as

m varies is [L̃ : K], where L̃ is the maximal abelian extension of K in L.)
At the end of Takagi’s paper, he proved Kronecker’s Jugendtraum for all imaginary

quadratic fields.

6. Canonical Isomorphism (Artin)

References: [11], [14]

With Takagi’s class field theory in hand, the next natural step was to search for an ana-
logue for non-abelian Galois extensions. Takagi raised this issue himself when he reported
on his work at the 1920 ICM. Artin thought a lot about this problem: what is non-abelian
class field theory? He was also thinking about the question of whether ζK(s) “divides”
ζL(s) when K ⊂ L, in the sense that the ratio ζL(s)/ζK(s) should be an entire function.
Hecke showed in 1917 that the zeta-function of any number field is analytic in the complex
plane except for a simple pole at s = 1, so ζL(s)/ζK(s) is meromorphic on C. The issue is
whether the multiplicity of any zero of ζK(s) is bounded above by its multiplicity as a zero
of ζL(s) so the ratio of zeta-functions doesn’t acquire any poles.

Although we can consider here any extension of numbers fields L/K, the only general
theorem that was known was for abelian extensions: the ratio ζL(s)/ζK(s) can be expressed
as a product of Weber L-functions of nontrivial characters (of an ideal group with class field
L/K) and Weber L-functions of nontrivial characters are entire functions, so L/K the ratio
ζL(s)/ζK(s) is entire when L/K is abelian. Artin wanted to treat the case when L/K is a
non-abelian Galois extension, and in this work he discovered L-functions of representations
of Galois groups, which involves Frobenius elements of prime ideals in an essential way.
When a Galois group is abelian, its representations are essentially just the characters of the
group and Artin’s definition looks like the following.

Definition 6.1 (Artin, 1923). Let L/K be a finite abelian extension with Galois group G.
For a character χ of G and Re(s) > 1, set

L(s, χ) =
∏

p unram.

1

1− χ(Frobp(L/K)) Np−s
,

where the Euler product is taken over the primes of K that are unramified in L.

The Frobenius element of a prime ideal is defined initially for unramified primes in the
top field. As a function of unramified primes in the bottom field, Frobenius elements are
only well-defined up to conjugation, so in an abelian Galois group they are still well-defined
elements.

For Artin’s L-function to have a clean functional equation, which we won’t discuss here,
there should be Euler factors in the L-function at the ramified primes too. For example,
if χ is the trivial character of Gal(L/K) then L(s, χ) ought to be ζK(s), but in the above
definition Euler factors at ramified p are missing. Since there is not a well-defined Frobenius
element at ramified primes in a Galois extension, it is not at all clear how to make a correct
definition for Euler factors at these primes based on the way Euler factors in the L-function
are defined at the unramified primes. In 1923, Artin was able to find the right Euler factors
for his L-functions at ramified primes only by a roundabout way using class field theory. In
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1930 he found a definition of the correct Euler factors at the ramified primes using inertia
groups without class field theory.10 The provisional definition of L(s, χ) above, using only
the unramified primes, will suffice for us.

Here’s the situation: Artin has L-functions for characters of Galois groups, Weber has
L-functions for characters of generalized ideal class groups, and for any abelian extension
L/K, Takagi proved there is an isomorphism

(6.1) Im/Hm
∼= Gal(L/K)

for all admissible K-moduli m (which are the multiples of the least admissible modulus
fL/K). But Takagi did not find any specific isomorphism between these groups; an isomor-
phism was only obtained in an indirect way. Since the Weber and Artin L-functions are
defined on characters of isomorphic groups, it is natural to ask for an explicit isomorphism
ϕ : Im/Hm → Gal(L/K) that identifies the L-functions: LA(s, χ) = LW (s, χ ◦ ϕ) for every
character χ of Gal(L/K), where we write LA and LW for the Artin and Weber constructions
of L-functions. Recall from (3.1) Weber’s L-function of a character ψ of Im/Hm:

L(s, ψ) =
∏
p-m

1

1− ψ(p) Np−s
.

Takagi showed any p - m is unramified in L, and if we use the conductor of L/K as a
modulus then the Weber L-function is a product over all unramified primes, just like the
Artin L-function. In any event, staring at the Euler factor of p in both the Artin and
Weber L-functions suggested to Artin an isomorphism ϕ from Im/Hm to Gal(L/K): let
ϕ(p) = Frobp(L/K) for p - m and extend ϕ to all of Im/Hm by multiplicativity.

There is certainly no problem in multiplicatively extending a function on prime ideals
not dividing m to all ideals in Im, since primes not dividing m generate Im without any
multiplicative relations between them, but the catch is whether we truly have a function
on Im/Hm: if primes p and q lie in the same coset of Im/Hm, is it true that Frobp(L/K) =
Frobq(L/K)? This is not obvious! In the special case that L/K is abelian of prime degree
` and µ` ⊂ K, Takagi showed a result of this kind in 1922, which must have encouraged
Artin that he was on the right track.

Definition 6.2. For an abelian extension L/K and K-modulus m divisible by the primes
which ramify in L, the Artin map ϕL/K,m : Im → Gal(L/K) is given by ϕL/K,m(p) =
Frobp(L/K) at primes not dividing m and is extended to Im by multiplicativity. For any
ideal relatively prime to m, ϕL/K,m(a) is called the Artin symbol at a.

Theorem 6.3 (Artin, 1927). When m is a K-modulus divisible by the places of K which
ramify in L, the Artin map ϕL/K,m : Im → Gal(L/K) is surjective and its kernel contains
Nm(L/K). When m is admissible for L/K, the kernel of the Artin map is Pm Nm(L/K) =
Hm(L/K), so Im/Hm(L/K) ∼= Gal(L/K) by the Artin map.

This is the Artin reciprocity law. The isomorphism in the reciprocity law makes Takagi’s
isomorphism theorem (which had no specific isomorphism in it) explicit and it also explains
the decomposition theorem since Frobp(L/K) has order fp(L/K) in Gal(L/K). Artin con-
jectured the reciprocity law in 1923, but at the time could only prove it in special cases,
such as cyclotomic and Kummer extensions. Several years later, Artin read Chebotarev’s

10The ramified primes also appear in Artin’s definition of the conductor for his L-function, which is a
constant in its functional equation.
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field-crossing method with cyclotomic extensions in the proof of the Chebotarev density
theorem and used the same idea to prove the reciprocity law in general.

By far the most difficult part of the Artin reciprocity law to prove is that the kernel of
ϕL/K,m for admissible m contains Pm: for (α) ∈ Pm, ϕL/K,m((α)) = 1.

Example 6.4. For a squarefree integer d 6= 1, the Galois group of Q(
√
d)/Q has size 2, so

it can be (uniquely) identified with {±1}. By Example 5.8, 4|d|∞ is an admissible modulus

for Q(
√
d)/Q. When p - 4d, the Artin map I4|d|∞ → Gal(Q(

√
d)/Q) ∼= {±1} sends pZ

to (dp), so for (a, 4d) = 1 the Artin map sends aZ to (da): the Jacobi symbol is a special

instance of the Artin map. The Artin reciprocity law in this case says for a > 0 with
a ≡ 1 mod 4d (a sign condition and a congruence condition) that (da) = 1. This equality is
also a consequence of Jacobi reciprocity, and is nearly equivalent to it.

Example 6.5. We will derive the main law of quadratic reciprocity from Artin reciprocity.
For an odd prime p, let p∗ = (−1)(p−1)/2p, so p∗ ≡ 1 mod 4. (The sign on p∗ is chosen so 2
doesn’t ramify in Q(

√
p∗).) The Artin map Ip∞ → Gal(Q(

√
p∗)/Q) sends any odd prime

ideal (q) 6= (p) to Frobq(Q(
√
p∗)/Q). By Example 5.8, the least admissible Q-modulus for

Q(
√
p∗)/Q has finite part | disc(Q(

√
p∗)/Q)| = |p∗| = p, so p∞ is admissible and therefore

the kernel of the Artin map contains Pp∞ by the Artin reciprocity law.
Identifying Ip∞/Pp∞ with (Z/pZ)× and Gal(Q(

√
p∗)/Q) with {±1}makes the Artin map

a homomorphism (Z/pZ)× → {±1} with the effect q mod p 7→ (p
∗

q ) for odd (positive) primes

q 6= p. It’s nontrivial since the Artin map is onto. The only homomorphism from (Z/pZ)×

onto {±1} is the Legendre symbol (p), so (p
∗

q ) = ( qp). Replacing p∗ with (−1)(p−1)/2p and

using the formula (−1q ) = (−1)(q−1)/2, we get (−1)(p−1)/2·(q−1)/2(pq ) = ( qp).

Remark 6.6. Since only p and (perhaps) ∞ ramify in Q(
√
p∗)/Q, this extension has

admissible modulus pr∞ for some r ≥ 1. The Artin map Ipr∞ → Gal(Q(
√
p∗)/Q) is trivial

on Ppr∞ by Artin reciprocity, so view it as a surjective homomorphism (Z/prZ)× → {±1}.
The group (Z/prZ)× is cyclic, so its only homomorphism onto {±1} is a mod pr 7→ (ap ) and

the proof ends as before: we do not need to know a priori that r = 1 is possible.

7. Local Class Field Theory (Hasse)

References: [2], [17]

Hasse was interested in class field theory since shortly after his thesis (1923). In the thesis
he classified quadratic forms with rational coefficients in terms of the simpler classification
of quadratic forms over real and p-adic numbers, expressed concisely as a “local–global
principle”. His proofs used Dirichlet’s theorem on primes and the quadratic reciprocity law
in the guise of Hilbert’s product formula. Hasse extended this work (1924) to quadratic
forms with coefficients in a number field, using Weber’s generalization of Dirichlet’s theorem
and the Hilbert–Furtwängler quadratic reciprocity law in number fields.

In 1923/1924, Hasse gave a course on class field theory. At Hilbert’s suggestion, the notes
for this course developed into a comprehensive report surveying the whole subject as it was
known at that time. The first installment of Hasse’s Klassenkörperbericht appeared in 1926.
This made class field theory much more accessible, but note the year: it was missing the
crown jewel of class field theory, Artin’s reciprocity law (1927). A second part of Hasse’s
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report came out in 1930, incorporating the reciprocity law and showing how it implies all
known power reciprocity laws that had been found up to that time.

One flaw in class field theory as described so far is the tendency to avoid dealing with
ramified primes. The groups Im for admissible moduli m don’t include ramified primes, and
Frobenius elements are not well-defined at ramified primes, so there is no way to extend the
Artin map to ramified prime ideals. However, the Hilbert-Furtwängler version of quadratic
reciprocity with the Hilbert symbol (a, b)v uses all places, ramified and unramified. Hasse
generalized this symbol in his report and obtained a product formula for it. Instead of using
a symbol with values that are roots of unity, Hasse’s symbol has values in a Galois group.

Definition 7.1. Let L/K be an abelian extension, α ∈ K×, and v a place of K. Define
(α,L/K)v ∈ Gal(L/K) by the following procedure.11

Write Gal(L/K) ∼= Im/Hm, with m an admissible modulus for L/K. When v is finite,
choose α0 ∈ K× such that α0 is close to α at v and α0 is close to 1 at the places in m
(excluding v if v is in m):

ordv

(α0

α
− 1
)
≥ ordv(m), ordw(α0 − 1) ≥ ordw(m), u(α0) > 0,

where w runs over finite places in m (excluding v) and u runs over real places in m. If v is not
in m, include the additional condition ((α0/α), v) = 1. (For instance, take ordv(α0/α−1) ≥
1.) Factoring the fractional ideal (α0) into a product of prime ideals, let a be its v-free part,
so (a,m) = 1 from the conditions on α0. Define12

(7.1) (α,L/K)v = ϕL/K,m(a)−1.

For infinite v where Kv is real, Lv is complex, and α < 0 in Kv, set (α,L/K)v to be the
complex conjugation in Gal(Lv/Kv) ⊂ Gal(L/K). For other infinite v, set (α,L/K)v to be
the identity.

Of course Hasse needed to check (α,L/K)v is independent of the choice of α0: if β0
has the same properties as α0, then (α0/β0) ∈ Pm, so ϕL/K,m((α0/β0)) = 1 by the Artin
reciprocity law. Therefore Hasse’s symbol (α,L/K)v is well-defined, but we have to bring
in some heavy machinery to show it! (The symbol also has to be shown to be independent
of the choice of admissible modulus m, which is fairly straightfoward to do by comparing
the construction at m with that at the conductor fL/K .) When L = K(

√
β) and we identify

Gal(L/K) with {±1}, (α,L/K)v equals the quadratic Hilbert symbol (α, β)v, so Hasse’s
construction generalizes the Hilbert symbol.

Example 7.2. We compute (−1,Q(i)/Q)v. (The exponent −1 in (7.1) won’t matter here,
since values of the symbol are their own inverses.) An admissible modulus for Q(i)/Q is
4∞. We identify Gal(Q(i)/Q) with {±1}. Since −1 < 0 in R, (−1,Q(i)/Q)∞ = −1. For
p = 2, we can use α0 = 3, so (−1,Q(i)/Q)2 = Frob3(Q(i)/Q) = (−13 ) = −1. For an odd
prime p, we can use α0 = 1, so (−1,Q(i)/Q)p = 1.

Example 7.3. In a similar way, (3,Q(i)/Q)v = −1 at v = 2 and v = 3, and (3,Q(i)/Q)v =
1 at other v (including v =∞).

11This procedure generalizes an approach of Hilbert to define Hilbert symbols at ramified places. See [21].
12Hasse’s definition of (α,L/K)v did not have the exponent −1. We include it to fit normalizations that
show up later.
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Example 7.4. Pick a prime p not dividing an admissible modulus m for L/K. For α ∈ K×,
let k = ordp(α). Choose α0 so that ordw(α0 − 1) ≥ ordw(m) for all w|mf , w(α0) > 0 for all

w|m∞, and ordp(α0/α − 1) ≥ 1. Then (α0) = pka where a is relatively prime to p and to
m. Then (α,L/K)p = ϕL/K,m(a)−1 = ϕL/K,m((α0)p

−k)−1. By Artin reciprocity, (α0) is in
the kernel of the Artin map, so

(α,L/K)p = ϕL/K,m(p)k = Frobp(L/K)ordp(α).

That the exponent on the right is ordp(α) rather than − ordp(α) comes from the exponent
−1 in the definition of (α,L/K)p. We see that (α,L/K)p has a simple definition in terms
of Frobenius elements when p - m. In particular, (α,L/K)v = 1 for all but finitely many v
since all but finitely many v don’t divide m and ordp(α) = 0 for all but finitely many p.

Theorem 7.5 (Hasse, 1930). For any finite abelian extension of number fields L/K and
α ∈ K×,

∏
v(α,L/K)v = 1.

Just as Hasse’s definition of (α,L/K)v depended on the Artin reciprocity law, so too his
proof of Theorem 7.5 used the Artin reciprocity law.

Hasse’s study of (α,L/K)v for finite v indicated that it should depend only on the local
behavior of K and L at v (that is, on the completion of K at v and of L at any place over
v), despite its roundabout global definition in terms of the Artin map at an ideal in K that
is relatively prime to v. For example, (α,L/K)v lies in the common decomposition group
D(w|v) for all places w|v on L, and this decomposition group is naturally identified with the
Galois group of completions Gal(Lw/Kv). (The definition we gave for (α,L/K)v for infinite
v is directly in terms of the completion at v and it is the generator of the decomposition
group Gal(Lw/Kv) as a subgroup of Gal(L/K).) This led Hasse to the discovery of class
field theory for local fields. The first version of local class field theory was worked out by
Hasse and F. K. Schmidt in 1930 and used global class field theory in an essential way:
an abelian extension of local fields is realized as the completion of an abelian extension of
number fields, and the global Artin map for that extension of number fields is used to define
a local Artin map.

Here’s how it goes. Starting with an abelian extension E/F of a (characteristic 0) local
field F , write F = Kv for some number field K and finite place v on K. (Every local field of
characteristic 0 contains a dense number field, so such K and v exist, in many ways in fact.)
Takagi’s class field theory implies there is an abelian extension L/K such that E = LKv. (It
is generally not true that one can arrange for [L : K] = [E : F ], even when E/F is cyclic.
The Grunwald-Wang theorem describes when it is possible.) For α ∈ K×, the symbol
(α,L/K)v belongs to D(w|v), which is naturally identified with Gal(Lw/Kv) = Gal(E/F ).
Hasse defined (α,E/F ) ∈ Gal(E/F ) to be the element in Gal(E/F ) corresponding to
(α,L/K)v. So we have a function K× → Gal(E/F ) by α 7→ (α,E/F ). This function is a
homomorphism and is v-adically locally constant, so it extends to all α ∈ K×v = F×, giving
a homomorphism (−, E/F ) : F× → Gal(E/F ) called the local Artin map. In particular, if
E/F is unramified and π is a prime in F then Example 7.4 implies (π,E/F ) is the local
Frobenius element in Gal(E/F ) (just like the global Artin map associates to an unramified
prime ideal its Frobenius element). If we had not used the exponent −1 to define (−, L/K)v
then (π,E/F ) would be the inverse of the Frobenius when E/F is unramified.

Compatibility properties of the global Artin map show (−, E/F ) is independent of the
number fields K and L and the place v on K used to construct it. It turns out that
(−, E/F ) has kernel equal to the norm subgroup NE/F (E×) ⊂ F×. This is a local analogue
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of Nm(L/K) being part of the kernel of the global Artin map ϕL/K,m, but in the local case
the norm subgroup is the full kernel.

Theorem 7.6. For an abelian extension of local fields E/F with characteristic 0, the lo-
cal Artin map α 7→ (α,E/F ) is a homomorphism from F× onto Gal(E/F ) with kernel
NE/F (E×), so F×/NE/F (E×) ∼= Gal(E/F ). Associating to E the group NE/F (E×) gives
a one-to-one inclusion-reversing correspondence between finite abelian extensions of F and
subgroups of finite index in F×.

The image of O×F in Gal(E/F ) under the local Artin map is the inertia group I(E/F ),
so

e(E/F ) = [O×F NE/F (E×) : NE/F (E×)] = [O×F : NE/F (O×E)].

Then f(E/F ) = [E:F ]
e(E/F ) = [F× : O×F NE/F (E×)] is the order of π in F×/O×F NE/F (E×) for

any prime π of F .
When E/F is not abelian, [F× : NE/F (E×)] < [E : F ].

If H ⊂ F× is a subgroup of finite index, call E the class field to H over F when
NE/F (E×) = H. Theorem 7.6 shows Takagi’s theorems about class fields over number
fields have analogues for class fields over local fields. The only missing part is the local
analogue of the conductor. For this, we need a local substitute for the ideal groups Pm. It
is the subgroups Un = 1 + πnOF for n ≥ 1 and U0 = O×F . Every ideal group in a number
field contains some Pm (by definition) and every subgroup of F× with finite index, say d,
contains all dth powers and thus contains some Un by Hensel’s lemma.13 When a subgroup
of F× contains some Un, it contains Un′ for all n′ ≥ n, so there is a Un inside it with minimal
n ≥ 0. Specifically, when E/F is abelian, let Un ⊂ NE/F (E×) with n as small as possible.
The conductor of E/F is defined to be the ideal πnOF , so the conductor is OF if and only
if E/F is unramified. When E/F is ramified, its conductor is a proper ideal of OF .

The global conductor-discriminant formula (Theorem 5.7) has a local analogue:

Theorem 7.7. Let E/F be an abelian extension of local fields with characteristic 0. For
a character χ of Gal(E/F ), let fχ be the conductor of the class field to kerχ. Then
disc(E/F ) =

∏
χ fχ, where the product runs over all characters of Gal(E/F ).

This theorem from local class field theory helps to compute the conductor in global
class field theory. For an abelian extension of number fields L/K, its conductor can be
computed locally: for a prime p of K and P|p in L, choose the least np ≥ 0 such that
1 + π

np
p Op ⊂ NLP/Kp

(L×P). The finite part of fL/K is
∏

p p
np . (The infinite part is the

product of the real places of K that extend to complex places of L.) So a K-modulus m is
admissible for an abelian extension L/K when, for each prime power pep fully dividing m,
1 + π

ep
p Op ⊂ NLP/Kp

(L×P) and m is divisible by all real places of K that ramify in L.

Example 7.8. In Example 5.4, we showed 4∞ is the conductor of Q(i)/Q by a global
argument using norms. Now we will check 4∞ is the conductor of Q(i)/Q by local arguments
at each place. Since only 2 and ∞ ramify in Q(i), the least admissible modulus is 2r∞ for
some r ≥ 1. The least value of r is the least r ≥ 1 such that 1 + 2rZ2 ⊂ NQ2(i)/Q2

(Q2(i)
×).

This norm group is the group of nonzero sums of two squares in Q×2 . Since −1 is not a sum
of two squares in Q2, r 6= 1. Any x ≡ 1 mod 4Z2 satisfies x ≡ 1 mod 8Z2 or x ≡ 5 mod 8Z2.

13This step uses characteristic 0. The pth powers in a characteristic p local field don’t contain a neighborhood
of 1. The relevant subgroups of F× for local class field theory in all characteristics are the open subgroups
of finite index, but openness follows from finite index in characteristic 0.
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In the first case x is a 2-adic square, so also a sum of two squares. In the second case, x/5
is a 2-adic square, so x is a sum of two squares since 5 is. Therefore we can use r = 2.

Since finite abelian extensions of a local field F of characteristic 0 correspond to finite-
index subgroups of F× = πZ × O×F

∼= Z × O×F , Gal(F ab/F ) is the profinite completion of

F× ∼= Z× O×F , which is Ẑ× O×F .

Example 7.9. Taking F = Qp, the local Kronecker–Weber theorem says every finite
abelian extension of Qp is inside a cyclotomic extension of Qp:

Qab
p =

⋃
n≥1

Qp(µn) =
⋃

(n,p)=1

Qp(µn) ·
⋃
r≥1

Qp(µpr),

where the first union is the maximal unramified extension of Qp, whose Galois group

over Qp is isomorphic to Ẑ. The second union has Galois group Z×p over Qp. Therefore

Gal(Qab
p /Qp) ∼= Ẑ× Z×p , which agrees with local class field theory.

E. Noether insisted that there should be a self-contained derivation of local class field
theory, and global class field theory should be derived from local class field theory. F.
K. Schmidt (1930) announced a local development of local class field theory for tamely
ramified extensions, but he did not publish it. The main problem in building local class
field theory is defining a local Artin map. This isn’t difficult for an unramified extension,
since there is a Frobenius element in the local Galois group just as in the global case at
unramified primes (Example 7.4). But a local construction of the local Artin map for
ramified abelian extensions of local fields is not at all easy. In 1933, Hasse found a local
description of the local Artin map for cyclic extensions, and Chevalley extended this to
abelian extensions. Their construction came from developments in noncommutative ring
theory, which is surprising since class field theory is about commutative Galois groups and
commutative fields. The particular noncommutative rings that matter are cyclic algebras.

The definition of a cyclic algebra goes back to Dickson (1906) and generalizes the con-
struction of Hamilton’s quaternions H. Note that

H = R + Ri+ Rj + Rk

= (R + Ri) + (R + Ri)j

= C + Cj,

with j2 = −1 and jz = zj. These rules tells us how to multiply two quaternions when
written in the form z + wj for complex numbers z and w. The structure here involves
complex conjugation, acting as an element of Gal(C/R). Dickson replaced C/R with any
cyclic extension.

Definition 7.10 (Dickson). Let L/K be a cyclic extension of fields with degree n, α ∈ K×,
and let σ be a generator of Gal(L/K). The direct sum

L⊕ Lx⊕ Lx2 ⊕ · · · ⊕ Lxn−1,

where

• xn = α,
• xγ = σ(γ)x for all γ ∈ L,

is called a cyclic algebra over K.
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Here K can be any field, not just a number field, there is no obvious link between cyclic
algebras and class field theory. Dickson called these “algebras of type D,” but the hint
didn’t have a long-term influence (unlike Banach’s “espaces du type (B)”.) They are no
longer called Dickson algebras.

Example 7.11. The quaternions are (C/R, c,−1), and (C/R, c, 1) ∼= M2(R).

Example 7.12. The quaternions with rational coefficients equal (Q(i)/Q, c,−1). They
are also (Q(

√
−5)/Q, c,−6), which is not obvious! The same cyclic algebra arising from

different cyclic extensions is like different polynomials having the same splitting field.

Theorem 7.13. With notation as above,

(1) (L/K, σ, α) has center K, K-dimension n2, and is a simple K-algebra (no 2-sided
ideals besides (0) and (1)),

(2) (L/K, σ, 1) ∼= Mn(K) as K-algebras,
(3) (L/K, σ, α) ∼= (L/K, σ, β) as K-algebras if and only if α/β ∈ NL/K(L×),

(4) for (t, n) = 1, (L/K, σt, α) ∼= (L/K, σ, αu), where tu ≡ 1 mod n.

Theorem 7.13(3) resembles the equivalence (α,E/F ) = (β,E/F ) ⇐⇒ α/β ∈ NE/F (E×)
in local class field theory. This suggests (but does not say how!) that cyclic algebras could
be a route to a purely local definition of the local Artin symbol (α,E/F ), and that is exactly
what happened. We need to know what the cyclic algebras over a local field look like. Hasse
showed they can always be put into a standard form using unramified extensions.

Theorem 7.14 (Hasse, 1931). Every cyclic algebra over a local field F of characteristic 0
with F -dimension n2 is a cyclic algebra of the form

(Fn/F,Frob, πa),

where Fn is the unramified extension of F with degree n, Frob is the canonical generator of
Gal(Fn/F ), π is a prime in F , and a ∈ Z.

The norm subgroup NFn/F (F×n ) from the unramified extension of degree n is πnZ × O×F ,
so Theorem 7.13(3) tells us two things:

(1) (Fn/F,Frob, πa) ∼= (Fn/F,Frob, πb) as F -algebras if and only if a ≡ b mod n,
(2) (Fn/F,Frob, πa) is independent of π,

Therefore the class a mod n is a well-defined invariant of the F -algebra (Fn/F,Frob, πa).
By Theorem 7.13, this invariant is 0 mod n precisely when the algebra is isomorphic to
Mn(F ).

Now we can give a local definition of (α,E/F ), first for cyclic E/F and then for abelian
E/F . Let n = [E : F ], with F a local field of characteristic 0. For α ∈ F× and σ a generator
of Gal(E/F ), consider the cyclic algebra

A = (E/F, σ, α).

Let the invariant of A be a mod n. If we change σ, we usually get a new (that is, non-
isomorphic) cyclic algebra, so a will usually change too. Although A depends on the choice
of generator σ of Gal(E/F ), the power

σa ∈ Gal(E/F )

is independent of σ, and is the local Artin symbol defined before: (α,E/F ) = σa.14 If E/F
is abelian rather than cyclic, write E = E1 · · ·Er with cyclic Ei/F . Then Gal(E/F ) embeds

14If the definition of a cyclic algebra had γx = xσ(γ) instead of xγ = σ(γ)x then (α,E/F ) = σ−a.
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into
∏
i Gal(Ei/F ), with the image being the sequences which agree on the overlaps Ei∩Ej .

For α ∈ F×, the symbols (α,Ei/F ) agree on the overlaps Ei∩Ej , so they come by restriction
from a single element of Gal(E/F ), and this is precisely the local Artin symbol (α,E/F )
defined before. By proving ab ovo that this construction of (α,E/F ) is independent of the
choice of cyclic subextensions Ei/F , local class field theory can be developed without global
class field theory.

Like Takagi in the global case, this approach to local class field theory does not give an
explicit construction of class fields over local fields. Such a construction was achieved later
(1965) by Lubin and Tate using formal groups.

We now turn to the case of number fields and get a definition of Hasse’s (α,L/K)v for
finite v without recourse to the global Artin map. (For infinite v we already presented a
direct local definition of (α,L/K)v.) Let L/K be a cyclic extension of number fields, with
degree n. Pick a generator σ of Gal(L/K). For any α ∈ K×, A := (L/K, σ, α) is a cyclic
K-algebra. When v is a finite place of K, the tensor product Kv ⊗K A is a cyclic Kv-
algebra with Kv-dimension n2.15 Let it have invariant av mod n. Then (α,L/K)v = σav .
The definition of (α,L/K)v for abelian L/K proceeds as in the local case by writing L as
a composite of cyclic extensions of K.

Example 7.15. Consider Q(i)/Q with Galois group {1, c} ∼= {±1}. We want to compute
(−1,Q(i)/Q)v using the new definition of these symbols. (They were computed before in
Example 7.2 with Hasse’s original definition.)

Here n = [Q(i) : Q] = 2 and our only choice for σ is c = −1. The cyclic algebra
(Q(i)/Q, c,−1) is the rational quaternions H(Q), and Qv⊗Q H(Q) ∼= H(Qv).

16 When v =
∞, H(Qv) = H(R) is the real quaternions, whose invariant is 1 mod 2, so (−1,Q(i)/Q)∞ =
c1 = c = −1. The 2-adic quaternions are H(Q2) = (Q2(i)/Q2, c,−1), but this is not in the
normalized form of Theorem 7.14 for two reasons: Q2(i)/Q2 is ramified and the parameter
−1 is not an integral power of 2. It turns out that H(Q2) ∼= (Q2(

√
−3)/Q2, c, 2), which is

in standard form, so a2 ≡ 1 mod 2. Therefore (−1,Q(i)/Q)2 = ca2 = c = −1.
For odd primes p, −1 = x2 + y2 for some x and y in Qp (since −1 ≡ x2 + y2 mod p is

solvable and we can lift to a p-adic solution with Hensel’s Lemma). Therefore17 H(Qp) ∼=
M2(Qp), whose invariant is 0 mod 2, so (−1,Q(i)/Q)p = 1.

Armed with the new local definition of (α,L/K)v, Hasse (1933) proved Theorem 7.5
without global class field theory and could derive the Artin reciprocity law from Theorem
7.5. Since Hasse originally used the Artin reciprocity law to prove Theorem 7.5, Theorem
7.5 is equivalent18 to the Artin reciprocity law. But unlike the Artin reciprocity law, all the
places of K occur in Theorem 7.5, so we are getting closer to a more balanced formulation
of the reciprocity law.

15The base extension of a cyclic algebra to a larger base field might not be a cyclic algebra according to
the definition we gave, e.g., C ⊗R H ∼= M2(C) apparently isn’t a cyclic C-algebra since C doesn’t have
a quadratic field extension with which to create a C-algebra of dimension 4. In the definition of a cyclic
algebra (L/K, σ, α), we could relax the hypothesis that L/K is a cyclic field extension to L being a separable
K-algebra of dimension n admitting a K-automorphism σ of order n whose fixed set is K. Then, for instance,
Mn(K) ∼= (Kn/K, σ, 1) where σ is the cyclic shift of the coordinates of Kn. This makes Mn(K) a cyclic
algebra over K whether or not K has a degree n cyclic field extension and the base extension of a cyclic
algebra is a cyclic algebra.
16For a field K, let H(K) = K +Ki+Kj +Kk with the usual rules of multiplication on the basis.
17For any field K of characteristic not 2, H(K) ∼= M2(K) if and only if −1 is a sum of two squares in K.
18Proving Theorem 7.5 without class field theory is hard, since it is the Artin reciprocity law in disguise.



HISTORY OF CLASS FIELD THEORY 23

The mathematical structure underlying cyclic algebras (and more general crossed product
algebras, which are the analogue of cyclic algebras using general Galois extensions in place
of cyclic extensions) is group cohomology. After World War II, developments in class field
theory led to the stripping away of the algebras (which after all were defined entirely in
terms of the number fields themselves) in proofs of class field theory as far as possible,
leaving behind only cohomological formalism. This is how cohomology entered local and
global class field theory in the period 1950–1952 in work of Hochschild, Nakayama, Weil,
Artin, and Tate.

8. Idelic Class Field Theory (Chevalley)

Reference: [8]

With local class field theory having been set up on its own terms, a remaining task was
to derive the theorems of global class field theory from those of local class field theory. The
new concept which allowed this is the idele group of a number field. It was first defined by
Chevalley for the purpose of describing global class field theory for infinite extensions, but
several years later he used ideles in a new way to get global class field theory from local
class field theory.

Let’s see why the classical description of the Artin map, in terms of ideals, is not well-
suited to describe infinite abelian extensions of a number field. When K ⊂ L ⊂ L′ is a
tower of finite abelian extensions of K, and a K-modulus m is admissible for L′ (and thus
also for L), the diagram

(8.1) Gal(L′/K)

res.

��

Im

ϕL′/K,m
::

ϕL/K,m %%
Gal(L/K)

commutes. But as L′ grows, the domain Im of the Artin map has to change since the modulus
needs to become more highly divisible by primes to keep up with the ensuing ramification.
(This resembles the slightly annoying feature of Takagi’s comparison theorem: ideal groups
must be defined to the same K-modulus.) We want to replace Im with an object that
doesn’t involve a modulus, so the behavior of (8.1) as L′ grows is cleaner.

Definition 8.1 (Chevalley, 1936). The idele group JK of a number field K is the set of
sequences (xv)v, indexed by the places v of K, such that xv ∈ K×v for all v and xv ∈ O×v for
all but finitely many v, where Ov is the ring of integers of Kv.

An element of JK is called an idele. Chevalley first called it an “élément idéal,” abbrevi-
ated later (at Hasse’s suggestion) to idèle. Under componentwise multiplication, the ideles
are a group, and they lie between the direct sum of the K×v ’s (xv = 1 for all but finitely
many v) and the direct product of the K×v ’s (xv ∈ K×v with no constraints). We embed
K× ↪→ JK diagonally, the image being called the principal ideles (analogue of principal
ideals). We also embed K×v ↪→ JK singly (on the v-coordinate, with 1’s elsewhere).
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To each idele x ∈ JK we have a fractional ideal

ι(x) =
∏
v-∞

pordv(xv)v ,

where the right side is a finite product since xv ∈ O×v for all but finitely many v. The image
of a principal idele is the principal ideal of the same element of K×. The archimedean
components of x play no role in ι(x).

Using this passage from ideles to ideals, any generalized ideal class group of K can be
realized as a quotient group of JK as follows. Pick a K-modulus m. Starting with an idele
x ∈ JK , pick α0 ∈ K× (by the approximation theorem) so that for v in m we have

(8.2) ordv(xv/α0 − 1) ≥ ordv(m)

when v|mf , and

(8.3)
xv

v(α0)
> 0

when v|m∞. (This is the analogue of Hasse’s choice of auxiliary α0 in the definition of the
symbol (α,L/K)v.) The idele x/α0 = (. . . , xv/α0, . . . ) has corresponding ideal ι(x/α0) in
Im. If β0 ∈ K× has the same properties as α0 then the ideals ι(x/α0) and ι(x/β0) differ
by the principal ideal (β0/α0), which lies in Pm, so ι(x/α0) is well-defined in terms of x as
an element of Im/Pm. Sending x to ι(x/α0) is a homomorphism from JK onto Im/Pm. If
x = (α, α, . . . ) is a principal idele, we can use α0 = α, so the image is 1, which means the
map JK → Im/Pm kills all principal ideles. Therefore all generalized ideal class groups of
K can be viewed as quotients of the single group JK , or even of JK/K

×. If we multiply
an archimedean component of x by a positive real number then the new idele x′ has the
same image as x in Im/Pm, because x and x′ admit the same choices for α0 in (8.2) and
(8.3), and ι(x′/α0) = ι(x/α0) since forming fractional ideals from ideles doesn’t involve
the archimedean components. Therefore generalized ideal class groups are all quotients of
J1
K/K

×, where J1
K is the group of ideles with idelic norm 1. (Any idele can be scaled by

a positive number in an archimedean component to obtain idelic norm 1, and this scaling
doesn’t change the image of the idele in a generalized ideal class group.)

As an indication of the simplicity coming from this viewpoint, let’s return to the equiva-
lence relation put on ideal groups in K to make the correspondence between class fields and
(equivalence classes of) ideal groups a bijection. An ideal group H with modulus m can be
converted into a subgroup of JK containing K×: take the inverse image of H/Pm under the
map JK → Im/Pm. Two ideal groups H and H ′ are equivalent (meaning H∩Im′′ = H ′∩Im′′
for some multiple m′′ of the moduli for H and H ′) exactly when they correspond to the
same group of ideles.

Now we introduce an idelic version of the Artin map. When L/K is an abelian extension
of number fields and m is an admissible K-modulus for this extension, the composite map

ϕL/K : JK // Im/Pm

ϕL/K,m // Gal(L/K)

is a surjective homomorphism and (by properties of the Artin map ϕL/K,m) is independent of

the choice of admissible m. This composite map is the idelic Artin map, and ϕL/K(K×) = 1
from the construction. To describe the full kernel of the idelic Artin map, norms on ideles
are needed. Define NL/K : JL → JK by NL/K(y) = x where xv =

∏
w|v NLw/Kv

(yw) for
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all places v of K. The kernel of ϕL/K is K×NL/K(JL), which is the idelic counterpart to
Pm Nm(L/K).

To formulate class field theory as a one-to-one correspondence using ideles, we need a
topology on JK . The topology Chevalley put on JK was not Hausdorff (e.g., the closure
of {1} is the connected component of JK .) It was later replaced by the restricted product
topology, where a basic open neighborhood of 1 in JK is a set

∏
v Uv with Uv an open

neighborhood of 1 in K×v for all v and Uv = O×v for all but finitely many v. (The product
topology would have Uv = K×v for all but finitely many v.) With this topology, JK is a
locally compact topological group. (Using the product topology, JK is not locally compact,
which is why the product topology is not the right choice.)

Theorem 8.2. For an abelian extension of number fields L/K, the idelic Artin map
x 7→ ϕL/K(x) is a homomorphism from JK onto Gal(L/K) with kernel K×NL/K(JL),

so JK/K
×NL/K(JL) ∼= Gal(L/K). Associating to L the group K×NL/K(JL) gives a one-

to-one inclusion-reversing correspondence between finite abelian extensions of K and open
subgroups of finite index in JK which contain K×.

For each place v of K, pick a place w in L lying over v. The composite map

K×v // JK
ϕL/K // Gal(L/K)

has image the decomposition group D(w|v) and kernel NLw/Kv
(L×w), and the restriction to

O×v has image the inertia group I(w|v) and kernel NLw/Kv
(O×w ).

Both D(w|v) and I(w|v) do not depend on the choice of w since Gal(L/K) is abelian.
Using subgroups of JK/K

× in Theorem 8.2 instead of subgroups of JK containing K×,
finite abelian extensions ofK correspond one-to-one with “norm subgroups” of JK/K

×. The
isomorphism JK/K

×NL/K(JL) ∼= Gal(L/K) is analogous to Im/Pm Nm(L/K) ∼= Gal(L/K).
The idelic class field theory still has a flaw: while the idelic Artin map ϕL/K is independent

of the admissible modulus used in its construction, we are still using an admissible modulus
to define it, so a proof of Theorem 8.2 has to fall back on the ideal-theoretic global class field
theory. We will see how this flaw gets sorted out below. But first we use the idelic viewpoint
to get a workable substitute for (8.1) that lets us pass to infinite abelian extensions.

When K ⊂ L ⊂ L′ is a tower of finite abelian extension of K and m is an admissible
K-modulus for L′ (and thus also for L), the diagram

Gal(L′/K)

res.

��

JK/K
×

ϕL′/K
88

ϕL/K &&
Gal(L/K)

commutes and can be used in place of (8.1): the source group JK/K
× does not change as

L′ grows, so we can pass to an inverse limit compatibly to get a homomorphism

(8.4) (−,K) : JK/K
× → Gal(Kab/K)

mapping to the Galois group of the maximal abelian extension of K. Since the map is onto
at finite levels, it has dense image. To show the image is Gal(Kab/K) consider (−,K) on
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the subgroup J1
K/K

×, which is compact (unlike JK/K
×). Shrinking JK/K

× to J1
K/K

×

maintains surjectivity of the idelic Artin maps JK → Gal(L/K) – this goes back to the fact
that each generalized ideal class group is a quotient not just of JK , but of J1

K – so the image

of (−,K) : J1
K/K

× → Gal(Kab/K) is dense. The image is also compact, and thus closed,

so the image is Gal(Kab/K). The kernel of (8.4) is the connected component of the identity
in JK/K

×, so Gal(Kab/K) is the largest totally disconnected quotient group of JK/K
×.19

Finally, we arrive at a description of the idelic Artin map ϕL/K that doesn’t require
admissible moduli and illustrates the local-global principle.

Theorem 8.3. For a finite abelian extension of number fields L/K and x ∈ JK ,

(8.5) ϕL/K(x) =
∏
v

(xv, Lw/Kv),

where w is any place in L over v and the local Artin symbol (xv, Lw/Kv) ∈ Gal(Lw/Kv) is
viewed in D(w|v).

On the right side of (8.5), all but finitely many factors are trivial since for all but finitely
many v, Lw/Kv is unramified, xv ∈ O×v , and O×v ⊂ NLw/Kv

(L×w) for unramified v. The hard

step in the proof of (8.5) is showing the right side is trivial on K×. This is exactly Hasse’s
old product formula (Theorem 7.5), which is equivalent to the Artin reciprocity law, whose
hard step classically was the proof that the global Artin map is trivial on Pm. So we see
that all the new notation doesn’t make class field theory any easier, or change what the
hard step is, but the formalism surrounding the difficulties is much more elegant. Reproving
Theorem 8.2 by using the right side of (8.5) as a new definition of the idelic Artin map lets
global class field theory be derived from local class field theory.

The two classical inequalities (5.1) and (5.2) are still important in the idelic development
of class field theory. The idelic version of (5.1) says [JK : K×NL/K(JL)] ≤ [L : K] for any

finite extension L/K, while the idelic version of (5.2) says [JK : K×NL/K(JL)] ≥ [L : K]
when L/K is abelian (and the inequality is false if L/K is not abelian). The original proof
of (5.1) used Weber L-functions, so complex analysis was needed. In 1940, Chevalley found
a purely algebraic proof of (5.1) in its idelic form. His argument used Pontryagin duality on
JK/K

× to derive (5.2) in its idelic form without L-functions and using this he could prove
(5.1) in its idelic form for abelian extensions. Because of the new logical dependencies,
with (5.2) being used to prove (5.1), the order of appearance of the two inequalities in the
development of class field theory had to be reversed, which led to a name change. From
1920 to 1940, (5.1) was called the first inequality of class field theory and (5.2) was called
the second inequality of class field theory. After 1940, (5.1) was called the second inequality
and (5.2) was called the first inequality.

9. Function fields

References: [16], [19]

The development of arithmetic in function fields over finite fields, beyond Fq(x), began
with Artin’s 1921 thesis, which explored the arithmetic of quadratic extensions of Fq(x) and

19From the viewpoint of infinite Galois theory, Gal(Kab/K) is the inverse limit of the ideal groups Im/Pm,
partially ordered by reverse divisibility of the K-moduli m. Weber’s equivalence relation on ideal groups,
when using Takagi’s K-moduli, not just ideals as moduli, says ideal groups are equivalent when they corre-
spond to the same subgroup of the inverse limit of the groups Im/Pm.
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their zeta-functions for odd q. (The thesis itself only treated the case when q = p is prime,
but Artin recognized that with no essential changes any finite constant field can be used.)
Artin used these quadratic extensions to prove a quadratic reciprocity law for Fq(x) in odd
characteristic, adapting an argument of Kummer for the classical quadratic reciprocity law
that used parity properties of class numbers of quadratic fields. In 1925, F. K. Schmidt
began the development of arithmetic in a general finite extension of Fq(x), including an
(easy) n-th power reciprocity law when the constant field of the extension contains the nth
roots of unity. Later Schmidt (1931) sketched a partial development of class field theory
for function fields in characteristic p when the degrees of the abelian extensions are not
divisible by p, following closely the ideas of Takagi. However, Schmidt was not able to treat
the existence theorem as Takagi had done for number fields.

In 1934, Hasse proved the Artin reciprocity law20 in the function field case, using cyclic
algebras, as he had done a year before in the number field case. Theorem 7.14 is true
for characteristic p local fields by the same argument as for characteristic 0 local fields,
leading to a local class field theory in characteristic p. Its theorems are identical to the
characteristic 0 local class field theory, except one needs to be explicit about using open
subgroups of finite index. Hasse’s product formula (Theorem 7.5) is true in the function
field case, where it turns out to be a consequence of the residue theorem for function fields.
In 1935, Witt proved the existence theorem (for the first time) for abelian extensions with
degree divisible by p, complementing Schmidt’s work for abelian extensions with degree not
divisible by p. This completed the basic statements of class field theory for function fields.

Chevalley’s idelic viewpoint makes sense for both number fields and function fields, so
it permits a simultaneous development of both cases. However, a dichotomy between the
two cases occurs in class field theory for infinite abelian extensions. For a function field
K, as for a number field, the idelic Artin map JK/K

× → Gal(Kab/K) has a dense image,
but now the map is injective rather than surjective.21 Its image can be characterized as
the elements of Gal(Kab/K) which, on the algebraic closure of the constant field of K, are
integral powers of the Frobenius automorphism.

In the 1950s, Lang developed class field theory for function fields over a finite field using
algebraic geometry, at first for unramified abelian extensions and then for ramified abelian
extensions. He proved an analogue of Artin’s reciprocity isomorphism geometrically without
the intervention of inequalities like (5.1) and (5.2). Lang used Rosenlicht’s generalized Ja-
cobian varieties (an analogue of Weber’s generalized ideal class groups) to show the abelian
extensions he described geometrically, together with constant field extensions, account for
all finite abelian extensions in the function field case.

These approaches to class field theory over function fields do not give explicit class fields
cofinal in all finite abelian extensions, which would be analogous to the cyclotomic fields over
Q (Kronecker–Weber theorem). Even in the number field case, the explicit construction
of class fields is still a challenging problem except over Q and imaginary quadratic fields.
Hayes (1974), building on work of Carlitz (1938), constructed an explicit class field theory
over rational function fields. That is, Hayes wrote down explicit finite abelian extensions
of Fq(x) such that any finite abelian extension of Fq(x) is inside one of them.22 Drinfeld

20Hasse only treated the reciprocity law for cyclic extensions, which is the main case.
21The proof of surjectivity in the number field case breaks down in the function field case because there is
nothing like the archimedean places where we can scale an idele to have norm 1 without changing its image
under the Artin map.
22To verify his explicit class field theory worked, Hayes used the abstract class field theory.
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(1974) used Drinfeld modules (called “elliptic modules” by him, from the analogy with
complex multiplication on elliptic curves) to achieve the same goal for any function field in
one variable over a finite field, not just the rational function field. Roughly, what makes
the function field case different from the number field case from the viewpoint of explicit
class field theory is that in characteristic p there are far more additive functions.
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l’histoire des mathématiques au XXe siècle,” Soc. Math. France, Paris, 1998, 243–273.

[19] J-P. Serre, “Algebraic Groups and Class Fields,” Springer-Verlag, 1988.
[20] S. Vladut, “Kronecker’s Jugendtraum and Modular Functions,” Gordon and Breach, New York, 1991.
[21] H. Weyl, David Hilbert and His Mathematical Work, Bull. Amer. Math. Soc. 50 (1944), 612–654.

http://mathoverflow.net/questions/85775/kronecker-weber-false-for-number-fields-distinct-from-mathbbq
http://mathoverflow.net/questions/85775/kronecker-weber-false-for-number-fields-distinct-from-mathbbq

	1. Introduction
	2. Beginnings (Kronecker)
	3. Splitting Laws (Weber)
	4. Unramified Extensions (Hilbert)
	5. Class Field Theory Proved (Takagi)
	6. Canonical Isomorphism (Artin)
	7. Local Class Field Theory (Hasse)
	8. Idelic Class Field Theory (Chevalley)
	9. Function fields
	References

