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Overview

One of the basic ideas in Mathematics is that of a function and most
useful tool of numerical analysis is interpolation.

According to Thiele (a numerical analyst), “Interpolation is the art of
reading between the lines of the table.”

Broadly speaking, interpolation is the problem of obtaining the value of a
function for any given functional information about it.

Interpolation technique is used in various disciplines like economics,
business, population studies, price determination etc. It is used to fill in
the gaps in the statistical data for the sake of continuity of information.

P. Sam Johnson (NITK) Interpolation January 30, 2015 2 / 75



Overview

The concept of interpolation is the selection of a function p(x) from a
given class of functions in such a way that the graph of

y = p(x)

passes through a finite set of given data points. The function p(x) is
known as the interpolating function or smoothing function.

If p(x) is a polynomial, then it is called the interpolating polynomial and
the process is called the polynomial interpolation.

Similarly, if p(x) is a finite trigonometric series, we have trigonometric
interpolation. But we restrict the interpolating function p(x) to
being a polynomial.
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Overview

The study of interpolation is based on the calculus of finite differences.

Polynomial interpolation theory has a number of important uses. Its
primary uses is to furnish some mathematical tools that are used in
developing methods in the areas of approximation theory, numerical
integration, and the numerical solution of differential equations.

We discuss Newtons forward/backward formulae (for equally spaced
nodes), Lagrange’s formula, Newton’s divided difference formulae (for
unequally spaced nodes) and error bounds in three lectures.
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Introduction

A census of the population of the India is taken every 10 years. The
following table lists the population, in thousands of people, from 1951 to
2011.

Year 1951 1961 1971 1981 1991 2001 2011

Population 361,088 439,235 548,160 683,329 846,388 1,028,737 1,210,193

(in thousands)

In reviewing these data, we might ask whether they could be used to
provide a reasonable estimate of the population, say, in 1996, or even in
the year 2014. Predictions of this type can be obtained by using a function
that fits the given data.

This process is called interpolation / extrapolation.
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Introduction

If y is a function of x , then the functional relation may be denoted by the
equation

y = f (x).

The forms of f (x) can, of course, be very diverse, but we consider f (x) as
a polynomial of the nth degree in x

y = a0 + a1x + · · ·+ anxn (an 6= 0).

We call x as the independent variable and y as the dependent variable.
It is usual to call x as argument and y as function of the argument or
entry.

Since the polynomials are relatively simple to deal with, we interpolate to
the data by polynomials.
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Weierstrass Approximation Theorem

If the value of x whose corresponding value y is to be estimated lies within
the given range of x , then it is a problem of interpolation. On the other
hand, if the value lies outside the range, then it is a problem of
extrapolation.

Thus for the theory of interpolation, it is not esssential that the functional
form of f (x) be known. The only information needed is the values of the
function given for some values of the argument.

In the method of interpolation, it is assumed that the function is capable
of being expressed as a polynomial. This assumption is based on
Weierstrass approximation theorem. That is, the existence of an
interpolating polynomial is supported by the theorem.
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Weierstrass Approximation Theorem

Given any function, defined and continuous on a closed and bounded
interval, there exists a polynomial that is as “close” to the given function
as desired. This result is expressed precisely in the following theorem.

Theorem (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a, b]. For each ε > 0, there
exists a polynomial p(x), with the property that

|f (x)− p(x)| < ε, for all x ∈ [a, b].
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Why polynomials are important?

Weierstrass approximation
theorem is illustrated in the
figure.

In science and engineering,
polynomials arise everywhere.

An important reason for considering the class of polynomials in the
approximation of functions is that the “derivative and indefinite integral of
a polynomial” are easy to determine and they are also polynomials.

For these reasons, polynomials are often used for approximating
continuous functions. We introduce various interpolating polynomials
using the concepts of forward, backward and central differences.
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Main Asssumption for Interpolation

There are no sudden jumps or falls in the values of the function from one
period to another. This assumption refers to the smoothness of f (x) i.e.,
the shape of the curve y = f (x) changes gradually over the period under
consideration.

For example, if the population figures are given for, 1931, 1951, 1961, 1971
and figures for 1941 are to be interpolated, we shall have to assume that
the year 1941 was not an exceptional year, such as that affected by
epidemics, war or other calamity or large scale immigration.
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We recall Rolle’s theorem, which is useful in evaluating error bounds.

Theorem (Rolle’s Theorem)

Let f be continuous on [a, b] and differentiable in (a, b). If f (a) = f (b),
then there is at least one point c ∈ (a, b) such that f ′(c) = 0.

Theorem (Generalized Rolle’s Theorem)

Let f be continuous on [a, b] and n times differentiable in (a, b). If f (x) is
zero at the n + 1 distinct numbers c0, c1, . . . , cn in [a, b], then a number c
in (a, b) exists with f (n)(c) = 0.
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Error in Polynomial Interpolation

Let the function y(x), defined by the (n + 1) points

(xi , yi ), i = 0, 1, 2, . . . , n

be continuous and differentiable (n + 1) times, and let y(x) be
approximated by a polynomial pn(x) of degree not exceeding n such that

pn(xi ) = yi

for i = 0, 1, 2, . . . , n.
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Using the polynomial pn(x) of degree n, we can obtain approximate values
of y(x) at some points other xi , 0 ≤ i ≤ n.

Since the expression y(x)− pn(x) vanishes for x = x0, x1, . . . , xn we put

y(x)− pn(x) = Lπn+1(x) (1)

where
πn+1(x) = (x − x0)(x − x1) · · · (x − xn)

and L is to be determined such that the equation (1) holds for any
intermediate value of x ′ ∈ (x0, xn). Clearly

L =
y(x ′)− pn(x ′)

πn+1(x ′)
. (2)
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We construct a function F (x) such that

F (x) = y(x)− pn(x)− Lπn+1(x) (3)

where L is given by the equation (2) above.
It is clear that

F (x0) = F (x1) = · · · = F (xn) = F (x ′) = 0

that is, F (x) vanishes (n + 2) times in the interval x0 ≤ x ≤ xn.

Consequently, by the repeated application of Rolle’s theorem, F ′(x) must
vanish (n + 1) times, F ′′(x) must vanish n times, etc,. in the interval
x0 ≤ x ≤ xn. In particular, F (n+1)(x) must vanish once in the interval.

Let this point be given by x = ξ, x0 < ξ < xn. On differentiating the
equation (3) (n + 1) times with respect to x and putting x = ξ, we obtain

F (n+1)(ξ) = 0 = y (n+1)(ξ)− L(n + 1)!

so that

L =
y (n+1)(ξ)

(n + 1)!
. (4)
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Error in Polynomial Interpolation

Comparison of (2) and (4) yields the results

y(x ′)− pn(x ′) =
y (n+1)(ξ)

(n + 1)!
πn+1(x ′).

Dropping the prime on x ′, we obtain, for some x0 < ξ < xn,

y(x)− pn(x) =
(x − x0)(x − x1) · · · (x − xn)

(n + 1)!
y (n+1)(ξ) (5)

which is the required expression for the error. Since y(x) is, generally,
unknown and hence we do not have any information concerning y (n+1)(x),
formula (5) is almost useless in practical computations.

On the other hand, it is extremely useful in theroetical work in
different branches of numerical analysis.
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Newton’s Interpolation Formulae for Equally Spaced Points

Given the set of (n + 1) values,

(x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn),

of x and y , it is required to find pn(x), a polynomial of the nth degree
such that y and pn(x) agree at the tabulated points.

Let the values of x be equidistant,

xi = x0 + ih, i = 0, 1, 2, . . . , n.

Since pn(x) is a polynomial of the nth degree, it may be written as

pn(x) = a0 +a1(x−x0)+a2(x−x0)(x−x1)+ · · ·+an(x−x0)(x−x1) · · · (x−xn−1).
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Polynomial Coefficients

Imposing the condition that y and pn(x) should agree at the set of
tabulated points, we obtain

a0 = y0

a1 =
y1 − y0
x1 − x0

=
∆y0

h

a2 =
∆2y0
h22!

a3 =
∆3y0
h33!

...

an =
∆ny0
hnn!

.
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Interpolating Polynomial

Therefore

pn(x) = y0 +
∆y0

h
(x − x0) +

∆2y0
h22!

(x − x0)(x − x1) + · · ·

· · ·+ ∆ny0
hnn!

(x − x0)(x − x1) · · · (x − xn−1)

is the polynomial of degree n agreeing with the (unknown) function y at
the tabulated points.
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Remainder Term (Error) in Polynomial Interpolation

Theorem

Let f (x) be a function defined in (a, b) and suppose that f (x) have n + 1
continuous derivatives on (a, b). If a ≤ x0 < x1 < · · · < xn ≤ b, then

f (x)− pn(x) =
(x − x0)(x − x1) · · · (x − xn)

(n + 1)!
f (n+1)(ξ),

for some ξ between x and x0 depending on x0, x1, . . . , xn and f .
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Newton’s Forward Difference Interpolation Formula

Setting x = x0 + ph and substituting for a0, a1, . . . , an, the above equation
becomes

pn(x) = y0 + p∆y0 +
p(p − 1)

2!
∆2y0 +

p(p − 1)(p − 2)

3!
∆3y0 + · · ·

· · ·+ p(p − 1)(p − 2) · · · (p − n + 1)

n!
∆ny0

which is (Gregory)-Newton’s forward difference interpolation formula
and is useful for interpolation near the beginning of a set of tabular
values and is useful for extrapolating the values of y (to the left of y0).
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Newton’s Forward Difference Interpolation Formula

The first two terms of Newton’s forward formula give the linear
interpolation while the first three terms give a parabolic interpolation
and so on.

Exercise

Let the function y = f (x) take the values y0, y1, . . . , yn corresponding to
the values x0, x0 + h, . . . , x0 + nh of x. Suppose f (x) is a polynomial of
degree n and it is required to evaluate f (x) for x = x0 + ph, where p is a
any real number. Derive Newton’s forward difference interpolation
formula, by using shift operator E .
[ Hint : yp = f (x) = f (x0 + ph) = Epf (x0) = (1 + ∆)py0. ]
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Forward Difference Table

The values inside the boxes of the following difference table are used in
deriving the Newton’s forward difference interpolation formula.

Value Value First Second Third Fourth
of of Difference Difference Difference Difference
x y = f (x) ∆f (x) ∆2f (x) ∆3f (x) ∆4f (x)
x0 y0

∆y0

x0 + h y1 ∆2y0

∆y1 ∆3y0

x0 + 2h y2 ∆2y1 ∆4y0
∆y2 ∆3y1

x0 + 3h y3 ∆2y2
∆y3

x0 + 4h y4
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Error in Newton’s Forward Difference Interpolation Formula

To find the error committed in replacing the function y(x) by means of
the polynomial pn(x), we obtain

y(x)− pn(x) =
(x − x0)(x − x1) . . . (x − xn)

(n + 1)!
y (n+1)(ξ)

for some ξ ∈ (x0, xn).

The error in the Newton’s forward difference interpolation formula is

y(x)− pn(x) =
p(p − 1(p − 2) · · · (p − n)

(n + 1)!
hn+1y (n+1)(ξ)

for some ξ ∈ (x0, xn), and x = x0 + ph.
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Error in Newton’s Forward Difference Interpolation Formula

As remarked earlier we do not have any information concerning y (n+1)(x),
and therefore the above formula is useless in practice.

Neverthless, if y (n+1)(x) does not vary too rapidly in the interval, a useful
estimate of the derivative can be obtained in the following way. Expanding
y(x + h) by Taylor’s series, we obtain

y(x + h) = y(x) + hy ′(x) +
h2

2!
y ′′(x) + · · · .

Neglecting the terms containing h2 and higher powers of h, this gives

y ′(x) ≈ y(x + h)− y(x)

h
=

∆y(x)

h
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Error in Newton’s Forward Difference Interpolation Formula

Writing y ′(x) as Dy(x) where D ≡ d/dx , the differentiation operator,
the above equation gives the operator relations

D ≡ 1

h
∆ and so Dn+1 ≡ 1

hn+1
∆n+1.

We thus obtain

y (n+1)(x) ≈ 1

hn+1
∆n+1y(x).

Hence the equation can be written as (equally spaced nodes, x = x0 + ph)

y(x)− pn(x) =
p(p − 1)(p − 2) · · · (p − n)

(n + 1)!
∆n+1y(ξ)

for some ξ ∈ (x0, xn), which is suitable for computation.
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Newton’s Backward Difference Interpolation Formula

Suppose we assume pn(x) in the following form

pn(x) = a0 + a1(x − xn) + a2(x − xn)(x − xn−1) + · · ·

· · ·+ an(x − xn)(x − xn−1) · · · (x − x1)

and then impose the condition that y and pn(x) should agree at the
tabulated points xn, xn−1, . . . , x2, x1, x0, we obtain (after some
simplification)

pn(x) = yn + p∇yn +
p(p + 1)

2!
∇2yn + · · ·+ p(p + 1) · · · (p + n − 1)

n!
∇nyn

where p = (x − xn)/h.

This is (Gregory)-Newton’s backward difference interpolation
formula and it uses tabular values to the left of yn. This formula is
therefore useful for interpolation near the end of the tabular values and is
useful for extrapolating values of y (to the right of yn).
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Backward Difference Table

The values inside the boxes of the following difference table are used in
deriving the Newton’s backward difference interpolation formula.

Value Value First Second Third Fourth
of of Difference Difference Difference Difference
x y = f (x) ∇f (x) ∇2f (x) ∇3f (x) ∇4f (x)
x0 y0

∇y1
x0 + h y1 ∇2y2

∇y2 ∇3y3

x0 + 2h y2 ∇2y3 ∇4y4

∇y3 ∇3y4

x0 + 3h y3 ∇2y4

∇y4
x0 + 4h y4
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Error in Newton’s Backward Difference Interpolation
Formula

It can be shown that the error in this formula may be written as

y(x)− pn(x) =
p(p + 1)(p + 2) · · · (p + n)

(n + 1)!
hn+1y (n+!)(ξ)

where x0 < ξ < xn and x = xn + ph.
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Taylor’s Theorem

Theorem

Let f (x) have n + 1 continuous derivatives on [a, b] for some n ≥ 0, and
let x , x0 ∈ [a, b]. Then f (x) = pn(x) + Rn(x)
where

pn(x) =
n∑

k=0

(x − x0)k

k!
f (k)(x0) (n-degree polynomial)

and

Rn(x) =
(x − x0)n+1

(n + 1)!
f (n+1)(ξ) (error term)

for some ξ between x and x0.

Hence “ξ between x and x0” means that either x0 < ξ < x or x < ξ < x0
depending on the particular values of x and x0 involved.
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Taylor Polynomials

Here pn(X ) is called the nth Taylor polynomial for f about x0, and Rn is
called the remainder term (or truncation error) associated with pn(x).
Since the number ξ in the truncation error Rn depends on the value of x
at which the polynomial pn(x) is being evaluated, it is a function of the
variable x .

Taylor’s theorem simply ensures that such a function exists, and that its
value lies between x and x0.

In fact, one of the common problems in numerical methods is to try to
determine a realistic bound for the value of f (n+1)(ξ) when x is within
some specified interval.
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Taylor polynomials are not useful for interpolation

The Taylor polynomials are one of the fundamental building blocks of
numerical analysis.

The Taylor polynomials agree as closely as possible with a given function
at a specific point, but they concentrate their accuracy near that point.

A good interpolation needs to provide a relatively accurate
approximation over an entire interval, and Taylor polynomials do not
generally do this.
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Example

Taylor polynomials of various degree for f (x) = 1/x about x0 = 1 are

pn(x) =
n∑

k=0

(−1)k(x − 1)k .

When we approximate f (3) = 1/3 by pn(3) for larger values of n, the
approximations become increasingly inaccurate, as shown in the following
table.

n 0 1 2 3 4 5 6 7

pn(3) 1 -1 3 -5 11 -21 43 -85
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Taylor polynomials are not appropriate for interpolation

Since the Taylor polynomials have the property that all the information
used in the approximation is concentrated at the single point x0, it is not
uncommon for these polynomials to give inaccurate approximations as we
move away from x0. This limits Taylor polynomial approximation to the
situation in which approximations are needed only at points close to x0.

For ordinary computational purposes it is more efficient to use methods
that include information at various points.

The primary use of Taylor polynomials in numerical analysis is not for
approximation purposes, but for the derivation of numerical techniques
and for error estimation.

Since the Taylor polynomials are not appropriate for interpolation,
alternative methods are needed.
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Interpolation with Unequal Intervals

The problem of determining a polynomial of degree one that passes
through the distinct points (x0, y0) and (x1, y1) is the same as
approximating a function f for which f (x0) = y0 and f (x1) = y1 by means
of a first-degree polynomial interpolating, or agreeing with, the values of f
at the given points.

We first define the functions

L0(x) =
x − x1
x0 − x1

and L1(x) =
x − x0
x1 − x0

,

and then define

p1(x) = L0(x)y0 + L1(x)y1 =
x − x1
x0 − x1

y0 +
x − x0
x1 − x0

y1.

Since L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1, we have
p1(x0) = y0 and p1(x1) = y1. So p1 is the unique linear function passing
(x0, y0) and (x1, y1).
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Exercises

1. The table gives the distance in nautical miles of the visible horizon for
the given heights (in feet) above the earth’s surface.

x 100 150 200 250 300 350 400

y = f (x) 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the values of y when x = 160 and x = 410.

2. From the following table, estimate the number of students who
obtained marks between 40 and 45.

Marks 30-40 40-50 50-60 60-70 70-80

No. of Students 31 42 51 35 31

3. Find the cubic polynomial which takes the following values.

x 0 1 2 3

y = f (x) 1 2 1 10

Also compute f (4).

P. Sam Johnson (NITK) Interpolation January 30, 2015 35 / 75



Exercises

4. In the table below, the values of y are consecutive terms of a series of
which 23.6 is the 6th term. Find the first and tenth terms of the
series.

x 3 4 5 6 7 8 9

y = f (x) 4.8 8.4 14.5 23.6 36.2 52.8 73.9

5. Using Newton’s forward interpolation formula, show that

n∑
k=1

k3 =

{
n(n + 1)

2

}2

.
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Lagrange Interpolating Polynomial

To generalize the concept of linear interpolation, consider the construction
of a polynomial of degree at most n that passes through the n + 1 points
(x0, y0), (x1, y1), . . . , (xn, yn).

In this case we need to construct, for each k = 0, 1, 2, . . . , n, a function
Lk(x) (called Lagrange basis, also called the nth Lagrange interpolating

polynomial) with the property that Lk(xi ) =

{
0 when i 6= k
1 when i = k

hence

Lk(x) =
n∏

i=0
i 6=k

(x − xi )

(xk − xi )
.
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Lagrange Interpolating Polynomial

The interpolating polynomial is easily described once the form of Lk is
known, by the following theorem.

Theorem

If n + 1 points (x0, y0), (x1, y1), . . . , (xn, yn) are given, then a unique
polynomial pn(x) of degree at most n exists with f (xk) = pn(xk) for each
k = 0, 1, . . . , n. This polynomial is given by

pn(x) =
n∑

k=0

f (xk)Lk(x).
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Graphs of Lagrange Interpolating Polynomials

Given 5 points (x0, y0), (x1, y1), . . . , (x4, y4), a sketch of the graph of a
typical Lk is shown in the following figure.

Note how each basis polynomial has a value of 1 for x = xk (0 ≤ k ≤ 4),
and a value of 0 at all other locations.
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Example

Simply multiplying each basis with the corresponding sample value, and
adding them all up yields the interpolating polynomial

p(x) =
4∑

k=0

f (xk)Lk(x).

The 5 weighted polynomials are Lk(x)f (xk) (0 ≤ k ≤ 4) and their sum
(red line) is the interpolating polynomial p(x) (red line) which is shown in
the following figure.
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How to calculate error bound?

The next step is to calculate a remainder term or bound for the error
involved in approximating a function by an interpolating polynomial. This
is done in the following theorem.

Theorem (An Important Result for Error Formula)

Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b] and
f ∈ Cn+1[a, b]. Then, for each x ∈ [a, b], a number ξ(x) (generally
unknown) in (a, b) exists with

f (x) = p(x) +
(x − x0)(x − x1) · · · (x − xn)

(n + 1)!
f (n+1)(ξ(x)),

where p(x) is the interpolating polynomial given by
p(x) =

∑n
k=0 f (xk)Lk(x).

The above formula is also called ‘Lagrange Error Formula’.

P. Sam Johnson (NITK) Interpolation January 30, 2015 41 / 75



Error Analysis

The error formula is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and
integration methods.

Error bounds for these techniques are obtained from the “Lagrange error
formula”.

Note that the error for the Lagrange polynomial is quite similar to that for
the Taylor polynomial.
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Comparison of Error Bounds in Taylor and Lagrange
Polynomials

The nth Taylor polynomial about x0 concentrates all the known
information at x0 and has an error term of the form

(x − x0)n+1

(n + 1)!
f (n+1)(ξ).

The Lagrange polynomial of degree n uses information at the distinct
numbers x0, x1, . . . , xn and, in place of (x − x0)n+1, its error formula uses a
product of the n + 1 terms (x − x0)(x − x1) · · · (x − xn)

(x − x0)(x − x1) · · · (x − xn)

(n + 1)!
f (n+1)(ξ).
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Double Interpolation

We have so for derived interpolation formulae to approximate a function of
a single variable.

In case of functions of two variables, we interpolate with respect to the
first variable keeping the other variable constant. Then interpolate with
respect to the second variable.

Similarly, we can extend the said procedure for functions of three variables.
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Inverse Interpolation

We have been finding the value of y corresponding to a certain value of x
from a given set of values of x and y .

On the other hand, the process of estimating the value of x for a value of
y is called inverse interpolation. When the values of y are unequally
spaced, Lagrange’s method is used and when the values of y are equally
spaced, the following iterative method is used.

In the procedure, x is assumed to be expressible as a polynomial in y .
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Iterative Method

Newton’s forward interpolation formula is

pn(x) = y0 + p∆y0 +
p(p − 1)

2!
∆2y0 +

p(p − 1)(p − 2)

3!
∆3y0 + · · · . (6)

From (6) we get

p =
1

∆y0

{
yp − y0 −

p(p − 1)

2!
∆2y0 −

p(p − 1)(p − 2)

3!
∆3y0 − · · ·

}
.

Neglecting the second and higher differences, we obtain the first
approximation to p as

p1 =
yp − y0

∆y0
.

To find the second approximation, retaining the term with second
differences in (6) and replacing p by p1, we get

p2 =
1

∆y0

{
yp − y0 −

p1(p1 − 1)

2!
∆2y0

}
.
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Iterative Method

To find the third approximation, retaining the term with third differences
in (6) and replacing p by p2, we get

p3 =
1

∆y0

{
yp − y0 −

p2(p2 − 1)

2!
∆2y0 −

p2(p2 − 1)(p2 − 2)

3!
∆3y0

}
and so on. This process is continued till two successive approximations of
p agree with each other.

This technique can equally well be applied by any other interpolation
formula. This method is a powerful iterative procedure for finding the
roots of an equation to a good degree of accuracy.

We shall discuss later some more formulae for finding roots of an equation.
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Exercises

6. Find the polynomial f (x) by using Lagrange’s formula and hence find
f (3) for

x 0 1 2 3

y = f (x) 2 3 12 147

7. A curve passes through the points (0, 18), (1, 10), (3,−18) and
(6, 90). Find the slope of the curve at x = 2.

8. Using Lagrange’s formula, express the function

3x2 + x + 1

(x − 1)(x − 2)(x − 3)

as a sum of partial fractions.

9. Find the missing term in the following table using interpolation.

x 0 1 2 3 4

y = f (x) 1 3 9 - 81
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Exercises

10. Find the distance moved by a particle and its acceleration at the end
of 4 seconds, if the time verses velocity data is as follows.

t 0 1 3 4

v 21 15 12 10

11. Using Lagrange’s formula prove that

y0 =
y1 + y−1

2
− 1

8

{
1

2
(y3 − y1)− 1

2
(y−1 − y−3)

}
.

[Hint : Here x0 = −3, x1 = −1, x2 = 1, x2 = 3.]

12. Given

log10 654 = 2.8156, log10 658 = 2.8182,

log10 659 = 2.8189, log10 661 = 2.8202

find by using Lagrange’s formula, the value of log10 656.
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Exercises

13. The following table gives the viscosity of an oil as a function of
temperature. Use Lagrange’s formula to find viscosity of oil at a
temperature of 140◦.

Temperature 110◦ 130◦ 160◦ 190◦

Viscosity 10.8 8.1 5.5 4.8

14. Given u1 = 40, u3 = 45, u5 = 54, find u2 and u4.

15. Given y0 = 3, y1 = 12, y2 = 81, y3 = 200, y4 = 100, y5 = 8, without
forming the difference table, find ∆5y0.

16. From the data given below, find the number of students whose weight
is between 60 and 70.

Weight 0-40 40-60 60-80 80-100 100-120

No. of Students 250 120 100 70 50
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Exercises

17. The values of U(x) are known at a, b, c. Show that maximum or
minimum of Lagrange’s interpolation formula is attained at

x =

∑
Ua(b2 − c2)

2
∑

Ua(b − c)
.

18. By iterative method, tabulate y = x3 for x = 2, 3, 4, 5 and calculate
the cube root of 10 correct to 3 decimal places.

19. The following values of y = f (x) are given

x 10 15 20

y 1754 2648 3564

Find the value of x for y = 3000 by iterative method.

20. Using inverse interpolation, find the real root of the equation
x3 + x − 3 = 0 which is close to 1.2.
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Exercises

21. Solve the equation x = 10 log x, by iterative method, given that

x 1.35 1.36 1.37 1.38

log x 0.1303 0.1355 0.1367 0.1392

22. Apply Lagrange’s method, to find the value of x when f (x) = 15
from the given data.

x 5 6 9 11

f (x) 12 13 14 16

23. The equation x3 − 15x + 4 has a root close to 0.3, obtain this root
upto 4 decimal places using inverse interpolation.
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Divided Differences

The Lagrange’s formula has the drawback that if another
interpolation values were inserted, then the interpolation
coefficients are required to be calculated.

This labour of recomputing the interpolation coefficients is saved by using
Newton’s general interpolation formula which employs what are called
“divided differences”.
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Newton’s Divided Difference Interpolation

Suppose that pn(x) is the nth degree Lagrange polynomial that agrees
with the function f at the distinct numbers x0, x1, . . . , xn. Although this
polynomial is unique, alternate algebraic representations are useful in
certain situations.

The divided differences of f with respect to x0, x1, . . . , xn are used to
express pn(x) in the form

pn(x) = a0 +a1(x−x0)+a2(x−x0)(x−x1)+ · · ·+an(x−x0)(x−x1) · · · (x−xn−1)

for appropriate constants a0, a1, . . . , an.
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Evaluating Coefficients

To determine the first of these constants, a0, note that if pn(x) is written
in the form of the above equation, then evaluating pn(x) at x0 leaves only
the constant term a0. That is, a0 = pn(x0) = f (x0).

Similarly, when pn(x) is evaluated at x1, the only nonzero terms in the
evaluation of pn(x) are the constant and linear terms,

f (x0) + a1(x1 − x0) = pn(x1) = f (x1)

so

a1 =
f (x1)− f (x0)

x1 − x0
.
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Divided Difference Notation

The divided-difference notation, is introduced, which is similar to Aitkens
∆2 notation.

The zeroth divided difference of the function f with respect to xi ,
denoted by f [xi ], is simply the value of f at xi ,

f [xi ] = f (xi ).

The remaining divided differences are defined inductively.

The first divided difference of f with respect to xi and xi+1 is denoted
by f [xi , xi+1] and is defined as

f [xi , xi+1] =
f [xi+1]− f [xi ]

xi+1 − xi
.
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Newton’s General Interpolation Formula with Divided
Differences

The second divided difference, f [xi , xi+1, xi+2], is defined as

f [xi , xi+1, xi+2] =
f [xi+1, xi+2]− f [xi , xi+1]

xi+2 − xi
.

The process ends with single nth divided difference,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
.

Hence pn(x) can be rewritten as

pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk ](x − x0) · · · (x − xk−1),

which is called Newton’s general interpolation formula with divided
differences.
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Properties of Divided Differences

The divided differences are symmetrical in their arguments – the value
of f [x0, x1, . . . , xk ] is independent of the order of the numbers
x0, x1, . . . , xk . That is,

f [x0, x1] = f [x1, x0],

f [x0, x1, x2] = f [x1, x2, x0] = f [x2, x0, x1] and so on.

The nth divided differences of a polynomial of degree n are constants.
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Divided Difference Table

First Second
x f (x) Divided Differences Divided Differences
x0 f [x0]

f [x0, x1] = f [x1]−f [x0]
x1−x0

x1 f [x1] f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x1, x2] = f [x2]−f [x1]
x2−x1

x2 f [x2]
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Suppose f is continuously differentiable on [x0, x1]. By the mean value
theorem, there exists ξ ∈ [x0, x1] such that

f ′(ξ) =
f (x1)− f (x0)

x1 − x0
= f [x0, x1].

The following theorem generalizes this result.

Theorem

Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct numbers in [a, b].
Then a number ξ (generally unknown) exists in (a, b) with

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

Nodes with equal spacing : Let h = xi+1 − xi , i = 0, 1, . . . , n − 1.
Hence

pn(x) = pn(x0 + ph) = f [x0] +

p∑
k=1

(
p

k

)
k!hk f [x0, x1, . . . , xk ].
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Remainder Term (Error) in Newton’s Divided Difference
Formula

The Newton’s Divided Difference Formula is given by

f (x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk ](x − x0) · · · (x − xk−1) + Rn(x),

with the error term as

Rn(x) =
(x − x0)(x − x1) · · · (x − xn)

(n + 1)!
f (n+1)(ξ)

for some ξ ∈ (x0, xn).

The error term as in case of Lagrange’s formula.
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Relation between Dividied and Forward Differences

Forward difference operator is defined by

∆f (xi ) = f (xi+1)− f (xi ), for i ≥ 0.

Higher powers are defined recursively by

∆k f (xi ) = ∆(∆k−1f (xi )), for i ≥ 0.

With this notation,

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=

1

h
∆f (x0)

f [x0, x1, x2] =
1

2h

[
∆f [x1]−∆f [x0]

h

]
=

1

2h2
∆2f (x0)

and, in general
f [x0, x1, . . . , xk ] =

1

k!hk
∆k f (x0).

This is the relation between divided and forward differences.
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Newton’s Backward Divided Difference

Backward difference operator is defined by

∇f (xi ) = f (xi )− f (xi−1), for i ≥ 1.

Higher powers are defined recursively by

∇k f (xi ) = ∇(∇k−1f (xi )), for i ≥ 2.

With this notation,

f [xn, xn−1] =
1

h
∇f (xn)

f [xn, xn−1, xn−2] =
1

2h2
∇2f (xn)

and, in general

f [xn, xn−1, . . . , xn−k ] =
1

k!hk
∇k f (xn).
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Exercises

24. If f (x) = 1
x2
, find the first divided differences

(a) [a, b] (b) [a, b, c].

Here a, b, c are arguments for f (x) = 1
x2

.

25. Find the divided difference table for the function f (x) = x2 + 2x + 2
whose arguments are 1, 2, 4, 7, 10.

26. Find the following divided differences of f (x) = 1
x2

whose arguments
are

(a) [1, 2] (b) [1, 2, 4] (c) [1, 2, 4, 5] (d) [2, 4, 5].

27. If f (x) = 1
x whose arguments are a, b, c , d in this order, prove that

[a, b, c , d ] =
−1

abcd
.
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Exercises

28. Using Newton’s divided difference formula, find the equation of the
cubic curve which passes through the points (4,−43), (7, 83), (9, 327)
and (12, 1053). Hence find f (10).

29. Given the values

x 5 7 11 13 17

y = f (x) 150 392 1452 2366 5202

evaluate f (9), using

(a) Lagrange’s formula
(b) Newton’s divided difference formula.

30. Find the value of x correct to one decimal place for which y = 7 given

x 1 3 4

y = f (x) 4 12 19

31. Tabulate y = x3 for x = 2, 3, 4, 5 and calculate the cube root of 10
correct to 3 decimal places.
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Exercises

32. Using the Newton’s divided difference formula, evaluate f (8) and
f (15) given

x 4 5 7 10 11 13

y = f (x) 48 100 294 900 1210 2028

33. Determine f (x) as a polynomial in x for the following data.

x -4 -1 0 2 5

y = f (x) 1245 33 5 9 1335

34. Using Newton’s divided difference formula, find the missing value
from the following table.

x 1 2 4 5 6

y = f (x) 14 15 5 - 9
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Exercises

35. Interpolate f (2) from the following data

x 1 2 3 4 5

f (x) 7 ? 13 21 37

and explain why the values obtained is different from the obtained by
putting x = 2 in the expression 2x + 5.

36. From the following table of yearly premiums for policies maturity at
quinquennial (recurring every five years) ages, interpolate the
premiums for policies maturity at the age of 12 years.

Age (years) x 10 15 20 25 30 35

Premimum f (x) 3.54 3.22 2.91 2.60 2.31 2.04

37. The population of a country is given below. Estimate the population
for the year 1965.

Year (t) 1931 1941 1951 1961 1971

Population (Ut) 46 66 81 93 101
(in thousands)
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Exercises

38. The following are the marks obtained by 492 candidates in a certain
examination.

x 0-40 40-45 45-50 50-55 55-60 60-65

f (x) 210 43 54 74 32 79

Find out the number of candidates

(a) who secured more than 48 but not more than 50 marks
(b) less than 48 but not less than 45 marks.

[Hint: For the marks-range a− b, define x as b−40
5 .]

39. If p, q, r , s are the successive entries corresponding to equidistant
arguments in a table, show that when 3rd differences are taken into
account, the entry corresponding to the argument half-way between
the arguments of q and r is A + 1

24B, where A is the arthimetic mean
of q and r , and B is the arithmetic mean of 3q − 2p − s and
3r − 2s − p.
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Exercises

40. The following are the mean temperatures (Fahreheit) on three days,
30 days apart round the periods of summer and winter. Estimate the
appropriate dates and values of the maximum and minimum
temperatures.

Day
Summer Winter

Date Temperature Date Temperature

0 15th June 58.8 16th Dec 40.7

30 15th July 63.4 15th Jan 38.1

60 14th Aug 62.4 14th Feb 39.3

[Hint : Form difference tables for summer and winter separately, by
considering the transformation d(day)→ d/30 = x.]
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Exercises

41. Use Newton’s forward difference formula to obtain the interpolating
polynomial f (x) satisfying the following data.

x 1 2 3 4

f (x) 26 18 4 1

If another point x = 5, f (x) = 26, is added to the above data, will the
interpolating polynomial, be the same as before or different. Explain
why?

42. Given
∑10

x=1 f (x) = 500426,
∑10

x=4 f (x) = 329240,∑10
x=7 f (x) = 175212 and f (10) = 40365. Find f (1). [Hint : Define

ut =
∑10

x=t f (x), for t = 1, 4, 7, 10. Then f (1) = u1 − u2. Find u2.]

43. Given f (0) = 1, f (1) + f (2) = 10 and f (3) + f (4) + f (5) = 65, find
f (4). [Hint: Consider f (x) = a + bx + cx2.]

44. Find f [3, 4, 5, 6] when f (x) = x3 − x.

45. Given that f (0) = 8, f (1) = 68, f (5)123. Construct a divided
difference table. Using the table determine the value of f (2).
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Exercises

46. Form the divided difference table and find f [a, b, c] for f (x) = 1/x.

47. Find the polynomial of the lowest degree which assumes the values
3, 12, 15,−21 when x has the values 3, 2, 1,−1 respectively.

48. Given f (0) = −18, f (1) = 0, f (3) = 0, f (5) = −248, f (6) = 0 and
f (9) = 13104, find the form of f (x), assuming it to be a polynomial
in x.

49. The values of f (x) are known at points x0, x1, x2. Prove that the
second divided difference is equal to

f (x0)

(x0 − x1)(x0 − x2)
+

f (x1)

(x1 − x0)(x1 − x2)
+

f (x2)

(x2 − x0)(x2 − x1)
.

Write down the equal form of nth divided difference.

50. Show that Lagrange’s formula can be evolved by equating (n + 1)th
divided differences of f (x) to zero if f (x) is a polynomial of degree n.
[Hint: 0 = f [x , x0, x1, · · · , xn] and the previous result for nth divided
difference]
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Exercises

51. Prove that Lagrange’s formula can be put in the form

pn(x) =
n∑

k=0

π(x)f (xk)

(x − xk)π′(xk)

where

π(x) = Πn
r=0(x − xr ) and π′(xk) =

[ d

dx
π(x)

]
x=xk

.

52. The following values of the function f (x) for values of x are given
f (1) = 4, f (2) = 5, f (7) = 5 and f (8) = 4. Find the values of f (6)
and also the value of x for which f (x) is maximum or minimum.

53. Apply Newton’s divided difference formula (inversely) to find, to two
decimal places, the value of x when y = f (x) = 19, from the

following data.
x 0 1 2

f (x) 0 1 20
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Exercises

54. The mode of a certain frequency curve y = f (x) is very near to x = 9
and the values of the frequency density f (x) for x = 8.9, 9 and 9.3 are
respectively equal to 0, 30, 0.35 and 0.25. Calculate the approximate
value of mode.

55. The points (7, 3), (8, 1), (9, 1), (10, 6) satisfy the function y = f (x).
Use Lagrange’s interpolation formula, to find y for x = 9.5, and also
find the interpolating polynomial.

56. Obtain the value of x for y = 30 by successive approximation method
from the following data.

x 10 12 14 16

f (x) 25 32 40 50

57. Apply Lagrange’s formula (inversely) to find the value of x when
y = 6, given the following table.

x 168 120 72 63

f (x) 3 7 9 10
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Central Differences

We derived Newton’s forward and backward interpolation formulae which
are applicable for interpolation near the beginning and end of tabulated
values.

The following formulae are based on central differences which are best
suited for interpolation near the middle of the table.

Gauss’s forward interpolation formula

Gauss’s backward interpolation formula

Stirling’s formula

Bessel’s formula

Laplace-Everett’s formula.

The coefficients in the above central difference formulae are smaller and
converge faster than those in Newton’s formulae.
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