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Abstract

The constant elasticity of variance (CEV) spot price
model is a one-dimensional diffusion model with the in-
stantaneous volatility specified to be a power function of
the underlying spot price, o(S) = aS”. The model has
been introduced by Cox [7] as one of the early alternatives
to the geometric Brownian motion to model asset prices.
The CEV process is closely related to Bessel processes
and is analytically tractable, leading to closed-form op-
tions pricing formulas. Options prices in the CEV model
exhibit implied volatility skews and, for 3 < 0, there is
a positive probability of hitting zero (bankruptcy). This
paper surveys the CEV model.
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The CEV Process

The constant elasticity of variance (CEV) model is a one-
dimensional diffusion process that solves a stochastic dif-
ferential equation
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dS, = pSydt + aS T dB,

with the instantaneous volatility o(S) = aS? specified
to be a power function of the underlying spot price. The
model has been introduced by Cox [7] as one of the early
alternative processes to the geometric Brownian motion
to model asset prices. Here 3 is the elasticity parame-
ter of the local volatility, do/dS = fBo/S, and a is the
volatility scale parameter. For § = 0 the CEV model re-
duces to the constant volatility geometric Brownian mo-
tion process employed in the Black, Scholes and Merton
model. When 3 = —1, the volatility specification is that
of Bachelier (the asset price has the constant diffusion co-
efficient, while the logarithm of the asset price has the
a/S volatility). For § = —1/2 the model reduces to the
square-root model of Cox and Ross [8].

Cox [7] originally studied the case § < 0 for which
the volatility is a decreasing function of the asset price.
This specification captures the leverage effect in the eq-
uity markets: the stock price volatility increases as the
stock price declines. The result of this inverse relationship
between the price and volatility is the implied volatility
skew exhibited by options prices in the CEV model with
negative elasticity. The elasticity parameter (3 controls the
steepness of the skew (the larger the |3|, the steeper the
skew), while the scale parameter a fixes the at-the-money
volatility level. This ability to capture the skew has made
the CEV model popular in equity options markets.

Emanuel and MacBeth [14] extended Cox’s analysis to
the positive elasticity case 8 > 0, where the asset price
volatility is an increasing function of the asset price. The
driftless process with ¢ = 0 and with positive 3 is a strict
local martingale. It has been applied to modeling com-
modity prices that exhibit increasing implied volatility
skews with the volatility increasing with the strike price,
but care should be taken when working with this model
(see the discussion below).



The CEV diffusion has the following boundary charac-
terization (see, e.g., Borodin and Salminen [4] for Feller’s
boundary classification for 1D diffusions). For —1/2 <
B < 0, the origin is an exit boundary, and the process
is killed the first time it hits the origin. For 8 < —1/2,
the origin is a regular boundary point. The SDE (1) does
not uniquely specify the diffusion process, and a bound-
ary condition is needed at the origin. In the CEV model it
is specified as a killing boundary. Thus, the CEV pro-
cess with 3 < 0 naturally incorporates the possibility
of bankruptcy — the stock price can hit zero with posi-
tive probability, at which time the bankruptcy occurs. For
(B > 0, the origin is an inaccessible natural boundary.

Reduction to Bessel Processes, Transition
Density, and Probability of Default

The CEV process is analytically tractable. Its transition
probability density and cumulative distribution function
are known in closed form'. It is closely related to Bessel
processes, and inherits their analytical tractability. The
CEV process with drift (i« # 0) is obtained from the pro-
cess without drift (1 = 0) via a scale and time change:
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Let {RE”), t > 0} be a Bessel process of index v. Recall
that for v > 0, zero is an unattainable entrance boundary.
For v < —1, zero is an exit boundary. For v € (—1,0),
zero is a regular boundary. In our application, we spec-
ify zero as a killing boundary kill the process at the first
hitting time of zero (see, e.g. [4] pp.133-134 for a sum-
mary of Bessel processes). Before the first hitting time of
zero, the CEV process without drift can be represented as
a power of a Bessel process:
S = (alBIRS)7F, (3)
where v = 1/(20).
The CEV transition density is obtained from the well
known expression for the transition density of the Bessel

'In this paper we present the results for the CEV model with constant
parameters. We note that the process remains analytically tractable when
w1 and a are taken to be deterministic functions of time [6].

process (see [4], p. 115, and [21], p. 446). For the drift-
less process, it is given by:
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where I, is the modified Bessel function of the first kind
of order v. From (2), the transition density with drift is
obtained from the density (4) according to
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The density (5) was originally obtained by Cox [7] for
B < 0 and by Emanuel and MacBeth [14] for § > 0
based on the result due to Feller [15].

For 3 < 0, in addition to the continuous transition den-
sity, we also have a positive probability for the process
started at .S at time zero to hit zero by time ¢ > 0 (proba-
bility of default or bankruptcy) that is given explicitly by:
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where G(v,z) = (1/T(v)) [ u*~te~"du is the com-
plementary Gamma distribution function. This expression
can be obtained by integrating the continuous density (5)
from zero to infinity and observing that the result is less
than one, i.e., the density is defective. The defect is equal
to the probability mass at zero (6).

While killing the process at zero is desirable for stock
price modeling, it may be undesirable in other contexts,
where one would prefer the process that stays strictly pos-
itive (e.g., in stock index models). A regularized version
of the CEV process that never hits zero has been con-
structed by Andersen and Andreasen [1] (see also [9]).
The positive probability of hitting zero comes from the
explosion of instantaneous volatility as the process falls
towards zero. The regularized version of the CEV process
fixes a small value € > 0. For S > e the volatility is ac-
cording to the CEV specification. For S' < ¢, the volatility
is fixed at the constant level ae®. We thus have a sequence
of regularized strictly positive processes indexed by ¢ that
converge to the CEV process in the limit € — 0.
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The CEV process with 5 > 0 can similarly be regu-
larized to prevent the volatility explosion as the process
tends to infinity by picking a large value £ > 0 and fixing
the volatility above & to equal a€”. The regularized pro-
cesses with ;4 = 0 are true martingales, as opposed to the
failure of the martingale property for the driftless CEV
process with 3 > 0 and u = 0, that is only a strict lo-
cal martingale. The failure of the martingale property for
the non-regularized process with 3 > 0 can be explicitly
illustrated by computing the expectation (using the transi-
tion density (5)):
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CEYV Options Pricing

The closed-form CEV call option pricing formula with
strike K, time to expiration 7', and the initial asset price
S can be obtained in closed form by integrating the call
payoff with the risk-neutral CEV density (5) with the risk-
neutral drift 4 = r — ¢ (r is the risk-free interest rate and
q is the dividend yield). The result can be expressed in
terms of the complementary noncentral chi-square distri-
bution function Q(z;v, k) ([7] for 8 < 0, [14] for 8 > 0;
see also [22], [11]):
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and S = Sy is the initial asset price at time zero. The
price of the put option is obtained from the put-call parity
relationship,

— Se~dT,

P(S;K,T) =C(S;K,T) + Ke™""

The complementary noncentral chi-square distribution
function can be expressed as the series of complementary
Gamma distribution functions ( [22], pp. 214):
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for k,z > 0. Further efficient numerical methods to
compute the non-central chi-square CDF can be found
in [3], [12], [13], and [22].

The first passage time problem for the CEV diffusion
can be solved analytically and, hence, barrier and look-
back options can be priced analytically under the CEV
process. Davydov and Linetsky [9, 10] obtained the an-
alytical expressions for the Laplace transforms of single-
and double-barrier and lookback options pricing formu-
las in time to expiration. Davydov and Linetsky [10] and
Linetsky [18] inverted the Laplace transforms for barrier
options and lookback options in terms of eigenfunction
expansions, respectively.

Other types of options under the CEV process, such
as American options, require numerical treatment. The
pricing PDE for European options reads:
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The early exercise can be dealt with in the same way as for
other diffusion models via dynamic programming, free
boundary PDE formulations, or variational inequality for-
mulations.

Jump-to-Default Extended CEV

Model

While the CEV process can hit zero and, as a result,
CEV equity model includes the positive probability of
bankruptcy, the term structure of credit spreads in the
CEV model is such that the instantaneous credit spread
vanishes. There is no element of surprise — the event
of default is a hitting time. Moreover, the probability of
default is too small for practical applications of model-
ing stocks of firms other than the highest rated investment
grades. Carr and Linetsky [6] extend the CEV model by
allowing a jump-to-default to occur from a positive stock



price. They introduce a default intensity that is an affine
function of the instantaneous variance:

A(S) = b+ co?(S) = b+ ca’S*, (12)
where b > 0 is the constant part of the default intensity
and ¢ > 0 is the sensitivity of the default intensity to the
instantaneous variance. The pre-default stock price fol-
lows a diffusion process solving the SDE:

dSy = [+ N(S)] Sidt +a SPTHAB,.  (13)
The addition of the default intensity in the drift compen-
sates for the jump-to-default and makes the process with
1 = 0 a martingale. The diffusion process with the mod-
ified drift (13) and killed at the rate (12) is called Jump-
to-Default extended CEV (JDCEV) process. In the JD-
CEV model, the stock price evolves according to (13) un-
til a jump-to-default arrives, at which time the stock price
drops to zero and equity becomes worthless. The jump-
to-default time has the intensity (12).

The JDCEV model can be reduced to Bessel processes
similar to the standard CEV model. Consequently, it is
also analytically tractable. Closed-form pricing formulas
for call and put options and the probability of default can
be found in [6]. The first passage time problem for the
JDCEV process and the related problem of pricing equity
default swaps is solved in Mendoza and Linetsky [19].
Atlan and Leblanc [2] and Campi et al. [5] investigate
related applications of the CEV model to hybrid credit-
equity modeling.

Volatility Skews and Credit Spreads

Figure 1(a) illustrates the shapes of the term structure of
zero-coupon credit spreads in the CEV and JDCEV mod-
els, assuming zero recovery. The credit spread curves start
at the instantaneous credit spread equal to the default in-
tensity b + co? (o, is the volatility at a reference level
5*)2. The instantaneous credit spreads for the CEV model

2It is convenient to parameterize the local volatility function as
a(S) = aS® = 5.,(S/S*)P so that at some reference spot price level
S = S* (e.g., the at-the-money level at the time of model calibration)
the volatility takes the reference value, o(S*) = o. In the example
presented here, the reference level is taken to equal the initial spot price
level, S* = Sp, and the volatility scale parameter is a = o*/(Sg).

vanish, while they are positive for the JDCEV model. Fig-
ure 1(b) plots the Black-Scholes implied volatility against
the strike price in the CEV and JDCEV models (we calcu-
late the implied volatility by equating the price of an op-
tion under the Black-Scholes model to the corresponding
option price under the (JD)CEV model). One can observe
the decreasing and convex implied volatility skew with
implied volatilities increasing for lower strikes, as the lo-
cal volatility and the default intensity both increase as the
stock price declines. The volatility elasticity 5 controls
the slope of the skew in the CEV model. The slope of the
skew in the JDCEV model is steeper and is controlled by
0, as well as the default intensity parameters b and c.

Implied Volatility and the SABR
model

By using singular perturbation techniques, Hagan and
Woodward [17] obtained explicit asymptotic formulas for
the Black-Scholes implied volatility ops of European
calls and puts on an asset whose forward price F'(t) fol-
lows the CEV dynamics, i.e., dF} = aFtﬁHdBt,

ops =afl { _BB+3) <F0K>2
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where 7 is time to expiration, f,, = (Fp + K)/2 and
Fy is today’s forward price (Hagan and Woodward’s
is equal to our 3 4 1). This asymptotics for the implied
volatility approximates the exact CEV implied volatilities
well when the ratio F/K is not too far from one and
when K and F{, are far away from zero. The accuracy
tends to deteriorate when the values are close to zero since
this asymptotic approximation does not take into account
the killing boundary condition at zero.

Hagan et al. [16] introduced the SABR model which is
a CEV model with stochastic volatility. More precisely,
the volatility scale parameter a is made stochastic, so that
the forward asset price follows the dynamics,

dF, = a,F’**aBY, and da, = na,dB?,



where dB,gl),dBf@ = pdt. Hagan et al. derive the
asymptotic expression for the implied volatility in the
SABR model.

Introducing Jumps and Stochastic
Volatility into the CEV Model

Mendoza, Carr and Linetsky [20] introduce jumps and
stochastic volatility into the JDCEV model by time chang-
ing the JDCEV process. Lévy subordinator time changes
introduce state-dependent jumps into the process, while
absolutely continuous time changes introduce stochas-
tic volatility. The result is a flexible family of models
that exhibit the leverage effect, default intensity linked
to the stock price volatility, jumps, and stochastic volatil-
ity. These models inherit the analytical tractability of the
CEV and JDCEV models as long as the Laplace transform
of the time change process is analytically tractable. The
stochastic volatility version of the CEV model obtained
in this approach is different from the SABR model in two
respects. The advantage of the time change approach is
that it preserves the analytical tractability for more realis-
tic choices for the stochastic volatility process, such as the
CIR process with mean-reversion. Another advantage is
that jumps, including the jump-to-default, can also be in-
corporated. The weakness is that it is hard to incorporate
the correlation between the price and volatility.
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Term Structure of Credit Spreads Implied Volatility Skews
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Figure 1: (a) Term structures of credit spreads. Parameter values: S = S* = 50,0, = 0.2, 8 = -1/2,—-1, -2, -3,
r =0.05,¢ =0.JDCEV: b = 0.02and ¢ = 1/2. CEV: b = 0 and ¢ = 0. (b) Implied volatility skews. Parameter
values: S = S* = 50, 0, = 0.2, r = 0.05, ¢ = 0. For JDCEV model: b = 0.02, ¢ = 1/2 and § = —1, the times
to expiration are 7" = 0.25,0.5,1,5 years. For CEV model: b = ¢ = 0, § = —1, —2 and times to expiration are
T = 0.25, 5. Implied volatilities are plotted against the strike price.



