Lecture 3

Finding Roots - Open Methods
Lecture in Numerical Methods from 17. March 2015

Overview
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method

Bracketing methods - Overview

(a) Graphical method

(c) Bisection

(b) Incremental search

(d) False position

Overview

Open methods
Simple fixed-point iteration Newton-Raphson Secant methods Brent's method

Agenda of today's lecture

(1) Overview

Overview

Open methods

2 Open methods

Simple fixed-point iteration Newton-Raphson

Newton-Raphson
Secant methods
Brent's method

Open methods

For bracketing methods the root is located within an interval \rightarrow repeated application always results in a closer estimates of the true value of the root \rightarrow convergent methods

Overview
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method

Open methods

For bracketing methods the root is located within an interval \rightarrow repeated application always results in a closer estimates of the true value of the root \rightarrow convergent methods

Bisection (a) vs. Newton-Raphson (b) and (c)

Simple fixed-point iteration

Idea: Rearrange

$$
f(x)=0
$$

to

$$
\mathbf{g}(\mathbf{x})=\mathbf{x}
$$

by algebraic manipulation or by adding x on both sides.
Utility: Easy-to-compute new estimates: $x_{i+1}=g\left(x_{i}\right)$. Error estimator:

Overview
Open methods

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| 100 \%
$$

Example: Use simple fixed-point iteration to locate the root of $f(x)=\mathrm{e}^{-x}-x$. (initial guess $x_{0}=0$)

Fixed-point iteration: Example

$$
f(x)=\mathrm{e}^{-x}-x
$$

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\varepsilon_{\boldsymbol{a}}\right\|, \%$	$\left\|\varepsilon_{\boldsymbol{t}}\right\|, \%$	$\left\|\varepsilon_{\boldsymbol{t}}\right\|_{i} /\left\|\varepsilon_{\boldsymbol{t}}\right\|_{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533
5	0.6062	17.447	6.894	0.586
6	0.5454	11.157	3.835	0.556
7	0.5796	5.903	2.199	0.573
8	0.5601	3.481	1.239	0.564
9	0.5711	1.931	0.705	0.569
10	0.5649	1.109	0.399	0.566

Fixed-point iteration: Example

$$
f(x)=\mathrm{e}^{-x}-x
$$

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{a}}\right\|, \%$	$\left\|\varepsilon_{\boldsymbol{t}}\right\|, \%$	$\left\|\varepsilon_{\boldsymbol{t}}\right\|_{i} /\left\|\varepsilon_{\boldsymbol{t}}\right\|_{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533
5	0.6062	17.447	6.894	0.586
6	0.5454	11.157	3.835	0.556
7	0.5796	5.903	2.199	0.573
8	0.5601	3.481	1.239	0.564
9	0.5711	1.931	0.705	0.569
10	0.5649	1.109	0.399	0.566

Each iteration brings the estimate closer to the true value of the root: 0.5671 .

Convergence vs. Divergence

Overview

Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method

Simple fixed-point iteration: Error estimates

Error for any iteration is proportional to error from previous iteration multiplied by the absolute value of the slope of g :

$$
E_{i+1}=g^{\prime}(\xi) E_{i}
$$

If $\left|g^{\prime}\right|<1$ the errors decrease with each iteration.
If $\left|g^{\prime}\right|>1$ the errors grow with each iteration.
Remark: If $g^{\prime}>0$ the errors are positive, if $g^{\prime}<0$, the errors change sign!

Newton-Raphson: most widely used of all root-finding methods

Newton-Raphson: most widely used of all root-finding methods

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of $f(x)=\mathrm{e}^{-x}-x$, with the initial guess $x_{0}=0$.

Overview

Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of $f(x)=\mathrm{e}^{-x}-x$, with the initial guess $x_{0}=0$.

First derivative $f^{\prime}(x)=-\mathrm{e}^{-x}-1$, giving

$$
x_{i+1}=x_{i}-\frac{\mathrm{e}^{-x_{i}}-x_{i}}{-\mathrm{e}^{-x_{i}}-1}
$$

Overview

Open methods
Simple fixed-point iteration

Brent's method

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of $f(x)=\mathrm{e}^{-x}-x$, with the initial guess $x_{0}=0$.

First derivative $f^{\prime}(x)=-\mathrm{e}^{-x}-1$, giving

$$
x_{i+1}=x_{i}-\frac{\mathrm{e}^{-x_{i}}-x_{i}}{-\mathrm{e}^{-x_{i}}-1}
$$

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{t}}\right\|, \%$
0	0	100
1	0.500000000	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	$<10^{-8}$

Remark: the exact root of f is given via the product logarithm (a special function) and is 0.56714 .

Newton-Raphson: Convergence rate

Rate of convergence:

$$
E_{t, i+1}=\frac{-f^{\prime \prime}\left(x_{r}\right)}{2 f^{\prime}\left(x_{r}\right)} E_{t, i}^{2}
$$

The error is roughly proportional to the square of the previous error.

QUADRATIC CONVERGENCE \rightarrow one of the main reasons for the popularity of the method

A slowly converging Newton-Raphson algorithm

Determine the positive root of

$$
f(x)=x^{10}-1
$$

using Newton-Raphson and an initial guess of $x=0.5$. Iteration

$$
\begin{array}{ccc}
& & x_{i+1}^{10}-1 \\
& =x_{i}-\frac{x_{i}}{10 x_{i}^{9}} \\
\hline i & x_{i} & \left|\varepsilon_{a}\right|, \% \\
\hline 0 & 0.5 & \\
1 & 51.65 & 9.032 \\
2 & 46.485 & 11.111 \\
3 & 41.8365 & 11111 \\
4 & 37.65285 & 11.111 \\
\vdots & & \\
40 & 1.002316 & \\
41 & 1.00024 & 0.130 \\
42 & 1 & 0.002 \\
\hline
\end{array}
$$

A slowly converging Newton-Raphson algorithm

Determine the positive root of

$$
f(x)=x^{10}-1
$$

using Newton-Raphson and an initial guess of $x=0.5$. Iteration

\[

\]

Overview
Open methods
Simple fixed-point iteration

What happens?

A slowly Newton-Raphson algorithm

Overview
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method

Newton-Raphson: weak spots

(c)

(d)

Secant method

Motivation: Difficult-to-evaluate derivative

Overview
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods

Secant method

Motivation: Difficult-to-evaluate derivative Idea: Approximate derivative by backward finite difference

Overview
Open methods
Simple fixed-point iteration
Newton-Raphson
Brent's method

Secant method

Motivation: Difficult-to-evaluate derivative Idea: Approximate derivative by backward finite difference

$$
f^{\prime}\left(x_{i}\right) \cong \frac{f\left(x_{i-1}\right)-f\left(x_{i}\right)}{x_{i-1}-x_{i}}
$$

Secant method

Motivation: Difficult-to-evaluate derivative Idea: Approximate derivative by backward finite difference

$$
f^{\prime}\left(x_{i}\right) \cong \frac{f\left(x_{i-1}\right)-f\left(x_{i}\right)}{x_{i-1}-x_{i}}
$$

Secant method:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{f\left(x_{i-1}\right)-f\left(x_{i}\right)}
$$

Secant method

Motivation: Difficult-to-evaluate derivative Idea: Approximate derivative by backward finite difference

$$
f^{\prime}\left(x_{i}\right) \cong \frac{f\left(x_{i-1}\right)-f\left(x_{i}\right)}{x_{i-1}-x_{i}}
$$

Secant method:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{f\left(x_{i-1}\right)-f\left(x_{i}\right)}
$$

Remark: We need 2 initial guesses for x !!

Modified secant method

Alternative approach: Instead of the second initial guess, use a fractional perturbation of x_{i} :

$$
f^{\prime}\left(x_{i}\right) \cong \frac{f\left(x_{i}+\delta x_{i}\right)-f\left(x_{i}\right)}{\delta x_{i}}
$$

Overview
Open methods
Simple fixed-point iteration
Newton-Raphson

Brent's method

Modified secant method:

$$
x_{i+1}=x_{i}-\frac{\delta x_{i} f\left(x_{i}\right)}{f\left(x_{i}+\delta x_{i}\right)-f\left(x_{i}\right)}
$$

Modified secant method - Bungee jumper problem

Determine mass of the bungee jumper that'll have a velocity of $36 \mathrm{~m} / \mathrm{s}$ in the 4th second of the free fall ($c_{d}=0.25 \mathrm{~kg} / \mathrm{m}$) Use an initial guess of 50 kg and a value of 10^{-6} for the perturbation fraction.

Open methods
Simple fixed-point iteration

Modified secant method - Bungee jumper problem

Determine mass of the bungee jumper that'll have a velocity of $36 \mathrm{~m} / \mathrm{s}$ in the 4th second of the free fall ($c_{d}=0.25 \mathrm{~kg} / \mathrm{m}$) Use an initial guess of 50 kg and a value of 10^{-6} for the perturbation fraction.

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{t}}\right\|, \%$	$\left\|\boldsymbol{\varepsilon}_{a}\right\|, \%$
0	50.0000	64.971	
1	88.3993	38.069	43.438
2	124.0897	13.064	28.762
3	140.5417	1.538	1.706
4	142.7072	0.021	1.517
5	142.7376	4.1×10^{-6}	0.021
6	142.7376	3.4×10^{-12}	4.1×10^{-6}

Overview
Open methods
Simple fixed-point iteration Newton-Raphson

Modified secant method - Bungee jumper problem

Determine mass of the bungee jumper that'll have a velocity of $36 \mathrm{~m} / \mathrm{s}$ in the 4th second of the free fall ($c_{d}=0.25 \mathrm{~kg} / \mathrm{m}$) Use an initial guess of 50 kg and a value of 10^{-6} for the perturbation fraction.

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{t}}\right\|, \%$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{a}}\right\|, \%$
0	50.0000	64.971	
1	88.3993	38.069	43.438
2	124.0897	13.064	28.762
3	140.5417	1.538	11.706
4	142.7072	0.021	1.517
5	142.7376	4.1×10^{-6}	0.021
6	142.7376	3.4×10^{-12}	4.1×10^{-6}

Overview
Open methods
Simple fixed-point iteration Newton-Raphson

Care: choose δ

- not too small, avoiding subtractive cancelation
- not too large \rightarrow inefficient and divergent algorithm

Modified secant method - Bungee jumper problem

Determine mass of the bungee jumper that'll have a velocity of $36 \mathrm{~m} / \mathrm{s}$ in the 4th second of the free fall ($c_{d}=0.25 \mathrm{~kg} / \mathrm{m}$) Use an initial guess of 50 kg and a value of 10^{-6} for the perturbation fraction.

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{t}}\right\|, \%$	$\left\|\boldsymbol{\varepsilon}_{\boldsymbol{a}}\right\|, \%$
0	50.0000	64.971	
1	88.3993	38.069	43.438
2	124.0897	13.064	28.762
3	140.5417	1.538	11.706
4	142.7072	0.021	1.517
5	142.7376	4.1×10^{-6}	0.021
6	142.7376	3.4×10^{-12}	4.1×10^{-6}

Overview
Open methods
Simple fixed-point iteration Newton-Raphson

Care: choose δ

- not too small, avoiding subtractive cancelation
- not too large \rightarrow inefficient and divergent algorithm

Particular use of secant methods: for complicated functions (ex. consisting of many lines of code)

Brent's method - generalities

Catch: it is a hybrid method combining the reliability of bracketing methods with the speed of open methods:

Developed by Richard Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

Brent's method - generalities

Catch: it is a hybrid method combining the reliability of bracketing methods with the speed of open methods:

- bracketing method: bisection

Developed by Richard Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

Brent's method - generalities

Catch: it is a hybrid method combining the reliability of bracketing methods with the speed of open methods:

- bracketing method: bisection
- open methods: secant method and quadratic interpolation

Developed by Richard Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

Inverse quadratic interpolation

Idea:

Secant (a) is in fact a linear interpolation method. Inverse quadratic interpolation (b)

Inverse quadratic interpolation

Potential difficulties for quadratic interpolation: parabola does not intersect x-axis.

Overview

Open methods
Simple fixed-point iteration Newton-Raphson Secant methods

Inverse quadratic interpolation

Potential difficulties for quadratic interpolation: parabola does not intersect x-axis.

Solution: inverse quadratic interpolation, i.e. "sideways" parabola $x=f(y)$. It always intersects the x-axis!

Inverse quadratic interpolation method

Given 3 points $\left(x_{i-2}, y_{i-2}\right),\left(x_{i-1}, y_{i-1}\right),\left(x_{i}, y_{i}\right)$, a quadratic function of y that passes through them

$$
\begin{aligned}
& g(y)=\frac{\left(y-y_{i-1}\right)\left(y-y_{i}\right)}{\left(y_{i-2}-y_{i-1}\right)\left(y_{i-2}-y_{i}\right)} x_{i-2}+\frac{\left(y-y_{i-2}\right)\left(y-y_{i}\right)}{\left(y_{i-1}-y_{i-2}\right)\left(y_{i-1}-y_{i}\right)} x_{i-1} \\
&+\frac{\left(y-y_{i-2}\right)\left(y-y_{i-1}\right)}{\left(y_{i}-y_{i-2}\right)\left(y_{i}-y_{i-1}\right)} x_{i}
\end{aligned}
$$

This is a Lagrange polynomial.
The root corresponds to $y=0$ above:

$$
\begin{gathered}
x_{i+1}=\frac{\left(y_{i-1}\right)\left(y_{i}\right)}{\left(y_{i-2}-y_{i-1}\right)\left(y_{i-2}-y_{i}\right)} x_{i-2}+\frac{\left(y_{i-2}\right)\left(y_{i}\right)}{\left(y_{i-1}-y_{i-2}\right)\left(y_{i-1}-y_{i}\right)} x_{i-1} \\
+\frac{\left(y_{i-2}\right)\left(y_{i-1}\right)}{\left(y_{i}-y_{i-2}\right)\left(y_{i}-y_{i-1}\right)} x_{i}
\end{gathered}
$$

Inverse quadratic interpolation method

Given 3 points $\left(x_{i-2}, y_{i-2}\right),\left(x_{i-1}, y_{i-1}\right),\left(x_{i}, y_{i}\right)$, a quadratic function of y that passes through them

$$
\begin{aligned}
g(y)=\frac{\left(y-y_{i-1}\right)\left(y-y_{i}\right)}{\left(y_{i-2}-y_{i-1}\right)\left(y_{i-2}-y_{i}\right)} x_{i-2}+ & +\frac{\left(y-y_{i-2}\right)\left(y-y_{i}\right)}{\left(y_{i-1}-y_{i-2}\right)\left(y_{i-1}-y_{i}\right)} x_{i-1} \\
& +\frac{\left(y-y_{i-2}\right)\left(y-y_{i-1}\right)}{\left(y_{i}-y_{i-2}\right)\left(y_{i}-y_{i-1}\right)} x_{i}
\end{aligned}
$$

This is a Lagrange polynomial.
The root corresponds to $y=0$ above:

$$
\begin{gathered}
x_{i+1}=\frac{\left(y_{i-1}\right)\left(y_{i}\right)}{\left(y_{i-2}-y_{i-1}\right)\left(y_{i-2}-y_{i}\right)} x_{i-2}+\frac{\left(y_{i-2}\right)\left(y_{i}\right)}{\left(y_{i-1}-y_{i-2}\right)\left(y_{i-1}-y_{i}\right)} x_{i-1} \\
+\frac{\left(y_{i-2}\right)\left(y_{i-1}\right)}{\left(y_{i}-y_{i-2}\right)\left(y_{i}-y_{i-1}\right)} x_{i}
\end{gathered}
$$

It does not work if y_{i-2}, y_{i-1}, y_{i} are not distinct; in this case we use the less efficient secant method.

Brent's method algorithm

General idea: whenever possible, use a fast open method; otherwise fall back on the conservative bisection.
Repeat until location tolerance is acceptable. Remark: Bisection dominates in the beginning, but as the root is approached, the method shifts to open methods.

