
Lecture 3

of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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1.2

Bracketing methods - Overview

This represents a real dilemma, because many design problems involve specifying the
properties or composition of a system (as represented by its parameters) to ensure that it
performs in a desired manner (as represented by its variables). Thus, these problems often
require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (5.1) by
subtracting the dependent variable v from both sides of the equation to give Eq. (5.2). The
value of m that makes f (m) = 0 is, therefore, the root of the equation. This value also rep-
resents the mass that solves the design problem.

The following pages deal with a variety of numerical and graphical methods for deter-
mining roots of relationships such as Eq. (5.2). These techniques can be applied to many
other problems confronted routinely in engineering and science.

5.2 GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f (x) = 0 is to make
a plot of the function and observe where it crosses the x axis. This point, which represents
the x value for which f (x) = 0, provides a rough approximation of the root.

EXAMPLE 5.1 The Graphical Approach

Problem Statement. Use the graphical approach to determine the mass of the bungee
jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of free
fall. Note: The acceleration of gravity is 9.81 m/s2.

Solution. The following MATLAB session sets up a plot of Eq. (5.2) versus mass:

>> cd = 0.25; g = 9.81; v = 36; t = 4;
>> mp = linspace(50,200);
>> fp = sqrt(g*mp/cd).*tanh(sqrt(g*cd./mp)*t)-v;
>> plot(mp,fp),grid

Root

�5
50 100 150 200

�4

�3

�2

�1

0

1

128 ROOTS: BRACKETING METHODS

cha01102_ch05_123-150.qxd  12/17/10  8:01 AM  Page 128

(a) Graphical method

function xb = incsearch(func,xmin,xmax,ns)
% incsearch: incremental search root locator
%   xb = incsearch(func,xmin,xmax,ns):
%      finds brackets of x that contain sign changes
%      of a function on an interval
% input:
%   func = name of function 
%   xmin, xmax = endpoints of interval
%   ns = number of subintervals (default = 50)
% output:
%   xb(k,1) is the lower bound of the kth sign change
%   xb(k,2) is the upper bound of the kth sign change
%   If no brackets found, xb = [].

if nargin < 3, error('at least 3 arguments required'), end
if nargin < 4, ns = 50; end %if ns blank set to 50

% Incremental search
x = linspace(xmin,xmax,ns); 
f = func(x); 
nb = 0; xb = []; %xb is null unless sign change detected
for k = 1:length(x)-1

if sign(f(k)) ~= sign(f(k+1)) %check for sign change
nb = nb + 1;
xb(nb,1) = x(k);
xb(nb,2) = x(k+1);

end
end
if isempty(xb)    %display that no brackets were found

disp('no brackets found')
disp('check interval or increase ns')

else
disp('number of brackets:') %display number of brackets
disp(nb)

end

FIGURE 5.4
An M-file to implement an incremental search.
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FIGURE 5.3
Cases where roots could be missed because the incremental length of the search procedure is
too large. Note that the last root on the right is multiple and would be missed regardless of the
increment length.
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(b) Incremental search

Example 5.1, we can see that the function changes sign between values of 50 and 200. The
plot obviously suggests better initial guesses, say 140 and 150, but for illustrative purposes
let’s assume we don’t have the benefit of the plot and have made conservative guesses.
Therefore, the initial estimate of the root xr lies at the midpoint of the interval

xr = 50 + 200

2
= 125

Note that the exact value of the root is 142.7376. This means that the value of 125 calcu-
lated here has a true percent relative error of

|εt | =
∣∣∣∣142.7376 − 125

142.7376

∣∣∣∣ × 100% = 12.43%

Next we compute the product of the function value at the lower bound and at the midpoint:

f (50) f (125) = −4.579(−0.409) = 1.871

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located in the upper interval between 125 and
200. Therefore, we create a new interval by redefining the lower bound as 125.

5.4 BISECTION 135
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FIGURE 5.5
A graphical depiction of the bisection method. This plot corresponds to the first four iterations
from Example 5.3.
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(c) Bisection

sign as f (xr ). In this way the values of xl and xu always bracket the true root. The process
is repeated until the root is estimated adequately. The algorithm is identical to the one for
bisection (Fig. 5.7) with the exception that Eq. (5.7) is used.

EXAMPLE 5.5 The False-Position Method

Problem Statement. Use false position to solve the same problem approached graphi-
cally and with bisection in Examples 5.1 and 5.3.

Solution. As in Example 5.3, initiate the computation with guesses of xl = 50 and
xu = 200.

First iteration:

xl = 50 f (xl) = −4.579387

xu = 200 f (xu) = 0.860291

xr = 200 − 0.860291(50 − 200)

−4.579387 − 0.860291
= 176.2773

which has a true relative error of 23.5%.

Second iteration:

f (xl) f (xr ) = −2.592732

5.5 FALSE POSITION 141
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Open methods

For bracketing methods the root is located within an interval→
repeated application always results in a closer estimates of the
true value of the root→ convergent methods

152 ROOTS: OPEN METHODS

6.1 SIMPLE FIXED-POINT ITERATION

As just mentioned, open methods employ a formula to predict the root. Such a formula can
be developed for simple fixed-point iteration (or, as it is also called, one-point iteration or
successive substitution) by rearranging the function f (x) = 0 so that x is on the left-hand
side of the equation: 

x = g(x) (6.1)

This transformation can be accomplished either by algebraic manipulation or by simply
adding x to both sides of the original equation. 

The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as a
function of an old value of x. Thus, given an initial guess at the root xi , Eq. (6.1) can be
used to compute a new estimate xi+1 as expressed by the iterative formula

xi+1 = g(xi ) (6.2)

f (x)

x
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x
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FIGURE 6.1
Graphical depiction of the fundamental difference between the (a) bracketing and (b) and (c)
open methods for root location. In (a), which is bisection, the root is constrained within the inter-
val prescribed by xl and xu . In contrast, for the open method depicted in (b) and (c), which is
Newton-Raphson, a formula is used to project from xi to xi+1 in an iterative fashion. Thus the
method can either (b) diverge or (c) converge rapidly, depending on the shape of the function
and the value of the initial guess.
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Simple fixed-point iteration

Idea: Rearrange
f (x) = 0

to
g(x) = x

by algebraic manipulation or by adding x on both sides.
Utility: Easy-to-compute new estimates: xi+1 = g(xi).
Error estimator:

εa =

∣∣∣∣xi+1 − xi

xi+1

∣∣∣∣100%.

Example: Use simple fixed-point iteration to locate the root of
f (x) = e−x −x . (initial guess x0 = 0)
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The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Fixed-point iteration: Example

f (x) = e−x −x .

6.1 SIMPLE FIXED-POINT ITERATION 153

As with many other iterative formulas in this book, the approximate error for this equation
can be determined using the error estimator:

εa =
∣∣∣∣ xi+1 − xi

xi+1

∣∣∣∣ 100% (6.3)

EXAMPLE 6.1 Simple Fixed-Point Iteration

Problem Statement. Use simple fixed-point iteration to locate the root of f (x) = e−x − x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

xi+1 = e−xi

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute:

i xi |εa|, % |εt|, % |εt|i/|εt|i−1

0 0.0000 100.000
1 1.0000 100.000 76.322 0.763
2 0.3679 171.828 35.135 0.460
3 0.6922 46.854 22.050 0.628
4 0.5005 38.309 11.755 0.533
5 0.6062 17.447 6.894 0.586
6 0.5454 11.157 3.835 0.556
7 0.5796 5.903 2.199 0.573
8 0.5601 3.481 1.239 0.564
9 0.5711 1.931 0.705 0.569

10 0.5649 1.109 0.399 0.566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

Notice that the true percent relative error for each iteration of Example 6.1 is roughly
proportional (for this case, by a factor of about 0.5 to 0.6) to the error from the previous
iteration. This property, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the “pos-
sibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Section 5.2, we graphed a function to visualize its structure and
behavior. Such an approach is employed in Fig. 6.2a for the function f (x) = e−x − x . An
alternative graphical approach is to separate the equation into two component parts, as in

f1(x) = f2(x)

Then the two equations

y1 = f1(x) (6.4)

and

y2 = f2(x) (6.5)
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Each iteration brings the estimate closer to the true value of
the root: 0.5671.
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Fixed-point iteration: Example

f (x) = e−x −x .

6.1 SIMPLE FIXED-POINT ITERATION 153

As with many other iterative formulas in this book, the approximate error for this equation
can be determined using the error estimator:

εa =
∣∣∣∣ xi+1 − xi

xi+1

∣∣∣∣ 100% (6.3)

EXAMPLE 6.1 Simple Fixed-Point Iteration

Problem Statement. Use simple fixed-point iteration to locate the root of f (x) = e−x − x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

xi+1 = e−xi

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute:

i xi |εa|, % |εt|, % |εt|i/|εt|i−1

0 0.0000 100.000
1 1.0000 100.000 76.322 0.763
2 0.3679 171.828 35.135 0.460
3 0.6922 46.854 22.050 0.628
4 0.5005 38.309 11.755 0.533
5 0.6062 17.447 6.894 0.586
6 0.5454 11.157 3.835 0.556
7 0.5796 5.903 2.199 0.573
8 0.5601 3.481 1.239 0.564
9 0.5711 1.931 0.705 0.569

10 0.5649 1.109 0.399 0.566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

Notice that the true percent relative error for each iteration of Example 6.1 is roughly
proportional (for this case, by a factor of about 0.5 to 0.6) to the error from the previous
iteration. This property, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the “pos-
sibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Section 5.2, we graphed a function to visualize its structure and
behavior. Such an approach is employed in Fig. 6.2a for the function f (x) = e−x − x . An
alternative graphical approach is to separate the equation into two component parts, as in

f1(x) = f2(x)

Then the two equations

y1 = f1(x) (6.4)

and

y2 = f2(x) (6.5)
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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1.7

Convergence vs. Divergence
6.1 SIMPLE FIXED-POINT ITERATION 155

iteration is equivalent to the equation

x2 = g(x1)

The solution in Fig. 6.3a is convergent because the estimates of x move closer to the
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case for
Fig. 6.3c and d, where the iterations diverge from the root.

A theoretical derivation can be used to gain insight into the process. As described in
Chapra and Canale (2010), it can be shown that the error for any iteration is linearly pro-
portional to the error from the previous iteration multiplied by the absolute value of the
slope of g:

Ei+1 = g′(ξ)Ei

xx1

y1 � x

y2 � g(x)

x2 x0

y

(a)

x

y1 � x

y2 � g(x)

x0

y

(b)

x

y1�x

y2 � g(x)

x0

y

(c)

x

y1 � x

y2 � g(x)

x0

y

(d)

FIGURE 6.3
Graphical depiction of (a) and (b) convergence and (c) and (d ) divergence of simple fixed-point
iteration. Graphs (a) and (c) are called monotone patterns whereas (b) and (c) are called 
oscillating or spiral patterns. Note that convergence occurs when |g′(x)| < 1.
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Simple fixed-point iteration: Error estimates

Error for any iteration is proportional to error from previous
iteration multiplied by the absolute value of the slope of g:

Ei+1 = g′(ξ)Ei .

If |g′| < 1 the errors decrease with each iteration.
If |g′| > 1 the errors grow with each iteration.
Remark: If g′ > 0 the errors are positive, if g′ < 0, the errors
change sign!
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gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
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eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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1.9

Newton-Raphson: most widely used of all root-finding
methods

xi+1 = xi −
f (xi)

f ′(xi)

6.2 NEWTON-RAPHSON 157

As with other root-location methods, Eq. (6.3) can be used as a termination criterion.
In addition, a theoretical analysis (Chapra and Canale, 2010) provides insight regarding the
rate of convergence as expressed by

Et,i+1 = − f ′′(xr )

2 f ′(xr )
E2

t,i (6.7)

Thus, the error should be roughly proportional to the square of the previous error. In other
words, the number of significant figures of accuracy approximately doubles with each
iteration. This behavior is called quadratic convergence and is one of the major reasons for
the popularity of the method.

Although the Newton-Raphson method is often very efficient, there are situations
where it performs poorly. A special case—multiple roots—is discussed elsewhere (Chapra
and Canale, 2010). However, even when dealing with simple roots, difficulties can also
arise, as in the following example.

EXAMPLE 6.3 A Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f (x) = x10 − 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

xi+1 = xi − x10
i − 1

10x9
i

which can be used to compute

f (x)

f (xi)

f(xi) � 0

Slope � f'(xi)

0 xxi�1 xi

xi � xi�1

FIGURE 6.4
Graphical depiction of the Newton-Raphson method. A tangent to the function of xi [that is,
f ′(x)] is extrapolated down to the x axis to provide an estimate of the root at xi+1.
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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6.2 NEWTON-RAPHSON 157

As with other root-location methods, Eq. (6.3) can be used as a termination criterion.
In addition, a theoretical analysis (Chapra and Canale, 2010) provides insight regarding the
rate of convergence as expressed by

Et,i+1 = − f ′′(xr )

2 f ′(xr )
E2

t,i (6.7)

Thus, the error should be roughly proportional to the square of the previous error. In other
words, the number of significant figures of accuracy approximately doubles with each
iteration. This behavior is called quadratic convergence and is one of the major reasons for
the popularity of the method.

Although the Newton-Raphson method is often very efficient, there are situations
where it performs poorly. A special case—multiple roots—is discussed elsewhere (Chapra
and Canale, 2010). However, even when dealing with simple roots, difficulties can also
arise, as in the following example.

EXAMPLE 6.3 A Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f (x) = x10 − 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

xi+1 = xi − x10
i − 1
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which can be used to compute

f (x)

f (xi)

f(xi) � 0

Slope � f'(xi)
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FIGURE 6.4
Graphical depiction of the Newton-Raphson method. A tangent to the function of xi [that is,
f ′(x)] is extrapolated down to the x axis to provide an estimate of the root at xi+1.
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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1.10

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of f (x) = e−x −x ,
with the initial guess x0 = 0.

First derivative f ′(x) = − e−x −1, giving

xi+1 = xi −
e−xi −xi

− e−xi −1
.

Consequently, if |g′| < 1, the errors decrease with each iteration. For |g′| > 1 the errors
grow. Notice also that if the derivative is positive, the errors will be positive, and hence the
errors will have the same sign (Fig. 6.3a and c). If the derivative is negative, the errors will
change sign on each iteration (Fig. 6.3b and d ).

6.2 NEWTON-RAPHSON

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson method
(Fig. 6.4). If the initial guess at the root is xi , a tangent can be extended from the point
[xi , f (xi )]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation. As in Fig. 6.4, the first derivative at x is equivalent to the slope:

f ′(xi ) = f (xi ) − 0

xi − xi+1

which can be rearranged to yield

xi+1 = xi − f (xi )

f ′(xi )
(6.6)

which is called the Newton-Raphson formula.

EXAMPLE 6.2 Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f (x) =
e−x − x employing an initial guess of x0 = 0.

Solution. The first derivative of the function can be evaluated as

f ′(x) = −e−x − 1

which can be substituted along with the original function into Eq. (6.6) to give

xi+1 = xi − e−xi − xi

−e−xi − 1

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute

i xi |εt|, %
0 0 100
1 0.500000000 11.8
2 0.566311003 0.147
3 0.567143165 0.0000220
4 0.567143290 <10−8

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
(compare with Example 6.1).
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv
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= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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error at each iteration decreases much faster than it does in simple fixed-point iteration
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Consequently, if |g′| < 1, the errors decrease with each iteration. For |g′| > 1 the errors
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(Fig. 6.4). If the initial guess at the root is xi , a tangent can be extended from the point
[xi , f (xi )]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation. As in Fig. 6.4, the first derivative at x is equivalent to the slope:

f ′(xi ) = f (xi ) − 0

xi − xi+1

which can be rearranged to yield

xi+1 = xi − f (xi )

f ′(xi )
(6.6)

which is called the Newton-Raphson formula.

EXAMPLE 6.2 Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f (x) =
e−x − x employing an initial guess of x0 = 0.

Solution. The first derivative of the function can be evaluated as

f ′(x) = −e−x − 1

which can be substituted along with the original function into Eq. (6.6) to give

xi+1 = xi − e−xi − xi

−e−xi − 1

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute

i xi |εt|, %
0 0 100
1 0.500000000 11.8
2 0.566311003 0.147
3 0.567143165 0.0000220
4 0.567143290 <10−8

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
(compare with Example 6.1).
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Newton-Raphson: Convergence rate

Rate of convergence:

Et,i+1 =
−f ′′(xr )

2f ′(xr )
E2

t,i

The error is roughly proportional to the square of the previous
error.

QUADRATIC CONVERGENCE→ one of the main reasons for
the popularity of the method
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gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 
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oriented numerical or approximate solution.
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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A slowly converging Newton-Raphson algorithm

Determine the positive root of

f (x) = x10 − 1

using Newton-Raphson and an initial guess of x = 0.5.
Iteration

xi+1 = xi −
x10

i − 1
10x9

i158 ROOTS: OPEN METHODS

i xi |εa|, %
0 0.5
1 51.65 99.032
2 46.485 11.111
3 41.8365 11.111
4 37.65285 11.111
•
•
•

40 1.002316 2.130
41 1.000024 0.229
42 1 0.002

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the first guess is in a region where the slope is near
zero. Thus, the first iteration flings the solution far away from the initial guess to a new
value (x = 51.65) where f(x) has an extremely high value. The solution then plods along
for over 40 iterations until converging on the root with adequate accuracy.
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FIGURE 6.5
Graphical depiction of the Newton-Raphson method for a case with slow convergence. The
inset shows how a near-zero slope initially shoots the solution far from the root. Thereafter, 
the solution very slowly converges on the root.

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
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the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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•
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Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the first guess is in a region where the slope is near
zero. Thus, the first iteration flings the solution far away from the initial guess to a new
value (x = 51.65) where f(x) has an extremely high value. The solution then plods along
for over 40 iterations until converging on the root with adequate accuracy.
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the first guess is in a region where the slope is near
zero. Thus, the first iteration flings the solution far away from the initial guess to a new
value (x = 51.65) where f(x) has an extremely high value. The solution then plods along
for over 40 iterations until converging on the root with adequate accuracy.
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Modified secant method - Bungee jumper problem

Determine mass of the bungee jumper that’ll have a velocity of
36m/s in the 4th second of the free fall (cd = 0.25kg/m) Use an
initial guess of 50kg and a value of 10−6 for the perturbation
fraction.

6.4 BRENT’S METHODS 163

Second iteration:

x1 = 88.39931 f (x1) = −1.69220771

x1 + δx1 = 88.39940 f (x1 + δx1) = −1.692203516

x2 = 88.39931 − 10−6(88.39931)(−1.69220771)

−1.692203516 − (−1.69220771)

= 124.08970(|εt | = 13.1%; |εa| = 28.76%)

The calculation can be continued to yield

i xi |εt|, % |εa|, %
0 50.0000 64.971
1 88.3993 38.069 43.438
2 124.0897 13.064 28.762
3 140.5417 1.538 11.706
4 142.7072 0.021 1.517
5 142.7376 4.1 × 10−6 0.021
6 142.7376 3.4 × 10−12 4.1 × 10−6

The choice of a proper value for δ is not automatic. If δ is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.9). If it is too big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for values sent to it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many lines of code that could take a sig-
nificant amount of execution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable. 

6.4 BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm that
does just that by applying a speedy open method wherever possible, but reverting to a reli-
able bracketing method if necessary. The approach was developed by Richard Brent (1973)
based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.4), whereas two dif-
ferent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.
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relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Modified secant method - Bungee jumper problem

Determine mass of the bungee jumper that’ll have a velocity of
36m/s in the 4th second of the free fall (cd = 0.25kg/m) Use an
initial guess of 50kg and a value of 10−6 for the perturbation
fraction.
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Second iteration:

x1 = 88.39931 f (x1) = −1.69220771

x1 + δx1 = 88.39940 f (x1 + δx1) = −1.692203516

x2 = 88.39931 − 10−6(88.39931)(−1.69220771)

−1.692203516 − (−1.69220771)

= 124.08970(|εt | = 13.1%; |εa| = 28.76%)

The calculation can be continued to yield

i xi |εt|, % |εa|, %
0 50.0000 64.971
1 88.3993 38.069 43.438
2 124.0897 13.064 28.762
3 140.5417 1.538 11.706
4 142.7072 0.021 1.517
5 142.7376 4.1 × 10−6 0.021
6 142.7376 3.4 × 10−12 4.1 × 10−6

The choice of a proper value for δ is not automatic. If δ is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.9). If it is too big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for values sent to it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many lines of code that could take a sig-
nificant amount of execution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable. 

6.4 BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm that
does just that by applying a speedy open method wherever possible, but reverting to a reli-
able bracketing method if necessary. The approach was developed by Richard Brent (1973)
based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.4), whereas two dif-
ferent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.
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lem, our more general objective will be to illustrate (a) what numerical methods are and
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show how mathematical models figure prominently in the way engineers and scientists use
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Second iteration:

x1 = 88.39931 f (x1) = −1.69220771

x1 + δx1 = 88.39940 f (x1 + δx1) = −1.692203516

x2 = 88.39931 − 10−6(88.39931)(−1.69220771)

−1.692203516 − (−1.69220771)

= 124.08970(|εt | = 13.1%; |εa| = 28.76%)

The calculation can be continued to yield

i xi |εt|, % |εa|, %
0 50.0000 64.971
1 88.3993 38.069 43.438
2 124.0897 13.064 28.762
3 140.5417 1.538 11.706
4 142.7072 0.021 1.517
5 142.7376 4.1 × 10−6 0.021
6 142.7376 3.4 × 10−12 4.1 × 10−6

The choice of a proper value for δ is not automatic. If δ is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.9). If it is too big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for values sent to it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many lines of code that could take a sig-
nificant amount of execution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable. 

6.4 BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm that
does just that by applying a speedy open method wherever possible, but reverting to a reli-
able bracketing method if necessary. The approach was developed by Richard Brent (1973)
based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.4), whereas two dif-
ferent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.
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where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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fraction.
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Second iteration:

x1 = 88.39931 f (x1) = −1.69220771

x1 + δx1 = 88.39940 f (x1 + δx1) = −1.692203516

x2 = 88.39931 − 10−6(88.39931)(−1.69220771)

−1.692203516 − (−1.69220771)

= 124.08970(|εt | = 13.1%; |εa| = 28.76%)

The calculation can be continued to yield

i xi |εt|, % |εa|, %
0 50.0000 64.971
1 88.3993 38.069 43.438
2 124.0897 13.064 28.762
3 140.5417 1.538 11.706
4 142.7072 0.021 1.517
5 142.7376 4.1 × 10−6 0.021
6 142.7376 3.4 × 10−12 4.1 × 10−6

The choice of a proper value for δ is not automatic. If δ is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.9). If it is too big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for values sent to it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many lines of code that could take a sig-
nificant amount of execution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable. 

6.4 BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm that
does just that by applying a speedy open method wherever possible, but reverting to a reli-
able bracketing method if necessary. The approach was developed by Richard Brent (1973)
based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.4), whereas two dif-
ferent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.
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his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
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Inverse quadratic interpolation

Idea:

6.4.1 Inverse Quadratic Interpolation

Inverse quadratic interpolation is similar in spirit to the secant method. As in Fig. 6.8a, the
secant method is based on computing a straight line that goes through two guesses. The
intersection of this straight line with the x axis represents the new root estimate. For this
reason, it is sometimes referred to as a linear interpolation method.

Now suppose that we had three points. In that case, we could determine a quadratic
function of x that goes through the three points (Fig. 6.8b). Just as with the linear secant
method, the intersection of this parabola with the x axis would represent the new root esti-
mate. And as illustrated in Fig. 6.8b, using a curve rather than a straight line often yields a
better estimate.

Although this would seem to represent a great improvement, the approach has a fun-
damental flaw: it is possible that the parabola might not intersect the x axis! Such would be
the case when the resulting parabola had complex roots. This is illustrated by the parabola,
y � f(x), in Fig. 6.9. 

The difficulty can be rectified by employing inverse quadratic interpolation. That is,
rather than using a parabola in x, we can fit the points with a parabola in y. This amounts to
reversing the axes and creating a “sideways” parabola [the curve, x � f(y), in Fig. 6.9].

If the three points are designated as (xi–2, yi–2), (xi–1, yi–1), and (xi, yi), a quadratic
function of y that passes through the points can be generated as

g(y) = (y − yi−1)(y − yi )

(yi−2 − yi−1)(yi−2 − yi )
xi−2 + (y − yi−2)(y − yi )

(yi−1 − yi−2)(yi−1 − yi )
xi−1

+ (y − yi−2)(y − yi−1)

(yi − yi−2)(yi − yi−1)
xi (6.10)

164 ROOTS: OPEN METHODS

f (x)

x

(a) (b)

f (x)

x

FIGURE 6.8
Comparison of (a) the secant method and (b) inverse quadratic interpolation. Note that the
approach in (b) is called “inverse” because the quadratic function is written in y rather than in x.
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Secant (a) is in fact a linear interpolation method. Inverse
quadratic interpolation (b)
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of physics and fluid mechanics, you develop the following mathematical model for the rate
of change of velocity with respect to time, 

dv

dt
= g − cd

m
v2

where v = downward vertical velocity (m/s), t = time (s), g = the acceleration due to
gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

1.1 A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable

= f

(
independent

variables
, parameters,

forcing
functions

)
(1.1)

where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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As we will learn in Sec. 18.2, this form is called a Lagrange polynomial. The root, xi�1, cor-
responds to y � 0, which when substituted into Eq. (6.10) yields

xi+1 = yi−1 yi

(yi−2 − yi−1)(yi−2 − yi )
xi−2 + yi−2 yi

(yi−1 − yi−2)(yi−1 − yi )
xi−1

+ yi−2 yi−1

(yi − yi−2)(yi − yi−1)
xi (6.11)

As shown in Fig. 6.9, such a “sideways” parabola always intersects the x axis.

EXAMPLE 6.6 Inverse Quadratic Interpolation

Problem Statement. Develop quadratic equations in both x and y for the data points
depicted in Fig. 6.9: (1, 2), (2, 1), and (4, 5). For the first, y � f(x), employ the quadratic
formula to illustrate that the roots are complex. For the latter, x � g(y), use inverse qua-
dratic interpolation (Eq. 6.11) to determine the root estimate.

Solution. By reversing the x’s and y’s, Eq. (6.10) can be used to generate a quadratic in x
as

f (x) = (x − 2)(x − 4)

(1 − 2)(1 − 4)
2 + (x − 1)(x − 4)

(2 − 1)(2 − 4)
1 + (x − 1)(x − 2)

(4 − 1)(4 − 2)
5

or collecting terms

f (x) = x2 − 4x + 5

42

6

4

2

0

y

x � f(y)

y � f(x)

x

Root

FIGURE 6.9
Two parabolas fit to three points. The parabola written as a function of x, y � f(x), has complex
roots and hence does not intersect the x axis. In contrast, if the variables are reversed, and the
parabola developed as x � f (y), the function does intersect the x axis.
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Solution: inverse quadratic interpolation, i.e. “sideways”
parabola x = f (y). It always intersects the x-axis!
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his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation
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gravity (∼= 9.81 m/s2), cd = a lumped drag coefficient (kg/m), and m = the jumper’s 
mass (kg). The drag coefficient is called “lumped” because its magnitude depends on fac-
tors such as the jumper’s area and the fluid density (see Sec. 1.4). 

Because this is a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.
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A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent
variable
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where the dependent variable is a characteristic that typically reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

where F is the net force acting on the body (N, or kg m/s2), m is the mass of the object (kg),
and a is its acceleration (m/s2).
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Given 3 points (xi−2, yi−2), (xi−1, yi−1), (xi , yi), a quadratic
function of y that passes through them

g(y) =
(y − yi−1)(y − yi)

(yi−2 − yi−1)(yi−2 − yi)
xi−2+

(y − yi−2)(y − yi)

(yi−1 − yi−2)(yi−1 − yi)
xi−1

+
(y − yi−2)(y − yi−1)

(yi − yi−2)(yi − yi−1)
xi

This is a Lagrange polynomial.
The root corresponds to y = 0 above:

xi+1 =
(yi−1)(yi)

(yi−2 − yi−1)(yi−2 − yi)
xi−2+

(yi−2)(yi)

(yi−1 − yi−2)(yi−1 − yi)
xi−1

+
(yi−2)(yi−1)

(yi − yi−2)(yi − yi−1)
xi

It does not work if yi−2, yi−1, yi are not distinct; in this case we
use the less efficient secant method.
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Brent’s method algorithm

General idea: whenever possible, use a fast open method ;
otherwise fall back on the conservative bisection.
Repeat until location tolerance is acceptable.
Remark: Bisection dominates in the beginning, but as the root
is approached, the method shifts to open methods.
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