Lecture 3 Finding Roots - Open Methods

Lecture in Numerical Methods from 17. March 2015

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods Brent's method

UVT

Bracketing methods - Overview

(a) Graphical method

(c) Bisection

(b) Incremental search

(d) False position

Lecture 3

Overview

Open methods

Agenda of today's lecture

1 Overview

2 Open methods

Simple fixed-point iteration Newton-Raphson Secant methods Brent's method

Overvie

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Open methods

For *bracketing methods* the root is located within an interval \rightarrow repeated application always results in a closer estimates of the true value of the root \rightarrow convergent methods

Overview

Open methods

Open methods

For *bracketing methods* the root is located within an interval \rightarrow repeated application always results in a closer estimates of the true value of the root \rightarrow convergent methods

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Brent's method

Bisection (a) vs. Newton-Raphson (b) and (c)

Simple fixed-point iteration

Idea: Rearrange

$$f(x) = 0$$

to

$$\mathbf{g}(\mathbf{x}) = \mathbf{x}$$

by algebraic manipulation or by adding *x* on both sides. Utility: Easy-to-compute new estimates: $x_{i+1} = g(x_i)$. Error estimator:

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%.$$

Example: Use simple fixed-point iteration to locate the root of $f(x) = e^{-x} - x$. (initial guess $x_0 = 0$)

Lecture 3

Overview

```
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method
```

Fixed-point iteration: Example

Lecture 3

Overview

Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method

f(x)	=	e	- <i>X</i>	-X.
------	---	---	------------	-----

i	x_i	$ \varepsilon_a $, %	$ \varepsilon_t $, %	$ \boldsymbol{\varepsilon}_t _i/ \boldsymbol{\varepsilon}_t _{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533
5	0.6062	17.447	6.894	0.586
6	0.5454	11.157	3.835	0.556
7	0.5796	5.903	2.199	0.573
8	0.5601	3.481	1.239	0.564
9	0.5711	1.931	0.705	0.569
10	0.5649	1.109	0.399	0.566

Fixed-point iteration: Example

f(x)	$) = e^{-x}$	-X.
------	--------------	-----

i	x_i	$ \varepsilon_a , \%$	$ \varepsilon_t , \%$	$ \varepsilon_t _i/ \varepsilon_t _{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533
5	0.6062	17.447	6.894	0.586
6	0.5454	11.157	3.835	0.556
7	0.5796	5.903	2.199	0.573
8	0.5601	3.481	1.239	0.564
9	0.5711	1.931	0.705	0.569
10	0.5649	1.109	0.399	0.566

Open methods Simple fixed-point iteration Newton-Raphson Secant methods Brent's method

Each iteration brings the estimate closer to the true value of the root: 0.5671.

Lecture 3

Convergence vs. Divergence

Lecture 3

Overview Open methods

Simple fixed-point iteration: Error estimates

Error for any iteration is proportional to error from previous iteration multiplied by the absolute value of the slope of *g*:

$$\mathsf{E}_{i+1}=g'(\xi)\mathsf{E}_i.$$

If |g'| < 1 the errors decrease with each iteration. If |g'| > 1 the errors grow with each iteration. **Remark:** If g' > 0 the errors are positive, if g' < 0, the errors change sign!

Overview

Newton-Raphson: most widely used of all root-finding methods

Lecture 3

Overview Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Newton-Raphson: most widely used of all root-finding methods

$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Lecture 3

Open methods Simple fixed-point iteration Newton-Raphson Secant methods Brent's method

Overview

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of $f(x) = e^{-x} - x$, with the initial guess $x_0 = 0$.

Lecture 3

Overview

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of $f(x) = e^{-x} - x$, with the initial guess $x_0 = 0$.

First derivative $f'(x) = -e^{-x} - 1$, giving

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}.$$

Lecture 3

Overview

Newton-Raphson: Example

Use Newton-Raphson to estimate the root of $f(x) = e^{-x} - x$, with the initial guess $x_0 = 0$.

First derivative
$$f'(x) = -e^{-x} - 1$$
, giving

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}.$$

i	x_i	$ \varepsilon_t , \%$
0	0	100
1	0.50000000	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	< 10 ⁻⁸

Remark: the exact root of *f* is given via the product logarithm (a special function) and is 0.56714.

Overview

Newton-Raphson: Convergence rate

Rate of convergence:

$$E_{t,i+1} = rac{-f''(x_r)}{2f'(x_r)}E_{t,i}^2$$

The error is roughly proportional to the square of the previous error.

 $\mbox{QUADRATIC CONVERGENCE} \rightarrow$ one of the main reasons for the popularity of the method

Lecture 3

Overview

A slowly converging Newton-Raphson algorithm

Determine the positive root of

$$f(x) = x^{10} - 1$$

using Newton-Raphson and an initial guess of x = 0.5. Iteration

$$x_{i+1} = x_i - \frac{x_i^{10} - 1}{10x_i^9}$$

i	x_i	$ \varepsilon_a $, %
0	0.5	00.000
2	51.65 46.485	99.032 11.111
3 4	41.8365 37.65285	11.111
:	0, 100200	
40	1 002316	2 130
41	1.0002310	0.229
42	1	0.002

Lecture 3

Overview

A slowly converging Newton-Raphson algorithm

Determine the positive root of

$$f(x) = x^{10} - 1$$

using Newton-Raphson and an initial guess of x = 0.5. Iteration

$$x_{i+1} = x_i - \frac{x_i^{10} - 1}{10x_i^9}$$

i	x _i	$ \varepsilon_a $, %
0 1 2 3 4 •	0.5 51.65 46.485 41.8365 37.65285	99.032 11.111 11.111 11.111
40 41 42	1.002316 1.000024 1	2.130 0.229 0.002

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods Brent's method

What happens?

A slowly Newton-Raphson algorithm

Lecture 3

Newton-Raphson: weak spots

Lecture 3

Overview

Motivation: Difficult-to-evaluate derivative

Overview

Motivation: Difficult-to-evaluate derivative **Idea:** Approximate derivative by backward finite difference

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Motivation: Difficult-to-evaluate derivative **Idea:** Approximate derivative by backward finite difference

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Motivation: Difficult-to-evaluate derivative **Idea:** Approximate derivative by backward finite difference

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Secant method:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Motivation: Difficult-to-evaluate derivative **Idea:** Approximate derivative by backward finite difference

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Secant method:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Remark: We need 2 initial guesses for *x*!!

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Modified secant method

Alternative approach: Instead of the second initial guess, use a fractional perturbation of x_i :

$$f'(\mathbf{x}_i) \cong \frac{f(\mathbf{x}_i + \delta \mathbf{x}_i) - f(\mathbf{x}_i)}{\delta \mathbf{x}_i}$$

•

Modified secant method:

$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

Overview

Determine mass of the bungee jumper that'll have a velocity of 36m/s in the 4th second of the free fall ($c_d = 0.25$ kg/m) Use an initial guess of 50kg and a value of 10^{-6} for the perturbation fraction.

Lecture 3

Overview

Open methods Simple fixed-point iteration Newton-Raphson Secant methods

Determine mass of the bungee jumper that'll have a velocity of 36m/s in the 4th second of the free fall ($c_d = 0.25$ kg/m) Use an initial guess of 50kg and a value of 10^{-6} for the perturbation fraction.

i	x_i	$ \varepsilon_t $, %	$ \varepsilon_a $, %
0	50.0000	64.971	
1	88.3993	38.069	43.438
2	124.0897	13.064	28.762
3	140.5417	1.538	11.706
4	142.7072	0.021	1.517
5	142.7376	4.1×10^{-6}	0.021
6	142.7376	3.4×10^{-12}	4.1×10^{-6}

Lecture 3

Overview

Determine mass of the bungee jumper that'll have a velocity of 36m/s in the 4th second of the free fall ($c_d = 0.25$ kg/m) Use an initial guess of 50kg and a value of 10^{-6} for the perturbation fraction.

i	x_i	$ \varepsilon_t , \%$	$ \varepsilon_a $, %
0	50.0000	64.971	
1	88.3993	38.069	43.438
2	124.0897	13.064	28.762
3	140.5417	1.538	11.706
4	142.7072	0.021	1.517
5	142.7376	4.1×10^{-6}	0.021
6	142.7376	3.4×10^{-12}	4.1×10^{-1}

Care: choose δ

- not too small, avoiding subtractive cancelation
- not too large \rightarrow inefficient and divergent algorithm

Overview

```
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method
```

Determine mass of the bungee jumper that'll have a velocity of 36m/s in the 4th second of the free fall ($c_d = 0.25$ kg/m) Use an initial guess of 50kg and a value of 10^{-6} for the perturbation fraction.

	$ \varepsilon_t , \%$	$ \varepsilon_a , \%$
50.0000	64.971	
88.3993	38.069	43.438
124.0897	13.064	28.762
140.5417	1.538	11.706
142.7072	0.021	1.517
142.7376	4.1×10^{-6}	0.021
142.7376	3.4×10^{-12}	4.1 × 10-
	88.3993 124.0897 140.5417 142.7072 142.7376	88.3993 38.069 124.0897 13.064 140.5417 1.538 142.7072 0.021 142.7376 4.1 × 10 ⁻⁶

Care: choose δ

- not too small, avoiding subtractive cancelation
- not too large \rightarrow inefficient and divergent algorithm

Particular use of secant methods: for complicated functions (ex. consisting of many lines of code)

Overview

```
Open methods
Simple fixed-point iteration
Newton-Raphson
Secant methods
Brent's method
```

Catch: it is a hybrid method combining the reliability of *bracketing methods* with the speed of *open methods*:

Developed by Richard Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

Lecture 3

Overview

Catch: it is a hybrid method combining the reliability of *bracketing methods* with the speed of *open methods*:

• bracketing method: bisection

Developed by Richard Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

Lecture 3

Overview

Catch: it is a hybrid method combining the reliability of *bracketing methods* with the speed of *open methods*:

- bracketing method: bisection
- open methods: secant method and quadratic interpolation
- Developed by Richard Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

Overview

Inverse quadratic interpolation

Idea:

Secant (a) is in fact a linear interpolation method. *Inverse quadratic interpolation* (b)

Lecture 3

Inverse quadratic interpolation

Potential difficulties for quadratic interpolation: parabola does not intersect *x*-axis.

Lecture 3

Overview

Inverse quadratic interpolation

Potential difficulties for quadratic interpolation: parabola does not intersect *x*-axis.

Solution: inverse quadratic interpolation, i.e. "sideways" parabola x = f(y). It always intersects the *x*-axis!

Lecture 3

Inverse quadratic interpolation method

Given 3 points (x_{i-2}, y_{i-2}) , (x_{i-1}, y_{i-1}) , (x_i, y_i) , a quadratic function of *y* that passes through them

$$g(y) = \frac{(y - y_{i-1})(y - y_i)}{(y_{i-2} - y_{i-1})(y_{i-2} - y_i)} x_{i-2} + \frac{(y - y_{i-2})(y - y_i)}{(y_{i-1} - y_{i-2})(y_{i-1} - y_i)} x_{i-2} + \frac{(y - y_{i-2})(y - y_{i-1})}{(y_i - y_{i-2})(y - y_{i-1})} x_i$$

This is a *Lagrange polynomial*. The root corresponds to y = 0 above:

$$\begin{aligned} x_{i+1} &= \frac{(y_{i-1})(y_i)}{(y_{i-2} - y_{i-1})(y_{i-2} - y_i)} x_{i-2} + \frac{(y_{i-2})(y_i)}{(y_{i-1} - y_{i-2})(y_{i-1} - y_i)} x_{i-1} \\ &+ \frac{(y_{i-2})(y_{i-1})}{(y_i - y_{i-2})(y_i - y_{i-1})} x_i \end{aligned}$$

Overview

Inverse quadratic interpolation method

Given 3 points (x_{i-2}, y_{i-2}) , (x_{i-1}, y_{i-1}) , (x_i, y_i) , a quadratic function of *y* that passes through them

$$g(y) = \frac{(y - y_{i-1})(y - y_i)}{(y_{i-2} - y_{i-1})(y_{i-2} - y_i)} x_{i-2} + \frac{(y - y_{i-2})(y - y_i)}{(y_{i-1} - y_{i-2})(y_{i-1} - y_i)} x_{i-2} + \frac{(y - y_{i-2})(y - y_{i-1})}{(y_i - y_{i-2})(y - y_{i-1})} x_i$$

This is a *Lagrange polynomial*. The root corresponds to y = 0 above:

$$\begin{aligned} x_{i+1} &= \frac{(y_{i-1})(y_i)}{(y_{i-2} - y_{i-1})(y_{i-2} - y_i)} x_{i-2} + \frac{(y_{i-2})(y_i)}{(y_{i-1} - y_{i-2})(y_{i-1} - y_i)} x_{i-1} \\ &+ \frac{(y_{i-2})(y_{i-1})}{(y_i - y_{i-2})(y_i - y_{i-1})} x_i \end{aligned}$$

It does not work if y_{i-2} , y_{i-1} , y_i are not distinct; in this case we use the less efficient secant method.

Overview

Brent's method algorithm

General idea: whenever possible, use a fast *open method*; otherwise fall back on the conservative *bisection*. Repeat until location tolerance is acceptable. **Remark:** Bisection dominates in the beginning, but as the root is approached, the method shifts to open methods.

Overview