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CLEVE’S CORNER

Computing π
By Cleve Moler

Computing hundreds, or trillions, of digits of π has long been used to stress hardware, validate software, and establish 

bragging rights. MATLAB® implementations of the most widely used algorithms for computing π illustrate two different styles 

of arithmetic available in Symbolic Math Toolbox™: exact rational arithmetic and variable-precision floating-point arithmetic.

Last August, two computer hobbyists, Alexander Yee and Shigeru 
Kondo, announced that they had set a world record by computing 
5 trillion digits of π (Figure 1). Their computation took 90 days on a 
“homebrew” PC. Yee is now a graduate student at the University of  
Illinois. His computing software, “y-cruncher,” began as a class proj-
ect at Palo Alto High School. Kondo is a systems engineer who as-
sembles personal computers at his home in Japan. The machine that 
he built for this project (Figure 2) has two Intel® Xeon® processors 
with a total of 12 cores, 96 gigabytes of RAM, and 20 external hard 
disks with a combined capacity of 32 terabytes. 

The computation of 5 trillion digits is a huge processing task 
where the time required for the data movement is just as important 
as the time required for the arithmetic.

 y-cruncher uses several different formulas for computation and 
verification. The primary tool is a formidable formula discovered by 
David and Gregory Chudnovsky in 1987:
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Last August, two computer hobbyists, Alexander Yee and Shigeru Kondo, announced that they had 
set a world record by computing five trillion digits of π.  Their computation took 90 days on a homebrew 
PC.  Yee is now a graduate student at the University of Illinois.  His computing software, “y-cruncher”, 
began as a class project at Palo Alto High School.  Kondo is a systems engineer who assembles personal 
computers at his home in Japan.  The machine that he built for this project (Figure 1) has two Intel Xeons 
with a total of 12 cores, 96 gigabytes of RAM, and 20 external hard disks with a combined capacity of 32 
terabytes.   

The computation of five trillion digits is a huge processing task where the time required for the data 
movement is just as important as the time required for the arithmetic. 

 y-cruncher uses several different formulas for computation and verification.  The primary tool is a 
formidable formula discovered by David and Gregory Chudnovsky in 1987. 

                  
                          
                         

 

   
 

The Chudnovsky brothers, who were the subject of two fascinating articles in the New Yorker and a 
NOVA documentary, have also built “home brew” computers in their apartment in Manhattan.  The 
massively parallel machine that they assembled from commodity parts in the 1990s was considered a 
supercomputer at the time. 

High-Precision Arithmetic in Symbolic Math Toolbox 

Symbolic Math Toolbox provides two styles of high-precision arithmetic, sym and vpa.   

The sym function initiates exact rational arithmetic:  Arithmetic quantities are represented by 
quotients and roots of large integers.  Integer length increases as necessary, limited only by computer 
time and storage requirements.  Quotients and roots are not computed unless the result is an exact 
integer.   

The vpa function initiates variable-precision floating-point arithmetic:  Arithmetic quantities are 
represented by decimal fractions of a specified length together with a power-of-ten exponent.   

Arithmetic operations, including divisions and roots, can involve roundoff errors at the level of the   
specified accuracy.For example, the MATLAB statement 

    p = rat(pi) 

The Chudnovsky brothers, who were the subject of two fascinat-
ing articles in The New Yorker and a NOVA documentary, have also 
built homebrew computers in their apartment in Manhattan. The 
massively parallel machine that they assembled from commodity 
parts in the 1990s was considered a supercomputer at the time.

High-Precision Arithmetic in Symbolic Math Toolbox
Symbolic Math Toolbox provides two styles of high-precision arith-
metic: sym and vpa. 

The sym function initiates exact rational arithmetic: Arithmetic 
quantities are represented by quotients and roots of large integers. 
Integer length increases as necessary, limited only by computer 
time and storage requirements. Quotients and roots are not com-
puted unless the result is an exact integer. 

The vpa function initiates variable-precision floating-point 
arithmetic: Arithmetic quantities are represented by decimal frac-
tions of a specified length together with a power-of-10 exponent. 

Arithmetic operations, including divisions and roots, can involve 
roundoff errors at the level of the specified accuracy. For example, 
the MATLAB statement

p = rat(pi)

produces three terms in the continued fraction approximation of π

p = 3 + 1/(7 + 1/16)

Then the statement

Figure 1. A log plot of the data from the Wikipedia article “Chronology of 
computation of pi” showing how the world record for number of digits has 
increased over the last 60 years. A linear fit to the logarithm reveals a Moore’s 
Law phenomenon. The number of digits doubles about every 22.5 months.
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sym(p)

yields the rational expression

355/113

which is an attractive alternative to the familiar 22/7. On the other hand, 
the statement

vpa(p,8)

produces the 8-digit floating-point value

3.1415929 

The Chudnovsky Algorithm
Our MATLAB programs implement three of the hundreds of possible 
algorithms for computing π. The Chudnovsky algorithm (Figure  3) 
uses exact rational arithmetic until the last step. Each term in the 
Chudnovsky series provides about 14 decimal digits, so to obtain d 
digits requires [d/14] terms. For example, the statement

chud_pi(42)

uses exact rational computation to produce
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and then the final step uses variable-precision floating-point arithmetic with 42 digits to produce 

    3.14159265358979323846264338327950288419717  

One interesting fact about the digits of π is revealed by  

   chud_pi(775) 

or 

 vpa(pi,775) 

 

and then the final step uses variable-precision floating-point arithmetic 
with 42 digits to produce

3.14159265358979323846264338327950288419717 

One interesting fact about the digits of π is revealed by 

chud_pi(775)

or

vpa(pi,775)

These both produce 775 digits, beginning and ending with

3.141592653589793238 ...... 707211349999998372978 

We see not only that chud_pi is working correctly but also that 
there are six 9s in a row around position 765 in the decimal expan-
sion of π (Figure 4).

Computing 5000 digits with chud_pi requires 358 terms and 
takes about 20 seconds on my laptop. The final symbolic expression 
contains 12,425 characters.

Figure 2. Shigeru Kondo’s homebrew PC, which currently holds the world 
record for computing digits of π.

Figure 3. MATLAB implementation of the Chudnovsky algorithm, using 
sym to initiate exact rational arithmetic.

function P = chud _ pi(d)

% CHUD _ PI Chudnovsky algorithm for pi.

% chud _ pi(d) produces d decimal digits.

k = sym(0);

s = sym(0);

sig = sym(1);

n = ceil(d/14);

for j = 1:n

  s = s + sig * prod(3*k+1:6*k)/prod(1:k)̂ 3 * ...

    (13591409+545140134*k) / 640320 (̂3*k+3/2);

  k = k+1;

  sig = -sig;

end

S = 1/(12*s);

P = vpa(S,d);
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The Algebraic-Geometric Mean Algorithm
The Chudnovsky formula is a power series: Each new term in the partial 
sum adds a fixed number of digits of accuracy. The algebraic-geometric 
mean algorithm is completely different; it is quadratically convergent: 
Each new iteration doubles the number of correct digits. The agm al-
gorithm has a long history dating back to Gauss and Legendre. Its abil-
ity to compute π was discovered independently by Richard Brent and 
Eugene Salamin in 1975. 

The arithmetic mean of two numbers, (a+b)/2, is always greater 
than their geometric mean, √ab. Their arithmetic-geometric mean, 
or agm(a,b), is computed by repeatedly taking arithmetic and geo-
metric means. Starting with a0 = a and b0 = b, iterate

These both produce 775 digits, beginning and ending with 

 3.141592653589793238 ...... 707211349999998372978  

We see not only that chud_pi is working correctly but also that there are six 9s in a row around 
position 765 in the decimal expansion of π (Figure 4). 

Computing five thousand digits with chud_pi requires 358 terms and takes about 20 seconds on my 
laptop. The final symbolic expression contains 12,425 characters. 
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until an and bn agree to a desired accuracy.  For example, the arithmetic mean of 1 and 9 is 5, the 
geometric mean is 3, and the agm is 3.9362. 

The powerful properties of the agm lie not just in the final value but also in the results generated 
along the way.  Computing π is just one example.  It involves computing 

(   ) 

During the iteration, keep track of the changes, 

Finally, let 

 
          

Then 

           
 

  

until an and bn agree to a desired accuracy. For example, the arith-
metic mean of 1 and 9 is 5, the geometric mean is 3, and the agm 
is 3.9362.

The powerful properties of the agm lie not just in the final value 
but also in the results generated along the way. Computing π is just 
one example. It involves computing

Figure 4. 10,000 digits of π, visualized in MATLAB. Can you see the six 
consecutive 9s in the eighth row?
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Our MATLAB function for the agm algorithm (Figure 5) uses 
variable-precision floating-point arithmetic from the very beginning. 
If we used symbolic rational arithmetic, we would end up with a nest-
ed sequence of square roots. After just two iterations we would have

Our MATLAB function for the agm algorithm (Figure 3) uses variable- precision floating-point 
arithmetic from the very beginning.  If we used symbolic rational arithmetic, we would end up with a 
nested sequence of square roots.  After just two iterations we would have 

 

 
    
      

 
 
 

 

 

 
   

  
  

 
  

 
  

 

     
    
    

 

 

  

The decimal value of this monstrosity is 3.14168, so it is not yet a very good approximation to  .  The 
complexity doubles with each iteration.   

Such exact symbolic expressions are computationally unwieldy and inefficient.  With vpa, however, the 
quadratic convergence can be seen in the successive iterates: 

      3.2 
      3.142 
      3.1415927 
      3.141592653589793 
      3.1415926535897932384626433832795 
      3.141592653589793238462643383279502884197169399375105820974944592 
 
The tenth entry is this output would have 1024 correct digits. 
 

The quadratic convergence makes agm very fast.  To compute 100,000 digits requires only 17 steps 
and about 2.5 seconds on my laptop. 

The BBP Formula 

Yee spot-checked his computation with the BBP formula.  This formula, named after David Bailey, 
Jonathan Borwein, and Simon Plouffe and discovered by Plouffe in 1995, is a power series involving 
inverse powers of 16. 

            
      

 
      

 
      

 
     

 

   
     

 
 

The decimal value of this monstrosity is 3.14168, so it is not yet a very 
good approximation to π. The complexity doubles with each iteration. 

Such exact symbolic expressions are computationally unwieldy 
and inefficient. With vpa, however, the quadratic convergence can 
be seen in the successive iterates:
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The sixth entry in this output has 64 correct digits, and the tenth 
has 1024. 

The quadratic convergence makes agm very fast. To compute 100,000 
digits requires only 17 steps and about 2.5 seconds on my laptop.

These both produce 775 digits, beginning and ending with 
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We see not only that chud_pi is working correctly but also that there are six 9s in a row around 
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history dating back to Gauss and Legendre.  Its ability to compute π was discovered independently by 
Richard Brent and Eugene Salamin in 1975.  

The arithmetic mean of two numbers, (a+b)/2, is always greater than their geometric mean, √𝑎𝑎𝑎𝑎.  
Their arithmetic-geometric mean, or agm(a,b), is computed by repeatedly taking arithmetic and 
geometric means.  Starting with a0 = a and b0 = b, iterate 
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until an and bn agree to a desired accuracy.  For 
example, the arithmetic mean of 1 and 9 is 5, the 
geometric mean is 3, and the agm is 3.9362. 

The powerful properties of the agm lie not just in 
the final value but also in the results generated 
along the way.  Computing π is just one example.  It 
involves computing 
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Our MATLAB function for the agm algorithm (Figure 3) uses variable- precision floating-point 
arithmetic from the very beginning.  If we used symbolic rational arithmetic, we would end up with a 
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Figure 5. MATLAB implementation of the arithmetic-geometric mean 
algorithm, using digits and vpa to initiate variable-precision floating-
point arithmetic.

function P = agm _ pi(d)

% AGM _ PI Arithmetic-geometric mean for pi.

% agm _ pi(d) produces d decimal digits.

digits(d)

a = vpa(1,d);

b = 1/sqrt(vpa(2,d));

s = 1/vpa(4,d);

p = 1;

n = ceil(log2(d));

for k = 1:n

  c = (a+b)/2;

  b = sqrt(a*b);

  s = s - p*(c-a)̂ 2;

  p = 2*p;

  a = c;

end

P = a^2/s;
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The BBP Formula
Yee spot-checked his computation with the BBP formula. This for-
mula, named after David Bailey, Jonathan Borwein, and Simon 
Plouffe and discovered by Plouffe in 1995, is a power series involving 
inverse powers of 16:

Our MATLAB function for the agm algorithm (Figure 3) uses variable- precision floating-point 
arithmetic from the very beginning.  If we used symbolic rational arithmetic, we would end up with a 
nested sequence of square roots.  After just two iterations we would have 

 

 
    
      

 
 
 

 

 

 
   

  
  

 
  

 
  

 

     
    
    

 

 

  

The decimal value of this monstrosity is 3.14168, so it is not yet a very good approximation to  .  The 
complexity doubles with each iteration.   

Such exact symbolic expressions are computationally unwieldy and inefficient.  With vpa, however, the 
quadratic convergence can be seen in the successive iterates: 

      3.2 
      3.142 
      3.1415927 
      3.141592653589793 
      3.1415926535897932384626433832795 
      3.141592653589793238462643383279502884197169399375105820974944592 
 
The tenth entry is this output would have 1024 correct digits. 
 

The quadratic convergence makes agm very fast.  To compute 100,000 digits requires only 17 steps 
and about 2.5 seconds on my laptop. 

The BBP Formula 

Yee spot-checked his computation with the BBP formula.  This formula, named after David Bailey, 
Jonathan Borwein, and Simon Plouffe and discovered by Plouffe in 1995, is a power series involving 
inverse powers of 16. 

            
      

 
      

 
      

 
     

 

   
     

 
 

The remarkable property of the BBP formula is that it allows the 
computation of several consecutive hexadecimal digits in the base 
16 expansion of π without computing the earlier digits and without 
using extra-precision arithmetic. A formula for the hex digits start-
ing at position d is obtained by simply multiplying this formula by 
16d and then taking the fractional part. 

 I can’t resist concluding that BBP can be used to compute just a 
piece of π.

Our BBP program is too long to be included here, but all three 
programs, chudovsky_pi, agm_pi, and bbp_pi, are available for 
download on MATLAB Central. ■

http://www.mathworks.com
http://www.mathworks.com/computing-pi
http://www.mathworks.com/clevescorner

