
MOOD: A Concurrent C++-Based Music Language

David Anderson Jeff Bilmes
<anderson@icsi.berkeley.edu> <bilmes@amt.mit.edu>
Sonic Solutions MIT Media Lab
1891 E. Franciso Blvd. Massachusetts Institute of Technology
San Rafael, CA 94901 Cambridge, MA 02139

Introduction

MOOD (Musical Object-Oriented Dialect) is a C++ class library for computer music [1]. It runs on SPARC,
MIPS, and MC680x0-based UNIX machines and on the Apple Macintosh, and uses MIDI I/O. It is designed for
algorithmic composition, interactive systems, and cognition research, and is well-suited to any application that
needs concurrency and precise timing control. MOOD borrows many ideas from FORMULA [2].

We have interfaced MOOD to Tcl (Tool Command Language), an embedded interpreted command language
[3], producing a shell that allows you to interactively start and stop MOOD processes by typing Tcl commands.
You can also define ‘‘scripts’’ that perform sequences of musical actions.

Process Scheduling

MOOD provides lightweight processes sharing a single address space. These processes are preemptively
scheduled (one can interrupt another at any point) according to a real-time policy. Each process is represented by
a C++ object. There are several types of processes, with corresponding C++ classes. Keyboard and MIDI input is
handled by real-time processes (class RT_PROCESS). Note-playing processes (class NP_PROCESS) generate
streams of notes (NOTE objects).

Hierarchical Structure

NP_PROCESSes can be collected into hierarchical group structures, with associated virtual time systems and
nested musical transformations. Many such trees can exist at once. The internal nodes of a tree are GROUP
objects, and its root is a ROOT object:

ROOTROOT

NP_PROCESS GROUP

NP_PROCESS

GROUP

NP_PROCESS

NP_PROCESS

time modifiers
note modifiers

The simplest configuration is a single ROOT and NP_PROCESS (shown above, left). You can attach modifier
objects to GROUPs and NP_PROCESSes. There are two types of modifiers: time modifiers operate on time inter-
vals (changing tempo or note timing), while note modifiers operate on notes (changing their volume, pitch etc.).
Modifiers may themselves be processes (see below). Modifiers are applied going up the tree. Thus the time
values (lengths of notes and rests) generated by a NP_PROCESS pass through a pipeline of modifiers before
emerging as real-time intervals, while the notes themselves pass through another series of modifiers before being
played via MIDI.

Time and note modifiers are derived from a base class MODIFIER. Subclasses have been defined to con-
trol rhythm, volume, articulation, time shifting, and tempo. Some of these classes are simple objects (e.g., adding
a constant to volume); others use a separate process to generate the parameter control. It is often handy to com-
bine several note modifiers. The class MULTI_MOD (derived from MODIFIER) represents a set of MODIFIERs
that are applied in sequence.



Playing Music

Note-playing processes play notes using a notation similar to C++ stream I/O [4]. NP is a predefined object
with overloaded < and <= operators. < plays a note and advances (in time) by its duration; <= plays a note
and remains at the same time. Compound musical units (chords, sequences, etc.) are represented by PHRASE
objects, which can be played using the same stream notation. Pitches may be specified by integers (their MIDI
note numbers) or by PITCH objects; Constant PITCH objects are predefined for pitch naming: C5 is middle C,
+C5 is C sharp, -E5 is E flat, etc. RS is a special pitch number indicating a rest. For example, this code plays a
C major arpeggio, then a chord.

NP < C5 < E5 < G5;
NP <= C5 <= E5 <= G5 < C6;

Some C++ operators can be applied to PITCH objects. Each PITCH uses a MODE object to determine the
meaning of these operations. For example, p++ increases p by one mode step, p+i returns a pitch that is i
mode steps above (below) p, and p[i] returns a pitch that is i octaves above p.

Rhythm-generating note modifier processes also use a notation modeled after C++ stream I/O. Operator
overloading is used to provide a concise syntax, as shown below.

Example

The following MOOD program plays a whole note C, two half-note C#s, three whole-note triplets on D, and
so on.

void rhythm() { // rhythm-generating process
for (int i=1; i<=16; i++)

RP < w_/i%i; // play i i-th notes
}

void notes() { // note-playing process
PITCH p = C5;
for (int i=0; i<16; i++) {
for (int j=0; j<=i; j++)
NP < p;

p++; // go up a half-step for each rhythm
}

}

main() {
SCHEDULER::run(

new ROOT(
new NP_PROCESS((PROCEDURE)&notes, no_args,

new RH_PROCESS((PROCEDURE)&rhythm, no_args)
)

)
);

}

The main program creates a NP_PROCESS that executes the function notes(). It has an attached note modifier
of class RH_PROCESS, which executes the process rhythm.

References

[1] D. P. Anderson and J. Bilmes, ‘‘Concurrent Real-Time Music in C++’’, USENIX C++ Workshop, June 1991.

[2] D. P. Anderson and R. J. Kuivila, ‘‘FORMULA: a Programming Language for Expressive Computer Music’’,
IEEE Computer, June 1991.

[3] J. Ousterhout, ‘‘Tcl: An Embeddable Command Language’’, Proceedings of the 1990 Winter USENIX
Conference, Washington, DC, , 133-146.

[4] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.


