LOW-ENERGY ELECTRON-POSITRON COLLIDER TO SEARCH AND STUDY $(\mu^+\mu^-)$ BOUND STATE

A.V. Bogomyagkov, V.P. Druzhinin, E.B. Levichev,

A.I. Milstein, S.V. Sinyatkin

BINP, Novosibirsk

- Dimuonium, bimuonium or true muonium is a lepton atom ($\mu^+\mu^-$).
- Dimuonium is pure QED system (no strong interaction, calculable).
- From 6 leptonic atoms (e⁺e⁻), (μ⁺e⁻), (π⁺μ⁻), (τ⁺μ⁻), (τ⁺π⁻), (τ⁺τ⁻) only two (e⁺e⁻), (μ⁺e⁻) were observed.
- Very compact (large m_{μ}), more sensitive to new physics than other exotic atoms.

- Observation of the new classical QED object.
- QED test in the new regime.
- Experimental challenge leads to development of new techniques.
- Tests of muon properties motivated by
 - 3.5 σ difference between (g-2) $_{\mu}$ measurement and SM prediction
 - discrepancies in the proton charge radius in muonic hydrogen
 - Hints of lepton-universality violation in rare B decays (LHCb), B⁺ \rightarrow K⁺e⁺e⁻ and B⁺ \rightarrow K⁺ $\mu^{+}\mu^{-}$

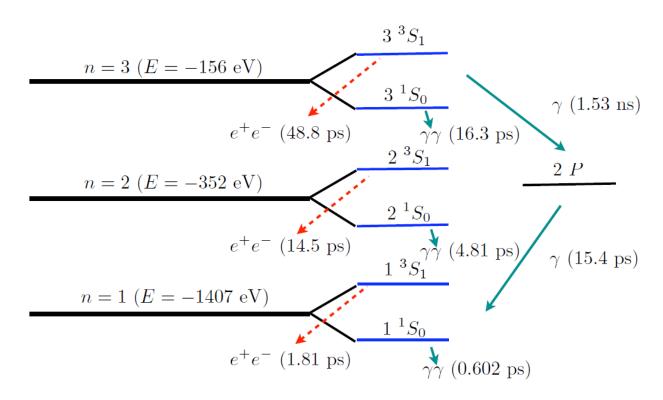
Some references

- V.N.Baier and V.S.Synakh, Bimuonium production in electron-positron collisions, SOVIET PHYSICS JETP, **14**, № 5, 1962, pp.1122-1125
 - Properties of the bound state, probability of observation
- S.J. Brodsky and R.F. Lebed. Production of the Smallest QED Atom: True Muonium ($\mu^+\mu^-$). Phys. Rev. Lett., 102:213401, 2009
 - Very large crossing angle in order to eliminate background
- H. Lamm and R.F. Lebed, True Muonium ($\mu^+\mu^-$) on the Light Front, arXiv 1311.3245v3, 12 Nov 2014
 - Spectrum
- H. Lamm, True muonium: the atom that has it all, arXiv 1509.09306v1, 30 Sep 2016
 - Novel properties

Dimuonium properties

• Mass

 $M_{\mu\mu} = 2 imes 105.7 \text{ MeV}-1.4 \text{keV}$

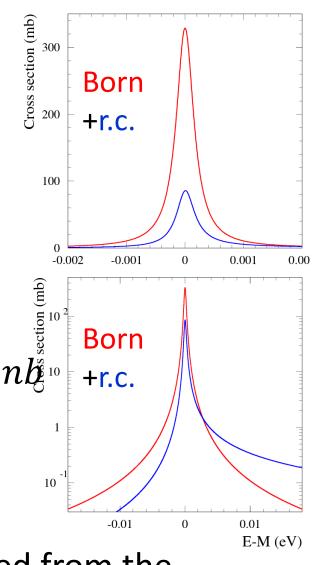

• Bohr radius

 $\begin{array}{l} R_{\mu\mu}=512~{\rm fm}\\ R_{ee}=106000~{\rm fm} \end{array}$

- Muon lifetime 2.2 µs
- ³S₁ states have photon quantum numbers (J^{PC} = 1⁻⁻); therefore could be produced in e⁺e⁻ collisions

Dimuonium energy levels diagram S.J. Brodsky, R.F. Lebed, Phys. Rev. Lett., 102:213401, 2009

 $n = \infty \ (E = 0)$

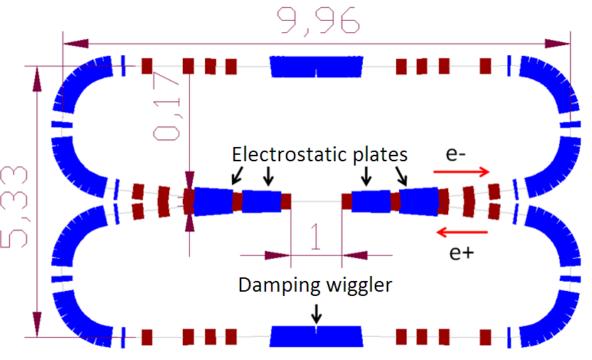

Dimuonium production cross section

• Production of $n \; {}^3S_1$ in the $e^+e^- \to (\mu^+\mu^-) \to e^+e^-$

• 1 ³
$$S_1$$
: $\sigma(m_{\mu\mu}) \approx \frac{12\pi}{m_{\mu\mu}^2} \sqrt{\frac{\pi}{8}} \frac{\Gamma_{ee}}{\sigma_M} \approx 0.2 \frac{\Gamma_{ee}}{\sigma_M}$

where σ_{M} is center-of-mass energy spread

- For different collision schemes
- $\frac{\Gamma_{ee}}{\sigma_M} = \frac{0.37 \times 10^{-6} keV}{(7 \div 400) keV} \approx (1 \div 50) \times 10^{-9}, \sigma(m_{\mu\mu}) = 0.23 \div 11 n b_{g^{10}}^{5} + 10^{-9} h_{g^{10}}^{5}$
- Background: elastic $e^+e^- \rightarrow e^+e^-$ scattering
 - For crossing angle $45^{\circ} \div 135^{\circ} \sigma_{Bhabha} = 22000 \ nb$
- Background/signal = $(3 \div 130) \times 10^3$
- Background suppression is possible if decay point is separated from the origin point (decay path 1 3S_1 : $c\tau=540~\mu m$)


Head-on e+e- collision

$$\begin{split} & \mathsf{E}_{\mathsf{beam}} = 100 \div 150 \ \mathsf{MeV} \\ & \mathsf{Collision} \ \mathsf{monochromatization} \ \mathsf{a} \ \mathsf{la} \ \mathsf{Reniery:} \\ & 10 \ \mathsf{keV} \ \mathsf{invariant} \ \mathsf{mass} \ \mathsf{resolution} \\ & \mathsf{L} \approx 10^{30} \ \mathsf{cm}^{-2} \mathsf{s}^{-1} \ (\sim 50 \ (\mu^+ \mu^-)/\mathsf{hour}). \end{split}$$

Observation of the dimuonium by searching for X-rays from $(\mu^+\mu^-)$ Bohr transitions such as 2P \rightarrow 1S (J.W.Moffat).

Failed due to large background.

Large crossing angle proposed by S.J.Brodsky and R.F.Lebed.

https://eventbooking.stfc.ac.uk/uploads/eefact/mumutroneefact2016-2.pptx

Large angle beam crossing
Invariant mass

$$\langle M \rangle = 2E_0 \cos \theta - \frac{E_0}{2} \cos \theta \left[\sigma_{\delta}^2 + \sigma_{px}^2 + \sigma_{py}^2 \frac{\cos 2\theta}{(\cos \theta)^2} \right]$$

Invariant mass resolution

$$\sigma_M^2 = 2E_0^2 \left[\sigma_\delta^2 (\cos \theta)^2 + \sigma_{px}^2 (\sin \theta)^2 \right]$$

Luminosity (
$$\varphi = \sigma_z \tan \theta / \sigma_x$$
)
 $\mathcal{L}_0 = \frac{N_1 N_2}{4\pi \sigma_y \sigma_x \sqrt{1 + \varphi^2}} f_0 N_b \approx \frac{N_1 N_2}{4\pi \sigma_y \sigma_z \tan \theta} f_0 N_b$

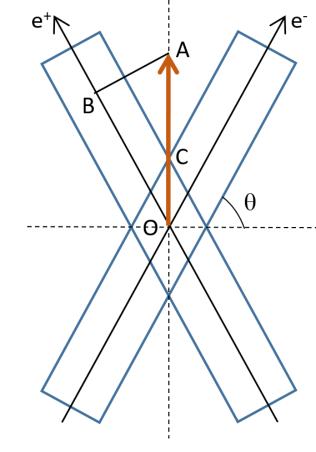
Peak production rate

$$\dot{N}_{\mu\mu} \approx \frac{\Gamma_{\mu\mu}\sigma_{\mu\mu}\mathcal{L}_0}{2\sqrt{\pi}\sigma_M}$$

Background

Decay length
$$(\mu^+\mu^-(1\ {}^3S_1) \rightarrow e^+e^-)$$

 $OA = l = c \ \tau_{0,\mu\mu}\beta_{\mu\mu}\gamma_{\mu\mu} = c \ \tau_{0,\mu\mu} \ \tan \theta$


Background: density of beam particles

 $N_1 \propto \exp(-n_x^2/2)$

$$n_x = \frac{AB}{\sigma_x} = \frac{l \cos \theta}{\sigma_x} = \frac{c \tau_{0,\mu\mu}}{\sigma_x} \sin \theta$$

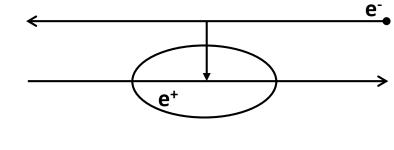
Signal to background ratio

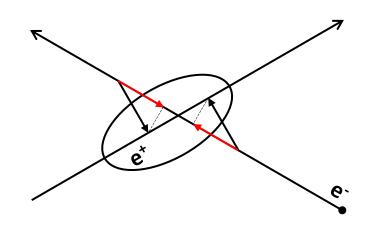
$$\frac{\dot{N}_{\mu\mu}}{\dot{N}_{ee}} \propto \frac{\exp\left[\frac{c^2 \tau_{0,\mu\mu}^2}{\sigma_x^2} \sin^2\theta\right]}{\sqrt{\sigma_\delta^2 \cos^2\theta + (\sigma_x^2/\beta_x^2) \sin^2\theta}}$$

Beam-beam effects with large crossing angle

Beam-beam tuneshift

$$\xi_z = -\frac{N r_e}{2\pi\gamma} \frac{\alpha}{|\alpha|\sigma_\delta \sigma_z} \frac{\varphi^2}{1+\varphi^2}$$

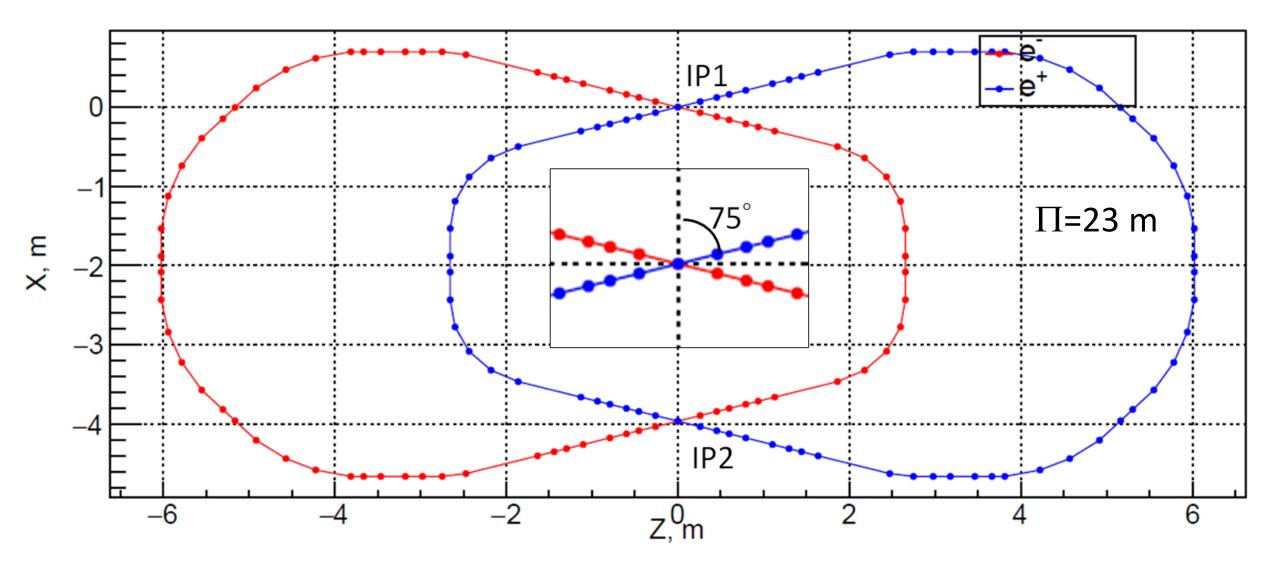

Hamiltonian

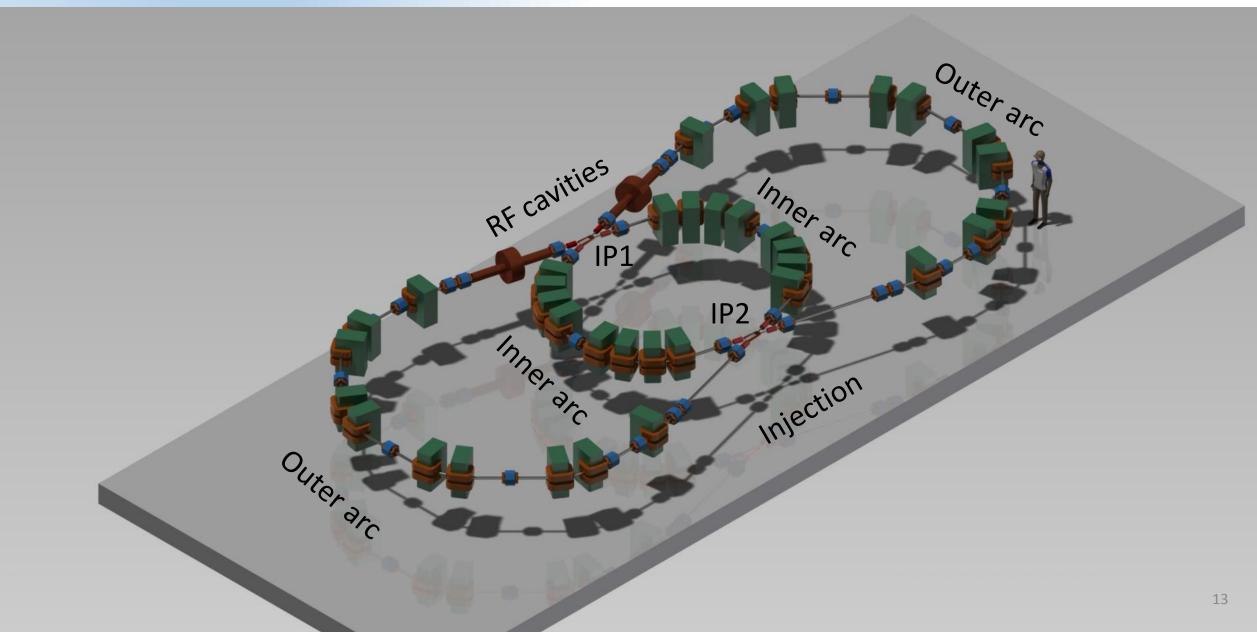

$$\mathcal{H} = -\alpha \frac{p_z^2}{2} - \frac{\nu_s^2}{\alpha R^2} \frac{z^2}{2} - \frac{2\xi_z \nu_s}{\alpha R^2} \frac{z^2}{2}$$

Population limit for $\alpha > 0$

$$N < \frac{2\pi R \,\gamma \,\alpha \,\sigma_{\delta}^2}{r_e}$$

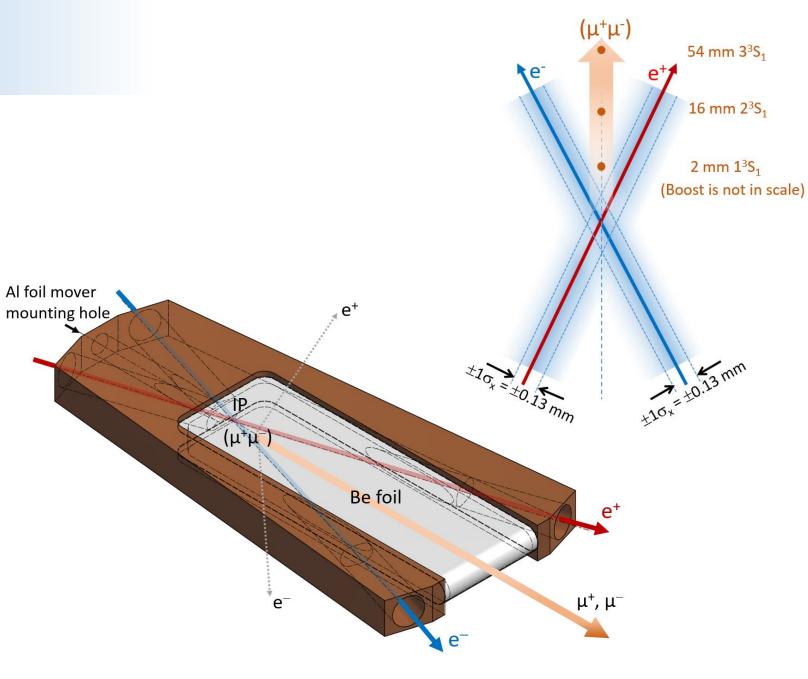
 $\alpha < 0$ has been studied at KEKB and at DA Φ NE, no large currents, no luminosity due to microwave instability



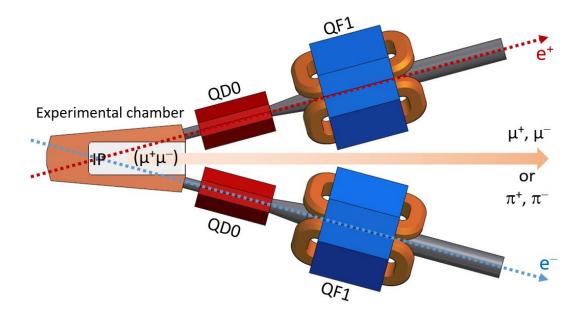

Accelerator requirements

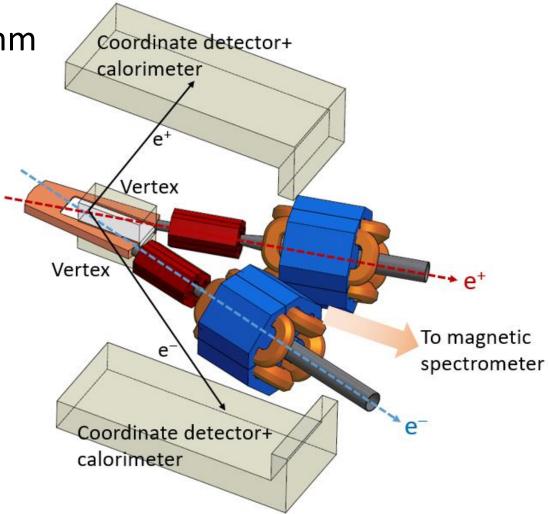
- Large positive momentum compaction (small circumference)
- Large crossing angle with small vertical beta function gives high luminosity (similar to crab waist)
- Large crossing angle 75° provides comfortable beam energy (e⁺ production) and decay length
 - beam energy $E_b = 408 \text{ MeV}$
 - decay length $l\left(\mu^+\mu^-(1\ {}^3S_1)\right) = 2 \text{ mm}$
- Higher signal to noise ratio requires $\sigma_x < c \ \tau_{0,\mu\mu} = 0.54 \ \mathrm{mm}$
- Horizontal beam divergence contributes significant part in invariant mass resolution; therefore, low horizontal emittance
- Reverse of the beam direction provides 15° crossing angle and allows to study c.m. energy range from η to η' mesons (550-960 MeV)

Collider: overview

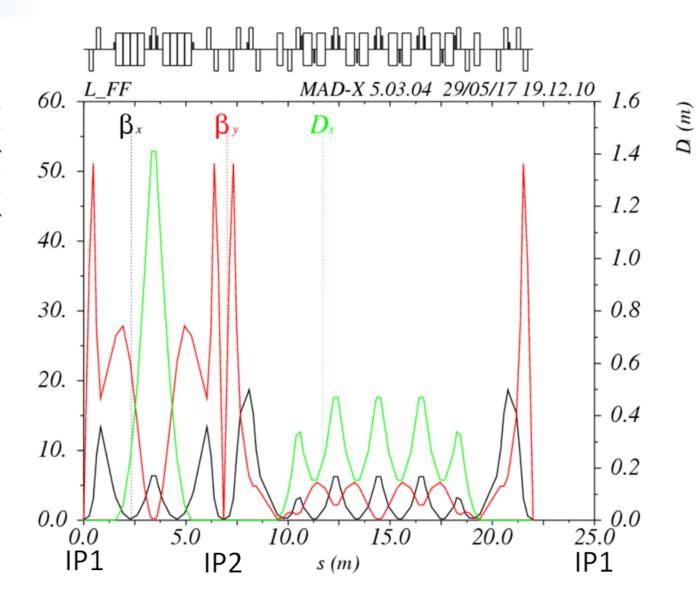


Collider: overview


Interaction region


- Experimental chamber: flat box with 0.5-mmthick beryllium windows on the top and on the bottom allowing passage of e[±] produced by the dimuonium atoms decay.
- Detector: tracking systems around the median plane, magnetic spectrometer

Interaction region


QD0: permanent magnet, G=-35 T/m, Ø 30mm
QD/QF1: electromagnet

Collider: optics

	-	-
Beam energy	408 MeV	
Circumference	23 m	<i>(u)</i>
Momentum compaction	6.4×10 ⁻²	β _* (m), β _y (m)
Bunch intensity	3.5×10 ¹⁰ / 73 mA	В
Horizontal	26 nm	
emittance	90 nm (IBS)	
Energy spread	4×10 ⁻⁴	
	8.4×10 ⁻⁴ (IBS)	
β_x / β_y	200 mm / 2 mm	
Luminosity	4×10 ³⁰ cm ⁻² s ⁻¹ , Nb=1 8×10 ³¹ cm ⁻² s ⁻¹ , Nb=20	

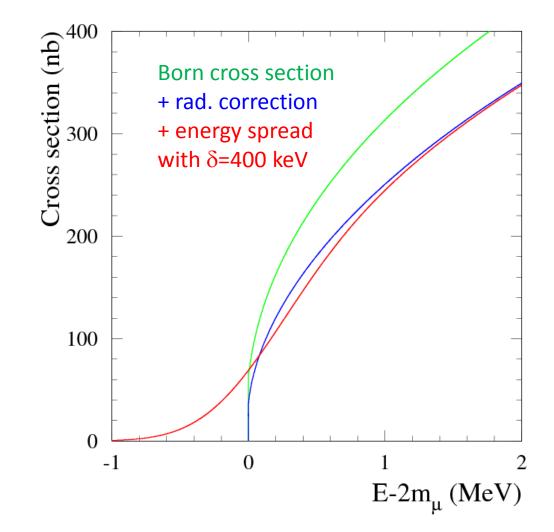
Collider: parameters

RF frequency	338.98 MHz	Beam energy	408 MeV
RF harmonic	26	Invariant mass (M)	211.315 MeV
RF voltage	450 kV	σ_{M}	390 keV
RF acceptance	2%	σ _M /M	1.8×10 ⁻³
Synchrotron tune	1.71×10 ⁻²	IP beam divergence	6.7×10 ⁻⁴ (hor)
Damping partition	1.6 (hor) 1.4 (lon)	Energy spread	4×10 ⁻⁴ 8.4×10 ⁻⁴ (IBS)
Damping times	17.3 ms (hor) 27.3 ms (ver) 22.1 ms (lon)	Beam-beam tune shift	2×10 ⁻⁶ (hor) 1.2×10 ⁻³ (ver) -2×10 ⁻³ (lon)
Bunch length	5.4 mm 11.6 mm (IBS)	Beam size at IP	130 μm 0.7 μm

Dimuonium production and distribution

- Detection efficiency is about 50%
- $\beta \gamma c \tau = 2.03 mm$
- $\sigma_x(IP) = \sigma_x/(\sqrt{2}\cos\theta) =$ 350 μm
- Detector vertex resolution is 300 μm
- Total $\sigma_{vtx} = 460 \ \mu m$
- 5σ background suppression with vertex position x>2.3 mm

$\mu^+\mu^-$ rate		1 hour	4 months
Total 1S/2S/3	3S	65/8.1/2.4	187k/23k/6.9k
x > 2.3 mm	15/25/35	21/7/2.3	59k/20k/6.6k
$\begin{array}{c} \text{(stim. qu)} \\ (stim$	$\sum_{n} S_{1}^{3} S_{1}^{3} \sum_{n} S_{1}^{3} \sum_$	$\begin{array}{c} \text{(st)} 10 & 4 \\ 10 & 10 \\ 10 & 10 \\ 10 & 0 \\ 10 &$	$ \begin{array}{c} 1^{3}S_{1} \\ 2^{3}S_{1}^{1} \\ 3^{3}S_{1}^{1} \\ \Sigma n^{3}S_{1} \\ 20 40 60 \\ x (mm) \end{array} $


Experiments: what can we measure?

- From the fit of the decay vertex distribution
 - dimuonium production rate (Γ_{ee}) of 1S (1% for 10⁷ s), 2S(5%), 3S(15%)
 - dimuonium decay lengths with the same accuracy
- Dimuonium interaction with a thin foil (30 μm Al) allows
 - measurement of the breakup probability
 - measurement 1S-2P transition probabilities
 - 2P lifetime
- Laser spectroscopy
 - $\Delta E(2S-2P)$ (laser $\lambda \approx 100 \mu m$)
 - 2P lifetime

Experiments: $e^+e^- \rightarrow \mu^+\mu^-$ near threshold

Coulomb interaction in the final state leads to nonzero cross section at the threshold; therefore,

- Background-free measurement of the cross section near the threshold, requires magnetic spectrometer
- Precision measurement of the SSSG-factor
- C.M. energy and its spread calibration
- The same technique may be used for $e^+e^- \rightarrow \pi^+\pi^-$

Experiments: 15° crossing angle

- This region (c.m. 550-960 MeV) of ρ and ω resonances is important for SM (g-2)_{\mu} calculation
- $e^+e^- \rightarrow \pi^+\pi^-$ cross section measurement with unlimited statistics
- Precision measurements of other hadronic cross sections ($e^+e^- \rightarrow \pi^+\pi^-\pi^0, \pi^0\gamma, \eta\gamma, \pi^0\pi^0\gamma, 4\pi, \cdots$)
- Rare processes $e^+e^- \rightarrow \eta, \eta'$
- Two-photon processes $\gamma \gamma \rightarrow \pi^0, \pi \pi, \eta$
- Measurement of meson-photon transition form factors

Reverse beam: 15° crossing angle

Beam energy	283.59 MeV (η)	495.78 MeV (η')
Invariant mass (M)	547.86 MeV	957.76 MeV
σ _M (σ _M /M)	420 keV (7.7×10 ⁻⁴)	580 keV (6.1×10 ⁻⁴)
Energy spread	2.8×10 ⁻⁴ / 10.6×10 ⁻⁴ (IBS)	4.8×10 ⁻⁴ / 8.4×10 ⁻⁴ (IBS)
IP beam divergence (hor)	8.3×10 ⁻⁴	7.1×10 ⁻⁴
Horizontal emittance	11.4 nm / 105 nm (IBS)	34.8 nm / 75 nm (IBS)
Bunch length	3.7 mm / 14.2 mm (IBS)	6.3 mm / 11 mm (IBS)
Beam-beam ξ (h/v/l)	3×10 ⁻⁴ /1.4×10 ⁻² /-2×10 ⁻³	3×10 ⁻⁴ /1.3×10 ⁻² /-2×10 ⁻³
Synchrotron tune	1.67×10 ⁻²	1.71×10 ⁻²
Luminosity (Nb=1 / 20)	3.3×10 ³¹ / 6.6×10 ³²	5.2×10 ³¹ / 1×10 ³³

Conclusion

- Collider to observe and study bound state of ($\mu^+\mu^-$)
 - two rings
 - large crossing angle
 - circumference 23 m
 - not expensive to build and operate
 - *luminosity* 8×10³¹ cm⁻²s⁻¹
- Reverse of the beam allows to perform experiments in 500-1000 MeV central mass energy range
- Details are in https://arxiv.org/abs/1708.05819
- We are preparing technical design and plan to make a decision by the end of the year

We are open for collaboration and experiments proposals