## Ghana

## Multiple Indicator Cluster Survey

with an Enhanced Malaria Module and Biomarker


Ghana Statistical Service


Ghana Health Service
unicefs
United Nations Children's Fund
$\because \because($ ®NFF
United Nations Population Fund

Japan Official Development Assistance

## GHANA

Multiple Indicator Cluster Survey with an enhanced Malaria Module and Biomarker 2011

MONITORING THE SITUATION OF CHILDREN AND WOMEN IN GHANA

Multiple Indicator Cluster Survey with an enhanced Malaria Module and Biomarker 2011

Publisher: Ghana Statistical Service

Proofreading: Marie Melocco
Design and Layout: Art Excel Ghana

Cover photo: © UNICEF/Nyani Quarmyne, 2012

Printed by: Redbow Investment Limited

Published in December, 2012
The Ghana Multiple Indicator Cluster Survey (MICS) was carried out in 2011 by the Ghana Statistical Service (GSS). Financial and technical support was provided by UNICEF, USAID, UNFPA, the Japanese Government CF/MACRO, the Ministry of Health/National Malaria Control Programme, and the Navrongo Health Research Centre.

MICS is an international household survey programme developed by UNICEF. The Ghana MICS was conducted as part of the fourth global round of MICS surveys (MICS4). MICS provides up-to-date information on the situation of children and women and measures key indicators that allow countries to monitor progress towards the Millennium Development Goals (MDGs) and other internationally agreed upon commitments Additional information on the global MICS project may be obtained from www.childinfo.org.

Suggested citation:
Ghana Statistical Service, 2011. Ghana Multiple Indicator Cluster Survey with an Enhanced Malaria Module and Biomarker, 2011, Final Report. Accra, Ghana

$\Lambda$number of organizations and individuals contributed to the development and implementation of this survey with their professional knowledge, personal enthusiasm and commitment to ensure a better life for all children and women in Ghana

The Ghana Statistical Service would particularly like to acknowledge the technical and financial assistance received from the United Nations Children's Fund (UNICEF) at various stages of this survey. UNICEF staff from the Ghana Office, Regional Office and Headquarters, as well as UNICEF Consultants, supported the Ghana MICS from the planning stage to the sample design, training, data collection, and the data processing phases to ensure that the final report was of high quality

The US Government for International Development (USAID), the Japanese Government, the United Nations Population Fund (UNFPA), and the Center for Disease Control (CDC) also deserve special mention. Without their financial and technical support, the objectives of this survey would not have been achieved. The National Malaria Control Programme (NMCP) and the Navrongo Health Research Centre of the Ghana Health Service and ICF/Macro were mainly responsible for the implementation of the enhanced Malaria Module and Biomarker component of the survey. NMCP provided financial and technical assistance towards these critical aspects of the survey and their support is highly appreciated and acknowledged. The Navrongo Health Research Centre (NHRC) implemented the biomarker component of the survey on behalf of the Malaria Partners - this included collecting blood smears from the field, and conducting the malaria microscopy, laboratory analysis of the results and preparation of the report writing on this component. The ICF/Macro provided technical support towards the development and implementation of the malaria module and biomarker component - from questionnaire design, training, field monitoring, data analysis and report writing.

The titration of salt samples was carried out by the Nutrition and Food Science Department of the University of Ghana, Legon, and we are very grateful for their assistance.

We would also like to express our sincere gratitude to Consultants and Experts from relevant government ministries and agencies, other UN agencies, and international partners who were part of the Steering and Technical Committees for the MICS survey. The invaluable advice, comments and inputs received from them during the organization of the survey, questionnaire development and report writing has helped to improve the quality of the final output derived from the survey.

Furthermore, we would like to commend the hard work and dedication of Ghana Statistical Service staff, both at the Headquarters and the regions, for successfully completing this survey and making the results available to users on a timely basis.

Special thanks also go to all the interviewers, editors, supervisors and other participants in the survey for their hard work and the long working hours they committed towards the completion of the survey. The names of those who supported the survey in various ways are included in Appendix C. Finally, the data collection would not have been possible without the respondents in the selected households in Ghana who generously opened their homes to the field officers and gave their time to the realization of this survey.

Dr. Philomena Nyarko
Ag. Government Statistician
TABLE OF CONTENT
Acknowledgement ..... iii
List of Tables ..... vii
List of Figures ..... xi
List of Abbreviations ..... xiii
Executive Summary ..... xxi
I. INTRODUCTION ..... 1
Background ..... 1
Survey Objectives ..... 2
II. SAMPLE AND SURVEY METHODOLOGY ..... 5
Sample Design ..... 5
Questionnaires ..... 5
Training and Fieldwork ..... 7
Data Processing ..... 7
III. SAMPLE COVERAGE AND THE CHARACTERISTICS OF HOUSEHOLDS AND RESPONDENTS ..... 9
Sample Coverage ..... 9
Characteristics of Households ..... 10
Characteristics of Female Respondents 15-49 Years of Age,
Male 15-59 years and Children Under-5 ..... 15
IV. CHILD MORTALITY ..... 23
Assessment of Data Quality in childhood mortality ..... 24
Levels and Trends of Early Childhood Mortality ..... 25
Early childhood mortality rates by region, residence and socio-economic characteristics ..... 27
Residence and Socio-economic Differentials in Childhood Mortality ..... 31
V. NUTRITION ..... 35
Nutritional Status ..... 35
Breastfeeding and Infant and Young Child Feeding ..... 38
Salt lodization ..... 52
Rapid Test Kits Results ..... 53
Salt Sample for analysis ..... 54
gequent betw Renid Fest Kits and Titation in identifying 基 ..... 56
Children's Vitamin A Supplementation ..... 57
Low Birth Weight ..... 60
Anaemia and Diet Diversity in Children aged 6-59 months ..... 62
VI. CHILD HEALTH ..... 65
Vaccinations ..... 65
Neonatal Tetanus Protection ..... 69
Oral Rehydration Treatment ..... 71
Care Seeking and Antibiotic Treatment of Pneumonia ..... 77
Solid Fuel Use ..... 80
VII. MALARIA ..... 85
Background of Malaria in Ghana ..... 85
Malaria: Causes and Transmission ..... 85
National Strategies for Malaria Control ..... 86
Malaria Prevention ..... 88
nsectiside Treated Mosquito Nets (ITNs) ..... 88
Brief History of ITN Distribution in Ghana ..... 89
Household Ownership Mosquito Nets ..... 90
Jse of Mosquito Nets by Persons on the Household ..... 93
Use of Mosquito Nets by Children Under Five Years ..... 95
Use of Mosquito Nets by Pregnant Women ..... 98
Source, Cost and Disposal of ITNs ..... 101
ndoor Residual Spraying Against Mosquitoes103
Intermitent Preventive Treatment of Malaria in Pregnancy ..... 103
Prevalence, Diagnosis, and Treatment of Fever in Children Under-Five
109
Type and Timing of Antimalarial Drug Use for Children ..... 111
Knowledge of Malaria Symptoms
112
112
Knowledge of ways to avoid Malaria ..... 114
Specific Messages Seen or Heard about Malaria ..... 116
Malaria Biomarkers: Anaemia and Malaria in Children Aged 6-59 Months ..... 120
Anaemia Prevalence in Children ..... 122
VIII. WATER AND SANITATION ..... 131
Water ..... 131
Sanitation ..... 131
Use of Improved Water Sources ..... 131
se of Improved Sanitation Facilities147
Handwashing ..... 147
IX. REPRODUCTIVE HEALTH ..... 153
Fertility ..... 153
Contraception ..... 156
Unmet Need ..... 156
Antenatal Care ..... 161
Assistance at Delivery ..... 166
Place of Delivery169
Post-Natal checks ..... 169
X. CHILD DEVELOPMENT ..... 183
Early Childhood Education and Learning ..... 183
Early Childhood Development ..... 190
XI. LITERACY AND EDUCATION ..... 195
Literacy among Young Women ..... 195
School Readiness ..... 196
Primary and Secondary School Participation ..... 197
XII. CHILD PROTECTION ..... 211
Birth Registration ..... 211
Child Discipline ..... 214
The Situation of Child Discipline ..... 214
Types of Disciplinary Methods ..... 216
Early Marriage and Polygyny ..... 216
Female Genital Mutilation/Cutting ..... 224
Attitudes toward Domestic Violence ..... 228
Children's living arrangements and Orphanhood ..... 232
XIII. HIV/AIDS, AND SEXUAL BEHAVIOUR ..... 237
Knowledge about HIV Transmission and Misconceptions about HIV/AIDS ..... 237
Comprehensive knowledge of HIV methods and transmission ..... 238
Knowledge of Mother to Child Transmission of HIV ..... 244
Accepting Attitudes toward People Living with HIV \& AIDS (PLHIV) ..... 247
Knowledge of a Place for HIV Testing, Counselling and Testing during Antenatal Care ..... 258
Sexual Behaviour Related to HIV Transmission ..... 258
XIV. NATIONAL HEALTH INSURANCE ..... 271
National Health Insurance Registration ..... 271
Reasons why individuals (women, children and men) did not have a valid NHIS card ..... 275
Achievement of Membership ..... 278
Opinion on the quality of service offered to the NHI valid card holders, compared to other clients ..... 281
XV. ACCESS TO MASS MEDIA AND ICT TECHNOLOGY ..... 289
Access to Mass Media ..... 289
Use of Computers and Internet ..... 292
LIST OF REFERENCES ..... 297
Appendix A. Sample Design ..... 301
Appendix B. Malaria Biomarkers: Anaemia and Malaria in Children Aged 6-59 Months ..... 309
Appendix C. List of Personnel Involved in the Survey ..... 313
Appendix D. Estimates of Sampling Errors ..... 318
Appendix E. Data Quality Tables ..... 354
Appendix F. MICS4 Indicators: Numerators and Denominators381

Table HH.2:
Table HH.3:
Table HH.3A:
Household composition
Table HH.3B: Household composition by residence
Table HH.4: Women's background characteristics
Table HH.4M: Men's background characteristics
Table HH.5: Under-5's background characteristics
Table H..6: Household age distribution by sex and residence
Table HH.7: Housing Characteristics
Table CM.1: Early childhood mortality rates
Table CM.2: Early childhood mortality rates by background characteristics
Table CM.3: Early childhood mortality rates by demographic characteristics

Table NU.1: $\quad$ Nutritional status of children
Table NU.2: Initial breastfeeding
Table NU.3: $\quad$ Breastfeeding
Table NU.4: Duration of breastfeeding
Table NU.5: Age-appropriate breastfeeding
Table NU.6: Introduction of solid, semi-solid or soft food
Table NU.7: Minimum meal frequency
Table NU.8: Infant and young child feeding (IYCF) practices
Table NU.9: Bottle feeding
Table NU.10: lodized salt consumption
Table NU.11: lodized salt consumption using titration method
Table NU.12: lodized salt consumption: comaparison between rapid test kits and titration method
Table NU.13: Children's vitamin A supplementation
Table NU.14: Low birth weight infants
Table NU.15: Prevalence of anaemia in children

Table CH.1: Vaccinations in first year of life
Table CH.2: Vaccinations by background characteristics
Table CH.3: Neonatal tetanus protection
Table CH.4: Oral rehydration solutions and recommended homemade fluids
Table CH.5: Feeding practices during diarrhoea
Table CH.6: Oral rehydration therapy with continued feeding and other treatments
Table CH.7: $\quad$ Care seeking for suspected pneumonia and antibiotic use during suspected pneumonia
Table CH.8: Knowledge of the two danger signs of pneumonia
Table CH.9: Solid fuel use
Table CH.10: Solid fuel use by place of cooking

Table MB.1:
Table MB.2: Household possession of mosquito nets
Table MB.3: Use of mosquito nets by persons in the household
Table MB.4: Use of mosquito nets by children under 5 years of age
Table MB.5: Use of mosquito nets by pregnant women
Table MB.6: $\quad$ Source and cost of insecticide treated nets (ITNs)
Table MB.7: Indoor residual spraying against mosquitoes
Table MB.8: Intermittent preventative treatment by women during pregnancy (IPTp)
Table MB.9: Prevalence, diagnosis and prompt treatment of children with fever
Table MB.10: Treatment of fever in children, by type of facility
Table MB.11: Type and timing of antimalarial drugs
Table MB.12: Knowledge of symptoms of malaria
Table MB.13: Knowledge of causes of malaria
Table MB.14: Knowledge of ways to protect from malaria
Table MB.15: Specific malaria messages seen or heard on television or radio
Table MB.16: Knowledge of ACT with green leaf to treat malaria, and source of message
Table MB.17: Coverage of testing for anaemia and malaria in children
Table MB18: Prevalence of anaemia (haemoglobin $<8.0 \mathrm{~g} / \mathrm{dL}$ ) in children age $6-59$ months
Table MB.19: Prevalence of malaria parasitaemia in children age 6-59 months
Table WS.1: Use of improved water sources
Table WS.2: Household water treatment
Table WS.3: $\quad$ Time to source of drinking water
Table WS.4: Person collecting water
Table WS.5: Types of sanitation facilities
Table WS.6: Use and sharing of sanitation facilities
Table WS.7: Disposal of child's faeces
Table WS.8: Drinking water and sanitation ladders
Table WS.9: Water and soap at place for handwashing
Table WS.10: Availability of soap
Table RH.1: Adolescent birth rate and total fertility rate
Table RH.2: Early childbearing
Table RH.3: Trends in early childbearing
Table RH.4: Use of contraception
Table RH.5: Unmet need for contraception
Table RH.6: Antenatal care coverage
Table RH.7: $\quad$ Number of antenatal care visits
Table RH.8: Content of antenatal care
Table RH.9: Assistance during delivery
Table RH.10: Place of delivery
Table RH.11: Post-partum stay in health facility
Table RH.12: Post-natal health checks for newborns
Table RH.13: Post-natal care (PNC) visits for newborns within one week of birth
Table RH.14: Post-natal health checks for mothers
Table RH.15: Post-natal care (PNC) visits for mothers within one week of birth
Table RH.16: Post-natal health checks for mothers and newborns

Table CD.1: Early childhood education
Table CD.2: Support for learning
Table CD.3: Learning materials
Table CD.4: Inadequate care
Table CD.5: Early child development index
Table CD.6: Early child development items
Table ED.1: Literacy among young women and men
Table ED.2: School readiness
Table ED.3: Primary school entry
Table ED.4: Primary school attendance
Table ED.5: Secondary school attendance
Table ED.6: Children reaching last grade of primary school
Table ED.7: Primary school completion and transition to secondary school
Table ED.8: Education gender parity
Table ED.9: Education attainment of household population
Table ED.9M: Educational attainment of household population
Table ED.10: School attendance
Table ED.11: Gross attendance ratio: primary school
Table ED.12: Gross attendance ratio: secondary school
Table ED.13: Grade repetition rate
Table CP.1: Birth registration
Table CP.2: Child discipline
Table CP. 2A: Details of child disciplining methods
Table CP.3: Early marriage and polygyny among women
Table CP.3M: Early marriage and polygyny among men
Table CP.4: Trends in early marriage for women
Table CP.4M: Trends in early marriage for men
Table CP.5: $\quad$ Spousal age difference
Table CP.6: Female genital mutilation/cutting (FGM/C) among women
Table CP.7: Female genital mutilation/cutting (FGM/C) among daughters
Table CP.8: Approval of female genital mutilation/cutting (FGM/C)
Table CP.9: Attitudes toward domestic violence; women
Table CP.9M: Attitudes toward domestic violence; men
Table CP.10: Children's living arrangements and orphanhood
Table HA.1: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensiveknowledge about HIV transmission; women
Table HA.1M: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission; men
Table HA.2: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission among young people; young women
Table HA.2M: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission; young men

Table HA.3: Knowledge of mother-to-child HIV transmission (women)
Table HA.3M: Knowledge of mother-to-child HIV transmission (men)
Table HA.4: Accepting attitudes toward people living with HIV/AIDS (women)
Table HA.4M: Accepting attitudes toward people living with HIV/AIDS (men)
Table HA.5: Knowledge of a place for HIV testing (women)
Table HA.5M: Knowledge of a place for HIV testing (men)
Table HA.6: Knowledge of a place for HIV testing among sexually active young women
Table HA.6M: Knowledge of a place for HIV testing among sexually active young men
Table HA.7: HIV counselling and testing during antenatal care
Table HA.8: $\quad$ Sexual behaviour that increases the risk of HIV infection (women)
Table HA.8M: Sexual behaviour that increases the risk of HIV infection (men)
Table HA.9: Sex with multiple partners (women)
Table HA.9M: Sex with multiple partners (men)
Table HA.10: Sex with multiple partners (young women)
Table HA.10M: Sex with multiple partners (young men)
Table HA.11: Sex with non-regular partners (women)
Table HA.11M: Sex with non-regular partners (men)
Table NH.1A: Membership of NHIS among women
Table NH.1B: Membership of NHIS among men
Table NH.IC: membership of NHIS among children under -5 years
Table NH.2A: Reasons for not having valid card among women
Table NH.2B: Reasons for not having a valid card among men
Table NH.2C: Reasons for not having a valid card among children
Table NH.3A: Achievement of membership among women
Table NH.3B: Achievement of membership among men
Table NH.4A: Opinion on quality of service provided to NHIS card holders
Table NH.4B: Opinion on quality of service provided to NHIS holders
Table NH.5A: NHIS registration; women
Table NH.5B: NHIS registration; men
Table NH.5C: NHIS registration; children
Table MT.1: Exposure to mass media; women
Table MT.1M: Exposure to mass media; men
Table MT.2: Use of computers and internet; young women
Table MT.2M: Use of computers and internet; young men

Figure HH.1: Age and sex distribution of household population
Figure CM.1: Trends in childhood mortality rates
Figure CM.2: Trends in under-five mortality rates, various sources of data
Figure CM.3: Infant and under-five mortality rates by region
Figure CM.4: Percent contribution of neonatal mortality rate to Infant mortality rate by region
Figure CM.5: Under-5 mortality rates by residence and socio-economic background characteristics
Figure CM.6: Under-5 mortality rates by demographic characteristics
Figure NU.1: Percentage of children under age 5 who are underweight, stunted and wasted
Figure NU.2: Infant feeding patterns by age. Percentage distribution of children aged under 3 years by feeding pattern by age group
Figure NU.3: Agreement and disagreement between salt iodization results obtained using the Rapid Test Kit and the results obtained using salt titration

Figure CH.1: Vaccinations in first year of life. Percentage of children age 12-23 months immunized against childhood diseases at any time before the survey and before the first birthday
Figure CH.2: Percentage of women age 15-45 years with a live birth in the last 2 years who are protected against neonatal tetanus
Figure CH.3: Percentage of children under age 0-59 months with diarrhoea in the last two weeks who received oral rehydration treatment
Figure CH.4: Percentage of children under age 0-59 months with diarrhoea in the last two weeks who received ORT, with continued feeding

Figure MB.1: Map of Ecological Zones and Regions
Figure MB.2: Trends in Ownership of ITNs: Percentage of Households with at Least One ITN by region and residence
Figure MB.3: Differentials in ITN Usage among Children Under 5
Figure MB.4: Trends in proportion of children under 5 who slept under an ITN previous night by region
Figure MB.5: Trends in proportion of pregnant women age 15-49 who slept under an ITN the previous night
Figure MB. 6 Trends in Intermittent Preventive Treatment (IPTp) by Women during Pregnancy
Figure MB.7: Malaria Prevalence among Children 6-59 Months, by Age of the Child
Figure MB.8: Map of Malaria Prevalence among Children 6-59 Months, by Region
Figure MB.9: Map of Malaria Prevalence among Children 6-59 Months by Ecologic Zone
Figure MB.10: Malaria prevalence among children 6-59 months by residence, mother's education, and wealth quintile

Figure WS.1: Percentage of the population using improved sources of drinking water by region, area of residence and wealth quintile
Figure WS.2: Percentage of households with soap anywhere in the dwelling

Figure CD.1: Percentage of children aged 36-59 months currently attending early childhood education by region
Figure CD.2: Types of toys children play with by region

Figure CP.1: Percentage of children under age 5 by whether birth is registered and percentage with birth certificate
Figure CP.2: Percentage of women who married before 15 years by age group and residence
Figure CP.3: Percentage of women who were first married/union before age 18 by age group and residence
Figure CP.4: Percentage of children living with both parents, not living with a biological parent and one or both parents dead

Figure HA.1: Percentage of young women and men age 15-24 years who have comprehensive knowledge of HIV/AIDS transmission by education background
Figure HA.2: Sexual behaviour that increases risk of HIV infection

| ACT | Artemisinin Combination Therapy |
| :---: | :---: |
| AIDS | Acquired Immune Deficiency Syndrome |
| AMFm | Affordable Medicines Facility for Malaria |
| ANC | Antenatal Care |
| BCG | Bacillis-Cereus-Geuerin (Tuberculosis) |
| CDC | Centers for Disease Control and Prevention |
| CSPro | Census and Survey Processing System |
| DHS | Demographic and Health Survey |
| DPT | Diphteria Pertussis Tetanus |
| ECCD | Early Childhood Care and Development |
| ECDI | Early Child Development Index |
| eMTCT | Elimination of mother-to-child transmission of HIV |
| EPI | Expanded Programme on Immunization |
| FGM/C | Female genital mutilation/cutting |
| GAR | Gross Attendance Ratio |
| GHS | Ghana Health Service |
| GPI | Gender Parity Index |
| GPRS | Ghana Poverty Reduction Strategy |
| GSGDA | Ghana Shared Growth and Development Agenda |
| GSS | Ghana Statistical Service |
| HIV | Human Immunodeficiency Virus |
| HSMTDP | Health Sector Medium-term Development Plan |
| ICT | Information and Communications Technology |
| IDD | lodine Deficiency Disorders |
| IRS | Indoor Residual Spraying |
| IPTp | Intermittent Preventative Treatment by women during Pregnancy |
| ITN | Insecticide Treated Net |
| IUD | Intrauterine Device |
| JMP | Joint Monitoring Programme |
| JSS | Junior Secondary School |
| LAM | Lactational Amenorrhea Method |
| LLIN | Long-Lasting Insecticidal Net |
| MDG | Millennium Development Goals |
| MICS | Multiple Indicator Cluster Survey |
| MoH | Ministry of Health |
| NAR | Net Attendance Rate |
| NHIS | National Health Insurance Scheme |
| NHRC | Navrongo Health Research Centre |
| NMCP | National Malaria Control Programme |
| NMR | Neonatal Mortality Rate |
| ORT | Oral rehydration treatment |
| PMI | President's Malaria Initiative |
| PNC | Post-natal Care |
| PNMR | Post-neonatal Mortality Rate |


| PPM | Parts Per Million |
| :--- | :--- |
| RDT | Rapid Diagnostic Test |
| SPSS | Statistical Package for Social Sciences |
| TFR | Total Fertility Rate |
| UNAIDS | United Nations Programme on HIV/AIDS |
| UNDP | United Nations Development Programme |
| UNFPA | United Nations Population Fund |
| UNGASS | United Nations General Assembly Special Session on HIV/AIDS |
| UNICEF | United Nations Children's Fund |
| USAID | United States Agency for International Development |
| VIP | Ventilated Improved Pit |
| WFFC | World Fit For Children |
| WHO | World Health Organization |

Multiple Indicator Cluster Surveys (MICS) and Millennium Development Goals (MDG) Indicators, Ghana, 2011

| Topic | $\begin{array}{r} \text { MICS4 } \\ \text { Indicator } \\ \text { Number } \end{array}$ | MDG Indicator Number | Indicator | Value |
| :---: | :---: | :---: | :---: | :---: |
| CHILD MORTALITY |  |  |  |  |
| Child Mortality | 1.1 | 4.1 | Under-five mortality rate | 82.0 deaths per 1,000 live births |
|  | 1.2 | 4.2 | Infant mortality rate | 53.0 deaths per 1,000 live births |
|  | 1.3 |  | Neonatal mortality rate | 32.0 deaths per 1,000 live births |
|  | 1.4 |  | Post-neonatal mortality rate | 21.0 deaths per 1,000 live births |
|  | 1.5 |  | Child mortality rate | 31.0 deaths per 1,000 live births |
| nUtrition |  |  |  |  |
| Nutritional status |  | 1.8 | Underweight prevalence |  |
|  | $2.1{ }^{\text {a }}$ |  | Moderate and Severe (-2 SD) | 13.4 percent |
|  | 2.1b |  | Severe (-3 SD) | 2.6 percent |
|  |  |  | Stunting prevalence |  |
|  | 2.2a |  | Moderate and Severe (-2 SD) | 22.7 percent |
|  | 2.2 b |  | Severe (-3 SD) | 6.8 percent |
|  |  |  | Wasting prevalence |  |
|  | 2.3 a |  | Moderate and Severe (-2 SD) | 6.2 percent |
|  | 2.3b |  | Severe (-3 SD) | 1.4 percent |
| Breastfeeding and infant feeding | 2.4 |  | Children ever breastfed | 98.9 percent |
|  | 2.5 |  | Early initiation of breastfeeding | 45.9 percent |
|  | 2.6 |  | Exclusive breastfeeding under 6 months | 45.7 percent |
|  | 2.7 |  | Continued breastfeeding at 1 year | 90.7 percent |
|  | 2.8 |  | Continued breastfeeding at 2 years | 37.4 percent |
|  | 2.9 |  | Predominant breastfeeding under 6 months | 71.0 percent |
|  | 2.10 |  | Duration of breastfeeding | 20.5 months |
|  | 2.11 |  | Bottle feeding | 13.7 percent |
|  | 2.12 |  | Introduction of solid, semi-solid or soft foods | 74.8 percent |
|  | 2.13 |  | Minimum meal frequency | 57.3 percent |
|  | 2.14 |  | Age-appropriate breastfeeding | 63.9 percent |
|  | 2.15 |  | Milk feeding frequency for non-breastfed children | 13.2 percent |
| Salt iodization | 2.16 |  | lodized salt consumption | 34.5 percent |
| Vitamin A | 2.17 |  | Vitamin A supplementation (children under age 5) | 73.7 percent |
| Low birth weight | 2.18 |  | Low-birth weight infants | 10.7 percent |
|  | 2.19 |  | Infants weighed at birth | 54.0 percent |
| CHILD Health |  |  |  |  |
| Vaccinations | 3.1 |  | Tuberculosis immunization coverage | 97.8 percent |
|  | 3.2 |  | Polio immunization coverage | 90.7 percent |
|  | 3.3 |  | Immunization coverage for diphtheria, pertussis and tetanus (DPT) | 92.1 percent |
|  | 3.4 | 4.3 | Measles immunization coverage | 88.5 percent |
|  | 3.5 |  | Hepatitis B immunization coverage | 92.1 percent |
|  | 3.6 |  | Yellow fever immunization coverage | 88.3 percent |
| Tetanus toxoid | 3.7 |  | Neonatal tetanus protection | 70.3 percent |
| Care of illness | 3.8 |  | Oral rehydration therapy with continued feeding | 43.9 percent |
|  | 3.9 |  | Care seeking for suspected pneumonia | 41.3 percent |


| Topic | MICS4 <br> Indicator Number | $\begin{array}{r} \text { MDG } \\ \text { Indicator } \\ \text { Number } \end{array}$ | Indicator | Value |
| :---: | :---: | :---: | :---: | :---: |
|  | 3.10 |  | Antibiotic treatment of suspected pneumonia | 55.7 percent |
| Solid fuel use | 3.11 |  | Solid fuels | 81.2 percent |
| WAter and sanitation |  |  |  |  |
| Water and sanitation | 4.1 | 7.8 | Use of improved drinking water sources | 79.3 percent |
|  | 4.2 |  | Water treatment | 17.2 percent |
|  | 4.3 | 7.9 | Use of improved sanitation facilities | 15.0 percent |
|  | 4.4 |  | Safe disposal of child's faeces | 36.0 percent |
|  | 4.5 |  | Place for hand washing | 50.0 Percent |
|  | 4.6 |  | Availability of soap | 63.6 Percent |
| REPRODUCTIVE HEALTH |  |  |  |  |
| Contraception and unmet need | 5.1 | 5.4 | Adolescent birth rate | 60 per 1,000 |
|  | 5.2 |  | Early childbearing | 16.2 percent |
|  | 5.3 | 5.3 | Contraceptive prevalence rate | 34.7 percent |
|  | 5.4 | 5.6 | Unmet needs | 26.4 percent |
| Maternal and newborns health |  | 5.5 | Antenatal care coverage |  |
|  | 5.5a |  | At least once by skilled personnel | 96.4 percent |
|  | 5.5b | 5.2 | At least four times by any provider | 86.6 percent |
|  | 5.6 |  | Content of antenatal care | 88.8 percent |
|  | 5.7 |  | Skilled attendant at delivery | 68.4 percent |
|  | 5.8 |  | Institutional deliveries | 67.4 percent |
|  | 5.9 |  | Caesarean section | 11.4 Percent |
| Post-Natal checks |  |  | Post-natal health checks for newborns | 83.3 percent |
|  |  |  | Post-natal health checks for mothers | 82.5 percent |
|  |  |  | Post-partum stay in health facility | 73.8 percent |
| CHILD DEVELOPMENT |  |  |  |  |
| Child development | 6.1 |  | Support for learning | 39.8 percent |
|  | 6.2 |  | Father's support for learning | 29.6 percent |
|  | 6.3 |  | Learning materials: children's books | 6.2 percent |
|  | 6.4 |  | Learning materials: playthings | 41.1 percent |
|  | 6.5 |  | Inadequate care | 20.7 percent |
|  | 6.6 |  | Early child development index | 73.7 percent |
|  | 6.7 |  | Attendance to early childhood education | 68.2 percent |
| education |  |  |  |  |
| Literacy and education | 7.1 | 2.3 | Literacy rate among young women | 61.4 percent |
|  |  |  | Literacy among young men | 71.3 percent |
|  | 7.2 |  | School readiness | 80.3 percent |
|  | 7.3 |  | Net intake rate in primary education | 31.8 percent |
|  | 7.4 | 2.1 | Primary school net attendance rate (adjusted) | 73.0 percent |
| Literacy and education | 7.5 |  | Secondary school net attendance rate (adjusted) | 41.6 percent |
|  | 7.6 | 2.2 | Children reaching last grade of primary | 95.4 percent |
|  | 7.7 |  | Primary completion rate | 89.9 percent |
|  | 7.8 |  | Transition rate to secondary school | 75.0 percent |
|  | 7.9 |  | Gender parity index (primary school) | 1.02 ratio |
|  | 7.10 |  | Gender parity index (secondary school) | 1.10 ratio |


| Topic | $\begin{array}{r} \text { MICS4 } \\ \text { Indicator } \\ \text { Number } \end{array}$ | $\begin{array}{r} \text { MDG } \\ \text { Indicator } \\ \text { Number } \end{array}$ | Indicator | Value |
| :---: | :---: | :---: | :---: | :---: |
| CHILD PROTECTION |  |  |  |  |
| Birth registration | 8.1 |  | Birth registration | 62.5 percent |
| Child Discipline | 8.5 |  | Violent discipline | 93.6 percent |
| Early marriage and polygyny | 8.6 |  | Marriage before age 15 | 5.8 percent |
|  | 8.7 |  | Marriage before age 18 | 27.0 percent |
|  | 8.8 |  | Young women age 15-19 currently married or in union | 7.0 percent |
|  | 8.9 |  | Polygyny | 18.3 percent |
|  |  |  | Spousal age difference |  |
|  | 8.10a |  | Women age 15-19 | 16.4 percent |
|  | 8.10 b |  | Women age 20-24 | 19.1 percent |
| Female genital mutilation/ cutting | 8.11 |  | Approval for female genital mutilation/cutting (FGM/C) | 1.5 percent |
|  | 8.12 |  | Prevalence of female genital mutilation/cutting (FGM/C) among women | 3.8 percent |
|  | 8.13 |  | Prevalence of female genital mutilation/cutting (FGM/C) among girls | 0.4 percent |
| Domestic violence | 8.14 |  | Attitudes towards domestic violence for women | 59.8 percent |
|  |  |  | Attitude towards domestic violence for men | 35.9 percent |
| Orphan |  |  | Prevalence of children with at least one parent dead | 7.7 percent |
|  |  |  | Children's living arrangements | 17.1 percent |
| HIV/AIDS, SEXUAL BEHAVIOUR |  |  |  |  |
| HIV/AIDS <br> knowledge and <br> attitudes | 9.1 |  | Comprehensive knowledge about HIV prevention for women | 33.8 percent |
|  |  |  | Comprehensive knowledge about HIV prevention for men | 39.1 percent |
|  | 9.2 | 6.3 | Comprehensive knowledge about HIV prevention among young women | 36.8 percent |
|  |  |  | Comprehensive knowledge about HIV prevention among young men | 38.6 percent |
|  | 9.3 |  | Knowledge of mother-to-child transmission of HIV for women | 57.2 percent |
|  |  |  | Knowledge of mother-to-child transmission of HIV for men | 57.3 percent |
|  | 9.4 |  | Accepting attitude towards people living with HIV for women | 6.3 percent |
|  |  |  | Accepting attitude towards people living with HIV for men | 15.2 percent |
|  | 9.5 |  | Women who know where to be tested for HIV | 74.0 percent |
|  |  |  | Men who know where to be tested for HIV | 73.1 percent |
|  | 9.6 |  | Women who have been tested for HIV and know the results | 16.8 percent |
|  |  |  | Men who have been tested for HIV and know the results | 10.0 percent |
|  | 9.7 |  | Sexually active young women who have been tested for |  |
|  |  |  | HIV and know the results | 17.3 percent |
|  |  |  | Sexually active young men who have been tested for |  |
|  |  |  | HIV and know the results | 8.4 percent |


| Topic | MICS4 Indicator Number | $\begin{gathered} \text { MDG } \\ \text { Indicator } \\ \text { Number } \end{gathered}$ | Indicator | Value |
| :---: | :---: | :---: | :---: | :---: |
| HIV/AIDS knowledge and attitudes | 9.8 |  | HIV counselling during antenatal care | 58.9 percent |
|  | 9.9 |  | HIV testing during antenatal care | 54.6 percent |
| Sexual behaviour | 9.10 |  | Young women who have never had sex | 52.3 percent |
|  |  |  | Young men who have never had sex | 61.3 percent |
|  | 9.11 |  | Sex before age 15 among young women | 9.7 percent |
|  |  |  | Sex before age 15 among young men | 4.9 percent |
|  | 9.12 |  | Age-mixing among sexual partners for women | 12.1 percent |
|  |  |  | Age-mixing among sexual partners for men | 0.0 percent |
|  | 9.13 |  | Sex with multiple partners for women | 1.9 percent |
|  |  |  | Sex with multiple partners for men | 13.8 percent |
|  | 9.14 |  | Condom use during sex with multiple partners |  |
|  |  |  | Women | 23.1 percent |
|  |  |  | Men | 12.7 percent |
|  |  |  |  |  |
|  | 9.15 |  | Sex with multiple partners for young people |  |
|  |  |  | Women | 3.3 percent |
|  |  |  | Men | 6.3 percent |
|  |  |  | Condom use during sex with multiple partners for young people |  |
|  |  |  | Women | 27.2 percent |
|  |  |  | Men | 39.3 percent |
|  |  |  | Sex with non-regular partners |  |
|  |  |  | Women | 56.4 percent |
|  |  |  | Men | 88.0 percent |
|  | 9.16 | 6.2 | Condom use with non-regular partners |  |
|  |  |  | Women | 40.9 percent |
|  |  |  | Men | 52.8 percent |
| MALARIA AND BIomarker |  |  |  |  |
|  | 3.12 |  | Household availability of insecticide-treated nets (ITNs) | 48.9 percent |
|  | 3.14 |  | Children under age 5 sleeping under any mosquito net | 41.6 percent |
|  | 3.13 |  | Indoor residual spraying against mosquitoes and availability of ITNs | 51.3 |
|  | 3.15 | 6.7 | Children under age 5 sleeping under insecticidetreated nets (ITNs) | 39.0 percent |
|  | 3.16 |  | Malaria diagnostics usage | 15.9 percent |
|  | 3.17 |  | Antimalarial treatment of children under 5 the same or next day | 34.9 percent |
|  | 3.18 | 6.8 | Antimalarial treatment of children under age 5 | 52.6 percent |
|  | 3.19 |  | Pregnant women sleeping under insecticidetreated nets (ITNs) | 32.6 percent |
|  | 3.20 |  | Intermittent preventive treatment for malaria | 64.6 percent |
|  |  |  | Prevalence of malaria in children under-five |  |
|  |  |  | Rapid diagnostic test (RDT) | 48.0 Percent |
|  |  |  | Microscopy | 28.0 Percent |
|  |  |  | Anaemia | 7.4 percent |


| Topic | MICS4 Indicator Number | MDG Indicator Number | Indicator | Value |
| :---: | :---: | :---: | :---: | :---: |
| NATIONAL HEALTH INSURANCE SCHEME (NHIS) |  |  |  |  |
| Membership |  |  | Registration with NHIS |  |
|  |  |  | Women | 68.8 percent |
|  |  |  | Men | 55.9 percent |
|  |  |  | Children | 53.8 percent |
| Card validity |  |  | NHIS valid cards seen |  |
|  |  |  | Women | 40.3 percent |
|  |  |  | Men | 34.4 percent |
|  |  |  | Children | 51.0 percent |
| ACCESS TO MASS MEDIA AND ICT |  |  |  |  |
| Access to mass <br> media <br> Use of computers | MT. 1 |  | Young women with exposure to newspaper, radio and TV at least once a week | 8.3 percent |
|  |  |  | Young men with exposure to newspaper, radio and TV at least once a week | 16.8 percent |
|  |  |  | Young women who used a computer during the last 12 months | 25.1 percent |
| Use of internet | мт. 2 |  | Young men who used a computer during the last 12 months | 39.2 percent |
|  | MT. 3 |  | Young women who used the internet during the last 12 months | 14.7 percent |
|  |  |  | Young women who used the internet during the last 12 months | 28.8 percent |

BURKINA FASO

$\star$ National capital
GHANA HAS 10 REGIONS

The Ghana Multiple Indicator Cluster Survey (MICS) 2011, the fourth of its kind, is a nationally representative sample survey of households, women aged $15-49$ years, children aged $0-5$ years and men aged $15-59$ years. In addition to applying the customized version of the MICS4 Questionnaires, an enhanced Malaria Module and Biomarker (for Anaemia and parasitemia in children aged 6-59 months) was included.

The Survey was carried out in 2011 by the Ghana Statistical Service with financial and technical support from UNICEF, USAID/CDC, UNFPA, the Japanese Government, and the Ministry of Health/National Malaria Control Programme. ICF/MACRO and the Navrongo Health Research Centre provided technical support particularly for the malaria module and biomarker component. The results pertain to September-December 2011, when the field work was conducted.

## Household Characteristics

Of the 12,150 households selected for the sample, 11,970 were contacted for interviews. Of these, 11,925 were interviewed, giving a response rate of about 100 percent. In the households interviewed, 10,963 women aged 15-49 years were identified. Of these, 10,627 were duly interviewed, producing a response rate of 97 per cent. Concerning children under the age of 5 years, 7,626 were identified, for whom responses were obtained from their mother or caregiver in 7,550 complete interviews, giving a response rate of 99 percent. For the male survey, 3,511 men aged 15-59 years were identified, and 3,321 successfully interviewed, yielding a response rate of 95 percent.

Overall, the survey found that 31 percent of households in Ghana are headed by women. Children less than 15 years constitute 42 percent of the total population. Furthermore, 33 percent of households in urban areas, and 44 percent of households in rural areas have at least one child aged less than five years. The mean household size is 3.5 in urban areas, and 4.3 in rural areas. The most common household size is 2-3 household members ( 30 percent), followed by $4-5$ household members with 27 percent.

## Characteristics of Respondents

The MICS 2011 data show that for both sexes, the largest population age-group is 15-24 years. For women 34 percent are in this category, while for men it is 31 percent. In addition, 3 in 5 women and about half of men are currently married/in union, while 30 percent of women and 40 percent of men have never been married/in union.

In Ghana, 70 percent of women have given birth at least once, and 24 percent gave birth in the last two years. Nearly half of the men ( $46 \%$ ) and women ( $47 \%$ ) live in rural areas; while for children, about 57 percent live in rural areas compared to 44 percent in urban areas. With respect to educational level, 21 percent of women and 13 percent of men have no education; 19 percent of women and 13 percent of men have only primary education; 41 percent of women and 45 percent of men have middle/JSS education; and 19 percent of women and 30 percent of men have secondary or higher levels of education.

For children under five, Ghana has roughly the same proportion of girls and boys but there are more children in rural areas than in urban areas ( $57 \%$ against $44 \%$ ) and they are also slightly more likely to live in the poorest households: $23 \%$ of the children under age five live in the poorest households while $17 \%$ live in the richest.

## Child Mortality

The Ghana MICS4 was conducted from Mid-September to Mid-December 2011 and childhood mortality rates were estimated using the direct method. The reference point (mid-point interval) for the childhood mortality for the most recent five year period is Mid-March 2009. The results estimate Ghana's underfive mortality rate at 82 deaths per 1,000 live births. This means that one in every 12 children dies before reaching his or her fifth birthday. The child mortality rate is estimated at 31 deaths per 1,000 children aged 1 year, while the infant mortality rate is estimated at 53 deaths per 1,000 live births. Post neonatal and neonatal mortality rates are estimated at 21 and 32 deaths per 1000 live births, respectively, for the same period.

Neonatal mortality rate represents 60 percent of the infant mortality rate in Ghana, meaning that 60 percent of deaths in infancy occur during the first 28 days of a child's life. This is consistent with the DHS 2008 findings.

Children living in rural areas experience higher levels of infant and under-five mortality ( 56 and 94 deaths per 1,000 live births respectively), compared to those living in urban areas ( 46 and 72 deaths per 1000 live births respectively).

Significant variations are also observed in wealth quintiles for infant and under-five mortality rates. The infant mortality rate is estimated at 61 deaths per 1000 live births for children from the poorest wealth quintile, and 38 deaths per 1000 live births for children in the richest wealth quintile; and the under-5 mortality rate is estimated at 106 deaths per 1,000 live births for children from the poorest households, compared to 52 deaths per 1,000 live births for children belonging to the richest households.

## Nutrition Status

Almost one in seven children (13\%) under the age of five years is moderately or severely underweight and 3 percent are classified as severely underweight. The results also reveal that nearly 1 in every 4 children $(23 \%)$ is moderately or severely stunted, and 7 percent are severely stunted. Six percent of the children are moderately or severely wasted, and 1 percent can be considered severely wasted. Children whose mothers have secondary or higher education are less likely to be underweight (9\%) and stunted (13\%) compared to children whose mothers have no education ( $17 \%$ and $29 \%$, respectively).

Breastfeeding and Infant and Young Child Feeding
Less than half ( $46 \%$ ) of all children aged 0-6 months in Ghana are exclusively breastfed, a level considerably lower than that recommended by WHO/UNICEF. For children aged 0-35 months, the mean duration for any breastfeeding is 20.5 months, 2.7 months for exclusive breastfeeding, and 5.1 months for predominant breastfeeding. The MICS results also reveal that less than half (46\%) of newborn children are breastfed within the recommended period (within one hour after birth); while 84 percent are breastfed in the first day of life. In addition, 74 percent of children aged 6-8 months are currently breastfed and receiving solid, semi-solid or soft foods, and 64 percent of children aged 6-23 months are appropriately breastfed.

The results also show that, for children aged 6-23 months currently breastfeeding, 57 percent are receiving solid, semi-solid and soft foods the recommended minimum number of times. For children 6-23 months
not currently breastfeeding, 58 percent are receiving solid, semi-solid and soft foods the recommended minimum number of times.

Fourteen percent of children aged 0-23 months and 20 percent of children aged 6-11 months are fed using a bottle with a nipple. Results also show that bottle feeding is generally an affluent household phenomenon, with children living in the Greater Accra region (35\%), those living in urban areas (21\%), those children whose mothers have secondary education (34\%) and children from the wealthiest households (33\%) being the most likely to be bottle-fed.

## Salt lodization

Salt used for household cooking was tested in the MICS in two ways: through the use of Rapid Salt Kits, and further testing in a lab using Titration. Use of Titration for iodine testing is considered most accurate. Results from the Rapid Salt Kits reveal that only 35 percent of households were using salt that was adequately iodated ( $\geq 15 \mathrm{ppm}$ ), while in 22 percent of households, salt had no iodine. Households in urban areas are more likely to use adequately iodated salt (45\%), compared to households in rural areas (23\%). Titration results show that 29 percent of households were using adequately iodated salt ( $\geq 15 \mathrm{ppm}$ ), thus, the Rapid Test Kits overestimated the proportion of adequately iodised salt by 6 percent.

## Vitamin A Supplement

Approximately 3 out of 4 children (74\%) aged 6-59 months received a high dose of Vitamin A supplement six months prior to the survey. At 58 percent, Ashanti region had the lowest Vitamin A supplementation coverage, while all other regions had Vitamin A supplementation of over 68 percent. Vitamin A supplementation coverage was highest in Upper East region and Brong Ahafo, both reporting 90 percent coverage, followed by Greater Accra at 84 percent.

Low Birth Weight
The data from the MICS 2011 show that 54 percent of newborns were weighed at birth. Children from Greater Accra region are most likely to be weighed at birth ( $82 \%$ ), and those from Northern region the least likely to be weighed at birth ( $25 \%$ ). Children from rural households, those from the poorest households and those whose mothers have no education are less likely to be weighed at birth. It is estimated that 11 percent of children born in Ghana weigh less than 2,500 grams.

## Immunization

According to UNICEF and WHO guidelines, a child should receive a BCG vaccination to protect against tuberculosis, three doses of DPT to protect against diphtheria, pertussis, and tetanus, three doses of polio vaccine, and a measles vaccination by the age of 12 months. In Ghana, the MICS results show that 77 percent of children aged 12-23 months are fully immunized before their first birthday. Furthermore, the coverage rate for all vaccination for children aged 12-23 months is 84 percent, while less than 1 percent of children have not received any vaccinations.

Approximately 98 percent of children aged 12-23 months received a BCG vaccination by their first birthday, 89 percent were immunized against measles by their first birthday, and 92 percent received 3 doses of DPT/ HepB/INFL. Also, 91 percent of children aged 12-23 months had received 3 doses of polio, and 94 percent had been immunized against yellow fever.

## Tetanus toxoid

Seventy percent of women who gave birth in the last two years are protected against tetanus. The majority of them (55\%) are protected because they received at least two doses of tetanus toxoid injection during their most recent pregnancy, while 15 per cent of women are protected because they received at least two doses of the vaccine in the last three years. More women in urban areas received the 2 doses during their last pregnancy ( $61 \%$ ), compared to their rural counterparts ( $50 \%$ ). The Central region has the highest percentage of women who received at least 2 doses of tetanus vaccination during their last pregnancy (66\%), while 4 regions have a coverage level of below 50 percent (Brong Ahafo $42 \%$, Volta $45 \%$, Upper East $46 \%$, and Northern 47\%).

## Oral rehydration treatment

Thirteen percent of children under-five had diarrhoea in the two weeks prior to the survey. Around one third (35\%) of children with diarrhoea were treated with ORS (fluid made with an ORS packet or pre-packaged ORS fluids), and 20 percent received recommended home-prepared fluids. More than half ( $59 \%$ ) of children with diarrhea in the two weeks prior to the survey received oral rehydration treatment (ORT), meaning that they received either ORS, or the recommended home-prepared liquids, or increase of fluids. The rate of use of ORT is higher in urban areas (64\%) than in rural areas (56\%). However, 12 percent of children who had diarrhoea during the last two weeks preceding the survey were not given any treatment or drug, and the highest level was recorded in age-group of 0-11 months (19\%). The data also show that 44 percent of children received ORT and, at the same time, feeding was continued, as recommended.

## Care-seeking and antibiotic treatment of pneumonia

Only 3 percent of children aged 0-59 months were reported as presenting symptoms suggestive of pneumonia in the two weeks prior to the survey. Of the children with suspected pneumonia, only 41 percent were taken to an appropriate health provider. In addition, 56 percent of children with suspected pneumonia received antibiotics. Results also show that only 1 percent of mothers and caregivers of children age 0-59 months know the two danger signs of pneumonia - fast and difficult breathing.

## Malaria and Anaemia

More than half of all households ( $51 \%$ ) own at least one mosquito net, treated or untreated and 49 percent of all households have an insecticide treated net (ITN), the large majority of which (48\%) have a longlasting insecticidal net (LLIN). The average number of LLIN in households in Ghana is 1. About 1 in every 4 households in Ghana has at least one LLIN net for every two persons who stayed in the household the night prior to the survey. The availability of LLIN is higher in rural areas (60\%), than in urban areas (38\%). Regions where the LLIN hang-up campaign has already taken place are more likely to have higher LLIN coverage, than those regions where distribution has not taken place. For example, 85 percent of households in Volta region, and 79 percent of households in Eastern region own at least one LLIN. All districts in these regions had fully completed their distribution campaigns 3-12 months prior to the MICS data collection.

Almost 40 percent of children under-five in all households slept under an LLIN the night prior to the survey. The use of LLINs is more common in rural areas (46\%) than in urban areas (29\%). Almost two-thirds (63\%) of children under-five in households with at least one ITN slept under an ITN, while 48 percent of persons in households with at least one ITN slept under an ITN. In total, 33 percent of pregnant women slept under an

ITN the night prior to the survey and among pregnant women aged 15-49 in households with at least one ITN, 58 percent slept under an ITN. For all household members, children and pregnant women, the use of ITNs is higher in rural areas than in urban areas. The MICS data also show that 42 percent of the ITNs were acquired during a public campaign. Also, only 5 percent of households had undergone indoor residual spraying (IRS) in the past 12 months.

The MICS data also reveal that nearly 1 in 5 children under-five (19\%) had fever in the two weeks preceding the survey, and 53 percent of them took antimalarial drugs; just over a third of them (35\%) took the antimalarial drugs the same or next day.

The national malaria microscopy-based prevalence was estimated at 28 percent among children aged 6-59 months. Large variations were observed: Greater Accra had the lowest prevalence rate at 4 percent compared to 51 percent in the Upper West region. The savannah zone has the highest prevalence with 44 percent compared to just 14 percent in the coastal zone. In urban areas the prevalence was 13 percent while rural areas recorded 39 percent. The prevalence for children whose mothers/caretakers have secondary school and higher was only 5 percent compared to 43 percent of children whose mothers/caretakers have no education. Malaria prevalence was estimated at 3 percent for children in the richest wealth quintile, and rose to 52 percent for children in the poorest wealth quintile.

Overall, 7 percent of children aged 6-59 months were anaemic. The Eastern region had the lowest prevalence rate of 2 percent compared to 19 percent in the Northern region. The savannah zone had the highest prevalence with 15 percent compared to 4 percent in the coastal zone. In urban areas the prevalence was 4 percent while the rural areas recorded 10 percent. The prevalence for children whose mothers/caretakers have secondary school and higher was only 2 percent compared to 13 percent of children whose mothers/ caregivers have no education. In the richest households, anaemia prevalence was only 1 percent, compared to 16 percent in the poorest households.

## Water and Sanitation

Nearly 80 percent of household members in Ghana are using improved sources of drinking water, which means that Ghana has already achieved the 2015 MDG 7 target of 78 percent of the population using improved drinking water. However, wide variations exist between areas of residence with 91 percent coverage in urban areas and only 69 percent in rural areas. Variations are also noted among regions: with 91 percent of household members in Ashanti using an improved source of drinking water, while only 62 percent of household population in Volta region do so.

The great majority of households (91\%) do not use any method for treating water. Regarding households with unimproved sources of water, 17 percent of them treat their water using appropriate water treatment method before they drink it. Concerning access to water for those households without water on the premises, for about 44 percent of all households that use an improved drinking water source, it takes less than 30 minutes for the round trip to fetch water, while 9 percent of households spend 30 minutes or more.

In the majority of households (64\%), the person who fetches water is an adult woman. Adult men collect water in only 19 percent of cases, while for the rest of the households, female or male children under age 15 collect water ( $11 \%$ and $6 \%$ respectively).

The MDGs and the WHO / UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation classify households as using an unimproved sanitation facility if they are using otherwise acceptable sanitation facilities but sharing a facility between two or more households or using a public toilet facility. Taking into account this definition, only 15 percent of household members were using an improved and not shared sanitation facility. Nearly 1 out of $4(23 \%)$ of households in Ghana practices open defecation or have no toilet facility, and this was more pronounced in rural areas (35\%) than urban areas ( $10 \%$ ).

## Fertility

The adolescent birth rate and total fertility rate (TFR) are respectively 60 per 1000 live births and 4.3 children per woman. The average is 3.3 children per woman in urban areas and 5.5 children per woman in rural areas. Regional variations are also observed with the highest TFR (6.2) in Northern region compared to the lowest TFR (3.2) in Greater Accra. The TFR decreases with educational level and by wealth index quintiles. The lower TFR is observed among women with secondary or higher education (3.1) and in the richest quintile (2.9).

Ten percent of women aged 15-19 years had already given birth, 2 percent were pregnant with their first child, so, in total, 12 percent had begun childbearing. Furthermore, 1 percent has had a live birth before the age of 15 and about 16 percent of women aged $20-24$ years have had a live birth before age 18 .

## Contraception use and unmet need

Only 1 in 3 women ( $35 \%$ ) currently married or in union reported using any method of contraception: 24 percent of all women use modern methods and 11 percent use traditional methods. The most popular modern methods are the injectable ( $9 \%$ ) and the pill ( $8 \%$ ). There is a slight difference in contraceptive use depending on the area of residence, with 37 percent of users in urban areas against 32 percent in rural areas.
The unmet need for contraception refers to fecund women who are not using any method of contraception, but who wish to postpone the next birth (spacing) or who wish to stop childbearing altogether (limiting). Overall, 26 percent of women aged 15-49 years have an unmet need for contraception. Sixteen percent have an unmet need for spacing and 10 percent have an unmet need for limiting.

## Antenatal care

Ninety-six percent of women aged $15-49$ years who gave birth in the 2 years preceding the survey received at least one antenatal care (ANC) visit by skilled health personnel and 87 percent had 4 or more antenatal care visits. Eastern and Greater Accra regions recorded the highest proportions of pregnant women who attended 4 or more antenatal care visits - 93 percent and 92 percent respectively. The Northern region recorded the lowest proportion of pregnant women that had at least 4 antenatal care visits ( $75 \%$ ). During their antenatal care, 89 percent of the women had blood pressure measured, a urine specimen taken and a blood test.

Assistance at delivery
Around two-thirds (68\%) of women aged 15-49 years who gave birth in the last two years were assisted by skilled personnel during the delivery. This percentage is highest in Greater Accra Region at 90 percent and lowest in Northern Region at 37 percent. The data also show that 2 in 3 women ( $67 \%$ ) delivered in health facilities, and 11 percent had a C -section. Deliveries by C -section are highest among women in the

Greater Accra region, where nearly 1 out of 4 women ( $23 \%$ ) had a C-section. The Volta ( $15 \%$ ), Ashanti ( $12 \%$ ), Eastern (12\%) and Central ( $11 \%$ ) regions all have C-section rates of above 10 percent. Eighty-six percent of newborns and mothers received a post-natal health check.

## Child Development

About 68 percent of children aged 36 -59 months in Ghana were attending pre-school, with children in urban areas more likely to attend ( $81 \%$ ) than children in rural areas ( $59 \%$ ). For 40 percent of children under five, an adult in the household had engaged in activities that promote learning and school readiness during the three days prior to the survey. For about 30 percent of children, their father was involved in this type of activity. In contrast, 30 percent of children are not living with their biological father. Three or more children's books were available in only 6 percent of households for all children under-five. The data also show that 41 percent of children aged $0-59$ months had 2 or more playthings in their homes. However, 1 in 5 children under-five years ( $21 \%$ ) was left with inadequate care in the previous week. Finally, the early child development index score for children aged $36-59$ months is 74 .

## Literacy and Education

Sixty-one percent of young women (aged 15-24 years) and 71 percent of young men (aged 15-24 years) are literate. In the richest wealth quintile, 85 percent and 93 percent of young women and men respectively are literate while in the poorest wealth quintile only 31 percent and 41 percent of young women and men are respectively literate.

Eighty percent of children attending first grade attended preschool in the previous year. Only 32 percent of children of primary school entry age entered grade 1 , which means that a large proportion of children enter the education system late. Timely entry into school is greater in urban (39\%) than in rural areas (26\%). The Ghana MICS shows that there is a relationship between timely entry into grade 1 and the educational level of the mother and the household's economic situation.

The primary school net attendance rate (adjusted) is 73 percent. In urban areas, the net attendance rate (adjusted) is 80 percent compared to 68 percent in rural areas. The secondary school net attendance rate (adjusted) is 42 percent, which is 51 percent in urban areas compared to 34 percent in rural areas. In addition, 95 percent of children who enter grade 1 reach grade 6. The primary school completion rate is 90 percent while the transition rate to secondary school is 75 percent. The gender parity ratio for net attendance rate (adjusted) is 1.02 in primary school and 1.10 in secondary school.

## Birth registration

The births of 63 percent of children under-five years have been registered with civil authorities. Seventy-two percent of children in urban areas are registered, compared to 55 percent of children in rural areas. Across regions, children in the Greater Accra region are more likely to be registered (77\%), followed by children in the Upper West Region (72\%), while those in the Western region are the least likely to be registered (49\%). Among children whose births are registered, 58 percent have birth certificates. While birth registration is fully subsidized for children below 12 months, less than half ( $45 \%$ ) of children in this age-group are registered, meaning that some parents are still not taking advantage of free registration.

## Child Discipline

The Ghana MICS results show that 94 percent of children aged 2-14 years were subjected to some form of violent (physical and/or psychological) disciplinary method. Fourteen percent of children aged 2-14 years were subjected to severe physical punishment and 73 percent to minor punishment. Results also show that about 50 percent of respondents believe that a child needs to be physically punished to bring them up properly.

Early marriage, polygamy and spousal age difference
The MICS data show that the proportion of women aged $15-49$ years married before the age of 15 and 18 are respectively 6 percent and 27 percent. Such marriages (before age 15) are higher in rural areas ( $8 \%$ ) than in urban areas ( $4 \%$ ). Women with higher education and from wealthiest households are less likely to get married before the age of 15 years. For men aged $15-59$ years, only 1 percent was married before age 15 , and 5 percent before age 18 . By the age of 25,72 percent of women are married or living with a man while at 30 years old, 87 percent of them are married or in union. By age 25 , half of men are married or living with a partner while at 30 years old, 79 percent of them are married/in union.

The MICS 2011 also show that 18 percent of women aged 15-49 years are in polygynous marriages/unions while 9 percent of men aged $15-59$ years are in polygynous marriages/unions. In addition, 16 percent of women aged $15-19$ years, and 19 percent of women aged $20-24$ years who are currently married/in union, have a spouse who is 10 or more years older than them.

## Female Genital Mutilation/Cutting

Overall, 4 percent of women aged $15-49$ years in Ghana have had any form of FGM/C. This practice was found to be most prevalent in Upper West ( $41 \%$ ) and Upper East ( $28 \%$ ) regions. Only 2 percent of women aged 15 49 years approve of $F G M / C$ practice, while 94 percent of them believe that it should be discontinued. Among their daughters ( $0-14$ years), FGM/C prevalence is less than 1 percent.

## Domestic violence

The MICS 2011 results reveal that 60 percent of women think that a husband is justified in beating his wife for at least one of the following reasons: when the woman goes out without telling him, if she neglects the children, if she argues with him, if she refuses to have sex with him, if she burns the food, if she insults him, if she refuses to give him food, if she has another partner, if she steals and if she gossips. The highest proportion (84\%) is recorded in Northern and Upper West regions, while the lowest proportion (40\%) is found in the Greater Accra region. The acceptance of domestic violence is higher in rural areas ( $70 \%$ ) than in urban areas (51\%). Attitudes of acceptance decrease with women's educational levels. Overall, men are less likely than women to believe that domestic violence is justified: 36 percent of men agree that it is justifable to beat their wives/partners for any of the given reasons.

Children's living arrangements and orphanhood
Overall, 57 percent of children aged $0-17$ years in Ghana live with both their parents, but 17 percent are not living with a biological parent. Eight percent of children in Ghana are orphans of one or both parents, and about 1 percent of the children aged $0-17$ years are double orphans. While about 17 percent live with their mother only, just 5 percent live with their father only. For children living with neither of their biological parents, 14 percent have both parents alive, 1 percent has only their father alive, 2 percent have only their
mother alive, and for about 1 percent both parents are dead. For children living with their mother only, 17 percent have their father alive, while for 3 percent of them their father is dead. For the 5 percent of all children aged 0-17 years living with only their father, their mothers are dead in almost one in five cases.

## HIV/AIDS and Sexual Behaviour

The MICS 2011 shows that 98 percent of women and 99 percent of men have heard about AIDS, but only 34 percent of women aged 15-49 years and 39 percent of men aged 15-59 years have comprehensive knowledge of AIDS. Specifically, 42 percent of women and 47 percent of men reject the two most common misconceptions about AIDS and know that a healthy looking person can have the AIDS virus.

Ninety-eight percent of young women and men (aged 15-24 years) have heard of AIDS, while 37 percent of young women and 39 percent of young men have comprehensive knowledge of the disease. Forty-six percent of young women and 49 percent of young men reject the two most common misconceptions and know that a healthy looking person can have the AIDS virus.

Ninety-one percent of both women and men know that HIV can be transmitted from mother to child, and 57 percent of both sexes know all three means of transmission of AIDS from mother to child. Only 6 percent of women $15-49$ years and 15 percent of men $15-59$ years express accepting attitudes toward people living with HIV/AIDS on all four indicators analysed in the MICS. For both sexes, a positive attitude towards people living with HIV/AIDS is strongly correlated with educational levels, household wealth, and area of residence. This is also true for knowledge of a place for HIV testing. At the national level, 74 percent of interviewed women and 73 percent of men know a place for HIV testing.

Among women aged 15-49 years who gave birth in the last 2 years, 59 percent received HIV counselling during antenatal care; and 55 percent were offered an HIV test and were tested for HIV during antenatal care, and received the results.

For young women and men who are sexually active, 75 percent of young women know where to get HIV testing, 43 percent have been tested, 20 percent were tested in the 12 months prior to the survey, and 17 percent were told their results. For men, nearly 70 percent of young men know where to get tested, 18 percent have been tested, 10 percent were tested in the 12 months prior to the survey, and about 8 percent were also told their results.

Women aged $15-24$ years are twice as likely ( $10 \%$ ) to have sex before the age of 15 compared to their male counterparts (5\%). Twelve percent of young women (aged 15-24) had sex in the last 12 months with a man 10 years or older. On the other hand, virtually none of the young men in the sample had sex with a women 10 years or older. The results also show that about 2 percent of women aged 15-49 years and 14 percent men aged $15-59$ years had sex with more than one partner in last 12 months. Among those, 23 percent of women used a condom for higher risk sex, while 13 percent of men did so. For young women and men aged $15-24$ years, the proportions of having sex with more than one partner in the last 12 months are respectively 3 percent and 6 percent, and among them, 27 percent of young women and 39 percent of the young men used a condom.

## Access to Mass Media and ICT

About 8 percent of women aged 15-49 years and 17 percent of men aged 15-59 years are exposed to all three media (newspaper, radio and TV) at least once a week. For both sexes, radio is the most predominant media for 69 percent of women and 80 percent of men.

Twenty-five percent of young women and 39 percent of young men aged 15-24 years used a computer during the 12 months prior to the survey. There are some differences in the use of internet in the week preceding the survey between young women (11\%) and young men (19\%).

For both sexes, the exposure to all three media and the use of computer and internet are strongly correlated with educational level, wealth index quintiles and urban residence.

## National Health Insurance

At the national level 69 percent of women aged 15-49 years, 56 percent of men aged 15-59 years and 54 percent of children under-five years have ever been registered with the National Health Insurance Scheme (NHIS). The proportions of valid cards seen are respectively 40 percent, 34 percent and 51 percent.

The achievement of membership was mainly done through the following two options: premium paid by a relative or friend ( $60 \%$ for both women and men), and premium paid by self ( $29 \%$ for women and $31 \%$ for men). Only $8 \%$ of women get free access to NHIS through the free Maternal Care Service.

For NHIS card holders, 42 percent of women aged 15-49 years and 39 percent of men aged 15-59 years think that NHIS provides a better quality service when they attend health care facilities, while 26 percent of the women and 22 percent of the men indicate that the quality of services provided was the same as that provided to non-NHIS card holders. Finally, 1 in 5 women and men indicate that the quality of services provided to NHIS card holders is worse while 10 percent of women and 18 percent of men have not used the health services since acquiring their NHIS cards.



## Background

This report is based on the Ghana Multiple Indicator Cluster Survey, conducted in 2011 by the Ghana Statistical Service (GSS). The survey provides valuable information on the situation of children, women and men in Ghana, and was based, in large part, on the need to monitor progress towards goals and targets emanating from recent international agreements: The Millennium Declaration, adopted by all 191 United Nations Member States in September 2000, and the Plan of Action of A World Fit For Children, adopted by 189 Member States at the United Nations Special Session on Children in May 2002. Both of these commitments build upon promises made by the international community at the 1990 World Summit for Children.

## A Commitment to Action: National and International Reporting Responsibilities

The governments that signed the Millennium Declaration and the World Fit for Children Declaration and Plan of Action also committed themselves to monitoring progress towards the goals and objectives they contained:
"We will monitor regularly at the national level and, where appropriate, at the regional level and assess progress towards the goals and targets of the present Plan of Action at the national, regional and global levels. Accordingly, we will strengthen our national statistical capacity to collect, analyse and disaggregate data, including by sex, age and other relevant factors that may lead to disparities, and support a wide range of child-focused research. We will enhance international cooperation to support statistical capacitybuilding efforts and build community capacity for monitoring, assessment and planning." (A World Fit for Children, paragraph 60).
..We will conduct periodic reviews at the national and subnational levels of progress in order to address obstacles more effectively and accelerate actions...." (A World Fit for Children, paragraph 61)

The Plan of Action (paragraph 61) also calls for the specific involvement of UNICEF in the preparation of periodic progress reports:
"... As the world's lead agency for children, the United Nations Children's Fund is requested to continue to prepare and disseminate, in close collaboration with Governments, relevant funds, programmes and the specialized agencies of the United Nations system, and all other relevant actors, as appropriate, information on the progress made in the implementation of the Declaration and the Plan of Action."

Similarly, the Millennium Declaration (paragraph 31) calls for periodic reporting on progress:
"...We request the General Assembly to review on a regular basis the progress made in implementing the provisions of this Declaration, and ask the Secretary-General to issue periodic reports for consideration by the General Assembly and as a basis for further action.'

In signing these international agreements, governments committed themselves to improving conditions for their children and to monitoring progress towards that end. UNICEF was assigned a supporting role in this task (see text box on previous page).

Over the past decades, the government of Ghana has embarked on various plans and strategies aiming at improving the living conditions of its citizenry- the Ghana Poverty Reduction Strategy (GPRS) in 2000, the Growth and Poverty Reduction Strategy (GPRS II) in 2006 and the Ghana Shared Growth and Development Agenda (GSGDA), 2010-2013. Findings from the Multiple Indicator Cluster Survey (MICS 4) would provide up to date information for the formation of informed policies towards the achievement of the established goals.

All these policy frameworks require monitoring and assessment of progress. The fourth round of the Multiple Indicator Cluster Survey represents a large source of data for reporting on progress towards the aforementioned goals. The survey provides a rich foundation of comparative data for comprehensive progress reporting, especially regarding the situation of the most vulnerable children, including those from the poorest households, those living in deprived localities, etc. It also provides important information for the new UNICEF Country Programme 2012-2016 as well as the UNDAF 2011-2015.

This final report presents the results of the indicators and topics covered in the survey.

Survey Objectives

- The 2011 Ghana Multiple Indicator Cluster Survey has as its primary objectives the following:To provide more current information for assessing the situation of children, women and men, and reporting on country progress in achieving the GSGDA goals/targets and the MDGs, meet the reporting requirements of other local and international development declarations and agenda, and form the basis for future action;
- To provide much-needed data on practices used to treat malaria among children under-five and the use of specific anti-malarial medications, bednet coverage and use, coverage of Intermittent Preventive Treatment for pregnant women, treatment practices for childhood fever, and prevalence of malaria and anaemia among children aged 6-59 months;
- To present the current level of knowledge and behavioral indicators regarding HIV and AIDS in Ghana;
- To provide a mid-term snapshot on progress on key Health Sector Medium-term Development Plan (HSMTDP) 2010-2013 strategic objectives, and provide nationally and regionally representative data that can inform the development of the next Health Sector Medium-term Plan;
- To contribute to the improvement of data and monitoring systems in Ghana and to strengthen technical expertise in the design, implementation, and analysis of such systems; and
- To generate data on the situation of children, women and men, including the identification of vulnerable groups and of disparities, which will inform social inclusion and poverty reduction policies and interventions.




## Sample Design

The sample for the Ghana Multiple Indicator Cluster Survey (MICS) was designed to provide estimates for a large number of indicators on the situation of children and women at the national level, for urban and rural areas, and for 10 regions: Western, Central, Greater Accra, Volta, Ashanti, Brong Ahafo, Northern, Eastern, Upper East and Upper West regions. The urban and rural areas within each region were identified as the main sampling strata and the sample was selected in two stages. Within each stratum, a specified number of census enumeration areas were selected systematically with probability proportional to size. Since the sampling frame (the 2010 Ghana Population and Housing Census) was up-to-date, a new listing of households was not conducted in all the sample enumeration areas prior to a systematic sample selection of 15 households in each selected cluster. The sample was stratified by region, urban and rural areas, and is not self-weighting since Central, Northern, Upper East and Upper West regions were over-sampled. For reporting national level results, sample weights are used. A more detailed description of the sample design can be found in Appendix A.

Questionnaires
Four sets of questionnaires were used in the survey: 1) a household questionnaire which was used to collect information on all de jure household members (usual residents), the household, and the dwelling; 2) a women's questionnaire administered in each household to all women aged $15-49$ years; 3) an under-5 questionnaire administered to mothers or caretakers for all children under 5 living in the household; and 4) a men's questionnaire administered in each third household to all men aged 15-59 years. The contents of the questionnaires are indicated below:

The Household Questionnaire included the following modules:

- Household Listing Form
- Education
- Water and Sanitation
- Household Characteristics
- Insecticide Treated Nets
- Indoor Residual Spraying
- Child Discipline
- Handwashing
- Salt lodization

The Questionnaire for Individual Women was administered to all women aged 15-49 years living in the household, and included the following modules

- Women's Background
- Access to Mass Media and Use of Information/Communication Technology
- Child Mortality
- Birth History

Desire for Last Birth

- Maternal and Newborn Health
- Post-natal Health Checks
- Illness Symptoms
- Contraception
- Unmet Need
- Female Genital Mutilation/Cutting
- Behaviour Change Communication on Malaria
- Attitudes Towards Domestic Violence
- Marriage/Union
- Sexual Behaviour
- HIV/AIDS
- National Health Insurance

The Questionnaire for Children Under-Five was administered to mothers or caretakers of children under - 5 years of age ${ }^{1}$ living in the households. Normally, the questionnaire was administered to mothers of under-5 children; in cases where the mother was not listed in the household roster, a primary caretaker for the child was identified and interviewed. The questionnaire included the following modules:

- Age
- Birth Registration
- Early Childhood Development
- Breastfeeding
- Diet Diversity
- Care of Illness
- Malaria
- Immunization
- National Health Insurance
- Anthropometry
- Anaemia and Malaria Testing

The Questionnaire for Individual Men was administered to all men aged 15-59 years living in each third household, and included the following modules:

- Men's Background
- Access to Mass media and use of Information/Communication Technology
- Marriage/Union
- Attitude Towards Contraception
- Behaviour Change Communication on Malaria
- Attitudes Towards Domestic Violence
- Sexual Behaviour
- HIV/AIDS
- National Health Insurance

The questionnaires are based on the English version of the MICS4 model questionnaire. ${ }^{2}$ From the MICS4 model, the Ghana questionnaires were customized and pre-tested in two districts: Ga West district in Greater Accra region and Akwapim South district in Eastern region during the period 2-5 August 2011. Based on the results of the pre-test, modifications were made to the wording of the questionnaires. A copy of the Ghana MICS4 questionnaires is provided in Appendix F.

In addition to the administration of questionnaires, fieldwork teams tested the salt used for cooking in the
households for iodine content, collected a sample in each male survey household for titration, observed the place for handwashing and measured the weights and heights of children age under 5 years. Details and findings of these measurements are provided in the respective sections of the report.

## Training and Fieldwork

Training for the fieldwork was conducted for 14 days, from 29 August to 11 September 2011. The data entry clerks attended the first week of interviewer training in order to get a better understanding of questionnaires and survey techniques. The training included lectures on interviewing techniques and the contents of the questionnaires, blood testing for malaria and anaemia, and mock interviews between trainees to gain practice in asking questions. All fieldworkers also trained in testing iodine in salt found in selected households as well as taking measurements of weight and height for children under 5 years.

The Ghana MICS4 2011 incorporated three "malaria biomarkers," namely: anaemia testing, malaria testing using rapid diagnostic tests (RDTs), and thick blood smear samples prepared on microscope slides. After obtaining informed consent from caregivers, blood samples were obtained from a heel- or finger-prick from children aged 6 to 59 months to perform on-the-spot anaemia and malaria tests, and to prepare thick blood smears that were later transported and read in the laboratory at NHRC to determine the presence of malaria parasites. The microscopy was used as the gold standard to obtain prevalence rates. The rapid diagnostic test was utilized primarily for ethical reasons, in order to identify and treat malaria in participating children while in the field.

The biomarker training was led by a DHS biomarker specialist with assistance from NHRC, NMCP and PMI staff. Towards the end of the training period, trainees spent several hours during 2 half-days in practicing interviews and blood testing in Sunyani East and Sunyani West areas.

The data were collected by 20 teams; each team was comprised of 3 interviewers, one driver, one editor, one measurer (health technician) and a supervisor. Fieldwork began on 15 September 2011 and concluded on 14 December 2011. The field monitoring, for quality assurance, was conducted by staff from ICF Macro, USAID, President Malaria Initiative (PMI), NHRC, UNICEF, GSS and NMCP.

As described above, each of the 20 field team in the 2011 Ghana MICS4 included a health technician, who was responsible for completing the anthropometry and biomarker portions of the Children Under-Five Questionnaire, and conducting the biomarker tests. In accordance with the Ghana MICS4 biomarker testing protocol pre-approved by the Ghana Health Service Institution Review Board, the health technicians were responsible for ensuring that informed consent was obtained from the children's caregivers; administering medications for uncomplicated malaria in the field when indicated; and providing medical referrals for clinically severe malaria, severe anaemia, and other conditions when indicated.

Data Processing
Data were entered using the CSPro software. The data were entered on 20 microcomputers and carried out by 20 data entry operators and 3 data entry supervisors. In order to ensure quality control, all questionnaires were double entered and internal consistency checks were performed. Procedures and standard programs developed under the global MICS4 programme and adapted to the Ghana questionnaire were used throughout. Data capture began in October 2011 and was completed in January 2012. Data were analysed using the Statistical Package for Social Sciences (SPSS) software program, Version 18, and the model syntax

and tabulation plans developed by UNICEF were used for this purpose.
Sample Coverage and Response Rates
Of the 12,150 households selected for the sample, 11,970 were found to be occupied. Of these, 11,925 were succesffully interviewed for a household response rate of about 100 percent. In the interviewed households, 10,963 women (aged $15-49$ years) were identified. Of these, 10,627 were successfully interviewed, yielding a response rate of 97 percent within interviewed households. Also 7,626 children under age five were listed in the household questionnaire. Questionnaires were completed for 7,550 of these children, which corresponds to a response rate of 99 percent within interviewed households. In addition, a men's questionnaire was used in every third household of the selected sample. For the male survey, 3,511 men aged 15-59 years were identified. Of these, 3,321 were successfully interviewed, yielding a response rate of 94 percent within interviewed households for the male survey. The overall response rate for women (96 percent), for children under- 5 years ( $98 \%$ ) and for men ( $94 \%$ ) are calculated respectively in Table HH.1.

At the regional level, the response rates for household interviews, eligible women, eligible men and children were around 90 percent or higher. Apart from the Western region with men's overall response rate of 90 percent, all the remaining nine regions recorded response rates of over 92 percent. Also, Eastern region had an overall response rate of 99 percent for both men and women. Table HH. 1 also shows that the response rates in the rural areas are higher than that of the urban areas. The under- 5 's response rates are similar across all regions and residence.

Table HH.1: Results of household, women's, men's and under-5 interviews
Number of households, women, men, and children under 5 by results of the household, women's, men's and under-5's interview and household, women's, men's and under-5's response rates, Ghana, 2011

| Residence |  |  | Region |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Urban | Rural | Western | Central | $\begin{array}{r} \text { Greater } \\ \text { Accra } \end{array}$ | Volta | Eastern | Ashanti | $\begin{aligned} & \text { Brong } \\ & \text { Ahafo } \end{aligned}$ | Northern | $\begin{aligned} & \text { Upper } \\ & \text { East } \end{aligned}$ | Upper West | Total |
| Households Sampled | 4,635 | 7,515 | 780 | 2,010 | 1,005 | 780 | 780 | 1,005 | 780 | 2,010 | 1,500 | 1,500 | 12,150 |
| Households Occupied | 4,570 | 7,400 | 760 | 1,994 | 999 | 772 | 768 | 996 | 726 | 1,979 | 1,480 | 1,496 | 11,970 |
| Households Interviewed | 4,545 | 7,380 | 757 | 1,989 | 989 | 771 | 767 | 993 | 718 | 1,972 | 1,475 | 1,494 | 11,925 |
| Household response rate | 99.5 | 99.7 | 99.6 | 99.7 | 99.0 | 99.9 | 99.9 | 99.7 | 98.9 | 99.6 | 99.7 | 99.9 | 99.6 |
| Women Eligible | 4,183 | 6,780 | 675 | 1,595 | 862 | 605 | 601 | 829 | 690 | 2,025 | 1,456 | 1,625 | 10,963 |
| Women Interviewed | 4,056 | 6,571 | 640 | 1,571 | 829 | 593 | 596 | 813 | 658 | 1,938 | 1,412 | 1,577 | 10,627 |
| Women's response rate | 97.0 | 96.9 | 94.8 | 98.5 | 96.2 | 98.0 | 99.2 | 98.1 | 95.4 | 95.7 | 97.0 | 97.0 | 96.9 |
| Women's overall response rate | 96.4 | 96.7 | 94.4 | 98.2 | 95.2 | 97.9 | 99.0 | 97.8 | 94.3 | 95.4 | 96.7 | 96.9 | 96.6 |
| Men Eligible | 1,273 | 2,238 | 243 | 467 | 278 | 203 | 181 | 271 | 209 | 656 | 458 | 545 | 3,511 |
| Men Interviewed | 1,189 | 2,132 | 219 | 451 | 260 | 198 | 180 | 252 | 195 | 617 | 432 | 517 | 3,321 |
| Men's response rate | 93.4 | 95.3 | 90.1 | 96.6 | 93.5 | 97.5 | 99.4 | 93.0 | 93.3 | 94.1 | 94.3 | 94.9 | 94.6 |
| Men's overall response rate | 92.9 | 95.0 | 89.8 | 96.3 | 92.6 | 97.4 | 99.3 | 92.7 | 92.3 | 93.7 | 94.0 | 94.7 | 94.2 |
| Children under 5 Eligible | 2,145 | 5,481 | 421 | 1,009 | 400 | 402 | 346 | 476 | 410 | 2,008 | 997 | 1,157 | 7,626 |
| Children under 5 Mother/Caretaker Interviewed | 2,117 | 5,433 | 414 | 999 | 393 | 400 | 345 | 472 | 407 | 1,989 | 988 | 1,143 | 7,550 |
| Under-5's response rate | 98.7 | 99.1 | 98.3 | 99.0 | 98.3 | 99.5 | 99.7 | 99.2 | 99.3 | 99.1 | 99.1 | 98.8 | 99.0 |
| Under-5's overall response rate | 98.2 | 98.9 | 97.9 | 98.8 | 97.3 | 99.4 | 99.6 | 98.9 | 98.2 | 98.7 | 98.8 | 98.7 | 98.6 |

## Characteristics of Household

The weighted age and sex distribution of the survey population is provided in Table HH.2. This distribution is also used to produce the population pyramid in Figure HH.1. In the 11,925 households successfully interviewed in the survey, 46,093 household members were listed. Of these, 22,353 were males and 23,739 were females. The estimated sex ratio is 94 compared to the 95 recorded in the MICS 2006.

With respect to children below 15 years ( $42 \%$ ), the results are similar to those from the 1984 and 2000 censuses, which indicate that the proportion of children less than 15 years was higher than 40 percent: 45 percent in the 1984 census and 41 percent in the 2000 census. However, the results from Ghana 2010 census show a decline in the proportion of children less than 15 years, with only 35 percent of the population in that age group. The proportion of the aged ( 65 years and older) is 4 percent compared to 5 percent in the MICS 2011 results.

Data from the population censuses (1984 (49\%), $2000(47 \%)$ and $2010(43 \%)$, and the MICS $2006(45 \%)$ ) indicate a consistent decline in the dependent population (aged 0-14 years and 65+). In contrast, MICS 2011 shows an increase
$(47 \%)$ in the dependent population and therefore a decrease in the proportion of the active population (aged 15-65 years). The children under 18 years represent 48 percent of Ghanaian population, compared to 47 percent in MICS 2006 and 45 percent in Ghana census 2010. This reflects the fact that Ghanaian population has a young age structure.

Also some discrepancies are observed between data from the Ghana 2010 Population and Housing Census and those from MICS 2011 on age distribution for the age-groups from 0-4 years to $30-34$ years. Although these discrepancies are not necessarily statistically significant, they need, however, to be investigated and documented.

| Table HH.2: Household age distribution by sex <br> Percent and frequency distribution of the household population by five-year age groups, dependency age groups, and by child (age $0-17$ years) and adult populations (age 18 or more), by sex, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Males |  | Females |  | Total |  |
|  | Number | Percent | Number | Percent | Number | Percent |
| Age-group |  |  |  |  |  |  |
| 0-4 | 3,105 | 13.9 | 3,134 | 13.2 | 6,239 | 13.5 |
| 5-9 | 3,369 | 15.1 | 3,262 | 13.7 | 6,631 | 14.4 |
| 10-14 | 3,250 | 14.5 | 3,258 | 13.7 | 6,508 | 14.1 |
| 15-19 | 2,254 | 10.1 | 1,860 | 7.8 | 4,114 | 8.9 |
| 20-24 | 1,477 | 6.6 | 1,625 | 6.8 | 3,102 | 6.7 |
| 25-29 | 1,354 | 6.1 | 1,706 | 7.2 | 3,060 | 6.6 |
| 30-34 | 1,286 | 5.8 | 1,573 | 6.6 | 2,858 | 6.2 |
| 35-39 | 1,273 | 5.7 | 1,372 | 5.8 | 2,644 | 5.7 |
| 40-44 | 1,033 | 4.6 | 1,173 | 4.9 | 2,206 | 4.8 |
| 45-49 | 978 | 4.4 | 998 | 4.2 | 1,976 | 4.3 |
| 50-54 | 788 | 3.5 | 1,184 | 5.0 | 1,972 | 4.3 |
| 55-59 | 587 | 2.6 | 696 | 2.9 | 1,283 | 2.8 |
| 60-64 | 526 | 2.4 | 534 | 2.2 | 1,059 | 2.3 |
| 65-69 | 317 | 1.4 | 342 | 1.4 | 659 | 1.4 |
| 70-74 | 323 | 1.4 | 357 | 1.5 | 681 | 1.5 |
| 75-79 | 207 | 0.9 | 274 | 1.2 | 481 | 1.0 |
| 80-84 | 92 | 0.4 | 178 | 0.7 | 270 | 0.6 |
| 85+ | 131 | 0.6 | 204 | 0.9 | 335 | 0.7 |
| Missing/DK | 6 | 0.0 | 8 | 0.0 | 14 | 0.0 |
| Dependency age groups |  |  |  |  |  |  |
| 0-14 | 9,723 | 43.5 | 9,655 | 40.7 | 19,378 | 42.0 |
| 15-64 | 11,554 | 51.7 | 12,721 | 53.6 | 24,275 | 52.7 |
| 65+ | 1,070 | 4.8 | 1,355 | 5.7 | 2,425 | 5.3 |
| Missing/DK | 6 | 0.0 | 8 | 0.0 | 14 | 0.0 |
| Children and adult populations |  |  |  |  |  |  |
| Children age 0-17 years | 11,132 | 49.8 | 10,873 | 45.8 | 22,005 | 47.7 |
| Adults age 18+ years | 11,215 | 50.2 | 12,859 | 54.2 | 24,074 | 52.2 |
| Missing/DK | 6 | 0.0 | 8 | 0.0 | 14 | 0.0 |
| Total | 22,353 | 100.0 | 23,739 | 100.0 | 46,093 | 100.0 |

Figure HH. 1 shows an excess of children aged 5-9 years compared to those aged $0-4$ years. This was also the case for MICS 2006. It is probably due to a preference for reporting age 5 and therefore, under-reporting for age-group 0-4 years. The same situation (under-reporting) is observed for women aged $45-49$ years compared to those aged $50-54$ years). Another explanation is that the person providing the age of each household member (within the household questionnaire) might have "genuinely" rounded ages. Indeed data from the Ghana 2010 Population and Housing Census provide a different structure for age-groups 0-4 years and $5-9$ years: for both sexes, the number of children aged $0-4$ years exceeds that of children aged $5-9$ years. Further indications on these irregularities can be seen in the single year age distribution in Table DQ. 1 in Appendix D, Data Quality Tables.

Tables HH. 3 to HH. 5 provide basic information on the households, female respondents aged 15-49 years, children under-5 years and male respondents aged $15-59$ years by presenting the unweighted, as well as the weighted numbers. Information on the basic characteristics of households, women, children under-5 and men interviewed in the survey is essential for the interpretation of findings presented later in the report. It also can provide an indication of the representativeness of the survey. The remaining tables in this report are presented only with weighted numbers. See Appendix A for more details about the weighting.

Table HH. 3 provides basic background information on the households. Within the households, the sex of the household head, region, residence, number of household members, education of household head, respondents and children under 18 years, and ethnicity ${ }^{3}$ of the household head are shown in the table. These background characteristics are used in subsequent tables in this report; the figures in the table are also intended to show the numbers of observations by major categories of analysis in the report.

Table HH. 3 also shows the proportions of households with at least one child under 18 years, at least one child under 5 years, at least one eligible woman aged 15-49 years and at least one eligible man aged 15-59 years. The weighted and unweighted numbers of households are equal, since the sample weights were normalized (See Appendix A).

Figure HH. 1: Age and sex distribution of household population. Ghana, 2011


Generally, the head of household is considered as the key person because he/she ensures that the needs and well-being of the members are addressed in the household. In Ghana, the proportion of female heads of household is 31 percent while that of males is 69 percent. The proportion of the female heads of household is consistent with MICS 2006 (29\%), and the 2000 Ghana Population and Housing Census (31\%). However, there is a slight difference with the 2010 Ghana Population and Housing Census (35\%). Ashanti and Greater Accra regions constitute about two-fifth of the entire household population in Ghana for both MICS 2011 and the 2010 Ghana Population and Housing Census.

The results also show that 20 percent of the population is more likely to live as a single-member household. The most common household size now is 2-3 household members ( $30 \%$ ), followed by 4-5 household members (27\%). On the other hand, the proportion of households with ten or more members declined from 10 percent in the 2000 Ghana Population Census, 4 percent in MICS 2006, 6 percent in Ghana population census 2010 to 3 percent in 2011. This trend suggests that the population is moving towards a smaller household size.

The education of the head of household has an impact on the welfare of the household members. The proportion of heads of households who have never attended any formal education declined from 39 percent in the 2000 population and housing census to 25 percent in MICS 2011. Furthermore, a higher proportion of the household heads have attended only basic education comprising Middle/JSS (39\%) and Primary (13\%). Only 23 percent of household heads attended secondary school or higher levels of education.

The weighted percent of households and respondents received in Table HH. 3 was also compared to the data from MICS 2006 and the 2010 Ghana Population and Housing Census. Although not proven to be statistically significant, the main discrepancies observed are the following:

- The current share (6\%) of Northern region is lower compared to that of MICS 2006 (11 \%) and Ghana 2010 population census (10\%);
- The current share (20\%) of Greater Accra region is higher than wha was recorded in MICS 2006 (17\%) and 2010 Ghana population census (16\%);
- The distribution of population by residence is 53 percent for urban areas and 47 percent for rural areas, compared to 56 percent and 44 percent respectively in the 2000 Ghana Population and Housing Census.

In terms of ethnicity, the results indicate that the Akan group (49\%) constitutes the largest proportion of Ghanaian households, followed by Ewes (15\%) and Mole Dagbanis (14\%).

Sample Coverage and the Characteristics

Sample Coverage and the Characteristics of Households and Respondents

| Table HH.3: Household composition <br> Percent distribution of households by selected characteristics, Ghana, 2011 |  |  |  |
| :---: | :---: | :---: | :---: |
| Weighted percent |  | Number of households |  |
|  |  | Weighted | Unweighted |
| Sex of household head |  |  |  |
| Male | 69.1 | 8234 | 8746 |
| Female | 30.9 | 3691 | 3179 |
| Region |  |  |  |
| Western | 9.4 | 1116 | 757 |
| Central | 10.4 | 1236 | 1989 |
| Greate Accra | 19.5 | 2321 | 989 |
| Volta | 8.3 | 992 | 771 |
| Eastern | 12.9 | 1533 | 767 |
| Ashanti | 19.5 | 2321 | 993 |
| Brong Ahafo | 8.5 | 1011 | 718 |
| Northern | 6.1 | 727 | 1972 |
| Upper East | 3.5 | 414 | 1475 |
| Upper West | 2.1 | 253 | 1494 |
| Residence |  |  |  |
| Urban | 53.3 | 6358 | 4545 |
| Rural | 46.7 | 5567 | 7380 |
| Number of household members |  |  |  |
| 1 | 20.3 | 2424 | 1860 |
| 2 | 13.6 | 1617 | 1351 |
| 3 | 16.3 | 1946 | 1663 |
| 4 | 14.3 | 1708 | 1644 |
| 5 | 12.4 | 1479 | 1566 |
| 6 | 9.5 | 1135 | 1302 |
| 7 | 6.1 | 733 | 944 |
| 8 | 3.1 | 370 | 575 |
| 9 | 1.7 | 203 | 344 |
| 10+ | 2.6 | 310 | 676 |
| Education of household head |  |  |  |
| None | 25.1 | 2997 | 4989 |
| Primary | 13.1 | 1560 | 1546 |
| Middle/SSS | 38.5 | 4590 | 3372 |
| Secondary + | 23.3 | 2775 | 2017 |
| Missing/DK | 0.0 | 3 | 1 |
| Ethnicity of household head |  |  |  |
| Akan | 48.6 | 5797 | 4191 |
| Ga/Dangme | 9.3 | 1111 | 569 |
| Ewe | 14.9 | 1779 | 1213 |
| Guan | 3.6 | 427 | 449 |
| Gruma | 3.5 | 420 | 659 |
| Mole Dagbani | 13.9 | 1658 | 3728 |
| Grusi | 2.8 | 331 | 641 |
| Mande | 1.1 | 136 | 190 |
| Non-Ghanaian | 1.6 | 193 | 186 |
| Others | 0.6 | 73 | 99 |
| Total | 100.0 | 11925 | 11925 |

Table HH.3a shows that 38 percent of households have at least one child aged $0-4$ years, 68 percent have at least one child aged 0-17 years, 67 percent have at least one woman aged 15-49 years, and 23 percent have at least one man aged 15-59 years. The mean household size at the national level is 3.9 persons.

| Table HH.3A: Household composition <br> Percent distribution of households by selected characteristics, Ghana, 2011 |  |  |  |
| :---: | :---: | :---: | :---: |
| Background Characteristics | Number of households |  |  |
|  | Weighted percent | Weighted | Unweighted |
| Households with at least: one child age $0-4$ years | 38.0 | 11925 | 11925 |
| Households with at least: one child age $0-17$ years | 68.4 | 11925 | 11925 |
| Households with at least: one woman age 15-49 years | 67.2 | 11925 | 11925 |
| Households with at least: one man age 15-59 years | 22.5 | 11925 | 11925 |
| Mean household size | 3.9 | 11925 | 11925 |

The data in Table HH.3a were broken down by residence and Table HH.3b shows that households in urban areas have lower proportions of children (aged 0-4 and 0-17 years), males aged 15-59 years and are smaller ( 3.5 persons per household) compared to their rural counterparts (with 4.3 people per household. However, there are equal proportions of households with at least one woman aged 15-49 years in urban and rura areas (67\%).

| Table HH.3B: Household composition by residence Percent distribution of households by selected characteristics, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Residence |  |  |  |  |  |
|  | Urban |  |  | Rural |  |  |
|  | Weighted percent | Weighted | Unweighted | Weighted percent | Weighted | Unweighted |
| Households with at least: one child age $0-4$ years | 33.1 | 6,358 | 4,545 | 43.6 | 5,567 | 7,380 |
| Households with at least: one child age 0-17 years | 63.5 | 6,358 | 4,545 | 74.1 | 5,567 | 7,380 |
| Households with at least: one woman age 15-49 years | 67.4 | 6,358 | 4,545 | 67.1 | 5,567 | 7,380 |
| Households with at least: one man age $15-59$ years | 22.3 | 6,358 | 4,545 | 22.7 | 5,567 | 7,380 |
| Mean household size | 3.5 | 6,358 | 4,545 | 4.3 | 5,567 | 7,380 |

Characteristics of Female Respondents aged 15-49 years, Children Under-5 and Male respondents aged 15-59 years
Tables HH.4, HH.4M and HH. 5 provide information on the background characteristics of female respondents aged 15-49 years, children under age 5 and male respondents aged 15-59 years. In all these tables, the tota numbers of weighted and unweighted observations are equal, since sample weights have been normalized (standardized). In addition to providing useful information on the background characteristics of women and children, the tables are also intended to show the number of observations in each background category These categories are used in the subsequent tabulations of this report

Tables HH. 4 and HH .4 M provides background characteristics of female respondents aged $15-49$ years and male respondents aged 15-59 years. The tables include information on the distribution of women and men according to region, residence, age, marital status, motherhood status, births in last the two years, education, wealth index quintiles and ethnicity.

The age distribution of the respondents shows that 1 in 3 females (34\%) and males (31\%) are in the $15-24$ years age-group. For both sexes, the largest proportion is in the 15-19 years age-group, while the lowest are in the $45-49$ years age-group for women and $54-59$ years age-group for men. The data also show that 62 percent of women and 56 percent of men are currently married or are in union, while 30 percent and 40 percent respectively have never been married. Seventy percent of women have given birth at least once and 24 percent gave birth in the last two years.

The distribution of respondents by residence shows that 54 percent of women and 53 percent of men live in urban areas. Regionally, the distribution of respondents varies significantly. For example, for both sexes, one-fifth of respondents are from Greater Accra (20\%) while Upper West region has the lowest proportion (3\%).

The data show that 21 percent of women and 12 percent of men have no education. The proportions of women and men with basic education are respectively 60 percent and 57 percent. At the same time, 19 percent of women and 30 percent of men have secondary or higher education respectively. Twenty-five percent of women and 26 percent of men are in the richest wealth quintiles while 16 percent of women and men are in the poorest category.

The distribution of the respondents by ethnic groupings indicates that the Akans ( $46 \%$ for women and $43 \%$ for men) form the largest group, followed by Mole Dagbani ( $16 \%$ for women and $17 \%$ for men) and Ewes ( $14 \%$ percent for both men and women).

The discrepancies between the data from MICS 2011 and previous censuses and surveys identified in Table HH .3 are also found in Tables HH .4 and HH .4 M . However, these seem not to be statistically significant.

Table HH.4: Women's background characteristics
Percent and frequency distribution of women age $15-49$ years by selected characteristics, Ghana, 201

| Background Characteristics | Weighted percent | Number of women |  |
| :---: | :---: | :---: | :---: |
|  |  | Weighted | Unweighted |
| Region |  |  |  |
| Western | 9.6 | 1022 | 640 |
| Central | 9.8 | 1044 | 1571 |
| Greater Accra | 19.5 | 2074 | 829 |
| Volta | 7.7 | 821 | 593 |
| Eastern | 11.6 | 1237 | 596 |
| Ashanti | 18.7 | 1983 | 813 |
| Brong Ahafo | 9.5 | 1005 | 658 |
| Northern | 7.1 | 754 | 1938 |
| Upper East | 3.8 | 404 | 1412 |
| Upper West | 2.7 | 282 | 1577 |
| Residence |  |  |  |
| Urban | 54.3 | 5770 | 4056 |
| Rural | 45.7 | 4857 | 6571 |
| Age |  |  |  |
| 15-19 | 17.9 | 1899 | 2028 |
| 20-24 | 15.8 | 1674 | 1503 |
| 25-29 | 16.6 | 1768 | 1650 |
| 30-34 | 15.4 | 1638 | 1616 |
| 35-39 | 13.5 | 1431 | 1487 |
| 40-44 | 11.2 | 1195 | 1231 |
| 45-49 | 9.6 | 1023 | 1112 |
| Marita//Union status |  |  |  |
| Currently married/in union | 61.9 | 6574 | 6926 |
| Widowed | 2.1 | 221 | 270 |
| Divorced | 3.3 | 354 | 254 |
| Separated | 3.0 | 323 | 278 |
| Never married/in union | 29.7 | 3156 | 2899 |
| Motherhood status |  |  |  |
| Ever gave birth | 70.0 | 7434 | 7688 |
| Never gave birth | 30.0 | 3193 | 2939 |
| Births in last two years |  |  |  |
| Had a birth in last two years | 23.8 | 2528 | 2872 |
| Had no birth in last two years | 76.2 | 8099 | 7755 |
| Education |  |  |  |
| None | 20.9 | 2224 | 3945 |
| Primary | 19.1 | 2026 | 1932 |
| Middle/SSS | 40.7 | 4328 | 3327 |
| Secondary + | 19.3 | 2049 | 1423 |
| Wealth index quintiles |  |  |  |
| Poorest | 15.6 | 1659 | 3860 |
| Second | 17.7 | 1877 | 2009 |
| Middle | 19.8 | 2101 | 1640 |
| Fourth | 22.1 | 2345 | 1616 |
| Richest | 24.9 | 2646 | 1502 |

Sample Coverage and the Characteristics

Sample Coverage and the Characteristics of Households and Respondents

|  | Table HH.4 (cont'd) |  |  |
| :--- | ---: | ---: | ---: |
| Background <br> Characteristics |  | Number of women |  |


| Table HH.4M: Men's background characteristics <br> Percent and frequency distribution of men age 15-59 years by selected background characteristics, Ghana, 2011 |  |  |  |
| :---: | :---: | :---: | :---: |
| Background Characteristics |  | Number of women |  |
|  | Weighted percent | Weighted | Unweighted |
| Region |  |  |  |
| Western | 10.6 | 352 | 219 |
| Central | 8.9 | 296 | 451 |
| Greater Accra | 20.3 | 676 | 260 |
| Volta | 7.6 | 252 | 198 |
| Eastern | 10.8 | 358 | 180 |
| Ashanti | 19.2 | 638 | 252 |
| Brong Ahafo | 8.9 | 296 | 195 |
| Northern | 7.3 | 243 | 617 |
| Upper East | 3.6 | 120 | 432 |
| Upper West | 2.7 | 91 | 517 |
| Residence |  |  |  |
| Residence |  |  |  |
| Urban | 52.6 | 1746 | 1189 |
| Rural | 47.4 | 1575 | 2132 |
| Age of man |  |  |  |
| 15-19 | 19.8 | 657 | 767 |
| 20-24 | 11.4 | 379 | 393 |
| 25-29 | 13.7 | 456 | 411 |
| 30-34 | 13.3 | 442 | 363 |
| 35-39 | 10.9 | 363 | 371 |
| 40-44 | 8.7 | 288 | 303 |
| 45-49 | 9.4 | 313 | 293 |
| 50-54 | 6.7 | 221 | 215 |
| 55-59 | 6.1 | 204 | 205 |
| Marita//Union status |  |  |  |
| Currently married/in union | 55.9 | 1856 | 1787 |
| Widowed | 0.8 | 26 | 27 |
| Divorced | 1.6 | 54 | 47 |
| Separated | 2.2 | 72 | 53 |
| Never married/in union | 39.6 | 1314 | 1407 |


| Table HH.4M (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Background Characteristics |  | Number of women |  |
|  | Weighted percent | Weighted | Unweighted |
| Education |  |  |  |
| None | 12.5 | 417 | 808 |
| Primary | 12.5 | 416 | 549 |
| Middle/JSS | 44.6 | 1483 | 1229 |
| Secondary + | 30.3 | 1006 | 735 |
| Wealth index quintiles |  |  |  |
| Wealth index quintiles |  |  |  |
| Poorest | 15.6 | 518 | 1217 |
| Second | 16.8 | 557 | 652 |
| Middle | 18.7 | 621 | 480 |
| Fourth | 23.4 | 779 | 524 |
| Richest | 25.5 | 847 | 448 |
| Ethnicity of household head |  |  |  |
| Akan | 43.0 | 1428 | 970 |
| Ga/Dangme | 10.5 | 349 | 154 |
| Ewe | 13.8 | 459 | 331 |
| Guan | 4.1 | 135 | 128 |
| Gruma | 4.0 | 133 | 175 |
| Mole Dagbani | 16.9 | 562 | 1206 |
| Grusi | 3.6 | 121 | 193 |
| Mande | 1.6 | 53 | 63 |
| Non-Ghanaian | 1.9 | 62 | 66 |
| Others | 0.5 | 18 | 35 |
| Total | 100.0 | 3321 | 3321 |

Some background characteristics of children under 5 are presented in Table HH.5. These include the distribution of children by sex, region, residence, age, mothers/caretakers education and household wealth index quintiles.

The results in Table HH. 5 show that the proportions of girls (50\%) and boys (50\%) among children under 5 years were equal. The proportions of children are evenly divided in each of the 5 age- groups (one-fifth in each), and this is consistent with MICS 2006. The first age-group (0-11 months) has been split into two (<6 and 6-11 months) and these accounted for 11 percent and 10 percent respectively.

The proportion of children under five years living in the rural areas has decreased from 64 percent in MICS 2006 to 57 percent in MICS 2011. On the other hand, the proportion of children under five living in the urban areas has increased from 36 to 43 percent during this period. The largest proportion of children under five reside in the Ashanti region (19\%) followed by the Greater Accra region (15\%), while the smallest proportion is found in the Upper West region (3\%).

About one third (33\%) of mothers/caretakers of children under five have no education while 22 percent have only primary education. The results also show that 34 percent have attained middle/JSS education and only 12 percent of mothers/caretakers of these children have attained secondary or higher education. Furthermore, only 17 percent of children live in the richest households, while 43 percent come from households in the poorest ( $23 \%$ ) and the second ( $20 \%$ ) wealth index quintiles.

| Table HH.6: Household age distribution by sex and residence Percent distribution of the household population by five-year age groups, by sex and residence, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Residence |  |  |  |  |  |  |  | Total |  | Ghana <br> census <br> 2010 <br> Percent |
|  | Urban |  |  |  | Rural |  |  |  | Number | Percent |  |
|  | Males |  | Females |  | Males |  | Females |  |  |  |  |
|  | Number | Percent | Number | Percent | Number | Percent | Number | Percent |  |  |  |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 0-4 | 1339 | 12.6 | 1372 | 11.8 | 1766 | 15.0 | 1763 | 14.6 | 6239 | 13.5 | 12.3 |
| 5-9 | 1418 | 13.4 | 1400 | 12.0 | 1951 | 16.6 | 1863 | 15.4 | 6631 | 14.4 | 11.1 |
| 10-14 | 1400 | 13.2 | 1557 | 13.3 | 1850 | 15.7 | 1702 | 14.1 | 6508 | 14.1 | 11.1 |
| 15-19 | 1008 | 9.5 | 952 | 8.2 | 1246 | 10.6 | 908 | 7.5 | 4114 | 8.9 | 10.9 |
| 20-24 | 835 | 7.9 | 937 | 8.0 | 641 | 5.5 | 688 | 5.7 | 3102 | 6.7 | 10.8 |
| 25-29 | 781 | 7.4 | 991 | 8.5 | 573 | 4.9 | 715 | 5.9 | 3060 | 6.6 | 9.5 |
| 30-34 | 768 | 7.2 | 852 | 7.3 | 517 | 4.4 | 721 | 6.0 | 2858 | 6.2 | 7.6 |
| 35-39 | 692 | 6.5 | 700 | 6.0 | 581 | 4.9 | 671 | 5.6 | 2644 | 5.7 | 6.2 |
| 40-44 | 505 | 4.8 | 641 | 5.5 | 528 | 4.5 | 532 | 4.4 | 2206 | 4.8 | 5.0 |
| 45-49 | 505 | 4.8 | 518 | 4.4 | 472 | 4.0 | 480 | 4.0 | 1976 | 4.3 | 3.9 |
| 50-54 | 392 | 3.7 | 571 | 4.9 | 396 | 3.4 | 613 | 5.1 | 1972 | 4.3 | 3.4 |
| 55-59 | 309 | 2.9 | 334 | 2.9 | 278 | 2.4 | 362 | 3.0 | 1283 | 2.8 | 2.2 |
| 60-64 | 233 | 2.2 | 236 | 2.0 | 293 | 2.5 | 298 | 2.5 | 1059 | 2.3 | 1.8 |
| 65-69 | 125 | 1.2 | 168 | 1.4 | 192 | 1.6 | 174 | 1.4 | 659 | 1.4 | 1.1 |
| 70-74 | 141 | 1.3 | 145 | 1.2 | 183 | 1.6 | 213 | 1.8 | 681 | 1.5 | 1.2 |
| 75-79 | 82 | 0.8 | 119 | 1.0 | 126 | 1.1 | 155 | 1.3 | 481 | 1.0 | 0.7 |
| 80-84 | 23 | 0.2 | 81 | 0.7 | 69 | 0.6 | 96 | 0.8 | 270 | 0.6 | 0.5 |
| 85+ | 46 | 0.4 | 83 | 0.7 | 85 | 0.7 | 121 | 1.0 | 335 | 0.7 | 0.6 |
| Missing/DK | 5 | 0.0 | 3 | 0.0 | 1 | 0.0 | 6 | 0.0 | 14 | 0.0 | 0.0 |
| Total | 10607 | 100.0 | 11660 | 100.0 | 11747 | 100.0 | 12080 | 100.0 | 46093 | 100.0 | 100 |

Overall, 58 percent of households have 1 sleeping room, 26 percent have 2 sleeping rooms and 16 percent have 3 or more sleeping rooms (Table HH.7). At residence level, 63 percent of households in urban areas have 1 sleeping room compared to 52 percent in rural areas. In contrast, more households in rural areas have 2 sleeping rooms ( $28 \%$ ) and 3 or more sleeping rooms ( $20 \%$ ) compared to urban areas, which have 25 and 13 percent respectively.

| Table HH.7: Housing characteristics <br> Percent and weighted number distribution of households by selected housing characteristics, by residence, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Residence |  |  |  | Total |  |
|  | Urban |  | Rural |  | Number | Percent |
|  | Number | Percent | Number | Percent |  |  |
| Sleeping Rooms |  |  |  |  |  |  |
| 1 room | 3988 | 62.7 | 2904 | 52.2 | 6892 | 57.8 |
| 2 rooms | 1565 | 24.6 | 1572 | 28.2 | 3137 | 26.3 |
| $3+$ rooms | 806 | 12.7 | 1090 | 19.6 | 1896 | 15.9 |
| Total | 6358 | 100.0 | 5567 | 100.0 | 11925 | 100.0 |



Among the overarching objectives of both the MDGs and the World Fit for Children (WFFC) is the need to reduce maternal and childhood mortality Specifically, MDG 4 calls for a two-thirds reduction in the mortality rate for under fives between 1990 and 2015. Monitoring progress towards this goal is an important but difficult objective. The Ghanaian government, through the Ghana Shared Growth and Development Agenda (GSGDA) and specifically through the Health Sector Medium Term Development Plan (HSMTDP), has developed strategies to reduce childhood mortality, and improve the overall wellbeing of all its citizens.

This chapter describes levels, trends, and differentials in early childhood mortality in Ghana. Early childhood mortality rates in general and infant mortality rate ${ }^{4,5}$ in particular contribute to a better understanding of a country's socio-economic situation and is a major indicator of the quality of life of the population. The information in this chapter is disaggregated by geographic, socio-economic and demographic characteristics since they help to identify subgroups that are at high risk. Such analyses are thus useful for identifying promising directions for health programmes and for advancing child survival efforts.

Measuring childhood mortality may seem easy, but attempts using direct questions, such as "Has anyone in this household died in the last year?" give inaccurate results. Using direct measures of child mortality from birth histories is time consuming, more expensive, and requires greater attention to training and supervision. Alternatively, indirect methods developed to measure child mortality produce robust estimates that are comparable with the ones obtained from other sources. The Ghana MICS 2006 used the indirect estimation technique, known as the Brass method. ${ }^{6}$ Indirect methods minimize the pitfalls of memory lapses, inexact or misinterpreted definitions, and poor interviewer performance. However, the indirect methods cannot provide the very important infant mortality rate breakdown (neonatal and postneonatal mortality rates) and the estimate of child mortality rate; it also does not provide the richness of data collected from female respondents' birth histories.

The Early childhood mortality rates presented in this chapter are computed directly from birth histories collected from the female respondents. Women in the age-group 15-49 years who had ever given birth were asked to provide a detailed history of all their live births in chronological order starting with the first live birth. All children born to the respondents, whether dead or alive, were listed by name, sex, birthday and if dead, the date of death. The data analysis on childhood mortality was limited to a period of 15 years prior to the survey, in order to minimize the effect of the pitfalls of memory lapses and also the truncated rates due to the failure to capture births from old women.

Childhood mortality rates measure the risk of dying from birth and before age five. The primary causes of childhood mortality change according to the child's age, and from biological and environmental factors; childhood mortality rates are, therefore, expressed by age segments and are conventionally defined as follows:

- Neonatal mortality rate (NMR): the probability of dying before the first month of life expressed per 1,000 live births;
- Post-neonatal mortality rate (PNMR): the probability of dying after the first month of life but before reaching the first birthday expressed per 1,000 live births, and calculated as the difference between the infant and neonatal mortality rates;

[^0]- Infant mortality rate(1q0): the probability of dying before the first birthday expressed per 1,000 live births;
- Child mortality rate ( $4 q 1$ ): the probability of dying between age one and before the fifth birthday expressed per 1,000 children aged 1 year;
- Under-five mortality rate ( $5 q 0$ ): the probability of dying before the fifth birthday expressed per 1,000 live births.

Assessment of Data Quality in childhood mortality
In any survey, the reliability of early childhood mortality estimates depends on the sampling variability of the estimates, and non-sampling errors. For the 2011 Ghana MICS, the sampling errors are dealt with in Appendix D. The non-sampling errors have to do with the completeness of data on child mortality and the accuracy of the information provided by the mother on the date of birth for all live births, and date of death for deceased children Typically, three types of non-sampling errors are known to affect the childhood mortality estimates: omission of births and deaths affects mortality estimates, displacement of birth and death dates impacts mortality trends, and misreporting of age at death may distort the age pattern of mortality. A number of Data Quality Tables presented in Appendix E provide additional information on the quality of the child mortality data.

Under-reporting of early infant deaths is most commonly observed for births that occurred longer before the survey; hence, it is useful to examine the ratios over time. Inspection of these ratios (Table DQ.18) indicates that no significant numbers of early infant deaths were omitted in the 2011 Ghana MICS. Firstly, the proportion of neonatal deaths occurring in the first week of life is estimated at 84 percent ( $0-4$ years before the survey). Further, while the proportion seems lower for the other 5 -year groups ( $80 \%$ for the $5-9$ years prior to the survey, $75 \%$ for the $10-14$ years prior to the survey, and $71 \%$ for the 15-19 years prior to the survey), which may indicate some omission of dead children born during these periods, this is still plausible, and is similar to results from the 2008 GDHS that estimated that for $0-4$ year period prior the survey, 85 percent of all neonatal deaths occurred in the first 7 days of life. Secondly, the proportion of infant deaths occurring during the first month of life is plausible ( 60 percent), and is also consistent with the 2008 GDHS (62\%), indicating no selective omission of early infant deaths has occurred.

Heaping of the age at death on certain digits is another problem that is inherent in most retrospective surveys. This phenomenon introduces biases in rate calculation, if the net result is to shift deaths from one age segment to another. Thus, heaping at 12 months causes concern because a certain fraction of deaths, though reported to occur after infancy (i.e. at ages 12-23 months), may have actually occurred during infancy (i.e., at ages 0-11 months). In such a case, the infant mortality rate will be biased downwards and child mortality upwards. Table DQ. 19 examines the degree of heaping at ages one month, and 12 months, as these are the cut-off points for specific childhood mortality rates. Although there is evidence of some heaping in the overall figures for the four 5 -year periods considered, the data does not suggest any heaping at these two cut-off points.

In sum, internal consistency checks indicate that the mortality data from the 2011 Ghana MICS are of good quality. The results show that although there is evidence of some typical data issues, this is not any different from other surveys collecting retrospective information on births and deaths. Finally, as the periods covered extend further into the past, the resulting censoring of information becomes progressively more severe. To minimize the effect of censoring, analysis of child mortality trends is limited to a period no more than 15 years prior to the survey.

Levels and Trends of Early Childhood Mortality
The Ghana MICS4 was conducted from mid-September to mid-December 2011 and early childhood mortality rates were estimated using the direct method. The reference point (mid-point interval) for the childhood mortality for the most recent five year period is mid-March 2009.

Table CM. 1 provides child mortality rates computed using the 'direct' or 'birth history' method of estimation. The Ghana under-five mortality rate is estimated at 82 deaths per 1,000 live births for the most recent five-year period. This means that one in every 12 children dies before reaching their fifth birthday. Child mortality rate (4q1) is estimated at 31 deaths per 1,000 children aged 1 year, while Infant mortality rate is estimated at 53 deaths per 1,000 live births. Postneonatal and neonatal mortality rates are estimated at 21 and 32 deaths per 1000 live births, respectively, for the same period.

Table CM. 1 also reveals that the proportion of infant deaths occurring during the first month of life is above 60 percent for the three 5 -year periods, and these results are more detailed in Table DQ.19, Appendix E. Furthermore, this is consistent with other studies, ${ }^{9,10,11}$ which indicate that in Ghana neonatal deaths are an important component of infant mortality, representing an estimated 60 percent of all infant deaths.

| Table CM.1: Early childhood mortality rates <br> Neonatal, Postneonatal, Infant, child and under-five mortality rates by 5 year periods, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Years preceding the survey | Neonatal <br> mortality rate <br> (NM R) <br> [1] | Post neonatal mortality rate (PNMR) <br> [2] | Infant mortality rate (1q0) [3] | Child mortality rate (4q1) <br> [4] | Under five mortality rate (5q0) [5] |
| 0-4 | 32 | 21 | 53 | 31 | 82 |
| 5-9 | 32 | 19 | 50 | 39 | 87 |
| 10-14 | 36 | 22 | 58 | 47 | 102 |
| [1] MICS indicator 1.3[2] MIIS indicator 1.4[3] MICS indicator 1.1 ; MDG indicator 4.1[44 MIIS indicator $1.5 ;$[5] MICS indicator 1.2, MDG indicator 4.2 |  |  |  |  |  |

As shown in Figure CM.1, under-five mortality rate declined from 102 deaths per 1,000 live births for the period 10-14 years before the survey to 87 deaths per 1,000 live births during the $5-9$ years before the survey, and to 82 deaths per 1,000 live births for the 5 -year period prior to the survey. For the 10-14 years before the survey, the infant mortality rate declined from 58 deaths per 1,000 live births to 50 deaths per 1,000 live births for the 5-9 years before the survey. The data further show that for the 0-4 years prior to the survey, the infant mortality rate was estimated at 53 deaths per 1,000 live births. For these 2 five-year periods prior to the survey, neonatal mortality rate remained stable at 32 deaths per 1,000 live births.

[^1]Figure CM. 1 Trends in Childhood Mortality Rates, Ghana, 2011


The trend in childhood mortality rates over time can also be assessed by comparing the MICS 2011 data, together with the data from three previous DHS $(1998,2003$ and 2008) and the MICS 2006. Figure CM. 2 shows childhood mortality trends for the past 30 years using data from the five surveys.

Overall, Figure CM. 2 reveals that in the past 30 years, under-five mortality rate has declined in Ghana, from 145 deaths per 1,000 live births in DHS 1998 to 82 deaths per 1,000 live births in MICS 2011.

The data from DHS 1998, DHS 2008 and MICS 2011 are in line with this trend of under-five mortality rate decline over the last 3 decades. However, those from DHS 2003 and MICS 2006 show stagnation of under-five mortality rate above 100 deaths per 1,000 live births during the period of 18 years ( 1988 to 2006).

The most recent under-five mortality rate estimated from MICS 2011 ( 82 deaths per 1,000 live births) is about 2 percent higher than the estimate from the Ghana Demographic and Health Survey. ${ }^{12}$ It Should be noted that the mortality estimates from the two surveys are largely for overlapping years. Also, mortality reduces at a much slower rate, and big changes are unlikely to be seen in a space of a few years. This minor difference is likely to be as a result of sampling errors, and should not be construed as an increase in under-five mortality. Further qualification of these estimates as well as its determinants should be taken up in a more detailed and separate analysis.

Figure CM. 2 Trends in Under-five mortality rates in Ghana, various sources of data


Early childhood mortality rates by region, residence and socio-economic characteristics
Table CM. 2 provides estimates of childhood mortality by region, residence and other socio-economic characteristics. To minimize sampling errors associated with mortality estimates and to ensure a sufficient number of cases fo statistical reliability, the mortality rates shown in Table CM. 2 are calculated for a ten-year period (2001-2011) preceding the survey. Note that the longer reference period allows the inclusion of more cases in the calculation and makes it possible to obtain more precise estimates.

The data presented in Table CM. 2 and Figure CM. 3 reveal that under- 5 mortality rate is lowest in the Greater Accra region ( 56 deaths per 1,000 live births), followed by Eastern region ( 61 deaths per 1,000 live births). Under-5 mortality rate is highest in the Northern region ( 124 deaths per 1,000 live births). Other regions with Under-5 mortality rate of over 100 deaths per 1,000 live births include Brong Ahafo ( 104 deaths per 1,000 live births), and Upper West (108 deaths per 1,000 live births). Also, Greater Accra ( 37 deaths per 1,000 live births) and Eastern region ( 38 deaths per 1,000 live births) have the lowest infant mortality rates. Regions with the highest infant mortality rates are Volta ( 68 deaths per1000 live births), Upper West ( 67 deaths per 1000 live births), Northern and Brong Ahafo (both with 66 deaths per 1000 live births). The data also reveal that Volta (47 deaths per 1,000 live births), Brong Ahafo (44 deaths per 1000 live births) and Upper West ( 41 deaths per 1000 live births) have the highest neonatal mortality rates in Ghana, while Greater Accra ( 20 deaths per 1,000 live births) has the lowest.

| Table CM.2: Early childhood mortality rates by background characteristics Neonatal, post neonatal, Infant and Under-five mortality rates for the 10 -year period preceding the survey by background characteristics, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Neonatal mortality rate (NMR) [1] | Post <br> neonatal <br> mortality <br> rate (PNMR) <br> [2] | Infant <br> mortality <br> rate (1q0) <br> [3] | Child mortality rate (4q1) [4] | Under five mortality rate (5q0) [5] |
| Residence |  |  |  |  |  |
| Urban | 30 | 16 | 46 | 28 | 72 |
| Rural | 33 | 23 | 56 | 40 | 94 |
| Region |  |  |  |  |  |
| Western | 27 | 24 | 50 | 17 | 67 |
| Central | 36 | 19 | 55 | 36 | 88 |
| Greater Accra | 20 | 17 | 37 | 19 | 56 |
| Volta | 47 | 21 | 68 | 22 | 89 |
| Eastern | 25 | 14 | 38 | 24 | 61 |
| Ashanti | 27 | 16 | 43 | 45 | 86 |
| Brong Ahafo | 44 | 21 | 66 | 41 | 104 |
| Northern | 39 | 27 | 66 | 63 | 124 |
| Upper East | 34 | 24 | 58 | 43 | 98 |
| Upper West | 41 | 26 | 67 | 44 | 108 |
| Mother's/Caretaker's education |  |  |  |  |  |
| None | 28 | 26 | 54 | 45 | 97 |
| Primary | 36 | 18 | 54 | 31 | 83 |
| Middle/JSS | 34 | 16 | 50 | 28 | 76 |
| Secondary + | (28) | (2) | (30) | (5) | (35) |
| Wealth index quintiles |  |  |  |  |  |
| Poorest | 35 | 25 | 61 | 48 | 106 |
| Second | 28 | 22 | 50 | 37 | 85 |
| Middle | 35 | 19 | 54 | 30 | 83 |
| Fourth | 37 | 15 | 52 | 36 | 86 |
| Richest | 24 | 14 | 38 | 15 | 52 |
| Total | 32 | 21 | 53 | 31 | 82 |
| [1] MICS indicator 1.3 <br> [2] MICS indicator 1.4 <br> [3] MICS indicator 1.1; MDG indicator 4.1 <br> [4] MICS indicator 1.5; <br> [5] MICS indicator 1.2, MDG indicator 4.2 <br> Figures in parentheses ')' are based on 25 |  |  |  |  |  |

## Figure CM.3: Infant and Under-five mortality rates by region, Ghana, 2011



32 Western Central $\begin{gathered}\text { Greater } \\ \text { Accra }\end{gathered} \quad$ Volta $\quad$ Eastern Ashanti $\begin{gathered}\text { Brong } \\ \text { Ahafo }\end{gathered} \begin{gathered}\text { Northern }\end{gathered} \begin{aligned} & \text { Upper } \\ & \text { East }\end{aligned} \begin{gathered}\text { Upper } \\ \text { West }\end{gathered}$

- Under-five mortality rate - Infant mortality rate

As child mortality drops across the world, due to commitment and action, evidence shows that reductions are predominantly made in deaths occurring past infancy and, increasingly, there is a demand for precision in and analysis of the period where most deaths occur. ${ }^{13}$ Figure CM. 4 provides analysis of the contribution of neonatal mortality rate to the overall infant mortality rate by region. The analysis shows that the neonatal mortality rate represents more than 60 percent of infant mortality rate in 6 regions out of 10 . This means that in those 6 regions (Volta, Brong Ahafo, Central, Eastern, Ashanti, and Upper West), over 60 percent of all infant deaths occur in the first month of life.

## Figure CM.4: Percent contribution of Neonatal mortality rate to overall Infant mortality rate

by Region, Ghana, 2011


## Residence and Socio-economic Differentials in Childhood Mortality

Table CM. 2 also show differentials in childhood mortality rates by residence and two socio-economic variables: mother's education and wealth quintiles. From the results, it is apparent that infant and child survival are associated with the residence and the socio-economic characteristics of mothers.

Generally, mortality in urban areas is consistently lower than in rural areas. Under-5 mortality is estimated at 72 deaths per 1,000 live births in urban areas, and 94 deaths per 1,000 live births in rural areas. For infant mortality, this is estimated at 46 deaths per 1,000 live births in urban areas, and 56 deaths per 1,000 live births in rural areas. The urban-rural difference is more pronounced for post neonatal mortality and child mortality rates.

Studies have demonstrated a strong relationship between a mother's level of education and the survival of her child ${ }^{14}$ and this is fairly consistent for all childhood mortality indicators, except neonatal mortality rate. The results show that under-5 mortality rate is estimated at 97 deaths per 1000 live births for children whose mothers have no education and at 76 deaths per 1,000 live births for mothers with middle/JSS education. For children whose mothers have no education and/or primary education, infant mortality rate is estimated at 54 deaths per 1000 live births, and at 50 deaths per 1000 live births for children whose mothers have middle/JSS education. Due to the fewer exposures (250-499), analysis for children whose mothers have secondary or higher education has not been presented.

While childhood mortality tends to be differentiated among socio-economic groups, in the MICS 2011, significant variations are only noted for mortality of children in the poorest 20 percent of households, and the richest 20 percent of households. The MICS 2011 data reveal that children from the richest households have lower mortality rates, compared to children from the poorest households (Table CM. 2 and Figure CM.5). For example, infant mortality is estimated at 61 per 1000 live deaths for children from the poorest wealth quintile, and 38 deaths per 1000 live deaths for children in the richest wealth quintile. This means that the children from the poorest wealth quintile are more ( 1.60 times) likely to die before their first birthday compared to those from the richest wealth quintile. Under-5 mortality is estimated at 106 deaths per 1,000 live births for children from the poorest households, compared to 52 deaths per 1,000 live births for children belonging to the wealthiest households. This means that the children from the poorest households are more than twice as likely to die before their fifth birthday as those from the richest households (Figure CM.5). However, for the other three wealth quintiles, an erratic pattern is observed, and in some cases, little differences are noted for all the childhood indicators. This could be as a result of sampling errors.

Figure CM.5: Under-5 mortality rates by residence and socio-economic characteristics, Ghana, 2011


## Demographic Characteristics and Childhood Mortality

Demographic factors such as the sex of the child, age of the mother at birth, birth order, and length of the preceding birth interval, are strongly associated with the survival chances of young children. These factors include sex of the child, age of the mother at birth, birth order and length of the preceding birth interval. Table CM. 3 and Figure CM. 6 show the relationships between childhood mortality and these demographic variables. For all variables, childhood mortality rates estimates are calculated for a ten-year period before the survey to reduce sampling variability.

Childhood mortality rates are generally higher for males than females for all childhood mortality indicators (Figure CM.6). For example, under-five mortality rate is estimated at 94 deaths per 1,000 live births for boys, and 75 deaths per 1,000 live births for girls. This means that male children are 1.25 times more likely to die before the fifth birthday than females. Neonatal mortality rate is estimated at 37 deaths per 1000 live births for male children, and 27 deaths per 1000 live births for female children, which means that male children are 1.37 times more likely to die during the first month of life than their female counterparts.

Research has shown that births to young mothers and older mothers experience an elevated risk of mortality. Mother's age at the time of child birth influences child survival in all periods as shown in Table CM. 3 and Figure CM. 6 . For mothers aged below 20 years, infant mortality rate is estimated at 64 deaths per 1,000 live births, compared to 48 deaths per 1,000 live births for mothers aged 20-34 years. Infant mortality is also higher for children born to women aged 35-49 years ( 59 deaths per 1,000 live births). The under-five mortality rate is estimated at 105 deaths per 1,000 for women below the age of 20 years, 79 deaths per 1,000 live births for women aged 20-34 years, and 92 deaths per 1,000 live births for women aged 35-49 years.

First births and higher order births generally face an elevated risk of mortality. Data from the MICS 2011 confirm this pattern for the most part. Birth orders seven and higher experience the highest levels of childhood mortality, while mortality is lowest for second and third order births. For example, under-5 mortality rate is estimated at 114 deaths per 1,000 live births for birth order seven and higher, 75 deaths per 1,000 live births for birth orders 2-3, and 89 deaths per 1,000 live births for birth order 1 (Figure CM.6).

The birth interval also affects survival when there is an interval of less than two years between pregnancies, demonstrating the importance of spacing on child survival. This is fairly consistent in all childhood mortality indicators. For example, infant mortality rate for children born at less than a two-year interval is 75 deaths per 1,000 live births and 37 deaths per 1,000 live births when the birth interval is 3 years. This means that the children born at less than a two-year interval are more than twice likely to die before their first birthday compared to the ones born at 3 years interval. Under-five mortality rate is 112 deaths per 1,000 live births for birth intervals of less than 2 years and 69 deaths per 1,000 live births when a birth occurs 3 years after a previous birth. Children born at less than a two-year interval are more likely ( 1.6 times) to die before their fifth birthday compared to the ones born at 3 years interval.

| Table CM.3: Early childhood mortality rates by demographic characteristics Neonatal, post neonatal, Infant and Under-five mortality rates for the 10 -year period preceding the survey by demographic characteristics, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Neonatal mortality rate (NMR) [1] | Post neonatal mortalityr ate (PNMR) [2] | Infant mortality rate(1q0) [3] | Child mortality rate (4q1) [4] | Under five mortality rate (5q0) [5] |
| Sex of child |  |  |  |  |  |
| Male | 37 | 21 | 58 | 39 | 94 |
| Female | 27 | 18 | 45 | 31 | 75 |
| Mother's age |  |  |  |  |  |
| <20 | 35 | 29 | 64 | 44 | 105 |
| 20-34 | 29 | 19 | 48 | 33 | 79 |
| 35-49 | 41 | 18 | 59 | 36 | 92 |
| Birth order |  |  |  |  |  |
| 1 | 35 | 20 | 56 | 35 | 89 |
| 2-3 | 24 | 17 | 41 | 36 | 75 |
| 4-6 | 34 | 20 | 55 | 32 | 85 |
| $7+$ | 48 | 28 | 76 | 41 | 114 |
| Previous birth intervals |  |  |  |  |  |
| <2 | 46 | 29 | 75 | 40 | 112 |
| 2 years | 26 | 16 | 42 | 41 | 81 |
| 3 years | 21 | 15 | 37 | 34 | 69 |
| $4+$ years | 25 | 13 | 38 | 21 | 59 |
| Total | 32 | 21 | 53 | 31 | 82 |
| [1] MICS indicator 1.3 <br> [2] MICS indicator 1.4 <br> [3] MICS indicator 1.1; MDG indicator 4.1 <br> [4] MICS indicator 1.5; <br> [5] MICS indicator 1.2, MDG indicator 4.2 |  |  |  |  |  |
|  |  |  |  |  |  |

Figure CM. 6: Under-5 mortality rates by demographic characteristics, Ghana, 2011


## Nutritional Status

Children's nutritional status is a reflection of their overall health. When children have access to an adequate food supply, are not exposed to repeated illness, and are well cared for, they reach their growth potential.

Malnutrition is associated with more than half of all child deaths worldwide. Undernourished children are more likely to die from common childhood ailments, and for those who survive, have recurring sicknesses and faltering growth. Three-quarters of the children who die from causes related to malnutrition were only mildly or moderately malnourished - showing no outward sign of their vulnerability. The Millennium Development target is to reduce by half the proportion of people who suffer from hunger between 1990 and 2015. A reduction in the prevalence of malnutrition will also assist in the goal to reduce child mortality.

In a well-nourished population, the distribution of height and weight for children under age five is similar to that of a reference population. Hence under-nourishment in a population can be gauged by comparing children's anthropometric measurements with that of a reference population. The reference population used in this report is based on new WHO growth standards. ${ }^{15}$ Each of the three nutritional status indicators can be expressed in standard deviation units ( $z$-scores) from the median of the reference population.

Weight-for-age is a measure of both acute and chronic malnutrition. Children whose weight-for-age is more than two standard deviations below the median of the reference population are considered moderately or severely underweight while those whose weight-for-age is more than three standard deviations below the median are classified as severely underweight.

Height-for-age is a measure of linear growth. Children whose height-for-age is more than two standard deviations below the median of the reference population are considered short for their age and are classified as moderately or severely stunted. Those whose height-for-age is more than three standard deviations below the median are classified as severely stunted. Stunting is a reflection of chronic malnutrition as a result of failure to receive adequate nutrition over a long period and recurrent or chronic illness.

Finally, children whose weight-for-height is more than two standard deviations below the median of the reference population are classified as moderately or severely wasted, while those who fall more than three standard deviations below the median are classified as severely wasted. Wasting is usually the result of a recent nutritional deficiency. The indicator may exhibit significant seasonal shifts associated with changes in the availability of food or disease prevalence.

In GhanaMICS4, weights and heights of all children under5 years of age were measured using anthropometric equipment recommended by UNICEF (www.childinfo.org). Findings in this section are based on the results of these measurements.

Table NU. 1 shows percentages of children classified into each of these categories, based on the anthropometric measurements that were taken during fieldwork. Additionally, the table includes the percentage of children who are overweight, which takes into account those children whose weight for height is above 2 standard deviations from the median of the reference population, and mean $z$-scores for all three anthropometric indicators.

Children whose full birth date (month and year) were not obtained, and children whose measurements are outside the plausible range are excluded from Table NU.1. Children are excluded from one or more of the anthropometric indicators when their weights and heights have not been measured, whichever is applicable. For example, if a child has been weighed but his/her height has not been measured, the child is included in underweight calculations, but not in the calculations for stunting and wasting. Percentages of children by age and reasons for exclusion are shown in the Data Quality Tables DQ. 6 and DQ. 7 in Appendix D. Overall, 99 percent of children had both their weights and heights measured (Table DQ.6). Less than two percent did not have their weight measured. One percent of children did not have their months of birth recorded. However, there was no case of children with neither year nor month missing. Table DQ. 7 shows that due to incomplete dates of birth, implausible measurements, and missing weight and/or height, 3 percent of children have been excluded from the calculations of the weight-for-height indicator.

Thirteen percent of children under age five in Ghana are moderately or severely underweight and 3 percent are classified as severely underweight (Table NU.1). Twenty-three percent of the children are moderately or severely stunted or too short for their age, and 7 percent are severely stunted. Also, 6 percent of the children under five are moderately or severely wasted or too thin for their height, while 1 percent is severely wasted.

Children in Northern and Upper East regions are more likely to be underweight and stunted than children in other regions (see Table NU.1). In contrast, the percentage of wasting is highest in Upper West and Volta regions ( $9 \%$ for each region). Furthermore, the percentage of children who are underweight and stunted are higher in the rural than the urban area. Those children whose mothers have secondary or higher education are less likely to be underweight ( $9 \%$ ) and stunted ( $13 \%$ ) compared to children whose mothers have no education ( $17 \%$ and $29 \%$, respectively). Boys appear more likely to be underweight ( $15 \%$ ), stunted ( $25 \%$ ), and wasted ( $7 \%$ ) than girls ( $11 \%, 20 \%$ and $5 \%$ respectively). The age pattern shows that children aged 12-23 months are more likely to be underweight, in comparison to children who are younger and older; children aged $24-35$ months are more likely to be stunted in comparison to children who are younger or older; and children aged 0-11 months are more likely to be wasted in comparison to children who are older (Figure NU.1). This pattern is expected for underweight and stunting as it is related to the ages at which many children cease to be breastfed and are exposed to contamination in water, food, and the environment.

| Table NU.1: Nutritional status of children <br> Percentage of children under age 5 by nutritional status according to three anthropometric indices: weight for age, height for age, and weight for height Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Weight for age: |  |  |  | Height for age: |  |  |  | Weight for height: |  |  |  |  |
| Background Characteristics | $\begin{array}{r} \% \\ \text { below } \\ -2 \text { sd } \\ {[1]} \end{array}$ | $\begin{array}{r} \% \\ \text { below } \\ -3 \text { sd } \\ {[2]} \end{array}$ | $\begin{array}{r} \text { Mean } \\ \text { Z-Score } \\ \text { (SD) } \end{array}$ | Number of children | $\begin{array}{r} \% \\ \text { below } \\ -2 \text { sd } \\ {[3]} \end{array}$ | $\begin{array}{r} \% \\ \text { below } \\ -3 \text { sd } \\ {[4]} \end{array}$ | $\begin{array}{r} \text { Mean } \\ \text { Z-Score } \\ \text { (SD) } \end{array}$ | Number of children | $\begin{array}{r} \% \\ \text { below } \\ -2 \text { sd } \\ {[5]} \end{array}$ | $\begin{array}{r} \% \\ \text { below } \\ -3 \text { sd } \\ {[6]} \end{array}$ | $\begin{gathered} \% \\ \text { above } \\ +2 \text { sd } \end{gathered}$ | $\begin{array}{r} \text { Mean } \\ \text { Z-Score } \\ \text { (SD) } \end{array}$ | Number of children |
| Sex |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 15.4 | 3.1 | -0.9 | 3665 | 25.3 | 8.3 | -1.1 | 3636 | 7.2 | 1.9 | 2.7 | $-0.4$ | 3665 |
| Female | 11.3 | 2.1 | -0.7 | 3710 | 20.3 | 5.3 | -1.0 | 3703 | 5.2 | 0.9 | 2.5 | -0.3 | 3716 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 10.5 | 1.6 | -0.7 | 3196 | 18.1 | 4.2 | -0.9 | 3194 | 5.7 | 1.5 | 2.4 | $-0.3$ | 3191 |
| Rural | 15.5 | 3.4 | -0.9 | 4178 | 26.3 | 8.8 | -1.2 | 4145 | 6.6 | 1.4 | 2.8 | -0.3 | 4190 |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 14.3 | 2.9 | -0.8 | 718 | 22.6 | 7.0 | -1.1 | 713 | 7.7 | 1.8 | 3.0 | $-0.3$ | 722 |
| Central | 13.5 | 3.1 | -0.9 | 727 | 23.1 | 7.3 | -1.1 | 723 | 5.4 | 1.6 | 1.4 | -0.3 | 727 |
| Greater Accra | 8.3 | 0.7 | -0.6 | 1110 | 13.7 | 3.7 | -0.7 | 1110 | 3.1 | 0.4 | 3.2 | -0.3 | 1119 |
| Volta | 10.9 | 1.6 | -0.8 | 590 | 22.2 | 6.7 | -0.9 | 589 | 8.5 | 1.9 | 2.1 | -0.5 | 597 |
| Eastern | 10.5 | 1.9 | -0.7 | 816 | 21.3 | 4.4 | -0.9 | 812 | 6.8 | 0.7 | 2.4 | -0.3 | 812 |
| Ashanti | 11.9 | 2.1 | -0.7 | 1377 | 21.7 | 6.6 | -1.0 | 1370 | 6.6 | 2.4 | 4.6 | -0.2 | 1366 |
| Brong Ahafo | 11.8 | 1.7 | -0.8 | 660 | 19.3 | 4.9 | -1.1 | 655 | 3.2 | 0.5 | 1.7 | -0.2 | 662 |
| Northern | 24.2 | 6.2 | -1.3 | 836 | 37.4 | 13.3 | -1.7 | 834 | 8.1 | 1.7 | 1.1 | -0.4 | 840 |
| Upper East | 20.0 | 4.9 | -1.2 | 323 | 31.5 | 9.8 | -1.5 | 318 | 7.2 | 1.2 | 1.6 | -0.5 | 319 |
| Upper West | 15.0 | 3.4 | -1.0 | 219 | 23.1 | 7.5 | -1.1 | 215 | 9.2 | 1.8 | 2.0 | -0.5 | 215 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0-5 | 6.7 | 1.7 | -0.2 | 800 | 7.8 | 1.9 | 0.0 | 795 | 11.4 | 3.6 | 4.7 | -0.4 | 795 |
| 6-11 | 15.8 | 2.1 | -0.8 | 716 | 12.5 | 2.3 | -0.4 | 714 | 11.3 | 1.9 | 2.1 | -0.8 | 714 |
| 12-23 | 16.5 | 3.4 | -0.9 | 1422 | 26.5 | 9.0 | -1.2 | 1411 | 7.7 | 1.9 | 3.4 | -0.4 | 1418 |
| 24-35 | 13.5 | 2.8 | -0.9 | 1519 | 28.2 | 8.7 | -1.3 | 1515 | 4.7 | 1.0 | 2.4 | -0.2 | 1520 |
| 36-47 | 13.7 | 3.1 | -0.9 | 1534 | 27.9 | 8.5 | -1.3 | 1522 | 2.8 | 0.4 | 2.0 | -0.2 | 1531 |
| 48-59 | 12.2 | 1.8 | -1.0 | 1384 | 21.3 | 5.7 | -1.2 | 1382 | 4.6 | 1.0 | 1.7 | -0.3 | 1403 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 17.3 | 4.3 | -1.0 | 2403 | 29.2 | 10.6 | -1.3 | 2390 | 7.8 | 1.8 | 2.3 | -0.4 | 2405 |
| Primary | 13.7 | 2.6 | -0.8 | 1603 | 25.2 | 6.1 | -1.2 | 1590 | 5.1 | 1.1 | 3.3 | $-0.3$ | 1605 |
| Middle/SSS | 10.8 | 1.4 | -0.7 | 2524 | 18.2 | 5.1 | -0.9 | 2515 | 5.2 | 1.5 | 2.0 | -0.3 | 2526 |
| Secondary + | 9.2 | 1.1 | -0.5 | 845 | 13.2 | 2.7 | -0.6 | 844 | 6.6 | 0.7 | 3.9 | -0.3 | 844 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 20.0 | 4.9 | -1.1 | 1687 | 33.2 | 12.5 | -1.5 | 1670 | 7.6 | 1.3 | 2.6 | -0.4 | 1694 |
| Second | 14.8 | 3.6 | -0.9 | 1532 | 26.7 | 8.4 | -1.2 | 1522 | 7.3 | 1.8 | 3.3 | $-0.3$ | 1531 |
| Middle | 13.2 | 2.6 | -0.9 | 1526 | 22.8 | 6.9 | -1.1 | 1528 | 6.0 | 2.1 | 2.2 | -0.3 | 1529 |
| Fourth | 10.3 | 0.9 | -0.7 | 1372 | 15.8 | 2.8 | -0.8 | 1364 | 4.8 | 0.9 | 0.9 | -0.4 | 1372 |
| Richest | 6.3 | 0.3 | -0.4 | 1258 | 11.6 | 1.5 | -0.5 | 1256 | 4.8 | 0.8 | 4.2 | -0.2 | 1254 |
| Total | 13.4 | 2.6 | -0.8 | 7375 | 22.7 | 6.8 | -1.1 | 7338 | 6.2 | 1.4 | 2.6 | -0.3 | 7381 |
| [1] MICS indicator 2.1a and MDG indicator 1.8[2] MMCS Sindicatoto 2.1b[3] MMCS indicator 2.2a, [4] MIISS indicator 2.2b[5] MICS indicatoto 2.3a, [6] MICS indicator 2.3b |  |  |  |  |  |  |  |  |  |  |  |  |  |

staus according to three anthropom


Marked differences are observed in all three indices with regard to the wealth status of households. For example, one in three (33\%) children from the poorest households is stunted, compared to 12 percent of children from the richest households. Also, while 20 percent of children from the poorest wealth quintile are underweight, this reduces to 14 percent for children in the middle wealth quintile, and to 7 percent for children in the richest wealth quintile. Children from the poorest households are at least twice more likely to be underweight, stunted or wasted in comparison with children from the wealthiest households.

Overweight is not a big problem among children under five in Ghana. Overall, about 3 percent of the children were found to be overweight - these are the children whose weight for height is above 2 standard deviations from the median of the reference population (Table NU.1).

Breastfeeding and Infant and Young Child Feeding
Breastfeeding for the first few years of life protects children from infection, provides an ideal source of nutrients, and is economical and safe. However, many mothers stop breastfeeding too soon and there are often pressures to switch to infant formula, which can contribute to growth faltering and micronutrient malnutrition and is unsafe if clean water is not readily available.

WHO/UNICEF have the following feeding recommendations:

- Early initiation of breastfeeding within the first hour of birth;
- Exclusive breastfeeding for the first six months;
- Continued breastfeeding for two years or more;
- Safe, appropriate and adequate complementary foods beginning at 6 months; and
- Frequency of complementary feeding: 2 times per day for $6-8$ month olds; 3 times per day for 9-11 month olds.

The indicators related to recommended child feeding practices are as follows:

- Early initiation of breastfeeding (within 1 hour of birth);
- Exclusive breastfeeding rate (< 6 months);
- Predominant breastfeeding (< 6 months);
- Continued breastfeeding rate (at 1 year and at 2 years);
- Duration of breastfeeding
- Age-appropriate breastfeeding ( $0-23$ months)
- Introduction of solid, semi-solid and soft foods (6-8 months)
- Minimum meal frequency ( $6-23$ months)
- Minimum diet diversity ( $6-23$ months)
- Minimum acceptable diet (frequency and diet diversity)
- Milk feeding frequency for non-breastfeeding children ( $6-23$ months)
- Bottle feeding ( $0-23$ months)

Table NU. 2 provides the proportion of children born in the last two years who were ever breastfed, those who were first breastfed within one hour and one day of birth, and those who received a prelacteal feed. Although a very important step in the management of lactation and establishment of a physical and emotional relationship between the baby and the mother, less than half ( $46 \%$ ) of babies are breastfed for the first time within one hour of birth, while 84 percent of new-borns in Ghana start breastfeeding within one day of birth. Initiation of breastfeeding varies among regions. The proportion of infants that are breastfed within one hour of birth is higher in the Western and Upper West Regions at just over 60 percent, and lower in Greater Accra Region (29\%). Greater Accra Region again has the lowest percentage of infants who started breastfeeding within one day of birth ( $68 \%$ ). Ashanti, Upper East, Upper West and Eastern regions all have the highest proportion of newborns first breastfeeding within one day of birth (about 90\%).

Little differences are observed by education background of the mothers with respect to breastfeeding their children within one hour or one day of birth. An irregular pattern is observed in initial breastfeeding and household wealth. For example, 50 percent of mothers in the second wealth quintile breastfed their infants within one hour of birth, compared to 43 percent of mothers in the poorest wealth quintile, and 42 percent of mothers in the richest wealth quintile. Similarly, mothers from the poorest and richest wealth quintiles are less likely to breastfeed their babies within one day of birth, compared to mothers from the other wealth categories. Also, infants delivered in a public sector health facility are more likely to be breastfed within one hour of birth (51\%) and within one day of birth (87\%) than infants delivered in a private sector health facility, at home, or other places.

| Table NU.2: Initial breastfeeding Percentage of last-born children in the $\mathbf{2}$ years preceding the survey who were ever breastfed, percentage who were breastfed within one hour of birth and within one day of birth, and percentage who received a prelacteal feed, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage <br> ever <br> breastfed [1] | Percentage who were first breastfed: Within one hour of birth | Percentage <br> who were first breastfed: Within one day of birth | Percentage who received a prelacteal feed | Number of last-born children in the two years preceding the survey |
| Region |  |  |  |  |  |
| Western | 99.5 | 61.9 | 89.3 | 20.5 | 270 |
| Central | 98.4 | 53.2 | 84.4 | 19.0 | 246 |
| Greater Accra | 99.6 | 28.6 | 67.9 | 26.6 | 397 |
| Volta | 99.2 | 41.7 | 89.7 | 4.9 | 189 |
| Eastern | 98.5 | 49.7 | 83.7 | 9.7 | 288 |
| Ashanti | 99.0 | 51.3 | 90.9 | 26 | 449 |
| Brong Ahafo | 97.5 | 36.3 | 78.2 | 22.4 | 227 |
| Northern | 98.5 | 39.0 | 84.2 | 14.6 | 283 |
| Upper East | 99.6 | 55.6 | 90.9 | 15.0 | 105 |
| Upper West | 98.4 | 61.1 | 90.9 | 6.8 | 75 |
| Residence |  |  |  |  |  |
| Urban | 99.3 | 44.9 | 84.4 | 17.8 | 1068 |
| Rural | 98.5 | 46.6 | 83.2 | 19.4 | 1460 |
| Months since last birth |  |  |  |  |  |
| 0-11 months | 98.5 | 46.1 | 84.0 | 17.6 | 1077 |
| 12-23 months | 99.3 | 48.7 | 85.7 | 17.3 | 907 |
| Assistance at delivery |  |  |  |  |  |
| Skilled attendant | 99.2 | 48.3 | 85.6 | 15.8 | 1729 |
| Traditional birth attendant | 99.1 | 47.1 | 82.9 | 32.2 | 403 |
| Other | 98.9 | 33.5 | 79.6 | 16.7 | 314 |
| Missing | 90.8 | 35.5 | 64.0 | 22.9 | 83.0 |
| Place of delivery |  |  |  |  |  |
| Public sector health facility | 99.2 | 50.7 | 86.6 | 13.9 | 1434 |
| Private sector health facility | 99.2 | 38.7 | 82.7 | 24.2 | 269 |
| Home | 99.0 | 40.3 | 80.0 | 25.3 | 793 |
| Other/Missing | (76.2) | (29.1) | (56) | (29.5) | 32 |
| Mother's education |  |  |  |  |  |
| None | 98.6 | 44.9 | 83.4 | 17.7 | 733 |
| Primary | 99.5 | 45.8 | 82.3 | 17.6 | 565 |
| Middle/SS | 98.4 | 46.7 | 85.2 | 18.7 | 886 |
| Secondary + | 99.6 | 45.8 | 82.7 | 23 | 344 |
| Wealth index quintiles |  |  |  |  |  |
| Poorest | 99.4 | 42.5 | 80.7 | 16.8 | 560 |
| Second | 97.4 | 50.4 | 86.6 | 20.9 | 546 |
| Middle | 98.6 | 47.9 | 88.4 | 13.2 | 500 |
| Fourth | 99.5 | 45.4 | 83.7 | 19.5 | 455 |
| Richest | 99.6 | 43.0 | 78.9 | 23.9 | 467 |
| Total | 98.9 | 45.9 | 83.7 | 18.8 | 2528 |
| [1] MICS indicator 2.4 [2]MICS indicator 2.5 <br> Figures in parentheses '()' are based on $25-49$ unweighted cases |  |  |  |  |  |


| Table NU.3: Breastfeeding <br> Percentage of living children according to breastfeeding status at selected age groups, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Children 0-5 months |  |  | Children 12-15 months |  | Children 20-23 months |  |
| Background Characteristics | $\begin{array}{r} \text { Percent } \\ \text { exclusively } \\ \text { breastfed [1] } \end{array}$ | $\begin{array}{r} \text { Percent } \\ \text { predominantly } \\ \text { breastfed [2] } \end{array}$ | Number of children | Percent breastfed (Continued breastfeeding at 1 year) [3] | Number of children | Percent breastfed (Continued breastfeeding at 2 years) [4] | Number of children |
| Sex |  |  |  |  |  |  |  |
| Male | 46.2 | 72.1 | 418 | 86.6 | 234 | 38.1 | 227 |
| Female | 45.1 | 69.8 | 400 | 94.1 | 288 | 36.7 | 205 |
| Region |  |  |  |  |  |  |  |
| Western | (46.8) | (76.7) | 72 | (98.5) | 62 | * | 40 |
| Central | 39.5 | 66.7 | 73 | 89.8 | 40 | 35.1 | 57 |
| Greater Accra | (21.1) | (38.1) | 110 | (75.0) | 93 | * | 62 |
| Volta | (49.1) | (80.3) | 64 | * | 34 | * | 19 |
| Eastern | (42.6) | (74.0) | 107 | * | 42 | * | 46 |
| Ashanti | 39.0 | 61.9 | 172 | (90.9) | 108 | (25.9) | 81 |
| Brong Ahafo | 69.8 | 91.1 | 82 | * | 47 | (41.4) | 42 |
| Northern | 63.6 | 90.4 | 79 | 98.3 | 63 | 85.1 | 49 |
| Upper East | (58.4) | (92.0) | 35 | 95.5 | 19 | 76.6 | 22 |
| Upper West | 67.0 | 81.6 | 23 | 91.2 | 14 | 87.7 | 15 |
| Residence |  |  |  |  |  |  |  |
| Urban | 48.9 | 68.5 | 344 | 85.9 | 242 | 20.5 | 177 |
| Rural | 43.3 | 72.7 | 473 | 94.9 | 280 | 49.3 | 255 |
| Mother's education |  |  |  |  |  |  |  |
| None | 55.0 | 82.6 | 234 | 96.4 | 143 | 64.9 | 145 |
| Primary | 43.1 | 75.4 | 177 | 93.7 | 118 | 38.1 | 87 |
| Middle/SSS | 39.9 | 63.4 | 307 | 89.9 | 201 | 18.4 | 161 |
| Secondary + | 46.1 | 59.3 | 100 | (74.5) | 60 | (13.2) | 40 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 53.7 | 80.4 | 169 | 96.5 | 109 | 78.9 | 97 |
| Second | 39.7 | 73.8 | 163 | 98.3 | 126 | 39.8 | 113 |
| Middle | 45.1 | 73.0 | 186 | 95.3 | 113 | 18.1 | 75 |
| Fourth | 41.7 | 62.8 | 135 | 91.0 | 80 | 28.6 | 84 |
| Richest | 47.2 | 62.8 | 164 | (68.3) | 94 | (4.6) | 64 |
| Total | 45.7 | 71.0 | 818 | 90.7 | 522 | 37.4 | 432 |
| [1] MICS indicator 2.6 <br> [2] MICS indicator 2.9 <br> [3] MICS indicator 2.7 <br> 4] MICS indicator 2.8 <br> An asterisk ( ${ }^{*}$ ) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on $25-49$ unweighted cases. |  |  |  |  |  |  |  |

Approximately 46 percent of children aged less than six months are exclusively breastfed, a level considerably lower than that recommended by the WHO/UNICEF. By age 12-15 months, 91 percent of children are still being breastfed, and by age 20-23 months, 37 percent are still breastfed. Little differences are observed in exclusive breastfeeding by sex of the child -46 percent for boys and 45 percent for girls. In contrast, girls aged $12-15$ months ( $94 \%$ ) are more likely to continue breastfeeding at one year than boys ( $87 \%$ ). Given the small number of children in the sample, it is not possible to have meaningful comparisons for all 10 regions.

In terms of area of residence, infants aged 0-5 months in urban area (49\%) are more likely to be exclusively breastfed than their counterparts in rural areas (43\%). The reverse is true for infants in the 12-15 months and 20-23 months age-groups, where children in the urban areas are less likely to receive continued breastfeeding at year one and two. In all age categories and breastfeeding status, breastfeeding decreases with the mother's educational level. For example, children 0-5 months whose mothers have no education are more likely to be exclusively breastfed (55\%), compared to children whose mothers have secondary or higher education ( $46 \%$ ). However, no conclusion can be made for continued breastfeeding at 2 years for children aged 20-23 months, due to the small number with secondary and higher education.

Figure NU. 2 shows the detailed pattern of breastfeeding by the child's age in months. Even at the youngest ages, the majority of children are receiving liquids or foods other than breast milk. By the end of the sixth month, the percentage of children exclusively breastfed is below three percent. Only about 35 percent of children are receiving breast milk after 2 years.

As already shown in the Table NU.3, and contrary to the WHO/UNICEF recommendation, all children under 6 months in Ghana are not exclusively breastfed. The figure NU. 2 indicates that the percentage of "Exclusively breastfed" decreases rapidly from 71 percent (aged 0-1 month) to 49 percent (age 2-3 months), 24 percent (age 4-5 months); and above the age of 6 months, less than 3 percent of the children are still "exclusively breastfed". For the age-groups 6-7 to 18-19 months, breastfeeding and complementary foods is the predominant infant feeding pattern, with percentages ranging between 69 percent and 89 percent. For age-groups 20-21 and 22-23 months, this proportion is halved due to the huge increase in the percentage of "weaned" children. The percentage of "weaned" increases with age and approximately 64 percent of the children are weaned before turning 2 years old.

Table NU. 4 shows the median duration of breastfeeding by selected background characteristics. Among children 0-35 months, the median duration is 20.4 months for any breastfeeding, 2.2 months for exclusive breastfeeding, and 4.2 months for predominant breastfeeding. The median duration of breastfeeding varies among regions for children aged 0-35 months. Greater Accra region has the lowest median duration of breastfeeding for any breastfeeding (17.5 months), exclusive breastfeeding ( 1.1 months), and predominant breastfeeding ( 1.7 months). On the other hand, Upper West region has the highest median duration of breastfeeding for any breastfeeding ( 26.2 months), Brong Ahafo region has the highest median duration for exclusive breastfeeding ( 4.0 months), and Upper East region has the highest median duration for predominant breastfeeding ( 7.0 months).

In terms of area of residence, the median duration of any breastfeeding is higher for rural areas (21.6 months), than urban areas ( 18.6 months). Little variation is found between urban and rural areas in the median duration of exclusive breastfeeding and predominant breastfeeding. For all breastfeeding categories, the median duration of breastfeeding decreases with mother's education level: for example, for any breastfeeding, the median duration is 23.5 months for mothers with no education, compared to 18.0 months for mothers with middle/JSS and Secondary or higher education. For exclusive breastfeeding, the median duration is 2.9 months for mothers with no education, compared to 1.8 months for mothers with Middle/JSS or Secondary and higher education. The median duration decreases with wealth index quintile. The median duration of 25.7 months for any breastfeeding, 2.8 months for exclusive breastfeeding, and 5.7 months for predominant breastfeeding for the poorest wealth quintile is the highest compared to all other wealth quintile groups.

| Table NU.4: Duration of breastfeeding <br> Median duration of any breastfeeding, exclusive breastfeeding, and predominant breastfeeding among children age 0-35 months, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Median duration (in months) of |  |  | Number of children age <br> $0-35$ months |
|  | Any breastfeeding | Exclusive breastfeeding | Predominant breastfeeding |  |
| Sex |  |  |  |  |
| Male | 20.3 | 2.3 | 4.3 | 2233 |
| Female | 20.5 | 2.1 | 4.2 | 2315 |
| Region |  |  |  |  |
| Western | 20.8 | 2.3 | 4.0 | 447 |
| Central | 19.6 | 1.2 | 3.7 | 454 |
| Greater Accra | 17.4 | 1.1 | 1.7 | 673 |
| Volta | 22.1 | 2.5 | 5.4 | 338 |
| Eastern | 18.0 | 2.0 | 4.0 | 520 |
| Ashanti | 17.9 | 1.6 | 3.9 | 895 |
| Brong Ahafo | 21.1 | 4.0 | 6.4 | 411 |
| Northern | 25.1 | 3.5 | 6.8 | 491 |
| Upper East | 25.5 | 3.4 | 7.0 | 184 |
| Upper West | 26.2 | 3.8 | 5.9 | 135 |
| Residence |  |  |  |  |
| Urban | 18.6 | 2.4 | 4.0 | 1978 |
| Rural | 21.6 | 2.1 | 4.5 | 2570 |
| Mother's education |  |  |  |  |
| None | 23.5 | 2.9 | 5.8 | 1355 |
| Primary | 21.1 | 2.1 | 4.8 | 1007 |
| Middle/JSS | 18.0 | 1.8 | 3.5 | 1607 |
| Secondary+ | 18.0 | 1.8 | 3.3 | 579 |
| Wealth index quintile |  |  |  |  |
| Poorest | 25.7 | 2.8 | 5.7 | 1011 |
| Second | 20.7 | 1.6 | 4.4 | 917 |
| Middle | 19.6 | 2.3 | 4.8 | 936 |
| Fourth | 18.5 | 2.1 | 3.2 | 868 |
| Richest | 15.9 | 2.1 | 3.8 | 815 |
| Median | 20.4 | 2.2 | 4.2 | 4548 |
| Mean for all children (0-35 months) | 20.5 | 2.7 | 5.1 | 4548 |
| [1] MICS indicator 2.10 |  |  |  |  |


| Table NU.5: Age-appropriate breastfeeding <br> Percentage of children aged $0-23$ months who were appropriately breastfed during the previous day, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Children age 0-5 months |  | Children age 6-23 months |  | Children age 0-23 months |  |
|  | $\begin{array}{r} \text { Percent } \\ \text { exclusively } \\ \text { breastfed [1] } \end{array}$ | Number of children | Percent currently breastfeeding and receiving solid, semi-solid or soft foods | Number of children | appropriately breastfed [2] | Number of children |
| Sex |  |  |  |  |  |  |
| Male | 46.2 | 418 | 69.0 | 1077 | 62.6 | 1495 |
| Female | 45.1 | 400 | 72.6 | 1100 | 65.3 | 1500 |
| Region |  |  |  |  |  |  |
| Western | (46.8) | 72 | 77.3 | 243 | 70.3 | 315 |
| Central | 39.5 | 73 | 68.6 | 236 | 61.7 | 309 |
| Greater Accra | (21.1) | 110 | 60.3 | 367 | 51.3 | 477 |
| Volta | (49.1) | 64 | 77.3 | 157 | 69.1 | 220 |
| Eastern | 42.6 | 107 | 65.9 | 245 | 58.8 | 352 |
| Ashanti | 39.0 | 172 | 64.9 | 346 | 56.3 | 518 |
| Brong Ahafo | 69.8 | 82 | 73.5 | 177 | 72.3 | 259 |
| Northern | 63.6 | 79 | 80.6 | 256 | 76.6 | 334 |
| Upper East | (58.4) | 35 | 82.9 | 88 | 75.9 | 123 |
| Upper West | 67.0 | 23 | 85.9 | 64 | 80.8 | 87 |
| Residence |  |  |  |  |  |  |
| Urban | 48.9 | 344 | 65.7 | 932 | 61.2 | 1276 |
| Rural | 43.3 | 473 | 74.6 | 1246 | 66.0 | 1719 |
| Mother's education |  |  |  |  |  |  |
| None | 55.0 | 234 | 76.7 | 643 | 70.9 | 877 |
| Primary | 43.1 | 177 | 74.7 | 488 | 66.3 | 665 |
| Middle/SSS | 39.9 | 307 | 66.3 | 743 | 58.6 | 1050 |
| Secondary + | 46.1 | 100 | 63.0 | 303 | 58.8 | 403 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 53.7 | 169 | 82.9 | 487 | 75.4 | 656 |
| Second | 39.7 | 163 | 72.0 | 486 | 63.9 | 649 |
| Middle | 45.1 | 186 | 72.5 | 406 | 63.9 | 592 |
| Fourth | 41.7 | 135 | 68.4 | 406 | 61.8 | 541 |
| Richest | 47.2 | 164 | 54.9 | 393 | 52.6 | 557 |
| Total | 45.7 | 818 | 70.8 | 2177 | 63.9 | 2995 |
| [1] MICS indicator 2.6 <br> [2] MICS indicator 2.14 <br> Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |

Adequate complementary feeding of children from 6 months to two years of age is particularly important for growth and development and the prevention of under-nutrition. Continued breastfeeding beyond six months should be accompanied by consumption of nutritionally adequate, safe and appropriate complementary foods that help meet nutritional requirements when breast milk is no longer sufficient. This requires that for breastfed children, two or more meals of solid, semi-solid or soft foods are needed if they are six to eight months old, and three or more meals if they are aged $9-23$ months of age. For children aged 6-23 months and older who are not breastfed, four or more meals of solid, semi-solid or soft foods or milk feeds are needed.

Overall, 75 percent of all infants aged 6-8 months received solid, semi-solid, or soft foods (Table NU.6). Among currently breastfeeding infants, figure is 74 percent. Table NU. 6 also shows that infants aged $6-8$ months in urban areas ( $80 \%$ ) are more likely to receive solid, semi-solid, or soft foods, compared to those in rural areas (71\%).

| Table NU.6: Introduction of solid, semi-solid or soft food <br> Percentage of infants age 6-8 months who received solid, semi-solid or soft foods during the previous day, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Currently breastfeeding |  | Currently not breastfeeding |  | All |  |
| Background Characteristics | Percent receiving solid, semi-solid or soft foods | Number of children age 6-8 months | Percent receiving solid, semi-solid or soft foods | Number of children age 6-8 months | Percent receiving solid, semi-solid or soft foods [1] | Number of children age 6-8 months |
| Sex |  |  |  |  |  |  |
| Male | 74.0 | 203 | * | 3 | 74.4 | 206 |
| Female | 74.6 | 192 | * | 5 | 75.3 | 197 |
| Residence |  |  |  |  |  |  |
| Urban | 79.8 | 169 | * | 3 | 80.1 | 172 |
| Rural | 70.2 | 226 | * | 5 | 70.9 | 231 |
| Total | 74.3 | 395 | 100.0 | 8 | 74.8 | 403 |
| [1] MICS indicator 2.12 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. |  |  |  |  |  |  |

Table NU.7 presents the proportion of children aged $6-23$ months who received semi-solid or soft foods the minimum number of times or more during the previous day according to breastfeeding status (see the note in Table NU. 7 for a definition of minimum number of times for different age groups). Overall, more than half of the children aged $6-23$ months ( $57 \%$ ) were receiving solid, semi-solid and soft foods the minimum number of times. A slightly higher proportion of male children ( $59 \%$ ) were enjoying the minimum meal frequency compared to female children ( $56 \%$ ).

Among currently breastfed children aged $6-23$ months, 57 percent were receiving solid, semi-solid and soft foods the minimum number of times and this proportion was higher among male children ( $59 \%$ ) compared to females ( $56 \%$ ). Among non-breastfeeding children, 58 percent received solid, semi-solid and soft foods or milk feeds 4 times or more.

| Table NU.7: Minimum meal frequency <br> Percentage of children aged 6-23 months who received solid, semi-solid, or soft foods (and milk feeds for non-breastfeeding children) the minimum number of times or more during the previous day, according to breastfeeding status, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Currently breastfeeding |  | Currently not breastfeeding |  |  | All |  |
|  | Percent receiving solid, semisolid and soft foods the minimum number of times | Number of children age 6-23 months | Percent receiving at least 2 milk feeds | Percent receiving solid, semisolid and soft foods or milk feeds 4 times or more | Number of children age 6-23 months | Percent with minimum meal frequency [2] | Number of children age 6-23 months |
| Sex |  |  |  |  |  |  |  |
| Male | 59.1 | 824 | 13.3 | 58.8 | 254 | 59.0 | 1077 |
| Female | 55.5 | 883 | 13.2 | 56.2 | 217 | 55.6 | 1100 |
| Age |  |  |  |  |  |  |  |
| 6-8 months | 59.4 | 395 | 64.5 | * | 8 | 59.5 | 403 |
| 9-11 months | 53.2 | 313 | 62.9 | * | 9 | 54.5 | 322 |
| 12-17 months | 54.7 | 668 | 19.5 | 61.1 | 112 | 55.7 | 780 |
| 18-23 months | 63.6 | 331 | 8.6 | 55.1 | 342 | 59.3 | 673 |
| Region |  |  |  |  |  |  |  |
| Western | 46.6 | 204 | 3.6 | * | 39 | 45.6 | 243 |
| Central | 62.4 | 173 | 6.1 | 57.4 | 63 | 61.1 | 236 |
| Greater Accra | 59.2 | 244 | 13.2 | (59.2) | 122 | 59.2 | 367 |
| Volta | 50.5 | 134 | 28.0 | * | 23 | 52.4 | 157 |
| Eastern | 55.5 | 175 | 10.5 | (23.1) | 70 | 46.2 | 245 |
| Ashanti | 73.6 | 242 | 22.0 | (80.7) | 104 | 75.8 | 346 |
| Brong Ahafo | 61.1 | 148 | 8.7 | * | 29 | 65.8 | 177 |
| Northern | 49.1 | 245 | 13.9 | * | 11 | 48.4 | 256 |
| Upper East | 47.7 | 81 | 0.0 | * | 7 | 45.7 | 88 |
| Upper West | 61.0 | 60 | 14.5 | * | 4 | 60.2 | 64 |
| Residence |  |  |  |  |  |  |  |
| Urban | 58.2 | 676 | 16.7 | 60.2 | 255 | 58.8 | 932 |
| Rural | 56.6 | 1030 | 9.2 | 54.5 | 216 | 56.3 | 1246 |
| Mother's education |  |  |  |  |  |  |  |
| None | 55.0 | 563 | 7.9 | 50.0 | 81 | 54.4 | 643 |
| Primary | 52.8 | 401 | 2.7 | 43.4 | 87 | 51.1 | 488 |
| Middle/JSS | 59.2 | 525 | 15.5 | 63.9 | 218 | 60.6 | 743 |
| Secondary+ | 66.4 | 218 | 23.2 | (63.2) | 85 | 65.5 | 303 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 53.0 | 451 | 0.0 | 45.3 | 36 | 52.4 | 487 |
| Second | 55.5 | 390 | 6.3 | 45.8 | 96 | 53.6 | 486 |
| Middle | 59.8 | 321 | 9.0 | 65.6 | 85 | 61.0 | 406 |
| Fourth | 58.2 | 297 | 21.9 | 64.0 | 109 | 59.7 | 406 |
| Richest | 63.3 | 247 | 17.1 | 59.0 | 146 | 61.7 | 393 |
| Total | 57.2 | 1707 | 13.2 | 57.6 | 471 | 57.3 | 2177 |
| [1] MICS indicator 2.15 <br> [2] MICS indicator 2.13 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases |  |  |  |  |  |  |  |

Infant and young child feeding (IYCF) practices directly affect the nutritional status of children under two years of age and, ultimately, impact child survival. ${ }^{16}$ Improving infant and young child feeding practices in children aged 6-23 months of age is therefore critical to improved nutrition, health and development of children. Additional to the minimum meal frequency for children aged 6-23 months, the national MICS also included questions on the minimum dietary diversity by asking mothers/caretakers of children aged 6-23 months, if the child had consumed any food items in the following 7 food groups, on the day or night preceding the survey:

- grains, roots and tubers
- legumes and nuts
- dairy products (milk, yogurt, cheese)
- flesh foods (meat, fish, poultry and liver/organ meats)
- eggs
- vitamin-A rich fruits and vegetables
- other fruits and vegetables

As per WHO/UNICEF guidelines on feeding practices for children aged 6-23 months, the cut-off of at least 4 of the 7 food groups above was selected because it is associated with better quality diets for both breastfed and non-breastfed children. Consumption of foods from at least 4 food groups on the previous day would also mean that many of the children had a high likelihood of consuming at least one animal-source food and at least one fruit or vegetable, in addition to a staple food (grain, root or tuber). For the Ghana MICS survey, it should be noted that although the quantity of food consumed matters and influences nutrition status, due to measurement challenges, the survey only recorded whether or not the food items were consumed and not the amounts.

Table NU. 8 presents the percentage of children aged 6-23 months who received at least 4 groups of food the day or night preceding the survey and the percentage of those who received at least four groups and at least the minimum times of feeding according to age. Table NU. 8 reveals that for children aged 6-23 months currently breastfeeding, 46 percent consumed food items from at least 4 food groups, and 34 percent consumed food items from 4 or more food groups and were fed the minimum number of times. Consumption of food items from at least 4 food groups increases with age - from 17 percent for children aged 6-8 months, 46 percent for children aged 9-11 months, 57 percent for children aged 12-17 months, and nearly 60 percent for children aged 18-23 months. This age pattern is noteworthy, and although varied food items were available in the households, the younger infants ( $6-8$ months) received much less varied diets compared to older children.

Overall, the results show that 31 percent of all children 6-23 months were fed according to the three IYCF practices the day and night prior to the survey, i.e. they received breast milk or milk product, they were fed the minimum number of times according to age, and they received at least four different food groups. Brong Ahafo (41\%), Ashanti (39\%), Upper West and Volta (38\% each) had the highest percentages of children 6-23 months who were fed according to the three IYCF practices, while Northern and Western region had the lowest percentages ( $21 \%$ and $15 \%$ respectively).

| Table NU.8: Infant and young child feeding (IYCF) practices (based on 4 food groups) <br> Percentage of children aged 6-23 months who are fed according to the three IYCF feeding practices, by breastfeeding status, number of food groups consumed and number of times they were fed during the day and night preceding the survey, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Currently breastfeeding |  |  |  | All |  |  |  |  |
|  | $4+\text { food }$ groups | Minimum times or more | Both 4+ food groups and minimum times or more | Number of children age 6-23 months | Breast milk or milk product | $4+$ food groups | Minimum times or more | With all 3 IYCF practices | Number of age 6-23 months |
| Sex |  |  |  |  |  |  |  |  |  |
| Male | 44.6 | 59.1 | 32.0 | 824 | 85.4 | 45.3 | 59.0 | 29.4 | 1077 |
| Female | 47.0 | 55.5 | 35.4 | 883 | 87.9 | 47.7 | 55.6 | 32.6 | 1100 |
| Age (in months) |  |  |  |  |  |  |  |  |  |
| 6-8 | 16.6 | 59.4 | 14.9 | 395 | 99.3 | 16.3 | 59.5 | 14.6 | 403 |
| 9-11 | 46.3 | 53.2 | 34.0 | 313 | 99.9 | 46.2 | 54.5 | 34.2 | 322 |
| 12-17 | 56.5 | 54.7 | 39.5 | 668 | 93.3 | 55.6 | 55.7 | 37.9 | 780 |
| 18-23 | 58.9 | 63.6 | 44.5 | 331 | 65.0 | 54.3 | 59.3 | 31.4 | 673 |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 31.6 | 46.6 | 16.5 | 204 | 86.6 | 33.4 | 45.6 | 15.3 | 243 |
| Central | 52.6 | 62.4 | 40.9 | 173 | 80.9 | 51.7 | 61.1 | 35.7 | 236 |
| Greater Accra | 48.8 | 59.2 | 36.6 | 244 | 86.2 | 50.7 | 59.2 | 34.7 | 367 |
| Volta | 66.2 | 50.5 | 37.5 | 134 | 92.4 | 66.2 | 52.4 | 37.9 | 157 |
| Eastern | 38.0 | 55.5 | 29.0 | 175 | 81.4 | 36.3 | 46.2 | 23.1 | 245 |
| Ashanti | 48.7 | 73.6 | 44.7 | 242 | 82.2 | 49.3 | 75.8 | 38.5 | 346 |
| Brong Ahafo | 52.9 | 61.1 | 46.8 | 148 | 85.2 | 53.9 | 65.8 | 40.7 | 177 |
| Northern | 33.3 | 49.1 | 21.4 | 245 | 96.8 | 33.3 | 48.4 | 21.3 | 256 |
| Upper East | 53.3 | 47.7 | 34.1 | 81 | 92.1 | 54.0 | 45.7 | 31.6 | 88 |
| Upper West | 52.8 | 61.0 | 39.6 | 60 | 95.4 | 51.9 | 60.2 | 38.3 | 64 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 47.3 | 58.2 | 35.8 | 676 | 87.3 | 49.8 | 58.8 | 34.8 | 932 |
| Rural | 44.9 | 56.6 | 32.4 | 1030 | 86.1 | 44.1 | 56.3 | 28.2 | 1246 |
| Mother's education |  |  |  |  |  |  |  |  |  |
| None | 42.6 | 55.0 | 29.6 | 563 | 89.4 | 41.8 | 54.4 | 27.0 | 643 |
| Primary | 45.0 | 52.8 | 31.2 | 401 | 86.0 | 43.8 | 51.1 | 26.9 | 488 |
| Middle/JSS | 51.6 | 59.2 | 38.5 | 525 | 82.5 | 50.8 | 60.6 | 34.5 | 743 |
| Secondary + | 42.1 | 66.4 | 37.9 | 218 | 91.7 | 50.5 | 65.5 | 37.8 | 303 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 44.7 | 53.0 | 30.1 | 451 | 93.4 | 46.0 | 52.4 | 28.6 | 487 |
| Second | 48.1 | 55.5 | 34.0 | 390 | 83.3 | 46.4 | 53.6 | 28.9 | 486 |
| Middle | 45.4 | 59.8 | 34.7 | 321 | 83.2 | 43.0 | 61.0 | 30.0 | 406 |
| Fourth | 42.7 | 58.2 | 30.8 | 297 | 85.5 | 45.0 | 59.7 | 30.5 | 406 |
| Richest | 48.9 | 63.3 | 42.4 | 247 | 87.1 | 52.7 | 61.7 | 38.4 | 393 |
| Total | 45.9 | 57.2 | 33.8 | 1707 | 86.6 | 46.5 | 57.3 | 31.0 | 2177 |

Children living in urban areas ( $35 \%$ ) were also more likely than their rural counterparts ( $28 \%$ ) to have been fed according to the three IYCF practices. Also, there is a direct relationship between the proportion of children who are fed according to the IYCF practices and mother's level of education. For example, only 27 percent of children whose mothers have no education or primary education are fed according to the IYCF practices. This increases to 35 percent for children whose mothers have middle/JSS education, and to 38 percent for children whose mothers have secondary or higher education. Although there is little or no difference in the first 4 wealth quintiles (about $30 \%$ ), the frequency and diet diversity rates for children in the richest wealth quintile were much higher than the rest (38\%). Another notable finding in this survey is the sharp drop in consumption of breastmilk or milk product from above $90 \%$ in infants aged 6 -17 months to $65 \%$ in those aged $18-23$ months. Milk is essential for child nutrition during the first 23 months. WHO and UNICEF recommend continued breastfeeding for two years and beyond. This sudden drop may be influenced by heaping observed at ages 12-17 months and 18-23 months.

The continued practice of bottle-feeding is a concern because of the possible contamination due to unsafe water and lack of hygiene in the preparation of the feed. Table NU. 9 shows that 14 percent of children aged $0-23$ months, and 20 percent of children aged $6-11$ months are fed using a bottle with a nipple. The results also show that for children aged $0-23$ months fed with a bottle with a nipple, the percentage is higher for female children ( $15 \%$ ) than male children ( $12 \%$ ). Bottle feeding is generally an affluent household phenomenon, and it is likely that mothers who resorted to bottle feeding are working women, who have to be away from their children for long hours. For example, children living in Greater Accra region (35\%), those living in urban areas ( $21 \%$ ), those children whose mothers have secondary education (34\%) and children from the wealthiest households ( $33 \%$ ) are more likely to be fed with a bottle with a nipple, than children from other backgrounds. The identification of reasons behind the current trends in bottle feeding would reinforce interventions to encourage breastfeeding and to reduce bottle feeding practices so that child morbidity and mortality can be reduced.


## Salt Iodization

Iodine Deficiency Disorders (IDD) is the world's leading cause of preventable mental retardation and impaired psychomotor development in young children. In its most extreme form, iodine deficiency causes cretinism. It also increases the risk of stillbirth and miscarriage in pregnant women. lodine deficiency is most commonly and visibly associated with goitre. IDD takes its greatest toll in impaired mental growth and development, contributing in turn to poor school performance, reduced intellectual ability, and impaired work performance. The indicator is the percentage of households consuming adequately iodized salt >>15 parts per million).

The Universal Salt lodisation (USI) regulations mandate salt for human and animal consumption to be iodized. In Ghana, non-iodized salt is banned from sale when it is intended for consumption and people found selling or using non-iodized salt are liable to arrest. Campaigns on iodized salt consumption have also been on-going for several years and iodized salt is readily accessible, at least, in all urban areas.

In the Ghana MICS 2011 testing for iodine content in salt used for cooking was done in two ways: using Rapid Test Kits (RTKs), and through Titration in a lab. In the case of titration, a sample of salt was collected in 5 out of 15 households in each cluster, and a titration test was carried out by the Department of Nutrition and Food Science, University of Ghana. The results of the two tests are highlighted below. Additionally, the results from titration were compared to those obtained through the Rapid Test Kits.

Rapid Test Kits results
In 89 percent of households, salt used for cooking was tested for iodine content by using salt test kits to test for the presence of potassium iodate. Table NU. 10 shows that in 10 percent of households there was no salt available. In 35 percent of households, salt was found to be adequately iodated (i.e. $15+\mathrm{ppm}$ ). Use of adequately iodized salt was lowest in Northern (15\%), followed by Volta (18\%), and Upper East (18\%) regions, and was highest in Greater Accra (56\%), followed by Brong Ahafo (45\%) and Western (44\%). Also, households in urban areas are more likely to use adequately iodated salt ( $45 \%$ ), compared to households in rural areas (23\%).

There is a marked variation by household wealth in terms of adequately iodized salt consumption. About 66 percent of the households in the richest wealth quintile use adequately iodated salt compared to 37 percent of households in the fourth wealth quintile, 24 percent for the households in middle wealth quintile, 19 percent households in the second wealth quintile, and 15 percent for households in the poorest wealth quintile. It is also interesting to note that more than one in five households (22\%) use salt that was not iodized, and 34 percent used inadequately iodated salt (>0 and <15 ppm). Households in Volta (59\%) and those in Northern (56\%) are also more likely to use inadequately iodated salt, compared to households in the other regions.

| Table NU.10: lodized salt consumption <br> Percent distribution of households by consumption of iodized salt, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percent of households in which salt was tested | Number of households | Percent of households with salt test result |  |  |  | Total | Number of households in which salt was tested or with no salt |
|  |  |  | Percent of households with no salt | Not iodized 0 PPM | $>0$ and $<15$ PPM | $\underset{[1]}{15+\text { PPM }}$ |  |  |
| Region |  |  |  |  |  |  |  |  |
| Western | 86.6 | 1116 | 12.8 | 14.5 | 28.6 | 44.0 | 100.0 | 1108 |
| Central | 88.4 | 1236 | 10.7 | 37.3 | 27.9 | 24.1 | 100.0 | 1225 |
| Greater Accra | 87.9 | 2321 | 11.5 | 12.5 | 19.9 | 56.1 | 100.0 | 2304 |
| Volta | 95.6 | 992 | 3.8 | 20.0 | 58.5 | 17.7 | 100.0 | 986 |
| Eastern | 89.4 | 1533 | 10.0 | 32.3 | 30.4 | 27.3 | 100.0 | 1523 |
| Ashanti | 88.8 | 2321 | 10.5 | 25.6 | 33.8 | 30.0 | 100.0 | 2304 |
| Brong Ahafo | 87.3 | 1011 | 12.3 | 10.2 | 32.2 | 45.3 | 100.0 | 1007 |
| Northern | 95.4 | 727 | 4.4 | 23.8 | 56.4 | 15.4 | 100.0 | 725 |
| Upper East | 88.2 | 414 | 5.3 | 29.2 | 47.3 | 18.2 | 100.0 | 386 |
| Upper West | 95.7 | 253 | 3.4 | 21.7 | 42.9 | 32.0 | 100.0 | 250 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 87.7 | 6358 | 11.6 | 16.6 | 26.9 | 44.9 | 100.0 | 6303 |
| Rural | 91.4 | 5567 | 7.7 | 28.6 | 41.1 | 22.5 | 100.0 | 5516 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |
| Poorest | 94.8 | 1763 | 4.3 | 32.6 | 48.4 | 14.6 | 100.0 | 1746 |
| Second | 89.8 | 2244 | 9.4 | 29.5 | 42.2 | 18.9 | 100.0 | 2226 |
| Middle | 87.6 | 2450 | 11.6 | 28.0 | 36.9 | 23.5 | 100.0 | 2429 |
| Fourth | 86.3 | 2639 | 13.1 | 19.2 | 30.4 | 37.3 | 100.0 | 2620 |
| Richest | 90.3 | 2829 | 8.8 | 7.8 | 17.3 | 66.1 | 100.0 | 2799 |
| Total | 89.4 | 11925 | 9.8 | 22.2 | 33.5 | 34.5 | 100.0 | 11819 |
| [1] MICS indicator 2.16 |  |  |  |  |  |  |  |  |

Salt Titration

## Salt sample for analysis

Among the 11,925 households interviewed in the MICS 2011, 10 percent had no salt at the time of survey (Table NU.10). About 90 percent of households provided salt samples for iodine testing using the Rapid Test Kits. As indicated above, one-third of households in each cluster were requested to provide an additional salt sample for further iodine testing using the titration method. A total of 3,439 of these salt samples were delivered to the Department of Nutrition and Food Science, University of Ghana, for titrimetric analysis, and this was equivalent to one in three of all salt samples, which had earlier been tested using the Rapid Test Kits.

Some of these salt samples were insufficient in quantity ( $<20$ or $<10 \mathrm{gm}$ ) and could not be analysed, leaving 3,325 for the titrimetric analysis. After analysis, 62 of the results were identified as duplicates from some households where two different salt samples were collected at the time of survey. Since only one salt sample was to be analysed per household, these 62 extra results were dropped by random sampling, leaving a total of 3,263 samples for the titration analysis. This number is equivalent to 30 percent of the samples tested by
the Rapid Test Kits. The method of Sullivan et al ${ }^{17}$ was used for the titrimetry. The results of salt titration are not provided by any other background characteristics in this report (regional, area of residence, education of head of household and wealth index quintile). A stand-alone report will be prepared and this will provide more details of the results and comparisons between the two methods for iodine testing.

Table NU. 11 provides results of salt iodine content using Titrimetry for Ghana. In line with Pieter's recommendation, non-iodised salt was that with $0-2 \mathrm{ppm} .{ }^{18}$ Accordingly, results reveal that no salt was found to be totally devoid of iodine (i.e 0-2 ppm iodine). The results also reveal that 29 percent of households had adequately iodised salt ( $\geq 15 \mathrm{ppm}$ ), while the remaining 71 percent of households used inadequately iodated salt (<15 ppm).

Considering that the recommended level of salt iodisation at the factory in Ghana is 50 ppm , and the recommended cut-off for human consumption is $\geq 15 \mathrm{ppm}$, the optimum or desirable range of iodised salt concentration in Ghana is $15-50 \mathrm{ppm}$. Table NU. 11 shows that 20 percent of the titrated salt is in this range. However, 5 percent of the salt used for cooking had very high levels of iodine concentration ( $\geq 60 \mathrm{ppm}$ ), which points to excessive iodisation.


Results of the Rapid Test Kits with matching titration results were identified and extracted for comparison with the titration results (Table NU.12). The percent efficiency of the Rapid Test Kits in correctly identifying adequately iodised salts was examined by comparing its results with the titration results. The following results were compared between the two methods:

- \% salt without iodine ( 0 ppm )
- \% inadequately iodised salt (>0 and < 15 ppm)
- \% adequately iodised salt ( $\geq 15 \mathrm{ppm}$ )

For salt without iodine, the Rapid Test Kits identified 25 percent of the salt samples as non-iodised, while the titration method found no salt samples as devoid of iodine.
The Rapid Test Kits reported 62 percent of salt as inadequately iodised (< 15 ppm ) - in this case, 25 percent of salt without iodine ( 0 ppm ), and 37 percent of inadequately iodated salt ( $>0$ and $<15 \mathrm{ppm}$ )

[^2]were combined to give 62 percent. The titration method, on the other hand, identified 71 percent of salt samples as inadequately iodised (>0 and <15 ppm). For households with salt, the Rapid Test Kits reported 38 percent of salt samples as adequately iodised ( $\geq 15 \mathrm{ppm}$ ), while titration reported 29 percent as adequately iodised. ${ }^{19}$ Thus, the Rapid Test Kits reported approximately 9 percent more salts as adequately iodised in comparison to titration. This represents inadequately iodised salt erroneously reported as adequately iodised, and could paint the erroneous picture that more households are consuming adequately iodised salt.

| Table NU.12: lodized salt consumption <br> Percent distribution of households by consumption of iodized salt, comparison between Rapid Test Kits and Titration Method, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percent of households with salt fo Analysis | Number of households | Percent of households with salt test result using Rapid Test Kit |  |  | Percent of households with salt test result using Titration Method |  |  | Number of households in which salt was tested for iodine using Titration method |
|  |  |  |  | 0 and 15 ppm Inadequately lodized salt | $15+$ PPM Adequately lodized salt | Salt with no iodine ( 0 ppm) | 0 and15 ppm Inadequately lodized salt | Adequately lodized salt |  |
| tal | 90.2 | 10,752 | 24.6 | 37.2 | 38.2 | . 0 | 70.7 | 29.3 | 3,263 |

Agreement between Rapid Test Kits and Titration in identifying adequately and Inadequately lodized salts While results from a much larger Rapid Test Kits sample size ( 10,752 ) was compared to 3,263 titration results in Table NU.12, only 3,215 salt samples were compared in checking the percentage agreement between the two methods. The summary of results of this comparison is shown in Figure NU.3, while comprehensive results will be included in the stand-alone report. As shown above, titrimetry did not detect any of the salt samples as being completely devoid of iodine ( 0 ppm ), and various studies have shown that this is more reliable than the 22 percent reported by the Rapid Test Kits. Natural salts, completely devoid of iodine may, in fact, be difficult to find in Ghana. The titration results of this survey confirmed the presence of traces of iodine in all salt samples tested. The rather high concentration (22\%) of non-iodised salts ( 0 ppm ) found through the Rapid Test Kits suggests that, at low iodine concentration levels, the Rapid Test Kits are unable to adequately distinguish between different levels of concentration of iodine in salts. As studies have shown, the Rapid Test Kits are less sensitive than titrimetry.

Table NU. 12 also shows that the Rapid Test Kits reported that 38 percent of sampled salts were adequately iodised, compared to 29 percent reported by titration. This suggests that the Rapid Test Kits are likely to report about 10 percent of households to be consuming adequately iodised salt while they are, in fact, consuming inadequately iodised salt. The Rapid Test Kit reported a higher percentage of adequately iodised salts by a margin of about 10 percent above titration.

[^3]Figure NU.3: Agreement and disagreement between salt iodization results obtained using the Rapid Test Kit and the results obtained using salt titration, Ghana, 2011


- Agree
- Disagree (Spot Kit<15ppm and Titration $>15 \mathrm{ppm}$ )
- Disagree (Spot Kit>15ppm and Titration<15ppm)


## Children's Vitamin A Supplementation

Vitamin A is essential for eye health and proper functioning of the immune system. It is found in foods such as milk, liver, eggs, orange fruits, red palm oil and green leafy vegetables, although the amount of vitamin A readily available to the body from these sources varies widely. In developing areas of the world, where vitamin A is largely consumed in the form of fruits and vegetables, daily per capita intake is often insufficient to meet dietary requirements. Inadequate intakes are further compromised by increased requirements for the vitamin as children grow or during periods of illness, as well as increased losses during common childhood infections. As a result, vitamin A deficiency is quite prevalent in the developing world and particularly in countries with the highest burden of under-five deaths.

The 1990 World Summit for Children set the goal of virtual elimination of vitamin A deficiency and its consequences, including blindness, by the year 2000. This goal was also endorsed at the Policy Conference on Ending Hidden Hunger in 1991, the 1992 International Conference on Nutrition, and the UN General Assembly's Special Session on Children in 2002. The critical role of vitamin A for child health and immune function also makes control of deficiency a primary component of child survival efforts and therefore critical to the achievement of the fourth Millennium Development Goal: a two-thirds reduction in underfive mortality rate by the year 2015.

For countries with vitamin A deficiency problems, current international recommendations call for highdose vitamin A supplementation every four to six months, targeted to all children between the ages of six to 59 months living in affected areas. Providing young children with two high-dose vitamin A capsules
a year is a safe, cost-effective, efficient strategy for eliminating vitamin A deficiency and improving child survival. Giving vitamin A to new mothers who are breastfeeding helps protect their children during the first few months of life and helps to replenish the mother's stores of vitamin A, which are depleted during pregnancy and lactation. For countries with vitamin A supplementation programs, the definition of the indicator is the percent of children 6-59 months of age receiving at least one high dose vitamin $A$ supplement in the last six months.

Based on UNICEF/WHO guidelines, the Ghana Ministry of Health recommends that children aged 6-11 months be given one high dose of vitamin A capsules and children aged 12-59 months given a vitamin A capsule every 6 months. In Ghana, vitamin A capsules are linked to immunization services and are given when the child has contact with these services after six months of age. It is also recommended that mothers take a vitamin A supplement within eight weeks of giving birth due to increased vitamin A requirements during pregnancy and lactation.

Within the six months prior to the survey, 74 percent of children aged 6 - 59 months received a high dose of vitamin A supplement (Table NU.13). Overall, 10 percent were based on the Child health book/card/ vaccination card, while 72 percent were based on the mother's report. At 58 percent, Ashanti region has the lowest vitamin A supplementation coverage, while all other regions have vitamin A supplementation of over 68 percent. For example, vitamin A supplementation coverage is highest in Upper East region and Brong Ahafo, both reporting 90 percent coverage, followed by Greater Accra with 84 percent.

The vitamin A supplementation in the last six months shows a general decrease with age: about 78 percent among children aged 6-11 months, and aged 12-23 months, 72 percent among children aged 36-47 months, and 68 percent among children aged 48-59 months.

Minimal differentials are noted by other background variables, including residence, mother's education and household wealth.

Table NU.13: Children's vitamin A supplementation

| Table NU.13: Children's vitamin A supplementation <br> Percent distribution of children aged 6 -59 months by receipt of a high dose vitamin $A$ supplement in the last 6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Percent distribu | dren aged $6-59$ months by months | receipt of a high d Ghana, 2011 | e vitamin A suppleme | t in the last 6 |
| Background Characteristics | Percentage who received vitamin A according to: |  | Percentage of children who received vitamin A during the last 6 months [1] | childrenage <br> 6-59 months |
|  | Child health book/ card/vaccination card | Mother's report |  |  |
| Sex |  |  |  |  |
| Male | 9.3 | 70.7 | 72.4 | 3339 |
| Female | 10.1 | 73.7 | 75.0 | 3393 |
| Region |  |  |  |  |
| Western | 11.6 | 69.4 | 73.1 | 685 |
| Central | 8.6 | 67.0 | 68.9 | 667 |
| Greater Accra | 9.5 | 83.6 | 84.3 | 1032 |
| Volta | 14.6 | 73.1 | 75.4 | 538 |
| Eastern | 15.2 | 67.5 | 69.4 | 721 |
| Ashanti | 5.0 | 57.0 | 58.3 | 1238 |
| Brong Ahafo | 10.9 | 89.6 | 89.9 | 589 |
| Northern | 7.9 | 72.2 | 73.3 | 773 |
| Upper East | 9.1 | 90.0 | 90.4 | 289 |
| Upper West | 8.9 | 72.0 | 72.8 | 200 |
| Residence |  |  |  |  |
| Urban | 8.9 | 71.8 | 73.2 | 2938 |
| Rural | 10.3 | 72.5 | 74.1 | 3794 |
| Age |  |  |  |  |
| 6-11 | 44.9 | 67.6 | 77.8 | 725 |
| 12-23 | 14.3 | 77.3 | 78.7 | 1453 |
| 24-35 | 4.7 | 74.1 | 74.1 | 1553 |
| 36-47 | 2.1 | 71.7 | 72.1 | 1576 |
| 48-59 | 1.1 | 67.8 | 67.8 | 1426 |
| Mother's education |  |  |  |  |
| None | 8.5 | 72.2 | 73.8 | 2221 |
| Primary | 9.5 | 73.0 | 74.1 | 1451 |
| Middle/JSS | 9.3 | 70.5 | 72.1 | 2271 |
| Secondary + | 14.9 | 75.7 | 77.0 | 789 |
| Wealth index quintiles |  |  |  |  |
| Poorest | 9.2 | 73.8 | 74.9 | 1561 |
| Second | 10.7 | 72.2 | 74.1 | 1387 |
| Middle | 9.9 | 69.1 | 71.4 | 1372 |
| Fourth | 7.8 | 70.0 | 71.4 | 1262 |
| Richest | 11.0 | 75.6 | 76.9 | 1151 |
| Total | 9.7 | 72.2 | 73.7 | 6732 |
| ${ }^{[1]}$ M1CS indicator 2.17 |  |  |  |  |

## Low Birth Weight

Weight at birth is a good indicator not only of a mother's health and nutritional status but also the newborn's chances of survival, growth, long-term health and psychosocial development. Low birth weight (less than 2,500 grams) carries a range of grave health risks for children. Babies who were undernourished in the womb face a greatly increased risk of dying during their early months and years. Those who survive have impaired immune function and increased risk of disease; they are likely to remain undernourished, with reduced muscle strength, throughout their lives, and suffer a higher incidence of diabetes and heart disease in later life. Children born underweight also tend to have a lower IQ and cognitive disabilities, affecting their performance in school and their job opportunities as adults.

In the developing world, low birth weight stems primarily from the mother's poor health and nutrition. Three factors have most impact: the mother's poor nutritional status before conception, short stature (due mostly to under nutrition and infections during her childhood), and poor nutrition during the pregnancy. Inadequate weight gain during pregnancy is particularly important since it accounts for a large proportion of foetal growth retardation. Moreover, diseases such as diarrhoea and malaria, which are common in many developing countries, can significantly impair foetal growth if the mother becomes infected while pregnant.

In the industrialized world, cigarette smoking during pregnancy is the leading cause of low birth weight. In developed and developing countries alike, teenagers who give birth when their own bodies have yet to finish growing run the risk of bearing underweight babies.

One of the major challenges in measuring the incidence of low birth weight is the fact that more than half of infants in the developing world are not weighed. In the past, most estimates of low birth weight for developing countries were based on data compiled from health facilities. However, these estimates are biased for most developing countries because the majority of new-borns are not delivered in health facilities, and those who are represent only a selected sample of all births.

Because many infants are not weighed at birth and those who are weighed may be a biased sample of all births, the reported birth weights usually cannot be used to estimate the prevalence of low birth weight among all children. Therefore, the percentage of births weighing below 2500 grams is estimated from two items in the questionnaire: the mother's assessment of the child's size at birth (i.e., very small, smaller than average, average, larger than average, very large) and the mother's recall of the child's weight or the weight as recorded on a health card if the child was weighed at birth. ${ }^{20}$

Overall, 54 percent of births were weighed at birth and approximately 11 percent of infants are estimated to weigh less than 2500 grams at birth (Table NU.14).

Children from Greater Accra region are most likely to be weighed at birth (82\%), and those from Northern region the least likely to be weighed at birth ( $25 \%$ ). Children from rural households, those from the poorest households and those whose mothers have no education are also less likely than more advantaged children to be weighed at birth. For example, 73 percent of children in urban households were weighed at birth, compared to 40 percent of children in rural households. Also, children from the wealthiest
households are more likely to be weighed at birth (91\%), compared to children from poorest households ( $25 \%$ ). Additionally, the possibility that children are weighed at birth increases with mother's education - 28 percent for children whose mothers have no education, to 51 percent for children whose mothers have primary education, to 64 percent for children whose mothers have middle/JSS education, and to 90 percent for children whose mothers have secondary or higher education.

Brong Ahafo region has the lowest proportion (8\%) of children weighing below 2,500 grams. All other regions have low birth weight ranging from 10-15 percent. Minimal differentials on low birth weight are recorded for other background variables, including residence, mother's education and household wealth.

| Table NU.14: Low birth weight infants <br> Percentage of last-born children in the 2 years preceding the survey that are estimated to have weighed below 2500 grams at birth and percentage of live births weighed at birth, Ghana, 2011 |  |  |  |
| :---: | :---: | :---: | :---: |
| Background Characteristics | Percent of live births: |  | Number of last-born children in the two years preceding the survey |
|  | Below 2500 grams [1] | Weighed at birth [2] |  |
| Region |  |  |  |
| Western | 10.7 | 50.4 | 270 |
| Central | 10.5 | 46.1 | 246 |
| Greater Accra | 9.9 | 82.4 | 397 |
| Volta | 10.5 | 49.7 | 189 |
| Eastern | 10.6 | 62.6 | 288 |
| Ashanti | 11.4 | 53.9 | 449 |
| Brong Ahafo | 8.2 | 51.8 | 227 |
| Northern | 11.9 | 25.0 | 283 |
| Upper East | 14.5 | 49.5 | 105 |
| Upper West | 9.5 | 44.5 | 75 |
| Residence |  |  |  |
| Urban | 10.9 | 72.7 | 1068 |
| Rural | 10.5 | 40.4 | 1460 |
| Mother's education |  |  |  |
| None | 11.2 | 28.2 | 733 |
| Primary | 10.5 | 50.6 | 565 |
| Middle/SSS | 10.1 | 63.8 | 886 |
| Secondary + | 11.4 | 89.6 | 344 |
| Wealth index quintiles |  |  |  |
| Poorest | 11.6 | 25.1 | 560 |
| Second | 10.3 | 42.7 | 546 |
| Middle | 11.2 | 50.6 | 500 |
| Fourth | 10.4 | 69.0 | 455 |
| Richest | 9.7 | 91.2 | 467 |
| Total | 10.7 | 54.0 | 2528 |
| [1] MICS indicator 2.18 <br> [2] MICS indicator 2.19 |  |  |  |

## Anaemia and Diet Diversity in Children aged $6-59$ months

Table NU. 15 shows prevalence of anemia in children 6-59 months old by age group, sex, residence, region, ecological zone, mother's education and wealth quintile. Overall, the prevalence of any anaemia was 57 percent, a significant decline compared to 78 percent in DHS 2008. Children aged 12-23 months had much higher levels at 71 percent, compared to the rest in this age group, while the prevalence in the 48-59 months old group was 48 percent. Male children had a slightly higher level of anemia (60\%) than female children (53\%). Children living in urban areas had a lower rate of anemia (48\%) compared to children living in rural areas (64\%),

Although there is a notable improvement since 2008, these rates are still above 40 percent, the WHO cutoff point for a severe public health problem. The rates in the three Northern regions are above 75 percent, while in the remaining regions the rates are below 65 percent. The three Northern regions have one rainy season and this negatively affects food security.

Besides the strong influence of region, educational level of the mother and wealth quintile, are two other major determinants. The rate of anemia in children whose mothers had secondary or higher education, and/or belonged to the richest wealth quintile was 36 percent. These are the groups that have a moderate level while the rest have a severe level of public health significance.

About half of the anemia problem is related to dietary practices, especially consumption of iron rich sources. While many foods contain iron, the bioavailability value is low. Suitable iron-rich or iron-fortified foods include fresh foods such as red organ meat, other red meat, commercially fortified foods specially designed for infants and young children which contain iron, or foods fortified in the home with a micronutrient powder containing iron or a lipid-based nutrient supplement containing iron.

| Table NU. 15: Prevalence of Anaemia in children <br> Percentage of children age 6-59 months classified as having Anaemia, by background characteristics, Ghana |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | Anaemia status by haemoglobin level |  |  |  |  |
| Background Characteristics | $\begin{array}{r} \text { Mild } \\ (10.0-10.9 \mathrm{~g} / \mathrm{dL}) \end{array}$ | Moderate (7.0-9.9 g/ dL) | Severe (below $7.0 \mathrm{~g} / \mathrm{dL}$ ) | Any <br> Anaemia | Number of children |
| Age in months |  |  |  |  |  |
| 6-8 | 25.7 | 34.1 | 4.3 | 64.1 | 258 |
| 9-11 | 20.4 | 40.2 | 3.8 | 64.4 | 224 |
| 12-17 | 24.4 | 43.2 | 3.7 | 71.3 | 515 |
| 18-23 | 29.0 | 33.9 | 3.9 | 66.8 | 455 |
| 24-35 | 21.8 | 30.4 | 3.7 | 55.8 | 1,033 |
| 36-47 | 21.8 | 29.6 | 1.1 | 52.5 | 1,063 |
| 48-59 | 21.0 | 25.3 | 1.0 | 47.4 | 969 |
| Sex |  |  |  |  |  |
| Male | 24.1 | 33.0 | 3.4 | 60.6 | 2,224 |
| Female | 21.5 | 30.3 | 1.7 | 53.5 | 2,292 |
| Residence |  |  |  |  |  |
| Urban | 23.6 | 22.9 | 1.2 | 47.7 | 1,979 |
| Rural | 22.1 | 38.4 | 3.7 | 64.2 | 2,538 |
| Region |  |  |  |  |  |
| Western | 23.7 | 32.1 | 0.7 | 56.5 | 458 |
| Central | 23.5 | 30.1 | 3.7 | 57.2 | 455 |
| Greater Accra | 25.2 | 22.1 | 0.5 | 47.8 | 683 |
| Volta | 22.6 | 33.7 | 1.8 | 58.1 | 364 |
| Eastern | 24.2 | 21.7 | 0.3 | 46.2 | 490 |
| Ashanti | 20.0 | 22.3 | 1.7 | 44.0 | 830 |
| Brong Ahafo | 21.6 | 39.5 | 2.2 | 63.3 | 400 |
| Northern | 22.5 | 50.8 | 7.8 | 81.2 | 508 |
| Upper East | 22.9 | 48.1 | 6.4 | 77.5 | 195 |
| Upper West | 22.2 | 52.1 | 7.2 | 81.5 | 135 |
| Mother's education |  |  |  |  |  |
| None | 21.9 | 39.6 | 3.9 | 65.4 | 1,786 |
| Primary | 24.5 | 32.1 | 2.5 | 59.2 | 977 |
| Middle/SSS | 22.6 | 24.8 | 1.4 | 48.9 | 1,540 |
| Secondary+ | 23.3 | 12.3 | 0.2 | 35.8 | 214 |
| Wealth index quintile |  |  |  |  |  |
| Poorest | 21.7 | 47.3 | 6.1 | 75.1 | 1,032 |
| Second | 22.6 | 38.9 | 2.5 | 64.0 | 944 |
| Middle | 21.1 | 33.4 | 2.0 | 56.5 | 920 |
| Fourth | 26.4 | 19.4 | 1.2 | 46.9 | 877 |
| Richest | 22.4 | 13.0 | 0.2 | 35.6 | 745 |
| Total | 22.8 | 31.6 | 2.6 | 57.0 | 4,517 |
| Note: Table is based on children who stayed in the household the night before the interview. Hemoglobin levels are adjusted for altitude using CDC formulas (CDC, 1998). Hemoglobin is measured in grams per deciliter ( $\mathrm{g} / \mathrm{dL}$ ). |  |  |  |  |  |



## Vaccinations

The Millennium Development Goal (MDG) 4 is to reduce child mortality by two thirds between 1990 and 2015. Immunization plays a key part in this goal. Immunizations have saved the lives of millions of children in the three decades since the launch of the Expanded Programme on Immunization (EPI) in 1974. Worldwide there are still 27 million children overlooked by routine immunization and as a result, vaccinepreventable diseases cause more than 2 million deaths every year.

A World Fit for Children goal is to ensure full immunization of children less than one year of age at 90 percent nationally, with at least 80 percent coverage in every district or equivalent administrative unit. According to UNICEF and WHO guidelines, a child should receive a BCG vaccination to protect against tuberculosis, three doses of DPT to protect against diphtheria, pertussis, and tetanus, three doses of polio vaccine, and a measles vaccination by the age of 12 months.

Since 2007, children in Ghana receive DPT as part of a combined Pentavalent (PENTA) dose which also contains Hepatitis B and Influenza vaccination. In Ghana the vaccination scheduled for children under five years therefore covers BCG, Polio 0, Polio 1, Polio2, Polio3, DPT/HepB/INFL 1, DPT/HepB/INFL2, DPT/HepB/ INFL3, Measles and Yellow Fever. Two new vaccines, pneumococcal and rotavirus were launched in Ghana in 2012, and will now be part of the immunization schedule. These immunizations will simultaneously tackle pneumonia and diarrhoea - two of the biggest killers of Ghanaian children. The Rotavirus vaccine is being given at 6 weeks and 10 weeks of age, while the Pneumococcal vaccine is given at 6 weeks, 10 weeks and 14 weeks of age. However, these are not included in the 2011 Ghana MICS Survey.

Mothers were asked to provide vaccination cards for children under the age of five. Interviewers copied vaccination information from the cards onto the MICS questionnaire. Where vaccination cards were not available, mothers/caregivers were asked to recall whether or not the child had received each of the vaccinations and, for DPT/HepB/INFL and Polio, how many times.Overall, 89 percent of children had health cards (Table CH.2).

The percentage of children aged 12 to 23 months who received each of the vaccinations is shown in Table CH.1.The denominator for the Table is comprised of children aged 12-23 months so that only children who are old enough to be fully vaccinated are counted. In the three first columns, the numerator includes all children who were vaccinated at any time before the survey according to the vaccination card or the mother's report. In the last column, only those who were vaccinated before their first birthday, as recommended, are included. For children without vaccination cards, the proportion of vaccinations given before the first birthday is assumed to be the same as for children with vaccination cards.

Overall, 98 percent of children aged 12-23 months received a BCG vaccination by the age of 12 months and the first dose of DPT/HepB/INFL was given to 98 percent of the children. The percentage declines for subsequent doses of DPT/HepB/INFL to 97 percent for the second dose, and to 92 percent for the third dose (Figure CH.1). Similarly, 98 percent of children received the first dose of vaccine against polio (Polio 1) by age 12 months and this declines to 91 percent by the third dose. The coverage for measles vaccine by 12 months is 89 percent. Overall, 84 percent of children aged 12-23 months are fully immunized in Ghana and the percent of children who have received all the recommended vaccinations by their first birthday account to 77 percent.

| Table CH.1: Vaccinations in first year of life <br> Percentage of children age 12-23 months immunized against childhood diseases at any time before the survey and before the first birthday, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background characteristics | Vaccinated at any time before the survey according o: Vaccination card | Vaccinated at any time before the survey according to: Mother's report | Vaccinated at any time before the survey according to: Either | Vaccinated by 12 months of age |
| BCG [1] | 86.4 | 11.7 | 98.1 | 97.8 |
| Polio 0 | 64.1 | 16.4 | 80.5 | 80.4 |
| Polio 1 | 87.1 | 11.5 | 98.6 | 98.0 |
| Polio 2 | 86.6 | 10.4 | 97.0 | 96.5 |
| Polio 3 [2] | 84.9 | 6.4 | 91.2 | 90.7 |
| DPT/HepB/NFL1 | 87.6 | 10.8 | 98.4 | 97.7 |
| DPT/HepB/NFL2 | 87.0 | 10.3 | 97.4 | 96.7 |
| DPT/HepB/INFL3 [3] [5] | 85.3 | 7.6 | 92.9 | 92.1 |
| Measles [4] | 80.7 | 13.1 | 93.7 | 88.5 |
| Yellow fever [6] | 81.2 | 12.5 | 93.8 | 88.3 |
| All vaccinations | 81.4 | 3.1 | 84.4 | 77.3 |
| No vaccinations | 0.0 | 0.4 | 0.5 | 0.5 |
| Number of children age 12-23 months | 1453 | 1453 | 1453 | 1453 |
| [1] MICS indicator 3.1 <br> [2] MICS indicator 3.2 <br> [3] MICS indicator 3.3 <br> [4] MICS indicator 3.4; MDG indicator 4.3 <br> [5] MICS indicator 3.5 <br> [6] MICS indicator 3.6 |  |  |  |  |

Figure CH.1: Vaccinations in first year of life, Percentage of children age 12-23 months immunized against childhood diseases at any time before the survey and before the first birthday, Ghana, 2011


Table CH. 2 also shows vaccination coverage rates among children aged 12-23 months by background characteristics. The figures indicate children receiving the vaccinations at any time up to the date of the survey, and are based on information from both the vaccination cards and mothers'/caretakers' reports.

BCG Vaccination coverage is 98 percent, and little variation is observed in BCG coverage according to the different background variables. Coverage for Polio at birth is 81 percent, with an Urban-Rural variation of 90 percent and 70 percent, respectively. The Greater Accra region has the highest coverage of 89 percent, while the Northern region has the lowest coverage of 71 percent. Wide differences are also observed by educational background of the mother/caretaker; the highest coverage of 95 percent was recorded for children born to mothers with secondary or higher education, compared to 70 percent for children born to mothers with no education. Also, children born in the wealthiest households are more likely to have received Polio vaccination at birth (98\%), compared to 65 percent of children from the poorest households.

The coverage for Polio 1 vaccination is 99 percent. Minor differences are observed by residence, educational background of the mother and wealth index quintile. Also, all regions recorded vaccination coverage of over 96 percent. For Polio 2, the vaccination coverage is 97 percent with a Rural/Urban variation of 94 percent and 98 percent respectively. The Western region has the highest coverage at 99 percent, while Central region has the lowest at 96 percent. The coverage for Polio 3 vaccination is 91 percent with an Urban/Rural variation of 88 percent and 94 percent respectively. Also, Upper East region has the highest coverage of Polio 3 vaccination at 98 percent, while Greater Accra region has the lowest at 84 percent.

The first dose DPT/HepB/Infl vaccination coverage is 98 percent, second dose is 97 percent and 93 percent for the third dose.For the 3rd dose DPT/HepB/INFL, the data indicated an Urban/Rural small variation of 92 percent and 94 percent respectively. Regional variation for the 3rd dose DPT/HepB/INFL,indicates that the Upper East region has the highest coverage of 98 percent, while Volta region has the lowest at 83 percent. Slight differences are also noted by educational level of the mother.

The coverage for Measles vaccination is 94 percent with Urban/Rural variation of 97 percent and 92 percent respectively. Regional variation for Measles vaccination reveals that Brong Ahafo has the highest vaccination coverage (100\%), while Volta region has the lowest, at 86 percent. Also, children born to mothers with secondary or higher education are more likely to have received the measles vaccination compared to children of mothers with lower levels of education.

The coverage for Yellow Fever vaccination is 94 percent. The data indicate Urban/Rural variation of 97 percent and 92 percent respectively. Regional variation for Yellow Fever vaccination reveals that Brong Ahafo has the highest coverage (100\%), while Volta has the lowest Yellow Fever vaccination coverage of 87 percent. Also, nearly all children whose mothers have secondary or higher education have received the Yellow Fever vaccination, compared to children of mothers with lower levels of education.
The coverage for all vaccination for children aged 12-23 months is 84 percent, while less than 1 percent of children in Ghana have not received any vaccinations.

| Table CH.2: Vaccinations by background characteristics <br> Percentage of children age 12-23 months currently vaccinated against childhood diseases, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percentage of children who received: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | BCG | $\begin{gathered} \text { Polio } \\ \text { at } \\ \text { birth } \end{gathered}$ | Polio <br> 1 | Polio $2$ | Polio <br> 3 | $\begin{gathered} \text { DPT/ } \\ \text { HepB/ } \\ \text { INFL1 } \end{gathered}$ | $\begin{aligned} & \text { DPT/ } \\ & \text { HepB/ } \\ & \text { INFL2 } \end{aligned}$ | $\begin{gathered} \text { DPT/ } \\ \text { HepB/ } \\ \text { INFLZ } \end{gathered}$ | Measles | Yellow fever | None | All | Percentage with vaccination card seen |  |
| Sex |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 98.6 | 80.9 | 98.5 | 96.3 | 89.7 | 98.4 | 96.7 | 92.7 | 93.3 | 93.2 | 0.2 | 83.2 | 88.1 | 715 |
| Female | 97.6 | 80.1 | 98.7 | 97.6 | 92.7 | 98.4 | 98.0 | 93.0 | 94.1 | 94.4 | 0.8 | 85.7 | 89.0 | 737 |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 99.1 | 74.2 | 99.1 | 99.1 | 95.1 | 99.1 | 99.1 | 98.1 | 96.4 | 96.4 | 0.9 | 91.4 | 87.1 | 151 |
| Central | 96.0 | 82.3 | 98.0 | 96.1 | 88.2 | 97.2 | 92.0 | 85.3 | 90.6 | 90.8 | 0.4 | 78.4 | 83.7 | 154 |
| Greater Accra | 97.7 | 89.3 | 95.5 | 94.5 | 84.4 | 96.9 | 95.4 | 89.1 | 94.2 | 94.1 | 1.2 | 78.3 | 82.0 | 237 |
| Volta | 97.4 | 78.1 | 99.6 | 98.8 | 92.7 | 95.3 | 95.3 | 83.4 | 86.2 | 86.9 | 0.4 | 71.8 | 81.9 | 108 |
| Eastern | 100.0 | 81.9 | 98.1 | 96.9 | 96.9 | 98.1 | 98.1 | 94.5 | 92.7 | 92.7 | 0.0 | 88.0 | 86.9 | 141 |
| Ashanti | 98.1 | 79.1 | 100.0 | 96.5 | 90.9 | 100.0 | 100.0 | 97.6 | 95.6 | 95.6 | 0.0 | 86.8 | 96.8 | 262 |
| Brong Ahafo | 99.4 | 79.4 | 100.0 | 97.9 | 95.6 | 100.0 | 100.0 | 97.5 | 99.6 | 99.6 | 0.0 | 94.9 | 92.7 | 122 |
| Northern | 97.1 | 71.3 | 98.9 | 97.3 | 88.3 | 98.9 | 97.3 | 91.7 | 89.8 | 89.9 | 0.8 | 80.2 | 89.7 | 173 |
| Upper East | 99.3 | 86.5 | 100.0 | 98.8 | 97.7 | 99.2 | 99.5 | 97.7 | 97.8 | 97.0 | 0.0 | 94.6 | 95.5 | 61 |
| Upper West | 98.6 | 88.5 | 99.1 | 98.7 | 96.1 | 99.5 | 98.5 | 97.4 | 97.2 | 97.5 | 0.3 | 93.4 | 93.0 | 45 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 98.2 | 94.3 | 98.5 | 96.2 | 87.7 | 98.7 | 97.7 | 91.6 | 96.6 | 96.6 | 0.1 | 81.7 | 82.9 | 619 |
| Rural | 98.0 | 70.2 | 98.6 | 97.6 | 93.9 | 98.2 | 97.1 | 93.8 | 91.6 | 91.7 | 0.8 | 86.5 | 92.7 | 833 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 96.9 | 70.2 | 96.5 | 93.0 | 87.7 | 96.4 | 94.8 | 91.9 | 92.1 | 92.2 | 1.6 | 82.6 | 89.7 | 433 |
| Primary | 98.6 | 77.8 | 99.2 | 98.1 | 92.0 | 98.5 | 97.5 | 90.4 | 89.1 | 88.7 | 0.0 | 80.5 | 88.4 | 345 |
| Middle/ss | 98.5 | 86.2 | 99.4 | 99.2 | 93.9 | 99.7 | 99.0 | 94.7 | 96.4 | 96.8 | 0.0 | 87.5 | 88.8 | 512 |
| Secondary + | 99.2 | 95.3 | 100.0 | 98.4 | 90.8 | 99.4 | 99.0 | 94.8 | 99.4 | 99.4 | 0.0 | 88.3 | 85.2 | 162 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 96.6 | 62.4 | 98.8 | 97.9 | 92.6 | 97.9 | 97.2 | 93.0 | 90.9 | 91.3 | 0.9 | 83.8 | 91.0 | 336 |
| Second | 97.3 | 76.8 | 98.9 | 95.4 | 89.6 | 98.5 | 97.4 | 93.2 | 93.4 | 93.3 | 1.0 | 84.8 | 85.6 | 329 |
| Middle | 98.6 | 85.3 | 98.5 | 96.7 | 95.1 | 98.0 | 96.0 | 90.1 | 94.0 | 93.7 | 0.1 | 83.5 | 91.4 | 279 |
| Fourth | 99.2 | 88.7 | 97.3 | 96.1 | 92.5 | 97.7 | 97.2 | 94.0 | 93.3 | 93.5 | 0.0 | 85.8 | 89.5 | 273 |
| Richest | 99.6 | 96.4 | 99.4 | 99.4 | 85.9 | 100.0 | 99.4 | 94.4 | 98.3 | 98.3 | 0.0 | 84.5 | 84.8 | 235 |
| Total | 98.1 | 80.5 | 98.6 | 97.0 | 91.2 | 98.4 | 97.4 | 92.9 | 93.7 | 93.8 | 0.5 | 84.4 | 88.6 | 1453 |

## Neonatal Tetanus Protection

One of the MDGs is to reduce by three quarters the maternal mortality ratio, with one strategy to eliminate maternal tetanus. Another goal is to reduce the incidence of neonatal tetanus to less than 1 case of neonatal tetanus per 1000 live births in every district. A World Fit for Children goal is to eliminate maternal and neonatal tetanus by 2005.

Prevention of maternal and neonatal tetanus is to ensure that all pregnant women receive at least two doses of tetanus toxoid vaccine. However, if women have not received two doses of the vaccine during the pregnancy, they (and their newborns) are also considered to be protected if the following conditions are met:

- Received at least two doses of tetanus toxoid vaccine, the last within the prior 3 years;
- Received at least 3 doses, the last within the prior 5 years;
- Received at least 4 doses, the last within 10 years;
- Received at least 5 doses during lifetime.

Table CH. 3 shows the protection status from tetanus of women who have had a live birth within the last 2 years. Figure CH .2 shows the protection of women against neonatal tetanus by major background characteristics. Table CH. 3 indicate that 55 percent of women received at least 2 doses of tetanus vaccination during the last pregnancy, with women in urban areas more likely to receive the 2 doses ( $61 \%$ ), than their rural counterparts ( $50 \%$ ). Overall, Table CH. 3 and Figure CH. 2 show that the percentage of women 15-49 years who had a live birth in the last 2 years, and who were protected against neonatal tetanus is 70 percent. Greater Accra region has the highest protection level of 82 percent and the Upper East region has the lowest level of 57 percent. It is worth noting that Greater Accra, Central, Eastern and Ashanti regions have protection levels above the national average of 70 percent. The percentage of protection against tetanus is correlated with residence, education and wealth index quintile: it is much higher in the urban areas ( $78 \%$ ) than in rural areas ( $65 \%$ ), and it increases from 61 percent for women with no education, to 86 percent for women with secondary or higher education, and from 59 percent for women from the poorest wealth quintile, to 88 percent for women belonging to the richest wealth quintile.

| Table CH.3: Neonatal tetanus protection <br> Percentage of women age 15-49 years with a live birth in the last 2 years protected against neonatal tetanus, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of women who received at least 2 doses during last pregnancy | Percentage of women who did not receive two or more doses during last pregnancy but received: |  |  |  | Protected against tetanus [1] | Number of women with a live birth in the last 2 years |
|  |  | 2 doses, the last within prior 3 years | 3 doses, the last within prior 5 years | 4 doses, the last within prior 10 years | 5 or more doses during lifetime |  |  |
| Residence |  |  |  |  |  |  |  |
| Urban | 60.9 | 16.2 | 0.5 | 0.0 | 0.0 | 77.5 | 1068 |
| Rural | 50.1 | 14.0 | 0.7 | 0.0 | 0.2 | 65.0 | 1460 |
| Region |  |  |  |  |  |  |  |
| Western | 49.8 | 14.1 | 1.4 | 0.0 | 0.3 | 65.6 | 270 |
| Central | 66.1 | 8.1 | 0.3 | 0.0 | 0.0 | 74.6 | 246 |
| Greater Accra | 63.8 | 17.9 | 0.3 | 0.0 | 0.0 | 82.1 | 397 |
| Volta | 44.8 | 22.5 | 0.0 | 0.0 | 0.0 | 67.3 | 189 |
| Eastern | 65.1 | 7.0 | 0.0 | 0.0 | 0.0 | 72.1 | 288 |
| Ashanti | 54.2 | 21.5 | 0.5 | 0.0 | 0.0 | 76.2 | 449 |
| Brong Ahafo | 41.5 | 15.4 | 2.0 | 0.0 | 1.0 | 59.9 | 227 |
| Northern | 47.1 | 13.0 | 1.1 | 0.0 | 0.1 | 61.3 | 283 |
| Upper East | 46.4 | 10.1 | 0.0 | 0.0 | 0.0 | 56.5 | 105 |
| Upper West | 52.6 | 7.5 | 0.2 | 0.0 | 0.0 | 60.3 | 75 |
| Education |  |  |  |  |  |  |  |
| None | 46.0 | 14.2 | 1.0 | 0.0 | 0.2 | 61.3 | 733 |
| Primary | 51.8 | 14.8 | 0.9 | 0.0 | 0.0 | 67.5 | 565 |
| Middle/SSS | 57.2 | 15.6 | 0.3 | 0.0 | 0.3 | 73.3 | 886 |
| Secondary + | 70.9 | 14.8 | 0.3 | 0.0 | 0.0 | 86.0 | 344 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 45.8 | 12.6 | 0.8 | 0.0 | 0.0 | 59.2 | 560 |
| Second | 47.6 | 14.1 | 1.1 | 0.0 | 0.5 | 63.3 | 546 |
| Middle | 52.7 | 16.0 | 0.4 | 0.0 | 0.0 | 69.1 | 500 |
| Fourth | 59.0 | 16.2 | 0.0 | 0.0 | 0.2 | 75.3 | 455 |
| Richest | 71.3 | 16.2 | 0.7 | 0.0 | 0.0 | 88.2 | 467 |
| Total | 54.6 | 14.9 | 0.6 | 0.0 | 0.1 | 70.3 | 2528 |
| ${ }^{[1]}$ MICS indicator 3.7 |  |  |  |  |  |  |  |

Figure CH.2: Percentage of women age 15-49 years with a live birth in the last 2 years protected against neonatal tetanus, Ghana, 2011


Oral Rehydration Treatment
Diarrhoea is the second leading cause of deaths among children under five worldwide. Most diarrhoearelated deaths in children are due to dehydration from loss of large quantities of water and electrolytes from the body in liquid stools. Management of diarrhoea - either through oral rehydration salts (ORS) or a recommended home fluid (RHF) - can prevent many of these deaths. Preventing dehydration and malnutrition by increasing fluid intake and continuing to feed the child are also important strategies for managing diarrhoea.

The goals are to: 1) reduce by one half death due to diarrhoea among children under five by 2010 compared to 2000 (A World Fit for Children); and 2) reduce by two thirds the mortality rate among children under five by 2015 compared to 1990 (Millennium Development Goals). In addition, the World Fit for Children calls for a reduction in the incidence of diarrhoea by 25 percent.

## The indicators are:

- Prevalence of diarrhoea
- Oral rehydration therapy (ORT)
- Home management of diarrhoea
- ORT with continued feeding

In the MICS questionnaire, mothers (or caretakers) were asked to report whether their child had had diarrhoea in the two weeks prior to the survey. If so, the mother was asked a series of questions about what the child had to drink and eat during the episode and whether this was more or less than the child usually ate and drank.

Overall, 13 percent of under- five children had diarrhoea in the two weeks preceding the survey (Table CH.4). Regional variations were noticed with a higher diarrhoea prevalence rate in Northern region (21\%) and the lowest in the Eastern region (7\%). The peak of diarrhoea prevalence occurs in the weaning period, among children aged 12-23 months, with a prevalence of 18 percent.

Table CH. 4 also shows the percentage of children receiving various types of recommended fluids during episodes of diarrhoea. Since mothers were able to name more than one type of fluids, the percentages do not necessarily add to 100 . Figure CH. 3 presents, in particular, the percentage of children who received an oral rehydration treatment (using ORS). About a third of the children (35\%) received fluids from ORS packets or pre-packaged ORS fluids and 20 percent received recommended homemade fluids.Approximately 48 percent of children with diarrhoea received one or more of the recommended home treatments (i.e., were treated with ORS or any recommended homemade fluid). Children with diarrhoea and from Ashanti region were more likely (63\%) to receive ORS or any recommended homemade fluid compared to those living in Northern region (32\%). The percentage of ORS or any recommended homemade fluid administration increases with mother's educational level, but not necessarily with the wealth index quintiles.

Figure CH.3: Percentage of children age 0-59 months with diarrhoea in the last two weeks, and who received oral rehydration treatment, Ghana, 2011


Table CH.4: Oral rehydration solutions and recommended homemade fluids
Percentage of children age $0-59$ months with diarrhoea in the last two weeks, and treatment with oral rehydration solutions and

| Background <br> Characteristics |  | Number of children age 0-59 months | Children with diarrhoea who received: |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Recommended homemade fluids |  |  |  | ORS or anyrecommendedhomemadefluid |  |
|  |  |  | ORS (Fluid from ORS packet or pre-packaged ORS fluid) | $\begin{aligned} & \text { Coconut } \\ & \text { water } \end{aligned}$ | Rice water | Mashed Kenkey | recommended homemade fluid |  |  |
| Sex |  |  |  |  |  |  |  |  |  |
| Male | 12.9 | 3757 | 34.8 | 10.4 | 6.7 | 12.8 | 23.3 | 49.5 | 484 |
| Female | 12.4 | 3793 | 35.1 | 4.7 | 4.2 | 10.2 | 16.4 | 46.0 | 471 |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 13.7 | 758 | 20.2 | 8.9 | 5.8 | 10.8 | 22.0 | 40.8 | 104 |
| Central | 11.9 | 740 | 38.4 | 12.5 | 1.2 | 8.0 | 19.8 | 51.0 | 88 |
| Greater <br> Accra | 7.9 | 1142 | (35.8) | (6.0) | (15.0) | (10.4) | (21.0) | (54.9) | 91 |
| Volta | 7.6 | 601 | 32.0 | 5.9 | 3.2 | 7.7 | 16.9 | 43.2 | 45 |
| Eastern | 6.5 | 827 | (27.5) | (3.1) | (7.1) | (6.2) | (13.3) | (37.7) | 54 |
| Ashanti | 14.5 | 1411 | 42.5 | 15.8 | 8.9 | 22.7 | 36.5 | 62.6 | 204 |
| Brong Ahafo | 16.2 | 671 | 32.2 | 8.1 | 3.5 | 16.2 | 24.1 | 47.3 | 108 |
| Northern | 21.4 | 852 | 30.1 | 0.4 | 1.5 | 3.0 | 4.4 | 31.7 | 182 |
| Upper East | 15.8 | 325 | 59.3 | 0.6 | 1.4 | 6.6 | 7.3 | 60.0 | 51 |
| Upper West | 12.5 | 223 | 37.9 | 0.5 | 3.1 | 8.9 | 11.7 | 44.1 | 28 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 10.4 | 3283 | 37.0 | 11.5 | 8.5 | 14.0 | 26.5 | 53.9 | 343 |
| Rural | 14.4 | 4267 | 33.8 | 5.4 | 3.7 | 10.1 | 16.2 | 44.4 | 613 |
| Age |  |  |  |  |  |  |  |  |  |
| 0-11 | 11.6 | 1543 | 26.7 | 1.4 | 4 | 8.4 | 8.8 | 33.3 | 180 |
| 12-23 | 18.0 | 1453 | 39.8 | 8.6 | 6.1 | 15.0 | 23.4 | 54.6 | 262 |
| 24-35 | 14.6 | 1553 | 37.2 | 13.5 | 4.9 | 15.2 | 24.8 | 52.9 | 227 |
| 36-47 | 11.6 | 1576 | 33.5 | 4.9 | 8.5 | 5.2 | 17.7 | 43.9 | 183 |
| 48-59 | 7.3 | 1426 | 34.8 | 7.3 | 8.3 | 10.9 | 23.2 | 51.3 | 103 |
| Mother's education |  |  |  |  |  |  |  |  |  |
| None | 16.9 | 2455 | 38.3 | 3.2 | 5.0 | 5.3 | 11.2 | 45.1 | 414 |
| Primary | 13.4 | 1628 | 33.7 | 4.5 | 10.3 | 18.0 | 24.4 | 47.7 | 218 |
| Middle/SSS | 9.6 | 2578 | 29.3 | 12.8 | 2.8 | 18.1 | 28.3 | 49.9 | 248 |
| Secondary | 8.5 | 889 | 39.2 | 23.0 | 2.3 | 5.0 | 26.6 | 55.7 | 76 |

Wealth index quintiles

| Poorest | 16.9 | 1730 | 44.3 | 1.4 | 1.6 | 8.9 | 10.9 | 49.9 | 293 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Second | 14.6 | 1551 | 33.5 | 4.6 | 3.7 | 9.9 | 16.1 | 44.9 | 226 |
| Middle | 11.9 | 1559 | 33.1 | 9.3 | 11.3 | 13.5 | 27.3 | 47.7 | 186 |
| Fourth | 11.6 | 1397 | 26.6 | 13.8 | 9.4 | 18.7 | 30.2 | 51.8 | 162 |
| Richest | 6.8 | 1313 | 27.0 | 20.3 | 3.0 | 6.9 | 24.8 | 40.9 | 89 |
| Total | $\mathbf{1 2 . 7}$ | $\mathbf{7 5 5 0}$ | $\mathbf{3 5 . 0}$ | $\mathbf{7 . 6}$ | $\mathbf{5 . 5}$ | $\mathbf{1 1 . 5}$ | $\mathbf{1 9 . 9}$ | 47.8 | $\mathbf{9 5 6}$ |

[^4]Overall, Table CH. 5 shows that 23 percent of under fives with diarrhoea drank more than usual while 42 percent drank same quantity of fluid, 15 percent of children were given much less to drink and 3 percent were given nothing to drink; while, 32 percent of children were given somewhat less to eat, 37 percent were given about the same quantity of food, 5 percent were given more, 4 percent stopped food and 4 percent were not given food to eat. Caretakers in rural areas are more likely to give less drink or nothing to drink compared to their urban counterparts who are more likely to give about the same or more drink to children.



Table CH. 6 provides the proportion of children aged $0-59$ months with diarrhoea in the last two weeks who received oral rehydration therapy with continued feeding, and percentage of children with diarrhoea who received other treatments. Overall, half of children (49\%) with diarrhoea received ORS or increased fluids and 59 percent received ORT (ORS or recommended homemade fluids or increased fluids). Combining the information in Table CH. 5 with those in Table CH. 4 on oral rehydration therapy, it is observed that 44 percent of children received ORT and, at the same time, feeding was continued, as is the recommendation.

There are significant differences in the home management of diarrhoea by background characteristics as shown in Figure CH.4. For example, in Volta region, only 28 percent of children received ORT and continued feeding, while the coverage is 57 percent in Ashanti region. Also, urban areas have coverage of 51 percent compared to 40 percent in rural areas. Differences by age groups are also observed - for age-group 0-11 months, the coverage is 29 percent, while the coverage for the $24-35$ months age-group is 55 percent. For both educational background and wealth quintile of the household, uneven patterns are observed.

The survey revealed that other orthodox treatments were used to treat diarrhoea in children, and included intravenous infusion, anti-motility, herbal remedy, antibiotic and zinc. These treatments were administered in syrup, pill, herbal medicine and injection forms. Overall, nearly 30 percent received antibiotic in pill or syrup, 17 percent were given antimotility, 4 percent antibiotic injection, 2 percent other pill or syrup, 5 percent with herbal medicine, 7 percent unknown pill or syrup and 7 percent received other treatment (Table CH.6).

Table CH. 6 also shows that 12 percent of children who had diarrhoea during the last two weeks preceding the survey were not given any treatment or drug, and the highest was recorded in age-group of 0-11 months (19\%).

Figure CH.4: Percentage of children age 0-59 months with diarrhoea in the last two weeks who received oral rehydration therapy with continued feeding, Ghana 2011


Care Seeking and Antibiotic Treatment of Pneumonia
Pneumonia is the leading cause of death in children and the use of antibiotics in under-5s with suspected pneumonia is a key intervention. A World Fit for Children goal is to reduce by one-third the deaths due to acute respiratory infections.

Children with suspected pneumonia are those who had an illness with a cough accompanied by rapid or difficult breathing and whose symptoms were NOT due to a problem in the chest and a blocked nose.

The indicators are:

- Prevalence of suspected pneumonia
- Care seeking for suspected pneumonia
- Antibiotic treatment for suspected pneumonia
- Knowledge of the danger signs of pneumonia

Table CH. 7 presents the prevalence of suspected pneumonia and, if care was sought outside the home, the source of care. Overall, only 3 percent of children aged 0-59 months were reported to have had symptoms of pneumonia during the two weeks preceding the survey, and 41 percent of them were taken to an appropriate provider. Also, 56 percent of children with suspected pneumonia in the last two weeksreceived antibiotics. The table shows that children with suspected pneumonia were mainly taken to public health facilities ( $18 \%$ were taken to public hospital, $12 \%$ to public health centres), while a smaller proportion were taken to private hospital or clinic (7\%).

Due to the small number of children reported to have had symptoms of pneumonia in the last two weeks, the analysis of the use of antibiotics and health care providers by background variables will be limited to sex of the child only. Table CH. 7 shows that male children are more likely to be taken to any appropriate provider (49\%) or receiving antibiotics (69\%) compared to female children with 34 percent and 43 percent, respectively.



The issues related to the knowledge of danger signs of pneumonia are presented in Table CH.8. Obviously, mothers' knowledge of the danger signs is an important determinant of care-seeking behaviour. Only 1 percent of the mothers and caretakers of children aged 0-59 months know the two danger signs of pneumonia - fast and difficult breathing.

The most commonly identified symptom for taking a child to a health facility is developing a fever ( $76 \%$ ), while 44 percent of mothers indicated that a child should be taken immediately to a health facility if the child becomes sicker. Also, 34 percent and 26 percent of mothers indicated that the child should be taken to a health facility if he/she has diarrhoea, or if child is not eating well, respectively. In contrast, only 3 percent and 5 percent of mothers/caretakers identified respectively fast breathing and difficult breathing as symptoms for taking children immediately to a health care provider

## Solid Fuel Use

More than 3 billion people around the world rely on solid fuels (biomass and coal) fortheir basic energy needs, including cooking and heating. Cooking and heating with solid fuels leads to high levels of indoor smoke, a complex mix of health-damaging pollutants. The main problem with the use of solid fuels is products of incomplete combustion, including carbon monoxide, polyaromatic hydrocarbons, sulphur dioxide, and other toxic elements. Use of solid fuels increases the risk of acute respiratory illness, pneumonia, chronic obstructive lung disease, cancer, and possibly tuberculosis, low birth weight, cataracts, and asthma. The primary indicator is the proportion of the population using solid fuels as the primary source of domestic energy for cooking.

As shown by Table CH.9, overall, more than three quarters ( $81 \%$ ) of all households in Ghana are using solid fuels for cooking. As can be expected, use of solid fuels is lower in urban areas (66\%) than in rural areas, where almost all household members are using solid fuels (96\%).The findings show that less than 50 percent of households in Accra use solid fuels for cooking, compared to over 80 percent of households in all other regions. The three northern regions have the highest percentage of households using solid fuels for cooking (about 98\%).

One in every two households in all ten regions use wood/firewood for cooking (50\%), while nearly 30 percent of the households use charcoal and a further 17 percent use Liquefied Petroleum Gas (LPG). Households in Accra are more likely to use LPG than households in other regions (50\%).

Differentials with respect to household wealth and educational level of the household head are quite significant. The use of solid fuels decreases with educational level and wealth index quintile. The results reveal that households where the head has no education are more than twice as likely to use solid fuels (98\%), compared to households where the head has secondary or higher education (45\%). Also, virtually all households at the bottom 40 percent wealth quintiles use solid fuels, compared to 24 percent of the richest 20 percent of the households.

Solid fuel use alone is a poor proxy for indoor air pollution, since the concentration of the pollutants is different when the same fuel is burnt in different stoves or fires. Use of closed stoves with chimneys minimizes indoor pollution, while open stove or fire with no chimney or hood means that there is no protection from the harmful effects of solid fuels. Solid fuel use by place of cooking is depicted in Table CH.10. For about a quarter ( $26 \%$ ) of those households using solid fuels, cooking is done in a separate room used as a kitchen. For a further 25 percent of households using solid fuels, cooking is done elsewhere in the house, while 15 percent of the households use a separate building. Also, about one in three of the households (34\%) cook outdoors.

| Table CH.9: Solid fuel use |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percent distribution of household members according to type of cooking fuel used by the household, and percentage of household members living in households using solid fuels for cooking, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| Percentage of household members in households using: |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | Electricity | Liquefied Petroleum Gas (LPG) | Biogas | Kerosene | Charcoal | $\begin{array}{r} \text { Wood/ } \\ \text { Firewood } \end{array}$ | Straw / Shrubs / Grass | Agricultural crop residue/ Sawdust |  | Total | Solid fuels for cooking |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 0.1 | 17.5 | 0.0 | 0.2 | 20.3 | 60.9 | 0.0 | 0.0 | 1.0 | 100.0 | 81.3 |
| Central | 0.0 | 12.8 | 0.0 | 0.1 | 32.2 | 54.2 | 0.0 | 0.0 | 0.6 | 100.0 | 86.4 |
| Greater Accra | 0.3 | 49.7 | 0.1 | 0.6 | 44.2 | 3.8 | 0.0 | 0.0 | 1.4 | 100.0 | 47.9 |
| Volta | 0.0 | 6.0 | 0.1 | 0.1 | 28.3 | 64.6 | 0.0 | 0.0 | 0.9 | 100.0 | 92.9 |
| Eastern | 1.7 | 13.6 | 0.4 | 0.0 | 35.4 | 48.1 | 0.0 | 0.0 | 0.8 | 100.0 | 83.4 |
| Ashanti | 0.1 | 17.7 | 0.0 | 0.0 | 35.8 | 44.3 | 0.0 | 0.3 | 1.8 | 100.0 | 80.3 |
| Brong Ahafo | 0.0 | 6.0 | 0.0 | 0.0 | 19.1 | 73.6 | 0.0 | 0.0 | 1.3 | 100.0 | 92.7 |
| Northern | 0.1 | 1.3 | 0.0 | 0.1 | 15.7 | 82.1 | 0.0 | 0.3 | 0.4 | 100.0 | 98.2 |
| Upper East |  |  |  |  |  |  |  | 0.1 | 2.5 | 0.1 | 0.0 |
| Upper West | 0.0 | 1.9 | 0.0 | 0.0 | 16.3 | 81.4 | 0.0 | 0.0 | 0.4 | 100.0 | 97.7 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 0.6 | 31.8 | 0.1 | 0.3 | 44.2 | 21.2 | 0.1 | 0.3 | 1.5 | 100.0 | 65.7 |
| Rural | 0.0 | 3.6 | 0.0 | 0.0 | 15.6 | 77.0 | 0.7 | 2.2 | 0.7 | 100.0 | 95.6 |
| None | 0.0 | 1.6 | 0.0 | 0.0 | 19.5 | 74.1 | 1.1 | 3.2 | 0.4 | 100.0 | 97.9 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| Primary | 0.0 | 5.2 | 0.0 | 0.0 | 32.9 | 59.1 | 0.4 | 1.5 | 0.8 | 100.0 | 93.9 |
| Middle/JSS | 0.2 | 17.3 | 0.1 | 0.1 | 36.7 | 44.1 | 0.0 | 0.3 | 1.3 | 100.0 | 81.1 |
| Secondary+ | 1.1 | 50.6 | 0.2 | 0.5 | 28.3 | 17.5 | 0.0 | 0.1 | 1.7 | 100.0 | 45.8 |
| Missing/DK | * | * | * | * | * | * | * | * | * | 100.0 |  |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 91.6 | 1.8 | 5.7 | 0.2 | 100.0 | 99.8 |
| Second | 0.0 | 0.0 | 0.0 | 0.1 | 8.9 | 89.4 | 0.3 | 0.6 | 0.6 | 100.0 | 99.2 |
| Middle | 0.0 | 1.4 | 0.0 | 0.0 | 43.1 | 53.7 | 0.0 | 0.0 | 1.8 | 100.0 | 96.8 |
| Fourth | 0.1 | 12.2 | 0.1 | 0.3 | 70.6 | 14.9 | 0.0 | 0.0 | 1.8 | 100.0 | 85.5 |
| Richest | 1.4 | 72.7 | 0.3 | 0.3 | 23.8 | 0.6 | 0.0 | 0.0 | 0.9 | 100.0 | 24.4 |
| Total | 0.3 | 17.3 | 0.1 | 0.1 | 29.4 | 50.0 | 0.4 | 1.3 | 1.1 | 100.0 | 81.2 |
| ${ }^{1]}$ MICS indicator 3.11 |  |  |  |  |  |  |  |  |  |  |  |


| Table CH.10: Solid fuel use by place of cooking |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percent distribution of household members in households using solid fuels by place of cooking, Ghana, 2011 |  |  |  |  |  |  |  |
|  | Place of cooking: |  |  |  |  |  | Number of |
| Background Characteristics | In a separate room used as kitchen | Elsewhere in the house | $\begin{array}{r} \text { In a } \\ \text { separate } \\ \text { building } \end{array}$ | Outdoors | Other | Total | household members in households using solid fuels for cooking |
| Region |  |  |  |  |  |  |  |
| Western | 29.9 | 25.8 | 23.4 | 20.9 | 0.0 | 100.0 | 3510 |
| Central | 28.3 | 17.0 | 19.4 | 35.3 | 0.0 | 100.0 | 3938 |
| Greater Accra | 15.4 | 33.0 | 3.1 | 48.5 | 0.0 | 100.0 | 3655 |
| Volta | 7.8 | 11.9 | 31.7 | 48.7 | 0.0 | 100.0 | 3666 |
| Eastern | 22.3 | 29.3 | 26.1 | 22.3 | 0.0 | 100.0 | 4377 |
| Ashanti | 38.1 | 24.9 | 9.2 | 27.7 | 0.0 | 100.0 | 6747 |
| Brong Ahafo | 32.8 | 21.9 | 12.0 | 33.1 | 0.2 | 100.0 | 3924 |
| Northern | 10.2 | 31.9 | 4.9 | 52.8 | 0.1 | 100.0 | 4182 |
| Upper East | 51.8 | 26.4 | 7.8 | 13.7 | 0.2 | 100.0 | 2048 |
| Upper West | 40.2 | 29.4 | 3.7 | 26.7 | 0.0 | 100.0 | 1362 |
| Residence |  |  |  |  |  |  |  |
| Urban | 23.9 | 33.2 | 8.1 | 34.8 | 0.0 | 100.0 | 14631 |
| Rural | 28.0 | 19.6 | 19.0 | 33.3 | 0.0 | 100.0 | 22779 |
| Education of households head |  |  |  |  |  |  |  |
| None | 24.5 | 23.7 | 12.3 | 39.5 | 0.0 | 100.0 | 13449 |
| Primary | 22.1 | 27.0 | 16.1 | 34.7 | 0.1 | 100.0 | 5821 |
| Middle/JSS | 28.0 | 24.3 | 17.5 | 30.1 | 0.0 | 100.0 | 14178 |
| Secondary + | 33.7 | 28.1 | 10.9 | 27.3 | 0.0 | 100.0 | 3962 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 25.5 | 20.7 | 13.4 | 40.3 | 0.1 | 100.0 | 9200 |
| Second | 27.1 | 16.4 | 21.9 | 34.5 | 0.0 | 100.0 | 9155 |
| Middle | 25.0 | 23.1 | 17.2 | 34.7 | 0.0 | 100.0 | 8925 |
| Fourth | 24.9 | 38.7 | 7.9 | 28.4 | 0.0 | 100.0 | 7880 |
| Richest | 38.4 | 35.3 | 5.1 | 21.0 | 0.1 | 100.0 | 2251 |
| Total | 26.4 | 24.9 | 14.7 | 33.9 | 0.0 | 100.0 | 37410 |



## Introduction

This chapter presents data that are useful for assessing the implementation of malaria control strategies, including the availability, ownership and use of insecticide treated nets; the use of antimalarial drugs for prophylaxis during pregnancy and for treatment of children under age five years; indoor residual spraying of dwellings with insecticides; knowledge of malaria symptoms, cause, and prevention; and the prevalence of anaemia. Data on the above indicators have been collected in previous MICS and DHS surveys in Ghana. In addition, data on malaria parasite prevalence, based on rapid diagnostic testing (RDTs) and microscopy, are incorporated as part of the new components in the MICS 2011. These data provide a unique nationwide snapshot of peak-season malaria point-prevalence in children aged 6-59 months.

Background on Malaria in Ghana
Malaria is endemic and perennial in all parts of the country, with seasonal variations that are more pronounced in the north. All Ghana's population of 24.2 million is at risk of malaria infection, but children under five years of age and pregnant women are at higher risk of severe illness due to lowered immunity. Transmission tends to be less intense in large urban centres. According to the Ghana Health Service (GHS) health facility data, malaria is the number one cause of morbidity, accounting for about 38 percent of all outpatient illnesses, 35 percent of all admissions, and about 34 percent of all deaths in children under five years (NMCP 2010 Annual Report). Between 3.1 and 3.5 million cases of clinical malaria are reported in public health facilities each year, of which 900,000 cases are in children under five years (Ghana National Malaria Control Strategic Plan, 2008-2015). There were an estimated 21,000 deaths due to malaria for children under age 5 in 2006 (WHO, World Malaria Report 2008). Malaria is also a significant cause of adult morbidity, and the leading cause of workdays lost due to ilnesses.

## Malaria: Cause and Transmission

Malaria is caused by a single-celled parasite called Plasmodium, and is transmitted by the female Anopheles mosquito. The main parasite species causing malaria in Ghana is P. falciparum (over 90-95 percent of infections in most prevalence studies). P. malariae (<10 percent), and P. ovale ( <2 percent) are also found. P. vivax is not known in Ghana. Mixed infections of P. falciparum and P. malariae are fairly common (Noguchi Memorial Institute for Medical Research, unpublished reports). The major vectors found throughout the country are Anopheles gambiae species complex and A. funestus. These species generally bite late in the night, are indoor resting, and are commonly found in the rural and peri-urban areas where socio-economic activities lead to the creation of breeding sites. Outdoor biting is more common in the northern savannah zone. Anopheles melas is found in the mangrove swamps of the southwest (Ghana National Malaria Control Strategic Plan 2008-2015).

Transmission is greatest during the rainy season(s) because the increase in relatively clean, temporary fresh stagnant water bodies favour the breeding of Anopheles mosquitoes during that period. The normal duration of the intense malaria transmission season ranges from approximately 6-7 months in the northern-most part of the country (May-October) up to 10-11 months in the forest zone. Peak levels of malaria infection and malaria-associated anaemia in the population persist for 2-3 months into the dry season. The MICS 2011 was conducted from mid-September to mid-December, a period which is presumed to coincide with the peak or average periods of malaria-associated anaemia and malaria parasitaemia in all areas of the country (Koram et al, 2001; Owusu-Agyei et al, 2002).

Ghana can be stratified into three malaria epidemiologic zones: the northern savannah; the tropical rainforest; and the coastal savannah/mangrove swamps. The boundaries of these zones have not been defined precisely, and are presumed to have shifted over recent decades with changing land use and settlement patterns. However, a fairly close approximation of the zones in contemporary Ghana is provided by the demarcations used by the Ghana Statistical Service in its periodic living standards surveys since 1998, which were based on technical input from the University of Ghana's Center for Remote Sensing (CERSGIS). (See Figure M.B.1). All selected EAs were allocated to the ecological zones they belonged to, given that GSS already had demarcation of the ecological zones.

Figure MB.1: Map of Ecological Zones and Regions, Ghana, 2011


National Strategies for Malaria Control
Over the years, strategies for malaria control have evolved to take advantage of improved control methods, increasing resource levels, and revised international technical standards. The World Health Organization (WHO) launched the Roll Back Malaria Strategy in 1998, which was adopted by Ghana in the year 2000. That same year, Ghana signed the Abuja Declaration to halve the burden of the disease through:

- Distribution of insecticide-treated nets (ITNs) to cover populations at risk (especially children under the age of five and pregnant women)
- Indoor residual spraying (IRS) to reduce transmission
- Prevention of malaria among pregnant women through intermittent preventive treatment during pregnancy (IPTp)
- Prompt diagnosis and treatment with effective medicine

In 2003, a Global Fund Round 2 malaria grant ensured intensification of malaria control interventions in 20 districts across the country, improving key indicators in these districts within three years. In 2005, Ghana again received increased funds under a Round 4 Global Fund malaria grant to scale up interventions nationwide, resulting in improved indicators across the country. In 2004, Ghana adopted artemisinin-based combination therapies (ACTs) as first-line treatment for uncomplicated malaria, due to the emergence of resistance to chloroquine. In that same year, IPTp using the drug sulphadoxine-pyrimethamine (SP) was adopted as the national policy, to be implemented by the Reproductive Health Division in collaboration with the NMCP in all public health facilities, faith-based facilities, and private maternity homes.

Since 2005, Indoor Residual Spraying (IRS) has been implemented on a district-wide scale by the AngloGold Ashanti mining company in Obuasi, Ashanti Region. This was followed by IRS in nine districts in the Northern region starting in 2008 by the President's Malaria Initiative (PMI), and currently scaling up to 45 districts by 2015 under a Global Fund Round 8 grant implemented by Anglo Gold Ashanti. In addition, small-scale operations on a community-level scale have been conducted by mining companies, at plantations, tourist facilities, housing estates, and district assemblies, largely in southern Ghana.

These early successes attracted an increase in support from the Global Fund and other international partners between 2006 and 2012, including DFID, UNICEF, Japanese Government, the World Bank, the US President's Malaria Initiative (PMI), and a number of local and international NGOs. The government of China has, over the years, donated ACTs to the country, to support the malaria control program. Targeted larviciding has been implemented on a consistent basis in several focal areas, notably by AngloGold Ashanti in Obuasi and by the Cuban-supported Labiofam program in central urban neighborhoods of Accra, Kumasi and Sunyani.

Scale-up of proven malaria control intervention continues to be central to the national strategic goals outlined in the National Malaria Control Strategy 2008-2015. This strategic plan was developed by the National Malaria Control Program (NMCP) under the Ghana Health Service within the Ministry of Health, together with all stakeholders. The strategic plan calls for a 75 percent reduction in malaria mortality by the year 2015, using 2006 as the baseline (National Malaria Control Strategic Plan 2008-2015).

The key targets of the national strategy include:

1. Universal coverage with insecticide treated nets (ITNs).

Targets: 1 ITN available per 2 persons by 2015; 100 percent of household ITN ownership by 2015; 85 percent of children under five years and pregnant women, and 80 percent of the general population, sleeping under an ITN by 2015
2. Rapid scale up of IRS to cover one-third of the country

Target: 90 percent of all households' dwellings/structures in targeted districts covered
3. Universal coverage of pregnant women receiving intermittent preventive treatment (IPTp) using the drug sulphadoxine-pyrimethamine (SP)
Target: 85 percent of pregnant women receiving at least two doses of IPTp by 2011, and 100 percent by 2015
4. Early diagnosis of malaria using microscopy or rapid diagnostic test (RDT)

Target: originally allowed for clinical diagnosis for children under age 5, but amended in 2009 to aim for universal testing wherever practicable
5. Prompt and effective treatment with artemisinin-based combination therapies (ACTs) Target: 90 percent of patients with uncomplicated malaria correctly treated using ACTs at public and private facilities by 2015

The plan also calls for strengthening health systems at all levels, with an emphasis on research, monitoring and evaluation and, creating and sustaining partnerships for malaria control. Current priority areas are focused on sustaining ITN coverage following ITN mass distribution campaigns; managing insecticide resistance; and resolving implementation bottlenecks in community and home management of malaria.

As part of the NMCP's effort to influence attitude and practice on malaria prevention and treatment, the programme has also undertaken intensive public education (IE\&C/BCC) on all programme interventions. All media channels were used ranging from mass media to inter-personal communication.

## Malaria Prevention

There are two main approaches to preventing malaria in Ghana. The first is integrated vector control which primarily aims at reducing man-vector contact through the use of Insecticide Treated Nets (ITNs), larviciding and Indoor Residual Spraying (IRS). The second preventive measure is Intermittent Preventive Treatment (IPT) that targets pregnant women. Larviciding was not covered in the Ghana MICS 2011, due to its highly focal targeting to date. As mentioned, larviciding on a limited basis has been implemented in central urban districts of Accra, Kumasi, and Sunyani (since 2009-11), as well as in Obuasi (since 2005).

Insecticide Treated Mosquito Nets (ITNs)
One of the most effective measures for preventing malaria is the use of insecticide-treated bed net (ITN). ITNs have been shown not only to reduce malaria transmission by as much as 90 percent under trial conditions, but also to reduce the indoor vector population (Binka et al, 1998; Hawley et al, 2003). ITNs also reduce malaria morbidity and mortality.

An insecticide-treated net (ITN) is any of the following: either a factory-treated net that does not require any further treatment (known as a "long-lasting insecticide-treated net," LLIN); a pre-treated net obtained within the past 12 months; or a net that has been soaked with insecticide within the past 12 months. LLINs are a subset of ITNs. An LLIN is a factory-treated mosquito net made with netting material that has insecticide incorporated within or bound around the fibres. The net must retain its effective biological activity without re-treatment for repeated washes and three years of use under field conditions (WHO 2007.) The current generation of LLINs lasts $3-5$ years, after which point the net should be replaced.

The MICS 2011 included questions on net ownership, use, type and source of net. Questions were asked to determine who had slept under each net the previous night. In determining ITN usage, only persons reported to have slept under a net the night before the survey were considered users of ITNs (consistent with Roll Back Malaria international guidelines).

Community level protection against malaria is of interest because it helps to reduce the spread of the disease and offers an additional level of protection for the most vulnerable groups, children and pregnant women. Age is an important factor in determining levels of acquired immunity to malaria. It is established that for the first six months following birth, antibodies acquired from the mother during pregnancy protect children born in areas of endemic malaria. This immunity is gradually lost and children start to develop their own immunity to malaria. The pace at which immunity is developed depends on their exposure to malaria infection, and in high malaria-endemic areas, children are thought to have attained a high level of immunity by their fifth birthday. Such children may experience episodes of malaria illness but usually do not suffer from severe, life-threatening malaria. Immunity in areas of low malaria transmission is acquired more slowly and malaria illness affects all age groups of the population (Doolan et al., 2009). Unlike some other infectious diseases, immunity against malaria is not permanent, and protection from being infected requires the regular use of the protective interventions. The use of ITNs confers some protection if the child uses the net on a regular basis, and in Ghana, messaging around ITN distribution has stressed the importance of consistent use by children under five.

## Brief History of ITN Distributions in Ghana

The MICS 2011 data on ITN ownership and use will be best understood if Ghana's recent history of ITN distribution is known. From 2002 to 2009, the Ghanaian Ministry of Health (MOH) embraced a mixed model of ITN distribution, in which subsidized distribution through the public and private sector, workplace an NGOs distributions, and full-cost sales all contributed. This resulted in 42 percent of ITN ownership, as reported in the 2008 Ghana Demographic and Health Survey (GDHS). In order to promote the ownership of mosquito nets, the government of Ghana, since 2002, has implemented a tax waiver policy on the importation of mosquito nets into the country. Development partners contributed by providing ITNs for distribution at subsidised costs to pregnant women and children under five in disadvantaged areas of the country through routine public health services. During 2002-2010, the NMCP, PMI, World Bank, UNICEF and Global Fund between them provided enhanced support for subsidized ITN distribution in all regions except Greater Accra. JICA continued such support in Upper West through 2011.

In 2010, Ghana Health Service, led by the NMCP, and with the support of development partners, began focusing on a "catch-up" strategy of implementing free mass distribution campaigns with the goal of achieving universal coverage of LLINs in all ten regions by 2012. This campaign provided free LLINs in door-to-door, hang-up exercises nationwide, distributing approximately 14 million LLINs over two years. The LLIN hang-up exercises were carried out through a program of door-to-door visits by community volunteers in each region.

The door-to-door, hang-up approach was tested in May 2010 in the Northern Region, through a campaign which targeted just children under five and pregnant women. The remaining campaign targeted universal coverage of the general population, defined as one net per every two persons. The NMCP goal for these campaigns was to achieve 75 percent of households owning at least one LLIN. At the time of the 2011 Ghana MICS survey data collection (Sept 15-Dec 15, 2011), universal-coverage campaigns had been completed in the Eastern, Volta, and Western regions. Central Region began its campaign toward the end of that period. The remaining regions had their campaigns in 2012 , i.e. after the MICS data had already been collected. Table MB. 1 outlines the timing of the various campaigns.

| Table MB.1: Regional distributions of Insecticide Treated Bed Nets in 2010-11 |  |  |  |
| :---: | :---: | :---: | :---: |
| Time of Campaign | Region | ITN Coverage (numbers of ITNs) | Status at time of Data Collection (mid Septmid Dec 2011) |
| May 2010 | Northern Region | Targeted <5, and Pregnant women 566,900 | Completed |
| December 2010 | Eastern Region, 10 districts | Universal Coverage 450,000 | Completed |
| April 2011 | Eastern Region, 11 districts | Universal Coverage 710,463 | Completed |
| July 2011 | Volta | Universal Coverage 1,064,692 | Completed |
| November 2011 | Western | Universal Coverage 1,346,900 | Partly Completed |
| December 2011 | Central | Universal Coverage 1,049,100 | Partly Completed |
| February-March 2012 | Ashanti | Universal Coverage 2,516,100 | Not yet begun. |
| April 2012 | Upper East | Universal Coverage 598,368 | Not yet begun. |
| February-March 2012 | Upper West | Universal Coverage 375,029 | Not yet begun. |
| May 2012 | Brong Ahafo, | Universal Coverage 1,378,300 | Not yet begun |
| July-August 2012 | Northern Region | Universal Coverage 1,300,000 (projected) | Not yet begun |
| August 2012 | Greater Accra | U. Coverage (rural areas) 2,023,705 (projected) | Not yet begun |

## Household Ownership of Mosquito Nets

Table MB. 2 presents data on the percentage of households possessing at least one mosquito net (treated or untreated), the average number of nets per household, and the percentage of households with at least one net for every two persons (household members) who stayed in the household the previous night, by background characteristics. Overall, 51 percent of households had at least one mosquito net whether treated or untreated and 49 percent had at least one ITN. We observed from the table that few ITNs in Ghana came from categories other than LLINs, since households with at least one LLIN made up 48 percent, very close to the percentage of household with at least one ITN.

In 34 percent of households, an ITN was observed hanging by the MICS team in the field. Rural households were more likely to own at least one net (63\%) than urban households (41\%). The findings were similar whether the net was noted to be an LLIN, or any ITN.


Figure MB. 2 present the increasing trend in household ITN ownership from the three latest household surveys: the MICS 2006, the GDHS 2008, and the MICS 2011. The percentage of households with at least one ITN increased from 19 percent in the 2006 Ghana MICS, to 42 percent in the 2008 Ghana DHS, and most recently, to nearly 50 percent in the 2011 Ghana MICS. Figure MB. 2 also shows that ITN ownership was highest in the Volta region (85\%), an increase from 23 percent in 2006, and Eastern region, where ITN ownership increased from 17 percent in 2006 to 78 percent in 2011. All districts in these regions had fully completed their distribution campaigns 3-12 months prior to MICS 2011 data collection. Although net ownership may well have reached comparable levels in other regions following their respective mass distribution campaigns, the MICS could not capture those outcomes due to the timing of the campaigns (Table MB.1). Among the regions which had not yet benefited from the mass regional campaigns, Upper West had the highest ownership at 61 percent, an increase from 32 percent in 2006. The lowest percentage of net ownership was observed in the Greater Accra region (26\%), which had neither enhanced support for routine distribution in 2002-2010, nor any mass distribution campaign after 2010. Table MB. 2 also shows that increase in ownership of ITN has been higher in rural households, compared to urban households. For rural areas, ITN ownership increased from 22 percent in 2006, to 48 percent in 2008, and to 60 percent in 2011. For urban households, ITN ownership increased from 15 percent in 2006, to 35 percent in 2008 and to 39 percent in 2011.

Table MB. 2 also reveals that the Savannah ecological zone had the highest LLIN ownership (64\%), followed by the Forest ( $54 \%$ ), and Coastal ( $33 \%$ ) ecological zones. The results also reveal that household net ownership decreases with increasing household wealth and with increasing level of education of the household head.

The average number of mosquito nets per household was about one net per household. Also, 26 percent of households had at least one ITN for every two persons who stayed in the household the night before the survey. Volta Region, at 65 percent, was closest to the universal coverage goal of at least one net per two persons sleeping in the household.

Figure MB.2: Trends in ownership of ITNs: Percent of households with at least one ITN by region and residence, Ghana, 2011


Use of Mosquito Nets by Persons in the Household
Table MB.3 presents information on the percentage of the household population (i.e. usual household members who slept in the household last night) who slept the night before the survey under a mosquito net (treated or untreated), ITN, LLIN, or in a dwelling in which the interior walls had been sprayed with indoor residual spray (IRS) in the past 12 months, by background characteristics. The results show that 31 percent of the household members slept under any mosquito net the night before the survey; 29 percent slept under an ITN; 28 percent slept under an LLIN; and 36 percent slept under an ITN or in a dwelling which has been sprayed with IRS in the past 12 months. Among households with at least one ITN, 48 percent of the household population slept under an ITN the night before the survey.

By age, 45 percent of children under age five slept under any mosquito net the night before the survey and 42 percent slept under an ITN. Among households with an ITN, 63 percent of children under age five slept under an ITN. Slightly more females slept under an ITN the night before the interview than their male counterparts ( $30 \%$ versus $27 \%$, respectively). A similar pattern is observed among households with at least one ITN, where 51 percent of females slept under an ITN the night before the survey compared with 45 percent of males.

People living in rural areas were more likely to have slept under any mosquito net, an ITN, or LLIN than their urban counterparts. For example, 33 percent of people in rural households slept under an ITN compared with 19 percent of people in urban households. For households with at least one ITN, 51 percent of population in rural households and 40 percent of urban households slept under an ITN.

At the regional level, Volta Region - which finished its ITN campaign just 3 months prior to the Ghana MICS 2011 data collection - had the highest percentage of household population sleeping under ITNs and LLINs ( $66 \%$ for both). Greater Accra region has the lowest percentage among all the categories of nets ( $11 \%$ for ITNs and LLINs). The percentages of the household population who slept under an ITN the night prior to the survey ranges from 66 percent in the Volta region to 11 percent in Greater Accra. Among households with at least one ITN, the percentage of households sleeping under an ITN the night before was not as varied among the regions.

In terms of ecological zones, the Forest zone had the highest percentage of the household population who slept under an ITN last night ( $32 \%$ ), followed by the Savannah zone (31\%), and the Coastal zone (19\%). The highest percentage of households who slept under an ITN or in a dwelling sprayed with IRS in the last 12 months before the interview was observed among households in the Savannah (43\%), while the Coastal zone had the lowest percentage (20\%).

Net usage among the household population generally decreases with an increase in wealth for each type of net. ITN usage the night prior to the survey ranged from 33 percent in the poorest 40 percent of the households to 15 percent in the richest wealth quintile.

| Table MB. 3 Use of mosquito nets by members in the household <br> Percentage of the household population1 who slept the night before the survey under a mosquito net (treated or untreated), under an insecticide-treated net (ITN), under a long-lasting insecticidal net (LIIN), and under an ITN or in a dwelling in which the interior walls have been sprayed against mosquitoes (RSS) in the past 12 months; and among the de facto household population in households with at least one ITN, the percentage who slept under an ITN the night before the survey, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Household population |  |  |  |  | Number of persons in household with at least one ITN2 |  |
|  | Percentage who slept under any mosquito net last night | Percentage who slept under an ITN last night | Percentage who slept under an LLIN last night | Percentage who slept under an ITN or in a dwelling sprayed with IRS in the last 12 months | Number of persons | Percentage who slept under an ITN last night | Number of persons |
| Sex |  |  |  |  |  |  |  |
| Male | 28.8 | 26.9 | 26.5 | 35.0 | 25,901 | 45.2 | 15,426 |
| Female | 32.2 | 30.3 | 29.9 | 37.3 | 27,068 | 50.9 | 16,085 |
| Region |  |  |  |  |  |  |  |
| Western | 25.7 | 24.0 | 23.7 | 24.9 | 2,831 | 51.2 | 1,327 |
| Central | 18.4 | 17.2 | 16.7 | 18.1 | 7,189 | 46.4 | 2,673 |
| Greater Accra | 13.0 | 10.9 | 10.6 | 11.9 | 3,193 | 32.3 | 1,077 |
| Volta | 72.0 | 65.6 | 65.5 | 65.6 | 2,944 | 71.9 | 2,683 |
| Eastern | 51.2 | 50.6 | 50.5 | 51.2 | 2,602 | 59.5 | 2,215 |
| Ashanti | 23.6 | 21.3 | 20.8 | 27.0 | 3,460 | 48.6 | 1,516 |
| Brong Ahafo | 29.9 | 27.6 | 26.9 | 28.3 | 2,924 | 49.1 | 1,645 |
| Northern | 28.2 | 26.9 | 26.8 | 57.5 | 11,724 | 37.4 | 8,434 |
| Upper East | 29.3 | 28.7 | 28.1 | 29.2 | 7,674 | 50.7 | 4,340 |
| Upper West | 35.8 | 32.6 | 32.0 | 32.6 | 8,428 | 49.1 | 5,601 |
| Ecological zones |  |  |  |  |  |  |  |
| Coastal | 21.1 | 18.7 | 18.3 | 19.5 | 10,626 | 47.9 | 4,145 |
| Forest | 34.1 | 32.2 | 31.8 | 34.4 | 11,646 | 54.5 | 6,869 |
| Savannah | 32.5 | 30.7 | 30.3 | 42.5 | 30,697 | 46.0 | 20,497 |
| Residence |  |  |  |  |  |  |  |
| Urban | 20.2 | 19.0 | 18.7 | 24.2 | 16,805 | 40.2 | 7,936 |
| Rural | 35.3 | 33.1 | 32.7 | 41.7 | 36,164 | 50.8 | 23,575 |
| Age (in years) |  |  |  |  |  |  |  |
| <5 | 43.6 | 41.5 | 41.0 | 48.8 | 7,514 | 63.0 | 4,951 |
| 5-14 | 26.2 | 24.6 | 24.3 | 33.4 | 16,515 | 40.2 | 10,117 |
| 15-34 | 27.9 | 26.1 | 25.7 | 32.9 | 13,541 | 45.3 | 7,794 |
| 35-49 | 34.4 | 32.3 | 31.9 | 38.0 | 7,007 | 54.9 | 4,113 |
| 50+ | 28.0 | 26.6 | 26.4 | 33.0 | 436 | 49.4 | 235 |
| DK/Missing | * | * | * | * | 16 | * | 9 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 35.1 | 32.8 | 32.4 | 44.3 | 23,146 | 49.2 | 15,426 |
| Second | 35.3 | 33.3 | 32.9 | 39.1 | 10,460 | 53.2 | 6,552 |
| Middle | 28.0 | 26.1 | 25.6 | 30.7 | 7,513 | 46.5 | 4,211 |
| Fourth | 22.3 | 20.9 | 20.5 | 24.4 | 6,472 | 43.2 | 3,129 |
| Richest | 15.0 | 14.5 | 14.2 | 17.0 | 5,378 | 35.5 | 2,193 |
| Total | 30.5 | 28.6 | 28.2 | 36.1 | 52,969 | 48.1 | 31,511 |
| An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. |  |  |  |  |  |  |  |

## Use of Mosquito Nets by Children Under Five Years

Table MB. 4 presents information on the use of mosquito nets by children under-five years who, the night before the survey, slept under any mosquito net, an ITN, a LLIN, and an ITN or in a dwelling in which the interior walls were treated with IRS in the past twelve months, by background characteristics. The table also presents information on the percentage of children under five who slept under an ITN last night among children who live in households with at least one ITN. Overall, 42 percent of children under five slept under any mosquito net (treated or untreated) the night before the survey; 39 percent slept under an ITN; 38 percent slept under an LLIN; and 43 percent slept under an ITN, or in a dwelling in which the interior walls were treated with IRS in the past 12 months. Among children under five years of age in households with at least one ITN, 63 percent slept under an ITN the night before the survey.

Among the regions, the percentage of children under five who slept under any mosquito net the night before the survey ranged from a low of 26 percent in Greater Accra to a high of 76 percent in Volta. The same pattern was observed by region for the percentage of children under five who slept under ITNs, LLINs, and those who slept under an ITN or in household sprayed with IRS. With respect to children under five years in households with at least one ITN, the Volta region also had the largest percentage of children who slept under an ITN the night before the survey (78\%).

In terms of ecological zones, the Savannah has the highest percentage of children under- five years who slept under any net the night before the interview (48\%), slept under an ITN (46\%), slept under an LLIN $(46 \%)$, and slept either under an ITN or in a dwelling sprayed with IRS in the 12 months preceding the survey (56\%). However, with respect to the percentage of children under five years in households with at least one ITN, the Forest zone has the highest percentage of children who slept under an ITN the night before the survey ( $65 \%$ ).

Table MB.4: Use of mosquito nets by children under 5 years of age
Percentage of children under age five who, the night before the survey, slept under a mosquito net (reated or untreated), under an insecticide-treated net (ITN), under a long-lasting insecticidal net (LLIN), and under an ITN or in a dwelling in which the interior walls have been sprayed against mosquitoes (IRS) in the past 12 months; and among children under five years of age in households with at least one ITN, the percentage who slept under an ITN the night before the survey, Ghana, 2011

| Background Characteristics | Children under five in all households |  |  |  |  | Children under five in households with at least one ITN1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percentage who slept under any net last night | Percentage who slept under an ITN last night [2] | Percentage who slept under an LLIN last night | Percentage who slept under an ITN1 last night or in a dwelling sprayed with IRSin the past 12 months | Number of children | Percentage who slept under an ITN last night | Number of children |
| Sex |  |  |  |  |  |  |  |
| Male | 41.3 | 39.3 | 38.3 | 43.7 | 3,715 | 63.3 | 2,306 |
| Female | 41.9 | 38.8 | 38.4 | 42.5 | 3,746 | 63.2 | 2,298 |
| Region |  |  |  |  |  |  |  |
| Western | 33.7 | 32.7 | 31.6 | 32.9 | 743 | 62.6 | 388 |
| Central | 29.0 | 27.7 | 26.8 | 28.1 | 729 | 60.0 | 337 |
| Greater Accra | 25.5 | 22.1 | 20.8 | 23.1 | 1,131 | 47.9 | 523 |
| Volta | 76.3 | 70.7 | 70.7 | 70.7 | 575 | 77.8 | 522 |
| Eastern | 60.7 | 60.2 | 59.7 | 60.5 | 819 | 70.5 | 699 |
| Ashanti | 35.5 | 31.2 | 31.0 | 37.2 | 1,407 | 61.2 | 718 |
| Brong Ahafo | 43.7 | 41.3 | 40.4 | 41.6 | 663 | 66.7 | 411 |
| Northern | 43.0 | 41.8 | 41.8 | 65.3 | 847 | 54.6 | 649 |
| Upper East | 46.8 | 45.0 | 44.1 | 45.3 | 324 | 72.6 | 201 |
| Upper West | 49.6 | 46.9 | 46.4 | 47.1 | 222 | 67.0 | 156 |
| Ecological zones |  |  |  |  |  |  |  |
| Coastal | 32.8 | 29.7 | 28.7 | 30.4 | 2,250 | 59.0 | 1,133 |
| Forest | 43.6 | 40.9 | 40.4 | 43.7 | 3,185 | 65.3 | 1,995 |
| Savannah | 48.2 | 46.4 | 45.9 | 56.3 | 2,026 | 63.8 | 1,475 |
| Residence |  |  |  |  |  |  |  |
| Urban | 32.0 | 30.1 | 29.2 | 33.3 | 3,253 | 56.4 | 1,737 |
| Rural | 49.0 | 45.9 | 45.5 | 50.7 | 4,208 | 67.4 | 2,867 |
| Age |  |  |  |  |  |  |  |
| 0-11 | 47.7 | 44.5 | 43.1 | 48.1 | 1,531 | 68.9 | 989 |
| 12-23 | 47.0 | 44.2 | 43.5 | 48.8 | 1,429 | 71.3 | 885 |
| 24-35 | 40.1 | 37.0 | 36.6 | 41.2 | 1,531 | 62.0 | 913 |
| 36-47 | 37.3 | 34.9 | 34.5 | 38.8 | 1,554 | 57.4 | 946 |
| 48-59 | 35.8 | 34.6 | 34.4 | 38.8 | 1,415 | 56.4 | 870 |
| Mother's education |  |  |  |  |  |  |  |
| None | 44.5 | 41.8 | 41.5 | 49.1 | 2,443 | 62.3 | 1,638 |
| Primary | 41.1 | 38.8 | 38.1 | 40.8 | 1,609 | 65.9 | 948 |
| Middle/JS | 40.6 | 37.8 | 37.4 | 40.0 | 2,536 | 64.9 | 1,477 |
| Secondary + | 36.9 | 35.3 | 33.1 | 39.5 | 873 | 56.9 | 541 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 53.3 | 49.7 | 49.2 | 57.9 | 1,710 | 69.0 | 1,232 |
| Second | 48.2 | 45.5 | 45.2 | 47.9 | 1,537 | 68.8 | 1,017 |
| Middle | 43.3 | 41.0 | 40.7 | 43.7 | 1,530 | 63.3 | 993 |
| Fourth | 33.8 | 31.0 | 30.2 | 34.7 | 1,382 | 60.1 | 713 |
| Richest | 24.6 | 23.6 | 22.1 | 26.3 | 1,301 | 47.2 | 649 |
| Total | 41.6 | 39.0 | 38.4 | 43.1 | 7,461 | 63.3 | 4,604 |

Figure MB. 3 shows various other differentials for ITN use among children. Children aged 23 months and younger were more likely (44\%) to have slept under an ITN than older children the night before the survey. There was no variation by gender. The proportion of children under five who slept under an ITN the night before is higher in rural areas ( $46 \%$ against $30 \%$ in urban areas), In terms of ecological zones, the Savannah has the highest ITN use among children ( $46 \%$ ) and Coastal the lowest ( $30 \%$ ), and ITN use among children decreases as mother's education or household wealth increases. In general, Table MB. 4 shows that, for all different background variables, similar observations can be made on all of the indicators.

## Figure MB.3: Differentials in ITN usage among children under 5, Ghana, 2011



Figure MB. 4 presents trends in ITN usage in the latest three surveys. ITN use among children under five has steadily increased in the 5 -year period between the MICS 2006 and the MICS 2011. In 2006, 22 percent of children under 5 slept under an ITN the night before the survey. Two years later, the Ghana DHS 2008 estimated that 39 percent of children slept under an ITN the previous night. In 2011, the percent of children under 5 who slept under an ITN held steady at 39 percent. Net use at the national level is expected to have increased further, because only Volta and Eastern regions had completed their universal coverage campaigns prior to MICS 2011 data collection. Seven other regions had their campaigns during or after the data collection (Table MB.1).

## Figure MB.4: Trends in proportion of children under five who slept under an ITN the previous night by region and residence, Ghana, 2011



Use of Mosquito Nets by Pregnant Women
In malaria-endemic areas, adults usually have acquired some degree of immunity to severe, life-threatening malaria. However, pregnancy leads to a depression of the immune system so that pregnant women, especially those in their first pregnancy, have a higher risk of malaria. Moreover, these infections may be asymptomatic and lead to malaria-induced anaemia and may interfere with the mother-foetus exchange resulting in low weight births (WHO 1993). During pregnancy, women can reduce the risk of the adverse effects of malaria by sleeping under insecticide-treated mosquito nets.

Table MB. 5 presents information on mosquito net use by pregnant women aged 15-49 years in all households, and in households with an ITN, by background characteristics. Nationally, 35 percent of pregnant women aged $15-49$ years in all households slept under any mosquito net the night before the survey; 33 percent slept under an ITN; 32 percent slept under an LLIN; and 39 percent slept under an ITN or in a dwelling in which the interior walls had been sprayed against mosquitoes (IRS) in the 12 months prior to the survey. Among pregnant women age $15-49$ years in households with at least one ITN, 58 percent slept under an ITN the night before the survey

Table MB. 5 also shows that use of ITN increases with women is age (from $29 \%$ for the pregnant women aged $15-24$ years to $35 \%$ for women aged $35-49$ years) and is more than twice larger in the rural areas than in the urban areas ( $44 \%$ vs. 19\%). Like for children under five, ITN usage by pregnant women is highest in the Savannah zone ( $42 \%$ ) and lowest in the Coastal zone ( $23 \%$ ) and decreases with the educational level of the women and the wealth quintile index.

Figure MB. 5 shows trends in ITN use among pregnant women for the period between the GDHS 2008 and the MICS 2011. Over the three-year period overall net use among pregnant women has increased from 27 percent to 33 percent; the increase is mostly due to an increase in use among women in rural areas. However, the results fall short of the national program's 2011 target aiming to have 65 percent of pregnant woman sleeping under ITNs.

| Table MB.5: Use of mosquito nets by pregnant women <br> Percentages of pregnant women age 15-49 who, the night before the survey, slept under a mosquito net (treated or untreated), under an insecticide-treated net (ITN), under a long-lasting insecticidal net (LLIN), and under an ITN or in a dwelling in which the interior walls have been sprayed against mosquitoes (IRS) in the past 12 months; and among pregnant women age $15-49$ in households with at least one ITN, the percentage who slept under an ITN the night before the survey, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Among pregnant women age 15-49 in all households |  |  |  |  | Among pregnant women age 15-49 in households with at least one ITN1 |  |
|  | Percentage who slept under any net last night [1] | Percentage who slept under an ITN last night | Percentage who slept under an LLIN last night | Percentage who slept under an ITN1 last night or in a dwelling sprayed with IRS in the past 12 months | Number of women | Percentage who slept under an ITN last night | Number of women |
| Region |  |  |  |  |  |  |  |
| Western | (22.4) | (21.5) | (17.5) | (23.5) | 80 | * | 37 |
| Central | 31.8 | 29.3 | 28.8 | 30.0 | 80 | 65.3 | 36 |
| Greater Accra | (15.9) | (11.8) | (11.8) | (13.6) | 107 | * | 35 |
| Volta | 65.0 | 57.8 | 57.8 | 57.8 | 74 | 63.5 | 67 |
| Eastern | (62.3) | (62.3) | (62.3) | (62.3) | 71 | (78.1) | 57 |
| Ashanti | 23.4 | 21.3 | 21.3 | 35.1 | 186 | (51.2) | 77 |
| Brong Ahafo | 37.7 | 36.1 | 34.8 | 38.5 | 72 | (55.6) | 47 |
| Northern | 39.6 | 37.9 | 37.9 | 62.2 | 86 | 49.3 | 66 |
| Upper East | 50.5 | 50.5 | 50.5 | 50.5 | 32 | 78.1 | 21 |
| Upper West | 44.5 | 41.2 | 40.4 | 41.2 | 22 | 64.8 | 14 |
| Ecological zones |  |  |  |  |  |  |  |
| Coastal | 26.5 | 22.9 | 22.7 | 24.5 | 245 | 51.9 | 108 |
| Forest | 35.8 | 34.0 | 33.1 | 41.5 | 366 | 60.8 | 205 |
| Savannah | 43.9 | 41.8 | 41.2 | 52.3 | 200 | 57.6 | 145 |
| Residence |  |  |  |  |  |  |  |
| Urban | 21.3 | 18.8 | 17.6 | 25.3 | 360 | 45.8 | 148 |
| Rural | 45.9 | 43.6 | 43.4 | 50.1 | 451 | 63.3 | 310 |
| Age |  |  |  |  |  |  |  |
| 15-24 | 29.9 | 29.1 | 28.7 | 36.7 | 235 | 55.2 | 124 |
| 25-34 | 36.7 | 33.6 | 32.7 | 40.0 | 407 | 60.5 | 226 |
| 35-49 | 38.1 | 34.9 | 34.9 | 39.9 | 169 | 54.6 | 108 |
| Education |  |  |  |  |  |  |  |
| None | 45.2 | 42.2 | 42.1 | 49.0 | 236 | 63.2 | 158 |
| Primary | 36.5 | 33.0 | 33.0 | 40.3 | 165 | 59.1 | 92 |
| Middle/JSS | 32.2 | 30.0 | 29.5 | 35.8 | 279 | 54.3 | 154 |
| Secondary + | 20.5 | 20.1 | 17.6 | 26.3 | 130 | (48.5) | 54 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 53.4 | 51.4 | 51.4 | 59.3 | 185 | 70.6 | 135 |
| Second | 51.5 | 49.7 | 49.4 | 52.3 | 150 | 68.5 | 109 |
| Middle | 33.5 | 31.9 | 31.8 | 38.0 | 150 | 53.6 | 89 |
| Fourth | 18.5 | 12.9 | 12.3 | 19.5 | 166 | 34.7 | 61 |
| Richest | 16.8 | 15.8 | 13.7 | 24.4 | 160 | (39.5) | 64 |
| Total | 35.0 | 32.6 | 32.0 | 39.0 | 811 | 57.7 | 458 |

Figure MB.5: Trends in proportion of pregnant women age 15-49 who slept under an
ITN the previous night, Ghana, 2011


## Source, Cost and Disposal of ITNs

In the MICS 2011, households that owned nets were asked where they had obtained the nets and how much they had paid for them. Table MB. 6 presents information on the source and cost of nets by background characteristics.

Overall, 28 percent of ITNs were obtained from the public health sector, while 42 percent were obtained from public "door-to-door hang-up" campaigns. A small proportion (4\%) of nets was obtained from the private medical sector, while 25 percent of nets were obtained from other sources.Table MB. 6 also shows that 83 percent of ITN obtained in the public sector were free, when only 17 percent of ITN obtained in the private medical sector were. Nearly half ( $47 \%$ ) of ITN obtained from other sources were free.The average cost of ITN that had been purchased was 2.20 Ghana Cedis (GhC) for nets purchased through the public sector, 6.61 GhC for nets purchased through the private sector, and 5.53 GhC for nets purchased through other sources.

Results also show that 8 percent of households had disposed of at least one net in the 12-month period prior to the survey (results not shown in a table). Of this small number of households, almost half ( $47 \%$ ) had kept the net for less than 2 years, 36 percent had used the net between 2 and 4 years, and 17 percent had used the net for more than 4 years. The major reason cited for disposing of the net was that the net was torn ( $81 \%$ ), while 8 percent of households indicated that the net no longer repelled mosquitoes, and another 8 percent responded that they disposed of the net because they had a new net.

## Indoor Residual Spraying Against Mosquitoes

Indoor residual spraying (IRS) is the spraying of the interior walls of a dwelling with insecticide that has a long-lasting effect against mosquitoes. It reduces the transmission of malaria by killing adult female mosquitoes when they rest on the walls of the dwelling after feeding. Due primarily to cost and operations constraints, IRS is not targeted to all areas of the country. Within each targeted area, however, a high coverage of structures should be achieved in order to achieve the full entomologic and epidemiologic benefits of IRS. Ghana's policy sets this target at $90 \%$.

Prior to the MICS2011 data collection period, IRS had been implemented in Ghana on a large scale by AngloGold Ashanti in the Obuasi area of Ashanti Region, and by PMI/GHS in nine districts of Northern Region. As mentioned, small-scale operations had also been conducted, at mines, plantations, housing estates, etc. at scattered locations elsewhere in the country.

Table MB. 7 shows the percentage of households in which the dwelling's interior walls had been sprayed against mosquitoes (IRS) in the past 12 months, and the percentage of households with at least one ITN and/or IRS in the past 12 months by background characteristics. In Ghana as a whole, five percent of households had received IRS in the 12 months preceding the survey. In Northern Region, more than a third of households (36\%) had been treated with IRS, making it the region where IRS was used more than other regions. Ashanti Region was second at 9 percent.

Table MB. 7 also provides data on household coverage of ITNs and IRS counted together, because households are considered to be covered by vector control if they own at least one ITN and/or they had the interior walls of their rooms sprayed with IRS at any time in the past 12 months. Among all households, 49 percent had at least one ITN, while $51 \%$ of all households possessed an ITN and/or had received IRS.

Of note, in order to distinguish between IRS and common aerosol bug sprays (e.g."Doom"), this table only includes IRS in those households in which the spraying was conducted by a government agency, an NGO, or a private company (contractor).

| Table MB.7: Indoor residual spraying against mosquitoes <br> Percentage of households in which someone has come into the dwelling to spray the interior walls against mosquitoes (IRS) in the past 12 months, and the percentage of households with at least one ITN and/or IRS in the past 12 months, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of households with IRS1 in the past 12 months | Percentage of households with at least one ITN2 | Percentage of households with at least one ITN2 and/or received IRS in the past 12 months [1] | Number of households |
| Region |  |  |  |  |
| Western | 2.0 | 42.7 | 44.4 | 1,116 |
| Central | 0.8 | 32.1 | 32.8 | 1,236 |
| Greater Accra | 1.5 | 25.5 | 26.4 | 2,321 |
| Volta | 0.0 | 85.4 | 85.4 | 992 |
| Eastern | 1.2 | 78.2 | 78.4 | 1,533 |
| Ashanti | 8.7 | 39.8 | 46.8 | 2,321 |
| Brong Ahafo | 0.8 | 53.4 | 54.0 | 1,011 |
| Northern | 36.0 | 67.2 | 76.2 | 727 |
| Upper East | 1.0 | 51.8 | 52.2 | 414 |
| Upper West | 0.2 | 60.7 | 60.7 | 253 |
| Ecological zones |  |  |  |  |
| Coastal | 1.3 | 33.5 | 34.4 | 4,297 |
| Forest | 4.4 | 54.7 | 58.1 | 5,344 |
| Savannah | 11.8 | 64.2 | 67.2 | 2,284 |
| Residence |  |  |  |  |
| Urban | 3.9 | 39.1 | 41.5 | 6,358 |
| Rural | 5.7 | 60.1 | 62.4 | 5,567 |
| Education of household head |  |  |  |  |
| None | 8.1 | 51.3 | 54.0 | 2,997 |
| Primary | 3.5 | 50.8 | 52.4 | 1,560 |
| Middle/JSS | 3.1 | 49.7 | 51.9 | 4,590 |
| Secondary + | 4.5 | 43.9 | 46.7 | 2,775 |
| Missing/DK | * | * | * | 3 |
| Wealth index quintile |  |  |  |  |
| Poorest | 10.2 | 65.9 | 68.6 | 1,763 |
| Second | 3.4 | 58.5 | 59.7 | 2,244 |
| Middle | 3.9 | 52.2 | 54.5 | 2,450 |
| Fourth | 4.3 | 41.0 | 44.2 | 2,639 |
| Richest | 3.4 | 35.2 | 37.7 | 2,829 |
| Total | 4.7 | 48.9 | 51.3 | 11,925 |
| [1] MICS indicator 3.13 <br> An asterisk indicates that a figure is based on fewer than 25 unweighted cases and has been suppressed. |  |  |  |  |

Intermittent Preventive Treatment of Malaria in Pregnancy
In highly malaria-endemic areas, it is often health policy that pregnant women receive prophylactic treatment with the antimalarial drug SP/Fansidar once at the beginning of the second trimester of pregnancy and once at the beginning of the third trimester, preferably during routine antenatal care. Pregnant women who take malaria medicine only to treat an existing case of malaria are not considered to have received IPTp.

In the MICS 2011, women who had a live birth within the last two years were asked if they took any antimalarial drug during pregnancy at an ANC visit. Table MB. 8 presents the percent of women aged 15-49 who had a live birth in the two years preceding the survey and who, during the pregnancy preceding the last birth, took any antimalarial drug for prevention, took one dose of SP/Fansidar, and those who received at least two doses of SP/Fansidar, i.e. that received intermittent preventive treatment (IPTp), by background characteristics. Among women with a live birth in the two years preceding the survey, 84 percent reported taking some type of antimalarial medicine to prevent getting malaria during the last pregnancy. Table MB. 8 also shows that 83 percent of women took SP/Fansidar at least once during their pregnancy, compared with 58 percent in GDHS 2008. Overall, 65 percent of women took SP/Fansidar two or more times during an ANC visit.
The percentage of women taking IPTp did not vary much between women living in urban and rural areas but IPTp was highest among women with a Middle/JSS education and women in the fourth wealth quintile.

Figure MB. 6 shows that the percentage of women who received IPTp increased from 44 percent in 2008 to 65 percent in 2011. The results show a marked increase between the two surveys, and are high by comparison to many other countries. Yet, they do not meet the 2011 national program's target of 85 percent coverage for IPTp among pregnant women.

Note that, because the indicator for IPTp definition has changed over time, a direct comparison with the MICS 2006 data is not possible. In the MICS 2006, all women were asked if they took an antimalarial during pregnancy, but the information was not restricted to taking antimalarials during an ANC visit. The MICS 2011 did not collect information on women who took antimalarials during pregnancy outside of ANC visits. However, both GDHS 2008 and MICS 2011 asked women who had a birth in the two years preceding the survey, if they took antimalarial drugs during an ANC visit.

| Table MB.8: Intermittent preventative treatment by women during pregnancy (IPTp) <br> Percentage of women age 15-49 with a live birth in the two years preceding the survey who, during an antenatal care visit preceding the last birth, received any antimalarial drug, received one or more doses of SP/Fansidar, and who received intermittent preventive treatment (IPTp), Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Percentage who, during an ANC visit, took: |  |  |  |
| Background Characteristics | Any antimalarial drug | SP/Fansidar at least once | SP/Fansidar two or more times | Number of women who had a live birth in the two years preceding the survey |
| Region |  |  |  |  |
| Western | 81.1 | 77.4 | 59.8 | 270 |
| Central | 85.0 | 82.0 | 65.0 | 246 |
| Greater Accra | 78.4 | 77.7 | 61.6 | 397 |
| Volta | 80.1 | 76.3 | 39.3 | 189 |
| Eastern | 92.5 | 91.5 | 71.4 | 288 |
| Ashanti | 92.6 | 92.6 | 75.0 | 449 |
| Brong Ahafo | 78.8 | 78.8 | 61.9 | 227 |
| Northern | 80.9 | 80.2 | 67.0 | 283 |
| Upper East | 79.2 | 78.5 | 69.4 | 105 |
| Upper West | 79.7 | 79.2 | 65.3 | 75 |
| Ecological zones |  |  |  |  |
| Coastal | 80.6 | 79.3 | 61.1 | 754 |
| Forest | 87.3 | 85.7 | 66.8 | 1,095 |
| Savannah | 82.3 | 81.6 | 65.2 | 680 |
| Residence |  |  |  |  |
| Urban | 82.9 | 81.7 | 65.3 | 1,068 |
| Rural | 84.7 | 83.4 | 64.2 | 1,460 |
| Age |  |  |  |  |
| 15-24 | 84.5 | 82.8 | 59.4 | 620 |
| 25-34 | 85.3 | 84.2 | 68.6 | 1,264 |
| 35-49 | 80.7 | 79.6 | 62.1 | 645 |
| Education |  |  |  |  |
| None | 77.0 | 76.0 | 60.0 | 733 |
| Primary | 86.2 | 84.2 | 63.1 | 565 |
| Middle/JSS | 88.4 | 87.1 | 69.1 | 886 |
| Secondary + | 83.5 | 82.8 | 65.8 | 344 |
| Wealth index quintile |  |  |  |  |
| Poorest | 78.9 | 78.0 | 60.5 | 560 |
| Second | 81.3 | 78.5 | 60.1 | 546 |
| Middle | 86.8 | 86.2 | 63.8 | 500 |
| Fourth | 91.7 | 91.0 | 73.5 | 455 |
| Richest | 82.5 | 81.1 | 67.3 | 467 |
| Total | 84.0 | 82.7 | 64.6 | 2,528 |
| [1] MICS Indicator 3.20 |  |  |  |  |



Prevalence, Diagnosis, and Treatment of Fever in Children Under-Five
Most fevers occur at home. When due to malaria, the fever can rapidly progress to severe illness if treatment is not received promptly. To promote effective management of febrile illness, the MOH and Ghana Health Service recommends (1) promptly evaluating and treating childhood fevers at a health facility; (2) obtaining a confirmatory blood test if the fever is suspected to be malaria; and (3) if the diagnosis is indeed malaria, treating promptly with an appropriate anti-malaria medication. Since 2004, the recommended first-line treatment for malaria has been artemisinin-based combination therapies (ACTs). ACTs are defined as antimalarial medicines that contain an artemisinin component as well as a second antimalarial drug component. The MOH/GHS has actively discouraged the use of "mono-therapies" such as chloroquine, SP/ Fansidar, amodiaquine alone, or artesunate alone, due to concerns regarding clinical effectiveness and the development of drug resistance. In order to increase the availability of high-quality, affordable ACTs in the country, Ghana has since 2009 been piloting the Affordable Medicines Facility for Malaria (AMFm) program, with support from the Global Fund. All ACTS subsidized through the AMFm in Ghana are marketed under the "green leaf" label.

To assess the progress made in promoting these aspects of effective malaria treatment policy, the MICS 2011 asked women with children under age 5 a series of questions. They were asked if any of these children had a fever in the two weeks preceding the survey, and if so, whether any treatment was sought for the fever, and where the child was treated. Questions were also asked about blood testing, the types of drugs given to the child, and how soon and for how long the drugs were taken.

The Table MB. 9 shows that 19 percent of children under -five years of age had a fever in the two weeks preceding the survey. It is noteworthy that the survey was conducted in the late rainy season, when malaria as well as many other types of childhood febrile illnesses, such as diarrhoeal and respiratory illnesses are common. Infants aged 0-11 months had a lower rate of two-week fever history (12\%) than the older cohorts (20-22\%). Also, prevalence of fever decreased steadily with increasing household wealth and mother's education.

Among the children with a fever, treatment was sought for 50 percent of them from a health facility, health provider, or a pharmacy. Half of the children with fever were not taken anywhere for treatment. The table also shows that 16 percent of the febrile children were reported by their caregivers to have had a blood sample taken from their finger or heel for testing and 53 percent of children took an antimalarial drug, though fewer children (35\%) took an antimalarial the same or next day. It follows that at least one-third of febrile children can be assumed to have been treated presumptively for malaria, without a blood test having been done.

Only 18 percent of children were recorded to have taken the recommended ACT, and 12 percent of children took the ACT the same or next day. However, due to an unresolved ambiguity in the questionnaire regarding the term "amodiaquine," it is suspected that the true rate of ACT use was significantly higher (this issue is described further in the next section). By 2015, the national objective is for 90 percent of children aged 3 months to five years with fever to receive an appropriate ACT within 24 hours.

The prevalence of fever was higher among rural children (22\%) than their urban counterparts (15\%), but treatment was sought from a health care provider for a larger percentage of urban children (54\%) than rural children $(47 \%)$ and children living in urban areas (28\%) were twice as likely as their rural counterparts to have received ACT (13\%). Urban children were also twice as likely as rural children to have taken an ACT the same or next day ( $19 \%$ and $8 \%$, respectively). Compared to the average rate ( $50 \%$ ), the least-educated and poorest quintiles of the population were only somewhat more likely to not have taken the child anywhere ( $57 \%$ and $62 \%$, respectively).

Table MB. 10 shows in detail which type of facility the febrile children had been taken to. It appears that 20 percent of children were taken to a government clinic or health centre, 12 percent were taken to a government hospital, 8 percent were taken to a private hospital or clinic, 6 percent were taken to a private pharmacy, chemical shop or other private source, and 3 percent were taken to a government health post, community-based health worker, or an outreach clinic. Urban residents were more likely than rural residents to have used a hospital ( $16 \mathrm{vs} .11 \$.$% ), private hospital/clinic ( 11 \% \mathrm{vs} .6 \%$ ) or private shop ( $8 \% \mathrm{vs} .4 \$.$% ), whereas$ rural residents were slightly more likely to have used a government health centre ( $22 \% \mathrm{vs}$. $18 \%$ ), and eight times as likely to have accessed a community-based public sector resource such as a CHPS compound (4\% vs. 1\%). According to the data, community-based treatment for malaria in Ghana was accessed in 6 to 13 percent of cases in the three northern regions where it has been promoted the most consistently, but was scarcely used elsewhere in the country in spite of on-going efforts to scale up this approach (Table MB.10).

Table MB.9: Prevalence, diagnosis and prompt treatment of children with fever

| Background Characteristics | Among children under age five years |  | Among children under age five years with fever |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percentage with fever in the two weeks preceding the survey |  | Percentage for whom advice or treatment was sought from a health facility, provider or pharmacy ${ }^{1}$ | Percentage who had blood taken from a finger or heel for testing [1] | Percentage who took ACT ${ }^{2,3}$ | Percentage who took ACT same or next day ${ }^{2,3}$ | Percentage who took antimalarial drugs [2] | Percentage who took antimalarial drugs same or next day[3] | Number of children under age five years with fever |
| Sex |  |  |  |  |  |  |  |  |  |
| Male | 19.8 | 3,757 | 51.5 | 16.3 | 15.6 | 10.1 | 53.5 | 36.3 | 74 |
| Female | 18.0 | 3,793 | 47.1 | 15.4 | 21.1 | 13.7 | 51.5 | 33.4 | 685 |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 22.0 | 758 | 42.5 | 11.1 | 16.2 | 9.6 | 42.7 | 22.7 | 166 |
| Central | 20.2 | 740 | 39.3 | 7.4 | 19.3 | 14.4 | 42.8 | 35.6 | 149 |
| Greater Accra | 8.9 | 1,142 | (55.9) | (11.4) | (30.0) | (19.1) | (63.2) | (36.9) | 101 |
| Volta | 14.5 | 601 | 43.7 | 24.4 | 23.5 | 8.8 | 49.4 | 32.5 | 87 |
| Eastern | 10.5 | 827 | (76.8) | (14.9) | (16.3) | (6.4) | (66.8) | (55.0) | 87 |
| Ashanti | 16.1 | 1,411 | 51.0 | 16.5 | 21.3 | 15.9 | 65.7 | 42.8 | 227 |
| Brong Ahafo | 28.8 | 671 | 44.9 | 13.1 | 19.8 | 13.1 | 46.1 | 30.5 | 193 |
| Northern | 31.8 | 852 | 42.7 | 16.3 | 8.7 | 6.4 | 44.4 | 27.5 | 271 |
| Upper East | 24.8 | 325 | 68.8 | 35.9 | 27.3 | 20.8 | 72.7 | 51.3 | 81 |
| Upper West | 29.4 | 223 | 62.2 | 23.3 | 11.5 | 4.9 | 51.2 | 33.5 | 66 |
| Ecological zones |  |  |  |  |  |  |  |  |  |
| Coastal | 11.6 | 2,296 | 51.5 | 9.2 | 28.9 | 18.5 | 55.2 | 35.9 | 265 |
| Forest | 17.6 | 3,211 | 46.2 | 15.3 | 16.5 | 11.0 | 53.1 | 36.5 | 566 |
| Savannah | 29.2 | 2,043 | 51.5 | 19.3 | 15.2 | 9.7 | 50.9 | 32.9 | 596 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 15.1 | 3,283 | 53.9 | 14.2 | 27.6 | 19.0 | 63.6 | 43.7 | 494 |
| Rural | 21.9 | 4,267 | 47.0 | 16.7 | 13.3 | 8.0 | 46.8 | 30.2 | 933 |
| Age in months |  |  |  |  |  |  |  |  |  |
| 0-11 | 11.7 | 1,543 | 44.6 | 13.8 | 7.0 | 5.4 | 36.4 | 24.2 | 180 |
| 12-23 | 20.4 | 1,453 | 54.9 | 18.2 | 17.7 | 11.2 | 49.7 | 31.8 | 297 |
| 24-35 | 22.0 | 1,553 | 48.3 | 15.3 | 23.8 | 15.9 | 60.7 | 38.7 | 342 |
| 36-47 | 20.3 | 1,576 | 49.5 | 15.8 | 21.0 | 12.6 | 56.4 | 39.6 | 321 |
| 48-59 | 20.2 | 1,426 | 47.8 | 15.4 | 16.2 | 10.7 | 51.6 | 35.0 | 288 |
| Mother's education |  |  |  |  |  |  |  |  |  |
| None | 24.3 | 2,455 | 42.9 | 14.5 | 15.2 | 9.6 | 44.5 | 28.4 | 598 |
| Primary | 18.3 | 1,628 | 50.4 | 21.0 | 16.2 | 13.6 | 55.4 | 42.8 | 297 |
| Middle/JSS | 15.3 | 2,578 | 57.0 | 12.6 | 18.6 | 11.0 | 59.6 | 37.8 | 394 |
| Secondary + | 15.6 | 889 | 53.5 | 20.0 | 34.5 | 20.0 | 61.5 | 37.4 | 139 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 26.0 | 1,730 | 38.1 | 14.2 | 9.5 | 7.0 | 41.4 | 26.7 | 449 |
| Second | 21.8 | 1,551 | 52.1 | 16.0 | 14.6 | 9.5 | 46.7 | 32.3 | 337 |
| Middle | 17.3 | 1,559 | 51.5 | 17.7 | 20.0 | 10.4 | 62.6 | 41.3 | 270 |
| Fourth | 16.1 | 1,397 | 60.1 | 16.8 | 29.0 | 20.5 | 63.0 | 44.3 | 225 |
| Richest | 11.1 | 1,313 | 57.4 | 15.8 | 33.9 | 21.3 | 65.8 | 39.6 | 145 |
| Total | 18.9 | 7,550 | 49.4 | 15.9 | 18.2 | 11.8 | 52.6 | 34.9 | 1,427 |
| [1] MICS indicator 3.16 <br> [2] MCS Indicator 3.18; MDG Indicator 6.8 <br> [3] MICS Indicator 3.17 <br> Figures in parentheses are based on $25-49$ unweighted cases. <br> 1 Excludes market, shop, traditional practitioner, drug peddlers, relatives or friends, other, DK, missing <br> 2 Includes ACT and ACT with green leaf. The Affordable medicine facility for malaria (AMFm) is an internationally subsidized ACT through the Global Fund. The packaging <br> has a hologram of a green leaf to identify the drugs as an AMFm. <br> 3 The true proportion of $A C T$ is suspected to be higher. Ghana's first-line ACT "Artesunate-Amodiaquine (AS/AQ)", is often refered to in popular parlance as "amodiaquin <br> e."The MICS data collection process failed to distinguish between AS/AQ and the unapproved monotherapy, "Amodiaquine."Thus a large but unknowable proportion of <br> "Amodiaquine" responses should have been recorded as an ACT. |  |  |  |  |  |  |  |  |  |

Table MB.10: Treatment of fever in children, by type of facility
Among children under age five years with fever in the two weeks preceding the survey, the percent distribution of the type of facility the child was taken to, Ghana, 2011
Among children under age five years with fever

| child was taken to, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Among children under age five years with fever |  |  |  |  |  |  |  |  |
|  | Type of facility or person child was taken to |  |  |  |  |  |  |  |  |
| Background Characteristics | Government hospital | Government clinic/ Health center | Government health post/CHPS compound/ Other public sector | Private hospital/ clinic | Private pharmacy/ Chemical shop/ Other private | Other | Not taken anywhere | Total | Number of children under age five years with fever |
| Sex |  |  |  |  |  |  |  |  |  |
| Male | 10.7 | 22.8 | 3.2 | 10.0 | 4.6 | 0.1 | 48.4 | 100.0 | 743 |
| Female | 14.2 | 17.8 | 2.9 | 5.7 | 6.5 | 0.5 | 52.4 | 100.0 | 685 |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 12.5 | 15.2 | 0.4 | 11.9 | 2.6 | 0.0 | 57.5 | 100.0 | 166 |
| Central | 19.0 | 9.5 | 0.7 | 3.0 | 7.1 | 0.8 | 60.0 | 100.0 | 149 |
| Greater Accra | (15.1) | (16.2) | (0.0) | (9.8) | (14.8) | (0.0) | (44.1) | 100.0 | 101 |
| Volta | 16.4 | 16.3 | 0.5 | 8.7 | 1.9 | 0.0 | 56.3 | 100.0 | 87 |
| Eastern | (17.7) | (20.8) | (0.0) | (10.0) | (28.2) | (1.7) | (21.5) | 100.0 | 87 |
| Ashanti | 14.7 | 18.7 | 0.0 | 13.7 | 3.9 | 0.0 | 49.0 | 100.0 | 227 |
| Brong Ahafo | 4.0 | 27.4 | 4.0 | 8.9 | 0.6 | 0.0 | 55.1 | 100.0 | 193 |
| Northern | 7.2 | 22.9 | 6.6 | 2.3 | 3.7 | 0.3 | 57.1 | 100.0 | 271 |
| Upper East | 20.9 | 29.6 | 9.6 | 7.9 | 0.8 | 0.6 | 30.6 | 100.0 | 81 |
| Upper West | 8.5 | 33.8 | 12.6 | 4.0 | 3.3 | 0.7 | 37.0 | 100.0 | 66 |
| Ecological zones |  |  |  |  |  |  |  |  |  |
| Coastal | 17.0 | 15.6 | 0.4 | 9.1 | 9.5 | 0.4 | 48.0 | 100.0 | 265 |
| Forest | 13.0 | 15.6 | 0.1 | 11.8 | 5.6 | 0.0 | 53.8 | 100.0 | 566 |
| Savannah | 9.8 | 27.1 | 7.1 | 3.8 | 3.7 | 0.5 | 48.0 | 100.0 | 596 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 15.7 | 18.3 | 0.6 | 11.2 | 8.2 | 0.0 | 46.1 | 100.0 | 494 |
| Rural | 10.6 | 21.6 | 4.4 | 6.3 | 4.1 | 0.5 | 52.6 | 100.0 | 933 |
| Age in months |  |  |  |  |  |  |  |  |  |
| 0-11 | 13.1 | 17.4 | 3.4 | 4.7 | 6.1 | 0.0 | 55.4 | 100.0 | 180 |
| 12-23 | 14.9 | 20.1 | 2.6 | 12.5 | 4.8 | 0.7 | 44.4 | 100.0 | 297 |
| 24-35 | 11.1 | 22.8 | 4.9 | 7.2 | 2.3 | 0.4 | 51.3 | 100.0 | 342 |
| 36-47 | 10.4 | 21.5 | 2.6 | 7.6 | 7.3 | 0.2 | 50.3 | 100.0 | 321 |
| 48-59 | 13.2 | 18.7 | 1.7 | 6.6 | 7.6 | 0.2 | 52.1 | 100.0 | 288 |
| Mother's education |  |  |  |  |  |  |  |  |  |
| None | 7.6 | 21.7 | 4.8 | 5.5 | 3.3 | 0.3 | 56.8 | 100.0 | 598 |
| Primary | 9.9 | 21.4 | 4.0 | 7.3 | 7.8 | 0.0 | 49.6 | 100.0 | 297 |
| Middle/SSS | 17.2 | 20.8 | 0.9 | 11.4 | 6.7 | 0.0 | 43.0 | 100.0 | 394 |
| Secondary + | 24.5 | 11.6 | 0.1 | 10.4 | 6.9 | 1.9 | 44.6 | 100.0 | 139 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 4.6 | 22.7 | 6.2 | 1.9 | 2.6 | 0.3 | 61.5 | 100.0 | 449 |
| Second | 15.2 | 20.2 | 3.7 | 8.3 | 4.7 | 0.1 | 47.9 | 100.0 | 337 |
| Middle | 10.4 | 22.0 | 1.0 | 11.1 | 7.0 | 0.0 | 48.5 | 100.0 | 270 |
| Fourth | 19.0 | 20.6 | 0.2 | 13.3 | 7.0 | 0.0 | 39.9 | 100.0 | 225 |
| Richest | 23.6 | 10.9 | 0.0 | 11.8 | 11.2 | 1.8 | 40.8 | 100.0 | 145 |
| Total | 12.4 | 20.4 | 3.1 | 8.0 | 5.5 | 0.3 | 50.3 | 100.0 | 1,427 |
| Figures in paren | on 2 | ted c |  |  |  |  |  |  |  |

Type and Timing of Antimalarial Drug Use for Children
Details on the types and timing of antimalarial drugs given to children to treat fever are provided in Table MB.11. Overall, 24 percent of children under age 5 who had a fever in the two weeks preceding the survey were reported to have taken "amodiaquine," 18 percent some type of ACT, 11 percent "ACT with green leaf," 4 percent quinine, 1 percent took chloroquine, 1 percent took SP/Fansidar, and 6 percent took some other type of antimalarial drug.

The unexpectedly high figure for amodiaquine use is surprising. Taken at face value, the MICS data suggest that, of all children who took antimalarials for recent fever, 44 percent took "amodiaquine," including 55 percent of those given antimalarials at CHPS compounds, where compliance with national guidelines tends to be optimal. Unfortunately, it has emerged that the MICS data collection process did not distinguish adequately between "Artesunate-Amodiaquine," which is Ghana's widely available first-line official ACT product, on the one hand, and "Amodiaquine," which is a non-approved monotherapy, not widely favored due to perceived side effects. In popular parlance,"amodiaquine" is used as a shortened form of"Artesunateamodiaquine," which appears to be the source of the error. Thus, analysis suggests strongly that a large, but unknown portion of the "amodiaquine" responses should have been recorded as "ACT." This would put the proportion of children with fever who took an ACT at somewhere between 18 and 42 percent.

In terms of timing of treatment, of those children who took any antimalarial, two thirds (35\%/53\%) took it on the same day or the day following the fever onset. This ratio applies also to those children who took ACTs (12\%/18\%).

| Table MB.11: Type and timing of antimalarial drugs <br> Among children under age five years with fever in the two weeks preceding the survey, the percentage who took specific antimalarial drugs and the percentage who took each type of drug the same or next day after developing fever, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of children with fever who took antimalarial drugs, and the percentage who took antimalarial drugs the same or next day |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | SP/Fansidar |  | Chloriquine |  | Amodiaquine |  | Quinine |  | Any ACT[1] |  | ACT with green leaf |  | $\qquad$ |  | Anyantimalarialdrugs |  | Number <br> of <br> children <br> under <br> age five <br> years <br> with <br> fever |
|  | Took drug | $\begin{array}{r} \text { Same } \\ \text { or } \\ \text { next } \\ \text { day } \end{array}$ | Took drug | $\begin{array}{r} \text { Same } \\ \text { or } \\ \text { next } \\ \text { day } \end{array}$ | $\begin{aligned} & \text { Took } \\ & \text { drug } \end{aligned}$ | Same <br> or <br> next day | Took drug | Same <br> or next day | Took drug | Same <br> or next day | Took drug | Same <br> or <br> next day | Took drug | Same <br> or <br> next <br> day | Took drug [1] | $\begin{array}{r} \text { Same } \\ \text { or } \\ \text { next } \\ \text { day }[2] \end{array}$ |  |
| Sex |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.4 | 0.6 | 1.0 | 0.9 | 26.6 | 19.8 | 4.4 | 2.4 | 15.6 | 10.1 | 8.9 | 6.2 | 5.9 | 3.4 | 53.5 | 36.3 | 43 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 1.0 | 1.0 | 1.0 | 1.0 | 18.0 | 8.1 | 2.5 | 1.7 | 16.2 | 9.6 | 7.1 | 5.7 | 4.8 | 2.0 | 42.7 | 22.7 | 166 |
| Central | 0.6 | 0.6 | 1.3 | 1.3 | 15.8 | 12.9 | 0.8 | 0.8 | 19.3 | 14.4 | 10.0 | 6.5 | 6.5 | 6.1 | 42.8 | 35.6 | 149 |
| Greater Accra | (0.0) | (0.0) | (0.0) | (0.0) | (13.8) | (6.9) | (0.0) | (0.0) | (30.0) | (19.1) | (27.6) | (16.7) | (21.4) | (12.9) | (63.2) | (36.9) | 101 |
| Volta | 2.7 | 2.0 | 0.0 | 0.0 | 22.5 | 20.2 | 1.0 | 1.0 | 23.5 | 8.8 | 15.6 | 6.9 | 1.0 | 1.0 | 49.4 | 32.5 | 87 |
| Eastern | (0.0) | (0.0) | (6.6) | (6.6) | (41.7) | (39.8) | (0.0) | (0.0) | (16.3) | (6.4) | (7.7) | (4.5) | (2.2) | (2.2) | (66.8) | (55.0) | 87 |
| Ashanti | 1.1 | 0.0 | 0.9 | 0.0 | 29.0 | 23.4 | 5.1 | 2.0 | 21.3 | 15.9 | 15.8 | 10.4 | 8.4 | 1.5 | 65.7 | 42.8 | 227 |
| Brong Ahafo | 1.8 | 0.0 | 0.0 | 0.0 | 19.2 | 12.7 | 3.3 | 3.3 | 19.8 | 13.1 | 6.3 | 5.8 | 2.0 | 1.3 | 46.1 | 30.5 | 193 |
| Northern | 0.8 | 0.6 | 1.1 | 0.8 | 24.8 | 14.3 | 7.5 | 4.5 | 8.7 | 6.4 | 4.6 | 3.1 | 3.4 | 2.7 | 44.4 | 27.5 | 271 |
| Upper East | 2.6 | 1.1 | 3.1 | 3.1 | 30.9 | 22.4 | 9.2 | 6.1 | 27.3 | 20.8 | 15.9 | 13.0 | 5.8 | 2.3 | 72.7 | 51.3 | 81 |
| Upper West | 1.6 | 1.2 | 1.9 | 1.7 | 28.7 | 21.5 | 5.2 | 2.9 | 11.5 | 4.9 | 7.3 | 3.5 | 5.1 | 3.8 | 51.2 | 33.5 | 66 |
| Ecological zones |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Coastal | 0.2 | 0.2 | 0.3 | 0.3 | 12.0 | 7.8 | 0.8 | 0.8 | 28.9 | 18.5 | 19.9 | 12.5 | 14.6 | 9.4 | 55.2 | 35.9 | 265 |
| Forest | 0.8 | 0.3 | 1.6 | 1.3 | 27.3 | 21.2 | 3.1 | 1.6 | 16.5 | 11.0 | 9.2 | 6.0 | 3.9 | 1.2 | 53.1 | 36.5 | 566 |
| Savannah | 1.8 | 0.8 | 1.3 | 1.2 | 25.2 | 16.7 | 6.0 | 3.9 | 15.2 | 9.7 | 8.1 | 5.8 | 3.5 | 2.4 | 50.9 | 32.9 | 596 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 0.2 | 0.2 | 1.2 | 1.0 | 21.4 | 17.0 | 4.9 | 2.9 | 27.6 | 19.0 | 19.7 | 14.0 | 9.4 | 4.3 | 63.6 | 43.7 | 494 |
| Rural | 1.6 | 0.7 | 1.3 | 1.1 | 24.7 | 16.7 | 3.3 | 2.2 | 13.3 | 8.0 | 6.0 | 3.5 | 3.8 | 2.6 | 46.8 | 30.2 | 933 |
| Age in months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0-11 | 0.1 | 0.0 | 0.3 | 0.3 | 20.2 | 15.2 | 2.9 | 1.5 | 7.0 | 5.4 | 1.3 | 0.8 | 6.2 | 2.0 | 36.4 | 24.2 | 180 |
| 12-23 | 0.6 | 0.4 | 0.6 | 0.5 | 22.7 | 14.1 | 4.0 | 3.0 | 17.7 | 11.2 | 9.3 | 5.4 | 7.5 | 5.1 | 49.7 | 31.8 | 297 |
| 24-35 | 1.8 | 0.9 | 0.4 | 0.4 | 23.0 | 16.1 | 6.1 | 3.2 | 23.8 | 15.9 | 14.7 | 10.3 | 6.6 | 3.0 | 60.7 | 38.7 | 342 |
| 36-47 | 0.7 | 0.7 | 2.2 | 2.0 | 27.1 | 20.3 | 2.2 | 1.9 | 21.0 | 12.6 | 14.6 | 9.1 | 4.0 | 2.6 | 56.4 | 39.6 | 321 |
| 48-59 | 1.9 | 0.3 | 2.6 | 1.9 | 23.4 | 17.7 | 3.6 | 2.2 | 16.2 | 10.7 | 9.0 | 7.0 | 4.6 | 3.0 | 51.6 | 35.0 | 288 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 1.1 | 0.8 | 0.9 | 0.9 | 20.1 | 13.3 | 5.4 | 3.7 | 15.2 | 9.6 | 9.8 | 5.5 | 3.4 | 1.5 | 44.5 | 28.4 | 598 |
| Primary | 1.0 | 0.8 | 3.3 | 2.4 | 27.1 | 20.7 | 2.1 | 1.9 | 16.2 | 13.6 | 10.8 | 9.5 | 6.5 | 4.3 | 55.4 | 42.8 | 297 |
| Middle/JSS | 1.6 | 0.1 | 0.6 | 0.6 | 29.3 | 21.6 | 2.8 | 1.0 | 18.6 | 11.0 | 9.7 | 6.0 | 7.7 | 4.0 | 59.6 | 37.8 | 394 |
| Secondary + | 0.0 | 0.0 | 0.5 | 0.5 | 15.0 | 10.2 | 4.3 | 2.3 | 34.5 | 20.0 | 17.6 | 12.5 | 8.7 | 5.8 | 61.5 | 37.4 | 139 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 2.0 | 1.0 | 1.6 | 1.6 | 22.0 | 13.5 | 6.0 | 4.0 | 9.5 | 7.0 | 6.0 | 4.5 | 2.4 | 1.2 | 41.4 | 26.7 | 449 |
| Second | 1.9 | 0.7 | 2.4 | 1.8 | 21.5 | 15.6 | 2.0 | 1.5 | 14.6 | 9.5 | 6.6 | 3.4 | 5.5 | 4.4 | 46.7 | 32.3 | 337 |
| Middle | 0.2 | 0.2 | 1.1 | 0.8 | 35.1 | 28.1 | 3.1 | 0.4 | 20.0 | 10.4 | 8.8 | 4.5 | 3.5 | 1.3 | 62.6 | 41.3 | 270 |
| Fourth | 0.0 | 0.0 | 0.0 | 0.0 | 23.3 | 18.0 | 2.8 | 1.6 | 29.0 | 20.5 | 22.4 | 15.2 | 8.9 | 4.5 | 63.0 | 44.3 | 225 |
| Richest | 0.0 | 0.0 | 0.0 | 0.0 | 12.3 | 7.1 | 5.1 | 4.5 | 33.9 | 21.3 | 20.4 | 16.4 | 15.9 | 8.0 | 65.8 | 39.6 | 145 |
| Total | 1.1 | 0.5 | 1.3 | 1.1 | 23.6 | 16.8 | 3.9 | 2.4 | 18.2 | 11.8 | 10.7 | 7.1 | 5.7 | 3.2 | 52.6 | 34.9 | 1,427 |
| [1] MCS Indicator 3.18; MDG Indicator 6.8 <br> [2] MICS Indicator 3.17 <br> Figures in parentheses are based on $25-49$ unweighted cases. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Knowledge of Malaria Symptoms

To assess basic knowledge about malaria, all women and men interviewed in the MICS 2011 were asked if they could name any symptoms of malaria. The combined results are shown in Table MB. 12 for women and men aged 15-49 years of age. Percentages may sum to more than 100 percent because respondents could give more than one response.

The table shows that 96 percent of the women and men aged15-49 years were able to list at least one malaria symptom. While 60 percent of women and men stated that a person's body temperature rises and the person feels hot, 40 percent said there is weakness in the body, 35 percent of women and men listed vomiting as a symptom and 33 said that a strong headache is a symptom, 26 percent said that chills are a symptom and 25 percent said that loss of appetite is a symptom. Interestingly, with increasing wealth and education, there was only a marginal trend, if any, towards more accurate responses (such as fever as a symptom, and cough not a symptom).

| Table MB.12: Knowledge of symptoms of Malaria <br> Among women and men age 15-49 the percentage who cite specific symptoms or signs of malaria infection, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Symptoms or signs of malaria infection |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | $\begin{array}{r} \text { Hot } \\ \text { body } \\ \text { fever } \end{array}$ | Vomiting | $\begin{array}{r} \text { Strong } \\ \text { headache } \end{array}$ | $\begin{array}{r} \text { Loss of } \\ \text { appetite } \end{array}$ | Weakness of body | Cough | Chills | Bitterness in the mouth | Other | $\begin{array}{r} \text { Any } \\ \text { symptom } \end{array}$ | $\begin{array}{r} \text { Does } \\ \text { not } \\ \text { know } \\ \text { any } \end{array}$ | Number of women and men |
| Sex |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 60.2 | 33.2 | 35.1 | 27.1 | 39.9 | 3.1 | 26.6 | 19.6 | 18.7 | 96.6 | 3.5 | 5,965 |
| Female | 60.3 | 37.3 | 30.9 | 23.7 | 40.3 | 3.0 | 25.9 | 22.7 | 23.5 | 96.2 | 3.8 | 7,108 |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 71.7 | 19.0 | 43.1 | 23.5 | 38.1 | 1.1 | 33.1 | 28.8 | 19.2 | 97.8 | 2.4 | 1,317 |
| Central | 53.5 | 27.4 | 32.4 | 19.5 | 33.8 | 2.8 | 38.1 | 27.1 | 19.5 | 98.7 | 1.3 | 1,229 |
| Greater Accra | 60.3 | 43.1 | 41.4 | 35.0 | 43.9 | 4.7 | 34.4 | 25.8 | 17.3 | 97.4 | 2.6 | 2,618 |
| Volta | 46.7 | 47.2 | 45.8 | 20.0 | 34.1 | 1.9 | 25.5 | 13.4 | 26.1 | 98.9 | 1.8 | 1,018 |
| Eastern | 59.8 | 45.3 | 25.3 | 32.2 | 41.9 | 4.1 | 24.5 | 35.7 | 18.4 | 98.9 | 1.1 | 1,486 |
| Ashanti | 62.4 | 31.5 | 22.8 | 27.1 | 44.0 | 1.5 | 16.7 | 20.5 | 27.3 | 94.2 | 5.8 | 2,431 |
| Brong Ahafo | 52.0 | 34.4 | 23.4 | 20.1 | 34.5 | 3.9 | 24.8 | 8.7 | 22.4 | 89.3 | 10.7 | 1,180 |
| Northern | 64.0 | 28.5 | 31.7 | 10.9 | 42.5 | 2.7 | 19.0 | 5.4 | 23.6 | 95.7 | 4.3 | 948 |
| Upper East | 71.5 | 37.1 | 27.6 | 11.1 | 35.7 | 3.3 | 14.5 | 6.0 | 19.7 | 97.5 | 2.5 | 489 |
| Upper West | 68.3 | 40.2 | 37.2 | 26.8 | 45.1 | 6.0 | 13.4 | 12.5 | 13.7 | 97.6 | 2.5 | 356 |
| Ecological zones |  |  |  |  |  |  |  |  |  |  |  |  |
| Coastal | 59.8 | 38.7 | 41.0 | 29.6 | 40.7 | 3.6 | 33.6 | 25.1 | 20.3 | 98.3 | 1.7 | 4,668 |
| Forest | 60.4 | 33.7 | 28.0 | 25.6 | 40.7 | 2.6 | 24.5 | 23.1 | 22.2 | 95.7 | 4.5 | 5,571 |
| Savannah | 60.7 | 33.5 | 28.8 | 17.2 | 38.3 | 3.1 | 17.3 | 11.3 | 21.1 | 94.9 | 5.2 | 2,834 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 61.9 | 38.1 | 35.2 | 28.8 | 44.5 | 3.7 | 29.3 | 22.3 | 20.3 | 97.5 | 2.5 | 6,993 |
| Rural | 58.4 | 32.4 | 30.1 | 21.1 | 35.1 | 2.3 | 22.7 | 20.1 | 22.4 | 95.2 | 4.9 | 6,080 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 55.8 | 39.2 | 31.4 | 22.8 | 36.4 | 2.8 | 24.7 | 15.7 | 21.1 | 94.5 | 5.5 | 4,523 |
| 25-34 | 62.2 | 34.4 | 32.4 | 27.0 | 40.0 | 2.9 | 26.8 | 22.6 | 21.2 | 97.2 | 2.8 | 4,126 |
| 35-49 | 63.0 | 32.6 | 34.6 | 26.0 | 44.2 | 3.4 | 27.2 | 25.7 | 21.5 | 97.7 | 2.5 | 4,424 |
| Education |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 61.6 | 28.2 | 26.3 | 16.8 | 36.0 | 2.5 | 17.0 | 13.8 | 21.9 | 92.6 | 7.4 | 2,160 |
| Primary | 55.6 | 29.8 | 26.7 | 20.6 | 36.4 | 2.2 | 22.3 | 20.1 | 23.8 | 94.2 | 6.0 | 2,138 |
| Middle/JSS | 57.1 | 38.2 | 30.6 | 26.0 | 39.6 | 2.7 | 27.5 | 24.9 | 22.1 | 97.2 | 2.9 | 5,610 |
| Secondary + | 68.1 | 39.3 | 45.2 | 32.7 | 46.6 | 4.6 | 33.0 | 20.8 | 17.8 | 99.2 | 0.8 | 3,164 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 60.0 | 28.1 | 26.6 | 14.7 | 33.4 | 2.6 | 15.7 | 9.4 | 22.4 | 92.7 | 7.6 | 2,035 |
| Second | 55.8 | 31.5 | 27.6 | 21.1 | 35.0 | 3.1 | 23.0 | 21.0 | 23.4 | 94.8 | 5.2 | 2,232 |
| Middle | 56.8 | 40.7 | 30.6 | 23.9 | 39.1 | 1.6 | 25.6 | 24.5 | 24.4 | 97.4 | 2.7 | 2,550 |
| Fourth | 62.1 | 35.3 | 33.2 | 27.5 | 42.1 | 2.1 | 29.7 | 22.5 | 21.2 | 97.3 | 2.7 | 2,964 |
| Richest | 64.5 | 38.7 | 41.5 | 33.4 | 47.0 | 5.2 | 32.1 | 25.2 | 16.8 | 98.2 | 1.8 | 3,293 |
| Total | 60.3 | 35.4 | 32.8 | 25.2 | 40.2 | 3.0 | 26.2 | 21.3 | 21.3 | 96.4 | 3.6 | 13,073 |

## Knowledge of Causes of Malaria

Women and men were also asked during the survey if they know any causes of malaria. Those who responded that they knew any cause of malaria were asked to name specific causes. Table MB. 13 shows responses provided by women and men aged 15-49 years. There are various messages and beliefs as to what causes malaria. Table MB. 13 divides the responses into three categories: correct cause of malaria, partially correct causes, and incorrect beliefs in what causes malaria. In this table as well, percentages may sum to more than 100 percent because respondents could give more than one response.

Overall, 86 percent of women and men correctly identified mosquito bites as a cause of malaria, and 6 percent correctly identified the malaria parasite, Plasmodium falciparum, as the cause of malaria. A third (32\%) of women and men state that weedy surroundings and stagnant water cause malaria.

Remarkably, more than half of women and men ( $56 \%$ ) stated that dirty surroundings cause malaria. This is a common misconception in Ghana. In reality, although non-malaria bearing mosquitoes, such as Culex
and Aedes may breed and be found in polluted surroundings such as urban centers, however, the malariabearing species Anopheles prefers water free of organic or chemical pollution, and does not thrive in such settings. Interestingly, the wealthiest, best-educated and urban respondents focused the most on dirty surroundings as an alleged cause of malaria.

| Table MB.13: Knowledge of causes of Malaria <br> Among women and men age 15-49 the percentage who cite specific causes of malaria, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Correct <br> Mosquito bites | Partly correct <br> Malaria parasite (p. falciparum) | Incorrect |  |  |  |  |  | $\begin{array}{r} \text { Does } \\ \text { not } \\ \text { know } \\ \text { any } \end{array}$ | Number of and men |
|  |  |  | Weedy surroundings and stagnant water | Dirty surroundings | Eating contaminated food | Standing / working in the sun | Eating sweet foods | Other |  |  |
| Sex |  |  |  |  |  |  |  |  |  |  |
| Male | 85.7 | 8.7 | 34.2 | 58.4 | 16.2 | 14.2 | 2.8 | 6.3 | 1.6 | 5,965 |
| Female | 85.9 | 3.0 | 29.9 | 54.6 | 19.1 | 12.1 | 2.1 | 9.2 | 2.2 | 7,108 |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | 89.2 | 1.9 | 31.1 | 57.4 | 15.9 | 6.0 | 3.9 | 7.3 | 0.9 | 1,317 |
| Central | 85.5 | 1.3 | 33.3 | 62.9 | 22.1 | 10.0 | 5.1 | 9.5 | 0.6 | 1,229 |
| $\begin{aligned} & \text { Greater } \\ & \text { Accra } \end{aligned}$ | 89.2 | 14.1 | 44.0 | 67.4 | 19.2 | 9.2 | 1.4 | 7.6 | 0.6 | 2,618 |
| Volta | 89.8 | 1.1 | 17.4 | 26.5 | 20.8 | 37.3 | 0.9 | 9.1 | 2.2 | 1,018 |
| Eastern | 87.7 | 1.9 | 39.4 | 66.8 | 18.4 | 20.8 | 1.2 | 5.0 | 0.6 | 1,486 |
| Ashanti | 80.7 | 7.2 | 29.9 | 57.6 | 20.3 | 3.9 | 1.8 | 12.1 | 2.0 | 2,431 |
| Brong Ahafo | 83.5 | 5.4 | 31.4 | 57.3 | 11.3 | 9.1 | 3.8 | 5.8 | 6.4 | 1,180 |
| Northern | 79.8 | 2.8 | 13.7 | 36.5 | 12.3 | 29.7 | 2.1 | 4.1 | 5.3 | 948 |
| Upper East | 84.4 | 2.2 | 16.2 | 41.2 | 15.9 | 8.9 | 3.9 | 4.7 | 1.2 | 489 |
| Upper West | 90.0 | 2.5 | 35.2 | 50.8 | 10.4 | 14.0 | 1.4 | 7.3 | 1.8 | 356 |
| Ecological zones |  |  |  |  |  |  |  |  |  |  |
| Coastal | 88.4 | 8.4 | 39.5 | 62.5 | 20.8 | 12.7 | 2.5 | 8.5 | 0.6 | 4,668 |
| Forest | 85.4 | 4.9 | 30.9 | 58.3 | 17.3 | 10.2 | 2.3 | 8.9 | 1.9 | 5,571 |
| Savannah | 82.3 | 2.3 | 21.1 | 42.1 | 13.7 | 19.2 | 2.5 | 5.0 | 4.3 | 2,834 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 87.3 | 8.0 | 36.2 | 61.7 | 17.6 | 9.4 | 2.1 | 8.0 | 1.1 | 6,993 |
| Rural | 84.0 | 2.8 | 26.9 | 50.1 | 18.1 | 17.2 | 2.8 | 7.8 | 2.9 | 6,080 |
| Age |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 83.5 | 5.5 | 33.2 | 53.4 | 15.5 | 8.3 | 2.2 | 6.0 | 2.4 | 4,523 |
| 25-34 | 86.4 | 7.4 | 32.7 | 57.0 | 17.9 | 13.9 | 1.7 | 9.0 | 1.3 | 4,126 |
| 35-49 | 87.5 | 4.0 | 29.7 | 58.6 | 20.0 | 17.2 | 3.2 | 8.8 | 2.0 | 4,424 |
| Education |  |  |  |  |  |  |  |  |  |  |
| None | 79.2 | 2.8 | 17.6 | 42.2 | 17.1 | 21.0 | 2.7 | 6.1 | 6.5 | 2,160 |
| Primary | 83.3 | 1.7 | 22.9 | 47.7 | 19.4 | 16.0 | 2.7 | 8.5 | 3.6 | 2,138 |
| Middle/JSS | 86.0 | 4.1 | 34.5 | 61.8 | 20.9 | 12.8 | 2.7 | 8.9 | 0.6 | 5,610 |
| Secondary + | 91.6 | 12.8 | 43.0 | 62.0 | 11.8 | 6.1 | 1.3 | 6.9 | 0.1 | 3,164 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |
| Poorest | 79.7 | 1.9 | 17.3 | 37.5 | 14.2 | 21.2 | 2.3 | 4.9 | 5.5 | 2,035 |
| Second | 85.1 | 1.9 | 26.6 | 51.8 | 20.6 | 17.5 | 2.8 | 8.5 | 2.4 | 2,232 |
| Middle | 85.6 | 4.8 | 30.4 | 57.7 | 20.7 | 14.3 | 3.4 | 8.4 | 1.7 | 2,550 |
| Fourth | 87.3 | 6.4 | 32.9 | 59.7 | 19.0 | 11.0 | 2.2 | 9.3 | 1.1 | 2,964 |
| Richest | 88.8 | 10.3 | 44.6 | 66.8 | 14.8 | 5.9 | 1.5 | 7.6 | 0.4 | 3,293 |
| Total | 85.8 | 5.6 | 31.9 | 56.3 | 17.8 | 13.1 | 2.4 | 7.9 | 1.9 | 13,073 |

## Knowledge of ways to avoid Malaria

Women and men were also asked if they know of ways to avoid getting malaria. Those who know ways to avoid getting malaria were further asked to name specific ways. Table MB. 14 shows the responses provided by women and men aged 15-49 years. Respondents could give more than one response so the figures may sum to more than 100 percent.

Nationally, 48 percent of women and men said that sleeping under an ITN can help to avoid the risk of getting malaria, and 28 percent said that sleeping under any net can help a person avoid malaria. About a quarter of women and men said that filling in stagnant water and avoiding mosquito bites can reduce the risk of malaria. One in four women and men said that using repellent can help to avoid malaria.

Again, it is remarkable that such a high proportion of respondents focused on "keep surroundings clean" as a means to protect from malaria. Although, as mentioned, filth in the environment does not promote Anopheles breeding (in fact, the opposite is true), 59 percent of women and men said that keeping surroundings clean helps to avoid malaria. Once more, the wealthiest, best-educated and urban respondents were more likely to give this incorrect answer. For example, a far higher proportion of the richest Ghanaians $(71 \%)$ identified "keeping surroundings clean" as a way to protect from malaria, than well established methods such as sleeping under an ITN ( $55 \%$ ) or putting mosquito screens in the window (4\%). Also of note is the seeming disconnect between the overall percentage which had earlier identified mosquito bites as a cause of malaria (89\%) and the percentage who reported "avoid mosquito bites" as a means of protection (24\%).

| Table MB.14: Knowledge of ways to protect from Malaria <br> Among women and men age 15-49 the percentage who cite specific ways to protect from malaria infection, Ghan |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | More accurate |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics |  | Sleep under ITN | $\begin{array}{r} \text { Use } \\ \text { repellent } \end{array}$ | $\begin{array}{r} \text { Avoid } \\ \text { mosquito } \\ \text { bites } \end{array}$ | Fill in stagnant waters | Put mosquito screen in window | Clear weeds around the house | $\begin{array}{r} \text { Keep } \\ \text { surroundings } \\ \text { clean } \end{array}$ | Other | Does no know any |  |
| Sex |  |  |  |  |  |  |  |  |  |  |  |
| Male | 28.2 | 52.7 | 25.2 | 26.9 | 26.4 | 3.9 | 20.2 | 60.3 | 12.9 | 1.7 | 5,965 |
| Female | 27.9 | 43.9 | 16.5 | 21.9 | 22.7 | 1.6 | 16.8 | 58.2 | 17.5 | 3.3 | 7,108 |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 25.0 | 46.2 | 16.4 | 16.4 | 12.6 | 1.6 | 15.2 | 58.1 | 9.7 | 0.7 | 1,317 |
| Central | 42.6 | 30.1 | 17.9 | 14.4 | 25.4 | 2.0 | 19.9 | 60.6 | 23.3 | 0.8 | 1,229 |
| Greater Accra | 23.5 | 57.8 | 41.3 | 40.0 | 36.6 | 2.7 | 19.6 | 71.1 | 13.9 | 0.8 | 2,618 |
| Volta | 34.5 | 52.9 | 14.8 | 21.8 | 16.7 | 0.2 | 9.9 | 35.4 | 23.2 | 3.2 | 1,018 |
| Eastern | 35.3 | 48.7 | 26.4 | 32.8 | 22.2 | 6.6 | 19.8 | 64.1 | 9.1 | 0.6 | 1,486 |
| Ashanti | 19.8 | 49.2 | 12.1 | 19.0 | 27.3 | 4.1 | 19.4 | 64.7 | 21.0 | 2.4 | 2,431 |
| Brong Ahafo | 25.7 | 41.1 | 10.7 | 16.8 | 28.3 | 1.1 | 33.6 | 58.7 | 14.4 | 8.2 | 1,180 |
| Northern | 26.7 | 45.8 | 12.2 | 22.1 | 12.2 | 0.7 | 7.1 | 40.0 | 11.7 | 8.5 | 948 |
| Upper East | 33.1 | 43.8 | 10.0 | 13.0 | 11.9 | 1.5 | 11.1 | 44.1 | 6.8 | 2.0 | 489 |
| Upper West | 33.2 | 51.4 | 8.6 | 22.9 | 23.6 | 1.6 | 15.9 | 53.0 | 11.0 | 1.9 | 356 |
| Ecological zones |  |  |  |  |  |  |  |  |  |  |  |
| Coastal | 29.5 | 49.2 | 33.3 | 31.7 | 29.8 | 2.5 | 18.3 | 64.4 | 16.3 | 0.9 | 4,668 |
| Forest | 26.7 | 48.0 | 14.5 | 19.9 | 23.9 | 3.4 | 20.7 | 60.8 | 17.2 | 2.1 | 5,571 |
| Savannah | 28.3 | 45.8 | 11.2 | 20.3 | 16.4 | 1.4 | 13.9 | 47.4 | 10.5 | 6.3 | 2,834 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 25.5 | 50.0 | 26.1 | 27.9 | 28.7 | 2.7 | 19.5 | 65.8 | 15.3 | 1.5 | 6,993 |
| Rural | 30.9 | 45.6 | 14.0 | 19.9 | 19.5 | 2.6 | 17.1 | 51.5 | 15.5 | 3.8 | 6,080 |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 28.6 | 47.2 | 19.6 | 19.4 | 27.0 | 1.3 | 18.4 | 57.8 | 14.9 | 2.9 | 4,523 |
| 25-34 | 26.3 | 52.5 | 21.3 | 24.4 | 22.8 | 2.9 | 18.2 | 58.5 | 15.8 | 2.2 | 4,126 |
| 35-49 | 29.0 | 44.5 | 20.6 | 29.0 | 23.3 | 3.8 | 18.4 | 61.1 | 15.5 | 2.5 | 4,424 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 27.1 | 40.7 | 11.0 | 20.9 | 10.4 | 1.4 | 10.7 | 44.8 | 12.7 | 8.7 | 2,160 |
| Primary | 28.9 | 39.7 | 15.3 | 23.5 | 16.2 | 1.9 | 14.3 | 50.1 | 16.9 | 4.8 | 2,138 |
| Middle/JSS | 27.8 | 45.7 | 21.5 | 25.0 | 25.8 | 2.7 | 19.5 | 63.9 | 17.4 | 0.8 | 5,610 |
| Secondary + | 28.5 | 62.4 | 28.6 | 25.5 | 37.0 | 4.0 | 24.2 | 66.7 | 12.6 | 0.1 | 3,164 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 30.3 | 42.1 | 7.5 | 17.8 | 13.0 | 1.0 | 13.0 | 40.5 | 12.7 | 8.0 | 2,035 |
| Second | 30.5 | 44.1 | 13.6 | 20.7 | 19.5 | 1.5 | 15.5 | 52.9 | 16.7 | 3.1 | 2,232 |
| Middle | 31.2 | 45.6 | 20.7 | 21.7 | 21.9 | 3.7 | 18.0 | 59.8 | 18.2 | 1.9 | 2,550 |
| Fourth | 26.5 | 49.1 | 23.9 | 25.3 | 26.3 | 2.0 | 20.2 | 62.5 | 15.4 | 1.3 | 2,964 |
| Richest | 23.9 | 55.0 | 29.9 | 31.5 | 35.0 | 4.3 | 22.2 | 71.4 | 14.1 | 0.5 | 3,293 |
| Total | 28.0 | 48.0 | 20.5 | 24.2 | 24.4 | 2.7 | 18.4 | 59.2 | 15.4 | 2.6 | 13,073 |

## Specific Messages Seen or Heard about Malaria

In the Mics 2011 survey, women and men age 15-49 were asked about various media messages that address the topic of preventing and treating malaria. For respondents who had heard of any messages, they were asked specifically which messages they had heard and the source of the messages. Tables MB. 15 and MB. 16 present data related to specific messages from national communication campaigns, by the NMCP and its partners. The first set of message promoted ITNs and general knowledge about malaria. The second set of message promoted the "ACT with green leaf" type of malaria medications, which as mentioned earlier, is the marketing brand for the subsidized ACTs provided through Ghana's AMFM pilot program (i.e., the Affordable Medicines Facility - Malaria).

Women and men aged 15-49 who had heard or seen any messages on malaria within the past six months were directly asked if they had heard or seen the following specific messages, and where they heard or seen these messages:

- Nana Boro's (a popular singer) "Aha ye de-ntontom be wu" music video/song
- Advert (humorous) where a woman does not want to stay the night with the man unless he has a treated net
- Short documentaries featuring the true stories of Ghanaian families and children suffering epilepsy and learning disabilities due to severe malaria
- Advert where people from all walks of life are sleeping under treated nets

Table MB. 15 presents data for women and men aged $15-49$ who had heard or seen any of the abovementioned messages on malaria during the six months preceding the survey, disaggregated by whether they heard or saw the messages on the television, radio, or both, by background characteristics. It appears all messages on malaria were more seen on the television than heard on the radio. Almost half (49\%) of women and men reported seeing the advert "where a women doesn't want to stay the night with the man unless he has a treated net" on the television and 42 percent of women and men reported seeing on television the short documentaries about the effect of epilepsy and learning disabilities that severe malaria may cause. A third of the respondents (34\%) reported that they saw the Nana Boro music video and the "advert where people from all walks of life sleep under a treated net".

A smaller percentage of women and men reported hearing the same messages on the radio. For example, 13 percent of women had heard the Nana Boro song on the radio, and 4 percent of respondents had heard the remaining messages on the radio. Data are also presented for women and men who saw any of the specific malaria messages on the television, and/or heard them on the radio. The data indicate that a small percentage of women and men had seen or heard the messages on malaria on both the television and the radio. Also, 9 percent of women and men saw and heard the Nano Boro music video or song on the television and radio. Only 2 percent of women and men had both seen or heard the remaining malaria messages through both forms of media. The data indicate that these messages were seen mostly on television.

| Table MB.15: Specific malaria messages seen or heard on television or radio |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Nana Boro's "Aha ye dentontom be wu" Music video/song |  |  | Advert where woman doesn't want to stay the night with the man unless he has a treated net |  |  | Short documentaries featuring the true stories of Ghanaian families, children suffering epilepsy and learning disabilities due to severe malaria |  |  | Advert where people from all walks of life are sleeping under treated nets |  |  |  |
|  | TV | Radio | $\begin{array}{r} \text { TV } \\ \begin{array}{c} \text { TVnd } \\ \text { radio } \end{array} \end{array}$ | tv | Radio | $\begin{gathered} \text { TV } \\ \text { TVd } \\ \text { radio } \end{gathered}$ | TV | Radio | $\begin{array}{r} \text { TV } \\ \text { TV } \\ \text { radio } \end{array}$ | TV | Radio | $\begin{array}{r} \text { TV } \\ \text { and } \\ \text { radio } \end{array}$ |  |
| Sex |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 31.2 | 14.7 | 9.7 | 44.3 | 4.5 | 2.1 | 34.5 | 4.8 | 2.1 | 27.6 | 4.2 | 1.8 | 3,582 |
| Female | 35.6 | 12.1 | 8.5 | 52.7 | 2.7 | 1.1 | 49.3 | 2.6 | 1.1 | 39.6 | 2.5 | 1.3 | 3,915 |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 28.8 | 15.1 | 6.5 | 40.1 | 0.9 | 0.0 | 38.3 | 0.9 | 0.3 | 25.8 | 1.4 | 0.0 | 878 |
| Central | 27.5 | 16.1 | 2.5 | 39.4 | 12.3 | 1.0 | 39.4 | 14.0 | 2.0 | 40.3 | 12.5 | 3.3 | 811 |
| Greater Accra | 47.6 | 6.4 | 9.9 | 68.0 | 0.6 | 0.4 | 69.8 | 0.7 | 0.4 | 44.7 | 0.1 | 0.4 | 2,049 |
| Volta | 19.5 | 22.6 | 5.9 | 29.3 | 6.1 | 0.0 | 24.2 | 5.2 | 0.1 | 28.1 | 2.6 | 2.0 | 310 |
| Eastern | 28.2 | 15.3 | 18.1 | 40.6 | 4.6 | 0.8 | 29.0 | 3.7 | 2.3 | 24.4 | 4.8 | 0.9 | 847 |
| Ashanti | 30.0 | 16.0 | 12.8 | 49.0 | 3.2 | 5.9 | 28.2 | 3.7 | 4.4 | 31.2 | 3.5 | 3.8 | 1,581 |
| Brong Ahafo | 29.9 | 13.4 | 1.9 | 42.7 | 3.3 | 0.2 | 33.4 | 3.3 | 0.0 | 31.5 | 1.2 | 0.0 | 437 |
| Northern | 33.1 | 15.2 | 3.5 | 41.2 | 4.3 | 0.0 | 40.3 | 3.4 | 0.3 | 31.4 | 4.2 | 0.5 | 286 |
| Upper East | 20.0 | 20.4 | 2.5 | 23.1 | 5.3 | 0.0 | 19.1 | 4.8 | 0.2 | 18.7 | 1.3 | 0.1 | 162 |
| Upper West | 20.7 | 11.5 | 3.0 | 23.8 | 2.2 | 0.6 | 16.8 | 0.9 | 0.2 | 16.7 | 4.9 | 0.8 | 135 |
| Ecological zones |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Coastal | 42.8 | 9.2 | 8.4 | 59.9 | 3.3 | 0.4 | 58.9 | 3.8 | 0.7 | 41.9 | 3.2 | 1.0 | 3,341 |
| Forest | 26.2 | 16.1 | 10.9 | 42.0 | 3.1 | 3.0 | 29.0 | 3.5 | 2.9 | 27.5 | 3.4 | 2.4 | 3,162 |
| Savannah | 25.3 | 18.5 | 5.2 | 32.2 | 5.7 | 0.8 | 28.4 | 3.7 | 0.3 | 27.0 | 3.1 | 0.3 | 993 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 41.2 | 10.1 | 10.0 | 58.2 | 1.7 | 1.4 | 52.3 | 2.1 | 1.2 | 40.3 | 1.5 | 1.4 | 4,800 |
| Rural | 19.9 | 19.1 | 7.4 | 31.6 | 6.9 | 1.9 | 24.4 | 6.3 | 2.3 | 22.3 | 6.4 | 1.8 | 2,697 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 38.3 | 11.3 | 9.9 | 53.4 | 2.6 | 1.4 | 39.5 | 2.5 | 1.1 | 34.2 | 2.6 | 1.2 | 2,311 |
| 25-34 | 32.8 | 13.7 | 9.9 | 50.1 | 3.9 | 2.0 | 45.8 | 3.0 | 1.6 | 33.6 | 3.3 | 1.5 | 2,579 |
| 35-49 | 29.9 | 14.8 | 7.5 | 43.0 | 4.0 | 1.3 | 41.1 | 5.4 | 2.0 | 33.8 | 3.8 | 1.8 | 2,607 |
| Education |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 17.2 | 20.3 | 5.0 | 24.2 | 6.3 | 0.2 | 24.9 | 6.6 | 0.5 | 18.8 | 6.6 | 0.7 | 647 |
| Primary | 29.9 | 18.2 | 4.1 | 39.2 | 6.7 | 0.0 | 36.0 | 7.6 | 1.3 | 28.0 | 6.2 | 0.8 | 924 |
| Middle/JSS | 31.2 | 14.5 | 9.5 | 47.7 | 2.9 | 2.0 | 41.7 | 3.0 | 1.9 | 34.5 | 3.1 | 1.6 | 3,304 |
| Secondary+ | 41.6 | 8.4 | 11.3 | 59.2 | 2.5 | 1.9 | 49.5 | 2.4 | 1.5 | 38.8 | 1.7 | 1.8 | 2,622 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 5.5 | 32.1 | 1.7 | 8.3 | 10.1 | 0.0 | 5.7 | 7.6 | 0.1 | 7.9 | 8.1 | 0.0 | 541 |
| Second | 13.5 | 22.4 | 3.0 | 25.4 | 6.3 | 0.1 | 19.3 | 7.0 | 0.2 | 16.6 | 7.0 | 1.0 | 835 |
| Middle | 27.0 | 17.6 | 7.1 | 37.9 | 5.2 | 1.7 | 27.7 | 6.6 | 3.7 | 27.8 | 5.5 | 2.8 | 1,392 |
| Fourth | 37.9 | 11.8 | 10.6 | 52.4 | 3.1 | 2.1 | 45.9 | 2.4 | 2.3 | 36.7 | 2.1 | 1.8 | 1,965 |
| Richest | 45.1 | 5.8 | 12.3 | 66.3 | 0.9 | 1.9 | 61.0 | 1.3 | 0.7 | 45.2 | 1.0 | 1.1 | 2,764 |
| Total | 33.5 | 13.3 | 9.1 | 48.7 | 3.5 | 1.6 | 42.2 | 3.7 | 1.6 | 33.8 | 3.3 | 1.5 | 7,496 |

Women and men aged 15-49 years were asked whether they had heard or seen any advert on the use of ACT with green leaf or not. If the respondent replied in the affirmative, the person was asked where.

Table MB. 16 presents data on the percentage of women and men aged 15-49 years who had seen or heard any advert on the use of ACT with green leaf in the six months preceding the survey according to media source, and background characteristics. Since the respondent could cite more than one media source the percentage may sum to more than 100 percent. Overall, 43 percent of women and men had seen or heard an advert on the use of ACT with green leaf. The majority of women and men had seen an advert about ACT with green leaf on television (78 percent). Less than half of women and men (45\%) had heard an advert about ACT with green leaf on the radio. Also, 4 percent had seen a poster, and 3 percent a billboard, while 5 percent of respondents reported other unspecified sources. Interestingly, although more respondents recalled messages on TV as compared to radio ( $78 \%$ vs. $45 \%$ ), for the poorest quintile which has the highest malaria prevalence, TV was much less important than radio ( $19 \%$ vs. $77 \%$ ).

| Table MB.16: Knowledge of ACT with green leaf to treat malaria, and source of message <br> Among women and men age $15-49$ the percentage who have seen/heard any advert on the use of $A C T$ with green leaf in the preceding six months, the percentage who cite specific media sources, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of women and men who have seen/heard any advert on ACT with green leaf | Number of women and men | Among women and men who have seen/heard any advert on ACT with green leaf, percentage who cite the following sources: |  |  |  |  |  |  |  |
|  |  |  | TV | Radio | Newspaper | Poster | Billboard | Other | $\begin{array}{r} \text { Does not } \\ \text { know/ } \\ \text { remember } \\ \text { where } \end{array}$ | Number of women and men who have seen/heard any advert on ACT with green leaf |
| Sex |  |  |  |  |  |  |  |  |  |  |
| Male | 43.7 | 5,965 | 73.8 | 48.8 | 2.4 | 3.5 | 3.2 | 3.6 | 0.0 | 2,608 |
| Female | 42.3 | 7,108 | 81.9 | 41.0 | 1.2 | 5.0 | 2.1 | 5.9 | 0.3 | 3,003 |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | 45.5 | 1,317 | 72.2 | 40.4 | 0.3 | 6.0 | 0.6 | 3.9 | 0.0 | 599 |
| Central | 47.8 | 1,229 | 66.7 | 39.8 | 0.1 | 5.0 | 0.9 | 6.3 | 0.0 | 587 |
| Greater Accra | 70.4 | 2,618 | 90.5 | 42.9 | 3.3 | 3.9 | 1.2 | 1.8 | 0.1 | 1,844 |
| Volta | 17.2 | 1,018 | 72.0 | 52.8 | 1.1 | 3.8 | 2.9 | 3.9 | 0.0 | 175 |
| Eastern | 41.2 | 1,486 | 73.9 | 55.9 | 2.1 | 4.0 | 2.0 | 2.9 | 0.0 | 612 |
| Ashanti | 47.4 | 2,431 | 79.1 | 43.4 | 0.2 | 3.3 | 6.7 | 8.1 | 0.6 | 1,153 |
| Brong Ahafo | 23.0 | 1,180 | 71.0 | 36.3 | 5.6 | 8.2 | 6.3 | 6.8 | 0.0 | 272 |
| Northern | 16.5 | 948 | 68.1 | 37.1 | 0.0 | 4.7 | 0.9 | 11.2 | 0.1 | 157 |
| Upper East | 24.5 | 489 | 44.8 | 70.0 | 0.2 | 1.8 | 1.6 | 10.0 | 0.0 | 120 |
| Upper West | 25.9 | 356 | 51.7 | 66.3 | 0.6 | 0.7 | 0.7 | 9.8 | 0.7 | 92 |
| Ecological zones |  |  |  |  |  |  |  |  |  |  |
| Coastal | 59.4 | 4,668 | 86.1 | 41.3 | 2.2 | 4.4 | 1.1 | 2.4 | 0.0 | 2,772 |
| Forest | 39.5 | 5,571 | 73.9 | 46.1 | 1.1 | 4.6 | 4.4 | 6.3 | 0.3 | 2,202 |
| Savannah | 22.5 | 2,834 | 58.2 | 53.9 | 1.7 | 2.4 | 3.2 | 10.0 | 0.1 | 637 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 56.1 | 6,993 | 86.2 | 40.5 | 2.1 | 4.5 | 2.5 | 4.1 | 0.1 | 3,920 |
| Rural | 27.8 | 6,080 | 59.4 | 54.2 | 0.8 | 3.7 | 2.9 | 6.6 | 0.2 | 1,690 |
| Age |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 37.0 | 4,523 | 85.1 | 37.0 | 0.7 | 3.5 | 2.2 | 4.7 | 0.3 | 1,672 |
| 25-34 | 48.3 | 4,126 | 76.9 | 44.1 | 2.7 | 4.8 | 3.4 | 5.1 | 0.2 | 1,995 |
| 35-49 | 43.9 | 4,424 | 73.4 | 51.7 | 1.7 | 4.4 | 2.1 | 4.6 | 0.0 | 1,944 |
| Education |  |  |  |  |  |  |  |  |  |  |
| None | 17.5 | 2,160 | 47.2 | 55.9 | 0.1 | 1.9 | 2.7 | 8.0 | 0.0 | 378 |
| Primary | 29.6 | 2,138 | 70.0 | 48.0 | 0.0 | 3.1 | 1.6 | 5.0 | 0.8 | 634 |
| Middle/SSS | 41.3 | 5,610 | 75.5 | 44.4 | 0.6 | 4.1 | 2.1 | 4.9 | 0.0 | 2,318 |
| Secondary+ | 72.1 | 3,164 | 88.2 | 41.9 | 3.7 | 5.2 | 3.4 | 4.1 | 0.2 | 2,281 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |
| Poorest | 14.3 | 2,035 | 18.6 | 77.2 | 0.2 | 3.0 | 6.0 | 9.9 | 0.2 | 291 |
| Second | 19.0 | 2,232 | 50.3 | 55.6 | 0.5 | 7.2 | 0.6 | 5.3 | 0.8 | 424 |
| Middle | 34.3 | 2,550 | 63.2 | 48.9 | 0.1 | 3.8 | 1.3 | 5.9 | 0.4 | 874 |
| Fourth | 52.9 | 2,964 | 83.9 | 39.8 | 0.7 | 3.3 | 3.0 | 4.5 | 0.0 | 1,568 |
| Richest | 74.5 | 3,293 | 91.6 | 40.4 | 3.4 | 4.7 | 2.7 | 3.9 | 0.0 | 2,453 |
| Total | 42.9 | 13,073 | 78.1 | 44.6 | 1.7 | 4.3 | 2.6 | 4.8 | 0.2 | 5,611 |

Malaria Biomarkers: Anaemia and Malaria in Children Aged 6-59 Months
The MICS 2011 incorporated three "malaria biomarkers," namely: anaemia testing, malaria testing using rapid diagnostic tests (RDTs), and thick blood smear samples prepared on microscope slides. After obtaining informed consent from caregivers, blood samples were obtained from a heel- or finger-prick of children aged 6-59 months to perform on-the-spot anaemia and malaria tests, and to prepare thick blood smears that were later transported and read in the laboratory at NHRC to determine the presence of malaria parasites. The microscopy was used as the gold standard to obtain prevalence rates. Rapid diagnostic test was utilized primarily for ethical reasons, in order to identify and treat malaria in participating children while in the field. The methods used for Anaemia and Malaria testing are detailed in the Appendix B.

Coverage levels for children aged 6-59 months eligible for testing, and those actually tested for anaemia and malaria were uniformly high across most of the population. Testing coverage was somewhat lower among children whose mothers had a secondary or higher education ( $91 \%$ for anaemia and malaria testing coverage), and among children living in the wealthiest households ( $94 \%$ for anaemia and malaria testing coverage) (see Table MB.17).

Table MB.17: Coverage of testing for anaemia and Malaria in Children
Percentage of eligible children age 6 -59 months who were tested for anaemia and for malaria (unweighted), Ghat

| Background Characteristics | Percentage tested for: |  |  | childre <br> (unweight (unweighted) |
| :---: | :---: | :---: | :---: | :---: |
|  | Anaemia | Malaria by microscopy | Malaria by RDT1 |  |
| Sex |  |  |  |  |
| Male | 98.0 | 97.8 | 97.9 | 2,298 |
| Female | 98.1 | 98.0 | 98.1 | 2,311 |
| Region |  |  |  |  |
| Western | 95.9 | 95.9 | 95.9 | 368 |
| Central | 96.8 | 96.8 | 96.8 | 471 |
| Greater Accra | 95.8 | 95.8 | 95.8 | 355 |
| Volta | 99.7 | 99.7 | 99.7 | 361 |
| Eastern | 98.3 | 98.3 | 98.3 | 300 |
| Ashanti | 97.6 | 97.6 | 97.6 | 415 |
| Brong Ahafo | 97.5 | 97.5 | 97.5 | 359 |
| Northern | 99.1 | 98.9 | 99.2 | 960 |
| Upper East | 99.4 | 98.7 | 98.9 | 464 |
| Upper West | 98.2 | 98.2 | 98.2 | 556 |
| Ecological zones |  |  |  |  |
| Coastal | 96.3 | 96.3 | 96.3 | 977 |
| Forest | 98.2 | 98.2 | 98.2 | 1,271 |
| Savannah | 98.6 | 98.4 | 98.6 | 2,361 |
| Residence |  |  |  |  |
| Urban | 96.5 | 96.6 | 96.6 | 1,449 |
| Rural | 98.7 | 98.5 | 98.6 | 3,160 |
| Age |  |  |  |  |
| 6-8 | 96.8 | 96.8 | 96.4 | 249 |
| 9-11 | 97.8 | 97.8 | 97.8 | 229 |
| 12-17 | 97.3 | 97.1 | 97.3 | 514 |
| 18-23 | 97.9 | 97.9 | 97.9 | 473 |
| 24-35 | 98.4 | 98.1 | 98.3 | 1,038 |
| 36-47 | 97.7 | 97.7 | 97.8 | 1,110 |
| 48-59 | 98.7 | 98.7 | 98.7 | 996 |
| Mother's education |  |  |  |  |
| None | 98.5 | 98.3 | 98.5 | 2,242 |
| Primary | 98.7 | 98.6 | 98.6 | 866 |
| Middle/JSS | 97.8 | 97.8 | 97.8 | 1,111 |
| Secondary + | 93.8 | 93.8 | 93.8 | 390 |
| Wealth index quintile |  |  |  |  |
| Poorest | 98.6 | 98.3 | 98.5 | 1,864 |
| Second | 98.5 | 98.5 | 98.5 | 982 |
| Middle | 98.7 | 98.7 | 98.7 | 681 |
| Fourth | 97.8 | 98.0 | 98.0 | 590 |
| Richest | 94.1 | 94.1 | 94.1 | 492 |
| Total | 98.0 | 97.9 | 98.0 | 4,609 |
| Notes: Selection of children based on question AM1. Anaemia based on haemoglobin readings (AM8), not purely on consent. Malaria by DT based on whether test (AM9), not purely on consent. <br> Malaria by microscopy based on whether bar code exists (AM7), not purely on consent. |  |  |  |  |

## Anaemia Prevalence in Children

Table MB. 18 shows the percentage of children aged $6-59$ months with haemoglobin ( Hb ) lower than 8.0 grams per decilitre ( $\mathrm{g} / \mathrm{dL}$ ), by background characteristics. In endemic settings, a haemoglobin level below $8.0 \mathrm{~g} / \mathrm{dL}$ is often associated with malaria infection (Korenromp et al, 2004). ${ }^{21}$ The likely cause of childhood anaemia varies, of course, depending on the area of the world in which the child lives. Overall, iron deficiency is the most common cause of anaemia. However, in developing countries, infectious diseases such as malaria, helminth infections, HIV and tuberculosis are also important (WHO, 2001; Coyer, 2005; Asobayire et al, 2001).

The results show that 7 percent of children aged $6-59$ months were anaemic. Anaemia prevalence was highest among children aged 12-17 months, and thereafter, decreases with an increase in age. Among the regions, anaemia ranged from a low of 2 percent in the Eastern region to 19 percent in the Northern region. There was also a large variance in anaemia prevalence by ecological zone. Anaemia was three times higher in the Savannah zone ( $15 \%$ ) than in the Coastal ( $4 \%$ ) and Forest ( $5 \%$ ) zones; but are lower than rates reported in important studies of malaria-associated anaemia a decade ago (Koram et al, 2001, Owus-Adyei et al, 2002).

The data show that anaemia prevalence was higher among children whose mothers had less education. For children whose mothers had no education, anaemia prevalence was 13 percent, and this decreased to less than 2 percent among children whose mothers have secondary or higher education.

Similar to the pattern observed with anaemia prevalence and mother's education, anaemia was highest among children in households in the poorest wealth quintile (16\%), decreasing to less than 1 percent among children in households in the richest wealth quintile.

Table MB.18: Prevalence of anaemia (haemoglobin $<8.0 \mathrm{~g} / \mathrm{dL}$ ) in children age 6-59 months
Percentage of children age $6-59$ months with haemoglobin lower than $8.0 \mathrm{~g} / \mathrm{dL}$, Ghana, 2011 Background
Characteristics
Sex
Sex
Male
Haemoglobin $<8.0 \mathrm{~g} / \mathrm{dL}$
Number of children

Female
Region

| Region |  |  |
| :--- | ---: | ---: | ---: |
| Western | 4.8 | 458 |
| Central | 7.2 | 455 |


| Central | 7.2 | 455 |
| :--- | :--- | :--- |
| Greater Accra | 2.8 | 683 |
| Volta | 6.8 | 303 |

Volta
Eastern
Ashanti
Brong Ahafo
Northern
Upper East
Upper West

| Ecological zones |  |  |
| :---: | :---: | :---: |
| Coastal | 3.8 | 1,399 |


| Forest | 3.8 | 1,399 |
| :--- | ---: | ---: |
| Savannah | 5.1 | 1,898 |
| Residence | 15.3 | 1,219 |

Rural
1,979
Age in months
Age in
$6-8$

12-17
$18-23$
24-35

Mother's education

| Mother's education |  |  |
| :---: | :---: | :---: |
| None | 12.8 | 1,4 |

Secondary +
Secondary +

| Wealth index quintile | 1.6 |  |
| :--- | ---: | ---: |
| Poorest | 15.8 | 1,032 |
| Sect |  |  |


| Second | 8.8 | 944 |
| :--- | :--- | :--- |
| Middle | 6.6 | 920 |
| Fourth | 2.8 | 877 |


| Richest | 0.6 |
| :--- | :--- |

Total
7.4

4,517
Note: Table is based on children who stayed in the household the night before the interview. Hemoglobin levels are
Note: Table is based on children who stayed in the household the night before the interview. Hemomolobin lever
adjusted for altitude using CDC formulas (CDC, 1998). Hemoglobin is measured in grams per deciliter (g/dL).

## Malaria Prevalence in Children

Table MB. 19 presents the prevalence of malaria parasitaemia in children aged 6-59, by background characteristics, during the testing period of mid-September through mid-December 2011. The microscopy results are used to determine malaria prevalence, as this method is the gold standard. RDTs were included in the protocol for ethical reasons (so as to be able to treat malaria cases in the field). However, RDT-based prevalence figures are also provided, and are discussed below.

While the national malaria microscopy-based prevalence was 28 percent among children aged 6-59 months, prevalence steadily increased with age from 16 percent among children aged $6-8$ months to 34 percent among children aged 48-59 months, as presented in Figure MB.7.

Figure MB. 8 shows that malaria prevalence varied greatly between regions, from 4 percent in Greater Accra to 51 percent in the Upper West region. Interestingly, three contiguous regions had prevalence clustering between 17 and 22 percent (Volta, Eastern and Ashanti), three regions had prevalence clustering between 32 to 37 percent (Central, Western and Brong Ahafo), while three regions had prevalence of 44 to 51 percent (Northern, Upper East, and Upper West). As depicted in Figure MB.9, children in the Savannah zone were three times as likely as children in the Coastal zone to have malaria ( 44 and $14 \%$, respectively), while 28 percent of children had malaria in the Forest zone.

Clear patterns in malaria distribution were found in education, wealth and urban/rural residence, as shown in Figure MB.10. The mother's education and household wealth were both inversely associated with malaria among children: 43 percent of children whose mothers had no education had malaria, compared with only 5 percent of children whose mothers had a secondary or higher education. Likewise, more than half of children ( $52 \%$ ) in households in the poorest wealth quintile had malaria, compared to only 3 percent of children in the richest households. Children in rural areas were three times more likely than their counterparts in urban areas to have malaria ( $39 \%$ compared with $13 \%$, respectively).

Not surprisingly, the RDT-based prevalence results shown in Table MB. 19 were consistently higher than the microscopy results. For example, overall prevalence was 48 percent based on RDTs, and 28 percent based on microscopy. The 20-point, 42-percent discordance found in this survey is somewhat higher than average for recent national malaria surveys. However, it is similar to the RDT-microscopy discordance found in Mozambique 2007 (25\%), Zambia 2010 (40\%), Senegal 2008-09 (52\%), and Kenya 2007 ( $57 \%$ ), and among other surveys (RBM 2012, Measure DHS 2012). Moreover, a district-level survey conducted in Northern Region at the same time as the MICS with exactly the same RDT product, but using different laboratory for microscopy, reassuringly found very similar results: RDT prevalence of 70 percent versus 70 percent for the MICS (Northern Region only); and microscopy prevalence of 48 versus 50 percent (Abuaku et al, 2011).

Discordance between RDT and microscopy is expected, largely because the two tests measure different things. As mentioned earlier, RDTs detect proteins (antigens) which were released into the blood by an ongoing or recently resolved malaria infection. These antigens typically remain detectable for two to four weeks, depending on an RDT product's sensitivity. On the other hand, microscopy detects parasites present in the blood at the time of testing. A child who was recently infected with malaria but was either treated succesfully or cleared of the infection spontaneously would be expected to test positive for RDTs and negative for microscopy (Wongsrichanalai et al, 2007). It appears that this scenario was common in
the Ghana MICS 2011, where out of 4505 children tested, 24 percent were RDT-positive but microscopy negative. In contrast, only 2 percent were false negative (RDT negative but microscopy positive).

Again, the focus of the MICS 2011 findings is on the microscopy-based point-prevalence rates. These suggest heterogeneity in malaria burden in Ghana by region, urban/rural residence, and ecological zone that may hitherto have been underappreciated. The potential programmatic implications may be significant, and may warrant further epidemiologic and entomologic investigation and policy discussion. For example, the MICS findings have already begun to stimulate useful discussion on such topics as: the potential value of prioritizing lower-prevalence areas for increased investment in testing to discriminate between malarial and non-malarial cause of fever; the prioritization of higher-prevalence areas for increased investments in malaria prevention methods; the need to update and refine the demarcations of Ghana's major malaria transmission zones; among others.

| Table MB.19: Prevalence of malaria parasitaemia in children age 6-59 months Percentage of children age 6-59 months classified in two tests as having malaria, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Malaria prevalence according to microscopy |  | Malaria prevalence according to RDT1 |  |
|  | Microscopy positive | Number of children tested | RDT1 positive | Number of children tested |
| Sex |  |  |  |  |
| Male | 27.1 | 2,221 | 47.8 | 2,224 |
| Female | 28.0 | 2,290 | 47.3 | 2,293 |
| Region |  |  |  |  |
| Western | 36.2 | 458 | 55.6 | 458 |
| Central | 32.2 | 454 | 53.3 | 455 |
| Greater Accra | 4.1 | 683 | 9.8 | 683 |
| Volta | 17.3 | 363 | 32.6 | 364 |
| Eastern | 21.6 | 489 | 40.4 | 490 |
| Ashanti | 22.3 | 828 | 49.9 | 830 |
| Brong Ahafo | 37.3 | 399 | 58.9 | 400 |
| Northern | 48.3 | 508 | 70.1 | 509 |
| Upper East | 44.0 | 194 | 77.4 | 194 |
| Upper West | 51.2 | 135 | 80.6 | 135 |
| Ecological zones |  |  |  |  |
| Coastal | 13.6 | 1,398 | 25.9 | 1,399 |
| Forest | 27.5 | 1,896 | 50.1 | 1,898 |
| Savannah | 43.5 | 1,218 | 68.2 | 1,219 |
| Residence |  |  |  |  |
| Urban | 13.1 | 1,978 | 25.8 | 1,980 |
| Rural | 38.8 | 2,533 | 64.5 | 2,537 |
| Age in months |  |  |  |  |
| 6-8 | 15.7 | 256 | 24.6 | 257 |
| 9-11 | 16.3 | 224 | 35.5 | 224 |
| 12-17 | 22.9 | 515 | 41.2 | 515 |
| 18-23 | 26.3 | 455 | 47.4 | 455 |
| 24-35 | 26.0 | 1,032 | 48.9 | 1,033 |
| 36-47 | 31.3 | 1,063 | 51.6 | 1,064 |
| 48-59 | 33.7 | 967 | 53.8 | 969 |
| Mother's education |  |  |  |  |
| None | 42.6 | 1,491 | 65.8 | 1,493 |
| Primary | 24.5 | 976 | 46.7 | 976 |
| Middle/JSS | 22.1 | 1,538 | 41.2 | 1,540 |
| Secondary+ | 5.3 | 507 | 14.3 | 507 |
| Wealth index quintile |  |  |  |  |
| Poorest | 51.8 | 1,029 | 77.6 | 1,031 |
| Second | 38.6 | 943 | 63.1 | 944 |
| Middle | 25.1 | 917 | 48.1 | 920 |
| Fourth | 10.4 | 878 | 28.0 | 878 |
| Richest | 3.2 | 745 | 8.3 | 745 |
| Total | 27.5 | 4,512 | 47.5 | 4,517 |

Figure MB. 7: Malaria prevalence in children age 6-59 months by age group, Ghana, 2011


Figure MB.8: Malaria prevalence in children age 6-59 months by region, Ghana, 2011


Figure MB.9: Malaria prevalence in children age 6-59 months by ecological zone, Ghana, 2011


Figure MB.10: Malaria prevalence in children age 6-59 months by mother's education, wealth quintile and residence, Ghana, 2011



Safe drinking water is a basic necessity for good health. Unsafe drinking water can be a significant carrier of diseases such as trachoma, cholera, typhoid, and schistosomiasis. Drinking water can also be tainted with chemical, physical and radiological contaminants with harmful effects on human health. In addition to its association with disease, access to drinking water may be particularly important for women and children, especially in rural areas, who bear the primary responsibility for carrying water, often for long distances.

The MDG goal is to reduce by half, between 1990 and 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation. The World Fit for Children goal calls for a reduction in the proportion of households without access to hygienic sanitation facilities and affordable and safe drinking water by at least one-third.

The list of indicators used in MICS 2011 is as follows:

## Water

- Use of improved drinking water sources
- Use of adequate water treatment method
- Time to source of drinking wate
- Person collecting drinking water


## Sanitation

Use of improved sanitation facilities

- Sanitary disposal of child's faeces

For more details on water and sanitation and to access some reference documents, please visit the UNICEF childinfo website http://www.childinfo.org/wes.html.

## Use of Improved Water Sources

The distribution of the population by source of drinking water is shown in Table WS. 1 and Figure WS.1. The population using improved sources of drinking water are those using any of the following types of supply: piped water (into dwelling, compound, yard or plot, public tap/standpipe), tube well/borehole, protected well, protected spring, and rainwater collection. Bottled water is considered as an improved water source only if the household is using an improved water source for other purposes, such as hand washing and cooking

Nearly 80 percent of the population is using an improved source of drinking water - 91 percent in urban areas and 69 percent in rural areas. The situation in the Volta region is considerably worse than in other regions; only 62 percent of the population in this region gets its drinking water from an improved source, while 91 percent of the population in Ashanti use improved sources of water for drinking

The source of drinking water for the population varies strongly by region (Table WS.1). In the Volta region, 41 percent of the population uses drinking water that is piped into their dwelling or into their yard or plot or piped water in neighbours house or public standpipe. In Central, Greater Accra, Eastern and Ashanti regions, 40 percent, 34 percent, 33 percent and 32 percent respectively use piped water. In contrast, only about 19 percent of those residing in Brong Ahafo region and less than 8 percent of those in Upper East
region use water from a piped system. In Greater Accra region, sachet water (47\%) is the most important source of drinking water whereas in Upper East and Upper West, the most important source is the tube well or borehole constituting 65 percent and 70 percent respectively. Tube well or bore hole is seen as the second most important source of drinking water in all the regions, and protected well also contribute significantly as a source of water in Brong Ahafo region. In Brong Ahafo, Northern, Eastern, Western and Volta, a significant percentage of the population rely on river or stream water (an unimproved source) as their main source of drinking water and about 10 percent of the population in the Northern region depend on water from either dam or lake or pond or canal or irrigation for drinking.

As expected, the use of improved drinking water increases with educational level of the head of household: from 72 percent for those with no education to 92 percent for those with secondary or higher education.

With regards to wealth quintiles, about 92 percent of the population in the fourth and fifth wealth quintiles use improved source of water for drinking but only 56 percent of the population in the poorest quintile get the opportunity to use improved sources of water for drinking.


 $\because: \%: \%$

$\therefore \therefore$ 웅 궁
$\bar{\sim} \approx: \%$ i
$\underset{\sim}{\circ} \underset{\sim}{\sim} \underset{\sim}{m} \because \dot{O}$

- \% \% \%

우ํ․․․ ㅇ


○○○

$\therefore: \%$ : ${ }^{\text {ci }}$
ํํㅇํㅇํํํㅇํㅇํㅇ

ำว วั ธั : ํ

부ㄹㅜㅜ욱 in



Figure WS.1: Percentage of population using improved sources of drinking
water by region, residence and wealth quintile, Ghana, 2011


Use of in-house water treatment is presented in Table WS.2. Households were asked of ways they may be treating water at home to make it safer to drink - boiling, adding bleach or chlorine, using a water filter, and using solar disinfection were considered as proper treatment of drinking water. The table shows water treatment by all households and the percentage of household members living in households using unimproved water sources but using appropriate water treatment methods.

Results from the survey shows that 91 percent of household members do not treat their water before drinking perhaps they see it as coming from an improved source (Table WS.2). This means that less than 10 percent of all Ghanaians treat their water before drinking. For household members that treat their water before drinking, the most common method is straining through a cloth ( $3 \%$ ), while 2 percent of the people let it stand, and another 2 percent boil it. Regarding households with unimproved sources of water, 17 percent of household members treat their water using appropriate water treatment method before they drink it. Household members in the Northern and Volta regions who use unimproved water sources for drinking are more likely to treat it using appropriate water treatment method than those in the other regions ( $40 \%$ and $28 \%$ respectively). In terms of residence, rural inhabitants ( $18 \%$ ) are more likely to use appropriate water treatment method than those living in urban areas (13\%) in households where unimproved source is used. People whose household head has no education or has only primary education are more likely to treat water before drinking than those with middle school/junior secondary school or secondary and higher level of education when using unimproved water sources. The richest households are also less likely to treat water from unimproved sources compared to the poorest households.


The amount of time it takes to collect water is presented in Table WS. 3 and the person who usually collects the water is presented in Table WS.4. Note that these results refer to one round-trip from home to drinking water source. Information on the number of trips made in one day was not collected.

Table WS. 3 shows that for 28 percent of household members, an improved drinking water source is on the premises, whereas only 1 percent of those depending on unimproved water sources have it on premises. Also, people in urban areas are more likely to have improved water on the premises ( $52 \%$ ), compared to people in rural areas ( $7 \%$ ). For about 44 percent of all household members who use improved drinking water sources, it takes less than 30 minutes to get to the water source and bring water, while 9 percent of household members spend 30 minutes or more for this purpose. For those who use unimproved drinking water sources, about 14 percent spend less than 30 minutes to get to the water source and bring water. For the households using an improved water source, more time is spent by household members in rural areas in collecting water compared to household members in urban areas. For example, it takes less than 30 minutes for nearly half ( $48 \%$ ) of rural household members to collect water, compared to 39 percent of household members in urban areas. Also, 12 percent of rural household members take 30-60 minutes to get to the water sources and bring water, compared to only 3 percent of urban household members. One striking finding is the high percentage of household members spending 30 minutes or more to go to a source of drinking water in the three northern regions for households using an improved water source.

As expected, the percentage of the population with improved water source on premises increases with educational level of the head of household from 12 percent for those with no education to 58 percent for those with secondary or higher education. Inversely, the time spent by households to go to a water source decreases with education level.

In terms of wealth quintiles, the households in the richest wealth quintile are more likely to have water on their premises ( $73 \%$ ), compared to households in the poorest quintile ( $1 \%$ ).

Overall, 66 percent of households do not have drinking water on their premises. For these households, Table WS. 4 shows that for the majority of households, an adult female ( $64 \%$ ) is usually the person collecting the water. Adult men collect water in only 19 percent of cases, while for the rest of the households, female or male children under age 15 collect water ( $11 \%$ and $6 \%$ respectively). The pattern is the same in all regions but adult female collecting water is more predominant in the Brong Ahafo (70\%), Volta (71\%), Northern (88\%), Upper East (87\%), and Upper West (86\%) regions. Men are less likely to collect water in the three northern regions compared to the other seven regions. With regards to female and male children under age 15 collecting water, the girls are mostly engaged than the boys in collecting water outside their own premises in all regions as well as in both urban and rural areas. In the households where the head of the household has secondary or higher education, adult men are more likely (29\%) to collect water than households where the household head has no education (12\%). The same pattern is observed in the case of the wealth quintiles, where the percentage of adult men collecting water increases with household wealth - 12 percent in the poorest households, 18 percent in the second wealth quintile, 20 percent in the middle wealth quintile, 25 percent in the fourth wealth quintile, and 25 percent in the richest households.

| Table WS.4: Person collecting water <br> Percentage of households without drinking water on premises, and percent distribution of households without drinking water on premises according to the person usually collecting drinking water used in the household, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Background characteristics | Person usually collecting drinking water |  |  |  |  |  |  |  |  |
|  | Percentage of households without drinking water on premises | Number of households |  | Adult man (age 15+ years) |  | Male child (under 15) | DK | Total | Number of households without drinking water on premises |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 77.7 | 1116 | 55.5 | 23.6 | 13.0 | 7.8 | 0.0 | 100.0 | 867 |
| Central | 76.8 | 1236 | 55.6 | 21.8 | 13.1 | 9.5 | 0.0 | 100.0 | 950 |
| Greater Accra | 29.3 | 2321 | 61.8 | 27.4 | 7.2 | 3.6 | 0.0 | 100.0 | 680 |
| Volta | 79.7 | 992 | 70.9 | 18.4 | 8.1 | 2.6 | 0.0 | 100.0 | 791 |
| Eastern | 68.7 | 1533 | 56.5 | 20.3 | 14.9 | 8.3 | 0.0 | 100.0 | 1054 |
| Ashanti | 66.1 | 2321 | 55.5 | 21.6 | 15.2 | 7.6 | 0.1 | 100.0 | 1535 |
| Brong Ahafo | 78.9 | 1011 | 70.3 | 15.7 | 9.5 | 4.4 | 0.1 | 100.0 | 797 |
| Northern | 80.9 | 727 | 88.0 | 6.9 | 4.3 | 0.7 | 0.2 | 100.0 | 589 |
| Upper East | 90.7 | 414 | 86.7 | 8.1 | 3.7 | 1.5 | 0.1 | 100.0 | 376 |
| Upper West | 83.9 | 253 | 86.1 | 7.0 | 5.3 | 1.1 | 0.5 | 100.0 | 212 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 43.8 | 6358 | 60.3 | 22.0 | 12.3 | 5.4 | 0.0 | 100.0 | 2787 |
| Rural | 91.0 | 5567 | 66.1 | 17.6 | 10.3 | 6.0 | 0.1 | 100.0 | 5063 |
| Education of household head |  |  |  |  |  |  |  |  |  |
| None | 85.3 | 2997 | 71.7 | 12.2 | 10.9 | 5.1 | 0.1 | 100.0 | 2556 |
| Primary | 75.7 | 1560 | 65.0 | 18.6 | 11.8 | 4.6 | 0.0 | 100.0 | 1180 |
| Middle/JSS | 65.7 | 4590 | 59.6 | 21.7 | 11.6 | 7.1 | 0.0 | 100.0 | 3014 |
| Secondary + | 39.6 | 2775 | 57.3 | 28.8 | 8.7 | 4.9 | 0.2 | 100.0 | 1100 |
| Missing/DK | * | 3 | - | - | - | - | - | 100.0 | 0 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |
| Poorest | 97.5 | 1763 | 75.9 | 12.2 | 8.2 | 3.6 | 0.1 | 100.0 | 1718 |
| Second | 91.9 | 2244 | 64.2 | 17.3 | 12.5 | 6.0 | 0.0 | 100.0 | 2062 |
| Middle | 75.7 | 2450 | 60.7 | 19.5 | 12.1 | 7.6 | 0.0 | 100.0 | 1854 |
| Fourth | 57.4 | 2639 | 55.4 | 25.7 | 12.4 | 6.5 | 0.1 | 100.0 | 1514 |
| Richest | 24.8 | 2829 | 61.8 | 26.3 | 7.8 | 4.1 | 0.0 | 100.0 | 702 |
| Total | 65.8 | 11925 | 64.0 | 19.1 | 11.0 | 5.8 | 0.1 | 100.0 | 7850 |

## Use of Improved Sanitation Facilities

Inadequate disposal of human excreta and personal hygiene is associated with a range of diseases including diarrhoeal diseases and polio．An improved sanitation facility is defined as one that hygienically separates human excreta from human contact．Improved sanitation can reduce diarrhoeal disease by more than a third，and can significantly lessen the adverse health impacts of other disorders responsible for death and disease among millions of children in developing countries．Improved sanitation facilities for excreta disposal include flush or pour flush to a piped sewer system，septic tank，or latrine；ventilated improved pit latrine，pit latrine with slab，and composting toilet．

Table WS． 5 provide information on the proportion of Ghanaian population living in households using improved sanitation facilities．In this table，both household and public facilities are included in the calculation of this indicator，as the critical element is the category of the facility．About 61 percent of the population are living in households using improved sanitation facilities（Table WS．5）．Households in urban areas（ $80 \%$ ）have more access to an improved sanitation facility than those in rural areas（ $43 \%$ ）．Also，residents of Northern， Upper East and Upper West regions are less likely than populations in other regions to use improved facilities．For example，in Upper East region，only 10 percent of the population is using improved sanitation facilities．Table WS． 5 reveals that use of improved sanitation facilities is strongly associated with wealth and educational level of head of households．Less than 1 in $5(19 \%)$ of the household members belonging to the poorest wealth quintile have access to an improved sanitation facility．This increases to 44 percent for household members in the second wealth quintile，to nearly 70 percent for household members in the middle wealth quintile， 79 percent for household members in the fourth wealth quintile，and to a high of 94 percent for household members in the wealthiest quintile．There is also profound difference in specific facilities between urban and rural areas．In rural areas，the population is mostly using ventilated improved pit（VIP）latrine，pit latrines without slabs，or simply have no facilities．－In urban areas，the most common facilities are flush toilets with connection to a sewage system or septic tank（ $26 \%$ ）and use of ventilated improved pit（VIP）latrine（ $40 \%$ ）．

Nearly 1 out of 4 households（23\％）in Ghana practice open defecation or have no toilet facility，and this is more pronounced in rural areas（35\％）than urban areas（ $10 \%$ ）．It is a practice that is more common among the poor and also those with relatively lower levels of education．For example， 67 percent of household members in the poorest wealth quintile practice open defecation；this reduces to 27 percent for household members in the second wealth quintile，to 14 percent for those in the middle wealth quintile， 6 percent for household members in the fourth wealth quintile，and to less than 1 percent for household members in the richest wealth quintile．The same pattern is observed in the case of the education level of the head of the household，where the percentage of household members practicing open defecation decreases with educational levels－ 45 percent where the household head has no education， 26 percent when the head has primary education， 12 percent when the head has middle／JSS education，and to 8 percent in cases where the household head has secondary or higher education．In terms of regional distribution，open defecation is mostly practiced in Upper East（89\％），Northern（72\％）and Upper West（71\％）．Greater Accra region has the lowest proportion of household members practicing open defecation（9\％）．

|  |  |  | $\frac{\infty}{\text { \％}}$ | 閌 | 雩 | 雩 |  | － | 获 | 亏 ${ }_{\text {¢ }}$ |  | ® | $\stackrel{\circ}{\text { ® }}$ |  |  |  | $\%$ | \％ | 管 | $\stackrel{\sim}{\sim}$ |  |  | ন | ¢ | $\stackrel{\infty}{\sim}$ | สิ |  | 篇 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ¢ิ\％ | \％ | ¢ | － | \％－ | ¢ | ${ }_{\text {¢ }}^{\text {O }}$ | ¢ | $\underset{\sim}{N}$ | $\stackrel{m}{4}$ | $\stackrel{\infty}{\circ}$ |  | ～ | $\stackrel{\text { ¢ }}{+}$ | $\stackrel{\text { I }}{\text { i }}$ | ¢ | ๕ | － |  | $\stackrel{\circ}{\otimes}$ | 令 | \％ | $\stackrel{\circ}{\circ}$ | \％ |  | \％ |
|  | 高 |  | － | － | － | $\ddot{\circ} \mathrm{O} \text { 응 }$ | $\stackrel{\circ}{\circ} \mathrm{O}$ |  |  | 응ㅇㅇㅇ |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  | $\stackrel{\circ}{\circ}$ |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  |  | $\stackrel{\circ}{\circ}$ | － | － | $\stackrel{\circ}{\circ}$ | － |  | ¢ |
|  |  |  | $\stackrel{\circ}{\cong}$ | $\pm$ | ¢ | ค ${ }^{\text {¢ }}$ | ั－ | － | ค | － | F | 三 | ล |  | N | 孚 | べ | $\stackrel{\infty}{=}$ | － | － |  | 合 | － | $\stackrel{\infty}{\sim}$ | む | 入ò |  |  |
|  | 㐫 |  |  | ก ก | ¢ \％ | ： | $\bigcirc$ | ： | \％ | ：－ |  | ־ | $\bar{\circ}$ |  | 8 | $\bar{\circ}$ | ： | Г | \％ | ： |  | $\bigcirc$ | 8 | 앙 | 8 | กั |  | \％ |
|  |  |  |  | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | \％ | \％ | $\bigcirc$ |  | $\bigcirc$ | 8 |  | ： | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | \％ | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 亏 |  | \％ |
|  |  |  |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ： | $\bigcirc$ | \％ |  | $\bar{\circ}$ | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ： |  | $\stackrel{\circ}{\circ}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  | ： |
|  |  |  | $\bigcirc{ }_{\circ}^{\circ}$ | n ô | ¢̀ | －${ }^{\text {a }}$ | ㅇㅇㅇ앙 | 5 | ־ | $\bigcirc$ |  |  | $\stackrel{4}{8}$ |  | ¢ | \％ | $\bar{\circ}$ | ： | ${ }^{\circ}$ | $\bigcirc$ |  | \％ | 亏 | $\because$ | す | $\stackrel{\infty}{\circ}$ |  | d |
|  |  |  | กั ： | $\bigcirc$ | $\bigcirc \%$ | $\bigcirc$ | $\bigcirc$ | \％ | $\bar{\circ}$ | $\bigcirc$ |  | 8 | $\bar{\square}$ |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ： | ־ | ： |  | $\bigcirc$ | 앙 | 앙 | 앙 | $\bar{\circ}$ |  | ： |
|  |  |  | 㐌年 | $\sim_{\text {fin }}$ | $\sim_{\sim}^{n}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\mathrm{m}} \stackrel{\infty}{\sim}$ | $\stackrel{\text { ® }}{\sim}$ | § | ミ |  | ¢ | ลิ |  | $\stackrel{\sim}{\sim}$ | ल̃ | สี | $\stackrel{\text { ® }}{ }$ | N | ： |  | $\stackrel{m}{2}$ | $\stackrel{\text { a }}{ }$ | ® | N | \％ |  | $\hat{\square}$ |
|  |  |  |  | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | \％ | $\bigcirc$ | $\bigcirc$ |  | － | 8 |  | 8 | $\bigcirc$ | $\bar{\circ}$ | $\bigcirc$ | \％ | － |  | 8 | － | 8 | $\bigcirc$ | － |  | ： |
|  |  |  | $\stackrel{\circ}{\text { ® }}$ | ¢ | กั | 츨 | $\stackrel{\text { ® }}{\text { ¢ }}$ | ¢ | $\stackrel{m}{0}$ | $\overline{\text { ¢ }}$ |  | i | 잉 |  | － | $\stackrel{\text { m }}{ }$ | $\xrightarrow{\sim}$ | $\stackrel{\circ}{-}$ | － | ： |  | き | ลิ | ั๊ | $\stackrel{\infty}{ \pm}$ | $\stackrel{\sim}{n}$ |  | $\cdots$ |
|  |  |  | $\stackrel{\sim}{\circ}$ ® ${ }_{\text {－}}^{\text {¢ }}$ | － | $\stackrel{+}{\stackrel{7}{\sim}}$ | $\stackrel{+}{\sim}$ | ¢ | $\stackrel{\square}{\sim}$ | $\stackrel{\sim}{\sim}$ | กั่ กั |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  | $\dot{\sim}$ | ¢ | A | $\stackrel{\infty}{\circ}$ | $\stackrel{\square}{9}$ | ： |  | $\stackrel{\circ}{+}$ | \％ | 等 | ส | $\stackrel{\text { a }}{ }$ |  |  |
|  |  |  | $\bigcirc{ }^{\circ} \mathrm{O}$ | \％웅 | \％ | $\bigcirc{ }^{\circ} \mathrm{O}$ | $\bigcirc$ | ： | $\bigcirc$ | $\bigcirc \bigcirc^{\circ} \mathrm{B}$ |  | $\bigcirc$ | \％ |  | $\bigcirc$ | $\bigcirc$ | ～ู | \％ | \％ | ： |  | 앙 | 앙 | $\stackrel{\square}{\circ}$ | ¢ | 닝 |  |  |
|  |  |  | $\stackrel{\circ}{\circ}$ ¢ | ¢ ${ }^{\text {® }}$ | \％${ }^{\circ}$ | กั วิ | กั่ | ก | $\stackrel{m}{\square}$ | $\bigcirc$ |  | $\stackrel{\infty}{\circ}$ | ～ |  | \％ | 잉 | 영 | $\stackrel{m}{\square}$ | え | ： |  | $\bar{\circ}$ | กู | － | $\stackrel{\infty}{\square}$ | $\stackrel{\infty}{\infty}$ |  | $\pm$ |
|  |  |  | $\bar{\infty} \stackrel{\circ}{\circ}$ | ： | ¢ | n | $\stackrel{\text { ® }}{\sim}$ | $\ddagger$ | ＋ | 은 |  | $\xrightarrow{\square}$ | $\stackrel{\sim}{\sim}$ |  | $\stackrel{\text { m }}{\square}$ | $\stackrel{\sim}{\text { ¢ }}$ | กู | $\stackrel{\text { ¹ }}{ }$ | $\stackrel{\text {－}}{ }$ | － |  | 8 | 앙 | $\stackrel{\infty}{\infty}$ | $\infty$ | 旁 |  |  |
|  |  |  | $\bigcirc$ | 的 | $\stackrel{\text { i }}{\text { j }}$ | $\stackrel{4}{\mathrm{j}}$ | ल๊ ${ }^{\text {a }}$ | $\pm$ | $\pm$ | ํ．ํ． |  | $\%$ | $\stackrel{\sim}{\circ}$ |  |  |  | 영 | 깔 | $\because$ | $\bigcirc$ | $\stackrel{\square}{\square}$ | － | ־ | 。 | $=$ | $\infty$ |  |  |
|  |  |  |  |  | $\frac{\pi}{9}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { ᄃ } \\ & \stackrel{5}{5} \\ & \hline \end{aligned}$ |  |  | $\stackrel{0}{5}$ | 를 |  |  |  |  | $\begin{aligned} & \text { 嵩 } \\ & \stackrel{0}{2} \end{aligned}$ |  | $\frac{\frac{0}{\frac{0}{0}}}{\frac{1}{\Sigma}}$ | 势 | 旁 |  |  |

The MDGs and the WHO / UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation classify households as using an unimproved sanitation facility if they are using otherwise acceptable sanitation facilities but sharing a facility between two or more households or using a public toilet facility.

This position is similar to that taken by the Government of Ghana in the revised Environmental Sanitation Policy (2010) and the National Environmental Sanitation Strategy and Action Plan (2010) in which a clear distinction is made between household toilets for domestic use, and public toilets ${ }^{22}$ for use at public locations.

In fact, in Ghana (as shown in Table WS.6), only 15 percent of household members can be considered as using improved sanitation facilities, using JMP's definition that requires that the facility is both improved (as described in WS.5) and unshared. As much as 28 percent use improved public facility, ${ }^{23} 12$ percent share improved facility with 5 or less households and 6 percent share it with more than 5 households. Almost 5 percent of households, even though do not share the facility with any other households, are found to be using facility types that are unimproved. Urban households are more likely ( $21 \%$ ) than rural households ( $9 \%$ ) to use an improved toilet facility that is not shared. Greater Accra region (28\%) has the highest household population using an improved toilet facility that is not shared. Five other regions have over 10 percent of household population using an improved toilet facility that is not shared: Ashanti ( $18 \%$ ), Western and Eastern (17\%), Central ( $13 \%$ ), and Brong Ahafo ( $10 \%$ ).

Education of household head and household wealth status are not strongly associated with the use of an improved sanitation facility that is not shared. For example, only 6 percent of household members from the poorest households are using an improved sanitation facility that is not shared, compared to 44 percent of household members from the richest households.


Safe disposal of a child's faeces is disposing of the stool, by the mother or caretaker of the child using a toilet or by rinsing the stool into a toilet or latrine. Disposal of faeces of children 0-2 years of age is presented in Table WS.7. The results show that only slightly more than one-third (36\%) of children had their stools disposed of safely. In most cases, mothers or caretakers of these children throw the stools into garbage (38\%) or put the stools/rinse it into toilet or latrine, ( $34 \%$ ). For households using an improved toilet facility, 42 percent of the $0-2$ children's stool is put/rinsed into toilet or latrine; and for households using unimproved facility, this figure is 52 percent. In very few cases ( $2 \%$ ), the children use the toilet facility themselves, while in 6 percent of cases, the children's stools are buried, and in 2 percent of cases, the stools are left in the open. With regard to type of sanitation in dwelling, it is 44 percent as against 54 percent for improved and unimproved in terms of safe disposal. The MICS results also show that Upper East (4\%), Upper West (4\%), and Northern (6\%) regions are least likely to dispose of children's stools safely. The safe stool disposal is associated with mother's education and wealth index quintile. In other words, the percentage of safe stool disposal increases with the mother's education and wealth quintile.

| Table WS.7: Disposal of child's faeces <br> Percent distribution of children age 0-2 years according to place of disposal of child's faeces, and the percentage of children age 0-2 years whose stools were disposed of safely the last time the child passed stools, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Place of disposal of child's faeces |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{r} \text { Child } \\ \text { used } \\ \text { toilet / } \\ \text { latrine } \end{array}$ |  | $\begin{array}{r} \text { Put/ } \\ \text { Rinsed } \\ \text { into } \\ \text { drain or } \\ \text { ditch } \end{array}$ | Thrown into garbage (solid waste) | Buried | Left in the open | Other | DK | Total | Percentage of children whose last stools were disposed of safely [1] | Number of children age 0-2 years |
| Type of sanitation facility in dwelling |  |  |  |  |  |  |  |  |  |  |  |
| Improved | 2.0 | 42.1 | 11.5 | 38.0 | 3.6 | 0.5 | 1.6 | 0.8 | 100.0 | 44.1 | 2616 |
| Unimproved | 2.4 | 52.3 | 10.0 | 26.3 | 3.8 | 2.0 | 2.5 | 0.6 | 100.0 | 54.7 | 759 |
| Open defecation | 0.8 | 4.5 | 18.6 | 45.1 | 11.8 | 6.9 | 11.9 | 0.5 | 100.0 | 5.3 | 1160 |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 2.5 | 44.6 | 6.8 | 37.8 | 2.0 | 6.0 | 0.0 | 0.3 | 100.0 | 47.1 | 447 |
| Central | 2.7 | 45.3 | 7.5 | 37.9 | 2.0 | 0.0 | 4.2 | 0.4 | 100.0 | 48.0 | 453 |
| Greater Accra | 0.3 | 38.8 | 6.2 | 48.4 | 0.8 | 0.8 | 4.2 | 0.6 | 100.0 | 39.0 | 671 |
| Volta | 3.0 | 25.4 | 16.5 | 27.2 | 13.4 | 0.0 | 14.5 | 0.0 | 100.0 | 28.4 | 338 |
| Eastern | 1.2 | 50.3 | 19.7 | 23.0 | 4.4 | 0.0 | 0.3 | 1.2 | 100.0 | 51.5 | 515 |
| Ashanti | 2.8 | 41.9 | 10.0 | 37.6 | 4.9 | 0.5 | 1.2 | 1.1 | 100.0 | 44.6 | 890 |
| Brong Ahafo | 2.1 | 32.4 | 21.5 | 33.9 | 4.0 | 0.6 | 5.1 | 0.3 | 100.0 | 34.5 | 411 |
| Northern | 0.6 | 5.0 | 19.7 | 48.0 | 9.3 | 6.9 | 9.8 | 0.6 | 100.0 | 5.7 | 491 |
| Upper East | 0.4 | 3.1 | 24.8 | 24.5 | 27.3 | 17.4 | 1.9 | 0.7 | 100.0 | 3.5 | 184 |
| Upper West | 0.5 | 3.7 | 6.7 | 63.7 | 9.7 | 1.5 | 13.2 | 1.0 | 100.0 | 4.2 | 134 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 2.5 | 39.0 | 10.4 | 40.0 | 4.6 | 0.7 | 2.3 | 0.5 | 100.0 | 41.5 | 1977 |
| Rural | 1.2 | 30.5 | 15.1 | 36.2 | 6.6 | 3.7 | 6.0 | 0.8 | 100.0 | 31.7 | 2559 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |  |
| None | 1.1 | 19.4 | 16.6 | 39.3 | 10.3 | 5.6 | 6.9 | 0.8 | 100.0 | 20.5 | 1354 |
| Primary | 15.3 | 33.6 | 6.4 | 1.8 | 4.7 | 0.8 | 100.0 | 37.3 | 100.0 | 37.3 | 999 |
| Middle/SSS | 2.3 | 42.3 | 12.4 | 35.9 | 3.1 | 0.7 | 2.9 | 0.5 | 100.0 | 44.5 | 1604 |
| Secondary + | 2.6 | 43.5 | 2.8 | 47.1 | 1.5 | 0.3 | 1.7 | 0.5 | 100.0 | 46.1 | 579 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 1.7 | 34.7 | 15.2 | 35.4 | 5.0 | 2.3 | 5.5 | 0.3 | 100.0 | 36.4 | 917 |
| Second | 1.5 | 35.0 | 15.2 | 35.2 | 8.0 | 0.8 | 3.2 | 1.0 | 100.0 | 36.5 | 932 |
| Middle | 1.5 | 45.6 | 12.3 | 34.8 | 1.4 | 0.6 | 2.7 | 1.1 | 100.0 | 47.1 | 867 |
| Fourth | 3.6 | 43.5 | 5.1 | 45.5 | 0.7 | 0.0 | 0.8 | 0.8 | 100.0 | 47.1 | 814 |
| Richest | 1.7 | 34.7 | 15.2 | 35.4 | 5.0 | 2.3 | 5.5 | 0.3 | 100.0 | 36.4 | 917 |
| Total | 1.8 | 34.2 | 13.1 | 37.8 | 5.7 | 2.4 | 4.4 | . 7 | 100.0 | 36.0 | 4535 |
| [1] MICS indicator 4.4 |  |  |  |  |  |  |  |  |  |  |  |

In its 2008 report, ${ }^{24}$ the JMP developed a new way of presenting the access figures, by disaggregating and refining the data on drinking-water and sanitation and reflecting them in "ladder"format. This ladder allows a disaggregated analysis of trends in a three rung ladder for drinking-water and a four-rung ladder for sanitation. For sanitation, this gives an understanding of the proportion of population with no sanitation facilities at all, of those reliant on technologies defined by JMP as "unimproved," of those sharing sanitation facilities of otherwise acceptable technology, and those using "improved" sanitation facilities. Table WS. 8 presents the percentages of households by drinking water and sanitation ladders. The Table also shows the percentage of household members using improved sources of drinking water and sanitary means of excreta disposal.

Table WS. 8 shows that among household population using improved drinking water, only 9 percent of them have water piped in dwelling, plot or yard; as much as 70 percent use improved water that they obtain from other improved sources, and 21 percent use unimproved sources of drinking water. The household population in Greater Accra, Eastern and Ashanti are more likely to have piped system within the dwelling or on plots compared to the other regions. The urban household population with pipe in dwelling are 18 percent as against only two percent for rural households; and as much as 31 percent of the rural household population rely on unimproved water sources for drinking against nine percent for urban residents.

The ladder for sanitation shows that 15 percent of household population use toilet facility exclusively (improved type and unshared) while 62 percent use unimproved toilet facilities (either because shared or because toilet category is unimproved), and 23 percent do not have it at all and practice open defecation.

At the national level, only 12 percent of the households have both improved drinking water sources and improved sanitation (not shared). Household members in urban areas are three times (19\%) more likely than those in rural areas (6\%) to have both improved drinking water sources and improved sanitation. There is also a positive relationship between education level and wealth index quintiles for the use of both improved drinking water sources and improved sanitation: for example, 38 percent of households in the richest wealth quintile have both improved drinking water source, and improved sanitation, compared to only 2 percent of the households in the poorest wealth quintile. Five regions have less than 10 percent of their household populations having access to both improved drinking water source, and an improved sanitation facility (Volta, Brong Ahafo, Northern, Upper East and Upper West), compared to the other five regions. Greater Accra region stands tall among all regions with 22 percent of households with access to both improved water source, and improved sanitation.

## Handwashing

Handwashing with water and soap is the most cost effective health intervention to reduce both the incidence of diarrhoea and pneumonia for children under - 5 years. It is most effective when this is done by using water and soap after visiting a toilet or cleaning a child, before eating or handling food and before feeding a child. Monitoring correct hand washing behaviour at these critical times is challenging. A reliable alternative to observations or self-reported behaviour is assessing the likelihood that correct handwashing behaviour takes place by observing if a household has a specific place where people most often wash their hands, and observing if water and soap (or other local cleansing materials) are present at a specific place for handwashing.

As shown in Table WS.9, in Ghana, only 24 percent of the households with a specific place for handwashing were observed, while 70 percent households could not indicate a specific place where household members usually wash their hands. Less than 1 percent of the households did not give permission to see the place used for handwashing. Of those households where a place for handwashing was observed, 50 percent had both water and soap present at the designated place. In 14 percent of the households, only water was available at the designated place, while in 12 percent of the households the place had only soap but no water. The remaining 24 percent of households had neither water nor soap available at the designated place for handwashing.














高


Availability of place of handwashing and soap is associated with residence, education and wealth background characteristics. Huge regional variations are noted for households where water and soap are available, with the highest proportion ( $80 \%$ ) in Western and the lowest ( $16 \%$ ) in Volta region.

Table WS. 10 presents the availability of soap within dwellings, no matter the location of the soap. In total, almost two thirds of the households have soap somewhere in the dwelling: the soap was observed in $15 \%$ of the households where place for handwashing was also observed; it was shown in $38 \%$ of the households where place for handwashing was not observed; one third of the households had no soap anywhere in the household.

Figure WS. 2 show the percentage of households with soap anywhere in the dwelling for hand washing by background characteristics. It appears that availability of soap in the dwelling is higher in urban areas (72\%), than in rural areas (54\%). Northern (28\%), Volta (29\%), and Upper West (34\%) regions have the least proportions of households with soap available anywhere in the dwelling for handwashing, while Ashanti ( $87 \%$ ), Brong Ahafo $978 \%$ ) and Greater Accra ( $76 \%$ ) have the highest proportions. Availability of soap for handwashing in households increases with educational level of the head of the household. This is also true for household wealth and availability of soap for handwashing anywhere in the dwelling.

Figure WS.2: Percentage of households with soap anywhere in the dwelling, Ghana, 2011


|  |  |  |  | \％\％ | \％ | 玉 | ה | $\stackrel{\text { g }}{ }$ | \％ |  | 发点 |  |  | 曷 | 品 |  |  |  | \％ |  | 㛈 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 号 | －\％ | 零 | ¢ | $\stackrel{\infty}{i}$ | \％\％ | \％ |  | $\stackrel{9}{\circ}$ |  | $\stackrel{\circ}{\square}$ | ¢ | \％̂̊ | $\overline{\mathrm{g}}$ | ＊ | $\stackrel{\circ}{\circ}$ |  | 管 | ふ | \％ |  |
|  | \％ | $\stackrel{\circ}{\circ}$ | 응ㅇㅇ응 | \％¢ | $\stackrel{\circ}{\circ}$ | － | \％ | \％ | $\stackrel{\circ}{\circ}$ |  | $\stackrel{\text { ¢ }}{\circ}$ |  | $\stackrel{\circ}{\circ}$ | \％ | O\％ | $\stackrel{\circ}{\circ}$ | 잉 |  | \％ | \％ | O |  |  |
|  | 䨖 | $\because$ | $\sim_{\infty}^{\infty}$ | $\cdots$ | m ูู | \％ | － | $\stackrel{\sim}{\sim}$ | $\cdots$ |  | ¢ั่ |  | 孚 | \％ | $\bigcirc$ | $\stackrel{n}{\sim}$ | ＊ | \％ | ก | is | $\cdots$ | $\bigcirc$ |  |
|  |  | $\bigcirc$ | －ô | $\therefore-$ | $\div$ | － | $\bigcirc$ | ก้ | $\bar{\circ}$ |  | \％\％ |  | $\bar{\circ}$ | ¢ | กั่ | $\bar{\circ}$ | ＊ | $\bar{\circ}$ | กั | \％${ }^{\circ}$ | กั่ | กั่ | \％ |
|  |  | $\stackrel{\infty}{\infty}$ | $\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$ | 和笅 | 守 | ¢ | \％ | ส | ก |  | 号 |  | 产 | ¢ | ¢ | $\stackrel{\text { a }}{\sim}$ | ＊ | \％ | －is | $\stackrel{\circ}{\sim}$ | － | $\pm$ |  |
|  |  | $\stackrel{\infty}{\text { \％}}$ | 寺京 | 号寺 | 㠻令 | 袻第 | $\stackrel{\text { ¢ }}{ \pm}$ | ¢ | สั |  | ¢ |  | \％ | － | 尔 | \％ |  |  | $\stackrel{\text { ¢ }}{\text { ¢ }}$ |  | $\cdots$ | $\stackrel{\square}{\text { m }}$ |  |
|  | 旁 | $\bigcirc$ | 응 | 웅 | $\because=$ | ＝ | き | ว้ | ¢ |  | $\stackrel{\infty}{\circ}$ |  | ๕ | ¢ | ก | $=$ |  | ¢ | ¢ | $\bigcirc$ | $\bigcirc$ | 「 |  |
|  |  | ： | 웅 | 앙 | ：\％ | ： | － | Г | 8 |  | $\bigcirc$ |  | － | ： | － | 8 | ＊ |  | \％ | $\bigcirc$ | － | － | － |
|  |  |  | $\cdots$ | ¢ ${ }^{\circ}$ | ¢ | 1 | － | ¢ | $=$ |  | ～ก |  | $\stackrel{\sim}{\circ}$ | \％ | สั | $\stackrel{\infty}{\sim}$ |  | 9 | m | $\stackrel{\circ}{i}$ | ส | ¢ | － |
|  |  | $\because$ |  |  | $\bigcirc$ | \％ | ¢ | ๕ | $\stackrel{\text { m }}{\substack{\text { m }}}$ |  | ®\％ |  | \％ | ก̃ | ¢ | ${ }^{2}$ | ＊ |  |  | $9 \%$ | ¢ | n |  |
|  | 号㱍 | $\stackrel{\square}{2}$ | 風 | \％$¢$ | $\bigcirc$ | $\pm \stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$ | $\stackrel{\text { ¢ }}{\text { O }}$ |  | in |  | $\stackrel{\text { and }}{\sim}$ |  | ¢ | ลิ | へู | $\stackrel{\circ}{\sim}$ |  |  |  | $\bigcirc$ | ¢ | $\pm$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 髫皆 |  | 長 |  | 年 |  | $\frac{y_{5}^{5}}{\underline{x}}$ |  | $\stackrel{\circ}{2}$ | 咅 | $\frac{\pi}{2}$ | ＋ |  | 尝会 |  | 䢒 |  |  |  |



Fertility
In MICS4, adolescent birth rates and total fertility rates are calculated using information on the date of last birth of each woman and are based on the one-year period (1-12 months) preceding the survey. Rates are underestimated by a very small margin due to the absence of information on multiple births (twins, triplets, etc) and on women having multiple deliveries during the one year period preceding the survey.

Table RH. 1 shows adolescent birth rates and total fertility rate. The adolescent birth rate (age-specific fertility rate for women aged 15-19) is defined as the number of births to women aged 15-19 years during the one year period preceding the survey, divided by the average number of women aged 15-19 (number of women-years lived between ages 15 through 19, inclusive) during the same period, expressed per 1000 women. The total fertility rate (TFR) is calculated by summing the age-specific fertility rates calculated for each of the 5-year age groups of women, from age 15 through to age 49. The TFR denotes the average number of children to which a woman will have given birth by the end of her reproductive years if current fertility rates prevailed.

Overall, the adolescent birth rate is 60 per 1000 women in Ghana. However, huge variations are observed across the regions, residence, mother's education and wealth index. For example, Brong Ahafo has the lowest rate (17) while the Eastern region has the highest with 94 per 1000 women. In urban and rural areas, the rates are 33 and 89 per 1000 women, respectively. One would expect that the level of mother's education would have a positive impact in reducing the adolescent birth rate, but is not the case with the MICS4 results: adolescents who have the primary and secondary and higher education level, have the highest adolescent birth rates with 114 and 134 per 1000 women, respectively. Also the poorest and middle quintiles have the highest adolescent birth rates, 83 and 89 per 1000 women, respectively.

Table RH. 1 also shows that the TFR for Ghana is 4.3 children per woman. The average is 3.3 children per woman in the urban area and 5.5 per woman in the rural area. At the regional level, the Northern region has the highest TFR with 6.2 children per woman. As can be expected, the lowest TFR is observed among women with secondary or higher education (3.6) and in the richest quintile (2.9).


Sexual activity and childbearing early in life carry significant risks for young people all around the world. Table RH. 2 presents some early childbearing indicators for women aged 15-19 and 20-24 while Table RH. 3 presents the trends for early childbearing.

As shown in Table RH.2, 10 percent of women aged 15-19 have already had a birth, about 2 percent are pregnant with their first child, so in total, 12 percent have begun childbearing. Also, 1 percent has had a live birth before age 15. Table RH. 2 shows that 16 percent of women aged $20-24$ years had a live birth before age 18 . The percentage of women aged 20-24 years who had a live birth before age 18 is twice as large in the rural area ( $24 \%$ ) as in the urban area ( $11 \%$ ), and decreases significantly with educational level and wealth quintile. Some regions are more exposed to this early childbearing such as Volta (32\%) and Western region (24\%) while Greater Accra region has the lowest rate of early childbearing (8\%).

| Table RH.2: Early childbearing <br> Percentage of women age 15-19 who have had a live birth or who are pregnant with the first child, percentage of women age 15-19 who have begun childbearing before age 15 , and the percentage of women age $20-24$ who have had a live birth before age 18 , Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of women age 15-19 |  |  |  | $\begin{array}{r} \text { Number } \\ \text { of women age } \\ 15-19 \end{array}$ | Percentage of women age 20-24 who have had a live birth before age 18 [1] | Number of women age 20-24 |
| Background Characteristics | Have had a live birth | Are pregnant with first child | $\begin{array}{r} \text { Have } \\ \text { begun } \\ \text { childbearing } \end{array}$ | Have had a live before age 15 |  |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 17.3 | 4.2 | 21.5 | 4.0 | 188 | 23.7 | 141 |
| Central | 11.6 | 2.5 | 14.1 | 0.8 | 214 | 14.6 | 164 |
| Greater Accra | 3.6 | 0.0 | 3.6 | 0.0 | 265 | 7.5 | 367 |
| Volta | 16.1 | 3.5 | 19.5 | 0.5 | 156 | 31.7 | 116 |
| Eastern | 14.5 | 2.8 | 17.2 | 0.0 | 209 | 15.3 | 189 |
| Ashanti | 7.4 | 3.3 | 10.7 | 0.7 | 359 | 16.5 | 359 |
| Brong Ahafo | 7.2 | 2.0 | 9.2 | 2.1 | 243 | 21,1 | 153 |
| Northern | 9.7 | 1.1 | 10.8 | 0.7 | 117 | 16,5 | 102 |
| Upper East | 7.8 | 1.2 | 9.1 | 0.0 | 87 | 16.2 | 45 |
| Upper West | 7.0 | 2.0 | 9.0 | 0.9 | 60 | 11.4 | 37 |
| Residence |  |  |  |  |  |  |  |
| Urban | 5.8 | 1.3 | 7.1 | 0.5 | 976 | 10.7 | 963 |
| Rural | 14.3 | 3.5 | 17.7 | 1.5 | 923 | 23.6 | 710 |
| Education |  |  |  |  |  |  |  |
| None | 6.9 | 1.3 | 8.2 | 1.5 | 394 | 39.2 | 602 |
| Primary | 16.8 | 4.2 | 21.0 | 1.3 | 373 | 26.9 | 238 |
| Middle/JSs | 8.6 | 2.1 | 10.8 | 0.7 | 1123 | 16.1 | 645 |
| Secondary + | 23.3 | 0.0 | 23.3 | 0.0 | 10 | 3.9 | 189 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 16.7 | 2.8 | 19.5 | 2.8 | 322 | 24.6 | 203 |
| Second | 12.8 | 3.9 | 16.6 | 1.4 | 422 | 26.0 | 242 |
| Middle | 12.1 | 2.9 | 15.0 | 0.9 | 421 | 21.6 | 360 |
| Fourth | 7.2 | 1.0 | 8.2 | 0.0 | 387 | 12.3 | 390 |
| Richest | 0.6 | 1.1 | 1.7 | 0.1 | 347 | 6.6 | 479 |
| Total | 9.9 | 2.4 | 12.3 | 1.0 | 1899 | 16.2 | 1674 |
| ${ }^{[1]}$ MICS indicator 5.2 |  |  |  |  |  |  |  |

Table RH. 3 shows that the percentages of women with a live birth before age 15 and 18 are higher in rural areas compared to urban areas for all age-groups, except for those aged $40-44$ years. While the lowest percentage is found in the age-group 15-19 years for those with a live birth before age 15, there is no linear association between age and early childbearing. However, for women who had a live birth before age 18, early childbearing declines with age in urban areas from 26 percent in age-group 40-44 years to 11 percent for those aged 20-24 years.

| Table RH.3: Trends in early childbearing <br> Percentage of women who have had a live birth by age 15 and 18, by age groups, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Urban |  |  |  | Rural |  |  |  | All |  |  |  |
| Background Characteristics | Percentage <br> of women with a live birth before age 15 | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { women } \\ \text { age } \\ 15-49 \\ \text { years } \end{array}$ | Percentage of women with a live birth before age 18 | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { women } \\ \text { age } \\ 20-49 \\ \text { years } \end{array}$ | Percentage of women with a live birth before age 15 |  | Percentage of women with a live birth before age 18 | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { women } \\ \text { age } \\ 20-49 \\ \text { years } \end{array}$ | Percentage <br> of women with a live birth before age 15 | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { women } \\ \text { age } \\ 15-49 \\ \text { years } \end{array}$ | Percentage of women with a live birth before age 18 | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { women } \\ \text { age } \\ 20-49 \\ \text { years } \end{array}$ |
| 15-19 | 0.5 | 976 | na | na | 1.5 | 923 |  | 0 | 1.0 | 1899 |  | 0 |
| 20-24 | 1.3 | 963 | 10.9 | 963 | 4.7 | 710 | 23.4 | 710 | 2.7 | 1674 | 16.2 | 1674 |
| 25-29 | 1.2 | 1025 | 13.5 | 1025 | 4.0 | 743 | 22.7 | 743 | 2.4 | 1768 | 17.3 | 1768 |
| 30-34 | 3.8 | 885 | 15.2 | 885 | 5.7 | 753 | 29.1 | 753 | 4.7 | 1638 | 21.6 | 1638 |
| 35-39 | 3.4 | 733 | 19.4 | 733 | 5.9 | 697 | 29.1 | 697 | 4.6 | 1431 | 24.1 | 1431 |
| 40-44 | 5.1 | 661 | 26.4 | 661 | 3.2 | 534 | 23.9 | 534 | 4.2 | 1195 | 25.3 | 1195 |
| 45-49 | 1.9 | 527 | 19.7 | 527 | 2.9 | 496 | 20.2 | 496 | 2.4 | 1023 | 9.9 | 1023 |
| Total | 2.3 | 5770 | 16.7 | 4794 | 4.0 | 4857 | 25.0 | 3934 | 3.1 | 10627 | 20.4 | 8728 |

## Contraception

Appropriate family planning is important for the health of women and children through: 1) preventing pregnancies that are too early or too late; 2) extending the period between births; and 3) limiting the number of children. Access by all couples to information and services to prevent pregnancies that are too early, too closely spaced, too late or too many is critical.

Current use of contraception was reported by about one third (35\%) of the women currently married or in union (Table RH.4). The most popular method is the injectable and periodic abstinence, both used by 9 percent of married women in Ghana. The next most popular method is the use of the pill, which accounts for about 8 percent of married women. Between 2 and 3 percent of women reported use of the male condom, the implants, female sterilization and lactational amenorrhea method (LAM). Less than 1 percent of women use withdrawal, IUD, male sterilization, and vaginal methods with their partners.
Contraceptive prevalence is highest in the Greater Accra Region at 44 percent and Eastern at 43 percent. In terms of modern methods however, 29 percent of married women in Central Region, and 27 percent in both Greater Accra and Brong Ahafo recorded the highest use. In Volta and Northern regions, contraceptive use is lowest; only one in five married women $(20 \%)$ reported using any method. Adolescents are far less likely to use contraception than older women - only 17 percent of married or women in union aged 15-19 currently use a method of contraception compared to 37 percent of women aged 20-24 year old and 38 percent of women aged 25-39 years.

Women's educational level is strongly associated with contraceptive prevalence. The percentage of women using any method of contraception rises from 26 percent among those with no education to 34 percent among women with primary education, 39 percent among women with middle/JSS education, and to 42 percent among women with secondary or higher education. Partners of women with secondary or higher education are likely to use male condom more than those with lower educational levels. Likewise, women with secondary or higher education are more likely to have a higher negotiating power for abstinence compared with those with lower education.

Unmet Need
Unmet need for contraception refers to fecund women who are not using any method of contraception, but who wish to postpone the next birth (spacing) or who wish to stop childbearing altogether (limiting). Unmet need is identified in MICS by using a set of questions eliciting current behaviours and preferences pertaining to contraceptive use, fecundity, and fertility preferences.

Table RH. 5 shows the results of the survey on contraception, unmet need, and the demand for contraception satisfied.

Unmet need for spacing is defined as the percentage of women who are not using a method of contraception AND

- are not pregnant and not postpartum amenorrheic ${ }^{25}$ and are fecund ${ }^{26}$ and want to wait two or more years for their next birth OR
- are not pregnant and not postpartum amenorrheic and are fecund and unsure whether they want another child OR
- are pregnant and say that pregnancy was mistimed: would have wanted to wait OR
- are postpartum amenorrheic and say that the birth was mistimed: would have wanted to wait.

Unmet need for limiting is defined as the percentage of women who are not using a method of contraception AND

- are not pregnant and not postpartum amenorrheic and are fecund and say they do not want any more children OR
- are pregnant and do not want to have a child OR
- are postpartum amenorrheic and say that they didn't want the birth

Total unmet need for contraception is simply the sum of unmet need for spacing and unmet need for limiting. Table RH. 5 gives the distribution of the indicators of unmet need - 26 percent of women aged 15-49 years have unmet need for contraception, 16 percent have unmet need for spacing and 10 percent have unmet need for limiting. About two thirds ( $62 \%$ ) of women aged 15-19 have unmet need for family planning, the highest among the age-groups. As expected unmet need is lowest among women aged 45-49 as they tend to have far less need for contraception due to menopause (16\%). Unmet need is about 26 percent for women in the age-groups 25-29, 30-34 and 40-44 years. Differences exist in women's unmet need for contraception by level of education. For instance, 31 percent of women with no education have unmet need compared to 25 percent of those with middle or JSS education. However, those with secondary or higher education have less unmet need (17\%) than the others. Women from the poorest households have more unmet need than those from the richest households ( $33 \%$ versus $16 \%$ ).

Met need for limiting includes women who are using a contraceptive method and who want no more children, those that are using male or female sterilization or those who have indicated that they are infecund. Met need for spacing includes women who are using a contraceptive method and who want to have another child or are undecided whether to have another child. The sum of met need for spacing (19\%) and limiting (16\%) makes up to the total met need for contraception (35\%). Also, 38 percent of women aged 25-29, $30-34$ and $35-39$ years have their need for family planning met. This is higher than the met needs for women in other age categories.

Using information on contraception and unmet need, the percentage of demand for contraception satisfied is also estimated from the MICS data. Percentage of demand satisfied is defined as the proportion of women currently married or in a marital union who are currently using contraception, of the total demand for contraception. The total demand for contraception includes women who currently have an unmet need (for spacing or limiting), plus those who are currently using contraception. More than half (57\%) of women consider their demand for contraception as satisfied. Greater Accra has the highest demand for contraception satisfied (69\%) while Volta region presents the
${ }^{25} \mathrm{~A}$ women is postpartum amenorrheic if 5 he had a birth in last two years and is not currently pregnant, and her menstrual period has not returned since the birth of the last child
${ }^{26}$ A women is considered infecund if she is neither pregnant nor postpartum amenorrheic, and
(12) has not had menstruation for at least six months, or (1b) nevermenstruated, or (1c) her last menstruation occurred before her last birth, or (1d) in menopauselhas had (1) hysterectomy OR
hy
 without result tir response to questions on why she thinks she is not hhysically able to get pregnant at the time of survey OR
(4) She has not had a birth in the preceding 5 years, is currently not using contraception and is currently married and was continuously married during the last 5 years preceding
the survey


least at 35 percent. Close to 62 percent of women aged 45 - 49 indicate that their need for contraception has been satisfied compared to 22 percent for women aged 15-19. The percentage of demand for contraception satisfied averages 57 for women in the other age-groups ( $20-24,25-29,30-34,35-39$, and $40-44$ years). Also, women from the richest households $(70 \%)$ are more likely to have their demand for contraception satisfied than women from the poorest households ( $41 \%$ ). Finally, 71 percent of women with secondary or higher education have their need for contraception satisfied compared to 46 percent of those with no education.

| Table RH.5: Unmet need for contraception |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of women aged 15-49 years currently married or in union with an unmet need for family planning and percentage of demand for contraception satisfied, |  |  |  |  |  |  |  |  |  |
| Back- <br> ground <br> Character- <br> istics | Met need for contraception - For spacing | Met need for contraception - For limiting | Met need for contraception - Total | $\begin{array}{r} \begin{array}{r} \text { Unmet } \\ \text { need for } \end{array} \\ \text { contraception } \\ - \text { For spacing } \end{array}$ | $\begin{array}{r} \begin{array}{r} \text { Unmet } \\ \text { need for } \\ \text { contraception } \end{array} \\ - \text { For limiting } \end{array}$ | Unmet need for contraception Total [1] | Number of women currently married or in union | Percentage of demand for contraception satisfied | Number of women currently married or in union with need for contraception |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 21.0 | 14.9 | 36.0 | 11.3 | 13.7 | 25.1 | 672 | 58.9 | 410 |
| Central | 20.7 | 20.7 | 41.4 | 12.8 | 9.8 | 22.6 | 598 | 64.7 | 383 |
| Greater Accra | 24.1 | 19.5 | 43.6 | 12.2 | 7.5 | 19.7 | 1089 | 68.9 | 690 |
| Volta | 11.3 | 8.6 | 19.9 | 25.2 | 12.6 | 37.9 | 541 | 34.5 | 312 |
| Eastern | 22.0 | 20.8 | 42.8 | 13.1 | 9.2 | 22.4 | 752 | 65.7 | 490 |
| Ashanti | 16.6 | 16.0 | 32.6 | 18.2 | 11.6 | 29.8 | 1310 | 52.3 | 818 |
| Brong Ahafo | 21.5 | 18.8 | 40.3 | 15.8 | 11.5 | 27.3 | 585 | 59.7 | 395 |
| Northern | 15.6 | 4.7 | 20.3 | 24.9 | 5.4 | 30.4 | 576 | 40.0 | 292 |
| Upper East | 16.1 | 5.5 | 21.6 | 16.4 | 9.8 | 26.3 | 264 | 45.2 | 126 |
| $\begin{aligned} & \text { Upper } \\ & \text { West } \end{aligned}$ | 18.8 | 8.4 | 27.2 | 18.2 | 9.8 | 28.0 | 188 | 49.3 | 104 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 19.9 | 17.1 | 36.9 | 14.6 | 9.9 | 24.4 | 3220 | 60.2 | 1977 |
| Rural | 18.6 | 13.9 | 32.6 | 18.0 | 10.4 | 28.4 | 3353 | 53.5 | 2043 |
| Age |  |  |  |  |  |  |  |  |  |
| 15-19 | 15.9 | 1.2 | 17.0 | 61.1 | 0.4 | 61.6 | 134 | 21.7 | 105 |
| 20-24 | 35.4 | 1.7 | 37.1 | 31.2 | 2.1 | 33.3 | 758 | 52.7 | 533 |
| 25-29 | 31.6 | 6.8 | 38.4 | 22.5 | 2.7 | 25.2 | 1271 | 60.4 | 809 |
| 30-34 | 23.6 | 14.3 | 37.9 | 18.3 | 8.0 | 26.3 | 1422 | 59.1 | 913 |
| 35-39 | 13.2 | 24.9 | 38.1 | 10.5 | 16.4 | 27.0 | 1209 | 58.5 | 787 |
| 40-44 | 6.1 | 23.5 | 29.5 | 6.4 | 19.9 | 26.3 | 991 | 52.9 | 553 |
| 45-49 | 2.4 | 22.7 | 25.1 | 2.3 | 13.3 | 15.5 | 788 | 61.8 | 320 |
| Education |  |  |  |  |  |  |  |  |  |
| None | 14.3 | 12.0 | 26.3 | 17.5 | 13.2 | 30.7 | 1867 | 46.1 | 1064 |
| Primary | 18.5 | 15.9 | 34.4 | 16.7 | 12.3 | 29.0 | 1367 | 54.3 | 867 |
| Middle/SSs | 21.1 | 17.6 | 38.7 | 16.7 | 8.3 | 25.0 | 2474 | 60.8 | 1576 |
| Secondary | 25.8 | 16.3 | 42.0 | 12.0 | 5.2 | 17.2 | 866 | 71.0 | 513 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 15.8 | 7.7 | 23.5 | 21.6 | 10.9 | 32.5 | 1233 | 42.0 | 690 |
| Second | 17.2 | 15.8 | 33.1 | 18.1 | 15.5 | 33.5 | 1160 | 49.7 | 772 |
| Middle | 20.0 | 19.0 | 38.9 | 19.9 | 10.9 | 30.8 | 1250 | 55.8 | 872 |
| Fourth | 20.9 | 15.1 | 36.1 | 13.7 | 8.7 | 22.4 | 1410 | 61.7 | 824 |
| Richest | 21.5 | 18.9 | 40.4 | 10.2 | 6.0 | 16.2 | 1521 | 71.3 | 861 |
| Total | 19.3 | 15.5 | 34.7 | 16.3 | 10.1 | 26.4 | 6574 | 56.8 | 4020 |

## Antenatal Care

The antenatal period presents important opportunities for reaching pregnant women with a number of interventions that may be vital to their health and well-being and that of their infants. Better understanding of foetal growth and development and its relationship to the mother's health has resulted in increased attention to the potential of antenatal care as an intervention to improve both maternal and newborn health. For example, if the antenatal period is used to inform women and families about the danger signs and symptoms and about the risks of labour and delivery, it may provide the route for ensuring that pregnant women do, in practice, deliver with the assistance of a skilled health care provider. The antenatal period also provides an opportunity to supply information on birth spacing, which is recognized as an important factor in improving infant survival. Tetanus immunization during pregnancy can be life-saving for both the mother and infant. The prevention and treatment of malaria among pregnant women, management of anaemia during pregnancy and treatment of STIs can significantly improve foetal outcomes and improve maternal health. Adverse outcomes such as low birth weight can be reduced through a combination of interventions to improve women's nutritional status and prevent infections (e.g., malaria and STIs) during pregnancy. More recently, the potential of the antenatal period as an entry point for HIV prevention and care, in particular for the prevention of HIV transmission from mother to child, has led to renewed interest in access to and use of antenatal services.

WHO recommends a minimum of four antenatal visits based on a review of the effectiveness of different models of antenatal care.WHO guidelines are specific on the content of antenatal care visits, which include:

- Blood pressure measurement
- Urine testing for bacteriuria and proteinuria
- Blood testing to detect syphilis and severe anaemia
- Weight/height measurement (optional)

The type of personnel providing antenatal care to women aged 15-49 years who gave birth in the two years preceding the survey is presented in Table RH.6. Coverage of antenatal care (by a doctor, nurse, or midwife) is relatively high in Ghana with 96 percent of women receiving antenatal care at least once during the pregnancy. The highest level of antenatal care is found in Upper East Region (99\%), while the lowest level of 90 percent is found in the Northern Region. Antenatal care coverage is slightly higher in urban areas (98\%) than in rural areas (95\%). As expected education and wealth are associated with the use of antenatal care services from skilled personnel. For example, 94 percent of women with no education received at least one antenatal care visit from skilled personnel, compared to 100 percent of women with secondary or higher education.

| Table RH.6: Antenatal care provider <br> Percent distribution of women age 15-49 who gave birth in the two years preceding the survey by type of personnel providing antenatal care during the pregnancy for the last birth, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Person providing antenatal care |  |  |  |  |  |  |  |  | At least once by skilled personnel [1] | Number of women who gave birth in the preceding two years |
| Background Characteristics | Doctor | Nurse / Midwife | Auxiliary midwife | Traditional birth attendant | Community health worker | Other/ missing | antenatal received | Total |  |  |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Western | 13.5 | 80.6 | 0.9 | 0.3 | 1.0 | 0.0 | 3.8 | 100 | 95.0 | 270 |
| Central | 20.3 | 73.3 | 2.4 | 0.0 | 0.0 | 0.0 | 4.0 | 100 | 96.0 | 246 |
| Greater Accra | 51.6 | 46.9 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 100 | 98.5 | 397 |
| Volta | 20.3 | 74.7 | 2.2 | 1.0 | 0.0 | 0.0 | 1.8 | 100 | 97.2 | 189 |
| Eastern | 40.0 | 55.9 | 0.5 | 0.0 | 0.0 | 0.0 | 3.7 | 100 | 96.3 | 288 |
| Ashanti | 26.4 | 70.8 | 1.4 | 0.0 | 0.5 | 0.0 | 0.9 | 100 | 98.6 | 449 |
| Brong Ahafo | 8.4 | 86.9 | 1.6 | 0.0 | 1.0 | 0.0 | 2.0 | 100 | 97.0 | 227 |
| Northern | 6.9 | 80.4 | 3.1 | 0.0 | 3.2 | 0.4 | 6.0 | 100 | 90.4 | 283 |
| Upper East | 8.9 | 88.6 | 1.5 | 0.0 | 0.0 | 0.2 | 0.8 | 100 | 98.9 | 105 |
| Upper West | 5.8 | 76.5 | 10.6 | 0.0 | 4.5 | 0.0 | 2.6 | 100 | 92.9 | 75 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 35.3 | 62.3 | 0.3 | 0.0 | 0.0 | 0.1 | 2.0 | 100 | 98.0 | 1068 |
| Rural | 16.3 | 76.2 | 2.6 | 0.2 | 1.3 | 0.0 | 3.3 | 100 | 95.2 | 1460 |
| Mother's age at birth |  |  |  |  |  |  |  |  |  |  |
| Less than 20 | 15.7 | 78.4 | 1.4 | 0.0 | 2.2 | 0.0 | 2.3 | 100 | 95.5 | 223 |
| 20-34 | 26.7 | 68.7 | 1.8 | 0.1 | 0.6 | 0.0 | 2.0 | 100 | 97.2 | 1783 |
| 35-49 | 20.1 | 72.4 | 1.3 | 0.0 | 0.8 | 0.2 | 5.3 | 100 | 93.8 | 522 |
| Missing | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100 | 100.0 | 1 |
| Education |  |  |  |  |  |  |  |  |  |  |
| None | 10.8 | 79.2 | 2.9 | 0.4 | 1.5 | 0.2 | 5.1 | 100 | 92.9 | 733 |
| Primary | 20.0 | 73.7 | 2.9 | 0.0 | 0.6 | 0.0 | 2.9 | 100 | 96.5 | 565 |
| Middle/JSS | 28.4 | 68.8 | 0.5 | 0.0 | 0.6 | 0.0 | 1.7 | 100 | 97.7 | 886 |
| Secondary + | 49.9 | 50.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 100 | 100.0 | 344 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |
| Poorest | 6.4 | 82.7 | 3.3 | 0.3 | 2.2 | 0.1 | 5.0 | 100 | 92.4 | 560 |
| Second | 14.0 | 78.1 | 2.0 | 0.1 | 0.8 | 0.0 | 4.9 | 100 | 94.2 | 546 |
| Middle | 24.6 | 71.4 | 2.1 | 0.0 | 0.2 | 0.0 | 1.7 | 100 | 98.1 | 500 |
| Fourth | 33.5 | 64.5 | 0.2 | 0.0 | 0.4 | 0.1 | 1.3 | 100 | 98.2 | 455 |
| Richest | 48.7 | 51.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 100 | 100.0 | 467 |
| Total | 24.3 | 70.4 | 1.7 | 0.1 | 0.8 | 0.1 | 2.7 | 100 | 96.4 | 2528 |
| ${ }^{\text {[1] MICS }}$ indicator 5.5a; MDG indicator 5.5 |  |  |  |  |  |  |  |  |  |  |

UNICEF andWHO recommend a minimum of at least four antenatal care visits during pregnancy. This recommendation has been taken on by the Ghana Ministry of Health. Table RH. 7 shows the number of antenatal care visits during the last pregnancy during the two years preceding the survey, regardless of provider by selected characteristics. The survey reveals that in Ghana, 87 percent of pregnant women received antenatal care at least four times, 2 percent of pregnant women received one ANC visit, a further 2 percent had 2 visits, and 6 percent had 3 visits. Only 3 percent of women received no antenatal care visits during their last pregnancy. Women from the poorest households and those with no education are less likely than more advantaged mothers to receive ANC four or more times. For example, 74 percent of the women living in poorest households reported four or more antenatal care visits, compared with 99 percent among women belonging to the wealthiest households. Also, 78 percent of women with no education received ANC four or more times, compared to 97 percent of women with secondary or higher education.

| Table RH.7: Number of antenatal care visits <br> Percentage of women who had a live birth during the two years preceding the survey by number of antenatal care visits by any provider, <br> Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Percent of women who had: |  |  |  |  |  |  | Total | Number of women who gave birth in the preceding two years |
| Background Characteristics | No antenatal care visits | One visit | Two visits | Three visits | 4 or more visits [1] | Missing/DK |  |  |
| Region |  |  |  |  |  |  |  |  |
| Western | 3.8 | 2.9 | 5.4 | 8.8 | 78.5 | 0.6 | 100 | 270 |
| Central | 4.0 | 0.8 | 1.1 | 5.8 | 88.0 | 0.3 | 100 | 246 |
| Greater Accra | 1.5 | 3.4 | 0.3 | 2.8 | 91.9 | 0.0 | 100 | 397 |
| Volta | 1.8 | 1.9 | 3.5 | 9.1 | 82.6 | 1.1 | 100 | 189 |
| Eastern | 3.7 | 0.9 | 0.0 | 2.2 | 93.2 | 0.0 | 100 | 288 |
| Ashanti | 0.9 | 0.2 | 0.4 | 7.1 | 91.0 | 0.4 | 100 | 449 |
| Brong Ahafo | 2.0 | 1.6 | 2.3 | 7.9 | 83.9 | 2.3 | 100 | 227 |
| Northern | 6.0 | 1.8 | 7.0 | 8.9 | 75.1 | 1.0 | 100 | 283 |
| Upper East | 0.8 | 0.5 | 2.3 | 7.0 | 88.8 | 0.6 | 100 | 105 |
| Upper West | 2.6 | 0.5 | 1.5 | 4.8 | 90.3 | 0.3 | 100 | 75 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 2.0 | 0.1 | 0.7 | 2.9 | 94.1 | 0.2 | 100 | 1068 |
| Rural | 3.3 | 2.6 | 3.2 | 8.8 | 81.2 | 0.9 | 100 | 1460 |
| Mother's age at birth |  |  |  |  |  |  |  |  |
| Less than 20 | 2.3 | 4.0 | 1.7 | 11.1 | 80.9 | 0.0 | 100 | 223 |
| 20-34 | 2.0 | 1.5 | 2.0 | 5.9 | 88.0 | 0.5 | 100 | 1783 |
| 35-49 | 5.3 | 0.7 | 2.9 | 5.6 | 84.4 | 1.0 | 100 | 522 |
| Missing | 0.0 | 0.0 | 0.0 | 33.1 | 66.9 | 0.0 | 100 | 1 |
| Education |  |  |  |  |  |  |  |  |
| None | 5.1 | 2.5 | 4.5 | 8.7 | 77.9 | 1.2 | 100 | 733 |
| Primary | 2.9 | 1.5 | 2.0 | 8.5 | 84.7 | 0.3 | 100 | 565 |
| Middle/JSS | 1.7 | 1.4 | 0.9 | 4.8 | 91.0 | 0.3 | 100 | 886 |
| Secondary + | 0.0 | 0.3 | 0.8 | 1.3 | 97.1 | 0.5 | 100 | 344 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |
| Poorest | 5.0 | 2.1 | 5.0 | 12.5 | 74.3 | 1.2 | 100 | 560 |
| Second | 4.9 | 2.2 | 3.0 | 9.8 | 79.2 | 1.0 | 100 | 546 |
| Middle | 1.7 | 3.0 | 0.9 | 2.7 | 91.7 | 0.0 | 100 | 500 |
| Fourth | 1.3 | 0.1 | 1.1 | 4.2 | 93.0 | 0.3 | 100 | 455 |
| Richest | 0.0 | 0.2 | 0.3 | 0.7 | 98.5 | 0.4 | 100 | 467 |
| Total | 2.7 | 1.6 | 2.2 | 6.3 | 86.6 | 0.6 | 100 | 2528 |

At the regional level, variations are also observed. Eastern and Greater Accra regions recorded the highest proportions of pregnant women who attended 4 or more antenatal care visits - 93 percent and 92 percent respectively. The Northern region recorded the lowest proportion of pregnant women who had at least 4 antenatal care visits (75\%).

The types of services pregnant women received are shown in Table RH.8. Among those women who have given birth to a child during the two years preceding the survey, 93 percent reported that a blood sample was taken during the antenatal care visits, 96 percent reported that their blood pressure was checked, and 91 percent that urine specimen was taken. In total, 89 percent of women had their blood pressure measured, and their urine specimen and blood sample taken. For all three tests/measurements carried out, the Greater Accra Region (97\%) records the highest proportion while the Northern Region had the lowest (63\%). Coverage for these types of antenatal care services increases with women's education and wealth quintile, while little variations are observed by age of woman.

| Table RH.8: Content of antenatal care <br> Percentage of women age 15-49 years who had their blood pressure measured, urine sample taken, and blood sample taken as part of antenatal care, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percent of pregnant women who had: |  |  | Blood pressure measured, urine specimen and blood test taken [1] | Number of women who gave birth in two years preceding survey |
| Background Characteristics | Blood pressure measured | Urine specimen taken | Blood test taken |  |  |
| Region |  |  |  |  |  |
| Western | 94.9 | 93.6 | 92.7 | 91.0 | 270 |
| Central | 95.5 | 92.7 | 92.4 | 90.6 | 246 |
| Greater Accra | 98.2 | 97.6 | 98.0 | 96.9 | 397 |
| Volta | 96.6 | 91.7 | 89.7 | 85.6 | 189 |
| Eastern | 96.3 | 96.3 | 95.9 | 95.9 | 288 |
| Ashanti | 99.1 | 96.3 | 96.0 | 96.0 | 449 |
| Brong Ahafo | 97.2 | 93.4 | 93.0 | 89.4 | 227 |
| Northern | 90.4 | 67.5 | 81.2 | 63.3 | 283 |
| Upper East | 96.6 | 86.9 | 93.9 | 85.0 | 105 |
| Upper West | 96.3 | 77.8 | 83.7 | 71.3 | 75 |
| Residence |  |  |  |  |  |
| Urban | 97.9 | 94.9 | 95.5 | 93.5 | 1068 |
| Rural | 95.2 | 88.3 | 90.7 | 85.4 | 1460 |
| Mother's age at birth |  |  |  |  |  |
| Less than 20 | 95.2 | 91.7 | 93.6 | 88.3 | 223 |
| 20-34 | 97.0 | 92.0 | 93.2 | 89.6 | 1783 |
| 35-49 | 94.4 | 87.8 | 90.8 | 86.5 | 522 |
| Missing | 66.9 | 31.5 | 100.0 | 31.5 | 1 |
| Education |  |  |  |  |  |
| None | 92.6 | 79.4 | 86.0 | 76.1 | 733 |
| Primary | 96.7 | 92.6 | 93.1 | 90.1 | 565 |
| Middle//Ss | 97.9 | 96.7 | 95.9 | 95.1 | 886 |
| Secondary + | 99.6 | 99.2 | 98.6 | 97.7 | 344 |
| Wealth index quintile |  |  |  |  |  |
| Poorest | 91.9 | 76.9 | 83.6 | 71.5 | 560 |
| Second | 94.9 | 88.8 | 90.0 | 87.1 | 546 |
| Middle | 97.7 | 95.8 | 96.0 | 94.2 | 500 |
| Fourth | 98.2 | 98.1 | 96.9 | 96.4 | 455 |
| Richest | 100.0 | 99.0 | 99.3 | 98.6 | 467 |
| Total | 96.3 | 91.1 | 92.8 | 88.8 | 2528 |
| [1] MICS indicator 5.6 |  |  |  |  |  |


| Table RH.9: Assistance during delivery <br> Percent distribution of women age 15-49 who had a live birth in the two years preceding the survey by person assisting at delivery and percentage of births delivered by C-section, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background <br> Character- <br> istics | Person assisting at delivery |  |  |  |  |  |  |  | Total | Any skilled personnel [1] | delivered by C-section [2] |  |
|  | Doctor | $\begin{aligned} & \text { Nurse / } \\ & \text { Midwife } \end{aligned}$ | Auxiliary midwif | $\begin{gathered} \text { Traditional } \\ \text { birth } \\ \text { attendant } \end{gathered}$ | Community health worker | $\begin{array}{r} \text { Relative / } \\ \text { Friend } \end{array}$ | $\begin{aligned} & \text { Other/ } \\ & \text { missing } \end{aligned}$ | $\begin{array}{r} \text { No } \\ \text { attendant } \end{array}$ |  |  |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 6.8 | 57.0 | 0.7 | 24.8 | 0.6 | 9.6 | 0.0 | 0.5 | 100.0 | 64.5 | 7.2 | 270 |
| Central | 7.8 | 54.4 | 1.2 | 29.9 | 0.3 | 3.8 | 1.0 | 1.6 | 100.0 | 63.4 | 11.3 | 246 |
| Greater Accra | 29.0 | 60.7 | 0.0 | 5.4 | 0.0 | 2.5 | 0.4 | 2.0 | 100.0 | 89.7 | 23.2 | 397 |
| Volta | 9.2 | 54.5 | 0.7 | 11.1 | 0.0 | 17.9 | 0.0 | 6.7 | 100.0 | 64.4 | 14.7 | 189 |
| Eastern | 18.9 | 57.8 | 1.1 | 12.0 | 0.0 | 9.2 | 0.0 | 0.9 | 100.0 | 77.9 | 11.9 | 288 |
| Ashanti | 12.6 | 59.0 | 2.0 | 12.0 | 2.6 | 6.5 | 1.3 | 3.8 | 100.0 | 73.7 | 12.3 | 449 |
| Brong Ahafo | 8.5 | 52.5 | 2.7 | 10.6 | 0.6 | 21.4 | 0.0 | 3.8 | 100.0 | 63.7 | 6.1 | 227 |
| Northern | 4.8 | 31.7 | 0.7 | 33.2 | 1.8 | 22.9 | 0.5 | 4.3 | 100.0 | 37.3 | 3.4 | 283 |
| Upper East | 7.8 | 58.7 | 0.5 | 3.8 | 0.9 | 27.9 | 0.2 | 0.2 | 100.0 | 67.0 | 4.1 | 105 |
| Upper West | 7.4 | 48.5 | 4.5 | 13.0 | 4.3 | 16.6 | 1.3 | 4.4 | 100.0 | 60.4 | 4.4 | 75 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 21.8 | 65.6 | 0.9 | 5.7 | 0.0 | 4.1 | 0.2 | 1.8 | 100.0 | 88.2 | 17.3 | 1068 |
| Rural | 6.5 | 45.9 | 1.5 | 23.5 | 1.7 | 16.8 | 0.7 | 3.5 | 100.0 | 53.9 | 7.0 | 1460 |
| Mother's age at birth |  |  |  |  |  |  |  |  |  |  |  |  |
| Less than 20 | 5.4 | 66.6 | 1.0 | 14.7 | 0.2 | 10.0 | 0.6 | 1.5 | 100.0 | 73.0 | 7.4 | 221 |
| 20-34 | 14.0 | 55.1 | 1.0 | 15.7 | 0.7 | 10.6 | 0.6 | 2.3 | 100.0 | 70.0 | 11.3 | 1783 |
| 35-49 | 12.8 | 45.9 | 2.1 | 17.1 | 2.1 | 15.1 | 0.2 | 4.8 | 100.0 | 60.7 | 13.3 | 524 |
| Missing | * | * | * | * | * | * | * | * | * | * | * | 1 |
| Place of delivery |  |  |  |  |  |  |  |  |  |  |  |  |
| Public sector health facility | 17.7 | 80.1 | 1.4 | 0.2 | 0.6 | 0.0 | 0.0 | 0.0 | 100.0 | 99.2 | 15.9 | 1434 |
| Private sector health facility | 27.3 | 69.6 | 2.8 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 100.0 | 99.7 | 21.9 | 269 |
| Home | 0.0 | 2.7 | 0.4 | 50.0 | 1.9 | 36.0 | 0.6 | 8.4 | 100.0 | 3.1 | 0.0 | 793 |
| Other | (0.0) | (39.0) | (0.0) | (12.5) | (0.0) | (12.8) | (25.4) | (10.2) | (100.0) | (39.0) | (0.0) | 32 |
| Education |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 4.7 | 38.2 | 1.1 | 24.7 | 1.8 | 23.9 | 0.3 | 5.2 | 100.0 | 44.0 | 3.8 | 733 |
| Primary | 9.7 | 55.4 | 1.0 | 18.2 | 1.4 | 10.9 | 0.9 | 2.3 | 100.0 | 66.2 | 8.7 | 565 |
| Middle/sss | 13.3 | 64.5 | 1.7 | 12.2 | 0.3 | 5.4 | 0.6 | 2.1 | 100.0 | 79.4 | 12.4 | 886 |
| Secondary + | 35.2 | 59.6 | 0.5 | 3.2 | 0.1 | 1.4 | 0.0 | 0.1 | 100.0 | 95.3 | 29.2 | 344 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 3.7 | 33.6 | 1.4 | 25.7 | 2.5 | 27.6 | 0.3 | 5.3 | 100.0 | 38.6 | 4.4 | 560 |
| Second | 5.6 | 50.6 | 1.0 | 22.6 | 1.0 | 13.5 | 1.0 | 4.6 | 100.0 | 57.3 | 6.9 | 546 |
| Middle | 11.6 | 58.0 | 1.0 | 17.3 | 0.7 | 9.0 | 0.5 | 2.0 | 100.0 | 70.6 | 9.8 | 500 |
| Fourth | 15.3 | 69.5 | 1.1 | 9.4 | 0.3 | 3.4 | 0.6 | 0.4 | 100.0 | 85.9 | 11.6 | 455 |
| Richest | 32.0 | 64.1 | 1.5 | 1.4 | 0.0 | 0.2 | 0.1 | 0.7 | 100.0 | 97.6 | 26.3 | 467 |
| Total | 13.0 | 54.2 | 1.2 | 15.9 | 1.0 | 11.5 | 0.5 | 2.8 | 100.0 | 68.4 | 11.4 | 2528 |
| [1] MICS indicator 5.7; MDG indicator 5.2 <br> [2] MICS indicator 5.9 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on $25-49$ unweighted cas |  |  |  |  |  |  |  |  |  |  |  |  |

## Assistance at Delivery

Three quarters of all maternal deaths occur during delivery and the immediate post-partum period. The single most critical intervention for safe motherhood is to ensure a competent health worker with midwifery skills is present at every birth, and transport is available to a referral facility for obstetric care in case of an emergency. A World Fit for Children goal is to ensure that women have ready and affordable access to skilled attendance at delivery. The indicators are the proportion of births with a skilled attendant and proportion of institutional deliveries. The skilled attendant at delivery indicator is also used to track progress toward the Millennium Development target of reducing the maternal mortality ratio by three quarters between 1990 and 2015.

The MICS included a number of questions to assess the proportion of births attended by a skilled attendant. A skilled attendant includes a doctor, nurse, midwife or auxiliary midwife. About 68 percent of births occurring in the two years preceding the MICS survey were delivered by skilled personnel (Table RH.9). This percentage is highest in Greater Accra region at 90 percent and lowest in Northern region at 37 percent. The more educated a woman is, the more likely she is to have delivered with the assistance of a skilled attendant. For example, only 44 percent of mothers with no education delivered with the assistance of skilled personnel, compared to 95 percent for women with secondary or higher education. Also, women from the poorest households were less likely to deliver using skilled personnel (39\%), compared to women from the richest households (98\%).

Slightly more than half (54\%) of the births that occurred in the two years preceding the MICS survey were delivered with the assistance of a midwife or a nurse. Doctors assisted with the delivery of 13 percent of births. Also, 16 percent of women were delivered with the assistance of a Traditional Birth Attendant, while relatives/friends assisted in 12 percent of deliveries. Among those who gave birth at home, 50 percent were delivered by a Traditional Birth Attendant while 36 percent were by relatives or friends. Northern (33\%) and Central (30\%) regions recorded the highest number of assisted deliveries by a TBA, while in Brong Ahafo (21\%), Northern (23\%), and Upper East (28\%), relatives or friends assisted with deliveries. Also, women in urban areas are more likely to be assisted by skilled personnel during delivery ( $82 \%$ ), compared to women in rural areas ( $54 \%$ ). Women in rural areas are also more likely to deliver with the assistance of a TBA (24\%), compared to women in urban areas (6\%). Interestingly, women in the younger age group were more likely to be delivered by skilled personnel than older women.

The survey results also reveal that 11 percent of women who had a live birth in the two years prior to the survey delivered by C-section. ${ }^{27}$ Deliveries by C-section are highest among women in Greater Accra region, where nearly 1 out of 4 women (23\%) had a C-section. Volta (15\%), Ashanti (12\%), Eastern (12\%) and Central (11\%) all have C-section rates of above 10 percent. Deliveries by C-section are associated with area of residence, place of delivery, mother's education and household wealth. For example, 17 percent of women in urban areas delivered by C -section, compared to 7 percent of women in rural areas. Also, while 4 percent of women with no education delivered by C-section, this increases to 9 percent for women with primary education, to 12 percent for those with middle/JSS education, and to nearly 30 percent for women with secondary or higher education. The data also show that women from the poorest 20 percent of the households are less likely to deliver by C-section (4\%), compared to women in other wealth categories - 7 percent for those in the second wealth quintile, 10 percent for women in the middle wealth quintile, 12 percent for women in the fourth wealth quintile, and 26 percent for women belonging to the richest wealth quintile.

[^5] annually experience some potentially life-threatening complications during pregnancy.

## Place of Delivery

Increasing the proportion of births that are delivered in health facilities is an important factor in reducing the health risks to both the mother and the baby. Proper medical attention and hygienic conditions during delivery can reduce the risks of complications and infection that can cause morbidity and mortality to either the mother or the baby. Table RH. 10 presents the percent distribution of women aged 15-49 who had a live birth in the two years preceding the survey by place of delivery and the percentage of births delivered in a health facility, according to background characteristics.
More than 2 in 3 ( $67 \%$ ) births in Ghana are delivered in a health facility; 57 percent of deliveries occur in public sector facilities, while 11 percent occur in private sector facilities. Almost 1 in 3 births ( $31 \%$ ) still occurs at home. Greater Accra has the highest proportion of institutional deliveries (88\%), followed by Eastern Region (78\%), while the Northern Region has the lowest proportion (37\%). As can be expected, Greater Accra region has the highest percentage of deliveries taking place in a private health facility ( $20 \%$ ), followed by Ashanti region, where 16 percent of deliveries took place in a private facility.

By age, younger women 15-19 are most likely to deliver in a health facility ( $71 \%$ ) compared with women 35-49 (60\%). Also, nearly nine in ten women in urban areas (88\%) delivered in a health facility, compared to 53 percent of their rural counterparts. Women with higher levels of educational attainment are more likely to deliver in a health facility than women with no education. For example, 43 percent of women with no education delivered in a health facility, compared to 66 percent for women with primary education, 79 percent for women with middle/JSS education, and 94 percent of women with secondary or higher levels of education. The proportion of births occurring in a health facility increases steadily with increasing wealth quintile, from 38 percent of births in the poorest households, to 97 percent among those in the richest households.

Nearly 3 out of $4(73 \%)$ women who received 4 or more ANC visits delivered in a health facility, compared to those who had 1-3 ANC visits (33\%), and no ANC visits (4\%). The majority of women who received no antenatal care services delivered at home (86\%).

| Table RH.10: Place of delivery |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percent distribution of women age 15-49 with a birth in two years preceding thePlace of delivery |  |  |  |  | Total |  | Number women who gave birth in preceding two years |
| Background <br> Characteristics Region | Public sector health facility |  | Home | Other |  |  |  |
| Western | 52.4 | 10.1 | 36.9 | 0.6 | 100.0 | 62.5 | 270 |
| Central | 51.1 | 9.8 | 36.2 | 2.9 | 100.0 | 60.9 | 246 |
| Greater Accra | 67.5 | 20.0 | 10.8 | 1.6 | 100.0 | 87.6 | 397 |
| Volta | 57.2 | 4.8 | 35.7 | 2.3 | 100.0 | 62.1 | 189 |
| Eastern | 69.4 | 8.5 | 21.4 | 0.7 | 100.0 | 77.9 | 288 |
| Ashanti | 58.2 | 16.2 | 24.2 | 1.4 | 100.0 | 74.4 | 449 |
| Brong Ahafo | 51.4 | 10.7 | 37.9 | 0.0 | 100.0 | 62.1 | 227 |
| Northern | 36.1 | 1.0 | 61.5 | 1.5 | 100.0 | 37.1 | 283 |
| Upper East | 62.7 | 3.5 | 33.5 | 0.2 | 100.0 | 66.3 | 105 |
| Upper West | 60.3 | 1.1 | 37.9 | 0.7 | 100.0 | 61.4 | 75 |
| Residence |  |  |  |  |  |  |  |
| Urban | 71.1 | 16.4 | 12.0 | 0.5 | 100.0 | 87.5 | 1068 |
| Rural | 46.2 | 6.4 | 45.5 | 1.8 | 100.0 | 52.7 | 1460 |
| Mother's age at birth |  |  |  |  |  |  |  |
| Less than 20 | 63.6 | 7.2 | 26.8 | 2.4 | 100.0 | 70.8 | 221 |
| 20-34 | 57.5 | 11.7 | 29.4 | 1.4 | 100.0 | 69.2 | 1783 |
| 35-49 | 51.2 | 8.6 | 39.8 | 0.5 | 100.0 | 59.7 | 524 |
| Missing | * | * | * | * | 100.0 | * | 1 |
| Number of ANC visits |  |  |  |  |  |  |  |
| None | 3.7 | 0.0 | 85.8 | 10.5 | 100.0 | 3.7 | 69 |
| 1-3 visits | 27.7 | 5.5 | 64.6 | 2.3 | 100.0 | 33.1 | 254 |
| $4+$ visits | 61.6 | 11.6 | 25.8 | 0.9 | 100.0 | 73.3 | 2190 |
| Missing/DK | * | * | * | * | 100.0 | * | 15 |
| Education |  |  |  |  |  |  |  |
| None | 40.3 | 2.2 | 56.5 | 1.0 | 100.0 | 42.5 | 733 |
| Primary | 58.1 | 7.7 | 32.8 | 1.5 | 100.0 | 65.8 | 565 |
| Middle/SSS | 65.4 | 13.0 | 20.0 | 1.6 | 100.0 | 78.5 | 886 |
| Secondary + | 67.2 | 27.3 | 4.7 | 0.9 | 100.0 | 94.4 | 344 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 35.3 | 2.5 | 61.1 | 1.2 | 100.0 | 37.7 | 560 |
| Second | 51.6 | 5.3 | 41.3 | 1.8 | 100.0 | 56.9 | 546 |
| Middle | 62.8 | 5.8 | 29.4 | 2.1 | 100.0 | 68.5 | 500 |
| Fourth | 66.9 | 17.4 | 14.5 | 1.2 | 100.0 | 84.3 | 455 |
| Richest | 72.1 | 25.3 | 2.5 | 0.1 | 100.0 | 97.4 | 467 |
| Total | 56.7 | 10.6 | 31.4 | 1.3 | 100.0 | 67.4 | 2528 |
| [1] M1CS indicator 5.8 |  |  |  |  |  |  |  |

${ }^{11}$ MICS indicator 5.8
An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed.

Postnatal Health Checks
The time of birth and immediately after is a critical window of opportunity to deliver lifesaving interventions for both the mother and newborn. Across the world, approximately 3 million newborns die annually in the first month of life ${ }^{28}$ and the majority of these deaths occur within a day or two of birth ${ }^{29}$, which is also the time when the majority of maternal deaths occur. ${ }^{30}$ Research also shows that up to 45 percent of all maternal deaths occur within one day of delivery, and 65 percent occur within the first week. This period is also critical to newborn survival because 50 to 70 percent of life-threatening newborn illnesses occur within the first week of life (AED, the Manoff Group, and USAID 2005). ${ }^{31}$

Despite the importance of the first few days following birth, large-scale, nationally representative household survey programmes have not systematically included questions on the post-natal period and care for the mother and newborn. In 2008, the Countdown to 2015 initiative, which monitors progress on maternal, newborn and child health interventions, highlighted this data gap, and called not only for post-natal care (PNC) programmes to be strengthened, but also for better data availability and quality. ${ }^{32}$

Following the establishment and discussions of an Inter-Agency Group on PNC and drawing on lessons learned from earlier attempts of collecting PNC data, a new questionnaire module for MICS was developed and validated. Named the Post-natal Health Checks (PNHC) module, the objective is to collect information on newborns' and mothers' contact with a provider, not content of care. The rationale for this is that as PNC programmes scale up, it is important to measure the coverage of that scale up and ensure that the platform for providing essential services is in place. Content is considered more difficult to measure, particularly because the respondent is asked to recall services delivered up to two years preceding the interview.

Postnatal check-up in the first week of delivery, is therefore, seen as an important component of a complete maternal health care schedule to ensure optimal maternal and newborn health. In Ghana, the first postnatal check-up is advised within the first three days of delivery, with subsequent check-ups made as appropriate. In the National MICS survey, women with a live birth in the 2 years preceding the survey were asked about post-natal health checks on their newborn and themselves. Table RH. 11 presents the percent distribution of women aged 15-49 who gave birth in a health facility in the two years preceding the survey by duration of stay in the facility following the delivery, according to background characteristics.

As seen previously, in Ghana, 67 percent of women delivered in a health facility (public or private). Of those women, 10 percent stayed in the facility for less than 6 hours, 16 percent for $6-11$ hours, and 9 percent for 12 to 23 hours. About 42 percent stayed at the facility for 1-2 days after delivery, while 23 percent stayed for 3 days or more. In total, nearly 3 out of 4 women ( $74 \%$ ) stayed at the health facility for 12 hours or more, after delivery.

[^6]Duration of stay in a health facility after delivery varies by the mother's age during the birth. For example, 14 percent of mothers less than 20 years stayed at the facility for 3 days or more, 24 percent of mothers aged 20-34 years stayed at the facility for 3 days or more, while 26 percent of those aged $35-49$ years stayed at the facility for 3 days or more. The proportion of mothers who stayed at the health facility for 12 hours or more increases with household wealth, from 67 percent for mothers from the poorest households, to 79 percent among mothers from the richest households.

| Table RH.11: Post-partum stay in health facility <br> Percent distribution of women age 15-49 years who gave birth in a health facility in the two years preceding the survey by duration of stay in health facility following their last live birth, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Duration of stay in health facility: |  |  |  |  |  |  | Number of |
| Background Characteristics | Less than 6 hours | 6-11 hours | 12-23 hours | 1-2 days | $\begin{array}{r} 3 \text { days or } \\ \text { more } \end{array}$ | Total | 12 hours or more | gave birth in a health facility in the preceding two years |
| Region |  |  |  |  |  |  |  |  |
| Western | 15.1 | 15.2 | 3.7 | 50.6 | 15.4 | 100.0 | 69.6 | 169 |
| Central | 7.4 | 17.6 | 8.8 | 42.7 | 23.4 | 100.0 | 75.0 | 150 |
| Greater Accra | 7.0 | 12.1 | 4.0 | 46.1 | 30.8 | 100.0 | 80.9 | 348 |
| Volta | 4.7 | 12.7 | 1.8 | 50.8 | 29.9 | 100.0 | 82.5 | 117 |
| Eastern | 2.2 | 10.8 | 7.4 | 51.9 | 27.8 | 100.0 | 87.1 | 224 |
| Ashanti | 10.2 | 25.1 | 21.3 | 23.7 | 19.8 | 100.0 | 64.8 | 334 |
| Brong Ahafo | 16.0 | 9.0 | 9.3 | 41.1 | 24.6 | 100.0 | 75.0 | 141 |
| Northern | 32.8 | 17.4 | 6.0 | 30.2 | 13.7 | 100.0 | 49.8 | 105 |
| Upper East | 15.1 | 19.1 | 8.8 | 49.3 | 7.6 | 100.0 | 65.7 | 70 |
| Upper West | 9.2 | 15.5 | 4.2 | 54.5 | 16.6 | 100.0 | 75.3 | 46 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 10.7 | 12.4 | 8.1 | 42.8 | 26.0 | 100.0 | 76.9 | 934 |
| Rural | 10.1 | 19.8 | 9.7 | 40.8 | 19.6 | 100.0 | 70.1 | 769 |
| Mother's age at birth |  |  |  |  |  |  |  |  |
| Less than 20 | 10.2 | 18.8 | 6.0 | 51.2 | 13.8 | 100.0 | 71.0 | 158 |
| 20-34 | 10.5 | 14.8 | 8.8 | 42.2 | 23.7 | 100.0 | 74.7 | 1,233 |
| 35-49 | 10.2 | 18.0 | 10.4 | 35.9 | 25.6 | 100.0 | 71.9 | 311 |
| Number of ANC visits |  |  |  |  |  |  |  |  |
| None | * | * | * | * | * | 100.0 | * | 3 |
| 1-3 visits | 11.6 | 28.8 | 14.7 | 34.6 | 10.3 | 100.0 | 59.6 | 84 |
| $4+$ visits | 10.4 | 14.9 | 8.5 | 42.4 | 23.8 | 100.0 | 74.7 | 1,605 |
| Education |  |  |  |  |  |  |  |  |
| None | 12.3 | 13.8 | 9.5 | 40.2 | 24.1 | 100.0 | 73.8 | 493 |
| Primary | 10.9 | 21.3 | 7.7 | 41.8 | 18.4 | 100.0 | 67.9 | 371 |
| Middle/SSS | 9.5 | 15.5 | 8.3 | 44.2 | 22.6 | 100.0 | 75.1 | 695 |
| Secondary + | 7.1 | 9.5 | 12.1 | 36.9 | 34.4 | 100.0 | 83.3 | 144 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |
| Poorest | 14.5 | 20.7 | 7.6 | 40.7 | 16.5 | 100.0 | 64.9 | 212 |
| Second | 15.7 | 19.1 | 7.8 | 37.2 | 20.2 | 100.0 | 65.2 | 311 |
| Middle | 8.4 | 13.2 | 10.9 | 45.8 | 21.7 | 100.0 | 78.4 | 343 |
| Fourth | 8.9 | 16.1 | 7.2 | 44.5 | 23.0 | 100.0 | 74.7 | 383 |
| Richest | 7.7 | 12.8 | 10.0 | 40.5 | 28.9 | 100.0 | 79.4 | 455 |
| Total | 10.4 | 15.8 | 8.8 | 41.9 | 23.1 | 100.0 | 73.8 | 1,703 |

Safe motherhood programmes have recently increased emphasis on the importance of post-natal care, recommending that all women and newborns receive a health check within two days of delivery. To assess the extent of post-natal care utilization, women were asked whether they and their newborns received a health check after the delivery, the timing of the first check, and the type of health provider for the woman's last birth in the two years preceding the survey.

Table RH. 12 shows the percentage of newborns born in the last two years who received health checks and postnatal care visits from any health provider after birth. Please note that health checks following birth while in a facility or at home refer to checks provided by any health provider regardless of timing (column 1), whereas post-natal care visits refer to a separate visit to check on the health of the newborn and provide preventive care services and therefore do not include health checks following birth while in a facility or at home. The indicator, Post-natal health checks, include any health check after birth received while in the health facility and at home (column 1), regardless of timing, as well as PNC visits within two days of delivery (columns 2, 3, and 4).

The Ghana MICS data reveal that 81 percent of the newborns received a health check following the birth while in a facility or at home. However, 5 regions fall below this national average: Volta (72\%), Brong Ahafo (70\%), Northern (63\%), Upper East (70\%), and Upper West (76\%). Also, over 80 percent of newborns in the other five regions had health checks following the birth while in a facility or at home. Greater Accra has the highest proportion of newborns that had a health check (94\%). Additionally, Central (89\%), Western (86\%), Eastern (85\%), and Ashanti (83\%) also fall above the national average. Newborns in urban areas are more likely to have a health check following birth ( $90 \%$ ), compared to those in rural localities (74\%).

Variations by education of mother, place of delivery and wealth quintile exist. For example, at least 97 percent of newborns delivered in a health facility (either public or private) received a health check, compared to only 47 percent of those delivered at home. Also, 64 percent of newborns whose mothers has no education received a health check, compared to 96 percent of newborns whose mothers have secondary or higher education. Newborns from the richest households are also more likely to receive a health check (97\%), compared to newborns from poorest households (62\%).

With regards to PNC visits, 9 percent of the newborns received their first PNC visit the same day of birth, 5 percent one day following birth, while 2 percent received the PNC visit 2 days following birth. Only 5 percent of the newborn received the PNC visit 3-6 days following the birth, and 21 percent received the PNC visit after the first week following the birth. Nearly 60 percent of the newborns did not receive a PNC visit. Overall, a total of 83 percent of all newborns received a post-natal health check. In Greater Accra region, almost all newborns received a health check (96\%) while only two thirds (66\%) of the newborns in Northern region, and 73 percent in Volta region received post-natal health check. Urban newborns are much more likely to receive a post-natal health check (92\%) than their rural counterparts (77\%). There is a very clear association with to both education and household wealth, with the percentage of postnatal health checks of newborns increasing with education and wealth. For example, 66 percent of the newborns in the poorest wealth quintile received a post-natal health check, compared to 98 percent for newborns in the richest wealth quintile. Post-natal health checks following birth occur mainly in facility deliveries ( 97 to $98 \%$ for both public and private), whereas only 55 percent for newborns delivered at home received a post-natal health check.

| Table RH.12: Post-natal health checks for newborns <br> Percentage of newborns born in the last two years who received health checks and post-natal care (PNC) visits from any health provider after birth, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics |  | PNC visit |  |  |  |  |  |  | Total |  | Number of <br> last births in the two years preceding the survey |
|  |  | $\begin{array}{r} \text { Same } \\ \text { day } \end{array}$ | 1 day following birth | 2 days following birth | 3-6 days following birth | After the first week following birth | No postnatal care visit | Missing/ DK |  |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 85.8 | 14.9 | 3.9 | 3.2 | 4.2 | 13.7 | 59.5 | 0.7 | 100.0 | 87.9 | 270 |
| Central | 89.2 | 5.0 | 6.2 | 1.0 | 3.7 | 8.0 | 75.5 | 0.6 | 100.0 | 90.8 | 246 |
| Greater Accra | 93.7 | 5.0 | 9.5 | 2.4 | 3.0 | 21.8 | 57.1 | 1.2 | 100.0 | 95.6 | 397 |
| Volta | 71.9 | 6.0 | 3.7 | 0.0 | 7.7 | 29.5 | 51.6 | 1.6 | 100.0 | 72.6 | 189 |
| Eastern | 85.3 | 10.4 | 1.0 | 0.8 | 2.5 | 9.1 | 76.1 | 0.0 | 100.0 | 87.1 | 288 |
| Ashanti | 82.8 | 13.3 | 2.2 | 0.2 | 1.6 | 20.5 | 59.6 | 2.6 | 100.0 | 85.5 | 449 |
| Brong Ahafo | 70.3 | 3.8 | 2.9 | 1.9 | 7.8 | 54.8 | 28.8 | 0.0 | 100.0 | 73.5 | 227 |
| Northern | 63.1 | 8.3 | 3.2 | 2.5 | 9.6 | 16.8 | 58.4 | 1.1 | 100.0 | 66.4 | 283 |
| Upper East | 70.1 | 6.4 | 8.6 | 2.2 | 13.5 | 19.3 | 48.7 | 1.2 | 100.0 | 75.8 | 105 |
| Upper West | 75.8 | 6.8 | 7.8 | 3.2 | 9.8 | 19.8 | 52.3 | 0.2 | 100.0 | 80.2 | 75 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 90.0 | 7.3 | 4.1 | 1.6 | 5.1 | 25.4 | 55.2 | 1.2 | 100.0 | 91.8 | 1,068 |
| Rural | 74.2 | 9.5 | 4.8 | 1.5 | 5.0 | 17.3 | 60.9 | 1.0 | 100.0 | 77.1 | 1,460 |
| Mother's age at birth |  |  |  |  |  |  |  |  |  |  |  |
| Less than 20 | 81.9 | 11.4 | 1.0 | 1.9 | 3.8 | 20.0 | 57.5 | 4.4 | 100.0 | 83.1 | 221 |
| 20-34 | 82.4 | 7.9 | 4.9 | 1.6 | 5.2 | 21.4 | 58.4 | 0.6 | 100.0 | 84.8 | 1,783 |
| 35-49 | 75.1 | 9.7 | 4.6 | 1.6 | 5.0 | 19.0 | 58.9 | 1.2 | 100.0 | 78.4 | 524 |
| Missing | * | * | * | * | * | * | * | * | * | * | 1 |
| Type of health facility |  |  |  |  |  |  |  |  |  |  |  |
| Home | 47.4 | 12.6 | 7.5 | 1.4 | 5.3 | 8.1 | 64.3 | 0.8 | 100.0 | 54.5 | 793 |
| Health facility | 97.1 | 6.4 | 3.2 | 1.7 | 5.0 | 26.8 | 55.7 | 1.2 | 100.0 | 97.2 | 1,703 |
| Public | 96.9 | 6.5 | 2.7 | 1.8 | 5.2 | 26.3 | 56.4 | 1.1 | 100.0 | 97.0 | 1,434 |
| Private | 98.2 | 6.0 | 5.6 | 1.3 | 4.0 | 29.3 | 52.2 | 1.6 | 100.0 | 98.2 | 269 |
| Other/DK/ Missing | (45.9) | (25.2) | (0.0) | (0.0) | (0.0) | (14.0) | (60.8) | (0.0) | (100.0) | (57.0) | 32 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 63.7 | 9.8 | 5.3 | 2.2 | 6.3 | 16.7 | 58.6 | 1.1 | 100.0 | 68.0 | 733 |
| Primary | 82.9 | 9.6 | 3.7 | 1.6 | 6.5 | 17.2 | 61.2 | 0.1 | 100.0 | 85.2 | 565 |
| Middle/SSS | 87.9 | 7.0 | 3.6 | 0.9 | 3.1 | 22.9 | 60.8 | 1.8 | 100.0 | 89.7 | 886 |
| Secondary + | 96.1 | 8.1 | 6.2 | 2.2 | 5.2 | 29.7 | 47.6 | 0.8 | 100.0 | 96.5 | 344 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 61.8 | 9.3 | 5.6 | 1.9 | 7.8 | 17.9 | 56.3 | 1.3 | 100.0 | 65.9 | 560 |
| Second | 73.1 | 11.2 | 4.0 | 2.1 | 5.0 | 17.2 | 59.7 | 0.7 | 100.0 | 76.2 | 546 |
| Middle | 84.3 | 6.3 | 2.7 | 0.9 | 5.4 | 21.7 | 62.2 | 0.9 | 100.0 | 86.4 | 500 |
| Fourth | 93.0 | 7.7 | 1.7 | 1.5 | 3.7 | 24.8 | 58.3 | 2.4 | 100.0 | 94.8 | 455 |
| Richest | 97.3 | 7.9 | 8.3 | 1.5 | 2.9 | 23.4 | 55.8 | 0.2 | 100.0 | 98.0 | 467 |
| Total | 80.9 | 8.6 | 4.5 | 1.6 | 5.1 | 20.7 | 58.5 | 1.1 | 100.0 | 83.3 | 2,528 |
| [1] MICS indicator 5.11 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |  |  |  |  |  |


| Table RH.13: Post-natal care (PNC) visits for newborns within one week of birth Percentage of newborns who were born in the last two years and received a PNC visit within one week of birth by location and provider of the first PNC visit, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Location of first PNC visit |  |  |  |  | Provider of first PNC visit |  |  |  |  | Number of all newborns born in the preceding two years with a PNC visit within the first week of life |
| Background Characteristics | Home | Public Sector | Private Sector | $\begin{array}{r} \text { Other } \\ \text { location } \end{array}$ | Total | Doctor/ nurse/ midwife | Auxiliary midwife | Community health worker | Traditional <br> birth attendant | Total |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | (36.0) | (56.1) | (7.9) | (0.0) | 100.0 | (70.2) | (0.0) | (0.0) | (29.8) | 100.0 | 71 |
| Central | 45.3 | 42.3 | 12.3 | 0.0 | 100.0 | 56.8 | 1.6 | 5.8 | 35.8 | 100.0 | 39 |
| Greater Accra | (33.8) | (50.4) | (15.8) | (0.0) | 100.0 | (81.0) | (0.0) | (0.0) | (19.0) | 100.0 | 79 |
| Volta | (40.2) | (59.8) | (0.0) | (0.0) | 100.0 | (63.3) | (2.4) | (3.5) | (30.8) | 100.0 | 33 |
| Eastern | * | * | * | * | 100.0 | * | * | * | * | 100.0 | 42 |
| Ashanti | (35.0) | (47.3) | (15.5) | (2.2) | 100.0 | (72.6) | (2.2) | (2.2) | (22.9) | 100.0 | 78 |
| Brong Ahafo | (43.4) | (47.1) | (9.5) | (0.0) | 100.0 | (70.2) | (4.4) | (13.0) | (12.4) | 100.0 | 37 |
| Northern | 48.8 | 50.5 | 0.0 | 0.7 | 100.0 | 52.0 | 1.6 | 19.3 | 27.0 | 100.0 | 67 |
| Upper East | 16.3 | 82.2 | 1.6 | 0.0 | 100.0 | 93.2 | 0.7 | 3.2 | 2.9 | 100.0 | 32 |
| Upper West | 31.7 | 67.5 | 0.9 | 0.0 | 100.0 | 65.0 | 10.7 | 9.3 | 15.0 | 100.0 | 21 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 24.6 | 57.8 | 17.6 | 0.0 | 100.0 | 82.3 | 1.2 | 2.7 | 13.8 | 100.0 | 195 |
| Rural | 43.2 | 54.4 | 1.7 | 0.7 | 100.0 | 63.3 | 2.0 | 6.8 | 28.0 | 100.0 | 304 |
| Mother's age at birth |  |  |  |  |  |  |  |  |  |  |  |
| Less than 20 | (22.0) | (69.8) | (8.2) | (.0) | 100.0 | (79.5) | (2.0) | (1.3) | (17.2) | 100.0 | 40 |
| 20-34 | 34.3 | 57.0 | 8.3 | 0.5 | 100.0 | 72.6 | 1.4 | 4.7 | 21.3 | 100.0 | 349 |
| 35-49 | 46.4 | 46.7 | 6.5 | 0.4 | 100.0 | 61.7 | 2.4 | 8.0 | 27.9 | 100.0 | 109 |
| Type of health facility |  |  |  |  |  |  |  |  |  |  |  |
| Home | 67.7 | 32.2 | 0.1 | 0.0 | 100.0 | 38.7 | 1.7 | 7.7 | 51.9 | 100.0 | 213 |
| Health facility | 12.3 | 73.7 | 14.0 | 0.0 | 100.0 | 95.5 | 1.7 | 2.8 | 0.1 | 100.0 | 278 |
| Public | 12.3 | 87.7 | 0.1 | 0.0 | 100.0 | 95.2 | 1.4 | 3.3 | 0.1 | 100.0 | 232 |
| Private | (12.4) | (2.2) | (85.4) | (0.0) | 100.0 | (96.9) | (3.1) | (0.0) | (0.0) | 100.0 | 45 |
| Other/DK/ Missing | * | * | * | * | 100.0 | * | * | * | * | 100.0 | 8 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 47.3 | 52.0 | 0.5 | 0.3 | 100.0 | 57.9 | 1.7 | 9.1 | 31.4 | 100.0 | 173 |
| Primary | 32.2 | 57.4 | 9.0 | 1.4 | 100.0 | 74.0 | 3.4 | 4.5 | 18.1 | 100.0 | 121 |
| Middle/JSS | 34.4 | 57.2 | 8.3 | 0.0 | 100.0 | 74.1 | 0.9 | 1.6 | 23.4 | 100.0 | 129 |
| Secondary + | 18.4 | 59.3 | 22.3 | 0.0 | 100.0 | 89.2 | 0.2 | 3.5 | 7.1 | 100.0 | 75 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 44.4 | 55.0 | 0.5 | 0.0 | 100.0 | 62.7 | 3.6 | 10.7 | 23.0 | 100.0 | 138 |
| Second | 45.3 | 50.8 | 3.5 | 0.4 | 100.0 | 60.1 | 0.7 | 4.2 | 35.0 | 100.0 | 122 |
| Middle | 41.1 | 57.2 | 1.8 | 0.0 | 100.0 | 70.1 | 1.0 | 2.5 | 26.5 | 100.0 | 76 |
| Fourth | 29.3 | 50.7 | 17.5 | 2.6 | 100.0 | 73.5 | 2.6 | 4.8 | 19.1 | 100.0 | 66 |
| Richest | 12.4 | 65.5 | 22.1 | 0.0 | 100.0 | 94.3 | 0.0 | 0.9 | 4.8 | 100.0 | 96 |
| Total | 35.9 | 55.8 | 7.9 | 0.4 | 100.0 | 70.7 | 1.7 | 5.2 | 22.4 | 100.0 | 499 |
| An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses ')' ${ }^{\text {are }}$ based on $25-49$ unweighted cases. |  |  |  |  |  |  |  |  |  |  |  |

Tables RH. 14 and RH. 15 present information collected on post-natal health checks and visits of the mother and are identical to Tables RH. 12 and RH. 13 that presented the data collected for newborns. Please be reminded that health checks following birth while in a facility or at home refer to checks provided by any health provider regardless of timing (column 1), whereas post-natal care visits refer to a separate visit to check on the health of the mother and provide preventive care services and, therefore, do not include health checks following birth while in a facility or at home. The indicator, post-natal health checks, include any health check after birth received while in the health facility and at home (column 1), regardless of timing, as well as PNC visits within two days of delivery (columns 2, 3, and 4).

Table RH. 14 provides results of health checks and post-natal health checks for mothers who gave birth in the 2 years preceding the survey. Overall, 81 percent of women received a health check following the birth of their child while in the health facility or at home. Mothers from Greater Accra (95\%), Central (88\%), Eastern (86\%), Ashanti (86\%) and Western (84\%), are more likely to have received a health check following birth while in a facility or home, compared to mothers in Volta (71\%), Brong Ahafo (71\%), Upper West (74\%), Upper East (70\%) and Northern region (61\%).

Mothers from rural households, those from the poorest households and those with no education are less likely than more advantaged mothers to receive a health check following the birth while in a facility or at home. For example, 91 percent of mothers in urban households received a health check compared to 74 percent of mothers in rural households. Also, mothers from the wealthiest households are more likely to receive a health check (97\%), compared to mothers from poorest households (61\%).

Five percent of the mothers received their first post-natal care visit the same day of the birth, 3 percent received it one day after delivery, 1 percent received the PNC two days following the birth, while 4 percent received the first post-natal care visit within 3 to 6 days after delivery. About 13 percent of the women with a live birth in the 2 years before the survey received their first postnatal health check after the first week following the birth, while 75 percent of the women did not receive any post-natal care visit. Interestingly, slight variations are observed by wealth of the mother. In total, $83 \%$ of the mothers had post-natal health check, the proportion being larger in urban areas (92\%) than in rural areas ( $76 \%$ ). The frequency of post-natal health checks frequency varies across regions from 64 percent in the Northern region to 95 percent in Greater Accra region. It also increases with women's education and wealth quintile. Not surprisingly, almost all women (close to $100 \%$ ) who had C -section had post-natal health check whereas only 80 percent of the others had.

| Table RH.14: Post-natal health checks for mothers <br> Percentage of women age 15-49 years who gave birth in the 2 years preceding the survey who received health checks and post-natal care (PNC) visits from any health provider after birth, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Health check following birth while in facility or at home |  |  |  |  |  |  |  | Total | Post natal health check for the mother [1] |  |
| Background Characteristics |  | $\begin{array}{r} \text { Same } \\ \text { day } \end{array}$ | 1 day following birth | 2 days following birth | PNC visit <br> 3-6 days <br> following birth | After the first week following birth | No post- <br> natal care visit | Missing/ DK |  |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 84.3 | 5.7 | 4.9 | 2.8 | 1.6 | 5.4 | 79.5 | 0.0 | 100.0 | 87.7 | 270 |
| Central | 87.8 | 1.6 | 2.7 | 0.7 | 1.8 | 6.2 | 87.0 | 0.0 | 100.0 | 88.2 | 246 |
| Greater Accra | 94.5 | 4.8 | 2.7 | 0.5 | 3.3 | 15.4 | 73.4 | 0.0 | 100.0 | 94.5 | 397 |
| Volta | 71.0 | 6.0 | 3.2 | 0.5 | 5.3 | 19.2 | 63.6 | 2.3 | 100.0 | 72.3 | 189 |
| Eastern | 86.9 | 4.3 | 1.6 | 0.0 | 1.9 | 7.2 | 85.0 | 0.0 | 100.0 | 87.7 | 288 |
| Ashanti | 85.7 | 8.8 | 0.5 | 0.0 | 3.7 | 13.8 | 72.3 | 0.9 | 100.0 | 86.5 | 449 |
| Brong Ahafo | 71.0 | 1.2 | 1.2 | 1.3 | 5.4 | 26.7 | 64.2 | 0.0 | 100.0 | 72.2 | 227 |
| Northern | 61.1 | 4.5 | 2.4 | 1.9 | 6.5 | 9.5 | 75.0 | 0.3 | 100.0 | 63.6 | 283 |
| Upper East | 70.1 | 2.9 | 5.4 | 1.9 | 7.4 | 10.5 | 71.7 | 0.2 | 100.0 | 74.6 | 105 |
| Upper West | 73.6 | 3.7 | 6.0 | 1.9 | 7.2 | 11.6 | 69.6 | 0.0 | 100.0 | 76.8 | 75 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 91.3 | 3.3 | 1.5 | 0.7 | 4.3 | 17.7 | 72.2 | 0.3 | 100.0 | 91.9 | 1,068 |
| Rural | 73.7 | 6.0 | 3.2 | 1.1 | 3.6 | 8.8 | 76.9 | 0.4 | 100.0 | 75.6 | 1,460 |
| Mother's age at birth |  |  |  |  |  |  |  |  |  |  |  |
| Less than 20 | 83.9 | 5.2 | 0.9 | 0.4 | 2.2 | 9.5 | 80.4 | 1.4 | 100.0 | 85.3 | 221 |
| 20-34 | 82.5 | 4.8 | 2.4 | 0.9 | 3.9 | 13.0 | 74.6 | 0.2 | 100.0 | 84.1 | 1,783 |
| 35-49 | 75.1 | 4.8 | 3.4 | 1.2 | 4.3 | 12.1 | 73.8 | 0.5 | 100.0 | 76.0 | 524 |
| Missing | * | * | * | * | * | * | * | * | 100.0 | * | 1 |
| Type of health facility |  |  |  |  |  |  |  |  |  |  |  |
| Home | 47.3 | 8.0 | 4.9 | 1.0 | 3.7 | 3.9 | 78.4 | 0.1 | 100.0 | 51.6 | 793 |
| Health facility | 97.5 | 3.2 | 1.4 | 0.9 | 4.0 | 16.6 | 73.4 | 0.5 | 100.0 | 97.5 | 1,703 |
| Public | 97.2 | 2.9 | 1.3 | 1.1 | 4.5 | 15.8 | 73.7 | 0.6 | 100.0 | 97.3 | 1,434 |
| Private | 99.1 | 4.6 | 1.9 | 0.0 | 1.3 | 20.6 | 71.6 | 0.0 | 100.0 | 99.1 | 269 |
| Other/DK/ Missing | (45.9) | (16.0) | (0.0) | (0.0) | (0.0) | (12.9) | (71.1) | (0.0) | 100.0 | (47.8) | 32 |
| Type of delivery |  |  |  |  |  |  |  |  |  |  |  |
| C-section | 99.9 | 4.4 | 1.7 | 1.0 | 5.8 | 24.0 | 62.4 | 0.7 | 100.0 | 99.9 | 287 |
| Not via C-section | 78.7 | 4.9 | 2.6 | 0.9 | 3.6 | 11.1 | 76.5 | 0.3 | 100.0 | 80.3 | 2,241 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 63.9 | 4.8 | 3.5 | 1.3 | 4.8 | 8.1 | 77.0 | 0.4 | 100.0 | 66.1 | 733 |
| Primary | 82.7 | 4.9 | 2.7 | 1.3 | 4.8 | 9.9 | 76.1 | 0.2 | 100.0 | 84.3 | 565 |
| Middle/JSS | 88.3 | 5.3 | 2.1 | 0.6 | 1.9 | 15.0 | 74.6 | 0.6 | 100.0 | 89.4 | 886 |
| Secondary + | 96.5 | 3.7 | 1.1 | 0.5 | 5.3 | 20.0 | 69.5 | 0.0 | 100.0 | 96.8 | 344 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 61.0 | 5.8 | 3.2 | 1.7 | 5.1 | 9.1 | 74.9 | 0.2 | 100.0 | 63.7 | 560 |
| Second | 74.7 | 4.7 | 3.2 | 1.3 | 3.9 | 8.2 | 77.8 | 1.0 | 100.0 | 77.2 | 546 |
| Middle | 85.2 | 3.9 | 2.2 | 1.0 | 4.5 | 13.3 | 74.4 | 0.6 | 100.0 | 85.2 | 500 |
| Fourth | 92.8 | 5.3 | 1.7 | 0.2 | 1.6 | 16.9 | 74.2 | 0.0 | 100.0 | 94.2 | 455 |
| Richest | 97.0 | 4.6 | 1.9 | 0.2 | 3.8 | 16.6 | 72.8 | 0.0 | 100.0 | 97.0 | 467 |
| Total | 81.1 | 4.9 | 2.5 | 0.9 | 3.9 | 12.6 | 74.9 | 0.4 | 100.0 | 82.5 | 2,528 |
| [1] MICS indicator 5.12 |  |  |  |  |  |  |  |  |  |  |  |

An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses ')' ${ }^{\prime}$ 're based on $25-49$ unweighted cases.

Table RH. 15 is similar Table RH.13, but deals with PNC visits for mothers by location and type of provider. As defined above, a visit does not include a check in the facility or at home following birth. Overall, 47 percent of the mothers who received a PNC visit, had their first post-natal care visit at home, 49 percent received it at a public sector facility, while 4 percent received their first PNC visit at a private sector facility.

About 65 percent of mothers were provided their first PNC visit by a doctor/nurse or midwife, while 2 percent were provided their first PNC visit by an auxiliary midwife. Seven percent of the mothers received their first post-natal care visit by a Community health worker, while Traditional birth attendants provided the first PNC visit to 26 percent of the mothers.

Due to the few numbers of women who gave birth in the two years preceding survey and received a PNC visit within one week of delivery, the analysis by other background characteristics has not been included.

| Table RH.15: Post-natal care (PNC) visits for mothers within one week of birth <br> Percentage of women age 15-49 years who gave birth in the preceding 2 years and received a PNC visit within one week of birth, <br> by location and provider of the first PNC visit, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Location of first PNC visit |  |  |  | Provider of first PNC visit |  |  |  |  | Number of women who gave birth in the two years preceding survey and received a PNC visit within one week of delivery |
| Background Characteristics | Home | Public Sector | Private Sector | Total | Doctor/ nurse/ midwife | Auxiliary midwife | Community health worker | Traditional <br> birth attendant | Total |  |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | * | * | * | 100.0 | * | * | * | * | 100.0 | 21 |
| Central | * | * | * | 100.0 | * | * | * | * | 100.0 | 12 |
| Greater Accra | * | * | * | 100.0 | * | * | * | * | 100.0 | 24 |
| Volta | * | * | * | 100.0 | * | * | * | * | 100.0 | 21 |
| Eastern | * | * | * | 100.0 | * | * | * | * | 100.0 | 20 |
| Ashanti | * | * | * | 100.0 | * | * | * | * | 100.0 | 44 |
| Brong Ahafo | * | * | * | 100.0 | * | * | * | * | 100.0 | 12 |
| Northern | 54.8 | 45.2 | 0.0 | 100.0 | 43.8 | 5.0 | 24.9 | 26.4 | 100.0 | 20 |
| Upper East | (33.1) | (66.9) | (0.0) | 100.0 | (92.0) | (0.0) | (3.7) | (4.3) | 100.0 | 8 |
| Upper West | (33.2) | (66.8) | (0.0) | 100.0 | (63.8) | (4.6) | (4.0) | (27.6) | 100.0 | 7 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | (42.2) | (53.0) | (4.8) | 100.0 | (77.5) | (0.0) | (2.1) | (20.3) | 100.0 | 70 |
| Rural | 49.7 | 46.1 | 4.2 | 100.0 | 57.8 | 3.1 | 9.3 | 29.8 | 100.0 | 119 |
| Mother's age at birth |  |  |  |  |  |  |  |  |  |  |
| Less than 20 | * | * | * | 100.0 | * | * | * | * | 100.0 | 6 |
| 20-34 | 46.3 | 50.5 | 3.2 | 100.0 | 68.1 | 1.0 | 4.6 | 26.4 | 100.0 | 132 |
| 35-49 | 48.8 | 43.0 | 8.2 | 100.0 | 59.3 | 4.1 | 8.8 | 27.8 | 100.0 | 51 |
| Place of birth |  |  |  |  |  |  |  |  |  |  |
| Home | 72.5 | 27.2 | 0.3 | 100.0 | 35.9 | 1.8 | 11.1 | 51.1 | 100.0 | 96 |
| Health facility | 20.5 | 70.7 | 8.8 | 100.0 | 95.4 | 2.1 | 2.0 | 0.5 | 100.0 | 93 |
| Public | 18.8 | 81.2 | 0.0 | 100.0 | 94.7 | 2.4 | 2.3 | 0.6 | 100.0 | 81 |
| Private | * | * | * | 100.0 | * | * | * | * | 100.0 | 12 |
| Other/DK/Missing | * | * | * | 100.0 | * | * | * | * | 100.0 | 0 |
| Type of delivery |  |  |  |  |  |  |  |  |  |  |
| C-section | (0.0) | (93.9) | (6.1) | 100.0 | (100.0) | (0.0) | (0.0) | (0.0) | 100.0 | 26 |
| Not via C-section | 54.5 | 41.3 | 4.2 | 100.0 | 59.5 | 2.2 | 7.7 | 30.5 | 100.0 | 163 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |
| None | 60.1 | 37.3 | 2.6 | 100.0 | 50.5 | 3.9 | 12.2 | 33.4 | 100.0 | 63 |
| Primary | 47.8 | 47.5 | 4.7 | 100.0 | 65.2 | 2.5 | 7.7 | 24.6 | 100.0 | 47 |
| Middle/SS | (35.6) | (56.1) | (8.2) | 100.0 | (69.9) | (0.0) | (2.4) | (27.7) | 100.0 | 56 |
| Secondary+ | * | * | * | 100.0 | * | * | * | * | 100.0 | 24 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |
| Poorest | 57.3 | 42.2 | 0.5 | 100.0 | 51.1 | 7.0 | 16.5 | 25.4 | 100.0 | 52 |
| Second | (43.8) | (39.4) | (16.8) | 100.0 | (66.3) | (0.0) | (4.0) | (29.7) | 100.0 | 38 |
| Middle | (52.6) | (47.4) | (.0) | 100.0 | (46.7) | (0.0) | (2.3) | (51.0) | 100.0 | 30 |
| Fourth | * | * | * | 100.0 | * | * | * | * | 100.0 | 34 |
| Richest | * | * | * | 100.0 | * | * | * | * | 100.0 | 35 |
| Total | 47.0 | 48.6 | 4.4 | 100.0 | 65.1 | 1.9 | 6.7 | 26.3 | 100.0 | 189 |

Table RH. 16 presents the distribution of women with a live birth in the two years preceding the survey by receipt of health checks or PNC visits within 2 days of birth for the mother and the newborn, thus combining the indicators presented in Tables RH. 12 and RH. 14.

The survey results reveal that in 80 percent of cases, health checks or post-natal care visits within 2 days of birth were provided for both mother and her newborn baby. Two percent of mothers only and 3 percent of newborns only received a health check or post-natal care visit within 2 days of birth. About 15 percent of neither mother nor newborn received a health check or PNC visits within 2 days of birth. Receiving a health check or post-natal care visit within 2 days of birth by both mother and newborn varies by region, and other background characteristics. For example, 31 percent of neither mother, nor newborn received a health check or PNC visits within 2 days of birth in Northern region, compared to only 4 percent in Greater Accra.

Mothers and newborns from rural households, those from the poorest households and those with no education are less likely than more advantaged mothers and their newborns to receive a health check or PNC visit within 2 days of birth. For example, 89 percent of both mothers and newborns in urban households received a health check or PNC visit within 2 days of birth, compared to 74 percent of mothers and their newborns in rural households. Also, mothers and newborns from the wealthiest households are more likely to receive a health check or PNC visit within 2 days of birth (96\%), compared to mothers and newborns from poorest households (62\%). Additionally, receiving a health check or a PNC visit within 2 days of birth increases with educational level - 63 percent for mothers with no education, to 83 percent for mothers with primary education, to 87 percent for mothers with middle/JSS education and to 95 percent for mothers with secondary or higher education. In situations where the delivery took place at home, the mothers and newborns are less likely (48\%) to receive a health check or PNC visit within 2 days of birth, compared to situations where the deliveries took place in a health facility ( $96 \%$ ).

In situations where the delivery was through a C-section, the mothers and newborns are more likely (99\%) to receive a health check or PNC visit within 2 days of birth, compared to vaginal births (78\%).


## Early Childhood Education and Learning

Attendance to pre-school education in an organized learning or child education program is important for the readiness of children to go to school. One of the World Fit for Children goals is the promotion of early childhood education. In accordance with section 8 of The Children's Act, 1998 (Act 560), the government of Ghana drafted a comprehensive Early Childhood Care and Development (ECCD) policy in 2004 to provide a good start in life for all children. Early education and learning constitute an integral part of the ECCD Policy.

A little over 68 percent of children aged 36-59 months in Ghana are attending pre-school (Table CD.1). There are significant variations in pre-school attendance by urban-rural residence. The figure is as high as 81 percent in urban areas, compared to 59 percent in rural areas. Significant differentials exist in terms of gender with female children more likely to attend pre-school (72\%), compared to male children (65\%). With regards to socio-economic status, pre-school attendance is highest among children from the richest households (94\%) compared to children from the poorest households (42\%). Also, older children 48 -59 months are more likely to attend pre-school (78\%), than younger children (59\%), while attendance appears to be highest for children whose mothers have secondary or higher education (94\%), and lowest for children whose mothers have no education (49\%).

| Table CD.1: Early childhood education Percentage of children age $36-59$ months who are attending some form of organized early childhood |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Background Characteristics | Percentage of children age 36-59 months currently attending early childhood education [1] | Number of children aged 36-59 months |
| Sex |  |  |
| Male | 65.0 | 1524 |
| Female | 71.5 | 1478 |
| Region |  |  |
| Western | 67.8 | 310 |
| Central | 67.7 | 286 |
| Greate Accra | 84.9 | 469 |
| Volta | 53.8 | 263 |
| Eastern | 83.9 | 307 |
| Ashanti | 76.9 | 516 |
| Brong Ahafo | 56.4 | 260 |
| Northern | 50.5 | 360 |
| Upper East | 53.1 | 140 |
| Upper West | 51.9 | 89 |
| Residence |  |  |
| Urban | 80.5 | 1304 |
| Rural | 58.8 | 1698 |
| Age of child |  |  |
| 36-47 months | 59.1 | 1576 |
| $48-59$ months | 78.3 | 1426 |
| Mother's education |  |  |
| None | 49.1 | 1100 |
| Primary | 67.8 | 621 |
| Middle/JSS | 81.9 | 971 |
| Secondary + | 93.9 | 310 |
| Wealth index quintile |  |  |
| Poorest | 41.5 | 719 |
| Second | 59.2 | 634 |
| Middle | 72.9 | 622 |
| Fourth | 83.2 | 529 |
| Richest | 96.5 | 498 |
| Total | 68.2 | 3002 |

Among children aged 36-59 months, attendance to pre-school is more prevalent in the Greater Accra (85\%), and lowest in the Northern Region (51\%) as seen in Figure CD.1.

Figure CD.1: Percentage of children aged 36-59 months currently attending early childhood education by region, Ghana, 2011


Placing children in pre-school is an important decision parents take but such a decision is more beneficial if parents also take interest in children's school activities whilst at home. Parental involvement in children's preschool work has significant effects on their development (Hill \& Taylor, 2004). It is well recognized that a period of rapid brain development occurs in the first 3-4 years of life, and the quality of home care is the major determinant of the child's development during this period. In this context, adult activities with children, presence of books in the home for the child, and the conditions of care are important indicators of quality of home care. Children should be physically healthy, mentally alert, emotionally secure, socially competent and ready to learn.

Information on a number of activities that support early learning was collected in the MICS survey. These included the involvement of adults with children in the following activities: reading books or looking at picture books, telling stories, singing songs, taking children outside the home, compound or yard, playing with children, and spending time with children naming, counting, or drawing things.

Table CD. 2 presents the percentage of children aged 36-59 months with whom an adult household member engaged in activities that promote learning and school readiness during the last three days preceding the survey. The data indicate that with 40 percent of under-five children, an adult household member engaged in more than four activities that promote learning and school readiness during the three days preceding the survey. The average number of activities that adults engaged in with children was 3 . Generally, the table also indicates that fathers involvement in such activities was limited. Father's involvement with one or more activities was only 30 percent but significantly higher ( $65 \%$ ) in cases where the father had secondary or higher education. The mean number of activities the father engaged in with the child was less than 1 . The survey results also reveal that about 30 percent of children aged 36-59 months were living in a household without their natural fathers.

| Table CD.2: Support for learning <br> Percentage of children age 36-59 months with whom an adult household member engaged in activities that promote learning and school readiness during the last three days, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of children aged 36-59 months |  | Mean number of activities |  | Percentage of children not living with their natural father | Number of children aged $36-59$ months |
|  | With whom adult household members engaged in four or more activities | With whom the father engaged in one or more activities [2] | Any adult household member engaged with the child | The father engaged with the child |  |  |
| Sex |  |  |  |  |  |  |
| Male | 37.9 | 29.4 | 2.9 | 0.6 | 26.6 | 1524 |
| Female | 41.8 | 29.8 | 3.1 | 0.6 | 32.6 | 1478 |
| Region |  |  |  |  |  |  |
| Western | 25.7 | 25.8 | 2.4 | 0.5 | 23.0 | 310 |
| Central | 39.4 | 31.3 | 3.0 | 0.7 | 33.0 | 286 |
| Greater Accra | 60.4 | 35.6 | 3.8 | 0.9 | 29.5 | 469 |
| Volta | 23.6 | 27.7 | 2.4 | 0.5 | 41.9 | 263 |
| Eastern | 62.1 | 27.3 | 3.9 | 0.6 | 37.8 | 307 |
| Ashanti | 37.3 | 27.0 | 3.0 | 0.4 | 33.3 | 516 |
| Brong Ahafo | 33.4 | 33.0 | 2.9 | 0.6 | 33.3 | 260 |
| Northern | 21.6 | 29.4 | 2.3 | 0.5 | 14.5 | 360 |
| Upper East | 56.8 | 25.4 | 3.8 | 0.6 | 20.0 | 140 |
| Upper West | 34.1 | 31.6 | 2.7 | 0.7 | 20.7 | 89 |
| Residence |  |  |  |  |  |  |
| Urban | 52.7 | 32.3 | 3.5 | 0.7 | 32.3 | 1304 |
| Rural | 30.0 | 27.5 | 2.7 | 0.5 | 27.5 | 1698 |
| Age |  |  |  |  |  |  |
| 36-47 months | 37.3 | 28.5 | 3.0 | 0.6 | 28.7 | 1576 |
| 48-59 months | 42.7 | 30.8 | 3.1 | 0.6 | 30.6 | 1426 |
| Mother's education |  |  |  |  |  |  |
| None | 25.0 | 25.3 | 2.4 | 0.4 | 22.3 | 1100 |
| Primary | 33.5 | 28.2 | 2.9 | 0.5 | 35.3 | 621 |
| Middle/ss | 49.4 | 31.3 | 3.5 | 0.6 | 34.0 | 971 |
| Secondary + | 75.4 | 42.2 | 4.3 | 1.3 | 30.3 | 310 |
| Father's education |  |  |  |  |  |  |
| None | 32.2 | 34.6 | 2.7 | 0.6 | 0.0 | 780 |
| Primary | 25.9 | 33.0 | 2.6 | 0.6 | 0.0 | 333 |
| Middle/JSs | 44.2 | 41.1 | 3.3 | 0.8 | 0.0 | 768 |
| Secondary + | 69.4 | 64.8 | 4.2 | 1.9 | 0.0 | 232 |
| Father not in household | 40.3 | 4.8 | 3.0 | 0.1 | 100.0 | 888 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 23.0 | 24.8 | 2.3 | 0.4 | 18.6 | 719 |
| Second | 31.7 | 26.5 | 2.7 | 0.4 | 38.2 | 634 |
| Middle | 31.4 | 19.4 | 2.7 | 0.3 | 40.5 | 622 |
| Fourth | 46.2 | 35.8 | 3.5 | 0.8 | 25.3 | 529 |
| Richest | 78.4 | 46.5 | 4.4 | 1.2 | 25.3 | 498 |
| Total | 39.8 | 29.6 | 3.0 | 0.6 | 29.6 | 3002 |
| [1] MICS indicator 6.1 [2] MICS Indicator 6.2 |  |  |  |  |  |  |

Involvement of adult household members with children in activities that promote learning and school readiness is very limited. Generally, adult's activities are higher with female children ( $42 \%$ ) than with male children (38\%). Slight differences are noted by area of residence - fathers in urban areas engaged more with children in one or more activities (32\%), than fathers in rural areas (28\%).

Significant differentials by region and socio-economic status are also observed: adult engagement in activities with children was highest in the Greater Accra region (60\%) and lowest in the Northern region (22\%), while the proportion was 78 percent for children living in the richest households, as opposed to those living in the poorest households (23\%).

Exposure to books in early years not only provides the child with greater understanding of the nature of print, but may also give the child opportunities to see others reading, such as older siblings doing school work. Presence of books is important for later school performance and IQ scores. The mother/caretaker of all children under- 5 were asked about the number of children's books or picture books they have for the child, household objects or outside objects, and homemade toys or toys that came from a shop that are available at home.

In Ghana, only 6 percent of children aged 0-59 months are living in households where at least 3 children's books are present (Table CD.3), and about 1 percent live in households that have 10 or more books (Table CD.3). While slight gender differentials are observed in households that have 3 or more books, none is observed in relation to households with 10 or more books.

As can be expected, urban children appear to have more access to children's books than those living in rural households. The proportion of under- 5 children who have 3 or more children's books is 11 percent in urban areas, and 2 percent in rural areas. The presence of children's books is also higher ( $10 \%$ ) in homes of children aged 24-59 months than in the homes of children aged 0-23 months (1\%).

Table CD. 3 also shows that 41 percent of children aged 0-59 months had 2 or more playthings in their homes. The playthings in MICS4 included homemade toys (such as dolls and cars, or other toys made at home), toys that came from a store, and household objects (such as pots and bowls) or objects and materials found outside the home (such as sticks, rocks, animal shells, or leaves). It is interesting to note that 40 percent of children play with toys that come from a store, 26 percent play with homemade toys and 65 percent play with household objects and other objects found outside.

Overall, 40 percent of the male children, and 42 percent of the female children have 2 or more playthings. Urbanrural differentials are also observed in this respect ( $46 \%$ and $37 \%$ respectively). Also, substantial differences are observed in relation to the mother's education and availability of 2 or more playthings for children -50 percent in cases where the mother has secondary or higher education, and 34 percent for children whose mothers have no education. The same pattern is observed by socio-economic status of the households -31 percent for children in the poorest households, and 51 percent for children in the richest wealth quintile.

With respect to the proportion of children who play with household objects or objects found outside, the Volta region ranks highest ( $80 \%$ ) in comparison to the Eastern region which ranked lowest ( $57 \%$ ) as seen in Figure CD.2. More children from the poorest households (73\%) play with household objects or objects found outside than children from richest households (54\%). Also, 71 percent of children whose mothers have no education play with household objects or objects found outside, compared to 52 percent for children whose mothers have secondary or higher education.

Regarding the toys from shop/manufactured toys, there is a direct association with area of residence, mother's education and socio-economic status. For example, only 13 percent of children from the poorest wealth quintile plays with toys from a shop/manufactured toys. This increases to 28 percent for children in the second wealth quintile, to 38 percent for children in the middle quintile, and to 56 percent for children in the fourth quintile. About 3 out of 4 children from the richest wealth quintile play with toys from a shop/manufactured toys. Regional variations are also observed with the highest proportion (63\%) in Greater Accra compared to the lowest (12\%) in Upper East region.

| Table CD.3: Learning materials |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of children under age 5 by numbers of children's books present in the household, and by playthings that child plays with, Ghana, 2011 |  |  |  |  |  |  |  |
| Background Characteristics | Household has for the child: |  | Child plays with: |  |  | Two or more types of playthings [2] |  |
|  | 3 or more children's books [1] | 10 or more children's books | Homemade toys | $\begin{array}{r} \text { Toys from } \\ \text { a shop/ } \\ \text { manufactured } \\ \text { toys } \end{array}$ | Household objects/objects found outside |  |  |
| Sex |  |  |  |  |  |  |  |
| Male | 5.8 | 1.0 | 26.3 | 38.8 | 64.6 | 39.9 | 3757 |
| Female | 6.6 | 0.8 | 25.4 | 40.9 | 65.7 | 42.4 | 3793 |
| Region |  |  |  |  |  |  |  |
| Western | 5.6 | 2.2 | 35.1 | 54.5 | 58.6 | 42.0 | 758 |
| Central | 5.7 | 0.2 | 38.1 | 40.3 | 63.4 | 48.2 | 740 |
| Greater Accra | 17.1 | 2.6 | 27.8 | 63.3 | 65.0 | 51.0 | 1142 |
| Volta | 1.3 | 0.0 | 27.7 | 35.0 | 80.3 | 45.0 | 601 |
| Eastern | 6.3 | 0.2 | 18.0 | 31.7 | 57.0 | 33.5 | 827 |
| Ashanti | 6.2 | 1.2 | 10.6 | 42.6 | 57.3 | 33.8 | 1411 |
| Brong Ahafo | 2.7 | 0.0 | 35.3 | 40.8 | 69.4 | 54.3 | 671 |
| Northern | 1.3 | 0.0 | 29.5 | 17.9 | 75.7 | 35.2 | 852 |
| Upper East | 2.8 | 0.1 | 21.2 | 11.9 | 73.8 | 25.7 | 325 |
| Upper West | 1.3 | 0.0 | 29.2 | 15.7 | 66.0 | 34.2 | 223 |
| Residence |  |  |  |  |  |  |  |
| Urban | 11.0 | 1.8 | 25.6 | 55.5 | 61.9 | 46.4 | 3283 |
| Rural | 2.4 | 0.2 | 26.1 | 27.7 | 67.6 | 37.1 | 4267 |
| Age |  |  |  |  |  |  |  |
| 0-23 months | 0.6 | 0.0 | 15.5 | 37.1 | 41.3 | 27.2 | 2995 |
| 24.59 months | 9.9 | 1.5 | 32.7 | 41.7 | 80.8 | 50.3 | 4555 |
| Mother's education |  |  |  |  |  |  |  |
| None | 1.3 | 0.0 | 27.2 | 19.5 | 71.4 | 34.4 | 2455 |
| Primary | 2.7 | 0.0 | 25.1 | 35.1 | 67.2 | 38.9 | 1628 |
| Middle/JSS | 6.8 | 0.5 | 25.3 | 51.0 | 62.4 | 46.0 | 2578 |
| Secondary + | 24.3 | 6.1 | 25.4 | 72.0 | 51.9 | 49.8 | 889 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 0.6 | 0.0 | 25.8 | 13.2 | 72.6 | 30.9 | 1730 |
| Second | 1.0 | 0.0 | 29.4 | 28.2 | 67.9 | 38.7 | 1551 |
| Middle | 3.3 | 0.3 | 24.4 | 38.0 | 64.8 | 39.8 | 1559 |
| Fourth | 6.6 | 0.6 | 25.7 | 55.8 | 63.0 | 49.0 | 1397 |
| Richest | 22.7 | 4.0 | 23.6 | 73.9 | 54.6 | 50.9 | 1313 |
| Total | 6.2 | 0.9 | 25.9 | 39.8 | 65.1 | 41.1 | 7550 |
| [1] MIICS indicator 6.3 |  |  |  |  |  |  |  |

${ }^{\text {[1] MICS }}$ Indicator 6.3
[2] MICS indicator 6.4

Figure CD.2: Types of toys owned by children by region, Ghana, 2011


Leaving children alone or in the presence of other young children is known to increase the risk of accidents. In MICS4, two questions were asked to find out whether children aged 0-59 months were left alone during the week preceding the interview, and whether children were left in the care of other children under 10 years of age.

Table CD. 4 shows that 9 percent of children aged 0-59 months were left in the care of other children younger than 10 years of age, while 16 percent were left alone during the week preceding the interview. Combining the two care indicators, the results show that 1 out of 5 children ( $21 \%$ ) were left with inadequate care during the week preceding the survey, either by being left alone or in the care of another child younger than 10 years of age. No differences were observed by the sex of the child; while little variations were observed by residence - 18 percent of children were left with inadequate care in urban areas the week preceding the survey, compared to 22 percent of children living in rural areas. Also, inadequate care was less prevalent among children whose mothers had secondary or higher education (16\%), as opposed to children whose mothers had no education (27\%). Older children 24-59 months were more likely to be left with inadequate care (26\%), than those aged 0-23 months (12\%). Significant regional differentials exist in respect of children left with inadequate care the week preceding the survey. Upper West region $(36 \%)$ recorded the highest proportion while Eastern region had the lowest proportion (10\%). Furthermore, children from the richest households were less likely (15\%) to be left with inadequate care than those from the poorest households (27\%).

| Percentage of children under age 5 left alone or left in the care of other children under the age of 10 years for more than one hour at least once during the past week, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Percentage of children under age 5 |  |  |  |
| Background Characteristics | Left alone in the past week | Left in the care of another child younger than 10 years of age in the past week | Left with inadequate care in the past week | Number of children under age 5 |
| Sex |  |  |  |  |
| Male | 15.9 | 8.5 | 20.6 | 3757 |
| Female | 16.2 | 8.6 | 20.7 | 3793 |
| Region |  |  |  |  |
| Western | 18.3 | 6.5 | 20.8 | 758 |
| Central | 17.7 | 9.9 | 22.4 | 740 |
| Greater Accra | 15.8 | 3.4 | 17.6 | 1142 |
| Volta | 10.3 | 7.1 | 13.9 | 601 |
| Eastern | 7.2 | 4.3 | 9.9 | 827 |
| Ashanti | 19.2 | 8.1 | 22.6 | 1411 |
| Brong Ahafo | 17.2 | 5.1 | 20.2 | 671 |
| Northern | 19.0 | 15.7 | 28.7 | 852 |
| Upper East | 16.0 | 16.8 | 27.6 | 325 |
| Upper West | 18.4 | 30.0 | 36.2 | 223 |
| Residence |  |  |  |  |
| Urban | 15.1 | 6.1 | 18.4 | 3283 |
| Rural | 16.8 | 10.4 | 22.4 | 4267 |
| Age |  |  |  |  |
| 0-23 | 9.5 | 4.8 | 12.2 | 2995 |
| 24-59 | 20.4 | 11.0 | 26.2 | 4555 |
| Mother's education |  |  |  |  |
| None | 17.6 | 12.5 | 24.8 | 2455 |
| Primary | 17.2 | 8.5 | 20.8 | 1628 |
| Middle/SSS | 14.3 | 6.4 | 18.0 | 2578 |
| Secondary + | 15.0 | 4.0 | 16.4 | 889 |
| Wealth index quintile |  |  |  |  |
| Poorest | 17.5 | 15.4 | 26.5 | 1730 |
| Second | 16.7 | 8.4 | 21.0 | 1551 |
| Middle | 16.6 | 8.3 | 21.3 | 1559 |
| Fourth | 15.4 | 5.9 | 17.8 | 1397 |
| Richest | 13.7 | 2.7 | 14.8 | 1313 |
| Total | 16.1 | 8.5 | 20.7 | 7550 |
| [1] MIICS indicator 6.5 |  |  |  |  |

Early Childhood Development
Early child development is defined as an orderly, predictable process along a continuous path, in which a child learns to handle more complicated levels of moving, thinking, speaking, feeling and relating to others. Physical growth, literacy and numeracy skills, socio-emotional development and readiness to learn are vital domains of a child's overall development, which is a basis for overall human development.

A 10-item module that has been developed for the MICS programme was used to calculate the Early Child Development Index (ECDI). The indicator is based on some benchmarks that children would be expected to have if they are developing. The primary purpose of the ECDI is to inform public policy regarding the developmental status of children in Ghana.

Each of the 10 items is used in one of the four domains to determine if children are developmentally on track in that domain. The domains in question are:

- Literacy-numeracy: Children are identified as being developmentally on track based on whether they can identify, name at least ten letters of the alphabet, whether they can read at least four simple, popular words, and whether they know the name and recognize the symbols of all numbers from 1 to 10 . If at least two of these are true, then the child is considered developmentally on track.
- Physical: If the child can pick up a small object with two fingers, like a stick or a rock from the ground and/or the mother/caretaker does not indicate that the child is sometimes too sick to play, then the child is regarded as being developmentally on track in the physical domain.
- In the social-emotional domain, children are considered to be developmentally on track if two of the following are true: If the child gets along well with other children, if the child does not kick, bite, or hit other children and if the child does not get distracted easily.
- Learning: If the child follows simple directions on how to do something correctly and/or when given something to do, is able to do it independently, then the child is considered to be developmentally on track in the learning domain.

ECDI is then calculated as the percentage of children who are developmentally on track in at least three of these four domains.

In Ghana, 74 percent of children aged 36-59 months are developmentally on track (Table CD.5). Urban-rural and regional differentials are observed in this indicator - 78 percent in urban areas, and 70 percent in rural areas. The regional distribution shows that Western ( $88 \%$ ) has the highest ECDI, while the lowest is Eastern (55\%). ECDI is lower among boys (70\%) than girls (78\%). As expected, ECDI is much higher in the older age group 48-59 months (80\%), compared to $68 \%$ among the $36-47$ months age group, since children acquire more skills with increasing age.

Higher ECDI is seen in children attending pre-school (79\%) compared to 62 percent for those who are not attending preschool. Children living in the poorest households have lower ECDI (69\%) than children living in the richest households (84\%).

The analysis of the four domains of child development shows that 97 percent of children aged $36-59$ months are developmentally on track in the physical domain, but much less on track in learning (89\%), social-emotional (73\%) and literacy-numeracy ( $28 \%$ ) domains. In each individual domain, a higher score is associated with children living in the richest households, children attending preschool, older children, children whose mothers have secondary or higher education, children living in urban areas, and for female children.

| Table CD.5: Early child development index <br> Percentage of children age 36-59 months who are developmentally on track in literacy-numeracy, physical, social-emotional, and learning domains, and the early child development index score, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of children age $36-59$ months who are developmentally on track for indicated domains |  |  |  | Early child development index score | $\begin{aligned} & \text { Number of } \\ & \text { children age } \\ & 36-59 \text { months } \end{aligned}$ |
|  | Literacynumeracy | Physical | Social- <br> Emotional | Learning |  |  |
| Sex |  |  |  |  |  |  |
| Male | 25.2 | 96.9 | 68.6 | 89.7 | 69.9 | 1524 |
| Female | 31.5 | 97.6 | 77.4 | 88.2 | 77.6 | 1478 |
| Region |  |  |  |  |  |  |
| Western | 29.8 | 97.3 | 88.2 | 96.4 | 87.8 | 310 |
| Central | 38.6 | 97.1 | 71.1 | 92.0 | 74.5 | 286 |
| Greater Accra | 46.6 | 99.4 | 67.6 | 91.0 | 79.2 | 469 |
| Volta | 13.6 | 98.0 | 52.5 | 90.9 | 55.9 | 263 |
| Eastern | 29.1 | 91.1 | 66.4 | 63.7 | 55.1 | 307 |
| Ashanti | 27.6 | 98.2 | 73.7 | 92.6 | 75.9 | 516 |
| Brong Ahafo | 22.3 | 97.9 | 76.8 | 96.3 | 81.3 | 260 |
| Northern | 17.5 | 97.8 | 83.4 | 87.5 | 76.4 | 360 |
| Upper East | 15.9 | 96.9 | 80.9 | 88.1 | 72.4 | 140 |
| Upper West | 18.5 | 96.0 | 65.1 | 89.8 | 66.5 | 89 |
| Residence |  |  |  |  |  |  |
| Urban | 40.6 | 98.0 | 71.3 | 90.6 | 78.2 | 1304 |
| Rural | 18.8 | 96.7 | 74.1 | 87.8 | 70.3 | 1698 |
| Age |  |  |  |  |  |  |
| 36-47 months | 17.8 | 96.6 | 70.8 | 87.8 | 68.3 | 1576 |
| $48-59$ months | 39.9 | 98.0 | 75.2 | 90.3 | 79.7 | 1426 |
| Preschool attendance |  |  |  |  |  |  |
| Attending preschool | 39.6 | 97.5 | 74.7 | 90.4 | 79.2 | 2048 |
| Not attending preschool | 3.9 | 96.7 | 69.1 | 86.0 | 62.0 | 954 |
| Mother's education |  |  |  |  |  |  |
| None | 12.2 | 97.0 | 74.5 | 86.8 | 68.4 | 1100 |
| Primary | 24.5 | 97.6 | 69.9 | 91.1 | 73.6 | 621 |
| Middle/SSS | 37.3 | 96.8 | 71.8 | 89.0 | 75.8 | 971 |
| Secondary + | 64.8 | 99.1 | 76.8 | 92.6 | 86.3 | 310 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 7.6 | 96.6 | 76.1 | 87.5 | 68.5 | 719 |
| Second | 20.0 | 98.4 | 73.0 | 90.5 | 71.6 | 634 |
| Middle | 27.9 | 96.5 | 70.6 | 86.1 | 70.4 | 622 |
| Fourth | 39.2 | 96.3 | 71.6 | 89.7 | 77.4 | 529 |
| Richest | 57.8 | 98.8 | 72.5 | 92.0 | 84.3 | 498 |
| Total | 28.3 | 97.3 | 72.9 | 89.0 | 73.7 | 3002 |
| [1] MICS indicator 6.6 |  |  |  |  |  |  |

The Table CD. 6 presents the results on early child development by domain and by age. Four domains were taken into consideration: Language-cognitive, Physical, Approaches to learning and Socio-emotional. Each of these four items was examined on different topics and by group (in months).
For all four domains, the lowest development index scores are observed in the Language-cognitive, especially for the item called "Can read at least four simple popular words". This is not surprising since table CD. 5 has already shown the same pattern in the literacy-numeracy domain, with only 28 percent of children considered developmentally on track. Furthermore, the development index scores increases (doubles) with age in all three items considered in the Language-cognitive domain.

Regarding the other three domains (Physical, Approaches to learning, Socio-emotional), age has an impact on the development index score in many of the 7 items considered. Overall, the highest development indexes are recorded in for the following items:

- Can pick up a small object with two fingers (92\%), in the Physical domain;
- Gets along well with other children (95\%), in the Approaches to learning domain.

| Table CD.6: Early child development items <br> Percentage and weighted number of children age 36-59 months by items of early child development used for construction of early child, development index score, by age, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics |  | Children Age: |  | Children age 36-59 months |
|  |  | 36-47 months | 48-59 months |  |
| Languagecognitive | Can identify or name at least 10 letters of the alphabet | 19.8 | 42.0 | 30.4 |
|  | Can read at least four simple popular words | 7.5 | 15.6 | 11.3 |
|  | Knows the names and recognizes the symbols of all numbers from 1 to 10 | 24.6 | 49.5 | 36.4 |
| Physical | Can pick up a small object with two fingers | 89.4 | 93.9 | 91.5 |
|  | Is not sometimes too sick to play | 75.8 | 76.6 | 76.2 |
|  | Follow simple directions on how to do something correctly | 82.8 | 84.7 | 83.7 |
| Approaches to learning | When given something to do, is able to do it independently | 68.3 | 75.1 | 71.5 |
|  | Gets along well with other children | 94.6 | 96.3 | 95.4 |
| Socio-emotional | does not kick, bite or hit other children or adults | 43.3 | 46.2 | 44.7 |
|  | Does not get distracted easily | 60.3 | 65.9 | 63.0 |
|  |  | 1576 | 1426 | 3002 |

School Readiness
The concept of school readiness, generally, refers to the child's attainment of a certain set of emotional, behavioral, and cognitive skills needed to learn, work and function successfully in school. Young children have a wide range of needs and require support in preparing them for the standards of learning they will face in primary school. Attendance to pre-school education in an organised learning or child education programme is important for the readiness of children to school.

Table ED. 2 shows the proportion of children in the first grade of primary school who attended pre-school the previous year. Overall, 80 percent of children who are currently attending the first grade of primary school attended preschool the previous year. The proportion of first grade primary school attendants among females (81\%) is slightly higher than males ( $79 \%$ ). Little variations are observed by area of residence for children in first grade of primary school that attended pre-school the previous year ( $81 \%$ for urban, and $80 \%$ for rural). Large regional differentials are observed. For instance, the proportion of children in the first grade of primary school that attended pre-school the previous year in the Volta region (91\%) is much higher than their counterparts in Ashanti region (60\%). The results also reveal that children attending first grade of primary school who attended pre-school the previous year and whose mothers have no education, or have primary education is slightly higher than those whose mothers have middle/JSS and secondary or higher education.

| Table ED.2: School readiness |  |  |
| :---: | :---: | :---: |
| Percentage of children attending first grade of primary school who attended pre-school the previous year, Ghana, 2011 |  |  |
|  | Percentage of children |  |
|  | attending first grade who |  |
| Background | attended preschool in previous | Number of children attending |
| Characteristics | year [1] | first grade of primary school |
| Sex |  |  |
| Male | 79.4 | 612 |
| Female | 81.1 | 608 |
| Region |  |  |
| Western | 81.6 | 132 |
| Central | 87.1 | 97 |
| Greater Accra | 84.1 | 169 |
| Volta | 91.4 | 104 |
| Eastern | 72.2 | 135 |
| Ashanti | 59.7 | 127 |
| Brong Ahafo | 87.7 | 161 |
| Northern | 89.0 | 143 |
| Upper East | 74.5 | 97 |
| Upper West | 65.4 | 55 |
| Residence |  |  |
| Urban | 81.4 | 491 |
| Rural | 79.5 | 729 |
| Mother's education |  |  |
| None | 82.5 | 589 |
| Primary | 83.0 | 260 |
| Middle/JSS | 77.7 | 320 |
| Secondary + | (77.9) | 38 |
| Mother not in household | * |  |
| Wealth index quintile |  |  |
| Poorest | 80.7 | 363 |
| Second | 79.2 | 265 |
| Middle | 80.2 | 252 |
| Fourth | 76.0 | 193 |
| Richest | 86.9 | 146 |
| Total | 80.3 | 1220 |
| [1] MICS indicator 7.2 <br> (*) Figures are based on less than 25 unweighted cases, and have been suppressed. () Figures are based on 25-49 unweighted cases. |  |  |
|  |  |  |

Primary and Secondary School Participation
Universal access to basic education and the achievement of primary education by the world's children are some of the most important goals of the Millennium Development Goals and the World Fit for Children Declaration. Education is a vital pre-requisite for combating poverty, empowering women, protecting children from hazardous and exploitative labour, sexual exploitation, promoting human rights and democracy, protecting the environment, and influencing population growth.

The indicators for primary and secondary school attendance include:

- Net intake rate in primary education.
- Primary school net attendance rate adjusted
- Secondary school net attendance rate adjusted.
- Female to male education ratio (or gender parity index - GPI) in primary and secondary school.
- The indicators of school progression include:
- Children reaching last grade of primary.
- Primary completion rate.
- Transition rate to secondary school.

Of the children who are of primary school entry age (i.e. age 6), 32 percent are attending the first grade of primary school (Table ED.3). There is not much difference between male and female children. However, disparities exist among regions and between urban and rural dwellers. The proportion of children who are of primary school entry age and attending the first grade of primary school is lowest in Central (22\%) and reaches 44 percent among children in Greater Accra. The percentage of children of primary school entry age entering grade 1 in urban areas ( $39 \%$ ) is higher than in rural areas ( $26 \%$ ). A positive association is observed between six year olds entering grade one and socio-economic status. In richest households, the proportion is 43 percent, while it is 24 percent among children living in the poorest households.

| Table ED.3: Primary school entry <br> Percentage of children of primary school entry age entering grade 1 (net intake rate), Ghana, 2011 |  |  |
| :---: | :---: | :---: |
| Background Characteristics | Percentage of children of primary school entry age entering grade 1 [1] | Number of children of primary school entry age |
| Sex |  |  |
| Male | 31.2 | 719 |
| Female | 32.5 | 677 |
| Region |  |  |
| Western | 39.7 | 124 |
| Central | 21.5 | 133 |
| Greater Accra | 44.0 | 217 |
| Volta | 37.7 | 119 |
| Eastern | 24.2 | 141 |
| Ashanti | 25.9 | 235 |
| Brong Ahafo | 31.0 | 154 |
| Northern | 28.4 | 153 |
| Upper East | 35.0 | 74 |
| Upper West | 29.6 | 46 |
| Residence |  |  |
| Urban | 38.8 | 617 |
| Rural | 26.3 | 779 |
| Mother's education |  |  |
| None | 29.2 | 634 |
| Primary | 36.5 | 278 |
| Middle/JSS | 29.3 | 443 |
| Secondary + | (67.1) | 41 |
| Wealth index quintile |  |  |
| Poorest | 24.2 | 320 |
| Second | 24.6 | 335 |
| Middle | 31.7 | 261 |
| Fourth | 41.1 | 257 |
| Richest | 43.0 | 222 |
| Total | 31.8 | 1,396 |
| [1] MICS Indicator 7.3 <br> () Figures are based on $25-49$ unweighted cases. |  |  |

Table ED. 4 provides the percentage of children of primary school age ( 6 to 11 years) who are attending primary or secondary school. ${ }^{33}$ Nearly 3 out of every 4 (73\%) children of primary school age are attending school. However, more than a quarter of the children $(27 \%)$ are out of school or still in the pre-school when they are expected to be participating in school. Generally, there is not much difference between the participation of boys and girls in both urban and rural areas. Net primary school attendance rate in urban areas is 80 percent and 68 percent in rura areas. Regional variations exist with Northern region recording the least net attendance rate ( $59 \%$ ) compared to the highest in Greater Accra (82\%). Net attendance rates are relatively higher for girls compared with boys in all regions, except in Ashanti and Eastern regions where the reverse is the case. Children aged 6-11 years whose mothers have secondary or higher education, and those from the richer households are more likely to attend primary school, compared to their counterparts. The proportion of children of primary school age who are attending primary school is directly related to age - the net attendance rate for children aged 6 years is only 34 percent, while those aged 11 years recorded a net attendance rate of 94 percent.

| Table ED.4: Primary school attendance <br> Percentage of children of primary school age attending primary or secondary school (Net attendance ratio), Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Male |  | Female |  | Total |  |
|  | Net attendance ratio (adjusted) | Number of children | Net attendance ratio (adjusted) | Number of children | Net attendance ratio (adjusted) | Number of children |
| Region |  |  |  |  |  |  |
| Western | 75.7 | 384 | 77.8 | 365 | 76.7 | 749 |
| Central | 70.9 | 400 | 75.6 | 396 | 73.2 | 796 |
| Greater Accra | 77.3 | 526 | 85.5 | 538 | 81.5 | 1064 |
| Volta | 72.9 | 352 | 73.4 | 365 | 73.1 | 717 |
| Eastern | 76.2 | 395 | 73.4 | 460 | 74.7 | 854 |
| Ashanti | 75.2 | 742 | 72.2 | 682 | 73.8 | 1424 |
| Brong Ahafo | 72.3 | 416 | 72.5 | 394 | 72.4 | 810 |
| Northern | 59.3 | 433 | 59.5 | 407 | 59.4 | 841 |
| Upper East | 68.7 | 223 | 74.6 | 196 | 71.5 | 419 |
| Upper West | 62.1 | 141 | 68.4 | 134 | 65.2 | 275 |
| Residence |  |  |  |  |  |  |
| Urban | 78.7 | 1695 | 81.4 | 1773 | 80.1 | 3468 |
| Rural | 67.4 | 2317 | 67.7 | 2164 | 67.5 | 4481 |
| Age at beginning of school year |  |  |  |  |  |  |
| 6 | 33.7 | 719 | 33.9 | 677 | 33.8 | 1396 |
| 7 | 56.6 | 688 | 60.4 | 681 | 58.5 | 1369 |
| 8 | 78.3 | 600 | 80.4 | 650 | 79.4 | 1250 |
| 9 | 85.3 | 660 | 88.2 | 628 | 86.7 | 1288 |
| 10 | 90.8 | 667 | 87.4 | 621 | 89.2 | 1289 |
| 11 | 92.3 | 678 | 95.1 | 680 | 93.7 | 1357 |
| Mother's education |  |  |  |  |  |  |
| None | 65.4 | 1821 | 67.2 | 1745 | 66.3 | 3566 |
| Primary | 74.3 | 796 | 75.4 | 746 | 74.9 | 1541 |
| Middle/JSS | 78.9 | 1269 | 79.2 | 1257 | 79.0 | 2525 |
| Secondary + | 89.3 | 127 | 93.2 | 189 | 91.6 | 316 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 61.0 | 995 | 60.4 | 905 | 60.7 | 1900 |
| Second | 68.1 | 873 | 66.8 | 884 | 67.4 | 1757 |
| Middle | 75.4 | 801 | 75.6 | 769 | 75.5 | 1570 |
| Fourth | 80.1 | 726 | 83.7 | 756 | 81.9 | 1482 |
| Richest | 82.5 | 616 | 89.1 | 623 | 85.8 | 1240 |
| Total | 72.2 | 4012 | 73.8 | 3937 | 73.0 | 7949 |

The secondary school net attendance rate is presented in Table ED.5. ${ }^{34}$ The results show that only 42 percent of children of secondary school age are attending secondary school. Of the remaining 58 percent, some of them are either out of school or attending primary school; 43 percent of the children of secondary school age are attending primary school when they should be attending secondary school while the remaining 15 percent are not attending school at all.

More than half ( $51 \%$ ) of children of secondary school age in urban areas and about one-third (34\%) of their rural counterparts are attending secondary school. Female children of secondary school age (44\%) are more likely than
males (40\%) to attend secondary school. Compared to females (41\%), a relatively higher proportion of male children $(46 \%)$ of secondary school age attends primary school. In the regions, Greater Accra (51\%) recorded the highest proportion, while Northern (25\%) has the least net attendance rate. For both sexes, the secondary school net attendance rate is associated with mother's education level, and household wealth, and children from the richest household and from the most educated women are also less likely to attend primary school education when they should be attending secondary schools.

| Table ED.5: Secondary school attendance Percentage of children of secondary school age attending secondary school or higher (adjusted net attendance ratio), and percentage of children attending primary school, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male |  |  | Female |  |  | Total |  |  |
| Background Characteristics | Net ratio (adjusted) | Percent attending primary school | Number of of | $\begin{array}{r} \mathrm{Net} \\ \text { attendance } \\ \text { ratio } \\ \text { (adjusted) }[1] \end{array}$ | Percent primary school | Number of children | $\begin{array}{r} \text { Net } \\ \text { attendance } \\ \text { ratio } \\ \text { (adjusted) [1] } \end{array}$ | Percent attending primary school | Number children |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 48.7 | 41.5 | 301 | 43.0 | 42.8 | 302 | 45.8 | 42.1 | 603 |
| Central | 39.3 | 48.2 | 363 | 43.9 | 40.9 | 329 | 41.4 | 44.7 | 692 |
| Greater Accra | 50.6 | 35.2 | 412 | 51.6 | 33.5 | 443 | 51.1 | 34.4 | 855 |
| Volta | 39.0 | 48.1 | 295 | 40.1 | 48.3 | 260 | 39.5 | 48.2 | 554 |
| Eastern | 38.4 | 53.6 | 369 | 40.6 | 48.4 | 357 | 39.5 | 51.1 | 726 |
| Ashanti | 46.4 | 40.9 | 567 | 51.8 | 31.4 | 625 | 49.2 | 35.9 | 1192 |
| Brong Ahafo | 41.0 | 48.2 | 340 | 43.2 | 38.0 | 344 | 42.1 | 43.1 | 684 |
| Northern | 22.8 | 43.1 | 338 | 28.0 | 44.1 | 259 | 25.1 | 43.6 | 597 |
| Upper East | 23.5 | 60.9 | 189 | 34.1 | 54.4 | 138 | 28.0 | 58.1 | 327 |
| Upper West | 24.6 | 51.4 | 118 | 31.7 | 50.7 | 95 | 27.8 | 51.1 | 213 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 49.6 | 38.8 | 1441 | 52.5 | 33.3 | 1511 | 51.1 | 36.0 | 2952 |
| Rural | 32.0 | 51.0 | 1850 | 35.3 | 47.1 | 1640 | 33.6 | 49.2 | 3490 |
| Age at beginning of school year |  |  |  |  |  |  |  |  |  |
| 12 | 15.9 | 77.5 | 707 | 17.4 | 75.5 | 651 | 16.6 | 76.6 | 1358 |
| 13 | 27.7 | 65.9 | 630 | 35.5 | 55.8 | 611 | 31.5 | 60.9 | 1241 |
| 14 | 44.4 | 45.2 | 563 | 51.4 | 40.0 | 668 | 48.2 | 42.4 | 1231 |
| 15 | 52.8 | 27.5 | 511 | 53.1 | 26.3 | 415 | 52.9 | 27.0 | 926 |
| 16 | 56.3 | 20.6 | 478 | 62.2 | 12.1 | 413 | 59.0 | 16.7 | 891 |
| 17 | 57.5 | 11.1 | 402 | 56.8 | 4.3 | 394 | 57.1 | 7.7 | 796 |
| Mother's education |  |  |  |  |  |  |  |  |  |
| None | 27.9 | 56.6 | 1377 | 34.6 | 48.9 | 1131 | 31.0 | 53.1 | 2508 |
| Primary | 37.5 | 52.2 | 488 | 39.5 | 49.4 | 542 | 38.6 | 50.7 | 1030 |
| Middle/JSS | 48.9 | 40.5 | 839 | 50.9 | 37.9 | 877 | 50.0 | 39.2 | 1716 |
| Secondary + | 66.8 | 23.0 | 99 | 67.3 | 22.8 | 119 | 67.0 | 22.9 | 219 |
| Not in the household | 53.4 | 22.2 | 470 | 50.0 | 20.9 | 452 | 51.8 | 21.6 | 922 |
| Cannot be determined | (62.7) | (4.0) | 19 | * | * | 30 | 53.9 | 1.6 | 48 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 20.9 | 54.3 | 779 | 22.6 | 53.0 | 584 | 21.6 | 53.7 | 1364 |
| Second | 35.5 | 52.7 | 742 | 37.0 | 46.7 | 666 | 36.2 | 49.8 | 1408 |
| Middle | 44.5 | 44.7 | 709 | 47.0 | 39.1 | 720 | 45.8 | 41.9 | 1429 |
| Fourth | 44.0 | 44.1 | 579 | 51.0 | 35.5 | 621 | 47.6 | 39.7 | 1201 |
| Richest | 64.4 | 23.8 | 481 | 60.8 | 27.3 | 560 | 62.5 | 25.7 | 1041 |
| Total | 39.7 | 45.6 | 3291 | 43.6 | 40.5 | 3152 | 41.6 | 43.1 | 6443 |
| [1] MICS indicator 7.5 <br> (*) Figures are based on less than 25 unweighted cases, and have been suppressed. () Figures are based on 25-49 unweighted cases. |  |  |  |  |  |  |  |  |  |

The percentage of children entering first grade who eventually reach the last grade of primary school is presented in Table ED.6. Of all children starting grade one, the majority of them (95\%) are expected to eventually reach the last grade. It is important to note that this number includes children that repeat grades but eventually move up to reach last grade. Children whose mothers are not with them in their households ( $88 \%$ ) and those in poor households (93\%) are less likely to complete the last grade of primary school. The percentage of children entering first grade of primary school who finally reach grade 6 is about the same for both male and female children ( 95 and 96 percent respectively) and in urban and rural areas ( 97 and 94 percent respectively).

| Table ED.6: Children reaching last grade of primary school <br> Percentage of children entering first grade of primary school who eventually reach the last grade of primary school (Survival rate to last grade of primary school), Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | attendi 1 last year who are in grade 2 this year | Percent attending grade 2 last year who are attending grade 3 this year | attending grade <br> 3 last year who are attending grade 4 this year | attending grade <br> 4 last year who are attending grade 5 this year | attending grade <br> 5 last year who are attending grade 6 this year | Percent who reach grade 6 of those who enter grade 1 [1] |
| Sex |  |  |  |  |  |  |
| Male | 98.6 | 99.4 | 98.5 | 98.8 | 99.7 | 95.2 |
| Female | 99.2 | 99.2 | 98.9 | 98.9 | 99.3 | 95.6 |
| Region |  |  |  |  |  |  |
| Western | 98.7 | 100.0 | 97.4 | 97.7 | 100.0 | 93.9 |
| Central | 98.8 | 99.6 | 99.1 | 99.2 | 99.5 | 96.2 |
| Greater Accra | 100.0 | 98.9 | 96.3 | 100.0 | 100.0 | 95.2 |
| Volta | 97.8 | 97.6 | 98.9 | 95.0 | 100.0 | 89.7 |
| Eastern | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| Ashanti | 99.0 | 100.0 | 100.0 | 98.1 | 99.8 | 96.9 |
| Brong Ahafo | 98.5 | 100.0 | 99.2 | 100.0 | 98.2 | 95.9 |
| Northern | 98.0 | 98.4 | 99.0 | 99.4 | 98.6 | 93.5 |
| Upper East | 99.8 | 98.4 | 99.1 | 99.5 | 98.4 | 95.1 |
| Upper West | 98.9 | 99.2 | 98.6 | 99.6 | 100.0 | 96.4 |
| Residence |  |  |  |  |  |  |
| Urban | 99.0 | 99.5 | 98.5 | 100.0 | 99.9 | 96.8 |
| Rural | 98.9 | 99.2 | 98.9 | 97.8 | 99.2 | 94.2 |
| Mother's education |  |  |  |  |  |  |
| None | 98.7 | 99.7 | 98.6 | 99.9 | 99.1 | 95.9 |
| Primary | 99.2 | 99.1 | 99.9 | 97.1 | 99.7 | 95.1 |
| Middle/SSS | 99.5 | 99.3 | 98.5 | 99.7 | 99.9 | 96.9 |
| Secondary + | 100.0 | 96.8 | 100.0 | 100.0 | 100.0 | 96.8 |
| Mother not in household | 100.0 | 97.6 | 91.9 | 98.1 | 100.0 | 88.0 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 98.3 | 98.3 | 99.3 | 98.1 | 98.9 | 93.1 |
| Second | 99.3 | 99.6 | 98.6 | 97.6 | 99.2 | 94.4 |
| Middle | 99.3 | 99.7 | 98.8 | 98.9 | 100.0 | 96.7 |
| Fourth | 98.7 | 99.9 | 99.9 | 100.0 | 99.8 | 98.3 |
| Richest | 99.3 | 99.0 | 96.5 | 100.0 | 99.9 | 94.8 |
| Total | 98.9 | 99.3 | 98.7 | 98.8 | 99.5 | 95.4 |
| [1] MICS indicator 7.6; MDG indicator 2.2 |  |  |  |  |  |  |

Table ED. 7 shows the primary school completion and transition rates to secondary education. The primary completion rate is the ratio of the total number of students, regardless of age, entering the last grade of primary school for the first time, to the number of children of the primary graduation age at the beginning of the current (or most recent) school year. It is therefore a gross rate, meaning it can exceed $100 \%$. Results of the survey show that the primary school completion rate is 90 percent. The primary school completion rate shows wide differences between males (96\%) and females ( $83 \%$ ), probably due to more overage children among the boys; and also between urban dwellers (92\%) and rural dwellers (88\%). Eastern (117\%) has the highest primary school completion rate, while Northern region has the lowest $(78 \%)$.

Table ED. 7 further shows that 3 out of 4 of the children that completed successfully the last grade of primary school were found to be attending the first grade of secondary school. Only a slight difference is observed between males ( $76 \%$ ) and females ( $74 \%$ ). However, at residence level, children in urban areas ( $78 \%$ ) who successfully completed primary school education are more likely to begin the first grade of secondary school compared to those in rural areas (72\%). Similarly, children in Brong Ahafo are more likely (94\%) than those in Eastern (59\%) to enter first grade of secondary school after completing primary education.

| Table ED.7: Primary school completion and transition to secondary school Primary school completion rates and transition rate to secondary school, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Primary school completion rate [1] | Number of children of primary school completion age | Transition rate to secondary school | Number of children who were in the last grade of primary school the previous year |
| Sex |  |  |  |  |
| Male | 96.4 | 678 | 76.0 | 593 |
| Female | 83.3 | 680 | 73.8 | 496 |
| Region |  |  |  |  |
| Western | 117.1 | 116 | 69.9 | 101 |
| Central | 86.7 | 137 | 69.8 | 104 |
| Greater Accra | 80.2 | 209 | 85.8 | 175 |
| Volta | 112.8 | 116 | 87.0 | 91 |
| Eastern | 88.3 | 147 | 59.3 | 126 |
| Ashanti | 83.9 | 250 | 62.2 | 210 |
| Brong Ahafo | 84.3 | 154 | 93.9 | 126 |
| Northern | 77.6 | 121 | 81.6 | 78 |
| Upper East | 106.1 | 65 | 72.3 | 49 |
| Upper West | 82.2 | 44) | 73.8 | 29 |
| Residence |  |  |  |  |
| Urban | 92.1 | 633 | 78.2 | 551 |
| Rural | 87.9 | 725 | 71.7 | 538 |
| Mother's education |  |  |  |  |
| None | 80.7 | 550 | 75.3 | 341 |
| Primary | 81.5 | 287 | 77.6 | 171 |
| Middle/SSS | 79.1 | 447 | 75.4 | 340 |
| Secondary + | 82.5 | 73 | (80.3) | 42 |
| Mother not in household |  | 0 | 69.9 | 132 |
| Wealth index quintile |  |  |  |  |
| Poorest | 85.9 | 300 | 77.7 | 181 |
| Second | 98.4 | 282 | 78.3 | 219 |
| Middle | 94.3 | 263 | 69.5 | 254 |
| Fourth | 90.5 | 254 | 73.9 | 233 |
| Richest | 80.0 | 259 | 77.3 | 203 |
| Total | 89.9 | 1357 | 75.0 | 1090 |
| [1] MICS indicator 7.7 <br> [2] MICS indicator 7.8 <br> (0) Figures are based on 25-49 unweighted cases. |  |  |  |  |

The ratio of girls to boys attending primary and secondary education is provided in Table ED.8. These ratios are better known as the Gender Parity Index (GPI). It is worthy to mention that the ratios included in the table are obtained from net attendance rates rather than gross attendance ratios. The latter provides an erroneous description of the GPI mainly because in most of the cases, the majority of over-aged children attending primary education tend to be boys. Table ED. 8 indicates that gender parity for primary school is about 1.00 , meaning that there is no difference between primary school attendance of boys and girls while the GPI for secondary school is slightly greater than 1 (1.10), meaning that girls school attendance is higher than boys attendance. There is a slight disadvantage of girls in primary education in Eastern and Ashanti regions (with a ratio of 0.96 ). At the secondary school level, girls are disadvantaged in Western region where the GPI is 0.88 . However, a rapid increase of GPI at the secondary school level was observed for Northern region compared to MICS 2006 and DHS 2008. This rapid increase in the GPI should be investigated in the further analysis of the data.

| Table ED.8: Education gender parity <br> Ratio of adjusted net attendance ratios of girls to boys, in primary and secondary school, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Primary school adjusted net attendance ratio (NAR), girls | $\begin{array}{r} \text { Primary } \\ \text { shool } \\ \text { adjusted net } \\ \text { artendance } \\ \text { ratio (NAR), } \\ \text { boys } \end{array}$ | Gender parity index (GPI) for primary school adjusted NAR | Secondary school adjusted net attendance ratio (NAR), girls | Secondary school adjusted net attendance ratio (NAR), boys | Gender parity index (GPI) for secondary school adjusted NAR |
| Region |  |  |  |  |  |  |
| Western | 77.8 | 75.7 | 1.03 | 43.0 | 48.7 | 0.88 |
| Central | 75.6 | 70.9 | 1.07 | 43.9 | 39.3 | 1.12 |
| Greater Accra | 85.5 | 77.3 | 1.11 | 51.6 | 50.6 | 1.02 |
| Volta | 73.4 | 72.9 | 1.01 | 40.1 | 39.0 | 1.03 |
| Eastern | 73.4 | 76.2 | 0.96 | 40.6 | 38.4 | 1.06 |
| Ashanti | 72.2 | 75.2 | 0.96 | 51.8 | 46.4 | 1.12 |
| Brong Ahafo | 72.5 | 72.3 | 1.00 | 43.2 | 41.0 | 1.05 |
| Northern | 59.5 | 59.3 | 1.00 | 28.0 | 22.8 | 1.23 |
| Upper East | 74.6 | 68.7 | 1.08 | 34.1 | 23.5 | 1.45 |
| Upper West | 68.4 | 62.1 | 1.10 | 31.7 | 24.6 | 1.29 |
| Residence |  |  |  |  |  |  |
| Urban | 81.4 | 78.7 | 1.03 | 52.5 | 49.6 | 1.06 |
| Rural | 67.7 | 67.4 | 1.00 | 35.3 | 32.0 | 1.10 |
| Mother's education |  |  |  |  |  |  |
| None | 67.2 | 65.4 | 1.03 | 34.6 | 27.9 | 1.24 |
| Primary | 75.4 | 74.3 | 1.01 | 39.5 | 37.5 | 1.05 |
| Middle/JSS | 79.2 | 78.9 | 1.00 | 50.9 | 48.9 | 1.04 |
| Secondary + | 93.2 | 89.3 | 1.04 | 67.3 | 66.8 | 1.01 |
| Not in the household |  |  |  | 50.0 | 53.4 | 0.94 |
| Cannot be determined |  |  |  | * | (62.7) |  |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 60.4 | 61.0 | 0.99 | 22.6 | 20.9 | 1.08 |
| Second | 66.8 | 68.1 | 0.98 | 37.0 | 35.5 | 1.04 |
| Middle | 75.6 | 75.4 | 1.00 | 47.0 | 44.5 | 1.05 |
| Fourth | 83.7 | 80.1 | 1.04 | 51.0 | 44.0 | 1.16 |
| Richest | 89.1 | 82.5 | 1.08 | 60.8 | 64.4 | 0.94 |
| Total | 73.8 | 72.2 | 1.02 | 43.6 | 39.7 | 1.10 |
| [1] MICS indicator 7.9; MDG indicator 3.1 <br> [2] MICS indicator 7.10; MDG indicator 3.1 <br> (*) $^{*}$ Figures are based on less than 25 unweighted cases, and have been suppressed. () Figures are based on $25-49$ unweighted cases. |  |  |  |  |  |  |

Tables ED. 9 and ED. 9 M present the educational attainment of the female and male household population respectively. They show that the proportion of women with no education is 23 percent compared to 13 percent for men. Women with secondary education are 34 percent while that for men it is 41 percent. Overall, nearly 50 percent of men and 39 percent of women have secondary or higher education.

| Age-group | Table ED.9: Educational attainment of household population |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female |  |  |  |  |  |  |  |  |  |
|  | None |  | Pre-School |  | Primary |  | Secondary |  | Higher |  |
|  | Number | Percent |
| 0-4 | 278 | 8.5 | 1,230 | 37.7 | 1,750 | 53.7 | 4 | 0.1 | 0 | 0.0 |
| 5-9 | 121 | 3.7 | 54 | 1.7 | 2,355 | 72.3 | 728 | 22.3 | 0 | 0.0 |
| 10-14 | 84 | 4.5 | 5 | 0.3 | 369 | 19.8 | 1394 | 74.9 | 9 | 0.5 |
| 15-19 | 199 | 12.3 | 3 | 0.2 | 229 | 14.1 | 1013 | 62.4 | 181 | 11.2 |
| 20-24 | 313 | 18.3 | 2 | 0.1 | 325 | 19.0 | 798 | 46.8 | 268 | 15.7 |
| 25-29 | 395 | 25.1 | 2 | 0.1 | 316 | 20.1 | 729 | 46.3 | 131 | 8.3 |
| 30-34 | 442 | 32.2 | 2 | 0.2 | 313 | 22.8 | 518 | 37.8 | 96 | 7.0 |
| 35-39 | 376 | 32.0 | 4 | 0.3 | 219 | 18.7 | 500 | 42.6 | 74 | 6.3 |
| 40-44 | 339 | 34.2 | 1 | 0.1 | 190 | 19.0 | 395 | 39.6 | 73 | 7.3 |
| 45-49 | 554 | 46.8 | 1 | 0.1 | 155 | 13.1 | 419 | 35.4 | 55 | 4.7 |
| 50-54 | 322 | 46.2 | 2 | 0.2 | 95 | 13.6 | 224 | 32.2 | 54 | 7.8 |
| 55-59 | 291 | 54.5 | 2 | 0.4 | 70 | 13.2 | 139 | 26.1 | 31 | 5.8 |
| 60-64 | 226 | 66.1 | 0 | 0.0 | 42 | 12.2 | 53 | 15.6 | 21 | 6.0 |
| 65-69 | 273 | 76.3 | 0 | 0.0 | 43 | 12.1 | 34 | 9.6 | 7 | 2.1 |
| 70-74 | 234 | 85.4 | 0 | 0.0 | 21 | 7.6 | 18 | 6.5 | 1 | 0.5 |
| 75-79 | 156 | 87.8 | 0 | 0.0 | 11 | 6.1 | 11 | 6.0 | 0 | 0.0 |
| 80-84 | 192 | 94.2 | 0 | 0.0 | 8 | 3.8 | 4 | 2.0 | 0 | 0.0 |
| 85+ | 8 | 100.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
| Total | 4,803 | 23.3 | 1,307 | 6.3 | 6,510 | 31.6 | 6,982 | 33.9 | 1,003 | 4.9 |


| Age-group | Table ED.9M: Educational attainment of household population <br> Percentage distribution of the male population age 5 and over by highest level of education attended, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male |  |  |  |  |  |  |  |  |  |
|  | None |  | Pre-School |  | Primary |  | Secondary |  | Higher |  |
|  | Number | Percent |
| 0-4 | 319 | 9.5 | 1,338 | 39.7 | 1,705 | 50.6 | 7 | 0.2 | 0 | 0.0 |
| 5-9 | 121 | 3.7 | 53 | 1.6 | 2491 | 76.7 | 583 | 17.9 | 2 | 0.1 |
| 10-14 | 107 | 4.7 | 2 | 0.1 | 493 | 21.9 | 1,639 | 72.7 | 14 | 0.6 |
| 15-19 | 103 | 7.0 | 2 | 0.1 | 156 | 10.5 | 1,064 | 72.0 | 152 | 10.3 |
| 20-24 | 141 | 10.4 | 0 | 0.0 | 192 | 14.2 | 730 | 54.0 | 290 | 21.4 |
| 25-29 | 157 | 12.2 | 0 | 0.0 | 161 | 12.5 | 698 | 54.3 | 270 | 21.0 |
| 30-34 | 211 | 16.6 | 0 | 0.0 | 159 | 12.5 | 709 | 55.7 | 194 | 15.2 |
| 35-39 | 201 | 19.4 | 0 | 0.0 | 118 | 11.4 | 590 | 57.1 | 125 | 12.1 |
| 40-44 | 183 | 18.7 | 0 | 0.0 | 93 | 9.5 | 565 | 57.8 | 133 | 13.6 |
| 45-49 | 161 | 20.4 | 0 | 0.0 | 69 | 8.7 | 429 | 54.5 | 129 | 16.4 |
| 50-54 | 146 | 24.9 | 0 | 0.1 | 44 | 7.5 | 274 | 46.7 | 122 | 20.8 |
| 55-59 | 181 | 34.4 | 0 | 0.0 | 46 | 8.8 | 221 | 42.1 | 77 | 14.7 |
| 60-64 | 141 | 44.6 | 0 | 0.0 | 28 | 8.8 | 107 | 33.6 | 41 | 13.0 |
| 65-69 | 133 | 41.2 | 0 | 0.0 | 29 | 9.0 | 136 | 42.2 | 25 | 7.7 |
| 70-74 | 111 | 53.5 | 0 | 0.0 | 17 | 8.1 | 67 | 32.4 | 12 | 6.0 |
| 75-79 | 61 | 66.4 | 0 | 0.0 | 7 | 7.4 | 20 | 21.3 | 4 | 4.8 |
| 80-84 | 100 | 76.9 | 0 | 0.0 | 10 | 7.5 | 20 | 15.3 | 0 | 0.2 |
| 85+ | 6 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
| Total | 2,583 | 13.4 | 1,396 | 7.3 | 5,816 | 30.2 | 7,859 | 40.8 | 1,592 | 8.3 |

School attendance, regardless of the level, of the population aged 5 to 24 is presented by gender and residence in Table ED.10. Over 90 percent of both male and female household members aged 5-14 and residing in urban areas are attending school. Their counterparts in rural areas recorded relatively lower proportions. It is important to note that Table ED. 10 include children attending pre-school. It appears clearly that regardless of gender and residence, school attendance increases gradually from age 5 to 11 years and then at age 12 years, which corresponds to the secondary entry school age, it decreases gradually. There is also a sharp drop at age 15, especially in urban areas.

| Table ED.10: School attendance <br> Percentage of household members age 5-24 years attending school, by residence and sex, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristices | Urban |  |  |  | Rural |  |  |  |
|  | Male |  | Female |  | Male |  | Female |  |
|  | Percentage attending | Number of household members |
| Age at beginning of school year |  |  |  |  |  |  |  |  |
| 5 | 94.8 | 298 | 91.8 | 275 | 72.2 | 407 | 77.3 | 356 |
| 6 | 93.5 | 321 | 92.6 | 296 | 85.6 | 398 | 85.5 | 381 |
| 7 | 95.5 | 297 | 97.5 | 272 | 86.8 | 392 | 88.8 | 409 |
| 8 | 97.7 | 230 | 95.9 | 287 | 91.5 | 370 | 90.3 | 363 |
| 9 | 95.2 | 285 | 98.9 | 278 | 91.3 | 374 | 90.7 | 350 |
| 10 | 97.4 | 281 | 98.3 | 288 | 91.2 | 386 | 89.6 | 333 |
| 11 | 99.3 | 281 | 97.6 | 351 | 91.8 | 396 | 94.8 | 329 |
| 12 | 99.6 | 325 | 93.8 | 286 | 88.8 | 382 | 93.3 | 364 |
| 13 | 98.3 | 267 | 94.7 | 311 | 90.3 | 363 | 87.7 | 300 |
| 14 | 95.3 | 243 | 93.4 | 312 | 86.9 | 320 | 89.6 | 356 |
| 15 | 80.3 | 222 | 80.2 | 197 | 80.9 | 289 | 78.6 | 219 |
| 16 | 74.8 | 199 | 74.4 | 202 | 78.5 | 278 | 74.2 | 211 |
| 17 | 73.2 | 185 | 67.5 | 204 | 64.8 | 218 | 54.3 | 190 |
| 18 | 68.9 | 227 | 48.9 | 184 | 59.1 | 258 | 46.4 | 145 |
| 19 | 53.9 | 158 | 31.3 | 155 | 46.1 | 201 | 24.0 | 140 |
| 20 | 43.9 | 175 | 21.1 | 185 | 43.2 | 185 | 17.4 | 138 |
| 21 | 34.8 | 173 | 20.4 | 191 | 22.0 | 130 | 12.0 | 125 |
| 22 | 21.8 | 181 | 16.4 | 183 | 16.3 | 120 | 5.0 | 146 |
| 23 | 19.8 | 142 | 8.5 | 182 | 18.2 | 104 | 2.7 | 136 |
| 24 | 16.6 | 186 | 6.6 | 206 | 10.6 | 91 | 6.3 | 147 |

Table ED. 11 presents information on primary school gross attendance ratios (GAR). The gross attendance ratio indicates school attendance among the population aged $5-24$ years, and is expressed as a percentage of the schoolage population for that level of schooling. Generally, the GAR is nearly always higher than the Net Attendance Rate (NAR) for the same level, because the GAR includes participation by the population who are older or younger than the official age range for that level. The GAR can exceed 100 if there is sizeable over-age or under-age participation at that level of schooling.

Overall, the male GAR (152\%) exceeds the female GAR (146\%) in primary school. The GAR is also higher in urban areas ( $158 \%$ against $141 \%$ in rural areas) and, at the regional level, the highest GAR is recorded in the Greater Accra region $(153 \%)$ while the lowest is in Northern (114\%). Also, the GAR increases with the mother's educational level.

Table ED.11: Gross attendance ratios: Primary school

| Table ED.11: Gross attendance ratios: Primary school <br> Ratio and weighted number of the number of children attending primary school, to the number of children of primary school age, ratio expressed as a percentage (Gross attendance ratio),Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Primary school gross attendance ratio (GAR), girls | Weighted number of girls | Primary school gross attendance ratio (GAR), boys | Weighted number of boys | Primary school gross attendance ratio (GAR), Total | Weighted number total |
| Region |  |  |  |  |  |  |
| Western | 149.0 | 365 | 155.0 | 384 | 152.1 | 749 |
| Central | 148.9 | 396 | 159.3 | 400 | 154.1 | 796 |
| Greater Accra | 152.7 | 538 | 148.9 | 526 | 150.8 | 1064 |
| Volta | 141.8 | 365 | 165.4 | 352 | 153.4 | 717 |
| Eastern | 149.3 | 460 | 170.3 | 395 | 159.0 | 854 |
| Ashanti | 151.6 | 682 | 149.5 | 742 | 150.5 | 1424 |
| Brong Ahafo | 151.1 | 394 | 154.2 | 416 | 152.7 | 810 |
| Northern | 114.2 | 407 | 125.6 | 433 | 120.1 | 841 |
| Upper East | 147.6 | 196 | 156.8 | 223 | 152.5 | 419 |
| Upper West | 137.9 | 134 | 141.3 | 141 | 139.6 | 275 |
| Area |  |  |  |  |  |  |
| Urban | 157.0 | 1773 | 159.2 | 1695 | 158.1 | 3468 |
| Rural | 136.1 | 2164 | 147.4 | 2317 | 141.9 | 4481 |
| Mother's education |  |  |  |  |  |  |
| None | 122.5 | 1745 | 130.7 | 1821 | 126.6 | 3566 |
| Primary | 139.2 | 746 | 129.6 | 796 | 134.3 | 1541 |
| Middle/JSS | 139.8 | 1257 | 136.7 | 1269 | 138.2 | 2525 |
| Secondary + | 147.7 | 189 | 152.7 | 127 | 149.7 | 316 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 119.2 | 905 | 135.7 | 995 | 127.8 | 1900 |
| Second | 135.9 | 884 | 156.8 | 873 | 146.3 | 1757 |
| Middle | 160.8 | 769 | 165.2 | 801 | 163.1 | 1570 |
| Fourth | 156.7 | 756 | 159.2 | 726 | 157.9 | 1482 |
| Richest | 164.7 | 623 | 148.5 | 616 | 156.7 | 1240 |
| Total | 145.5 | 3937 | 152.4 | 4012 | 149.0 | 7949 |

The secondary school Gross Attendance Ratios are presented in Table ED.12. At the national level, the GAR is 59\%, higher for boys (62\%) than for girls (55\%). As shown in this table, the GAR is higher (72\%) in urban areas compared to 47 percent in the rural areas, and increases with mother's educational level. At the regional level, Greater Accra presents the highest ratio ( $72 \%$ ) and the Northern region, the lowest ( $40 \%$ ). Also, the Gross Attendance Ratios increase with mother's educational level as well as the wealth index quintiles.

| Table ED.12: Gross attendance ratios: Secondary school <br> Ratio and weighted number of the number of children attending secondary school, to the number of children of secondary school age, ratio expressed as a percentage (Gross attendance ratio),Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Secondary school gross attendance ratio (GAR), girls | Weighted number of girls | Secondary school gross attendance ratio (GAR), boys | Weighted number of boys | Secondary school gross attendance ratio (GAR), Total | $\begin{aligned} & \text { Weighted } \\ & \text { number total } \end{aligned}$ |
| Region |  |  |  |  |  |  |
| Western | 53.0 | 302 | 73.6 | 301 | 63.3 | 603 |
| Central | 58.5 | 329 | 60.9 | 363 | 59.7 | 692 |
| Greater Accra | 65.6 | 443 | 78.3 | 412 | 71.7 | 855 |
| Volta | 52.4 | 260 | 69.2 | 295 | 61.4 | 554 |
| Eastern | 49.5 | 357 | 57.5 | 369 | 53.6 | 726 |
| Ashanti | 59.7 | 625 | 67.7 | 567 | 63.5 | 1192 |
| Brong Ahafo | 55.5 | 344 | 62.9 | 340 | 59.2 | 684 |
| Northern | 40.0 | 259 | 40.7 | 338 | 40.4 | 597 |
| Upper East | 52.7 | 138 | 40.7 | 189 | 45.8 | 327 |
| Upper West | 43.7 | 95 | 43.2 | 118 | 43.4 | 213 |
| Residence |  |  |  |  |  |  |
| Urban | 67.7 | 1511 | 77.0 | 1441 | 72.2 | 2952 |
| Rural | 43.6 | 1640 | 50.5 | 1850 | 47.3 | 3490 |
| Mother's education |  |  |  |  |  |  |
| None | 36.4 | 1131 | 29.0 | 1377 | 32.3 | 2508 |
| Primary | 39.8 | 542 | 38.7 | 488 | 39.3 | 1030 |
| Middle/SSS | 52.0 | 877 | 51.6 | 839 | 51.8 | 1716 |
| Secondary + | 82.5 | 119 | 81.5 | 99 | 82.1 | 219 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 31.5 | 584 | 36.2 | 779 | 34.2 | 1364 |
| Second | 45.8 | 666 | 53.6 | 742 | 49.9 | 1408 |
| Middle | 58.1 | 720 | 65.6 | 709 | 61.8 | 1429 |
| Fourth | 62.9 | 621 | 73.3 | 579 | 67.9 | 1201 |
| Richest | 78.6 | 560 | 98.7 | 481 | 87.9 | 1041 |
| Total | 55.1 | 3152 | 62.1 | 3291 | 58.7 | 6443 |
| [1] MICS indicator 7.9; MDG indicator 3.1" [2] MICS indicator 7.10; MDG indicator 3.1" |  |  |  |  |  |  |

Repetition rates are one of key indicators of the quality of the educational system. Across all background characteristics, the Table ED. 13 shows that repetition is more likely to occur in grades 1 and 6 whereas it is very rare in other grades. Overall, the repetitions for these two grades are respectively 11 and 22 percent.

At the regional level, grade 6 is of great concern since the repetition rates are above 19 percent, except in four regions (Greater Accra, Volta, Brong Ahafo and Northern) and for the second quintile. The situation is even worse for the Eastern and Ashanti regions where the repetition rates in grade 6 are close to 40 percent. In terms of repetition at grade 6, Brong Ahafo region recorded the lowest repetition rate (less than 3\%).

| Table ED.13: Grade repetition rate |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background | Grade |  |  |  |  |  |
| Characteristics | 1 | 2 | 3 | 4 | 5 | 6 |
| Sex |  |  |  |  |  |  |
| Male | 11.9 | 1.1 | 0.5 | 1.0 | 0.9 | 22.4 |
| Female | 10.6 | 1.6 | 0.7 | 1.4 | 0.3 | 22.4 |
| Region |  |  |  |  |  |  |
| Western | 12.0 | 0.0 | 0.5 | 0.0 | 0.0 | 27.1 |
| Central | 5.9 | 1.0 | 1.1 | 1.9 | 1.5 | 24.7 |
| Greater Accra | 13.6 | 0.0 | 0.0 | 0.0 | 0.0 | 11.5 |
| Volta | 5.2 | 0.5 | 1.5 | 0.9 | 0.0 | 10.5 |
| Eastern | 13.9 | 1.7 | 0.0 | 0.0 | 2.6 | 39.9 |
| Ashanti | 13.0 | 3.1 | 0.7 | 4.2 | 0.0 | 37.8 |
| Brong Ahafo | 8.1 | 2.8 | 0.0 | 0.8 | 1.0 | 2.9 |
| Northern | 7.2 | 0.8 | 1.8 | 0.4 | 0.7 | 11.4 |
| Upper East | 20.9 | 1.0 | 0.5 | 0.0 | 0.0 | 26.2 |
| Upper West | 15.1 | 1.6 | 0.3 | 0.4 | 0.5 | 22.2 |
| Residence |  |  |  |  |  |  |
| Urban | 10.2 | 1.6 | 0.8 | 0.4 | 0.9 | 19.9 |
| Rural | 12.0 | 1.2 | 0.6 | 1.9 | 0.3 | 25.0 |
| Mother's education |  |  |  |  |  |  |
| None | 10.7 | 0.8 | 0.5 | 0.4 | 0.5 | 21.3 |
| Primary | 9.7 | 2.0 | 0.2 | 2.3 | 0.8 | 21.5 |
| Middle/JSs | 12.1 | 2.0 | 1.3 | 1.8 | 1.0 | 23.4 |
| Secondary + | 12.1 | 0.0 | 0.0 | 0.0 | 0.0 | 19.7 |
| Mother not in household | 15.5 | 0.0 | 0.0 | 0.0 | 0.0 | 25.1 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 13.3 | 1.2 | 0.3 | 0.6 | 0.2 | 19.2 |
| Second | 11.2 | 1.8 | 0.4 | 2.6 | 1.0 | 16.5 |
| Middle | 10.6 | 0.3 | 1.2 | 1.3 | 0.0 | 27.8 |
| Fourth | 10.2 | 1.2 | 0.8 | 1.0 | 0.0 | 27.2 |
| Richest | 10.2 | 2.6 | 0.4 | 0.0 | 2.0 | 19.6 |
| Total | 11.2 | 1.4 | 0.6 | 1.2 | 0.6 | 22.4 |



## Birth Registration

The birth of a baby is celebrated with much fanfare among all communities of the world; it is acclaimed to be the bundle of joy to its parents; above all, it is regarded as a miracle of nature. Yet, this much-celebrated event seems to go unrecorded in a number of communities. This unsettling fact has prompted governments and child right organizations to step up efforts towards ensuring that each child has the right of being registered.

Articles 7 and 8 of the United Nations Convention on the Rights of the Child (the CRC) state that every child has the right to a name and a nationality and the right to protection from being deprived of his or her identity. Birth registration is a fundamental means of securing these rights for children. 'A World Fit for Children,' the outcome document approved at the Special Session of the General Assembly on Children on 10 May 2002, sets 21 specific goals for the next decade which include developing systems to ensure the registration of every child at birth, and fulfiling his or her right to acquire a name and a nationality, in accordance with national laws and relevant international instruments.

In Ghana, the Registration of Births and Deaths Act (301) of 1965 made birth registration compulsory and mandated the Births and Deaths Registry to undertake all registrations. Despite significant progress made by Government with support from stakeholders, including UNICEF, there are still many children, about 35 percent since $2009^{35}$ whose births are not registered every year. Children from poor families and those in rural areas are least likely to have a birth certificate.

The indicator of a country's progress is the percentage of children under 5 years of age whose birth is registered (Table CP.1). Overall, 63 percent of children under-five years in Ghana have been registered. In terms of sex, there are no significant variations in birth registration. There is, however, significant discrepancy between urban and rural registration at 72 and 55 percent respectively. Across the regions, children in the Greater Accra region are more likely to be registered (77\%), followed by children in the Upper West Region (72\%), while those in the Western region are less likely to be registered (49\%).

Children aged 0-11 months are least likely to have their births registered - while birth registration is fully subsidized for children below 12 months, less than half ( $45 \%$ ) of children in this age-group were registered at the time of the survey. This increases to over 65 percent for all other age-groups. This means that some parents are still not taking advantage of free registration, and are registering their children after the age of 12 months.

The percentages of birth registration and availability of birth certificate increase with mother's educational level and wealth index quintiles. For example, 53 percent of children whose mothers have no education have their births registered. This increases to 57 percent among children whose mothers have primary education, to 69 percent for children whose mothers have middle/JSS education, and 83 percent among children whose mothers have secondary or higher education. As for wealth quintiles, the percentage of birth registration increases from 47 percent among the poorest households to 82 percent among the richest households (Figure CP.1).

Also, in total, 58 percent of the children under five have birth certificates, where 32 percent of the certificates were seen, and 26 percent were not seen. For 37 percent of children whose births are not registered, 63 percent of the mothers know how to register the birth.

The Government has committed itself to ensure that at least 75 percent of the children under the age of 1 year in the country and, those under the age of 5 years in rural communities, as well as 70 percent of children under the age of 5 from the poorest wealth quintile are registered by 2016.

Figure CP.1: Percentage of children under age 5 who are registered and percentage with birth certificate, Ghana, 2011


Table CP.1: Birth registration

| Table CP.1: Birth registration <br> Percentage of children under age 5 by whether birth is registered and percentage of children not registered whose |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of $c$ | ren under a mo | e 5 by wheth hers/caretake | her birth is regi ers know how | istered and pe to register birth | rentage of chi | ildren not regis | ered whose |
|  | Children under age 5 whose birth is registered with civil authorities |  |  |  | Number of children | Children under age <br> 5 whose birth is not registered |  |
|  | Has birth certificate |  | No birth certificate | Totalregistered[1] |  | Percent of children whose mother/ caretaker knows how to register birth |  |
| Background Characteristics | Seen | Not seen |  |  |  |  |  |
| Sex |  |  |  |  |  |  |  |
| Male | 32.3 | 25.4 | 5.1 | 62.8 | 3757 | 63.6 | 1398 |
| Female | 31.0 | 26.4 | 4.8 | 62.2 | 3793 | 62.8 | 1434 |
| Region |  |  |  |  |  |  |  |
| Western | 20.2 | 24.8 | 3.9 | 48.9 | 758 | 56.4 | 387 |
| Central | 30.1 | 33.4 | 3.9 | 67.4 | 740 | 69.9 | 242 |
| Greater Accra | 41.4 | 32.0 | 3.3 | 76.7 | 1142 | 80.6 | 266 |
| Volta | 25.9 | 22.0 | 5.7 | 53.6 | 601 | 60.2 | 279 |
| Eastern | 26.7 | 23.9 | 6.2 | 56.8 | 827 | 68.3 | 357 |
| Ashanti | 38.5 | 26.3 | 2.5 | 67.3 | 1411 | 70.3 | 462 |
| Brong Ahafo | 21.3 | 23.6 | 7.8 | 52.6 | 671 | 63.1 | 318 |
| Northern | 31.4 | 20.6 | 9.9 | 61.9 | 852 | 44.5 | 325 |
| Upper East | 37.3 | 17.6 | 3.5 | 58.3 | 325 | 57.3 | 135 |
| Upper West | 39.5 | 28.5 | 4.5 | 72.6 | 223 | 47.9 | 61 |
| Residence |  |  |  |  |  |  |  |
| Urban | 37.9 | 29.6 | 4.5 | 72.0 | 3283 | 76.3 | 920 |
| Rural | 26.8 | 23.0 | 5.3 | 55.2 | 4267 | 56.9 | 1912 |
| Age |  |  |  |  |  |  |  |
| 0-11 | 22.4 | 15.6 | 7.3 | 45.3 | 1543 | 69.8 | 843 |
| 12-23 | 39.4 | 24.1 | 4.1 | 67.5 | 1453 | 58.9 | 472 |
| 24-35 | 33.6 | 30.2 | 4.4 | 68.2 | 1553 | 66.9 | 493 |
| 36-47 | 32.1 | 30.2 | 3.9 | 66.3 | 1576 | 59.0 | 532 |
| 48-59 | 31.0 | 29.5 | 5.0 | 65.5 | 1426 | 56.9 | 492 |
| Mother's education |  |  |  |  |  |  |  |
| None | 25.8 | 21.6 | 5.2 | 52.6 | 2455 | 50.1 | 1163 |
| Primary | 27.3 | 25.8 | 3.8 | 56.9 | 1628 | 63.7 | 701 |
| Middle/JSS | 32.1 | 30.5 | 5.8 | 68.5 | 2578 | 76.2 | 813 |
| Secondary+ | 54.0 | 24.4 | 4.1 | 82.5 | 889 | 91.3 | 155 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 21.6 | 18.7 | 6.8 | 47.1 | 1730 | 47.5 | 916 |
| Second | 27.6 | 22.7 | 3.8 | 54.0 | 1551 | 60.8 | 713 |
| Middle | 29.0 | 31.3 | 5.2 | 65.4 | 1559 | 68.8 | 539 |
| Fourth | 36.8 | 27.8 | 4.7 | 69.3 | 1397 | 78.8 | 429 |
| Richest | 47.3 | 30.8 | 3.9 | 82.0 | 1313 | 90.1 | 236 |
| Total | 31.6 | 25.9 | 5.0 | 62.5 | 7550 | 63.2 | 2832 |
| [1] MICS indicator 8. |  |  |  |  |  |  |  |

Child Discipline
Many children are regularly exposed to physical abuse at school, home and other settings. Some teachers and parents believe that corporal punishment is unavoidable when they need to manage their classrooms or discipline children. They also claim that it can help encourage good behaviour on the part of children, despite the fact that exposing children to physical and psychological punishment is harmful to their development. The use of corporal punishment is strongly rooted in the society and is passed on through generations. Therefore, there is often opposition or reluctance when people try to end the practice and help implement alternative disciplinary strategies.

As stated in 'A World Fit for Children,' "children must be protected against any acts of violence." Also, the United Nations Millennium Declaration, which was adopted by the General Assembly in September 2000, calls for the protection of children against abuse, exploitation and violence. The CRC requires everyone, in article 19, to protect children from "all forms of physical and mental violence" while in the care of parents and others. In addition to these legal documents, the United Nations Secretary-General's Study on Violence Against Children (2006) asks states to prohibit all forms of violent practice, including violence rooted in cultural, economic and social practices.

In Ghana, the Children's Act, 1998 (ACT 560) prohibits correction that is"unreasonable in kind or in degree according to the age, physical and mental condition of the child," while leaving open the possibility of justifiable punishment. ${ }^{36}$ The Ghana Education Code of Disciline for second cycle schools provides for corporal punishment in very rare cases where the head of the school must authorise or administer it. Recently, the National Child-Friendly School Standards was drafted by the Ghana Education Service, which states that schools should be free from any form of abuse, including corporal punishment. However, punishment such as caning and whipping is still widely practiced at home and school. Although the Government is currently coping with the issue, there are no mechanisms in place that can effectively monitor the practice.

In the Ghana MICS4 2011 survey, parents/caretakers of children aged 2-14 years were asked a series of questions on the ways parents tend to discipline their children when they misbehave. Out of these questions, two indicators were used to describe aspects of child discipline: 1) the number of children aged 2-14 years that experience psychological aggression as punishment or minor physical punishment or severe physical punishment; and 2) the number of parents/caretakers of children aged 2-14 years of age that believe that in order to raise their children properly, they need to physically punish them (Table CP.2). These interviews were conducted with adults and one randomly selected child of age 2-14 years living in households.

## The Situation of Child Discipline

In Ghana, 94 percent of children aged 2-14 years were subjected to at least one form of psychological or physical punishment by their parents/caretakers or other household members during the last month before the survey. Fourteen percent were subjected to severe physical punishment, while 73 percent were subjected to any physical punishment. Only 4 percent of the children aged 2-14 years experienced only non-violent discipline. On the other hand, nearly 9 out of 10 children (89\%) experienced some form of psychological aggression.

For male and female children, there is no significant difference in the method of discipline applied (both minor and severe). It is also interesting to note that differentials with respect to many of the background variables were relatively small for both younger and older children within the age range 2-14 years.

Respondents were also assessed on their attitudes towards physical punishment as a necessary aide for proper upbringing of children. The survey results also show that about 50 percent of respondents believe that a child needs to

Istifable if the child by reason of tender age or otherwise is incapable of understanding the purpose of the correction.
be physically punished to bring them up properly, and slight variations are observed by background characteristics, This figure also indicates that some respondents continue to use corporal punishment notwithstanding the fact that they think it is not necessary.

| Table CP.2: Child discipline <br> Percentage of children age 2-14 years according to method of disciplining the child, and, Percentage of respondent who believes that the child needs to be physically punished, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Background Characteristics | Percentage of children age $2-14$ years who experienced: |  |  |  |  | Number of children age 2-14 years | Respondent believes that the child needs to be physically punished | Respondents to the child discipline module |
|  | Only non- <br> violent <br> discipline | Psychological aggression | Physical punishment |  | Any violent discipline method [1] |  |  |  |
|  |  |  | Any | Severe |  |  |  |  |
| Sex |  |  |  |  |  |  |  |  |
| Male | 3.9 | 88.6 | 74.2 | 15.5 | 93.5 | 8450 | 48.9 | 3603 |
| Female | 3.7 | 88.7 | 71.2 | 13.3 | 93.6 | 8463 | 50.5 | 3697 |
| Region |  |  |  |  |  |  |  |  |
| Western | 3.0 | 83.6 | 72.6 | 11.1 | 91.9 | 1552 | 35.4 | 685 |
| Central | 3.9 | 89.7 | 69.5 | 16.0 | 93.4 | 1693 | 55.4 | 743 |
| Greater Accra | 6.2 | 87.0 | 69.1 | 11.9 | 90.4 | 2306 | 40.8 | 1193 |
| Volta | 3.8 | 88.5 | 73.6 | 19.4 | 94.9 | 1503 | 58.4 | 636 |
| Eastern | 1.9 | 94.3 | 79.1 | 12.1 | 97.0 | 1853 | 68.2 | 903 |
| Ashanti | 3.2 | 87.0 | 74.2 | 13.3 | 93.7 | 3111 | 54.6 | 1353 |
| Brong Ahafo | 2.2 | 89.1 | 70.8 | 11.5 | 94.3 | 1646 | 31.6 | 676 |
| Northern | 3.6 | 91.7 | 75.8 | 20.5 | 95.0 | 1830 | 58.8 | 587 |
| Upper East | 5.3 | 91.8 | 69.5 | 19.7 | 93.9 | 859 | 37.5 | 326 |
| Upper West | 8.5 | 82.1 | 67.6 | 9.8 | 87.7 | 561 | 41.5 | 198 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 4.0 | 89.3 | 73.5 | 12.7 | 93.7 | 7435 | 47.9 | 3531 |
| Rural | 3.7 | 88.2 | 72.1 | 15.7 | 93.5 | 9478 | 51.4 | 3770 |
| Age |  |  |  |  |  |  |  |  |
| 2-4 years | 2.6 | 87.3 | 78.2 | 11.2 | 94.0 | 3775 | 48.6 | 1798 |
| $5-9$ years | 2.7 | 91.0 | 79.4 | 16.4 | 95.4 | 6620 | 52.6 | 2673 |
| 10-14 years | 5.6 | 87.2 | 62.9 | 14.1 | 91.4 | 6518 | 47.7 | 2830 |
| Education of household head |  |  |  |  |  |  |  |  |
| None | 3.4 | 90.8 | 72.4 | 17.0 | 94.3 | 5474 | 53.4 | 2080 |
| Primary | 2.8 | 90.7 | 73.3 | 16.9 | 95.3 | 2459 | 50.0 | 1030 |
| Middle/JSS | 3.9 | 86.7 | 74.3 | 13.3 | 93.1 | 6517 | 49.7 | 2923 |
| Secondary + | 5.6 | 87.2 | 68.8 | 9.1 | 91.3 | 2459 | 43.5 | 1264 |
| Missing/DK | * | * | * | * | * | 3 | * | 3 |
| Respondent's education |  |  |  |  |  |  |  |  |
| None | 3.8 | 89.7 | 71.1 | 15.1 | 94.0 | 6734 | 51.1 | 2686 |
| Primary | 2.4 | 91.7 | 76.3 | 17.3 | 95.6 | 3064 | 51.0 | 1299 |
| Secondary + | 4.4 | 86.4 | 72.8 | 12.5 | 92.2 | 7112 | 48.1 | 3312 |
| Missing/DK | * | * | * | * | * | 3 | * | 3 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |
| Poorest | 4.0 | 88.9 | 71.1 | 17.2 | 93.4 | 3983 | 52.1 | 1378 |
| Second | 2.6 | 88.1 | 72.9 | 16.4 | 94.2 | 3619 | 50.3 | 1462 |
| Middle | 4.0 | 90.7 | 71.3 | 14.1 | 94.3 | 3482 | 56.3 | 1530 |
| Total | 3.1 | 88.9 | 77.5 | 13.8 | 93.5 | 3208 | 50.2 | 1518 |
| Richest | 5.7 | 86.3 | 71.1 | 8.5 | 92.0 | 2620 | 39.1 | 1412 |
| Total | 3.8 | 88.7 | 72.7 | 14.4 | 93.6 | 16913 | 49.7 | 7301 |
| [1] MICS indicator 8.5 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. |  |  |  |  |  |  |  |  |

Type of disciplinary methods
Table CP.2A provides details of disciplining methods used by household members on children aged $2-14$ years during the last one month. The results reveal that among family members who used non-violent disciplinary methods to address a behavioural problem, 85 percent explained to the child why the behaviour was wrong and not to be repeated, and 27 percent took away privileges, forbade something the child liked or did not allow the child to leave the house. Also, 86 percent of household members used psychological aggression as a method of discipline by shouting, yelling or screaming at the child. For household members that resorted to physical punishment, 52 percent hit the child on the bottom or elsewhere on the body with something like a belt, hairbrush, stick or other hard object. Family members, who admitted administering severe physical punishment as discipline, mostly hit or slapped the child on the face, head or ears (10\%).

| Table CP.2A: Details of child disciplining methods <br> Percentage of children age 2-14 years by details of disciplining methods used by household members during the last one month, by age, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Age | 2-4 years | $5-9$ years | 10-14 years | 2-14 years |
| Non-violent discipline: |  |  |  |  |
| Took away privileges, forbade something the child liked or did not allow child to leave the house | 25.1 | 28.1 | 26.5 | 26.8 |
| Explained why the child's behaviour was wrong | 80.0 | 86.2 | 87.3 | 85.2 |
| Gave the child something else to do | 14.9 | 20.2 | 21.6 | 19.6 |
| Psychological aggression: |  |  |  |  |
| Shouted, yelled or screamed at the child | 86.1 | 86.2 | 84.5 | 85.5 |
| Ignored/Refused to communicate to | 10.6 | 10.6 | 11.9 | 11.1 |
| Called the child dumb, lazy or another name | 37.9 | 44.5 | 46.4 | 43.8 |
| Physical punishment: |  |  |  |  |
| Shook the child | 23.7 | 22.3 | 17.5 | 20.7 |
| Spanked, hit or slapped the child on the bottom with bare hand | 56.6 | 50.2 | 40.5 | 47.9 |
| Hit the child on the bottom or elsewhere on the body with something like a belt, hairbrush, stick or other hard object | 51.1 | 55.1 | 48.5 | 51.7 |
| Hit or slapped the child on the hand, arm, or leg | 39.0 | 34.7 | 28.2 | 33.2 |
| Severe physical punishment: |  |  |  |  |
| Hit or slapped the child on the face, head or ears | 9.9 | 10.2 | 9.1 | 9.7 |
| Beat the child up, hitting him over and over as hard as one could | 6.0 | 7.6 | 6.1 | 6.7 |

Early Marriage and Polygyny
In many parts of the world, parents encourage the marriage of their daughters while they are still children with the hope that the marriage will benefit them both financially and socially. According to UNICEF's worldwide estimates, over 64 million women aged $20-24$ were married/in union before the age of 18 . Factors that influence child marriage rates include the existence of an adequate legislative framework with an accompanying enforcement mechanism to address cases of child marriage, or the existence of customary or religious laws that condone the practice. Also, the state of the country's civil registration system, which provides proof of age for children may have an impact upon whether the Government can sufficiently monitor the practice.

In actual fact, child marriage is a violation of human rights, compromising the development of girls and often resulting in early pregnancy and social isolation, with no education and poor vocational training reinforcing the gendered nature of poverty. Although child marriage is not directly addressed by the Committee on the Rights of the Child, the right to 'free and full' consent to a marriage is recognized in the article 16 of the Universal Declaration of Human Rights. Also, the Convention on the Elimination of All Forms of Discrimination against Women states that "the betrothal and the marriage of a child shall have no legal effect" and calls upon states to set legal minimum age
for marriage and to make marriage registration compulsory (article 16). Other relevant rights include the right to express their views freely, the right to protection from all forms of abuse, and the right to be protected from harmful traditional practices.

Though the Children's Act in Ghana expressly prohibits child marriage, it continues in certain parts of the country. Research suggests that many factors interact to place a child at risk of marriage, including poverty, protection of girls, family honour and the provision of stability during unstable social periods. This practice deprives girls of education and thus the opportunity to be less-dependant on men in later life, restricts their economic autonomy and often adversely affects their reproductive health.

The percentage of women married at various ages and in polygynous union is provided in Table CP.3. Polygynous unions are relationships in which a man has more than one wife. In Ghana, about $70 \%$ of marriages contracted are under customary law and marriages under customary and Mohammedan law are potentially polygamous, which continues to be a source of discrimination against women. The practice may also create concerns about transmission of HIV/AIDS and other health issues, while economic instability and vulnerability to women are especially aggravated by polygyny.

Overall, 6 percent of women were married before age 15. Such marriages were higher in rural areas ( $8 \%$ ) than in urban areas (4\%). Also, those women with high education and from wealthiest households were less likely to get married before age 15 years. The regions where a woman is most likely to be married before age 15 are the Western and Volta regions with about 8 percent. The two are closely followed by the Eastern and Brong Ahafo regions, with about 7 percent, each. The lowest proportion (3\%) is recorded in Greater Accra.

The table also demonstrates variations according to age. The highest proportion (9\%) was found in $35-39$ age-group, followed by the age-group 40-44 years with 8 percent. Young women aged 15-19 years are less likely (3\%) to get married before age 15 . Before age 18, 27 percent of women are married. This phenomenon is highest in the Upper East region (39\%), followed by the Western (37\%) and Upper West (36\%) regions. Similarly, marriage before age 18 is nearly twice as high in rural communities (36\%) compared to urban ones (19\%).

Table CP. 3 shows that the percentage of women getting married before age 18 decreases sharply with educational level and wealth status. For example, women with no education are more likely ( $42 \%$ ) to get married before age 18 compared to those with secondary or higher education (5\%).

Across the age-groups, the younger women (aged 20-24 years) are less likely ( $21 \%$ ) to be married before age 18 in comparison with the women aged 25-49 years.

Among women aged 15-19 years, 7 percent are currently married. Most of these women are in the Volta region (14\%), followed by the Western (12\%) and Northern regions (11\%) while Greater Accra has the lowest proportion $(3 \%)$. The area of residence also matters - women in rural areas are more likely $(11 \%)$ to be married/in union than those in urban areas (3\%).

With respect to polygyny, 18 percent of women aged 15-49 years are in polygynous marriages or unions. The three Northern regions have the highest rate of polygynous marriage: Northern (45\%), Upper East (39\%), and Upper West (36\%). The lowest proportion (9\%) of polygynous marriage is found in the Greater Accra region. Differentials are also observed by area of residence; 24 percent in rural areas compared to 13 percent in urban areas.

Furthermore, the results show that the percentage of polygynous marriage increases with age and decreases with educational level and wealth index quintiles.

| Table CP.3: Early marriage and polygyny for women <br> Percentage of women age 15-49 years who first married or entered a marital union before their 15th birthday, percentages of women age 20-49 years who first married or entered a marital union before their 15th and 18th birthdays, percentage of women age 15-19 years currently married or in union, and the percentage of women currently married or in union who are in a polygynous marriage or union, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage before age 15 [1] | Number of women <br> age 15-49 <br> years | Percentage married before age 15 | Percentage married before age 18 [2] | Number <br> of women age 20-49 | Percentage of women 15-19 years currently married/in union [3] | Number of women age 15-19 years | Percentage of women age 15-49 years in polygynous marriage/ union [4] | Number of women age 15-49 years currently married/in union |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 8.3 | 1022 | 9.0 | 36.7 | 834 | 12.0 | 188 | 11.7 | 672 |
| Central | 5.8 | 1044 | 6.8 | 31.2 | 830 | 3.8 | 214 | 14.9 | 598 |
| Greater Accra | 2.7 | 2074 | 3.1 | 12.2 | 1809 | 2.9 | 265 | 8.5 | 1089 |
| Volta | 7.8 | 821 | 8.8 | 29.3 | 665 | 13.5 | 156 | 27.6 | 541 |
| Eastern | 6.9 | 1237 | 7.8 | 27.2 | 1029 | 6.8 | 209 | 11.7 | 752 |
| Ashanti | 6.4 | 1983 | 6.8 | 30.5 | 1623 | 6.5 | 359 | 12.9 | 1310 |
| Brong Ahafo | 7.2 | 1005 | 8.9 | 29.1 | 762 | 6.0 | 243 | 18.2 | 585 |
| Northern | 4.4 | 754 | 4.8 | 27.4 | 637 | 10.7 | 117 | 44.9 | 576 |
| Upper East | 5.4 | 404 | 6.7 | 39.2 | 317 | 7.3 | 87 | 39.3 | 264 |
| Upper West | 4.4 | 282 | 5.2 | 36.3 | 222 | 5.4 | 60 | 35.5 | 188 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 4.3 | 5770 | 4.9 | 19.4 | 4794 | 3.4 | 976 | 12.5 | 3220 |
| Rural | 7.6 | 4857 | 8.4 | 36.2 | 3934 | 10.9 | 923 | 23.9 | 3353 |
| Age |  |  |  |  |  |  |  |  |  |
| 15-19 | 2.6 | 1899 |  |  | 0 | 7.0 | 1899 | 22.3 | 134 |
| 20-24 | 5.0 | 1674 | 5.0 | 20.7 | 1674 |  | - | 11.2 | 758 |
| 25-29 | 5.7 | 1768 | 5.7 | 24.7 | 1768 |  | - | 12.5 | 1271 |
| 30-34 | 7.2 | 1638 | 7.2 | 27.6 | 1638 |  | 0 | 17.0 | 1422 |
| 35-39 | 8.6 | 1431 | 8.6 | 31.6 | 1431 |  | 0 | 19.9 | 1209 |
| 40-44 | 7.6 | 1195 | 7.6 | 30.0 | 1195 |  |  | 22.2 | 991 |
| 45-49 | 5.0 | 1023 | 5.0 | 30.1 | 1023 |  | - | 28.7 | 788 |
| Education |  |  |  |  |  |  |  |  |  |
| None | 11.5 | 2224 | 11.4 | 41.6 | 2142 | 33.0 | 83 | 32.9 | 1867 |
| Primary | 9.3 | 2026 | 10.2 | 38.7 | 1653 | 11.3 | 373 | 18.1 | 1367 |
| Middle/JSS | 3.8 | 4328 | 4.6 | 23.2 | 3205 | 5.7 | 1123 | 11.7 | 2474 |
| Secondary + | 0.5 | 2049 | 0.5 | 4.7 | 1728 | 0.1 | 321 | 5.6 | 866 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 8.3 | 1659 | 9.0 | 41.2 | 1336 | 14.3 | 322 | 32.4 | 1233 |
| Second | 8.7 | 1877 | 10.5 | 37.3 | 1455 | 7.0 | 422 | 23.3 | 1160 |
| Middle | 6.6 | 2101 | 7.4 | 31.3 | 1679 | 10.0 | 421 | 19.4 | 1250 |
| Fourth | 5.2 | 2345 | 5.8 | 24.1 | 1957 | 2.8 | 387 | 13.5 | 1410 |
| Richest | 2.1 | 2646 | 2.4 | 11.5 | 2300 | 1.4 | 347 | 6.6 | 1521 |
| Total | 5.8 | 10627 | 6.5 | 27.0 | 8728 | 7.0 | 1899 | 18.3 | 6574 |
| [1] MICS indicator 8.6 <br> [2] MICS indicator 8.7 <br> [3] MICS indicator 8.8 <br> [4] MICS indicator 8.9 |  |  |  |  |  |  |  |  |  |

Table CP.3M presents the same indicators on early marriage and polygyny but for men aged 15-59. Unsurprisingly, early marriage is much less frequent for men than for women: less than 1 percent of men were married before age 15 and 5 percent before age 18 . In total, 10 percent of men are in a polygynous union, twice more in rural areas than in urban areas ( $13 \%$ vs. 6\%). Polygynous unions are more common in the Northern (27\%), Upper East (25\%) and Upper West (20\%) regions, compared to other regions.

| Percentage of men age $15-59$ years who first married or entered a marital union before their 15 th birthday, percentages of men age 20-49 years who first married or entered a marital union before their 15th and 18th birthdays, percentage of men age 15-19 years currently married or in union, and the percentage of men currently married or in union who are in a polygynous marriage or union, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage <br> married before age 15 | Number of men age 1549 years | Percentage married before age 15 | Percentage married before age 18 | $\begin{array}{r} \text { Number } \\ \text { of men } \\ \text { age } 20-49 \end{array}$ | Percentage of men 15-19 years currently married/in union | $\begin{aligned} & \text { Number of } \\ & \text { men age } \\ & 15-19 \text { years } \end{aligned}$ | Percentage of men age 15-49 years in polygynous marriage/ union |  |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 0.8 | 352 | 1.0 | 6.0 | 275 | (0.0) | 77 | 5.6 | 214 |
| Central | 0.2 | 296 | 0.2 | 2.7 | 245 | 0.0 | 51 | 7.3 | 162 |
| Greater Accra | 0.0 | 676 | 0.0 | 0.7 | 546 | (0.0) | 129 | 4.6 | 342 |
| Volta | 1.5 | 252 | 2.0 | 6.0 | 199 | (2.1) | 53 | 14.2 | 143 |
| Eastern | 1.1 | 358 | 1.4 | 10.9 | 287 | (4.0) | 71 | 10.6 | 229 |
| Ashanti | 1.4 | 638 | 1.7 | 6.5 | 536 | (0.0) | 102 | 5.7 | 379 |
| Brong Ahafo | 0.0 | 296 | 0.0 | 2.2 | 238 | (0.0) | 58 | 5.0 | 149 |
| Northern | 0.3 | 243 | 0.4 | 2.6 | 188 | 0.0 | 54 | 27.3 | 129 |
| Upper East | 1.2 | 120 | 1.4 | 5.7 | 85 | 2.8 | 35 | 24.8 | 64 |
| Upper West | 0.0 | 91 | 0.0 | 2.3 | 65 | 0.6 | 26 | 20.2 | 46 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 0.4 | 1746 | 0.5 | 2.9 | 1430 | 0.0 | 316 | 5.7 | 917 |
| Rural | 1.0 | 1575 | 1.2 | 6.5 | 1234 | 1.5 | 342 | 12.9 | 939 |
| Age |  |  |  |  |  |  |  |  |  |
| 15-19 | 0.0 | 657 |  |  | 0 | 0.8 | 657 | * | 5 |
| 20-24 | 0.9 | 379 | 0.9 | 3.5 | 379 |  | 0 | (8.5) | 44 |
| 25-29 | 1.7 | 456 | 1.7 | 5.0 | 456 |  | 0 | 5.2 | 241 |
| 30-34 | 0.2 | 442 | 0.2 | 3.8 | 442 |  | 0 | 7.1 | 347 |
| 35-39 | 1.5 | 363 | 1.5 | 8.4 | 363 |  | 0 | 6.2 | 314 |
| 40-44 | 0.3 | 288 | 0.3 | 5.3 | 288 |  | 0 | 11.4 | 258 |
| 45-49 | 1.2 | 313 | 1.2 | 5.1 | 313 |  | 0 | 12.1 | 278 |
| 50-54 | 0.0 | 221 | 0.0 | 2.5 | 221 |  | 0 | 11.9 | 186 |
| 55-59 | 0.0 | 204 | 0.0 | 0.6 | 204 |  | 0 | 15.2 | 184 |
| Education |  |  |  |  |  |  |  |  |  |
| None | 0.2 | 417 | 0.2 | 3.5 | 393 | 0.7 | 23 | 21.3 | 333 |
| Primary | 0.2 | 416 | 0.3 | 6.0 | 299 | 0.4 | 117 | 8.2 | 204 |
| Middle/JSS | 1.3 | 1483 | 1.7 | 7.2 | 1070 | 1.1 | 413 | 7.8 | 803 |
| Secondary + | 0.2 | 1006 | 0.2 | 1.3 | 902 | 0.0 | 105 | 4.6 | 517 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |
| Poorest | 0.6 | 518 | 0.8 | 5.2 | 392 | 0.9 | 125 | 20.0 | 314 |
| Second | 0.4 | 557 | 0.6 | 5.1 | 414 | 0.8 | 143 | 11.3 | 295 |
| Middle | 0.4 | 621 | 0.5 | 4.6 | 467 | 1.8 | 153 | 6.8 | 304 |
| Fourth | 1.6 | 779 | 1.9 | 7.4 | 664 | 0.0 | 115 | 9.9 | 445 |
| Richest | 0.2 | 847 | 0.3 | 1.2 | 726 | 0.0 | 121 | 2.5 | 498 |
| Total | 0.7 | 3321 | 0.8 | 4.6 | 2664 | 0.8 | 657 | 9.4 | 1856 |
| An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses ')' are based on $25-49$ unweighted cases. |  |  |  |  |  |  |  |  |  |

Table CP. 4 presents the proportion of women who were first married or entered into a marital union before age 15 and 18 by residence and age-group. Examining the percentages married before age 15 and 18 by different age groups allow us to see the trends in early marriage over time.

From the data, it can be deduced that the percentage of women in age-group 45-49 years who married before age 15 got married around the year 1980. Similarly, those in age-group 40-44 years got married in 1985, those in agegroup 35-39 years got married in 1990, and so those in age-group 15-19 years got married in 2010. Table CP. 4 shows a higher proportion of rural women married before age 15 ( $8 \%$ ) compared to their urban counterparts (4\%). As to marrying before age 18 , it seems that the younger generation are less likely to get married before age 18 .

| Table CP.4: Trends in early marriage for women |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Urban |  |  |  |  | Rural |  |  |  | All |  |  |  |
| Background Characteristics | Percentage of women married before age 15 | Number <br> of <br> women <br> age <br> 15-49 | Percentage of women married before age 18 | Number of women age 20-49 | Percentage of women married before age 15 | Number of women age 15-49 | Percentage <br> of women married before age 18 | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { women } \\ \text { age } \\ 20-49 \end{array}$ | Percentage of women married before age 15 | Number of women age 15-49 | Percentage of women married before age 18 | Number of women age 20-49 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 0.9 | 976 |  | 0 | 4.1 | 923 |  | 0 | 2.4 | 899 |  | 0 |
| 20-24 | 3.1 | 963 | 12.7 | 963 | 9.0 | 710 | 32.1 | 710 | 5.6 | 1674 | 20.9 | 1674 |
| 25-29 | 2.5 | 1025 | 16.5 | 1025 | 9.6 | 743 | 35.8 | 743 | 5.5 | 1768 | 24.6 | 1768 |
| 30-34 | 7.3 | 885 | 21.7 | 885 | 8.5 | 753 | 34.9 | 753 | 7.9 | 1638 | 27.8 | 1638 |
| 35-39 | 6.5 | 733 | 23.4 | 733 | 10.3 | 697 | 39.4 | 697 | 8.4 | 1431 | 31.2 | 1431 |
| 40-44 | 7.6 | 661 | 24.6 | 661 | 7.2 | 534 | 37.6 | 534 | 7.4 | 1195 | 30.4 | 1195 |
| 45-49 | 3.2 | 527 | 24.0 | 527 | 5.9 | 496 | 36.7 | 496 | 4.5 | 1023 | 30.1 | 1023 |
| Total | 4.2 | 5770 | 19.7 | 4794 | 7.8 | 4857 | 36 | 3934 | 5.8 | 10627 | 27 | 8728 |

Figure CP. 2 shows that there has been a gradual drop in the percentage of women marrying before age 15 for both rural and urban communities. However, a gap between the two communities is noticeable across all age-groups.

Figure CP.2: Percentage of women who were first married/union before age 15
by age group and residence, Ghana, 2011


Figure CP. 3 shows the percentage of women marrying before age 18 by age-group and residence. This figure shows that the proportion of women who were married before age 18 is higher in rural communities than in urban ones in all the age-groups. The trends show a small decline in the percentages married over the time, but the gap is still noticeable between the urban and rural areas across all age-groups.

Figure CP.3: Percentage of women who were first married/union before age 18 by age group and residence, Ghana, 2011


Table CP. 4 M , on the other hand, presents the percentage of men aged 15-59 years who were first married or entered into a marital union before age 15 and 18 by residence and age-groups. In case of men, situation is almost the same for all age-groups, showing no difference overtime, while the figures for women exhibit some changes according to generation.

| Table CP.4M: Trends in early marriage for men <br> Percentage of men age 15-59 years who were first married or entered into a marital union before age 15 and 18, by residence and age groups, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Urban |  |  |  | Rural |  |  |  | All |  |  |  |
| Background Characteristics | Percentage of men married before age 15 | Number of men age 15-59 | Percentage of men married before age 18 | Number of men age $20-59$ 20-5 | Percentage <br> of men <br> married <br> before age <br> 15 | Number of men age $15-59$ 15-59 | Percentage <br> of men married before age 18 | $\begin{gathered} \text { Number } \\ \text { of men } \\ \text { age } \\ 20-59 \end{gathered}$ | Percentage of men married before age 15 | Number of men age $15-59$ 15-59 | Percentage <br> of men married before age 18 | $\begin{gathered} \text { Number } \\ \text { of } \text { men } \\ \text { age } \\ 20-59 \end{gathered}$ |
| Age of man |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 0.0 | 316 |  | 0 | 0.1 | 342 |  | 0 | . 0 | 657 |  | 0 |
| 20-24 | 0.0 | 221 | 0.0 | 221 | 2.2 | 158 | 8.4 | 158 | 0.9 | 379 | 3.5 | 379 |
| 25-29 | 0.9 | 226 | 1.7 | 226 | 2.5 | 230 | 8.3 | 230 | 1.7 | 456 | 5.0 | 456 |
| 30-34 | 0.0 | 269 | 3.4 | 269 | 0.5 | 172 | 4.3 | 172 | . 2 | 442 | 3.8 | 442 |
| 35-39 | 1.3 | 198 | 5.9 | 198 | 1.7 | 164 | 11.5 | 164 | 1.5 | 363 | 8.4 | 363 |
| 40-44 | 0.0 | 130 | 2.2 | 130 | 0.5 | 157 | 7.9 | 157 | 0.3 | 288 | 5.3 | 288 |
| 45-49 | 1.4 | 161 | 6.3 | 161 | 1.0 | 152 | 3.7 | 152 | 1.2 | 313 | 5.1 | 313 |
| 50-54 | 0.0 | 124 | 2.5 | 124 | 0.0 | 97 | 2.6 | 97 | 0.0 | 221 | 2.5 | 221 |
| 55-59 | 0.0 | 100 | 0.0 | 100 | 0.0 | 103 | 1.2 | 103 | 0.0 | 204 | 0.6 | 204 |
| Total | 0.4 | 1746 | 2.9 | 1430 | 1.0 | 1575 | 6.5 | 1234 | 0.7 | 3321 | 4.6 | 2664 |

Another component is the spousal age difference, with the indicator being the percentage of married/in union women who are 10 or more years younger than their current spouse. The age gap between partners is thought to contribute to abusive power dynamics or domestic violence and to increase the risk of untimely widowhood. Table CP. 5 presents the results of the age difference between husbands and wives. The results show that there are some mportant spousal age differences in Ghana.

About one in five women (19\%) aged 20-24 years is currently married to a man who is older by ten years or more, and about 16 percent of women aged 15-19 years are currently married to a man who is older by ten years or more. This type of union is common in poorest households, in rural areas, and it decreases with higher educational levels of the women.

Similar characteristics can be observed for younger women aged 15-19 years in terms of their level of education and in the urban and rural divide.


Female Genital Mutilation/Cutting
Female genital mutilation/cutting (FGM/C) is the partial or total removal of the female external genitalia or other injury to the female genital organs. FGM/C is always traumatic with immediate complications including excruciating pain, shock, urine retention, ulceration of the genitals and injury to adjacent tissues. Other complications include septicaemia, infertility, obstructed labour, and even death.

In some communities in Ghana, FGM/C is a deep-rooted tradition, and underlying gender structures still uphold such harmful practices. Those who support FGM/C believe that it is a necessary requirement and puberty ceremony to raise a girl''properly' as well as to make her eligible for marriage. Despite the fact that $\mathrm{FGM} / \mathrm{C}$ is a social norm that requires and expects community members to follow, it is a fundamental violation of human rights. The procedure is generally carried out on girls between the ages of 4 and 14 ; it is also done to infants, women who are about to be married and, sometimes, to women who are pregnant with their first child or who have just given birth. It is often performed by traditional practitioners, including midwives and'wansams' without anaesthesia, using scissors, razor blades or broken glass. In the absence of adequate medical facilities and professionals, it subjects girls and women to health risks and has life-threatening consequences. Among those rights violated are the rights to the highest attainable standard of health and to bodily integrity. Furthermore, it could be argued that girls (under 18) cannot be said to have given informed consent to such a potentially damaging practice as $\mathrm{FGM} / \mathrm{C}$.

FGM/C in Ghana is practised among few groups of people, including some ethnic groups in the three northern regions (Upper East, Upper West and Northern) namely the Kusasis; Frafras; Kassenas; Nankani's; Busangas; Wallas; Dagarbas; Builsas and Sisalas. Furthermore, FGM/C is existent in some southern areas of the country as some migrants from neighbouring countries of Mali, Togo, Niger and Burkina Faso, residing mostly in urban slums of the south, have carried their customs with them. Three forms of female genital mutilation reported as being practised, include excision, clitoridectomy and infibulation. ${ }^{37}$

All forms of FGM/C are illegal in Ghana under the Criminal Code Amendment Act of 2003 (ACT 646) $)^{38}$ Nevertheless, the practice still persists. In 2007, the Criminal Code was amended to include not only those who performed the operation, but also those who request, incite or promote FGM/C, as offenders who should face imprisonment and/ or fines.

Table CP. 6 presents the prevalence of FGM/C among women and the type and extent of the procedure. The table shows that 4 percent of women aged $15-49$ years had some form of female genital mutilation. The percentage declines with educational level: from 9 percent for women with no education, to less than 1 percent for women with secondary or higher education. About 41 percent and 28 percent of women in Upper West and Upper East respectively have had one form of FGM/C or the other, while Central and Volta have the lowest proportion of less than 1 percent. The practice also appears more common in rural areas ( $5 \%$ ), and among households in the poorest and second wealth quintiles. The main form or type of FGM/C practiced in these areas is the total or partial removal of flesh in the female genital organ (excision).

[^7]| Table CP.6: Female genital mutilation/cutting (FGM/C) among women Percent distribution of women age $15-49$ years by FGM/C status, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Per | cent distribution of women age 15-49 years: |  |  |  | Total | Percentage <br> any form of FGM/C [1] |  |
|  |  | Who had FGM/C |  |  |  |  |  |  |
|  |  | Had flesh removed | Were nicked | Were sewn closed | Form of FGM/C not determined |  |  |  |
| Region |  |  |  |  |  |  |  |  |
| Western | 97.9 | 1.4 | 0.2 | 0.1 | 0.4 | 100.0 | 2.1 | 1022 |
| Central | 99.2 | 0.2 | 0.2 | 0.3 | 0.1 | 100.0 | 0.8 | 1044 |
| Greater Accra | 98.8 | 1.2 | 0.0 | 0.0 | 0.0 | 100.0 | 1.2 | 2074 |
| Volta | 99.6 | 0.2 | 0.1 | 0.1 | 0.0 | 100.0 | 0.4 | 821 |
| Eastern | 98.7 | 0.7 | 0.0 | 0.3 | 0.3 | 100.0 | 1.3 | 1237 |
| Ashanti | 98.1 | 1.6 | 0.0 | 0.3 | 0.0 | 100.0 | 1.9 | 1983 |
| Brong Ahafo | 95.5 | 3.1 | 0.2 | 0.1 | 1.0 | 100.0 | 4.5 | 1005 |
| Northern | 97.2 | 2.2 | 0.3 | 0.2 | 0.2 | 100.0 | 2.8 | 754 |
| Upper East | 72.2 | 23.6 | 0.6 | 0.7 | 2.9 | 100.0 | 27.8 | 404 |
| Upper West | 58.9 | 26.5 | 1.6 | 4.4 | 8.6 | 100.0 | 41.1 | 282 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 97.5 | 1.9 | 0.1 | 0.2 | 0.4 | 100.0 | 2.5 | 5770 |
| Rural | 94.7 | 4.0 | 0.2 | 0.4 | 0.7 | 100.0 | 5.3 | 4857 |
| Age |  |  |  |  |  |  |  |  |
| 15-19 | 98.5 | 1.3 | 0.1 | 0.1 | 0.2 | 100.0 | 1.5 | 1899 |
| 20-24 | 98.2 | 0.9 | 0.1 | 0.4 | 0.4 | 100.0 | 1.8 | 1674 |
| 25-29 | 97.0 | 2.2 | 0.1 | 0.3 | 0.4 | 100.0 | 3.0 | 1768 |
| 30-34 | 95.6 | 3.2 | 0.2 | 0.2 | 0.7 | 100.0 | 4.4 | 1638 |
| 35-39 | 94.5 | 4.4 | 0.1 | 0.3 | 0.6 | 100.0 | 5.5 | 1431 |
| 40-44 | 93.4 | 5.2 | 0.4 | 0.3 | 0.7 | 100.0 | 6.6 | 1195 |
| 45-49 | 93.6 | 4.6 | 0.2 | 0.5 | 1.1 | 100.0 | 6.4 | 1023 |
| Education |  |  |  |  |  |  |  |  |
| None | 87.1 | 9.7 | 0.4 | 0.8 | 1.9 | 100.0 | 12.9 | 2224 |
| Primary | 97.0 | 2.4 | 0.0 | 0.2 | 0.4 | 100.0 | 3.0 | 2026 |
| Middle/SSS | 99.1 | 0.6 | 0.1 | 0.1 | 0.1 | 100.0 | 0.9 | 4328 |
| Secondary + | 99.1 | 0.6 | 0.2 | 0.1 | 0.1 | 100.0 | 0.9 | 2049 |
| Wealth index quintile |  |  |  |  |  |  |  |  |
| Poorest | 87.2 | 9.5 | 0.4 | 1.1 | 1.7 | 100.0 | 12.8 | 1659 |
| Second | 95.9 | 3.4 | 0.2 | 0.1 | 0.4 | 100.0 | 4.1 | 1877 |
| Middle | 97.3 | 1.9 | 0.2 | 0.1 | 0.5 | 100.0 | 2.7 | 2101 |
| Fourth | 98.6 | 1.1 | 0.0 | 0.1 | 0.2 | 100.0 | 1.4 | 2345 |
| Richest | 98.9 | 0.5 | 0.1 | 0.2 | 0.2 | 100.0 | 1.1 | 2646 |
| Total | 96.2 | 2.8 | 0.2 | 0.3 | 0.5 | 100.0 | 3.8 | 10627 |
| [1] MICS indicator 8.12 |  |  |  |  |  |  |  |  |

Table CP. 7 presents the prevalence and extent of FGM/C performed on daughters of the respondents. Overall, less than 1 percent of women reported that at least 1 of their living daughters had undergone FGM/C.

| Table CP.7: Female genital mutilation/cutting (FGM/C) among daughters Percent distribution of daughters age 0-14 by FGM/C status, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percent distribution of daughters age 0-14 years: |  |  |  |  | Total | Percentage who had any form of FGM/C [1] | Number of age 0-14 years |
|  | No FGM/C | Who had FGM/C |  |  |  |  |  |  |
|  |  | Had flesh removed | Were | $\begin{gathered} \text { Were sewn } \\ \text { closed } \end{gathered}$ | Form of FGM/C not determined |  |  |  |
| Region |  |  |  |  |  |  |  |  |
| Western | 99.8 | 0.0 | 0.0 | 0.0 | 0.2 | 100.0 | 0.2 | 1004 |
| Central | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 718 |
| Greater Accra | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 1396 |
| Volta | 99.9 | 0.0 | 0.0 | 0.1 | 0.0 | 100.0 | 0.1 | 643 |
| Eastern | 99.6 | 0.0 | 0.0 | 0.4 | 0.0 | 100.0 | 0.4 | 848 |
| Ashanti | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 1617 |
| Brong Ahafo | 99.5 | 0.3 | 0.1 | 0.1 | 0.0 | 100.0 | 0.5 | 799 |
| Northern | 98.4 | 1.2 | 0.4 | 0.0 | 0.0 | 100.0 | 1.6 | 387 |
| Upper East | 99.2 | 0.8 | 0.0 | 0.0 | 0.0 | 100.0 | 0.8 | 537 |
| Upper West | 94.9 | 4.3 | 0.1 | 0.6 | 0.2 | 100.0 | 5.1 | 325 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 99.8 | 0.1 | 0.0 | 0.1 | 0.1 | 100.0 | 0.2 | 4087 |
| Rural | 99.3 | 0.5 | 0.1 | 0.1 | 0.0 | 100.0 | 0.7 | 4189 |
| Age |  |  |  |  |  |  |  |  |
| 0-4 | 99.6 | 0.2 | 0.0 | 0.2 | 0.0 | 100.0 | 0.4 | 2129 |
| 5-9 | 99.5 | 0.4 | 0.0 | 0.1 | 0.0 | 100.0 | 0.5 | 1876 |
| 10-14 | 98.8 | 0.9 | 0.1 | 0.1 | 0.2 | 100.0 | 1.2 | 1690 |
| Missing/DK | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 2581 |
| None | 99.0 | 0.9 | 0.1 | 0.1 | 0.0 | 100.0 | 1.0 | 2612 |
| Primary | 99.7 | 0.1 | 0.0 | 0.1 | 0.1 | 100.0 | 0.3 | 1776 |
| Education |  |  |  |  |  |  |  |  |
| Middle/JSS | 99.9 | 0.0 | 0.0 | 0.1 | 0.0 | 100.0 | 0.1 | 2991 |
| Secondary + | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 896 |
| Mother's FGM/C experiences |  |  |  |  |  |  |  |  |
| No FGM/C | 99.9 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.1 | 7557 |
| Had FGM/C | 95.4 | 3.4 | 0.3 | 0.9 | 0.1 | 100.0 | 4.6 | 719 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |
| Poorest | 98.2 | 1.4 | 0.2 | 0.2 | 0.0 | 100.0 | 1.8 | 1534 |
| Second | 99.9 | 0.1 | 0.0 | 0.0 | 0.0 | 100.0 | 0.1 | 1620 |
| Middle | 99.9 | 0.1 | 0.0 | 0.0 | 0.0 | 100.0 | 0.1 | 1649 |
| Fourth | 99.8 | 0.1 | 0.0 | 0.0 | 0.1 | 100.0 | 0.2 | 1778 |
| Richest | 99.8 | 0.0 | 0.0 | 0.2 | 0.0 | 100.0 | 0.2 | 1694 |
| Total | 99.6 | 0.3 | 0.0 | 0.1 | 0.0 | 100.0 | 0.4 | 8276 |
| [1] MICS indicator 8.13 |  |  |  |  |  |  |  |  |

Table CP. 8 below presents women's attitudes towards FGM/C. In Ghana, three women out of four (74\%) have ever heard of FGM/C. Among those who have heard about FGM/C, in expressing their opinion as to whether the practice should be continued or not, 94 percent of women thought it should not be continued, while about 2 percent believe it should be continued; 3 percent indicated that it depended on the situation. Given that the highest proportion of women who had undergone FGM/C are in the Upper West region (41\%), it was interesting to note that 87 percent
of them would like the practice to be discontinue. Approval of the continuation of the practice is highest among women with no education (3\%), and least among women with secondary or higher education (less than 1\%). Also, women from the middle to the fifth wealth quintiles are less likely to approve the continuation of the practice than women from the poorest households.

| Table CP.8: Approval of female genital mutilation/cutting (FGM/C) <br> Percentage of women age 15-49 years who have heard of FGM/C, and percent distribution of women according to attitudes towards whether the practice of FGM/C should be continued, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of women who have heard of FGM/C | $\begin{array}{r} \text { Number } \\ \text { of women } \\ \text { aged } 15-49 \\ \text { years } \end{array}$ | Percent distribution of women who believe the practice of FGM/C should be: |  |  |  |  | Number of women age 1549 years who have heard of FGM/C |
|  |  |  | Continued [1] | Discontinued | Depends | Don't know/ Missing | Total |  |
| Region |  |  |  |  |  |  |  |  |
| Western | 79.6 | 1022 | 0.4 | 97.0 | 1.1 | 1.4 | 100.0 | 814 |
| Central | 66.3 | 1044 | 0.7 | 91.9 | 5.3 | 2.1 | 100.0 | 693 |
| Greater Accra | 88.2 | 2074 | 0.0 | 95.1 | 3.5 | 1.4 | 100.0 | 1829 |
| Volta | 69.0 | 821 | 1.5 | 93.4 | 1.2 | 4.0 | 100.0 | 566 |
| Eastern | 65.3 | 1237 | 0.0 | 99.4 | 0.0 | 0.6 | 100.0 | 808 |
| Ashanti | 74.5 | 1983 | 1.9 | 92.7 | 3.5 | 1.9 | 100.0 | 1478 |
| Brong Ahafo | 71.0 | 1005 | 2.3 | 95.1 | 1.6 | 1.0 | 100.0 | 713 |
| Northern | 44.3 | 754 | 5.0 | 85.9 | 4.6 | 4.5 | 100.0 | 334 |
| Upper East | 94.0 | 404 | 3.8 | 94.9 | 0.5 | 0.8 | 100.0 | 380 |
| Upper West | 91.7 | 282 | 7.9 | 87.2 | 3.3 | 1.6 | 100.0 | 259 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 81.3 | 5770 | 0.6 | 95.8 | 2.3 | 1.2 | 100.0 | 4692 |
| Rural | 65.5 | 4857 | 2.5 | 92.2 | 2.8 | 2.4 | 100.0 | 3181 |
| Age |  |  |  |  |  |  |  |  |
| 15-19 | 71.4 | 1899 | 1.6 | 97.2 | 0.5 | 0.7 | 100.0 | 1356 |
| 20-24 | 73.5 | 1674 | 3.9 | 90.5 | 2.2 | 3.5 | 100.0 | 1230 |
| 25-29 | 75.4 | 1768 | 1.2 | 92.7 | 3.9 | 2.2 | 100.0 | 1333 |
| 30-34 | 75.2 | 1638 | 1.7 | 93.9 | 2.0 | 2.4 | 100.0 | 1231 |
| 35-39 | 73.6 | 1431 | 0.9 | 96.1 | 1.5 | 1.4 | 100.0 | 1054 |
| 40-44 | 76.8 | 1195 | 1.1 | 95.3 | 2.1 | 1.5 | 100.0 | 918 |
| 45-49 | 73.6 | 1023 | 1.7 | 93.6 | 4.3 | 0.5 | 100.0 | 753 |
| Education |  |  |  |  |  |  |  |  |
| None | 62.9 | 2224 | 2.9 | 91.7 | 3.6 | 1.8 | 100.0 | 1398 |
| Primary | 64.7 | 2026 | 1.1 | 94.2 | 2.2 | 2.4 | 100.0 | 1311 |
| Middle/JSS | 75.1 | 4328 | 1.0 | 95.1 | 1.9 | 2.0 | 100.0 | 3251 |
| Secondary + | 93.4 | 2049 | 0.6 | 96.3 | 2.8 | 0.2 | 100.0 | 1913 |
| Mother's FGM/C experience |  |  |  |  |  |  |  |  |
| No FGM/C | 73.1 | 10221 | 1.1 | 94.6 | 2.6 | 1.8 | 100.0 | 7468 |
| Had FGM/C | 100.0 | 406 | 7.0 | 89.0 | 2.3 | 1.6 | 100.0 | 406 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |
| Poorest | 61.7 | 1659 | 4.3 | 90.2 | 3.0 | 2.5 | 100.0 | 1024 |
| Second | 61.8 | 1877 | 2.4 | 94.3 | 0.8 | 2.5 | 100.0 | 1160 |
| Middle | 70.1 | 2101 | 0.6 | 96.8 | 1.5 | 1.1 | 100.0 | 1473 |
| Fourth | 78.3 | 2345 | 0.3 | 94.8 | 3.7 | 1.2 | 100.0 | 1835 |
| Richest | 90.0 | 2646 | 1.0 | 94.0 | 3.2 | 1.8 | 100.0 | 2382 |
| Total | 74.1 | 10627 | 1.5 | 94.2 | 2.6 | 1.8 | 100.0 | 7874 |
| [1] MICS indicator 8.11 |  |  |  |  |  |  |  |  |

Attitudes toward Domestic Violence
Women and children may be exposed to great danger in their families, which should be the safest place for them. Since they face violence from family members whom they should be able to trust, victims being unable to express their opinions and protect themselves/their children suffer considerably in both the physical and psychological sense.

Domestic violence occurs in a current or former intimate relationship when one person treats the other in an intentionally violent or controlling way. Even though there is an increasing discussion and understanding of the issue of violence against women and children, domestic violence is the form of violence which are relatively hidden or ignored. It is difficult for the problem in families to be made known to the public, and reliable statistics are hard to come by.

The Domestic Violence Act, 2007 (Act 732) was established in Ghana. It specifies the acts and threats that are likely to result in physical, sexual, economic and psychological abuse or the deprivation of the basic amenities. It also allows the Courts to authorise special protection of a person, the temporary custody of a child who is a victim of domestic violence, and to shelter victims from domestic violence. Yet, the tradition tends to make Ghanaian women and children accept the obvious disparity or gap between their situation and that of their male counterparts, and yield to violence.

A number of questions were asked of women aged 15-49 years to assess their attitudes towards whether husbands are justified to hit or beat their wives/partners for a variety of scenarios. These questions were asked to have an indication of social norms that tend to be associated with the prevalence of violence against women by their husbands/partners. The main assumption here is that women who agree with the statements indicating that husbands/partners are justified to beat their wives/partners under the situations described here in reality tend to be abused by their own husbands/partners. The responses to these questions can be found in Table CP.9.

Overall, 60 percent of women in Ghana feel that their husband/partner has a right to hit or beat them for at least one of a variety of reasons:

- If she goes out without telling him
- If she neglects the children
- If she argues with him
- If she refuses sex with him
- If she burns the food
- If she insults him
- If she refuses to give him food
- If she has another partner
- If she steals
- If she gossips

Women who approve of their partner's violence, in most cases, agree and justify violence in instances when they have another partner ( $47 \%$ ), if they insult him ( $41 \%$ ), if they steal ( $36 \%$ ), if they neglect the children ( $31 \%$ ), or if they demonstrate their autonomy, e.g. go out without telling their husbands or argue with them (25\%). Also, 17 percent of women believe that their partner has a right to hit or beat them if they refuse to have sex with him. Acceptance of partner's violence is higher among those living in poorest households (79\%), those with no education (75\%), those in rural communities ( $70 \%$ ) and also formerly married/in union women ( 62 percent).

Regionally, acceptance of domestic violence by women aged 15-49 years is highest in the Northern (84\%), Upper West ( $84 \%$ ) and Upper East ( $79 \%$ ) regions, and least in the Greater Accra region (40\%).

As shown in Table CP.9M, men are less likely than women to believe that wife beating is justified for any of the individual specified reasons. However, still more than a third of the men (36\%) agree that it is justifiable to beat their wives/partners for any of the given reasons. About 12 percent of men justify domestic violence when their wife/ partner goes out without telling them, 15 percent when she neglects the children, 12 percent when she argues with him, 10 percent if she refuses to have sex with him, and 5 percent when she burns the food.

Justifying domestic violence among men is associated with educational levels, area of residence and household wealth. Men from the poorest households are more likely to accept domestic violence (79\%), than men from the richest households (35\%). Also, men with secondary or higher education are less likely to justify domestic violence (35\%), than men with middle/JSS education (60\%), those with primary education (68\%), and those with no education (75\%).

| Table CP.9: Attitudes toward domestic violence among women <br> Percentage of women age 15-49 years who believe a husband is justified in beating his wife/partner in various circumstances, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percentage of women age 15-49 years who believe a husband is justified in beating his wife/partner: |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | $\begin{gathered} \text { If goes } \\ \text { out } \\ \text { without } \\ \text { telling } \\ \text { him } \end{gathered}$ | If she neglects the children | $\begin{array}{r} \text { If she } \\ \text { argues } \\ \text { with him } \end{array}$ | $\begin{gathered} \text { If she } \\ \text { refuses } \\ \text { sex with } \\ \text { him } \end{gathered}$ | If she burns the food | $\begin{gathered} \text { If she } \\ \text { insults } \\ \text { him } \end{gathered}$ | If she refuses to give him food | If she has another partner | If she steals | $\begin{gathered} \text { If she } \\ \text { gossips } \end{gathered}$ | For any of these reasons | Number of women age $15-49$ age $15-49$ years |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 20.6 | 27.1 | 22.6 | 11.0 | 4.3 | 37.2 | 11.2 | 39.3 | 25.8 | 21.6 | 50.9 | 1022 |
| Central | 31.2 | 34.7 | 27.6 | 16.5 | 9.1 | 48.8 | 23.6 | 54.9 | 37.1 | 28.5 | 70.1 | 1044 |
| Greater Accra | 10.0 | 16.0 | 15.3 | 5.9 | 3.4 | 24.3 | 8.7 | 27.0 | 17.6 | 14.4 | 40.1 | 2074 |
| Volta | 34.1 | 42.2 | 30.4 | 26.4 | 24.6 | 45.0 | 33.5 | 65.0 | 52.5 | 42.8 | 72.9 | 821 |
| Eastern | 24.6 | 31.5 | 19.4 | 15.2 | 11.3 | 45.6 | 25.1 | 53.0 | 38.3 | 24.9 | 61.8 | 1237 |
| Ashanti | 17.1 | 26.7 | 25.3 | 12.8 | 7.0 | 35.8 | 16.4 | 36.9 | 27.0 | 24.2 | 54.1 | 1983 |
| Brong Ahafo | 24.7 | 32.8 | 21.8 | 19.5 | 10.7 | 42.9 | 24.1 | 50.7 | 36.7 | 30.7 | 64.9 | 1005 |
| Northern | 49.6 | 55.2 | 50.2 | 37.7 | 25.9 | 68.2 | 53.4 | 72.9 | 64.6 | 54.9 | 83.5 | 754 |
| Upper East | 33.8 | 47.3 | 38.1 | 35.4 | 19.5 | 55.1 | 46.4 | 70.7 | 65.3 | 52.1 | 79.3 | 404 |
| Upper West | 48.3 | 58.6 | 25.2 | 34.3 | 23.2 | 65.4 | 45.6 | 75.1 | 70.3 | 55.6 | 84.0 | 282 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 17.9 | 25.2 | 20.3 | 12.0 | 7.3 | 34.0 | 17.4 | 38.9 | 27.7 | 22.8 | 51.4 | 5770 |
| Rural | 31.5 | 38.8 | 30.5 | 22.4 | 14.7 | 50.0 | 29.0 | 57.0 | 44.8 | 35.6 | 69.8 | 4857 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 30.7 | 38.2 | 30.8 | 18.5 | 15.4 | 51.3 | 30.7 | 56.2 | 45.4 | 35.7 | 68.4 | 1899 |
| 20-24 | 21.1 | 31.2 | 25.3 | 13.7 | 8.9 | 42.0 | 22.7 | 47.0 | 32.5 | 28.6 | 59.5 | 1674 |
| 25-29 | 23.6 | 29.9 | 25.7 | 15.6 | 9.5 | 38.7 | 21.9 | 45.0 | 32.8 | 26.7 | 58.3 | 1768 |
| 30-34 | 22.1 | 29.1 | 22.8 | 15.6 | 9.3 | 37.5 | 18.8 | 45.0 | 32.2 | 26.3 | 58.0 | 1638 |
| 35-39 | 23.9 | 31.5 | 23.1 | 18.9 | 10.7 | 41.0 | 21.4 | 45.6 | 36.4 | 26.9 | 58.3 | 1431 |
| 40-44 | 23.2 | 28.6 | 22.5 | 18.7 | 9.9 | 37.5 | 20.2 | 44.4 | 33.5 | 27.9 | 55.3 | 1195 |
| 45-49 | 22.2 | 28.9 | 21.3 | 17.4 | 10.1 | 37.1 | 20.6 | 43.5 | 33.2 | 26.1 | 57.5 | 1023 |
| Marital/Union status |  |  |  |  |  |  |  |  |  |  |  |  |
| Currently married/in union | 24.7 | 32.4 | 25.5 | 18.0 | 10.6 | 41.8 | 22.8 | 48.7 | 35.8 | 29.7 | 61.1 | 6574 |
| Formerly married/in union | 25.1 | 32.8 | 24.2 | 19.4 | 11.9 | 42.8 | 22.1 | 44.3 | 36.4 | 26.1 | 62.0 | 897 |
| Never married/in union | 22.5 | 29.1 | 24.0 | 13.6 | 10.6 | 39.9 | 22.8 | 44.9 | 34.7 | 27.1 | 56.5 | 3156 |
| Marital/Union status of man |  |  |  |  |  |  |  |  |  |  |  |  |
| Currently married/in union | 9.8 | 12.9 | 9.9 | 8.3 | 3.5 | 17.9 | 8.5 | 19.5 | 14.1 | 10.0 | 31.3 | 1856 |
| Formerly married/in union | 15.0 | 11.9 | 12.7 | 7.2 | 3.5 | 21.8 | 6.3 | 23.1 | 15.1 | 11.6 | 36.8 | 151 |
| Never married/in union | 14.1 | 18.3 | 14.7 | 12.2 | 5.9 | 26.6 | 15.7 | 29.9 | 22.1 | 16.1 | 42.4 | 1314 |
| Education |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 36.4 | 42.7 | 34.6 | 28.4 | 18.0 | 53.9 | 33.4 | 61.7 | 49.6 | 40.6 | 74.9 | 2224 |
| Primary | 29.8 | 36.4 | 28.9 | 20.8 | 13.6 | 47.6 | 27.0 | 53.6 | 41.5 | 34.7 | 67.8 | 2026 |
| Middle/SS | 22.4 | 31.0 | 24.6 | 14.1 | 9.4 | 41.1 | 21.0 | 46.6 | 34.6 | 27.3 | 60.2 | 4328 |
| Secondary + | 8.7 | 15.0 | 11.5 | 5.8 | 2.5 | 21.8 | 10.7 | 26.1 | 16.3 | 12.5 | 34.8 | 2049 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 42.1 | 48.3 | 38.2 | 32.2 | 23.3 | 60.7 | 42.4 | 67.4 | 59.0 | 48.9 | 78.9 | 1659 |
| Second | 32.9 | 39.1 | 31.4 | 22.3 | 15.0 | 51.2 | 28.6 | 59.3 | 46.1 | 36.4 | 71.7 | 1877 |
| Middle | 26.4 | 34.6 | 28.8 | 17.9 | 11.5 | 47.4 | 24.6 | 53.9 | 39.4 | 32.1 | 67.8 | 2101 |
| Fourth | 19.0 | 28.9 | 21.7 | 12.4 | 6.5 | 36.1 | 18.1 | 43.1 | 29.7 | 23.8 | 58.2 | 2345 |
| Richest | 9.3 | 15.1 | 11.9 | 6.2 | 2.9 | 22.0 | 8.9 | 24.2 | 15.5 | 12.1 | 34.5 | 2646 |
| Total | 24.1 | 31.4 | 25.0 | 16.8 | 10.7 | 41.3 | 22.7 | 47.2 | 35.5 | 28.7 | 59.8 | 10627 |
| [1] MICS indicator 8.14 |  |  |  |  |  |  |  |  |  |  |  |  |


| Table CP.9M: Attitudes toward domestic violence among men <br> Percentage of men age 15-59 years who believe a husband is justified in beating his wife/partner in various circumstances, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percentage of men age $15-59$ years who believe a husband is justified in beating his wife/partner: |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics |  |  | $\begin{array}{r} \text { If she } \\ \text { argues } \\ \text { with him } \end{array}$ |  | If she burns the food | If she insults him | If she refuses to give him food | If she has another partner | If she <br> steals | $\begin{gathered} \text { If she } \\ \text { gossips } \end{gathered}$ | For any of these reasons [1] | Number of men age 15-59 years |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 6.2 | 9.7 | 10.2 | 6.4 | 1.3 | 17.3 | 4.3 | 14.7 | 10.6 | 7.9 | 27.4 | 352 |
| Central | 10.8 | 9.4 | 10.0 | 13.5 | 6.3 | 18.8 | 13 | 24.4 | 13.4 | 10.2 | 43.0 | 296 |
| Greater Accra | 9.5 | 5.3 | 7.1 | 2.9 | 2.1 | 17.6 | 4.8 | 16.4 | 8.2 | 4.3 | 26.4 | 676 |
| Volta | 3.3 | 6.9 | 4.9 | 17.2 | 1.9 | 11.9 | 5.7 | 30.4 | 16.5 | 3.8 | 34.7 | 252 |
| Eastern | 24.9 | 28.5 | 19.0 | 13.3 | 10.3 | 29.6 | 21.0 | 35.9 | 28.6 | 25.2 | 43.4 | 358 |
| Ashanti | 8.4 | 15.4 | 12.0 | 7.0 | 1.9 | 19.0 | 8.6 | 17.4 | 15.5 | 10.8 | 31.1 | 638 |
| Brong Ahafo | 6.1 | 11.9 | 8.8 | 4.3 | 3.0 | 14.4 | 7.4 | 16.7 | 9.7 | 6.7 | 27.3 | 296 |
| Northern | 24.6 | 33.7 | 26.7 | 21.0 | 10.1 | 40.6 | 28.5 | 35.9 | 33.0 | 29.0 | 55.9 | 243 |
| Upper East | 14.0 | 23.5 | 17.3 | 18.3 | 10.3 | 29.9 | 23.4 | 40.1 | 36.3 | 32.4 | 55.3 | 120 |
| Upper West | 28.0 | 41.3 | 15.4 | 22.9 | 11.9 | 49.6 | 25.1 | 58.9 | 53.1 | 32.7 | 74.1 | 91 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 8.8 | 10.8 | 9.4 | 5.6 | 2.7 | 18.4 | 8.0 | 17.6 | 12.0 | 8.4 | 28.0 | 1746 |
| Rural | 15.0 | 19.7 | 14.7 | 14.4 | 6.4 | 25.0 | 14.7 | 30.6 | 23.2 | 17.0 | 44.7 | 1575 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 18.6 | 23.4 | 19.9 | 16.3 | 8.7 | 33.8 | 21.7 | 37.7 | 30.0 | 22.3 | 51.7 | 657 |
| 20-24 | 11.7 | 17.1 | 12.4 | 8.9 | 3.3 | 24.1 | 12.3 | 25.5 | 18.7 | 12.5 | 38.3 | 379 |
| 25-29 | 8.7 | 16.5 | 12.6 | 8.1 | 3.7 | 19.3 | 9.6 | 20.4 | 15.5 | 11.1 | 36.9 | 456 |
| 30-34 | 8.8 | 11.5 | 10.3 | 4.7 | 1.4 | 19.1 | 7.2 | 21.4 | 13.2 | 9.2 | 33.1 | 442 |
| 35-39 | 9.9 | 11.2 | 9.1 | 8.5 | 4.7 | 17.4 | 10.2 | 20.5 | 14.7 | 10.5 | 27.8 | 363 |
| 40-44 | 10.6 | 13.4 | 8.3 | 8.7 | 4.8 | 17.1 | 8.2 | 20.0 | 12.9 | 8.6 | 28.1 | 288 |
| 45-49 | 6.7 | 8.6 | 6.5 | 6.6 | 2.5 | 10.6 | 5.2 | 15.2 | 10.1 | 7.2 | 24.0 | 313 |
| 50-54 | 11.0 | 8.1 | 7.2 | 10.6 | 3.4 | 16.2 | 5.4 | 13.8 | 10.5 | 5.7 | 28.2 | 221 |
| 55-59 | 15.7 | 14.6 | 11.0 | 12.9 | 4.4 | 23.4 | 9.8 | 23.3 | 16.6 | 15.9 | 37.1 | 204 |
| Marita//Union status of man |  |  |  |  |  |  |  |  |  |  |  |  |
| Currently married/in union | 9.8 | 12.9 | 9.9 | 8.3 | 3.5 | 17.9 | 8.5 | 19.5 | 14.1 | 10.0 | 31.3 | 1856 |
| Formerly married/in union | 15.0 | 11.9 | 12.7 | 7.2 | 3.5 | 21.8 | 6.3 | 23.1 | 15.1 | 11.6 | 36.8 | 151 |
| Never married/ in union | 14.1 | 18.3 | 14.7 | 12.2 | 5.9 | 26.6 | 15.7 | 29.9 | 22.1 | 16.1 | 42.4 | 1314 |
| Education |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 20.5 | 26.0 | 17.5 | 19.8 | 6.1 | 34.3 | 17.5 | 35.4 | 27.6 | 22.0 | 54.6 | 417 |
| Primary | 17.0 | 20.8 | 16.7 | 13.4 | 7.4 | 29.1 | 15.6 | 32.2 | 24.3 | 17.2 | 48.3 | 416 |
| Middle/SSS | 12.6 | 14.7 | 13.2 | 9.6 | 5.4 | 22.8 | 12.2 | 25.8 | 19.4 | 13.7 | 37.8 | 1483 |
| Secondary + | 4.6 | 8.5 | 5.8 | 4.4 | 1.1 | 11.2 | 5.3 | 12.4 | 7.2 | 4.9 | 20.3 | 1006 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 18.6 | 27.9 | 18.2 | 19.0 | 8.8 | 32.8 | 20.8 | 37.7 | 32.4 | 23.3 | 52.9 | 495 |
| Second | 17.7 | 21.5 | 16.9 | 16.1 | 7.5 | 26.4 | 17.5 | 35.3 | 25.7 | 21.4 | 48.3 | 564 |
| Middle | 9.3 | 13.0 | 10.1 | 8.4 | 3.5 | 23.0 | 9.3 | 22.8 | 14.1 | 8.8 | 37.3 | 614 |
| Fourth | 12.1 | 11.7 | 12.1 | 7.3 | 3.8 | 20.7 | 9.4 | 21.1 | 15.1 | 11.3 | 32.5 | 763 |
| Richest | 5.4 | 7.8 | 6.3 | 3.7 | 1.2 | 11.7 | 4.8 | 11.5 | 7.8 | 4.4 | 20.7 | 886 |
| Total | 11.7 | 15 | 11.9 | 9.8 | 4.5 | 21.5 | 11.2 | 23.8 | 17.3 | 12.5 | 35.9 | 3321 |

Children's living arrangements and orphanhood
Some children have no choice but to live away from their parents. Children who are orphaned may have lost one or both parents. Other reasons for separation include abduction, trafficking, and migration. Children living in alternative care may have various backgrounds; they might have health issues such as HIV/AIDS, while some may have experienced household violence or poverty.

Children who are in residential care or in vulnerable households may be at increased risk of neglect or exploitation if the parents are not available to care and protect them. As the CRC stipulates in article 20, children who cannot have parental care or cannot be allowed to remain in their family environment, shall be entitled to special protection and assistance by the Government. In Ghana, the Children's' Act, 1998 (ACT 560) stipulates that children who are unable to stay with their parents are provided alternative homes or families. This includes children's home, fosterage, and national/international adoptions. These processes are normally overseen and investigated by the Government. Monitoring the variations in different outcomes for orphans and vulnerable children and comparing them gives us a measure of how well communities and governments are responding to their needs.

The percentages of children living with both parents, neither parent, mother only, and father only are presented in Table CP.10. Overall, 57 percent of children aged 0-17 years in Ghana live with both biological parents, while 17 percent live with neither. It appears also that 8 percent of children in Ghana are orphans of one or both parents.

While about 17 percent live with their mother only, just 5 percent live with their father only. For children living with neither of their biological parent, 14 percent have both parents alive, 1 percent has only their father alive, 2 percent have only their mother alive, and about 1 percent have both parents dead.

More children from the middle wealth quintile (21\%) than the poorest wealth quintile (12\%) do not live with a biological parent. No significant differences are noted in terms of children who have lost both parents. However, there are significant variations in children living with both parents in terms of regional location. The figure is as high as 75 percent in the Northern region, compared to 45 percent in the Volta region. Significant differentials exist in terms of the sex of the child, with higher proportions of male children living with both parents (59\%), compared to female children (54\%). Variations are also observed by area of residence, with children in rural areas more likely to live with both their biological parents (60\%), compared to their counterparts in urban areas (52\%).


Figure CP. 4 shows that the percentage of children living with both parents decreases as the children grow up, from 69 percent for children aged 0-4 years, to 42 percent for children aged 15-17 years. Also, the percentage of children not living with their biological parents increases from 6 percent for children in the 0-4 age group, to 26 percent for children aged 15-17 years. One or both parents of nearly 8 percent of children aged 0-17 years are dead. The percent of children with one or both parents dead increases as the child grows, from 2 percent for children aged 0-4 years to 17 percent for children aged 15-17 years.

Figure CP.4: Percentage of children living with both parents, not living with a biological parent or having one or both parents dead, Ghana, 2011



Comprehensive knowledge of HIV methods and transmission
Tables HA. 1 and HA.1M also present the percentage of women aged 15-49 years, and men 15-59 years with comprehensive knowledge. Women and men who have comprehensive knowledge about HIV prevention include those who know of the two ways of HIV prevention (having only one faithful uninfected partner and using a condom every time), who know that a healthy looking person can have the AIDS virus, and who reject the two most common misconceptions. Comprehensive knowledge about HIV and AIDS is paramount to the reduction of stigma and discrimination. This affects how HIV and AIDS services are assessed.

The survey reveals that comprehensive knowledge of HIV prevention methods and transmission is still low in Ghana, despite the many years of public sensitization. Overall, only 34 percent of women aged 15-49 and 39 percent of men aged 15-59 are found to have comprehensive knowledge. Further the percentage of women and men with comprehensive knowledge of HIV/AIDS transmission increases consistently with rising education and household wealth. For example, more than half of women with secondary education (59\%) have comprehensive knowledge of HIV/AIDS transmission, compared to only 16 percent of those with no education. Also, women from the richest households (52\%), as well as women who have never married or in union ( $41 \%$ ) have higher comprehensive knowledge than women from the poorest households (14\%), and those married/in union (31\%).

For both men and women, none of the regions recorded comprehensive knowledge of over 50 percent. For women, comprehensive knowledge was highest in Greater Accra (47\%) and Eastern region (46\%), while it was lowest in Northern region (17\%). For men, comprehensive knowledge was highest in Volta (49\%) and Easter region (47\%), followed by Greater Accra (43\%), and was lowest in Central region (22\%). Comprehensive knowledge was notably higher in urban areas ( $42 \%$ for women and $48 \%$ for men), than in rural areas ( $25 \%$ for women and $29 \%$ for men).

Men and women aged 25-29 years have the highest comprehensive knowledge of HIV and AIDS ( $39 \%$ and 42\% respectively). The age groups 40-49 years had the least knowledge for both sexes.

Table HA.1: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission among women

| Background Characteristics | Percentage who have heard of AIDS | Percentage who know transmission can be prevented by: |  | Percen- <br> tage of <br> women <br> who know <br> both ways | Percentage <br> who know <br> that a <br> healthy <br> looking <br> person can <br> have the | Percentage who know that HIV cannot be transmitted by: |  |  | Percentage who reject the two most common misconceptions and know that a healthy looking person can have the AIDS virus | Percentage with comprehensive knowledge [1] | Number of women |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | one faithful uninfected sex partner | condom every time |  |  | Mosquito bites | Supernatural means | food with someone with AIDS |  |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 98.1 | 84.3 | 79.9 | 75.9 | 73.8 | 58.6 | 35.1 | 78.3 | 41.7 | 37.6 | 1022 |
| Central | 99.4 | 84.6 | 73.5 | 67.4 | 73.0 | 54.5 | 31.2 | 76.6 | 32.8 | 25.5 | 1044 |
| $\begin{aligned} & \text { Greater } \\ & \text { Accra } \end{aligned}$ | 100.0 | 95.9 | 77.9 | 76.3 | 92.4 | 70.8 | 50.2 | 86.9 | 60.1 | 47.0 | 2074 |
| Volta | 99.6 | 90.5 | 76.1 | 73.1 | 87.7 | 55.7 | 46.4 | 64.9 | 36.5 | 29.6 | 821 |
| Eastern | 99.1 | 91.8 | 81.2 | 77.0 | 80.3 | 74.2 | 54.0 | 83.8 | 56.1 | 46.2 | 1237 |
| Ashanti | 99.5 | 90.9 | 78.7 | 74.0 | 72.8 | 61.9 | 36.2 | 73.8 | 37.2 | 30.3 | 1983 |
| $\begin{aligned} & \text { Brong } \\ & \text { Ahafo } \end{aligned}$ | 95.9 | 88.4 | 79.3 | 75.9 | 65.3 | 50.0 | 29.1 | 68.3 | 28.7 | 25.1 | 1005 |
| Northern | 89.4 | 74.0 | 49.0 | 45.4 | 56.0 | 47.9 | 55.7 | 49.5 | 23.1 | 16.6 | 754 |
| Upper East | 97.8 | 88.3 | 74.4 | 70.6 | 62.6 | 54.4 | 51.7 | 71.4 | 31.4 | 25.9 | 404 |
| Upper West | 94.2 | 83.7 | 63.0 | 59.2 | 72.0 | 49.9 | 51.3 | 57.0 | 31.0 | 23.8 | 282 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 99.4 | 93.2 | 79.8 | 77.0 | 83.7 | 67.3 | 46.3 | 81.5 | 50.9 | 41.5 | 5770 |
| Rural | 96.7 | 84.0 | 70.6 | 65.8 | 67.9 | 53.1 | 38.8 | 66.8 | 30.6 | 24.6 | 4857 |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 98.3 | 88.3 | 76.6 | 72.0 | 75.9 | 67.6 | 46.7 | 75.4 | 45.6 | 36.8 | 3573 |
| 25-29 | 98.3 | 90.1 | 78.2 | 74.7 | 78.9 | 65.0 | 43.5 | 78.3 | 47.9 | 38.9 | 1768 |
| 30-39 | 98.0 | 88.9 | 75.5 | 72.0 | 77.3 | 56.6 | 40.5 | 74.1 | 39.6 | 32.7 | 3069 |
| 40-49 | 98.0 | 89.2 | 72.2 | 69.2 | 74.2 | 52.4 | 39.6 | 71.8 | 33.1 | 26.4 | 2218 |
| Marital status |  |  |  |  |  |  |  |  |  |  |  |
| Ever married/in union | 98.0 | 88.5 | 75.3 | 71.4 | 75.0 | 56.3 | 39.3 | 73.0 | 37.3 | 30.6 | 7471 |
| Never married/in union | 98.6 | 90.1 | 76.3 | 73.0 | 79.9 | 71.5 | 51.4 | 78.9 | 51.8 | 41.3 | 3156 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 93.2 | 79.9 | 61.0 | 56.6 | 61.1 | 43.1 | 36.8 | 54.2 | 21.0 | 15.7 | 2224 |
| Primary | 98.4 | 88.2 | 72.7 | 68.6 | 74.6 | 51.1 | 32.4 | 67.9 | 29.5 | 22.5 | 2026 |
| Middle/ <br> JSS | 99.7 | 91.1 | 81.2 | 77.2 | 78.8 | 63.3 | 41.1 | 80.5 | 43.5 | 36.2 | 4328 |
| Secondary | 100.0 | 95.1 | 82.5 | 80.4 | 90.1 | 84.6 | 63.6 | 91.7 | 72.1 | 59.3 | 2049 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 93.1 | 78.2 | 60.5 | 55.4 | 59.1 | 43.0 | 41.3 | 49.7 | 18.8 | 14.0 | 1659 |
| Second | 97.2 | 85.0 | 70.2 | 65.5 | 68.7 | 53.8 | 34.8 | 67.4 | 30.6 | 24.9 | 1877 |
| Middle | 98.9 | 89.8 | 77.7 | 74.6 | 75.3 | 57.8 | 38.9 | 76.4 | 38.0 | 30.7 | 2101 |
| Fourth | 99.8 | 91.8 | 81.1 | 77.0 | 81.0 | 65.9 | 41.5 | 79.7 | 45.2 | 37.0 | 2345 |
| Richest | 100.0 | 95.4 | 82.5 | 80.1 | 89.7 | 74.9 | 54.0 | 90.0 | 63.4 | 52.0 | 2646 |
| Total | 98.2 | 89.0 | 75.6 | 71.9 | 76.4 | 60.8 | 42.9 | 74.8 | 41.6 | 33.8 | 10627 |

Table HA. 1 M: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission among men

| Percentage of men age $15-49$ years who know the main ways of preventing HIV transmission, percentage who know that a healthy looking person can have the AIDS virus, percentage who reject common misconceptions, and percentage who have comprehensive knowledge about HIV transmission Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage who have heard of AIDS | Percentage who know transmission can be prevented by: Having only one Using a faithful condom uninfected every$\qquad$ |  | Percentage of men who know both ways | Percentage <br> who know that a healthy looking person can have the AIDS virus | Percentage who know that HIV cannot be transmitted by: |  |  | Percentage who reject the two most common misconceptions and know that a healthy looking person can have the AIDS virus |  | Number of men |
|  |  |  |  | Mosquito |  | Supernatural | Sharing food with someone with AIDS |  |  |  |
| gions |  |  |  |  |  |  |  |  |  |  |  |
| Western | 99.6 | 90.4 | 83.2 |  | 76.2 | 83.7 | 62.3 | 51.9 | 84.3 | 46.0 | 38.5 | 352 |
| Central | 100.0 | 86.3 | 71.8 | 66.3 | 64.3 | 60.1 | 47.5 | 79.1 | 32.9 | 21.7 | 296 |
| Greater |  |  |  |  |  |  |  |  |  |  |  |
| Accra | 100.0 | 94.3 | 76.2 | 71.5 | 89.3 | 78.4 | 68.1 | 84.6 | 60.2 | 42.7 | 676 |
| Volta | 99.8 | 91.4 | 84.7 | 81.4 | 86.5 | 75.5 | 71.3 | 74.4 | 56.3 | 49.1 | 252 |
| Eastern | 99.2 | 95.4 | 92.0 | 89.6 | 87.4 | 61.1 | 48.7 | 86.2 | 49.9 | 47.2 | 358 |
| Ashanti | 99.5 | 91.5 | 87.2 | 83.1 | 83.9 | 58.2 | 50.7 | 80.5 | 43.4 | 40.2 | 638 |
| Brong Ahafo | 99.5 | 94.1 | 85.9 | 84.9 | 81.5 | 56.0 | 54.0 | 81.1 | 41.5 | 39.5 | 296 |
| Northern | 94.9 | 87.5 | 76.0 | 72.7 | 72.1 | 54.1 | 66.6 | 60.8 | 36.2 | 29.3 | 243 |
| Upper East | 98.4 | 92.9 | 85.3 | 82.2 | 64.5 | 58.6 | 59.1 | 76.2 | 36.1 | 31.4 | 120 |
| Upper West | 93.9 | 84.6 | 77.9 | 72.7 | 74.6 | 55.8 | 64.3 | 66.8 | 43.2 | 37.2 | 91 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 99.9 | 93.9 | 83.4 | 79.8 | 87.0 | 74.3 | 65.4 | 85.3 | 58.5 | 48.1 | 1746 |
| Rural | 98.3 | 89.2 | 81.0 | 76.4 | 75.9 | 52.6 | 48.9 | 73.8 | 33.9 | 29.0 | 1575 |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 15-24 | 98.0 | 87.5 | 79.6 | 73.1 | 77.6 | 70.0 | 57.3 | 77.5 | 48.6 | 38.6 | 1036 |
| 25-29 | 99.5 | 93.7 | 83.7 | 80.9 | 86.3 | 64.3 | 55.2 | 84.1 | 50.7 | 42.4 | 456 |
| 30-39 | 99.8 | 94.5 | 83.5 | 80.4 | 84.3 | 60.4 | 59.3 | 80.3 | 44.8 | 38.0 | 804 |
| 40-49 | 99.6 | 92.6 | 84.3 | 81.4 | 81.2 | 59.1 | 55.8 | 80.0 | 43.8 | 37.9 | 601 |
| 50-59 | 99.6 | 93.2 | 81.8 | 78.9 | 83.0 | 62.6 | 60.2 | 79.8 | 46.8 | 40.2 | 425 |
| rital status |  |  |  |  |  |  |  |  |  |  |  |
| Ever married/in union | 99.6 | 93.5 | 82.5 | 79.5 | 83.4 | 58.4 | 55.8 | 80.4 | 43.9 | 36.9 | 2007 |
| Never married/in union | 98.3 | 89.0 | 81.8 | 76.2 | 79.3 | 72.5 | 60.2 | 79.1 | 1.4 | 42.3 | 314 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 96.6 | 87.7 | 77.9 | 74.2 | 69.4 | 38.5 | 49.7 | 59.7 | 21.6 | 18.3 | 417 |
| Primary | 97.6 | 87.9 | 76.8 | 71.4 | 71.6 | 48.8 | 40.5 | 69.1 | 24.9 | 19.8 | 416 |
| Middle/JS | 99.7 | 91.7 | 81.9 | 77.4 | 80.8 | 62.5 | 53.6 | 80.2 | 43.1 | 35.8 | 1483 |
| Secondary + | 100.0 | 94.9 | 86.7 | 83.8 | 92.5 | 83.0 | 73.7 | 92.1 | 72.0 | 60.5 | 1006 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 96.2 | 84.6 | 76.7 | 71.7 | 69.4 | 46.2 | 50.7 | 63.6 | 27.2 | 23.0 | 518 |
| Second | 98.9 | 89.3 | 82.3 | 76.7 | 73.2 | 52.5 | 47.7 | 74.6 | 32.2 | 26.2 | 557 |
| Middle | 99.9 | 93.2 | 84.4 | 80.9 | 83.7 | 60.7 | 57.7 | 80.3 | 44.4 | 39.1 | 621 |
| Fourth | 100.0 | 93.0 | 83.7 | 79.5 | 86.3 | 67.7 | 56.0 | 84.3 | 50.3 | 42.3 | 779 |
| Richest | 99.7 | 95.4 | 82.6 | 79.8 | 89.3 | 81.4 | 69.6 | 88.8 | 67.2 | 54.3 | 847 |
| Total | 99.1 | 91.7 | 82.2 | 78.2 | 81.8 | 64.0 | 57.6 | 79.9 | 46.9 | 39.1 | 3321 |
| ${ }^{[1]}$ MICS indicator 9.1 |  |  |  |  |  |  |  |  |  |  |  |

The results for young women and men aged 15-24 years are separately presented in Tables HA. 2 and HA.2M. Those tables present very similar conclusions as those for women aged 15-49 years and men aged 15-49 years, showing that HIV knowledge is hardly any better among young people than among the entire population aged 15-49, and that it is slightly better among young men than among young women. In total, 98 percent of both young women and men have heard of AIDS. With regard to how to prevent its transmission, 88 percent of the young women and men know that maintaining one faithful and uninfected sex partner is a good measure of protection. The use of condom every time is another method of prevention known by 77 percent of women and 80 percent of men, while 72 percent of the young women and 73 percent of young men know of both ways of preventing HIV transmission. Also, 76 percent of the young women and 78 percent of young men know that a healthy looking person can have the AIDS virus.

The results also show that 75 percent of young women, and 78 percent of young men reject the notion that AIDS can be spread by sharing food with a person living with the AIDS virus, while 68 percent of young women, and 70 percent of the young men reject the fact that AIDS can be transmitted through mosquito bite. However, less than one in two (48\%) young women, and 57 percent of young men know that HIV cannot be transmitted by supernatural means. Overall, 46 percent of young women and 49 percent of young men reject the two major misconceptions about transmission and know that a healthy looking person can have the AIDS virus.

In total, only 37 percent of the young women and 39 percent of the young men have comprehensive knowledge about HIV transmission, very similar to the entire population aged 15-49 years (respectively $34 \%$ et $39 \%$ )

The UNGASS target proposed by UNAIDS is 'by 2010, is to ensure that 95 per cent of youth aged 15-24 years have information, education, services and life skills that enable them to reduce their vulnerability to HIV infection (UNGASS)'. The results show that the comprehensive knowledge for Ghanaian young women and men fall short of the UNGASS target. The low comprehensive figures mean that a lot more still needs to be done to provide young people with information to acquire knowledge on how to protect themselves from HIV transmission (UNAIDS). While both women and men should be targeted with education on HIV prevention, concerted efforts should be directed at young people as many continue to get infected due to low levels of comprehensive HIV knowledge.

Comprehensive knowledge increases with increasing age as the 20-24 year age-groups in both sexes have higher figures than the age-group 15-19 years. For example, 34 percent of young men aged 15-19 years have comprehensive knowledge, compared to 46 percent of young men aged 20-24 years. The same is true for young women - 35 percent of those aged 15-19 years have comprehensive knowledge, compared to 39 percent of those aged 20-24 years.

Comprehensive knowledge for both young women and men increases with educational level and household wealth. As shown in Figure HA.1, for young women with no education, comprehensive knowledge is estimated at 11 percent. This increases to 21 percent for those with primary education, to 36 percent for those with Middle/JSS education, and to 57 percent for those with secondary or higher education. In relation to household wealth, 19 percent of young men and 18 percent of young women from the poorest households have comprehensive knowledge, compared to 49 percent for young men and 53 percent for young women in the richest wealth quintile. Also, young women and men living in urban areas have higher comprehensive knowledge ( $42 \%$ and $49 \%$ respectively), compared to thei counterparts in rural areas ( $30 \%$ and $28 \%$ respectively). Variations are also observed on marital status for both young women and men. Young women and men who have never been married have higher comprehensive knowledge ( $40 \%$ for both sexes), compared to those married/in union ( $29 \%$ for women and $20 \%$ for men).

| Table HA.2: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission among young women |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of young women age 15-24 years who know the main ways of preventing HIV transmission, percentage who know that a healthy looking person can have the AIDS virus, percentage who reject common misconceptions, and percentage who have comprehensive knowledge about HIV transmission, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Percentage wh transmission prevented | who know n can be d by: |  | Percentage who know | Percent cann | age who know th ot be transmitt | that HIV ed by: | Percentage who reject the two most common |  |  |
| Background Characteristics | Percentage who have heard of AIDS | Having only one faithful uninfected $\qquad$ | Using a condom every time | Percentage <br> of women <br> who know <br> both ways |  | Mosquito bites | Supernatural means |  | and know that a healthy looking person can have the AIDS virus | Percentage with comprehensive knowledge [1] | Number of women age 15-24 |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 99.1 | 83.6 | 81.1 | 74.3 | 70.2 | 63.1 | 37.1 | 79.9 | 43.1 | 38.9 | 329 |
| Central | 99.2 | 84.0 | 74.7 | 68.0 | 71.2 | 61.8 | 35.1 | 75.7 | 37.7 | 30.4 | 379 |
| Greater Accra | 100.0 | 96.1 | 75.0 | 72.9 | 90.5 | 77.5 | 56.6 | 85.9 | 65.2 | 49.5 | 632 |
| Volta | 99.8 | 89.3 | 81.5 | 77.2 | 89.0 | 63.3 | 55.7 | 68.3 | 42.6 | 36.1 | 272 |
| Eastern | 98.6 | 89.5 | 76.6 | 73.8 | 77.0 | 79.5 | 58.2 | 83.8 | 58.7 | 46.8 | 398 |
| Ashanti | 99.6 | 90.0 | 79.5 | 73.5 | 73.2 | 70.9 | 39.5 | 73.4 | 41.2 | 33.2 | 718 |
| Brong Ahafo | 96.4 | 88.4 | 82.2 | 77.5 | 68.3 | 56.1 | 30.8 | 67.2 | 32.2 | 27.4 | 396 |
| Northern | 89.6 | 73.0 | 55.5 | 51.6 | 60.9 | 51.8 | 59.5 | 57.1 | 29.0 | 22.5 | 219 |
| Upper East | 98.0 | 90.2 | 78.0 | 75.5 | 65.5 | 69.9 | 58.3 | 77.2 | 42.9 | 36.7 | 132 |
| Upper West | 94.4 | 82.7 | 65.0 | 61.6 | 77.2 | 58.3 | 59.2 | 63.9 | 39.7 | 30.3 | 98 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 99.4 | 92.5 | 79.6 | 75.9 | 81.3 | 72.9 | 49.7 | 79.9 | 53.4 | 42.3 | 1939 |
| Rural | 97.1 | 83.4 | 73.0 | 67.5 | 69.5 | 61.3 | 43.1 | 70.1 | 36.2 | 30.3 | 1634 |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 98.2 | 87.7 | 75.1 | 70.7 | 74.4 | 67.4 | 48.9 | 73.1 | 43.0 | 34.5 | 1899 |
| 20-24 | 98.5 | 89.1 | 78.3 | 73.6 | 77.7 | 67.7 | 44.1 | 78.0 | 48.4 | 39.4 | 1674 |
| Marital status |  |  |  |  |  |  |  |  |  |  |  |
| Ever married/ in union | 97.3 | 84.9 | 77.1 | 70.8 | 70.2 | 57.5 | 36.8 | 70.2 | 33.6 | 28.6 | 986 |
| Never <br> married/in <br> union | 98.7 | 89.7 | 76.4 | 72.5 | 78.1 | 71.4 | 50.4 | 77.4 | 50.1 | 39.9 | 2587 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 88.2 | 69.0 | 56.1 | 50.3 | 58.0 | 39.5 | 32.1 | 47.3 | 16.6 | 11.4 | 286 |
| Primary | 97.0 | 84.0 | 69.7 | 64.9 | 67.7 | 52.2 | 32.4 | 56.9 | 23.8 | 20.5 | 610 |
| Middle/sss | 99.6 | 89.8 | 79.6 | 74.7 | 74.8 | 68.6 | 46.4 | 78.0 | 44.3 | 36.0 | 1767 |
| Secondary + | 100.0 | 94.6 | 81.7 | 78.6 | 89.2 | 84.8 | 61.2 | 91.7 | 71.8 | 57.4 | 909 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 93.5 | 77.6 | 64.1 | 59.5 | 63.1 | 48.7 | 43.6 | 54.1 | 23.8 | 18.2 | 526 |
| Second | 97.9 | 84.3 | 75.1 | 68.6 | 71.1 | 63.7 | 40.1 | 70.2 | 37.6 | 32.5 | 663 |
| Middle | 99.0 | 89.0 | 77.4 | 73.8 | 73.3 | 67.0 | 45.0 | 79.0 | 44.2 | 34.9 | 781 |
| Fourth | 99.6 | 91.0 | 81.0 | 75.8 | 78.9 | 72.7 | 45.3 | 77.6 | 47.1 | 37.7 | 778 |
| Richest | 99.9 | 95.3 | 80.7 | 77.7 | 87.7 | 78.4 | 56.7 | 87.8 | 65.7 | 53.1 | 826 |
| Total | 98.3 | 88.3 | 76.6 | 72.0 | 75.9 | 67.6 | 46.7 | 75.4 | 45.6 | 36.8 | 3573 |

Table HA.2M: Knowledge about HIV transmission, misconceptions about HIV/AIDS, and comprehensive knowledge about HIV transmission among young men
Percentage of young men age $15-24$ years who know the main ways of preventing HIV transmission, percentage who know that a healthy looking person can have the AIDS virus, percentage who reject common misconceptions, and percentage who have comprehensive knowledge about HIV transmission Ghana, 2011

| Background Characteristics | Percentage who have heard of AIDS | Percentage who know transmission can be prevented by: |  | of men who know both ways | person can have the AIDS virus | Percentage who know that HIV cannot be transmitted by: |  |  | Percentage who reject the two most common misconceptions and know that a healthy looking person can have he AIDS virus | Percentage with comprehensive knowledge [1] | Number of men age 15-24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Using a condom every time |  |  | Mosquito bites | Supernatural means | $\begin{gathered} \text { Sharing } \\ \text { food } \\ \text { with } \\ \text { someone } \\ \text { with } \\ \text { AIDS } \end{gathered}$ |  |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 98.8 | 79.8 | 82.7 | 67.9 | 76.6 | 64.7 | 41.6 | 87.6 | 42.2 | 31.3 | 107 |
| Central | 100.0 | 81.8 | 67.9 | 60.7 | 62.7 | 68.0 | 54.7 | 75.2 | 37.1 | 23.1 | 94 |
| Greater Accra | 100.0 | 88.9 | 68.6 | 59.0 | 89.9 | 91.0 | 66.8 | 79.6 | 65.4 | 39.3 | 194 |
| Volta | 99.5 | 89.6 | 82.7 | 80.8 | 83.7 | 73.0 | 76.5 | 70.7 | 51.0 | 43.8 | 87 |
| Eastern | (97.0) | (99.6) | (86.7) | (83.5) | (78.1) | (62.4) | (45.7) | (77.1) | (43.0) | (41.2) | 95 |
| Ashanti | 98.4 | 88.1 | 90.3 | 82.6 | 78.3 | 76.6 | 54.7 | 83.7 | 60.4 | 56.3 | 195 |
| Brong Ahafo | 98.9 | 93.1 | 81.5 | 80.6 | 81.3 | 51.7 | 44.5 | 77.4 | 32.6 | 31.3 | 92 |
| Northern | 92.1 | 85.6 | 75.4 | 72.6 | 69.2 | 54.9 | 66.3 | 63.5 | 37.6 | 29.9 | 86 |
| Upper East | 96.6 | 92.6 | 84.4 | 82.0 | 59.1 | 58.3 | 60.5 | 73.7 | 31.8 | 29.3 | 49 |
| Upper West | 90.3 | 80.4 | 74.7 | 69.0 | 70.6 | 55.2 | 63.2 | 66.3 | 40.9 | 35.2 | 36 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 99.8 | 91.2 | 80.9 | 74.7 | 87.0 | 80.3 | 66.5 | 84.3 | 62.8 | 48.6 | 537 |
| Rural | 96.0 | 83.4 | 78.2 | 71.3 | 67.6 | 58.9 | 47.3 | 70.3 | 33.2 | 27.9 | 499 |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 97.4 | 85.0 | 77.5 | 69.9 | 73.5 | 68.6 | 55.0 | 75.7 | 45.1 | 34.2 | 657 |
| 20-24 | 99.1 | 91.8 | 83.2 | 78.7 | 84.8 | 72.5 | 61.2 | 80.7 | 54.5 | 46.4 | 379 |
| Marital status |  |  |  |  |  |  |  |  |  |  |  |
| Ever married/ in union | 99.7 | 97.8 | 79.1 | 78.1 | 84.2 | 51.1 | 34.9 | 65.7 | 34.1 | 20.1 | 53 |
| Never married/ in union | 97.9 | 86.9 | 79.6 | 72.8 | 77.3 | 71.0 | 58.5 | 78.2 | 49.3 | 39.6 | 983 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 82.1 | 68.8 | 64.7 | 60.7 | 48.3 | 33.6 | 30.3 | 37.7 | 17.2 | 16.7 | 41 |
| Primary | 94.0 | 76.7 | 74.9 | 64.6 | 66.4 | 56.6 | 35.4 | 57.4 | 25.8 | 19.2 | 156 |
| Middle/JSS | 99.3 | 87.9 | 78.1 | 70.6 | 76.1 | 68.7 | 55.7 | 78.4 | 44.1 | 33.2 | 560 |
| Secondary + | 100.0 | 95.2 | 87.3 | 84.5 | 91.3 | 85.5 | 76.5 | 92.8 | 74.7 | 63.5 | 280 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 92.3 | 78.6 | 74.3 | 68.1 | 59.4 | 47.5 | 50.4 | 63.6 | 24.2 | 18.6 | 169 |
| Second | 97.6 | 86.0 | 77.6 | 70.7 | 67.4 | 62.5 | 46.1 | 71.4 | 32.3 | 27.3 | 204 |
| Middle | 100.0 | 89.5 | 87.3 | 80.5 | 83.1 | 70.8 | 59.4 | 80.6 | 54.1 | 46.7 | 246 |
| Fourth | 100.0 | 86.4 | 85.5 | 76.5 | 86.9 | 76.1 | 62.0 | 82.1 | 57.7 | 46.3 | 223 |
| Richest | 98.5 | 95.4 | 69.8 | 66.6 | 86.8 | 89.7 | 66.9 | 87.1 | 69.6 | 49.0 | 193 |
| Total | 98.0 | 87.5 | 79.6 | 73.1 | 77.6 | 70.0 | 57.3 | 77.5 | 48.6 | 38.6 | 1036 |

[1] MICS indicator 9.2 ; MDG indicator 6.3
Figures in parentheses ')' 're based on $25-49$ unweighted cases

Figure HA.1: Percentage of young women and men aged 15-24 years who have a comprehensive knowledge of HIV/AIDS transmission by education background, Ghana, 2011


KNOWLEDGE OF MOTHER TO CHILD TRANSMISSION OF HIV
Knowledge of mother-to-child transmission of HIV is also an important first step for women to seek HIV testing when they are pregnant to avoid infection in the baby. Women should know that HIV can be transmitted during pregnancy, delivery, and through breastfeeding. The level of knowledge among women aged 15-49 years concerning mother-to-child transmission is presented in Table HA.3. Men aged 15-59 years were also interviewed on their knowledge on mother-to child transmission of HIV; the results are presented in Table HA.3M. Overall, 91 percent of both women and men know that HIV can be transmitted from mother to child. However, slight differences exist in the knowledge levels of the three different ways of transmission. 74 percent of women and 76 percent of men know that HIV can be transmitted from mother-to-child during pregnancy. Surprisingly, 72 percent of men are aware that transmission of the virus can occur during delivery compared to 69 percent of women. The results also show that 83 percent of the women, and 80 percent of the men know that HIV can be transmitted from mother-to-child breastfeeding. The percentage of both women and men who know all three ways of mother-to-child transmission is estimated at 57 percent, while 7 percent of women and 8 percent of men did not know of any specific way. Male involvement, knowledge and understanding of mother-to-child transmission are highly relevant in meeting the Universal Access targets in Ghana.

The regional distribution shows that Greater Accra, Central and Volta recorded 94 percent knowledge of mother-tochild transmission for women, the highest in this category. For all regions, a higher proportion of women aged 1549 years know that HIV transmission occurs during breastfeeding than during pregnancy and delivery. Upper East, Brong Ahafo, Northern and Western regions have the highest proportion of women who do not know any of the three specific ways in which a mother can transmit the virus to her child, the highest being 10 percent recorded in Upper East, Northern and Western regions. Volta region has the highest proportion of men who know that HIV can be transmitted from mother-to-child (98\%), while Upper West region has the lowest proportion (82\%). For women aged 15-49 years, little variations are observed by education level and household wealth, while for men aged 15-59 years, and erratic pattern is observed by these background characteristics.

| Table HA.3: Knowledge of mother-to-child HIV transmission <br> Percentage of women age 15-49 years who correctly identify means of HIV transmission from mother to child, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of women who know HIV can be transmitted from mother to child | Percent of women who know HIV can be transmitted: |  |  |  | Does not know any of the specific means | Number of women |
|  |  | $\begin{array}{r} \text { During } \\ \text { pregnancy } \end{array}$ | During delivery | $\begin{array}{r} \text { By } \\ \text { breastfeeding } \end{array}$ | All three means [1] |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 88.4 | 72.4 | 65.0 | 80.8 | 55.2 | 9.7 | 1022 |
| Central | 94.4 | 71.7 | 69.2 | 89.2 | 58.9 | 5.0 | 1044 |
| Greater Accra | 94.4 | 78.6 | 74.5 | 82.5 | 60.0 | 5.6 | 2074 |
| Volta | 94.0 | 75.9 | 71.0 | 86.7 | 58.3 | 5.7 | 821 |
| Eastern | 93.3 | 77.2 | 74.1 | 90.1 | 64.8 | 5.8 | 1237 |
| Ashanti | 92.1 | 75.7 | 65.2 | 83.6 | 52.6 | 7.4 | 1983 |
| Brong Ahafo | 87.0 | 67.9 | 62.7 | 79.3 | 52.0 | 8.9 | 1005 |
| Northern | 79.7 | 63.3 | 58.4 | 73.4 | 49.3 | 9.8 | 754 |
| Upper East | 87.8 | 74.2 | 73.9 | 82.2 | 64.9 | 10.0 | 404 |
| Upper West | 85.4 | 71.7 | 67.1 | 79.0 | 60.1 | 8.8 | 282 |
| Residence |  |  |  |  |  |  |  |
| Urban | 93.1 | 75.3 | 71.0 | 83.8 | 57.8 | 6.2 | 5770 |
| Rural | 88.4 | 72.4 | 65.6 | 82.9 | 56.5 | 8.3 | 4857 |
| Age |  |  |  |  |  |  |  |
| 15-24 | 89.5 | 69.1 | 64.4 | 82.1 | 52.6 | 8.9 | 3573 |
| 15-19 | 87.4 | 67.4 | 60.7 | 81.1 | 50.3 | 10.8 | 1899 |
| 20-24 | 91.8 | 71.0 | 68.6 | 83.3 | 55.2 | 6.7 | 1674 |
| 25-29 | 92.5 | 76.4 | 71.1 | 84.3 | 58.9 | 5.8 | 1768 |
| 30-39 | 92.0 | 75.3 | 70.7 | 83.2 | 58.7 | 6.0 | 3069 |
| 40-49 | 90.9 | 78.0 | 70.2 | 84.7 | 60.9 | 7.1 | 2218 |
| 50-59 | na |
| Marital status |  |  |  |  |  |  |  |
| Ever married/ in union | 91.5 | 75.5 | 70.4 | 84.3 | 59.3 | 6.5 | 7471 |
| Never married/in union | 89.8 | 70.3 | 64.2 | 81.1 | 52.0 | 8.8 | 3156 |
| Education |  |  |  |  |  |  |  |
| None | 84.6 | 70.1 | 64.4 | 78.8 | 55.7 | 8.5 | 2224 |
| Primary | 90.4 | 70.2 | 68.7 | 85.5 | 58.2 | 8.0 | 2026 |
| Middle/JSS | 92.1 | 75.4 | 68.1 | 84.4 | 56.7 | 7.6 | 4328 |
| Secondary + | 96.1 | 78.9 | 73.8 | 83.9 | 58.8 | 3.9 | 2049 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 83.2 | 69.8 | 63.7 | 77.8 | 56.6 | 9.9 | 1659 |
| Second | 88.3 | 71.4 | 65.8 | 83.7 | 56.6 | 8.9 | 1877 |
| Middle | 91.9 | 71.6 | 66.5 | 85.7 | 55.4 | 7.1 | 2101 |
| Fourth | 93.5 | 74.7 | 69.4 | 85.0 | 56.8 | 6.2 | 2345 |
| Richest | 94.8 | 79.6 | 74.3 | 83.2 | 59.6 | 5.1 | 2646 |
| Total | 91.0 | 74.0 | 68.5 | 83.3 | 57.2 | 7.2 | 10627 |
| [1] MIICS indicator 9.3 |  |  |  |  |  |  |  |


| Table HA.3M: Knowledge of mother-to-child HIV transmission <br> Percentage of men age 15-59 years who correctly identify means of HIV transmission from mother to child, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage who know HIV can be transmitted from mother to child | Percent who know HIV can be transmitted: |  |  |  | Does not know any of the specific means | Number of men |
|  |  | $\begin{array}{r} \text { During } \\ \text { pregnancy } \end{array}$ | During delivery | By <br> breastfeeding | All three means [1] |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 90.1 | 76.0 | 65.2 | 75.5 | 52.4 | 9.5 | 352 |
| Central | 95.0 | 74.4 | 74.7 | 87.7 | 60.3 | 5.0 | 296 |
| Greater Accra | 90.5 | 79.4 | 73.2 | 71.9 | 56.0 | 9.5 | 676 |
| Volta | 97.5 | 76.8 | 80.7 | 92.9 | 61.1 | 2.3 | 252 |
| Eastern | 96.8 | 79.9 | 78.2 | 91.2 | 67.2 | 2.4 | 358 |
| Ashanti | 89.7 | 74.5 | 68.7 | 79.7 | 56.8 | 9.8 | 638 |
| Brong Ahafo | 91.5 | 75.3 | 71.1 | 80.2 | 58.0 | 8.0 | 296 |
| Northern | 86.2 | 69.5 | 69.4 | 74.2 | 52.6 | 8.7 | 243 |
| Upper East | 85.0 | 64.9 | 68.0 | 74.8 | 52.1 | 13.4 | 120 |
| Upper West | 81.5 | 66.8 | 58.6 | 70.8 | 48.7 | 12.4 | 91 |
| Residence |  |  |  |  |  |  |  |
| Urban | 92.4 | 76.6 | 72.6 | 77.9 | 55.5 | 7.5 | 1746 |
| Rural | 90.0 | 74.4 | 70.7 | 82.0 | 59.4 | 8.3 | 1575 |
| Age |  |  |  |  |  |  |  |
| 15-24 | 88.7 | 70.9 | 64.8 | 76.6 | 50.7 | 9.3 | 1036 |
| 15-19 | 87.9 | 71.6 | 62.4 | 75.4 | 50.5 | 9.5 | 657 |
| 20-24 | 90.2 | 69.8 | 68.9 | 78.7 | 51.1 | 8.9 | 379 |
| 25-29 | 87.0 | 68.5 | 71.9 | 78.5 | 54.4 | 12.6 | 456 |
| 30-39 | 95.4 | 80.5 | 74.8 | 83.3 | 59.6 | 4.3 | 804 |
| 40-49 | 90.9 | 76.9 | 75.8 | 80.6 | 62.3 | 8.7 | 601 |
| 50-59 | 94.5 | 83.1 | 76.6 | 81.8 | 65.4 | 5.0 | 425 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/in union | 93.4 | 79.1 | 76.5 | 83.2 | 62.4 | 6.3 | 2007 |
| Never married/in union | 88.0 | 70.1 | 64.3 | 74.7 | 49.6 | 10.3 | 1314 |
| Education |  |  |  |  |  |  |  |
| None | 83.8 | 73.3 | 68.0 | 78.6 | 61.2 | 12.7 | 417 |
| Primary | 89.2 | 69.3 | 65.8 | 81.0 | 53.7 | 8.4 | 416 |
| Middle/JSS | 92.0 | 75.8 | 69.8 | 83.3 | 58.6 | 7.7 | 1483 |
| Secondary + | 94.1 | 78.7 | 78.3 | 74.8 | 55.3 | 5.9 | 1006 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 85.7 | 70.9 | 67.2 | 79.0 | 57.2 | 10.5 | 518 |
| Second | 93.4 | 76.0 | 72.0 | 84.2 | 60.1 | 5.6 | 557 |
| Middle | 90.1 | 69.6 | 62.4 | 78.7 | 48.0 | 9.8 | 621 |
| Fourth | 91.6 | 78.6 | 75.0 | 83.3 | 63.5 | 8.4 | 779 |
| Richest | 93.8 | 79.7 | 78.0 | 75.2 | 56.8 | 5.9 | 847 |
| Total | 91.3 | 75.6 | 71.7 | 79.9 | 57.3 | 7.9 | 3321 |
| ${ }^{[1]}$ MICS indicator 9.3 |  |  |  |  |  |  |  |

## Accepting Attitudes toward People Living with HIV \& AIDS (PLHIV)

The indicators on attitudes toward people living with HIV measure stigma and discrimination in the community. Stigma and discrimination are low if respondents report an accepting attitude on the following four questions: 1) would care for a family member sick with AIDS; 2) would buy fresh vegetables from a vendor who was HIV positive; 3) thinks that a female teacher who is HIV positive should be allowed to teach in school; and 4) would not want to keep the HIV status of a family member a secret. Tables HA. 4 and HA.4M presents the attitudes of women aged 15-49 years and men aged 15-59 years towards people living with HIV/AIDS.

In Ghana, 93 percent of women and 95 percent of men who have heard of AIDS agree with at least one discriminatory statement. A higher proportion of men express accepting attitude towards people living with HIV and AIDS (PLHIV), than women. The most common discriminative attitude for both women and men is the rejection of buying fresh vegetables from a person who has HIV and AIDS, "accepting rate" is only 30 percent and 41 percent for women and men respectively. The results also show that 83 percent of men are willing to care for a family member with the AIDS virus in their own home, compared to 73 percent of women, while 63 percent of the men believe that a female teacher with the AIDS virus and is not sick should be allowed to continue teaching, compared to 57 percent of women. Also, nearly half of the men (47\%) would not want to keep secret that a family member is infected with the AIDS virus, compared to 35 percent of the women.

Overall, there are only 6 percent of the women and 15 percent of men who express accepting attitudes towards all four indicators. Women (7\%) and men (20\%) living in urban areas are more likely to express accepting attitudes towards people living with HIV and AIDS, compared to their rural counterparts ( $5 \%$ and $10 \%$ respectively).

Although low, the results also show that the proportion of women and men with accepting attitudes towards PLHIV improves with levels of education and household wealth. For example, only 2 percent of women with no education express accepting attitudes on all four indicators, compared to 12 percent of women with secondary or higher education. The trend is similar for men, where only 5 percent of those with no education express accepting attitudes towards PLHIV on all four indicators. This increases to 13 percent for those with middle/JSS education, and to 26 percent for those with secondary or higher education. In the case of household wealth, 7 percent of men from the poorest households express accepting attitudes on all four indicators. This increases to 26 percent for men belonging to the wealthiest households. The disaggregated data by age shows that the group with the highest level of accepting attitudes is the 25-29 age group for women (9\%), and 30-39 age group for men (18\%), and those with least accepting attitude is the 40-49 age-group for women (5\%), and 15-19 age group for men (13\%).

The low levels of accepting attitudes towards people living with HIV and AIDS, requires sensitization strategies to increase accepting attitudes, and to encourage care and support to those infected by HIV. According to the Ghana AIDS Commission, this includes developing programmes to educate on modes of transmission and how to prevent HIV infection, to debunk common misconceptions of the disease, and to promote regular HIV testing.

| Table HA.4: Accepting attitudes toward people living with HIV/AIDS <br> Percentage of women age 15-49 years who have heard of AIDS who express an accepting attitude towards people living with HIV/AIDS, |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | Percent of women who: |  |  |  |  |  |  |
| Background Characteristics | Are willing to care for a family member with the AIDS virus in own home |  | Believe that female teacher with the AIDS virus and is not sick should be allowed to continue teaching | Would not want to keep secret that a family member got infected with the AIDS virus | Agree with at least one accepting attitude | Express accepting attitudes on all four indicators [1] |  |
| Region |  |  |  |  |  |  |  |
| Western | 49.4 | 19.6 | 46.6 | 46.6 | 87.1 | 5.0 | 1002 |
| Central | 70.7 | 26.1 | 57.2 | 36.8 | 91.9 | 5.1 | 1038 |
| Greater Accra | 73.0 | 37.7 | 70.5 | 28.6 | 93.9 | 8.6 | 2074 |
| Volta | 72.7 | 21.1 | 43.1 | 55.5 | 93.8 | 7.7 | 818 |
| Eastern | 75.7 | 35.8 | 53.5 | 26.2 | 92.7 | 4.6 | 1226 |
| Ashanti | 78.5 | 35.2 | 58.0 | 32.7 | 93.8 | 7.7 | 1972 |
| Brong Ahafo | 80.8 | 29.0 | 58.2 | 25.5 | 93.0 | 3.7 | 964 |
| Northern | 63.5 | 16.4 | 46.2 | 51.2 | 92.6 | 4.0 | 675 |
| Upper East | 84.8 | 26.9 | 57.4 | 34.8 | 96.5 | 6.2 | 396 |
| Upper West | 75.7 | 27.9 | 56.7 | 38.5 | 92.5 | 6.6 | 266 |
| Residence |  |  |  |  |  |  |  |
| Urban | 76.1 | 35.9 | 64.8 | 31.6 | 94.2 | 7.3 | 5733 |
| Rural | 68.0 | 22.7 | 47.0 | 40.1 | 91.0 | 5.1 | 4698 |
| Age |  |  |  |  |  |  |  |
| 15-24 | 71.4 | 29.9 | 56.9 | 31.8 | 90.8 | 6.5 | 3513 |
| 15-19 | 67.3 | 26.8 | 53.8 | 30.3 | 88.6 | 5.5 | 1864 |
| 20-24 | 76.1 | 33.5 | 60.5 | 33.4 | 93.3 | 7.7 | 1649 |
| 25-29 | 74.5 | 35.3 | 60.5 | 38.9 | 94.8 | 8.7 | 1738 |
| 30-39 | 72.9 | 30.3 | 56.1 | 35.5 | 93.4 | 5.5 | 3007 |
| 40-49 | 71.9 | 25.3 | 54.6 | 38.3 | 93.5 | 5.1 | 2173 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/in union | 71.9 | 28.2 | 54.7 | 37.5 | 93.2 | 5.7 | 7319 |
| Never married/in union | 73.8 | 34.2 | 61.7 | 30.5 | 91.8 | 7.8 | 3112 |
| Education |  |  |  |  |  |  |  |
| None | 64.0 | 14.5 | 39.9 | 45.2 | 91.2 | 2.4 | 2073 |
| Primary | 66.1 | 19.6 | 44.3 | 37.5 | 90.0 | 4.1 | 1994 |
| Middle/SSS | 73.6 | 31.1 | 58.4 | 32.5 | 92.5 | 6.2 | 4315 |
| Secondary + | 84.8 | 53.3 | 82.7 | 29.6 | 97.8 | 12.4 | 2048 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 64.3 | 14.7 | 37.4 | 45.9 | 90.7 | 2.5 | 1544 |
| Second | 66.0 | 21.0 | 45.1 | 40.0 | 90.3 | 4.7 | 1824 |
| Middle | 68.9 | 25.5 | 50.5 | 37.9 | 91.7 | 4.7 | 2078 |
| Fourth | 75.4 | 32.6 | 61.1 | 29.9 | 91.9 | 6.9 | 2339 |
| Richest | 81.8 | 46.2 | 77.3 | 29.1 | 97.4 | 10.2 | 2646 |
| Total | 72.5 | 30.0 | 56.8 | 35.4 | 92.8 | 6.3 | 10431 |
| [1] MICS indicator 9.4 |  |  |  |  |  |  |  |


| Table HA.4M: Accepting attitudes toward people living with HIV/AIDS <br> Percentage of men age 15-59 years who have heard of AIDS who express an accepting attitude towards people living with HIV/AIDS, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percent of men who: |  |  |  |  |  |  |
| Background Characteristics | Are willing to care for a family member with the AIDS virus in own home | Wouldbuy fresh <br> vegetables <br> from ashopkeper orvendor whohas the AlISvirus | Believe that a female teacher with the AIDS virus and is not sick should be allowed to continue teaching | Would not want to keep secret that a family member got infected with the AIDS virus | Agree with at least one accepting attitude | $\begin{array}{r} \text { Express } \\ \text { accepting } \\ \text { attitudes } \\ \text { on all four } \\ \text { indicators [1] } \end{array}$ | Number of men who have heard of AIDS |
| Region |  |  |  |  |  |  |  |
| Western | 68.5 | 29.8 | 53.9 | 58.5 | 91.5 | 13.6 | 351 |
| Central | 74.8 | 35.0 | 61.7 | 51.7 | 92.6 | 14.0 | 296 |
| Greater Accra | 85.9 | 52.5 | 72.8 | 46.5 | 95.8 | 21.1 | 676 |
| Volta | 91.4 | 29.5 | 43.0 | 22.5 | 95.4 | 3.4 | 252 |
| Eastern | 77.8 | 47.1 | 62.7 | 58.7 | 96.3 | 20.8 | 355 |
| Ashanti | 86.2 | 40.8 | 69.1 | 41.7 | 97.4 | 13.9 | 634 |
| Brong Ahafo | 80.8 | 38.9 | 64.8 | 42.3 | 93.8 | 12.8 | 295 |
| Northern | 86.1 | 36.2 | 53.4 | 46.9 | 94.6 | 13.4 | 230 |
| Upper East | 91.2 | 31.6 | 62.4 | 50.6 | 97.9 | 12.0 | 118 |
| Upper West | 89.2 | 44.5 | 70.6 | 54.4 | 98.6 | 19.6 | 85 |
| Residence |  |  |  |  |  |  |  |
| Urban | 86.3 | 49.0 | 72.8 | 46.9 | 96.5 | 20.2 | 1744 |
| Rural | 78.2 | 31.1 | 52.5 | 46.6 | 93.9 | 9.6 | 1548 |
| Age |  |  |  |  |  |  |  |
| 15-24 | 79.5 | 36.4 | 61.6 | 52.0 | 94.6 | 13.7 | 1015 |
| 15-19 | 76.0 | 29.4 | 56.7 | 55.1 | 92.6 | 13.1 | 640 |
| 20-24 | 85.3 | 48.4 | 69.9 | 46.6 | 98.0 | 14.8 | 375 |
| 25-29 | 85.2 | 43.5 | 64.6 | 40.1 | 97.6 | 14.0 | 453 |
| 30-39 | 84.9 | 45.0 | 64.8 | 45.2 | 96.1 | 17.5 | 802 |
| 40-49 | 81.9 | 37.8 | 60.1 | 48.3 | 94.6 | 14.7 | 598 |
| 50-59 | 83.0 | 43.2 | 66.9 | 42.4 | 93.8 | 16.8 | 423 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/in union | 82.6 | 40.3 | 62.1 | 45.2 | 95.1 | 15.2 | 2000 |
| Never married/in union | 82.3 | 41.0 | 64.9 | 49.2 | 95.5 | 15.4 | 1292 |
| Education |  |  |  |  |  |  |  |
| None | 74.8 | 17.1 | 41.7 | 45.4 | 90.2 | 4.9 | 402 |
| Primary | 70.1 | 22.4 | 42.9 | 47.0 | 92.7 | 6.5 | 406 |
| Middle/JSS | 81.9 | 36.1 | 60.5 | 47.4 | 94.5 | 13.1 | 1478 |
| Secondary + | 91.4 | 63.9 | 84.0 | 46.3 | 99.5 | 26.0 | 1006 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 77.3 | 22.9 | 43.0 | 48.2 | 93.0 | 7.1 | 498 |
| Second | 75.3 | 26.9 | 49.9 | 42.1 | 91.0 | 7.7 | 551 |
| Middle | 82.3 | 39.2 | 59.0 | 47.2 | 96.3 | 11.8 | 620 |
| Fourth | 83.5 | 43.8 | 68.6 | 47.1 | 94.7 | 17.4 | 779 |
| Richest | 89.4 | 58.1 | 82.0 | 48.4 | 99.2 | 25.5 | 844 |
| Total | 82.5 | 40.6 | 63.2 | 46.8 | 95.3 | 15.2 | 3292 |
| [1] MICS indicator 9.4 |  |  |  |  |  |  |  |

Knowledge of a Place for HIV Testing, Counselling and Testing during Antenatal Care
Another important indicator is the knowledge of where to be tested for HIV and use of such services. In order to protect themselves and to prevent infecting others, it is important for individuals to know their HIV status. Knowledge of one's status is also a critical factor in the decision to seek treatment. Questions related to knowledge among women and men of a facility for HIV testing and whether they have ever been tested is presented in Table HA.5. The results show that 74 percent of women aged 15-49 years, and 73 percent of men knew where to get tested, while only 45 percent of women and 26 percent of men have actually ever been tested.

Within the last 12 months less than 20 percent (19\%) of women aged 15-49 years have been tested for HIV, and 17 percent have been told their results. Comparatively, only 11 percent of men have been tested for HIV within the past 12 months, and 10 percent have been told their results. The level of education is associated with HIV testing - the more educated the women, the higher the testing rates. For example, as indicated in Table HA.5M, only 11 percent of women aged 15-49 years with no education have been tested in the last 12 months and have been told their results. This increases to 17 percent for those with Middle/JSS education, and to 24 percent for those with secondary or higher education. The highest testing rate within the past 12 months occurred in the 25-29 years age- group for women (27\%) and 25-29 and 30-39 years age-groups for men (13\%). Women in the Eastern region (52\%) and men in the Greater Accra region (32\%) are more likely to have ever been tested for HIV. Women in the Eastern region are also more likely to have been tested in the last 12 months and received their results (21\%), while women in the Northern region are least likely to have been tested in the last 12 months and received their results ( $9 \%$ ).

From Tables HA. 5 and HA. 5 M, we can see that significant variations exist in the testing rates for women and men. In general, it can be inferred that more women in Ghana test for HIV than men. This could be attributed to the fact that majority of women attend antenatal clinics when pregnant and receive HIV counselling and testing through the Provider Initiated Routine Testing (PIROT) program. However, a closer look at the data reveals that more women than men in the younger age-groups receive HIV testing and counselling, indicating that ANC may not be the only factor accounting for the higher testing rates in women.

Table HA.5: Knowledge of a place for HIV testing
Percentage of women age 15-49 years who know where to get an HIV test, percentage of women who have ever been tested, percentage of women who have been tested in the last 12 months, and percentage of women who have been tested and have

| Background Characteristics | Percentage of women who: |  |  |  | Number ofwomen |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Know a place to get tested [1] | Have ever been tested | Have been tested in the last 12 months | Have been tested in the last 12 months and have been told result [2] |  |
| Region |  |  |  |  |  |
| Western | 62.1 | 38.0 | 15.1 | 12.6 | 1022 |
| Central | 76.4 | 46.0 | 21.1 | 19.2 | 1044 |
| Greater Accra | 90.7 | 49.0 | 17.8 | 16.6 | 2074 |
| Volta | 79.0 | 49.9 | 22.8 | 18.5 | 821 |
| Eastern | 83.6 | 52.2 | 21.4 | 20.5 | 1237 |
| Ashanti | 70.7 | 46.0 | 21.6 | 19.6 | 1983 |
| Brong Ahafo | 62.5 | 39.4 | 16.7 | 15.5 | 1005 |
| Northern | 49.4 | 29.2 | 10.8 | 8.7 | 754 |
| Upper East | 66.4 | 42.7 | 15.4 | 10.7 | 404 |
| Upper West | 71.3 | 51.4 | 20.0 | 17.3 | 282 |
| Area |  |  |  |  |  |
| Urban | 81.5 | 47.9 | 20.4 | 18.9 | 5770 |
| Rural | 65.2 | 41.7 | 16.8 | 14.2 | 4857 |
| Age |  |  |  |  |  |
| 15-24 | 66.4 | 30.8 | 14.2 | 12.3 | 3573 |
| 15-19 | 54.1 | 15.8 | 7.9 | 6.4 | 1899 |
| 20-24 | 80.3 | 47.8 | 21.3 | 19.1 | 1674 |
| 25-29 | 85.0 | 61.3 | 26.9 | 24.5 | 1768 |
| 30-39 | 78.5 | 55.6 | 22.9 | 20.6 | 3069 |
| 40-49 | 71.5 | 40.4 | 13.9 | 12.4 | 2218 |
| Marital status |  |  |  |  |  |
| Ever married/in union | 77.0 | 53.5 | 22.2 | 19.6 | 7471 |
| Never married/in union | 67.2 | 25.0 | 10.7 | 10.1 | 3156 |
| Education |  |  |  |  |  |
| None | 58.3 | 36.7 | 14.4 | 11.4 | 2224 |
| Primary | 67.9 | 45.4 | 18.6 | 16.3 | 2026 |
| Middle/JSS | 76.4 | 45.1 | 18.4 | 16.5 | 4328 |
| Secondary + | 92.2 | 53.5 | 24.5 | 23.5 | 2049 |
| Wealth index quintiles |  |  |  |  |  |
| Poorest | 52.0 | 31.3 | 10.6 | 7.7 | 1659 |
| Second | 64.3 | 40.4 | 16.2 | 13.3 | 1877 |
| Middle | 74.1 | 45.9 | 20.8 | 18.5 | 2101 |
| Fourth | 79.8 | 49.0 | 19.6 | 18.2 | 2345 |
| Richest | 89.7 | 52.7 | 23.3 | 22.2 | 2646 |
| Total | 74.0 | 45.0 | 18.8 | 16.8 | 10627 |
| 1] MICS indicator 9.5 [2] MICS indicator 9.6 |  |  |  |  |  |

Table HA.5M: Knowledge of a place for HIV testing
Percentage of men age 15 -59 years who know where to get an HIV test, percentage of men who have ever been tested, percentage of men who have been tested in the last 12 months, and percentage of men who have been tested and have been told the result, Ghana, 2011

|  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Tables HA. 6 and HA>6M present the same results for sexually active young women and men aged 15-24 years. The proportion of young people who have been tested and have been told the result provides a measure of the effectiveness of interventions that promote HIV counselling and testing among young people. This is important to know, because young people may feel that there are barriers to accessing services related to sensitive issues, such as sexual health

The results show that 54 percent of young women and 32 percent of young men had had sex within the past 12 months. The highest percentages of sexually active young women are in Western (65\%), Eastern (58\%) and Volta (58\%) regions, while the highest percentages of sexually active young men can be found in the Eastern region (44\%). Overall, of those sexually active young people, 75 percent of women, and 68 percent of men know where to get tested, while 43 percent of the women and 18 percent of the men have ever been tested for HIV. Within the past 12 months, 20 percent of young women got tested and 17 percent received their results. The results for women are higher, as only 10 percent of young men had been tested in the last 12 months, and only 8 percent received their results.

For young women, it is worth noting that knowledge of where to get tested is high among regions with high sexual activity except Western which recorded the lowest knowledge level ( $55 \%$ ). There is a slight difference between urban and rural young women: women from urban areas are more likely ( $20 \%$ ) to have been tested and to have received the results in the last 12 months than women from rural areas (15\%). This difference does not exist among young men. As expected, there is a direct relationship between the proportion of young women who were tested for HIV in the last 12 months and received their results and their education levels and household wealth. For example, only 8 percent of young women from the poorest households got tested in the last 12 months and received their results, compared to 23 percent of the women in the wealthiest households. The same pattern is observed by levels of education. However, for young men, this cannot be sufficiently concluded due to the small numbers in the sample for some of the background characteristics.

| Table HA.6: Knowledge of a place for HIV testing among sexually active young women Percentage of women age 15-24 years who have had sex in the last 12 months, and among women who have had sex in the last 12 months, the percentage who know where to get an HIV test, percentage of women who have ever been tested, percentage of women who have been tested in the last 12 months, and percentage of women who have been tested and have been told the result, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage who have had sex in the last 12 months | Number of women age 15-24 years | Percentage of women who: |  |  |  | Number of 15-24 years who have had sex in the last 12 months |
|  |  |  | Know a place to get tested | $\begin{array}{r} \text { Have } \\ \text { ever been } \\ \text { tested } \end{array}$ | Have been tested in the last 12 months | Have been tested in the last 12 months and have been told result |  |
| Region |  |  |  |  |  |  |  |
| Western | 65.1 | 329 | 55.0 | 34.4 | 14.4 | 11.2 | 214 |
| Central | 51.7 | 379 | 81.1 | 41.4 | 21.5 | 19.8 | 196 |
| Greater Accra | 51.4 | 632 | 95.0 | 47.6 | 21.9 | 19.6 | 325 |
| Volta | 58.0 | 272 | 77.7 | 47.5 | 19.4 | 14.2 | 158 |
| Eastern | 58.2 | 398 | 85.0 | 52.0 | 28.1 | 24.6 | 232 |
| Ashanti | 56.5 | 718 | 71.5 | 46.5 | 18.2 | 16.4 | 406 |
| Brong Ahafo | 54.4 | 396 | 62.8 | 36.6 | 20.6 | 17.7 | 215 |
| Northern | 48.2 | 219 | 46.7 | 22.7 | 9.3 | 7.0 | 106 |
| Upper East | 34.7 | 132 | 75.3 | 45.4 | 24.1 | 17.9 | 46 |
| Upper West | 39.8 | 98 | 78.9 | 54.0 | 26.1 | 23.0 | 39 |
| Residence |  |  |  |  |  |  |  |
| Urban | 49.4 | 1939 | 81.1 | 43.0 | 21.3 | 19.6 | 959 |
| Rural | 59.8 | 1634 | 68.3 | 43.6 | 18.9 | 15.1 | 977 |
| Age |  |  |  |  |  |  |  |
| 15-19 | 33.7 | 1899 | 60.1 | 25.7 | 14.1 | 10.6 | 639 |
| 20-24 | 77.5 | 1674 | 81.8 | 52.0 | 23.1 | 20.6 | 1297 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/in union | 93.6 | 986 | 77.3 | 60.8 | 28.9 | 23.7 | 923 |
| Never married/ <br> in union | 39.2 | 2587 | 72.2 | 27.4 | 12.1 | 11.5 | 1013 |
| Education |  |  |  |  |  |  |  |
| None | 70.5 | 286 | 50.2 | 35.6 | 15.8 | 10.9 | 202 |
| Primary | 56.7 | 610 | 64.7 | 40.3 | 18.7 | 16.2 | 346 |
| Middle/JSS | 51.1 | 1767 | 76.0 | 46.6 | 22.2 | 18.8 | 902 |
| Secondary + | 53.4 | 909 | 89.4 | 42.5 | 19.0 | 17.9 | 486 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 54.6 | 526 | 50.0 | 32.6 | 13.6 | 8.0 | 287 |
| Second | 58.8 | 663 | 68.3 | 39.4 | 18.6 | 15.3 | 390 |
| Middle | 59.2 | 781 | 77.8 | 46.6 | 20.8 | 17.9 | 462 |
| Fourth | 53.7 | 778 | 80.3 | 43.6 | 21.1 | 19.7 | 418 |
| Richest | 45.9 | 826 | 89.8 | 51.1 | 24.6 | 23.1 | 379 |
| Total | 54.2 | 3573 | 74.6 | 43.3 | 20.1 | 17.3 | 1936 |
| [1] MICS indicator 9.7 |  |  |  |  |  |  |  |


| Table HA.6M: Knowledge of a place for HIV testing among sexually active young men <br> Percentage of men age 15-24 years who have had sex in the last 12 months, and among men who have had sex in the last 12 months, the percentage who know where to get an HIV test, percentage of men who have ever been tested, percentage of men who have been tested in the last 12 months, and percentage of men who have been tested and have been told the result, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage who have had sex in the last 12 months | Number of men age 1524 years | Percentage of men who: |  |  |  | Number of men age 1524 years who have had sex in the last 12 months |
|  |  |  | Know a place to get tested | Have ever been tested | Have been tested in the last 12 months | Have been tested in the last 12 months and have been told result [1] |  |
| Region |  |  |  |  |  |  |  |
| Western | 24.3 | 107 | * | * | * | * | 26 |
| Central | 39.5 | 94 | 76.3 | 18.1 | 9.2 | 9.2 | 37 |
| Greater Accra | 26.8 | 194 | * | * | * | * | 52 |
| Volta | 37.5 | 87 | * | * | * | * | 32 |
| Eastern | (44.3) | 95 | * | * | * | * | 42 |
| Ashanti | 37.6 | 195 | (65.0) | (16.4) | (16.4) | (10.3) | 73 |
| Brong Ahafo | 34.0 | 92 | * | * | * | * | 31 |
| Northern | 20.8 | 86 | (59.7) | (23.6) | (12.8) | (9.1) | 18 |
| Upper East | 23.4 | 49 | (74.1) | (30.3) | (11.3) | (5.9) | 11 |
| Upper West | 25.8 | 36 | (77.2) | (20.6) | (14.4) | (14.4) | 9 |
| Residence |  |  |  |  |  |  |  |
| Urban | 34.0 | 537 | 74.7 | 17.1 | 10.0 | 8.3 | 182 |
| Rural | 30.2 | 499 | 59.4 | 17.9 | 10.7 | 8.5 | 151 |
| Age of man |  |  |  |  |  |  |  |
| 15-19 | 17.2 | 657 | 59.9 | 9.7 | 1.5 | 0.9 | 113 |
| 20-24 | 58.2 | 379 | 71.8 | 21.4 | 14.8 | 12.2 | 220 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/in union | 96.4 | 53 | (63.1) | (9.7) | (8.8) | (8.8) | 51 |
| Never married/in union | 28.8 | 983 | 68.6 | 18.8 | 10.6 | 8.3 | 283 |
| Education |  |  |  |  |  |  |  |
| None | 37.3 | 41 | (48.2) | (18.1) | (13.8) | (9.0) | 15 |
| Primary | 22.4 | 156 | (41.8) | (3.3) | (2.5) | (2.5) | 35 |
| Middle/JSs | 27.7 | 560 | 60.4 | 17.5 | 10.0 | 8.5 | 155 |
| Secondary + | 45.9 | 280 | 85.9 | 21.1 | 12.4 | 9.7 | 129 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 24.1 | 169 | 51.8 | 17.5 | 10.1 | 3.7 | 41 |
| Second | 29.0 | 204 | 67.8 | 17.1 | 11.3 | 10.1 | 59 |
| Middle | 33.6 | 246 | 66.5 | 14.6 | 11.0 | 10.2 | 83 |
| Fourth | 42.5 | 223 | 65.8 | 20.2 | 10.9 | 10.9 | 95 |
| Richest | 28.9 | 193 | (84.7) | (17.4) | (7.4) | (2.9) | 56 |
| Total | 32.2 | 1036 | 67.8 | 17.5 | 10.3 | 8.4 | 333 |
| [1] MICS indicator 9.7 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |  |

Among women who had given birth within the two years preceding the survey, the percent who received counselling and HIV testing during antenatal care is presented in Table HA.7. Testing and counselling during pregnancy is an important component of elimination of mother-to-child transmission (eMTCT), and more so if the desire is to attain the MDG's and Ghana's target of having a generation free of HIV as stipulated by the UNAIDS in its targets 'getting to Zero new HIV infections'.

A high proportion of women aged 15-49 that gave birth in the 2 years preceding the survey received antenatal care from a health care professional for the last pregnancy ( $96 \%$ ). Less than 60 percent received routine HIV counselling during the antenatal care, and two thirds (67\%) were offered an HIV test and were tested for HIV during antenatal care. Slightly more than half (55\%) of the women were offered an HIV test and were tested for HIV during antenatal care, and received the results. The results show that overall, 46 percent of the women who received HIV counselling were offered an HIV test, accepted and were tested, and received the results during antenatal care. This relatively low coverage might be due to communication pitfalls between providers and clients when these tests are requested and done.

Greater Accra (79\%), Upper East (71\%), Upper West (70\%) and Eastern regions (68\%) have the highest proportions of women that received HIV counselling during antenatal care, while Northern region (36\%) and Volta (39\%) have the lowest proportions. For women who were offered an HIV test, and were tested for HIV during antenatal care, and received the results, the highest proportion can be found in Eastern region (81\%), while Northern region has the lowest (27\%).

A mother who knows early in her pregnancy that she is HIV infected has more time to make important decisions. She and her health care provider will have more time to decide on effective ways to protect her health and prevent mother-to-child transmission of HIV. She can also take steps to prevent infecting others with HIV.

Table HA.7: HIV counselling and testing during antenatal care
Among women age 15-49 who gave birth in the last 2 years, percentage of women who received antenatal care from a health professional during the last pregnancy, percentage who received HIV counseling, percentage who were offered and accepted an HIV

| Background Characteristics | Percent of women who: |  |  |  |  | Number of women who gave birth in the $\mathbf{2}$ years preceding the survey |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Received antenatal care from a health care professional for last pregnancy | Received HIV counseling during antenatal care [1] | Were offered an HIV test and were tested for HIV during antenatal care | Were offered an HIV test and were tested for HIV during antenatal care, and received the results [2] | Received HIV counseling, were offered an HIV test, accepted and received the results |  |
| Region |  |  |  |  |  |  |
| Western | 95.0 | 56.2 | 53.6 | 48.6 | 43.2 | 270 |
| Central | 96.0 | 61.6 | 63.1 | 55.7 | 46.9 | 246 |
| Greater Accra | 98.5 | 78.5 | 85.2 | 75.8 | 67.9 | 397 |
| Volta | 97.2 | 38.8 | 62.5 | 36.6 | 23.1 | 189 |
| Eastern | 96.3 | 68.1 | 87.4 | 80.7 | 63.9 | 288 |
| Ashanti | 98.6 | 59.2 | 69.7 | 51.3 | 40.6 | 449 |
| Brong Ahafo | 97.0 | 48.3 | 55.7 | 46.1 | 38.3 | 227 |
| Northern | 90.4 | 36.1 | 38.2 | 26.8 | 23.3 | 283 |
| Upper East | 98.9 | 70.6 | 74.5 | 49.9 | 47.9 | 105 |
| Upper West | 92.9 | 70.4 | 68.7 | 61.4 | 54.5 | 75 |
| Residence |  |  |  |  |  |  |
| Urban | 98.0 | 69.6 | 79.3 | 67.9 | 57.1 | 1068 |
| Rural | 95.2 | 51.0 | 57.4 | 44.8 | 37.3 | 1460 |
| Age |  |  |  |  |  |  |
| 15-24 | 96.0 | 56.3 | 62.9 | 48.5 | 40.0 | 620 |
| 15-19 | 96.9 | 50.3 | 59.3 | 42.5 | 31.2 | 156 |
| 20-24 | 95.7 | 58.4 | 64.1 | 50.5 | 43.0 | 464 |
| 25-29 | 98.3 | 61.9 | 69.6 | 59.6 | 52.8 | 641 |
| 30-39 | 96.3 | 60.4 | 69.9 | 58.2 | 47.0 | 1040 |
| 40-49 | 92.2 | 50.3 | 53.5 | 40.7 | 35.2 | 227 |
| Marital status |  |  |  |  |  |  |
| Ever married/in union | 96.4 | 58.4 | 66.7 | 54.3 | 45.1 | 2353 |
| Never married/ <br> in union | 95.3 | 65.0 | 65.7 | 58.2 | 54.1 | 175 |
| Education |  |  |  |  |  |  |
| None | 92.9 | 45.6 | 47.1 | 34.9 | 30.2 | 733 |
| Primary | 96.5 | 56.2 | 68.1 | 52.4 | 43.9 | 565 |
| Middle/JSS | 97.7 | 67.2 | 74.0 | 63.0 | 53.4 | 886 |
| Secondary + | 100.0 | 70.0 | 86.7 | 78.3 | 61.9 | 344 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 92.4 | 41.7 | 43.5 | 29.4 | 26.3 | 560 |
| Second | 94.2 | 54.7 | 58.1 | 46.7 | 39.2 | 546 |
| Middle | 98.1 | 57.1 | 69.1 | 55.0 | 41.0 | 500 |
| Fourth | 98.2 | 68.1 | 81.3 | 67.1 | 58.2 | 455 |
| Richest | 100.0 | 77.2 | 87.5 | 81.5 | 69.4 | 467 |
| Total | 96.4 | 58.9 | 66.6 | 54.6 | 45.7 | 2528 |
| [1] MICS indicator 9.8 [2] MICS indicator 9.9 |  |  |  |  |  |  |

Sexual Behaviour Related to HIV Transmission
Promoting safer sexual behaviour is critical for reducing HIV prevalence. The correct and consistent use of condoms during sex, especially with non-regular partners, is especially important for reducing the spread of HIV. In most countries, over half of new HIV infections are among young people aged 15-24 years thus a change in behaviour among this age group will be especially important to reduce new infections. A module of questions was administered to women aged 15-24 years to assess their risk of HIV infection. Risk factors for HIV include sex at an early age, sex with older men, sex with a non-marital, non-cohabitating partner, and failure to use a condom. Similar questions were also asked of men aged 15-24.

The frequencies of sexual behaviours that increases the risk of HIV infection among women are presented in Table HA. 8 and Figure HA.2. The results from the survey show that more than half of the never married young women $(52 \%)$ and 61 percent of never married young men have never had sex. About 10 percent of all young women and 5 percent of all young men aged 15-24 years had sex before age 15 years. The highest proportion (18\%) was recorded among young women with primary education. In terms of household economic status, young women from the 40 percent poorest households are more likely to have had sex before age $15(14 \%)$, compared to their counterparts from the richest wealth quintile (4\%).

Intergenerational sex is relatively high among young women aged 15-24 years - 12 percent of young women had sex with a man at least 10 years older in the 12 months preceding the survey. This situation may partly account for the high numbers of new infections among the youth and especially young women in Ghana. The relatively weak and maturing vagina lining (mucosa), decreased the ability of younger women to negotiate for safer sex with older men and the argument that older men have higher HIV prevalence than their adolescent counterparts play critical role in increasing their vulnerabilities. Among the young men aged 15-24 years who had sex in the 12 months preceding the survey, virtually none had sex with a woman 10 or more years older.

Table HA.8: Sexual behaviour that increases the risk of HIV infection
Percentage of never-married young women age 15-24 years who have never had sex, percentage of young women age 15-24 years who have had sex before age 15 , and percentage of young women age $15-24$ years who had sex with a man/man 10 or

| more years older during the last 12 months, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of nevermarried women age 15-24 years who have never had sex [1] | Number of never-married women age $15-24$ years | Percentage of women age 15-24 Background Characteristics years who had sex before age 15 [2] | Number of women age 1524 years | Percentage of women age 1524 years who had sex in the last 12 months with a man 10 or more years older [3] | Number of women age 15-24 years who had sex in the 12 months preceding the survey |
| Region |  |  |  |  |  |  |
| Western | 39.4 | 224 | 19.0 | 329 | 8.7 | 214 |
| Central | 47.7 | 296 | 10.3 | 379 | 7.9 | 196 |
| Greater Accra | 49.2 | 524 | 5.2 | 632 | 7.1 | 325 |
| Volta | 52.6 | 170 | 12.5 | 272 | 16.8 | 158 |
| Eastern | 52.8 | 281 | 8.7 | 398 | 10.9 | 232 |
| Ashanti | 56.0 | 465 | 8.1 | 718 | 12.1 | 406 |
| Brong Ahafo | 48.4 | 315 | 14.9 | 396 | 15.1 | 215 |
| Northern | 63.2 | 141 | 8.6 | 219 | 27.9 | 106 |
| Upper East | 76.0 | 99 | 4.2 | 132 | 17.0 | 46 |
| Upper West | 69.6 | 73 | 4.3 | 98 | 18.1 | 39 |
| Residence |  |  |  |  |  |  |
| Urban | 51.3 | 1559 | 6.0 | 1939 | 10.8 | 959 |
| Rural | 53.7 | 1028 | 14.2 | 1634 | 13.5 | 977 |
| Age |  |  |  |  |  |  |
| 15-19 | 66.0 | 1743 | 10.1 | 1899 | 6.6 | 639 |
| 20-24 | 24.0 | 844 | 9.3 | 1674 | 14.9 | 1297 |
| Marital status |  |  |  |  |  |  |
| Ever married/in union | na | na | 17.5 | 986 | 20.3 | 923 |
| Never married/in union | 52.3 | 2587 | 6.8 | 2587 | 4.7 | 1013 |
| Education |  |  |  |  |  |  |
| None | 53.0 | 102 | 15.1 | 286 | 24.7 | 202 |
| Primary | 62.1 | 371 | 17.7 | 610 | 14.6 | 346 |
| Middle/SSS | 56.4 | 1319 | 9.3 | 1767 | 10.8 | 902 |
| Secondary + | 40.9 | 795 | 3.4 | 909 | 7.7 | 486 |
| Wealth index quintiles |  |  |  |  |  |  |
| Poorest | 61.4 | 318 | 14.4 | 526 | 17.1 | 287 |
| Second | 49.7 | 482 | 13.6 | 663 | 13.4 | 390 |
| Middle | 49.3 | 518 | 10.2 | 781 | 10.9 | 462 |
| Fourth | 49.7 | 583 | 8.9 | 778 | 9.8 | 418 |
| Richest | 54.3 | 687 | 3.8 | 826 | 11.1 | 379 |
| Total | 52.3 | 2587 | 9.7 | 3573 | 12.1 | 1936 |
| [1] MICS indicator 9.10 |  |  |  |  |  |  |
| [2] MICS indicator 9.11 [3] MICS indicator 9.12 na: Not applicable |  |  |  |  |  |  |


| Table HA.8M: Sexual behaviour that increases the risk of HIV infection <br> Percentage of never-married young men age $15-24$ years who have never had sex, percentage of young men age $15-24$ years who have had sex before age 15 , and percentage of young men age $15-24$ years who had sex with a woman 10 or more years older during the last 12 months, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of never-married men age 15-24 years who have never had sex | Number of never-married men age $\begin{array}{r}\text { 15-24 } \\ \text { years }\end{array}$ years | Percentage of men age 15-24 years who had sex before age 15 [2] | Number of men age 1524 years | Percentage of men age 15-24 years who had sex in the last 12 months with a woman 10 or more years older [3] | Number of men age 15-24 years who had sex in the $\mathbf{1 2}$ months preceding the survey |
| Region |  |  |  |  |  |  |
| Western | 67.6 | 104 | 4.3 | 107 | * | 26 |
| Central | 50.2 | 91 | 4.0 | 94 | 0.0 | 37 |
| Greater Accra | 63.4 | 190 | 3.6 | 194 | * | 52 |
| Volta | 50.9 | 85 | 6.9 | 87 | * | 32 |
| Eastern | (56.7) | 83 | (15.3) | 95 | * | 42 |
| Ashanti | 57.2 | 176 | 4.1 | 195 | (0.0) | 73 |
| Brong Ahafo | 65.5 | 89 | 1.1 | 92 | * | 31 |
| Northern | 70.4 | 84 | 3.4 | 86 | (0.0) | 18 |
| Upper East | 70.2 | 45 | 4.3 | 49 | (0.0) | 11 |
| Upper West | 72.8 | 34 | 1.9 | 36 | (0.0) | 9 |
| Residence |  |  |  |  |  |  |
| Urban | 57.0 | 518 | 2.9 | 537 | 0.0 | 182 |
| Rural | 66.1 | 465 | 7.0 | 499 | 0.0 | 151 |
| Age of man |  |  |  |  |  |  |
| 15-19 | 77.5 | 652 | 6.2 | 657 | 0.0 | 113 |
| 20-24 | 29.3 | 332 | 2.6 | 379 | 0.0 | 220 |
| Marital status |  |  |  |  |  |  |
| Ever married/in union | na | na | 0.0 | 53 | (0.0) | 51 |
| Never married/in union | 61.3 | 983 | 5.1 | 983 | 0.0 | 283 |
| Education |  |  |  |  |  |  |
| None | 65.5 | 36 | 2.8 | 41 | (0.0) | 15 |
| Primary | 75.6 | 151 | 6.2 | 156 | (0.0) | 35 |
| Middle/SSS | 68.6 | 527 | 6.1 | 560 | 0.0 | 155 |
| Secondary + | 38.1 | 269 | 2.0 | 280 | 0.0 | 129 |
| Wealth index quintiles |  |  |  |  |  |  |
| Poorest | 72.8 | 160 | 3.5 | 169 | 0.0 | 41 |
| Second | 64.7 | 194 | 7.0 | 204 | 0.0 | 59 |
| Middle | 58.7 | 235 | 2.1 | 246 | 0.0 | 83 |
| Fourth | 53.0 | 211 | 6.4 | 223 | 0.0 | 95 |
| Richest | 60.4 | 183 | 5.6 | 193 | (0.0) | 56 |
| Total | 61.3 | 61.3 | 983 | 4.9 | 0.0 | 1036 |
| [1] MICS indicator 9.10, [2] MICS indicator 9.11, [3] MICS indicator 9.12 na: Not applicable |  |  |  |  |  |  |
| An asterisk ( ${ }^{*}$ ) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on $25-49$ unweighted cases. |  |  |  |  |  |  |



Sexual behaviour and condom use during sex with more than one partner was assessed in all women (aged 1549) and men (aged 15-59), and separately for women and men aged 15-24 years who had sex with more than one partner in the 12 months preceding the survey (Tables HA. 9 and HA. 10). Overall, 87 percent of women aged 15-49 and 81 percent of men aged 15-59 years have ever had sex; 74 percent of the women and 73 percent had sex in the last 12 months. Table HA. 9 also shows that 2 percent of women aged 15-49 years report having sex with more than one partner in the last 12 months. Of those women, 23 percent report that a condom was used the last time they had sex.

A higher proportion of men aged 15-59 years reported to have had sex with more than one partner in the last 12 months (14\%) than for women, and of these, 13 percent reported that a condom was used the last time they had sex.

The data also show that a higher proportion of women (2\%) in the urban areas had sex with multiple partners in the last 12 months, compared to those living in rural areas (1\%). For men who had sex with multiple partners in the last 12 months, slight variations are noted by area of residence ( $14 \%$ for urban and $13 \%$ for rural).

Sex with multiple partners is a high risk behaviour that predisposes people to HIV infection and other Sexually Transmissible Infections (STI's) such as Human Papiloma Virus (HPV), viral hepatitis, Chlamydia, etc.

| Table HA.9: Sex with multiple partners <br> Percentage of women age 15-49 years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with more than one partner in the last 12 months and among those who had sex with multiple partners, the percentage who used a condom at last sex, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of women who: |  |  | Number of women age 15-49 years | Percent of women age 15-49 years who had more than one sexual partner in the last 12 months, who also reported that a condom was used the last time they had sex [2] | Number of women age 15 49 years who had more than one sexual partner in the last 12 months |
|  | Ever had sex | Had sex in the last 12 months | Had sex with more than one partner in last 12 months [1] |  |  |  |
| Region |  |  |  |  |  |  |
| Western | 90.7 | 81.6 | 2.3 | 1022 | * | 23 |
| Central | 86.3 | 74.0 | 1.7 | 1044 | * | 18 |
| Greater Accra | 85.7 | 69.8 | 2.6 | 2074 | * | 54 |
| Volta | 88.4 | 76.3 | 2.4 | 821 | * | 19 |
| Eastern | 87.6 | 79.0 | 1.4 | 1237 | * | 17 |
| Ashanti | 86.0 | 75.0 | 1.8 | 1983 | * | 35 |
| Brong Ahafo | 84.5 | 74.7 | 2.6 | 1005 | * | 26 |
| Northern | 88.0 | 72.2 | 0.5 | 754 | * | 4 |
| Upper East | 81.0 | 62.4 | 0.6 | 404 | * | 2 |
| Upper West | 81.6 | 68.4 | 0.9 | 282 | * | 3 |
| Residence |  |  |  |  |  |  |
| Urban | 84.9 | 70.9 | 2.4 | 5770 | 23.8 | 136 |
| Rural | 88.3 | 78.1 | 1.4 | 4857 | 21.6 | 66 |
| Age |  |  |  |  |  |  |
| 15-24 | 62.1 | 54.2 | 3.3 | 3573 | 27.2 | 119 |
| 15-19 | 39.4 | 33.7 | 2.2 | 1899 | (22.3) | 42 |
| 20-24 | 87.9 | 77.5 | 4.6 | 1674 | (29.9) | 76 |
| 25-29 | 96.8 | 85.2 | 2.1 | 1768 | (25.7) | 38 |
| 30-39 | 99.2 | 87.2 | 1.0 | 3069 | (11.2) | 31 |
| 40-49 | 99.9 | 79.7 | 0.7 | 2218 | * | 15 |
| Marital status |  |  |  |  |  |  |
| Ever married/in union | 100.0 | 87.9 | 1.2 | 7471 | 12.0 | 93 |
| Never married/ in union | 54.5 | 41.8 | 3.5 | 3156 | 32.5 | 109 |
| Education |  |  |  |  |  |  |
| None | 97.2 | 81.9 | 1.0 | 2224 | (0.8) | 21 |
| Primary | 88.2 | 77.0 | 1.6 | 2026 | (15.6) | 32 |
| Middle/JSS | 82.5 | 71.6 | 1.8 | 4328 | 16.2 | 77 |
| Secondary + | 81.6 | 68.6 | 3.5 | 2049 | (40.5) | 72 |
| Wealth index quintiles |  |  |  |  |  |  |
| Poorest | 88.0 | 74.5 | 1.2 | 1659 | (9.2) | 20 |
| Second | 87.0 | 74.9 | 1.8 | 1877 | * | 34 |
| Middle | 87.6 | 74.1 | 2.1 | 2101 | (5.5) | 43 |
| Fourth | 87.0 | 76.6 | 1.8 | 2345 | (38.2) | 43 |
| Richest | 83.9 | 71.4 | 2.4 | 2646 | 27.1 | 63 |
| Total | 86.5 | 74.2 | 1.9 | 10627 | 23.1 | 202 |
| [1] MICS indicator 9.13 <br> [2] MICS indicator 9.14 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |


| Table HA.9M: Sex with multiple partners <br> Percentage of men age 15-59 years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with more than one partner in the last 12 months and among those who had sex with multiple partners, the percentage who used a condom at last sex, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Percentage of men who: |  |  | Number of men age 1559 years | Percent of men age $15-59$ years who had more than one sexual partner in the last 12 months, who also reported that a condom was used the last time they had sex [2] | Number of men age 15-59 years who had more than one sexual partner in the last 12 months |
| Background Characteristics | Ever had sex | Had sex in the last 12 months | Had sex with more than one partner in last 12 months |  |  |  |
| Region |  |  |  |  |  |  |
| Western | 76.8 | 72.7 | 14.4 | 352 | * | 51 |
| Central | 84.2 | 75.6 | 12.5 | 296 | 16.1 | 37 |
| Greater Accra | 80.2 | 70.6 | 14.0 | 676 | (15.0) | 95 |
| Volta | 82.8 | 75.0 | 5.6 | 252 | * | 14 |
| Eastern | 86.9 | 82.4 | 18.1 | 358 | (10.9) | 65 |
| Ashanti | 83.9 | 75.7 | 17.1 | 638 | (6.0) | 109 |
| Brong Ahafo | 78.4 | 71.0 | 10.5 | 296 | * | 31 |
| Northern | 72.2 | 61.2 | 14.7 | 243 | 12.3 | 36 |
| Upper East | 71.2 | 60.1 | 9.8 | 120 | (33.6) | 12 |
| Upper West | 71.4 | 62.2 | 11.7 | 91 | 26.5 | 11 |
| Area |  |  |  |  |  |  |
| Urban | 81.3 | 73.3 | 13.3 | 1746 | 16.0 | 232 |
| Rural | 79.7 | 71.8 | 14.4 | 1575 | 9.4 | 227 |
| Age |  |  |  |  |  |  |
| 15-24 | 41.7 | 32.2 | 6.3 | 1036 | 39.3 | 65 |
| 15-19 | 23.0 | 17.2 | 2.6 | 657 | * | 17 |
| 20-24 | 74.2 | 58.2 | 12.6 | 379 | (31.5) | 48 |
| 25-29 | 93.0 | 81.6 | 17.5 | 456 | 18.5 | 80 |
| 30-39 | 98.7 | 93.9 | 21.0 | 804 | 9.6 | 169 |
| 40-49 | 99.8 | 93.9 | 15.7 | 601 | 1.5 | 95 |
| 50-59 | 100.0 | 90.9 | 12.0 | 425 | 1.1 | 51 |
| Marital status |  |  |  |  |  |  |
| Ever married/in union | 99.9 | 95.3 | 17.8 | 2007 | 5.2 | 357 |
| Never married/in union | 50.8 | 37.9 | 7.8 | 1314 | 39.0 | 102 |
| Education |  |  |  |  |  |  |
| None | 93.5 | 84.2 | 13.6 | 417 | 4.8 | 57 |
| Primary | 70.6 | 64.9 | 11.7 | 416 | 7.6 | 49 |
| Middle/SSS | 75.2 | 68.6 | 12.8 | 1483 | 12.0 | 189 |
| Secondary + | 87.1 | 76.8 | 16.3 | 1006 | 17.8 | 164 |
| Wealth index quintiles |  |  |  |  |  |  |
| Poorest | 76.0 | 67.2 | 10.0 | 518 | 8.7 | 52 |
| Second | 76.8 | 68.8 | 12.6 | 557 | 13.6 | 70 |
| Middle | 77.0 | 67.7 | 14.2 | 621 | 17.0 | 88 |
| Fourth | 84.3 | 77.9 | 15.0 | 779 | 13.2 | 117 |
| Richest | 84.9 | 77.0 | 15.6 | 847 | 10.5 | 132 |
| Total | 80.5 | 72.6 | 13.8 | 3321 | 12.7 | 459 |
| [1] MICS indicator 9.13 <br> [2] MICS indicator 9.14 <br> An asterisk $\left(^{*}\right.$ ) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()'are based on $25-49$ unweighted cases. |  |  |  |  |  |  |

Tables HA. 10 and HA. 10 M shows similar indicators but for young women and men aged 15-24 years. The results reveal that 62 percent of young women who have never been married and 42 percent of young men who have never been married have ever had sex. Of these, 54 percent of the women and 32 percent of the men had sex in the last 12 months.

Table HA. 10 also shows that 3 percent of young women had sex with more than one sexual partner in the past 12 months and, of these, only 27 percent reported using a condom in their most recent sexual activity. In the case of young men, the Table HA. 10 M shows that 6 percent had sex with multiple partners in the 12 months prior to the survey, and of these, 39 percent reported that a condom was used the last time they had sex.

| Table HA.10: Sex with multiple partners (young women) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of women age 15-24 years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with more than one partner in the last 12 months and among those who had sex with multiple partners, the percentage who used a condom at last sex, Ghana, 2011 |  |  |  |  |  |  |
| Background Characteristics | Percentage of women who: |  |  | Number of women age $15-24$ years <br> 15-24 years | Percent of women age 15-24 years who had more than one sexual partner in the last 12 months, who also reported that a condom was used the last time they had sex [2] |  |
|  | Ever had sex | Had sex in the last 12 months | Had sex with more than one partner in last 12 months [1] |  |  | Number of women age 15-24 years who had more than one sexual partner in the last 12 months |
| Region |  |  |  |  |  |  |
| Western | 73.2 | 65.1 | 4.1 | 329 | * | 14 |
| Central | 62.8 | 51.7 | 1.4 | 379 | * |  |
| Greater Accra | 59.2 | 51.4 | 4.4 | 632 | * | 28 |
| Volta | 67.3 | 58.0 | 1.4 | 272 | * |  |
| Eastern | 62.7 | 58.2 | 3.5 | 398 | * | 14 |
| Ashanti | 63.7 | 56.5 | 3.5 | 718 | * | 25 |
| Brong Ahafo | 61.5 | 54.4 | 5.7 | 396 | * | 23 |
| Northern | 59.4 | 48.2 | 1.4 | 219 | * |  |
| Upper East | 42.8 | 34.7 | 1.0 | 132 | * |  |
| Upper West | 48.2 | 39.8 | 2.2 | 98 | * |  |
| Residence |  |  |  |  |  |  |
| Urban | 58.7 | 49.4 | 4.3 | 1939 | (24.9) | 83 |
| Rural | 66.2 | 59.8 | 2.2 | 1634 | (32.5) | 35 |
| Age ${ }^{\text {a }}$ |  |  |  |  |  |  |
| 15-19 | 39.4 | 33.7 | 2.2 | 1899 | (22.3) | 42 |
| 20-24 | 87.9 | 77.5 | 4.6 | 1674 | (29.9) | 76 |
| Marital status |  |  |  |  |  |  |
| Ever married/in |  |  |  |  |  |  |
| union | 100.0 | 93.6 | 2.3 | 986 | * | 22 |
| Never married/ in union | 47.7 | 39.2 | 3.7 | 2587 | 29.0 | 96 |
| Education |  |  |  |  |  |  |
| None | 81.1 | 70.5 | 3.1 | 286 | * | 9 |
| Primary | 62.2 | 56.7 | 2.4 | 610 | * | 15 |
| Middle/JSS | 57.9 | 51.1 | 2.7 | 1767 | (17.9) | 48 |
| Secondary + | 64.3 | 53.4 | 5.2 | 909 | * | 47 |
| Wealth index quintiles |  |  |  |  |  |  |
| Poorest | 62.9 | 54.6 | 2.0 | 526 | (0.2) | 11 |
| Second | 63.9 | 58.8 | 2.2 | 663 | (62.7) | 15 |
| Middle | 67.3 | 59.2 | 3.9 | 781 | (7.9) | 30 |
| Fourth | 62.7 | 53.7 | 3.7 | 778 | (36.7) | 28 |
| Richest | 54.8 | 45.9 | 4.2 | 826 | (28.5) | 34 |
| Total | 62.1 | 54.2 | 3.3 | 3573 | 27.2 | 119 |
| [1] MICS indicator 9.13 |  |  |  |  |  |  |
| [2] MICS indicator 9.14 |  |  |  |  |  |  |
| An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |

Table HA.10M: Sex with multiple partners (young men)
Percentage of men age $15-24$ years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with more than one partner in the last 12 months and among those who had sex with multiple partners, the percentage who used a condom at last sex, Ghana, 2011

| Background Characteristics | Percentage of men who: |  |  | $\begin{gathered} \text { Number of } \\ \text { men age } 15-24 \\ \text { vears } \end{gathered}$years | Percent of men age <br> 15-24 years who had more than one sexual partner in the last 12 months, who also reported that a condom was used the last time they had sex [2] | Number of men age 15-24 years who had more than one sexual partner in the last $\mathbf{1 2}$ months |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ever had sex | Had sex in the last 12 months | Had sex with more than one partner in last 12 months [1] |  |  |  |
| Region |  |  |  |  |  |  |
| Western | 34.5 | 24.3 | 8.7 | 107 | * | 9 |
| Central | 51.3 | 39.5 | 6.2 | 94 | * | 6 |
| Greater Accra | 37.9 | 26.8 | 6.6 | 194 | * | 13 |
| Volta | 49.8 | 37.5 | 0.0 | 87 | * | 0 |
| Eastern | (50.8) | (44.3) | (7.5) | 95 | * | 7 |
| Ashanti | 48.3 | 37.6 | 9.3 | 195 | * | 18 |
| Brong Ahafo | 36.5 | 34.0 | 2.9 | 92 | * | 3 |
| Northern | 31.3 | 20.8 | 4.5 | 86 | * | 4 |
| Upper East | 32.7 | 23.4 | 4.4 | 49 | * | 2 |
| Upper West | 31.2 | 25.8 | 8.9 | 36 | * | 3 |
| Area |  |  |  |  |  |  |
| Urban | 45.0 | 34.0 | 6.3 | 537 | (49.1) | 34 |
| Rural | 38.2 | 30.2 | 6.2 | 499 | (28.6) | 31 |
| Age of man |  |  |  |  |  |  |
| 15-19 | 23.0 | 17.2 | 2.6 | 657 | * | 17 |
| 20-24 | 74.2 | 58.2 | 12.6 | 379 | (31.5) | 48 |
| Marital status |  |  |  |  |  |  |
| Ever married/in union | 97.7 | 96.4 | 24.4 | 53 | * | 13 |
| Never married/ in union | 38.7 | 28.8 | 5.3 | 983 | 43.6 | 52 |
| Education |  |  |  |  |  |  |
| None | 42.3 | 37.3 | 13.6 | 41 | * | 6 |
| Primary | 26.3 | 22.4 | 4.1 | 156 | * | 6 |
| Middle/JSS | 35.2 | 27.7 | 5.3 | 560 | (31.5) | 30 |
| Secondary + | 63.4 | 45.9 | 8.3 | 280 | (65.6) | 23 |
| Wealth index quintiles |  |  |  |  |  |  |
| Poorest | 30.5 | 24.1 | 5.0 | 169 | * | 8 |
| Second | 38.4 | 29.0 | 4.2 | 204 | * | 9 |
| Middle | 44.0 | 33.6 | 7.3 | 246 | * | 18 |
| Fourth | 50.0 | 42.5 | 9.2 | 223 | * | 21 |
| Richest | 42.7 | 28.9 | 5.0 | 193 | * | 10 |
| Total | 41.7 | 32.2 | 6.3 | 1036 | 39.3 | 65 |
| [1] MICS indicator 9.13 <br> [2] MICS indicator 9.14 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |

Tables HA. 11 and HA. 11 M present the percentage of women and men aged 15-24 years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with a non-marital, non-cohabiting partner in the last 12 months and among those who had sex with a non-marital, non-cohabiting partner, the percentage who used a condom the last time they had sex with such a partner.

Slightly more than half ( $56 \%$ ) of the sexually active young women aged 15-24 years report having had sex with a non-marital, non-cohabiting partner in the 12 months prior to the survey. Of those women, 41 percent reported that a condom was used the last time they had sex with such a partner. For sexually active young men aged 15-24 years, 88 percent report having had sex with a non-marital, non-cohabiting partner in the last 12 months, and 54 percent of these young men reported that a condom was used the last time they had sex with such a partner.

For both young women and men who reported having had sex with a non-marital, non-cohabiting partner in the 12 months prior to the survey, a higher proportion of those living in urban areas reported that a condom was used the last time they had sex with such a partner ( $49 \%$ and $64 \%$ respectively), compared to those living in rural areas ( $30 \%$ and $41 \%$ respectively).

Table HA.11: Sex with non-regular partners
Percentage of women age 15-24 years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with a nonmarital, non-cohabiting partner in the last 12 months and among those who had sex with a non-marital, non-cohabiting partner, the percentage wh

| Background Characteristics | Percentage of women 15-24 who: |  | Number of women age 15-24 years | Percentage who had sex with a non-marital, non-cohabiting partner in the last 12 months | Number of women age 15-24 years who had sex in the last 12 months | Percentage of women age $\mathbf{1 5 - 2 4}$ years who had sex with a non-marital, non-cohabiting partner in the last 12 months, who also reported that a condom was used the last time they had sex with such a partner [2] | Number of women age 15-24 years who had more than one sexual partner in the last 12 months |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ever had sex | Had sex in the last 12 months |  |  |  |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 73.2 | 65.1 | 329 | 57.0 | 214 | 40.2 | 122 |
| Central | 62.8 | 51.7 | 379 | 65.5 | 196 | 42.8 | 128 |
| Greate Accra | 59.2 | 51.4 | 632 | 69.1 | 325 | 56.3 | 224 |
| Volta | 67.3 | 58.0 | 272 | 42.0 | 158 | 32.9 | 66 |
| Eastern | 62.7 | 58.2 | 398 | 56.5 | 232 | 37.2 | 131 |
| Ashanti | 63.7 | 56.5 | 718 | 45.7 | 406 | 31.8 | 186 |
| Brong Ahafo | 61.5 | 54.4 | 396 | 69.5 | 215 | 31.1 | 150 |
| Northern | 59.4 | 48.2 | 219 | 41.6 | 106 | 40.2 | 44 |
| Upper East | 42.8 | 34.7 | 132 | 46.7 | 46 | 55.4 | 21 |
| Upper West | 48.2 | 39.8 | 98 | 49.6 | 39 | 55.6 | 19 |
| Residence |  |  |  |  |  |  |  |
| Urban | 58.7 | 49.4 | 1939 | 66.1 | 959 | 48.7 | 634 |
| Rural | 66.2 | 59.8 | 1634 | 46.8 | 977 | 30.2 | 458 |
| Age |  |  |  |  |  |  |  |
| 15-19 | 39.4 | 33.7 | 1899 | 79.4 | 639 | 35.8 | 507 |
| 20-24 | 87.9 | 77.5 | 1674 | 45.1 | 1297 | 45.4 | 585 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/in union | 100.0 | 93.6 | 986 | 8.7 | 923 | 17.7 | 81 |
| Never married/in union | 47.7 | 39.2 | 2587 | 99.8 | 1013 | 42.8 | 1011 |
| Education |  |  |  |  |  |  |  |
| None | 81.1 | 70.5 | 286 | 24.3 | 202 | 13.7 | 49 |
| Primary | 62.2 | 56.7 | 610 | 39.6 | 346 | 24.6 | 137 |
| Middle/JSS | 57.9 | 51.1 | 1767 | 58.0 | 902 | 35.9 | 523 |
| Secondary + | 64.3 | 53.4 | 909 | 78.7 | 486 | 57.1 | 382 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 62.9 | 54.6 | 526 | 41.0 | 287 | 30.1 | 118 |
| Second | 63.9 | 58.8 | 663 | 60.4 | 390 | 34.8 | 236 |
| Middle | 67.3 | 59.2 | 781 | 53.4 | 462 | 35.3 | 247 |
| Fourth | 62.7 | 53.7 | 778 | 57.1 | 418 | 40.5 | 238 |
| Richest | 54.8 | 45.9 | 826 | 66.8 | 379 | 57.5 | 253 |
| Total | 62.1 | 54.2 | 3573 | 56.4 | 1936 | 40.9 | 1092 |
| [1] MICS indicator 9.15 <br> [2] MICS indicator 9.16; MDG indicator 6.2 |  |  |  |  |  |  |  |


| Table HA. 11 M: Sex with non-regular partners <br> Percentage of men age $15-24$ years who ever had sex, percentage who had sex in the last 12 months, percentage who have had sex with a non-marital, non-cohabiting partner in the last 12 months and among those who had sex with a non-marital, non-cohabiting partner, the percentage who used a condom the last time they had sex with such a partner, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Percentage of men 15-24 who: |  | Number of men age 15 24 years | Percentage who had sex with a non-marital, noncohabiting partner in the last 12 months [1] | Number of men age 15-24 years who had sex in the last 12 months | Percentage of men age 15-24 years who had sex with a non-marital, noncohabiting partner in the last 12 months, who also reported that a condom was used the last time they had sex with such a partner [2] | Number of men age <br> 15-24 years who had more than partner in the last 12 months |
|  | Ever had sex | Had sex in the last 12 months |  |  |  |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 34.5 | 24.3 | 107 | * | 26 | * | 23 |
| Central | 51.3 | 39.5 | 94 | 96.7 | 37 | 55,0 | 36 |
| Greater Accra | 37.9 | 26.8 | 194 | * | 52 | * | 48 |
| Volta | 49.8 | 37.5 | 87 | * | 32 | * | 31 |
| Eastern | (50.8) | (44.3) | 95 | * | 42 | * | 33 |
| Ashanti | 48.3 | 37.6 | 195 | (79.3) | 73 | (56,7) | 58 |
| Brong Ahafo | 36.5 | 34.0 | 92 | * | 31 | * | 29 |
| Northern | 31.3 | 20.8 | 86 | (94.4) | 18 | $(44,4)$ | 17 |
| Upper East | 32.7 | 23.4 | 49 | (87.7) | 11 | $(69,1)$ | 10 |
| Upper West | 31.2 | 25.8 | 36 | (87.0) | 9 | $(54,6)$ | 8 |
| Residence |  |  |  |  |  |  |  |
| Urban | 45.0 | 34.0 | 537 | 90.6 | 182 | 62.9 | 165 |
| Rural | 38.2 | 30.2 | 499 | 84.8 | 151 | 39.9 | 128 |
| Age of man |  |  |  |  |  |  |  |
| 15-19 | 23.0 | 17.2 | 657 | 96.1 | 113 | 48.1 | 108 |
| 20-24 | 74.2 | 58.2 | 379 | 83.9 | 220 | 55.6 | 185 |
| Marital status |  |  |  |  |  |  |  |
| Ever married/ in union | 97.7 | 96.4 | 53 | (21.2) | 51 | * | 11 |
| Never married/in union | 38.7 | 28.8 | 983 | 100.0 | 283 | 53,7 | 283 |
| Education |  |  |  |  |  |  |  |
| None | 42.3 | 37.3 | 41 | (70.7) | 15 | $(6,8)$ | 11 |
| Primary | 26.3 | 22.4 | 156 | (97.1) | 35 | (34,1) | 34 |
| Middle/JSS | 35.2 | 27.7 | 560 | 83.5 | 155 | 48,1 | 129 |
| Secondary + | 63.4 | 45.9 | 280 | 93.0 | 129 | 69,8 | 120 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 30.5 | 24.1 | 169 | 86.4 | 41 | 45,5 | 35 |
| Second | 38.4 | 29.0 | 204 | 84.9 | 59 | 26,9 | 50 |
| Middle | 44.0 | 33.6 | 246 | 89.1 | 83 | 62,4 | 74 |
| Fourth | 50.0 | 42.5 | 223 | 91.6 | 95 | 51,1 | 87 |
| Richest | 42.7 | 28.9 | 193 | (84.7) | 56 | $(80,5)$ | 47 |
| Total | 41.7 | 32.2 | 1036 | 88.0 | 333 | 52.8 | 293 |
| [1] MICS indicator 9.15 <br> [2] MICS indicator 9.16; MDG indicator 6.2 <br> An asterisk (*) indicates that figure is based on fewer than 25 unweighted cases, and has been suppressed. Figures in parentheses '()' are based on 25-49 unweighted cases. |  |  |  |  |  |  |  |




The National Health Insurance Scheme (NHIS) was founded as one of the key pillars of the Poverty Reduction Programme of the Government of Ghana. It was introduced in 2003 by the National Health Insurance Act, (Act 650 ), with the view of improving financial access of Ghanaians, especially the poor and the vulnerable, to quality basic health care services. The NHIS is a contributory scheme, renewable on an annual basis, and valid card holder can access both public and private healthcare facilities accredited by the National Health Insurance Authority. The contribution is structured in a way that people would contribute according to their ability, and each person receives according to his/her need. In this way, the health insurance subsidizes the health cost for the sick, and the economically active pays for children, the aged and the indigents (for further details, see www.nhis.gov.gh).

The MICS4 incorporated the NHIS module in the individual women's, children's and men's questionnaires and covered issues on individual membership status, reasons for non-membership, use of services under the scheme, and perception of provider attitude towards registered members.

National Health Insurance Registration
Tables NHI.1A and NHI.1B show respectively the percentages of women aged 15-49 years and men aged 1559 years, who have ever registered with the NHIS, and the distribution of women and men who are registered according to the validity status of their NHIS card. Nearly 70 percent ( $69 \%$ ) of the women aged 15-49 years and 56 percent of men aged 15-59 years have ever registered. For both sexes, the proportion of registration with NHIS increases with education and wealth status of the household. For example, only 61 percent of women with no education have ever registered, compared to 78 percent among those with secondary or higher education. The percentage of ever registered women varies from 57 percent among the poorest households to 74 percent among the richest households. Also, differentials are observed by residence for both men and women: those people living in urban areas are more likely to get registered with NHIS ( $71 \%$ among women, $59 \%$ among men), than those in rural areas ( $66 \%$ among women, and $53 \%$ among men).

Regional variations are observed, with Brong Ahafo region having the highest proportion of women who have ever registered ( $84 \%$ ) and of men who have ever registered ( $72 \%$ ). The lowest registration rate is found in Greater Accra for women (56\%) and in Central and Greater Accra regions for men (44\%),

Tables NHI.1A and NHI.1B further show that about 40 percent of the women and men who have registered with the NHIS were not holding valid NHIS cards. On the other hand, among those who have registered, 40 percent of women and 34 percent of men had valid NHIS card that they showed to the interviewer, while 20 percent of women and 26 percent of men were not able to show their cards to the interviewers.

The results also show that among those people who have ever registered with NHIS, the poorer a household, the more likely that the NHIS card is not valid; 50 percent of both men and women from the poorest wealth quintile have invalid NHIS card. Also, 43 percent of men and 45 percent of women with no education were found not to have a valid NHIS card. The regional distribution shows that Northern region has the highest percentage of persons without valid NHIS cards ( $55 \%$ for men and $48 \%$ for women), while the Ashanti region has the lowest ( $33 \%$ for men and $29 \%$ for women). The proportion of men and women without valid NHIS cards is higher in rural areas ( $45 \%$ for men and $41 \%$ for women), compared respectively to 36 and 39 percent for men and women living in urban areas.

| Table NH. 1 A: Membership of NHIS among women <br> Percentage of women aged 15-49 years who have ever registered with NHIS and distribution of registered women according to the status of validity of their NHIS card, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Have ever registered with NHIS | Number of women | Percent of ever registered women by validity of NHIS card |  |  | Total | Number of vomen who have everregistered |
|  |  |  | Yes, card seen | Yes, card not seen | No valid NHIS card |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 62.4 | 1022 | 41.4 | 15.7 | 42.9 | 100.0 | 638 |
| Central | 58.0 | 1044 | 24.2 | 29.2 | 46.6 | 100.0 | 606 |
| Greater Accra | 56.1 | 2074 | 27.5 | 27.9 | 44.6 | 100.0 | 1163 |
| Volta | 69.0 | 821 | 39.3 | 18.2 | 42.5 | 100.0 | 567 |
| Eastern | 74.1 | 1237 | 41.5 | 19.7 | 38.8 | 100.0 | 917 |
| Ashanti | 77.4 | 1983 | 52.7 | 18.4 | 28.9 | 100.0 | 1535 |
| Brong Ahafo | 83.6 | 1005 | 43.0 | 15.9 | 41.1 | 100.0 | 839 |
| Northern | 68.2 | 754 | 34.9 | 16.7 | 48.4 | 100.0 | 514 |
| Upper East | 75.4 | 404 | 44.7 | 14.4 | 40.9 | 100.0 | 305 |
| Upper West | 80.1 | 282 | 54.7 | 19.1 | 26.3 | 100.0 | 226 |
| Residence |  |  |  |  |  |  |  |
| Urban | 70.9 | 5770 | 38.6 | 22.6 | 38.8 | 100.0 | 4091 |
| Rural | 66.3 | 4857 | 42.4 | 17.1 | 40.5 | 100.0 | 3219 |
| Age |  |  |  |  |  |  |  |
| 15-19 | 67.4 | 1899 | 34.7 | 22.9 | 42.4 | 100.0 | 1279 |
| 20-24 | 68.0 | 1674 | 39.8 | 20.1 | 40.1 | 100.0 | 1138 |
| 25-29 | 68.4 | 1768 | 40.0 | 22.2 | 37.8 | 100.0 | 1209 |
| 30-34 | 71.6 | 1638 | 45.3 | 17.8 | 36.9 | 100.0 | 1173 |
| 35-39 | 71.2 | 1431 | 41.5 | 18.6 | 39.9 | 100.0 | 1019 |
| 40-44 | 68.9 | 1195 | 39.1 | 20.2 | 40.7 | 100.0 | 823 |
| 45-49 | 65.4 | 1023 | 43.3 | 17.7 | 38.9 | 100.0 | 669 |
| Education |  |  |  |  |  |  |  |
| None | 61.0 | 2224 | 40.4 | 14.4 | 45.3 | 100.0 | 1356 |
| Primary | 61.6 | 2026 | 39.2 | 15.4 | 45.4 | 100.0 | 1248 |
| Middle/sss | 71.9 | 4328 | 38.4 | 22.0 | 39.6 | 100.0 | 3111 |
| Secondary + | 77.8 | 2049 | 44.8 | 25.3 | 29.9 | 100.0 | 1595 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 57.4 | 1644 | 36.6 | 13.7 | 49.8 | 100.0 | 944 |
| Second | 63.7 | 1857 | 40.5 | 15.5 | 44.0 | 100.0 | 1183 |
| Middle | 68.1 | 2110 | 38.7 | 18.9 | 42.4 | 100.0 | 1437 |
| Fourth | 75.2 | 2345 | 39.9 | 23.9 | 36.2 | 100.0 | 1763 |
| Richest | 74.2 | 2671 | 43.5 | 23.6 | 32.9 | 100.0 | 1983 |
| Total | 68.8 | 10627 | 40.3 | 20.2 | 39.5 | 100.0 | 7310 |


| Table NH.1B: Membership of NHIS among men <br> Percentage of men aged 15-49 years who have registered with NHIS and distribution of registered men according to the status of validity of their NHIS card, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Have ever registered | Number of men | Percent of ever registered men by validity of NHIS card |  |  | Total | Number of men who have ever registered |
|  |  |  | $\begin{array}{r} \text { Yes, card } \\ \text { seen } \end{array}$ | Yes, card not seen | No valid NHIS card |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 54.8 | 352 | 33.4 | 28.8 | 37.8 | 100,0 | 193 |
| Central | 44.5 | 296 | 23.9 | 29.1 | 47.0 | 100,0 | 132 |
| Greater Accra | 44.2 | 676 | 21.8 | 46.6 | 31.6 | 100,0 | 299 |
| Volta | 52.5 | 252 | 25.4 | 22.5 | 52.1 | 100,0 | 133 |
| Eastern | 60.9 | 358 | 40.6 | 19.1 | 40.3 | 100,0 | 218 |
| Ashanti | 62.5 | 638 | 43.3 | 23.9 | 32.8 | 100,0 | 399 |
| Brong Ahafo | 71.5 | 296 | 42.1 | 14.9 | 43.0 | 100,0 | 212 |
| Northern | 56.1 | 243 | 29.8 | 15.2 | 55.0 | 100,0 | 136 |
| Upper East | 63.0 | 120 | 33.1 | 18.2 | 48.6 | 100,0 | 75 |
| Upper West | 67.7 | 91 | 47.0 | 26.3 | 26.7 | 100,0 | 62 |
| Residence |  |  |  |  |  |  |  |
| Urban | 58.8 | 1746 | 32.9 | 31.6 | 35.5 | 100,0 | 1027 |
| Rural | 52.7 | 1575 | 36.4 | 18.7 | 44.9 | 100,0 | 830 |
| Age |  |  |  |  |  |  |  |
| 15-19 | 62.4 | 657 | 36.6 | 23.3 | 40.1 | 100,0 | 410 |
| 20-24 | 54.9 | 379 | 20.4 | 29.2 | 50.4 | 100,0 | 208 |
| 25-29 | 46.3 | 456 | 41.9 | 19.5 | 38.7 | 100,0 | 211 |
| 30-34 | 52.4 | 442 | 35.1 | 26.2 | 38.7 | 100,0 | 231 |
| 35-39 | 57.6 | 363 | 37.6 | 20.9 | 41.5 | 100,0 | 209 |
| 40-44 | 46.7 | 288 | 38.9 | 24.5 | 36.6 | 100,0 | 134 |
| 45-49 | 60.8 | 313 | 26.8 | 37.6 | 35.5 | 100,0 | 190 |
| 50-54 | 61.2 | 221 | 40.6 | 24.8 | 34.6 | 100,0 | 135 |
| 55-59 | 62.7 | 204 | 31.8 | 32.7 | 35.4 | 100,0 | 128 |
| Education |  |  |  |  |  |  |  |
| None | 41.6 | 417 | 40.6 | 16.8 | 42.6 | 100,0 | 173 |
| Primary | 45.1 | 416 | 34.7 | 21.0 | 44.3 | 100,0 | 187 |
| Middle/ss | 55.0 | 1483 | 33.0 | 25.6 | 41.4 | 100,0 | 815 |
| Secondary + | 67.7 | 1006 | 34.5 | 29.9 | 35.6 | 100,0 | 682 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 47.4 | 518 | 30.3 | 19.8 | 49.8 | 100,0 | 245 |
| Second | 53.1 | 557 | 39.8 | 15.3 | 44.9 | 100,0 | 296 |
| Middle | 52.1 | 621 | 29.8 | 21.8 | 48.4 | 100,0 | 323 |
| Fourth | 54.1 | 779 | 36.2 | 26.3 | 37.5 | 100,0 | 421 |
| Richest | 67.5 | 847 | 34.8 | 36.1 | 29.2 | 100,0 | 572 |
| Total | 55.9 | 3321 | 34.4 | 25.9 | 39,7 | 100,0 | 1857 |

Table NHI.1C shows the percentage of children under five years that have ever registered with the NHIS and the validity status of their NHIS card. Overall, 54 percent of children are registered with NHIS. Among these, 71 percent have valid cards - for 51 percent of children, valid NHIS cards were shown to the enumerator, while for 20 percent, valid cards were not seen. As much as 29 percent of the supposedly registered children did not have a valid NHIS card. Variations in registration rate are observed across the regions, residence, age, mother's education and wealth quintiles. For example, Upper West region has the highest registration rate ( $72 \%$ ), while Central region has the lowest at 37 percent. Children living in urban areas are more likely to be registered with NHIS (57\%), compared to children
living in rural areas (51\%). The results also show that NHIS registration for children under 5 years increases with age; from 31 percent for those aged 0-11 months, to 63 percent for children aged $36-47$ months. NHIS registration for children also increases with mother's education - from 50 percent for children whose mothers have no education, to 67 percent for children whose mothers have secondary or higher children belonging to the poorest households, to over 60 percent for children belonging to the 40 percent wealthiest households.

| Table NH.1C: Membership of NHIS among children under 5 years <br> Percentage of children under five who have ever been registered with NHIS and distribution of registered children according to the status of validity of their NHIS card, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Have ever registered | Number of children | Percent of ever registered children by validity of NHIS card |  |  | Total | Number of children who have ever registered |
|  |  |  | Yes, card seen | Yes, card not seen | No valid NHIS card |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 46.5 | 758 | 52.5 | 21.2 | 26.3 | 100.0 | 352 |
| Central | 37.1 | 740 | 40.2 | 31.4 | 28.4 | 100.0 | 275 |
| Greater Accra | 44.5 | 1142 | 38.9 | 28.3 | 32.8 | 100.0 | 508 |
| Volta | 50.2 | 601 | 45.7 | 15.4 | 39.0 | 100.0 | 302 |
| Eastern | 53.5 | 827 | 57.0 | 19.0 | 24.1 | 100.0 | 443 |
| Ashanti | 64.4 | 1411 | 59.8 | 17.8 | 22.4 | 100.0 | 908 |
| Brong Ahafo | 66.0 | 671 | 55.0 | 18.8 | 26.2 | 100.0 | 443 |
| Northern | 52.4 | 852 | 41.4 | 18.0 | 40.6 | 100.0 | 447 |
| Upper East | 68.0 | 325 | 50.5 | 13.9 | 35.5 | 100.0 | 221 |
| Upper West | 72.0 | 223 | 64.2 | 18.0 | 17.7 | 100.0 | 161 |
| Residence |  |  |  |  |  |  |  |
| Urban | 57.1 | 3283 | 51.5 | 21.6 | 26.9 | 100.0 | 1876 |
| Rural | 51.2 | 4267 | 50.6 | 18.9 | 30.4 | 100.0 | 2183 |
| Age |  |  |  |  |  |  |  |
| 0-11 | 31.1 | 1543 | 39.9 | 17.2 | 42.9 | 100.0 | 479 |
| 12-23 | 53.7 | 1453 | 57.9 | 16.9 | 25.2 | 100.0 | 780 |
| 24-35 | 59.0 | 1553 | 54.4 | 21.4 | 24.2 | 100.0 | 915 |
| 36-47 | 63.4 | 1576 | 49.3 | 21.6 | 29.0 | 100.0 | 999 |
| 48-59 | 62.2 | 1426 | 49.3 | 21.9 | 28.9 | 100.0 | 886 |
| Education |  |  |  |  |  |  |  |
| None | 50.0 | 2455 | 48.3 | 17.2 | 34.5 | 100.0 | 1229 |
| Primary | 50.4 | 1628 | 49.7 | 18.5 | 31.9 | 100.0 | 820 |
| Middle/JSS | 55.0 | 2578 | 51.6 | 22.6 | 25.9 | 100.0 | 1419 |
| Secondary + | 66.6 | 889 | 57.4 | 23.3 | 19.3 | 100.0 | 592 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 45.3 | 1739 | 46.6 | 17.3 | 36.1 | 100.0 | 788 |
| Second | 48.2 | 1535 | 50.9 | 18.3 | 30.7 | 100.0 | 739 |
| Middle | 52.9 | 1573 | 47.6 | 21.2 | 31.2 | 100.0 | 833 |
| Fourth | 63.8 | 1394 | 56.3 | 20.2 | 23.4 | 100.0 | 890 |
| Richest | 61.9 | 1309 | 53.2 | 23.7 | 23.1 | 100.0 | 809 |
| Total | 53.8 | 7550 | 51.0 | 20.2 | 28.8 | 100.0 | 4059 |

Reasons why individuals (women, children and men) did not have a valid NHIS card
The following three Tables, NHI.2A, NHI.2B and NHI.2C, deal with the reasons why women, men and children, respectively, did not have a valid NHIS card during the survey period.

Table NHI.2A shows that for the 40 percent of ever registered women aged 15-49 years who do not have a valid NHIS card, the main reason for not having a valid card was that the registration was not renewed (72\%). Additionally, 13 percent have registered/renewed their membership, but the card has not been received yet, for 11 percent of women, the card was renewed but in waiting period, 2 percent of women have lost their NHIS card while less than 1 percent have registered but not fully paid. Across the background characteristics for women who had not renewed their NHIS membership, the highest proportion of women can be found in Western region (88\%) and the lowest in Eastern region (57\%).

| Table NH.2A: Reasons for not holding a valid card among women who have ever registered with NHIS <br> Percentage of registered women aged 15-49 with no valid NHIS card and percent distribution of those women according to the reason for not having a valid NHIS card, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | No valid card |  | Reason for not having a valid card: |  |  |  |  |  | Total |  |
|  |  |  | Registered but not fully paid yet | Registered/ Renewed, but card not received yet | Registered, in waiting period | Registration not renewed | $\begin{aligned} & \text { Lost } \\ & \text { NHIS } \\ & \text { card } \end{aligned}$ | Other |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | 42.9 | 638 | 0.0 | 5.2 | 4.4 | 87.8 | 2.2 | 0.4 | 100.0 | 267 |
| Central | 46.6 | 606 | 0.2 | 14.5 | 10.1 | 74.2 | 0.9 | 0.2 | 100.0 | 278 |
| Greater Accra | 44.6 | 1163 | 0.4 | 12.2 | 11.7 | 73.2 | 2.1 | 0.4 | 100.0 | 505 |
| Volta | 42.5 | 567 | 1.1 | 14.5 | 8.8 | 72.1 | 1.7 | 1.7 | 100.0 | 238 |
| Eastern | 38.8 | 917 | 0.8 | 25.3 | 9.5 | 56.9 | 4.5 | 3.0 | 100.0 | 352 |
| Ashanti | 28.9 | 1535 | 0.0 | 10.4 | 16.8 | 68.2 | 1.5 | 3.3 | 100.0 | 441 |
| Brong Ahafo | 41.1 | 839 | 0.4 | 8.7 | 3.1 | 79.4 | 3.0 | 5.4 | 100.0 | 340 |
| Northern | 48.4 | 514 | 0.5 | 17.5 | 13.0 | 65.5 | 1.7 | 1.8 | 100.0 | 248 |
| Upper East | 40.9 | 305 | 0.0 | 15.5 | 18.0 | 64.6 | 1.5 | 0.3 | 100.0 | 123 |
| Upper West | 26.3 | 226 | 0.9 | 3.9 | 12.4 | 80.1 | 1.9 | 0.8 | 100.0 | 59 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 38.8 | 4091 | 0.3 | 13.1 | 10.3 | 72.6 | 2.1 | 1.5 | 100.0 | 1565 |
| Rural | 40.5 | 3219 | 0.5 | 13.5 | 10.8 | 70.4 | 2.2 | 2.5 | 100.0 | 1284 |
| Age |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 42.4 | 1279 | 0.5 | 11.8 | 9.8 | 71.5 | 4.4 | 2.0 | 100.0 | 534 |
| 20-24 | 40.1 | 1138 | 0.0 | 11.6 | 8.4 | 73.5 | 2.0 | 4.6 | 100.0 | 452 |
| 25-29 | 37.8 | 1209 | 0.5 | 11.5 | 13.6 | 70.5 | 2.4 | 1.4 | 100.0 | 452 |
| 30-34 | 36.9 | 1173 | 0.1 | 13.5 | 10.4 | 73.8 | 0.6 | 1.6 | 100.0 | 422 |
| 35-39 | 39.9 | 1019 | 0.1 | 15.4 | 8.4 | 74.1 | 1.4 | 0.6 | 100.0 | 404 |
| 40-44 | 40.7 | 823 | 1.4 | 12.7 | 12.2 | 69.7 | 1.7 | 2.4 | 100.0 | 329 |
| 45-49 | 38.9 | 669 | 0.1 | 19.9 | 12.0 | 65.5 | 2.0 | 0.4 | 100.0 | 257 |
| Education |  |  |  |  |  |  |  |  |  |  |
| None | 45.3 | 1356 | 0.5 | 14.3 | 14.1 | 69.0 | 1.0 | 1.1 | 100.0 | 610 |
| Primary | 45.4 | 1248 | 0.8 | 11.8 | 10.6 | 69.6 | 4.6 | 2.6 | 100.0 | 559 |
| Middle/SSS | 39.6 | 3111 | 0.3 | 13.6 | 8.7 | 73.9 | 1.9 | 1.6 | 100.0 | 121 |
| Secondary + | 29.9 | 1595 | 0.0 | 13.0 | 10.4 | 71.6 | 1.6 | 3.4 | 100, | 468 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |
| Poorest | 48.0 | 944 | 0.3 | 11.6 | 16.3 | 66.6 | 2.1 | 3.2 | 100.0 | 445 |
| Second | 45.2 | 1183 | 0.3 | 15.7 | 6.4 | 74.0 | 1.4 | 2.3 | 100.0 | 526 |
| Middle | 44.5 | 1442 | 1.2 | 13.1 | 9.8 | 70.0 | 3.6 | 2.3 | 100.0 | 636 |
| Fourth | 35.4 | 1768 | 0.1 | 11.8 | 11.5 | 73.8 | 1.4 | 1.4 | 100.0 | 618 |
| Richest | 32.2 | 1973 | 0.0 | 14.2 | 9.7 | 72.7 | 2.3 | 1.1 | 100.0 | 625 |
| Total | 39.5 | 7310 | 0.4 | 13.3 | 10.5 | 71.6 | 2.2 | 2.0 | 100.0 | 2850 |

Table NHI.2B shows that for the 40 percent of ever registered men aged 15-59 years who do not have a valid NHIS card, the main reason is similar to that of women - 68 percent did not renew their membership. Also, 16 percent have registered/renewed, but card has not been received yet, 11 percent have registered, but in waiting period, 3 percent of the men have lost their NHIS card, while less than 1 percent have registered but not fully paid,. For nonrenewal of membership, the highest proportion can found in Brong Ahafo (83\%), and Eastern region has the lowest non-renewal (49\%). Men in urban areas are also more likely not to renew their NHIS membership (73\%), compared to their counterparts in rural areas (63\%).

| Table NH.2B: Reasons for not holding a valid card among men who have ever registered with NHIS Percentage of registered men aged $15-49$ with no valid NHIS card and percent distribution of those men according to the reason for not having a valid NHIS card, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Reason for not having a valid card: |  |  |  |  |  |  | Number of ever registered men with no valid card |
| Background Characteristics | No valid card |  | Registered, but not fully paid | Registered/ renewed, card not received | Registered, in waiting period | Not renewed registration | Lost card | Other | Total |  |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | 37.8 | 193 | (0.0) | (9.6) | (10.6) | (77.9) | (1.9) | (0.0) | 100.0 | 70 |
| Central | 47.0 | 132 | 0.0 | 8.3 | 22.5 | 69.2 | 0.0 | 0.0 | 100.0 | 61 |
| Greater Accra | 31.6 | 299 | (0.0) | (6.9) | (12.2) | (70.4) | (7.5) | (3.1) | 100.0 | 91 |
| Volta | 52.1 | 133 | 2.4 | 28.1 | 9.1 | 58.2 | 1.0 | 1.1 | 100.0 | 69 |
| Eastern | 40.3 | 218 | (.0) | (42.6) | (1.9) | (49.1) | (6.3) | (.0) | 100.0 | 82 |
| Ashanti | 32.8 | 399 | 0.0 | 14.1 | 10.9 | 68.2 | 4.4 | 2.3 | 100.0 | 131 |
| Brong Ahafo | 43.0 | 212 | 0.0 | 7.2 | 5.4 | 83.2 | 0.0 | 4.3 | 100.0 | 91 |
| Northern | 55.0 | 136 | 1.1 | 9.9 | 16.3 | 70.5 | 1.8 | 0.4 | 100.0 | 75 |
| Upper East | 48.6 | 75 | 1.4 | 18.5 | 17.5 | 59.2 | 3.4 | 0.0 | 100.0 | 37 |
| Upper West | 26.7 | 62 | 1.0 | 10.9 | 12.7 | 66.6 | 2.3 | 6.5 | 100.0 | 16 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 35.5 | 1027 | 0.4 | 9.5 | 9.7 | 73.3 | 4.4 | 2.7 | 100.0 | 358 |
| Rural | 44.9 | 830 | 0.5 | 21.7 | 12.5 | 62.9 | 1.9 | 0.6 | 100.0 | 364 |
| Age |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 40.1 | 410 | 0.2 | 24.7 | 6.7 | 65.4 | 0.8 | 2.4 | 100.0 | 162 |
| 20-24 | 50.4 | 208 | 1.4 | 13.0 | 17.3 | 64.5 | 3.6 | 0.2 | 100.0 | 105 |
| 25-29 | 38.7 | 211 | 0.2 | 9.9 | 8.1 | 80.8 | 0.0 | 1.0 | 100.0 | 81 |
| 30-34 | 38.7 | 231 | 0.4 | 8.7 | 22.1 | 57.1 | 6.5 | 5.1 | 100.0 | 85 |
| 35-39 | 41.5 | 209 | 0.0 | 22.5 | 10.5 | 63.4 | 3.6 | 0.0 | 100.0 | 87 |
| 40-44 | 36.6 | 134 | 0.0 | 10.2 | 2.4 | 81.3 | 3.1 | 2.9 | 100.0 | 48 |
| 45-49 | 35.5 | 190 | 0.0 | 16.7 | 5.4 | 75.6 | 2.2 | 0.0 | 100.0 | 66 |
| 50-54 | 34.6 | 135 | (0.0) | (6.5) | (18.8) | (74.4) | (.4) | (0.0) | 100.0 | 45 |
| 55-59 | 35.4 | 128 | (2.2) | (13.5) | (7.9) | (60.2) | (13.3) | (3.0) | 100.0 | 43 |
| Education |  |  |  |  |  |  |  |  |  |  |
| None | 42.6 | 173 | 0.5 | 15.4 | 10.4 | 70.9 | 2.5 | 0.3 | 100.0 | 74 |
| Primary | 44.3 | 187 | 0.0 | 21.7 | 13.4 | 63.5 | 1.0 | 0.4 | 100.0 | 83 |
| Middle/JSS | 41.4 | 815 | 0.5 | 18.9 | 11.0 | 65.0 | 2.2 | 2.5 | 100.0 | 328 |
| Secondary + | 35.6 | 682 | 0.6 | 9.2 | 10.6 | 72.9 | 5.4 | 1.3 | 100.0 | 238 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |
| Poorest | 49.8 | 245 | 0.5 | 13.5 | 17.8 | 64.3 | 2.3 | 1.7 | 100.0 | 122 |
| Second | 44.9 | 296 | 0.2 | 21.3 | 6.2 | 71.3 | 0.1 | 0.9 | 100.0 | 129 |
| Middle | 48.4 | 323 | 0.8 | 21.6 | 8.6 | 66.7 | 2.4 | 0.0 | 100.0 | 152 |
| Fourth | 37.5 | 421 | 0.7 | 15.5 | 19.7 | 60.8 | 2.4 | 0.9 | 100.0 | 157 |
| Richest | 29.2 | 572 | 0.0 | 7.4 | 4.0 | 76.5 | 7.6 | 4.5 | 100.0 | 162 |
| Total | 39.7 | 1857 | 0.4 | 15.7 | 11.1 | 68.0 | 3.1 | 1.6 | 100.0 | 722 |
| Figures in parentheses ')' are based on $25-49$ unweighted cases. |  |  |  |  |  |  |  |  |  |  |

In the case of the children, the Table NHI.2C shows that three main reasons were mentioned: registered/in waiting period (39\%), registration not renewed (38\%), and renewed/but card not received yet (21\%). The Central region has the highest proportion of children whose NHIS was not renewed (58\%) while the Greater Accra region has the lowest (25\%).

| Table NH.2C: Reasons for not holding a valid card among children who have ever registered with NHIS Percentage of registered children under five with no valid NHIS card and percent distribution of those children according to the reason for not having a valid NHIS card, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Reason for not having a valid card: |  |  |  |  |  |  | Number of ever registered children with no valid card |
| Background Characteristics | $\begin{gathered} \text { No } \\ \text { valid } \\ \text { card } \end{gathered}$ | Number of ever registered children | Registered /Renewed, but card not received yet | Registered, in waiting period | Registration not renewed | $\begin{aligned} & \text { Lost } \\ & \text { NHIS } \\ & \text { card } \end{aligned}$ | Other | Not aware of need to renew the card | Total |  |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | 26.3 | 352 | 15.9 | 38.2 | 42.8 | 3.1 | 0.0 | 0.0 | 100.0 | 90 |
| Central | 28.4 | 275 | 23.0 | 18.2 | 58.3 | 0.0 | 0.0 | 0.5 | 100.0 | 78 |
| Greater Accra | 32.8 | 508 | 21.5 | 51.1 | 24.9 | 2.4 | 0.0 | 0.0 | 100.0 | 161 |
| Volta | 39.0 | 302 |  | 27.3 | 54.1 | 0.8 | 0.0 | 0.0 | 100.0 | 115 |
| Eastern | 24.1 | 443 | (42.2) | (21.4) | (31.2) | (4.1) | (1.1) | (0.0) | 100.0 | 106 |
| Ashanti | 22.4 | 908 | 9.2 | 57.4 | 33.4 | 0.0 | 0.0 | 0.0 | 100.0 | 201 |
| Brong Ahafo | 26.2 | 443 | 33.2 | 20.0 | 44.5 | 2.3 | 0.0 | 0.0 | 100.0 | 114 |
| Northern | 40.6 | 447 | 20.5 | 45.0 | 32.5 | 0.1 | 0.5 | 1.5 | 100.0 | 181 |
| Upper East | 35.5 | 221 | 18.8 | 46.0 | 32.9 | 1.3 | 1.1 | 0.0 | 100.0 | 78 |
| Upper West | 17.7 | 161 | 15.3 | 46.5 | 37.5 | 0.7 | 0.0 | 0.0 | 100.0 | 28 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 26.9 | 1876 | 18.4 | 38.9 | 40.3 | 2.2 | 0.2 | 0.0 | 100.0 | 497 |
| Rural | 30.4 | 2183 | 23.4 | 39.7 | 35.4 | 0.7 | 0.3 | 0.5 | 100.0 | 656 |
| Age |  |  |  |  |  |  |  |  |  |  |
| 0-11 | 42.9 | 479 | 25.0 | 69.5 | 5.5 | 0.0 | 0.0 | 0.0 | 100.0 | 203 |
| 12-23 | 25.2 | 780 | 26.7 | 45.6 | 27.1 | 0.0 | 0.6 | 0.0 | 100.0 | 195 |
| 24-35 | 24.2 | 915 | 20.2 | 40.4 | 33.6 | 5.1 | 0.4 | 0.3 | 100.0 | 218 |
| 36-47 | 29.0 | 999 | 17.0 | 28.7 | 52.5 | 1.5 | 0.1 | 0.1 | 100.0 | 285 |
| 48-59 | 28.9 | 886 | 19.7 | 21.4 | 57.7 | 0.2 | 0.2 | 0.8 | 100.0 | 252 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |
| None | 34.5 | 1229 | 20.6 | 42.4 | 35.3 | 1.0 | 0.2 | 0.5 | 100.0 | 423 |
| Primary | 31.9 | 820 | 23.2 | 36.2 | 38.3 | 1.8 | 0.3 | 0.2 | 100.0 | 259 |
| Middle/JSS | 25.9 | 1419 | 20.9 | 34.4 | 42.4 | 2.0 | 0.3 | 0.0 | 100.0 | 361 |
| Secondary + | 19.3 | 592 | 19.9 | 51.7 | 28.1 | 0.0 | 0.0 | 0.4 | 100.0 | 110 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |
| Poorest | 36.8 | 783 | 19.4 | 46.8 | 31.2 | 1.6 | 0.3 | 0.7 | 100.0 | 285 |
| Second | 31.4 | 746 | 24.4 | 33.8 | 40.5 | 0.1 | 0.9 | 0.3 | 100.0 | 234 |
| Middle | 29.3 | 835 | 26.0 | 31.9 | 42.1 | 0.0 | 0.0 | 0.0 | 100.0 | 242 |
| Fourth | 23.9 | 876 | 19.6 | 37.3 | 41.2 | 1.9 | 0.0 | 0.0 | 100.0 | 206 |
| Richest | 23.4 | 818 | 15.6 | 46.9 | 33.4 | 3.9 | 0.0 | 0.2 | 100.0 | 186 |
| Total | 28.8 | 4059 | 21.2 | 39.4 | 37.5 | 1.4 | 0.2 | 0.3 | 100.0 | 1153 |

Achievement of Membership
This section deals with the means one has used to become a member of NHIS. Options available include: through the payment of premiums, registering for free maternal care when pregnant, free child service or as an indigent. For those who acquired their NHIS through payment of premiums, a question was asked to find out if the premium was paid by the respondent or someone else.

Since 2009, children under 18 years have been decoupled from their parents, and the health insurance provides for and exempts them from the payment of premium, regardless of whether their parents are registered members or not. Therefore, information on the achievement of membership was not included for children under-5 years. Information on the achievement of membership by women and men and who have ever registered with NHIS is provided in Tables NHI.3A and, NHI.3B. The results from these tables show that the achievement of membership was mainly done through the two following options: premium paid by a relative or friend, and premium paid by self.

Table.NHI.3A reveals that for 60 percent of women aged 15-49 years, the NHIS premium was paid for by a relative or friend, while 29 percent of women paid the premium themselves. For 1 percent of women, the premium was paid for by their employers, while SSNIT paid the premium for about 2 percent of women. In 2008, the government of Ghana introduced free maternal care for pregnant women in order to address the high maternal and child morbidity and mortality, and subsequently, also achieve the Millennium Development Goals (MDGs) 4 and 5, and other national targets. Overall, 8 percent of women aged 15-49 years indicated that they accessed NHIS through the free materna care. Access to NHIS through free maternal care is higher among women from the poorest households and women with low education level: 12 percent of women with no education, and 14 percent of women in the poorest wealth quintile registered for NHIS through the free maternal care.

Table NH.3A: Achievement of membership among women

| Table NH.3A: Achievement of membership among women |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of women aged 15-49 years who have ever registered with NHIS and distribution of registered women according to who paid for the premium , Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Achievement of membership |  |  |  |  |  |  |  |  |  |
| Background Characteristics |  | $\begin{gathered} \text { Number } \\ \text { of women } \end{gathered}$ |  | Premium <br> Paid by a relative or friend | Premium Paid by employers | Premium Paid by SSNIT | $\begin{array}{r} \text { Exempt } \\ \text { as } \\ \text { indigent } \end{array}$ | $\begin{array}{r} \text { Free } \\ \text { maternal } \\ \text { Service } \end{array}$ | Other | Total | Number of women registered |
| Region |  |  |  |  |  |  |  |  |  |  |  |
| Western | 62.4 | 1022 | 31.5 | 52.9 | 0.5 | 3.7 | 0.8 | 10.2 | 0.5 | 100.0 | 638 |
| Central | 58.0 | 1044 | 33.5 | 50.5 | 1.1 | 0.3 | 0.0 | 13.5 | 1.0 | 100.0 | 606 |
| Greater Accra | 56.1 | 2074 | 39.2 | 46.5 | 3.7 | 5.1 | 0.2 | 4.9 | 0.3 | 100.0 | 1163 |
| Volta | 69.0 | 821 | 32.3 | 51.7 | 0.3 | 1.0 | 0.3 | 13.0 | 1.4 | 100.0 | 567 |
| Eastern | 74.1 | 1237 | 32.1 | 59.4 | 0.1 | 1.4 | 0.0 | 6.5 | 0.5 | 100.0 | 917 |
| Ashanti | 77.4 | 1983 | 26.2 | 65.7 | 0.9 | 1.6 | 0.0 | 4.8 | 0.9 | 100.0 | 1535 |
| Brong Ahafo | 83.6 | 1005 | 20.4 | 64.6 | 0.4 | 2.0 | 0.3 | 11.7 | 0.5 | 100.0 | 839 |
| Northern | 68.2 | 754 | 14.3 | 77.7 | 0.4 | 0.2 | 0.0 | 7.1 | 0.3 | 100.0 | 514 |
| Upper East | 75.4 | 404 | 23.4 | 68.8 | 0.3 | 0.8 | 0.0 | 6.4 | 0.4 | 100.0 | 305 |
| Upper West | 80.1 | 282 | 17.8 | 73.1 | 0.0 | 1.1 | 0.3 | 6.9 | 0.8 | 100.0 | 226 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 70.9 | 5770 | 32.2 | 56.9 | 1.6 | 3.3 | 0.1 | 5.4 | 0.5 | 100.0 | 4091 |
| Rural | 66.3 | 4857 | 24.1 | 62.9 | 0.3 | 0.5 | 0.2 | 11.2 | 0.8 | 100.0 | 3219 |
| Age |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | . 4 | 1899 | 6.6 | 89.0 | 0.1 | 0.1 | 0.3 | 3.2 | 0.8 | 100.0 | 1279 |
| 20-24 | 68.0 | 1674 | 22.4 | 64.6 | 0.7 | 0.2 | 0.1 | 11.4 | 0.7 | 100.0 | 1138 |
| 25-29 | 68.4 | 1768 | 29.4 | 52.3 | 2.1 | 3.0 | 0.0 | 12.3 | 0.8 | 100.0 | 1209 |
| 30-34 | 71.6 | 1638 | 28.9 | 55.6 | 1.0 | 3.2 | 0.0 | 10.7 | 0.6 | 100.0 | 1173 |
| 35-39 | 71.2 | 1431 | 36.5 | 52.3 | 0.9 | 2.2 | 0.0 | 7.8 | 0.3 | 100.0 | 1019 |
| 40-44 | 68.9 | 1195 | 44.8 | 43.8 | 1.3 | 2.4 | 0.6 | 6.0 | 1.0 | 100.0 | 823 |
| 45-49 | 65.4 | 1023 | 47.6 | 45.3 | 1.1 | 4.4 | 0.4 | 0.9 | 0.4 | 100.0 | 669 |
| Education |  |  |  |  |  |  |  |  |  |  |  |
| None | 61.0 | 2224 | 25.5 | 61.3 | 0.7 | 0.4 | 0.0 | 11.5 | 0.6 | 100.0 | 1356 |
| Primary | 61.6 | 2026 | 29.2 | 56.7 | 0.3 | 0.1 | 0.2 | 12.8 | 0.6 | 100.0 | 1248 |
| Middle/JSS | 71.9 | 4328 | 27.7 | 63.4 | 0.5 | 0.4 | 0.2 | 7.0 | 0.7 | 100.0 | 3111 |
| Secondary + | 77.8 | 2049 | 32.7 | 52.6 | 2.9 | 8.2 | 0.1 | 2.7 | 0.7 | 100.0 | 1595 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 57.4 | 1644 | 17.4 | 67.6 | 0.2 | 0.2 | 0.0 | 13.5 | 1.1 | 100.0 | 944 |
| Second | 63.7 | 1857 | 25.4 | 60.3 | 0.1 | 0.3 | 0.3 | 12.4 | 1.0 | 100.0 | 1183 |
| Middle | 68.1 | 2110 | 29.6 | 58.7 | 0.2 | 0.3 | 0.4 | 10.4 | 0.4 | 100.0 | 1437 |
| Fourth | 75.2 | 2345 | 30.4 | 61.3 | 0.7 | 0.9 | 0.2 | 5.8 | 0.7 | 100.0 | 1763 |
| Richest | 74.2 | 2671 | 33.6 | 54.2 | 2.9 | 6.4 | 0.0 | 2.7 | 0.3 | 100.0 | 1983 |
| Total | 68.8 | 10627 | 28.6 | 59.5 | 1.0 | 2.1 | 0.2 | 7.9 | 0.7 | 100.0 | 7310 |

Table NHI.3B shows that nearly 60 percent of men 15-59 years paid the NHIS premium themselves, while for 31 percent, premiums were paid for by a relative or friend. For 2 percent of the men, premium was paid by their employer, while SSNIT paid the premiums for about 7 percent of the men.

| Table NH.3B: Achievement of membership among men <br> Percentage of men aged 15-59 years who have ever registered with NHIS and distribution of registered men according to who paid for the premium, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | Percent of men who registered | Number of men | Achievement of membership |  |  |  |  |  | Total | Number of men registered |
|  |  |  |  | Premium Paid by a relative or friend | Premium <br> Paid by employers | Premium Paid by SSNIT | Exempt as indigent | Other |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |
| Western | 54.8 | 352 | 63.4 | 27.6 | 1.3 | 6.7 | 0.0 | 1.1 | 100.0 | 193 |
| Central | 44.5 | 296 | 67.1 | 29.6 | 1.4 | 1.9 | 0.0 | 0.0 | 100.0 | 132 |
| Greater Accra | 44.2 | 676 | 44.0 | 27.2 | 9.9 | 17.1 | 0.0 | 1.8 | 100.0 | 299 |
| Volta | 52.5 | 252 | 67.5 | 27.3 | 0.0 | 4.6 | 0.0 | 0.5 | 100.0 | 133 |
| Eastern | 60.9 | 358 | 52.7 | 33.7 | 2.9 | 10.7 | 0.0 | 0.0 | 100.0 | 218 |
| Ashanti | 62.5 | 638 | 65.5 | 29.0 | 0.6 | 4.9 | 0.0 | 0.0 | 100.0 | 399 |
| Brong Ahafo | 71.5 | 296 | 58.6 | 35.2 | 0.0 | 5.6 | 0.6 | 0.0 | 100.0 | 212 |
| Northern | 56.1 | 243 | 59.2 | 38.0 | 0.6 | 2.1 | 0.0 | 0.1 | 100.0 | 136 |
| Upper East | 63.0 | 120 | 59.7 | 36.5 | 0.0 | 3.8 | 0.0 | 0.0 | 100.0 | 75 |
| Upper West | 67.7 | 91 | 55.4 | 36.7 | 0.0 | 4.6 | 0.2 | 3.1 | 100.0 | 62 |
| Residence |  |  |  |  |  |  |  |  |  |  |
| Urban | 58.8 | 1746 | 57.5 | 28.3 | 3.4 | 10.2 | 0.0 | 0.6 | 100.0 | 1027 |
| Rural | 52.7 | 1575 | 60.6 | 34.3 | 0.9 | 3.6 | 0.2 | 0.4 | 100.0 | 830 |
| Age |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 62.4 | 657 | 9.7 | 89.1 | 0.0 | 0.4 | 0.3 | 0.5 | 100.0 | 410 |
| 20-24 | 54.9 | 379 | 40.9 | 58.3 | 0.2 | 0.2 | 0.0 | 0.3 | 100.0 | 208 |
| 25-29 | 46.3 | 456 | 68.4 | 24.8 | 1.4 | 3.6 | 0.0 | 1.8 | 100.0 | 211 |
| 30-34 | 52.4 | 442 | 79.8 | 4.9 | 4.5 | 10.8 | 0.0 | 0.0 | 100.0 | 231 |
| 35-39 | 57.6 | 363 | 77.0 | 2.8 | 4.3 | 14.1 | 0.1 | 1.6 | 100.0 | 209 |
| 40-44 | 46.7 | 288 | 82.8 | 2.9 | 2.3 | 11.9 | 0.0 | 0.1 | 100.0 | 134 |
| 45-49 | 60.8 | 313 | 80.8 | 4.1 | 1.9 | 13.2 | 0.0 | 0.0 | 100.0 | 190 |
| 50-54 | 61.2 | 221 | 83.6 | 0.3 | 2.9 | 13.2 | 0.0 | 0.0 | 100.0 | 135 |
| 55-59 | 62.7 | 204 | 81.1 | 2.3 | 7.2 | 9.4 | 0.0 | 0.0 | 100.0 | 128 |
| Education |  |  |  |  |  |  |  |  |  |  |
| None | 41.6 | 417 | 88.4 | 8.8 | 1.3 | 1.3 | 0.0 | 0.3 | 100.0 | 173 |
| Primary | 45.1 | 416 | 54.0 | 43.1 | 2.4 | 0.2 | 0.0 | 0.3 | 100.0 | 187 |
| Middle/JSS | 55.0 | 1483 | 57.2 | 38.0 | 0.7 | 3.0 | 0.2 | 0.9 | 100.0 | 815 |
| Secondary+ | 67.7 | 1006 | 54.5 | 25.0 | 4.4 | 15.8 | 0.0 | 0.3 | 100.0 | 682 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |  |
| Poorest | 45.9 | 495 | 68.1 | 30.3 | 0.7 | 0.4 | 0.0 | 0.5 | 100.0 | 227 |
| Second | 55.2 | 564 | 55.7 | 41.7 | 1.0 | 0.1 | 0.5 | 1.0 | 100.0 | 311 |
| Middle | 54.2 | 614 | 58.2 | 35.6 | 0.2 | 4.9 | 0.0 | 1.1 | 100.0 | 332 |
| Fourth | 53.4 | 763 | 61.0 | 30.4 | 2.7 | 5.8 | 0.0 | 0.0 | 100.0 | 407 |
| Richest | 65.4 | 886 | 55.7 | 23.2 | 4.5 | 16.2 | 0.0 | 0.4 | 100.0 | 580 |
| Total | 55.9 | 3321 | 58.9 | 31.0 | 2.3 | 7.2 | 0.1 | 0.5 | 100.0 | 1857 |

Opinion on the quality of services offered to the NHI valid card holders, compared to other clients Tables NHI.4A and NHI.4B present respondent's opinion on the quality of services offered to the NHIS valid card holders. Overall, 42 percent of women (Table NHI.4A) and 39 percent of men (Table NHI.4B) who have ever registered with NHIS think the NHIS card holders get better services than other clients when they attend health care facilities, and 26 percent of women and 22 percent of men think the services are about the same. However, 21 percent of women and 20 percent of men complain that quality of services provided by the scheme is worse, compared to that offered to other clients. It appears also that 10 percent of women and 18 percent of men have never used their NHIS card. As the regional level, 64 percent of men aged 15-59 years in Central region indicated that health services using the NHIS card were better compared to 14 percent for men in Eastern region. For women, Eastern region has a higher satisfaction level (54\%) compared to Ashanti region with only 26 percent. The results reveal that women and men with secondary or higher education and also from the wealthiest households were less likely to indicate that they were satisfied with the services provided. Across area of residence, both men and women living in urban areas were less satisfied with the quality of service provided by the scheme, compared to their rural counterparts.

| Table NH.4A: Opinion on quality of service provided to NHIS card holders among women <br> Percentage of women age $15-49$ years who have ever registered with NHIS and percent distribution of registered women according to their opinion on quality of service offered to NHIS holders, Ghana, 2011 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background characteristics | Have ever registered | Number of women aged 15-49 years | Compared with other clients, NHIS card holders receive services that are: |  |  |  |  | Total | Number of women ever registered |
|  |  |  | Better | Same | Worse | Never used | Don't know |  |  |
| Region |  |  |  |  |  |  |  |  |  |
| Western | 62.4 | 1022 | 41.2 | 29.8 | 20.8 | 7.6 | 0.7 | 100.0 | 638 |
| Central | 58.0 | 1044 | 52.0 | 26.6 | 12.7 | 8.2 | 0.5 | 100.0 | 606 |
| Greater Accra | 56.1 | 2074 | 41.1 | 21.5 | 16.8 | 18.7 | 1.9 | 100.0 | 1163 |
| Volta | 69.0 | 821 | 52.0 | 20.2 | 15.2 | 10.4 | 2.3 | 100.0 | 567 |
| Eastern | 74.1 | 1237 | 54.1 | 20.7 | 10.7 | 13.3 | 1.2 | 100.0 | 917 |
| Ashanti | 77.4 | 1983 | 26.4 | 32.2 | 31.1 | 6.9 | 3.3 | 100.0 | 1535 |
| Brong Ahafo | 83.6 | 1005 | 37.5 | 33.1 | 24.5 | 3.1 | 1.8 | 100.0 | 839 |
| Northern | 68.2 | 754 | 48.7 | 21.6 | 19.5 | 9.0 | 1.2 | 100.0 | 514 |
| Upper East | 75.4 | 404 | 45.1 | 24.0 | 25.2 | 3.9 | 1.8 | 100.0 | 305 |
| Upper West | 80.1 | 282 | 53.3 | 20.7 | 21.3 | 3.9 | 0.8 | 100.0 | 226 |
| Residence |  |  |  |  |  |  |  |  |  |
| Urban | 70.9 | 5770 | 39.9 | 26.1 | 22.0 | 10.4 | 1.5 | 100.0 | 4091 |
| Rural | 66.3 | 4857 | 44.8 | 26.1 | 18.6 | 8.3 | 2.2 | 100.0 | 3219 |
| Age |  |  |  |  |  |  |  |  |  |
| 15-19 | 67.4 | 1899 | 41.9 | 21.8 | 20.2 | 13.8 | 2.2 | 100.0 | 1279 |
| 20-24 | 68.0 | 1674 | 42.6 | 25.2 | 21.8 | 8.8 | 1.6 | 100.0 | 1138 |
| 25-29 | 68.4 | 1768 | 43.9 | 27.3 | 17.3 | 10.1 | 1.4 | 100.0 | 1209 |
| 30-34 | 71.6 | 1638 | 41.4 | 29.5 | 22.0 | 6.1 | 0.9 | 100.0 | 1173 |
| 35-39 | 71.2 | 1431 | 42.2 | 26.2 | 21.6 | 7.6 | 2.4 | 100.0 | 1019 |
| 40-44 | 68.9 | 1195 | 39.4 | 29.0 | 18.7 | 10.9 | 2.0 | 100.0 | 823 |
| 45-49 | 65.4 | 1023 | 42.2 | 24.5 | 22.5 | 8.3 | 2.5 | 100.0 | 669 |
| Education |  |  |  |  |  |  |  |  |  |
| None | 61.0 | 2224 | 45.9 | 26.7 | 18.6 | 7.2 | 1.6 | 100.0 | 1356 |
| Primary | 61.6 | 2026 | 45.5 | 23.3 | 18.6 | 10.4 | 2.3 | 100.0 | 1248 |
| Middle/JSS | 71.9 | 4328 | 41.5 | 25.9 | 20.4 | 10.5 | 1.7 | 100.0 | 3111 |
| Secondary + | 77.8 | 2049 | 37.2 | 28.3 | 23.9 | 8.7 | 1.8 | 100.0 | 1595 |
| Wealth index quintiles |  |  |  |  |  |  |  |  |  |
| Poorest | 57.4 | 1644 | 47.9 | 23.2 | 19.2 | 7.8 | 2.0 | 100.0 | 944 |
| Second | 63.7 | 1857 | 43.4 | 26.8 | 19.5 | 8.2 | 2.1 | 100.0 | 1183 |
| Middle | 68.1 | 2110 | 46.5 | 22.3 | 18.9 | 11.0 | 1.3 | 100.0 | 1437 |
| Fourth | 75.2 | 2345 | 38.9 | 28.2 | 22.8 | 7.8 | 2.4 | 100.0 | 1763 |
| Richest | 74.2 | 2671 | 38.2 | 28.0 | 20.8 | 11.4 | 1.5 | 100.0 | 1983 |
| Total | 68.8 | 10627 | 42.1 | 26.1 | 20.5 | 9.5 | 1.8 | 100.0 | 7310 |

Reasons for never having registered to NHIS
An in-depth knowledge of the reasons people do not register for the NHIS is crucial to identify social intervention programmes to improve accessibility and quality health delivery services as well as providing financial risk protection against out of pocket health expenditure for Ghanaians. For respondents who had not registered with NHIS, reasons for the non-registration were sought during the survey. Tables NHI.5A and NHI.5B show that 44 percent of men aged 15-59 years and 31 percent of women aged 15-49 years were not registered with NHIS. Overall, 39 percent of women and 32 percent of men indicated that they had not registered with NHIS because the premium was too expensive. The reason 'Do not need health insurance' was cited by 22 percent of women and 28 percent of men interviewed. Other reasons given for non-registration with NHIS include: registration office too far ( $4 \%$ for both men and women), do not trust NHIS (6\% for women, and 5\% for men), and 'NHIS does not cover the services I need' (2\% and $3 \%$ for women and men respectively). The proportion of high cost of premium and no need for health insurance is correlated with education, residence and socio-economic status for both sexes.

The most commonly cited reason for not registering children aged 0-59 months for the NHIS is "Other" which was mentioned by 65 percent of parents or guardians of children (Table NHI.5C), while not needing health insurance $(18 \%)$ is the second most important consideration for not registering children for NHIS. The third reason mentioned is Registration Office too far ( $11 \%$ ). In further analysis, the "other" reason mentioned by 65 percent of respondents should be investigated.

| Table NH.5A: Reasons for no registration with NHIS among women Percentage of women age 15-49 who have never registered with NHIS and percentage of the reasons for no registration, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { Have } \\ \text { never } \\ \text { registered } \end{array}$ |  | Have not heard of NHIS |  | No trust in NHIS | Reasons for no registration |  |  |  |  | Other |  |
|  |  |  |  |  |  | $\begin{array}{r} \text { Don't } \\ \text { know } \\ \text { where } \\ \text { to } \\ \text { register } \end{array}$ | Registration Office too far |  |  |  |  |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 37.6 | 1022 | 0.0 | 51.9 | 1.3 | 1.9 | 7.5 | 40.4 | 1.5 | 0.0 | 2.4 | 384 |
| Central | 42.0 | 1044 | 0.2 | 50.4 | 8.8 | 4.4 | 1.6 | 14.3 | 3.2 | 0.0 | 23.8 | 438 |
| Greater Accra | 43.9 | 2074 | 0.0 | 19.9 | 13.1 | 2.2 | 0.7 | 30.7 | 3.3 | 0.0 | 36.6 | 911 |
| Volta | 31.0 | 821 | 0.3 | 31.8 | 0.0 | 4.5 | 8.9 | 19.3 | 1.8 | 0.0 | 49.8 | 255 |
| Eastern | 25.9 | 1237 | 0.0 | 57.8 | 0.0 | 0.0 | 4.9 | 22.6 | 1.2 | 0.0 | 15.7 | 320 |
| Ashanti | 22.6 | 1983 | 0.0 | 26.8 | 6.0 | 1.0 | 0.8 | 18.4 | 2.0 | 0.0 | 47.0 | 448 |
| Brong Ahafo | 16.4 | 1005 | 0.0 | 55.8 | 0.0 | 2.0 | 6.1 | 8.9 | 0.0 | 0.0 | 27.9 | 165 |
| Northern | 31.8 | 754 | 0.5 | 56.3 | 2.2 | 6.4 | 15.5 | 6.3 | 0.2 | 0.0 | 17.7 | 240 |
| Upper East | 24.6 | 404 | 0.0 | 53.8 | 2.1 | 0.5 | 0.7 | 0.8 | 0.0 | 0.0 | 41.9 | 100 |
| Upper West | 19.9 | 282 | 0.4 | 58.1 | 0.1 | 0.8 | 3.2 | 2.0 | 0.0 | 0.0 | 40.2 | 56 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 29.1 | 5770 | 0.1 | 29.3 | 9.4 | 2.5 | 0.9 | 28.0 | 2.8 | 0.0 | 32.9 | 1679 |
| Rural | 33.7 | 4857 | 0.1 | 49.4 | 2.5 | 2.5 | 7.2 | 16.1 | 1.3 | 0.0 | 26.6 | 1638 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 32.6 | 1899 | 0.1 | 46.0 | 2.1 | 3.0 | 3.2 | 17.6 | 0.7 | 0.0 | 30.6 | 620 |
| $20-24$ | 32.0 | 1674 | 0.0 | 33.8 | 6.5 | 2.1 | 5.0 | 27.4 | 1.3 | 0.0 | 30.9 | 536 |
| 25-29 | 31.6 | 1768 | 0.0 | 32.0 | 6.7 | 2.1 | 4.9 | 26.5 | 1.4 | 0.0 | 32.6 | 559 |
| 30-34 | 28.4 | 1638 | 0.0 | 38.1 | 9.0 | 4.1 | 4.0 | 23.3 | 2.0 | 0.0 | 26.6 | 465 |
| 35-39 | 28.8 | 1431 | 0.2 | 41.6 | 5.4 | 2.7 | 4.1 | 17.1 | 3.3 | 0.0 | 31.4 | 411 |
| 40-44 | 31.1 | 1195 | 0.1 | 36.0 | 6.3 | 1.2 | 3.4 | 23.3 | 1.3 | 0.0 | 32.6 | 372 |
| 45-49 | 34.6 | 1023 | 0.3 | 49.1 | 7.0 | 1.7 | 3.3 | 18.2 | 5.9 | 0.0 | 21.7 | 354 |
| Education |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 39.0 | 2224 | 0.1 | 56.1 | 2.2 | 2.9 | 6.7 | 9.8 | 0.5 | 0.0 | 26.1 | 869 |
| Primary | 38.4 | 2026 | 0.0 | 36.4 | 5.6 | 3.6 | 2.9 | 22.9 | 1.3 | 0.0 | 32.1 | 778 |
| Middle/ss | 28.1 | 4328 | 0.1 | 37.9 | 7.4 | 1.6 | 3.3 | 23.6 | 3.0 | 0.0 | 29.4 | 1217 |
| Secondary + | 22.2 | 2049 | 0.0 | 15.3 | 10.0 | 1.9 | 2.9 | 40.4 | 3.8 | 0.0 | 33.9 | 454 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 43.1 | 1659 | 0.2 | 53.0 | 1.6 | 3.7 | 9.7 | 8.7 | 0.7 | . 0 | 27.4 | 715 |
| Second | 37.0 | 1877 | 0.1 | 49.8 | 1.4 | 1.5 | 5.0 | 15.1 | 0.7 | . 0 | 32.0 | 694 |
| Middle | 31.3 | 2101 | 0.2 | 47.2 | 6.8 | 3.0 | 1.7 | 19.8 | 0.8 | . 0 | 25.5 | 658 |
| Fourth | 24.6 | 2345 | 0.0 | 33.4 | 6.8 | 0.6 | 2.3 | 30.8 | 2.1 | . 0 | 28.8 | 577 |
| Richest | 25.5 | 2646 | 0.0 | 11.0 | 13.8 | 3.2 | 0.9 | 38.5 | 6.0 | . 0 | 35.1 | 674 |
| Total | 31.2 | 10627 | 0.1 | 39.2 | 6.0 | 2.5 | 4.0 | 22.1 | 2.1 | . 0 | 29.8 | 3317 |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{\begin{tabular}{l}
Table NH.5B: Reasons for no registration with NHIS among men \\
Percentage of men age 15-59 who have never registered with NHIS and percentage of reasons for no registration, Ghana, 2011
\end{tabular}} \\
\hline Background Characteristics \& \[
\begin{array}{r}
\text { Have } \\
\text { never } \\
\text { registered }
\end{array}
\] \& \[
\begin{array}{r}
\text { Number } \\
\text { of men } \\
\text { age } 15-59 \\
\text { years }
\end{array}
\] \& Have not heard of NHIS \& \[
\begin{array}{r}
\text { Premium } \\
\text { too } \\
\text { expensive }
\end{array}
\] \& No trust in NHIS \&  \& ns for no registr

Registration

Office too far \& tion \& NHIS does not cover the services I need \& | NHIS |
| :--- |
| does not cover the facilities I use | \& Other \& Number o men neve registered <br>

\hline \multicolumn{13}{|l|}{Region} <br>
\hline Western \& 45.2 \& 352 \& 1.6 \& 36.0 \& 1.1 \& 2.2 \& 4.9 \& 55.8 \& 2.1 \& . 0 \& 3.2 \& 159 <br>
\hline Central \& 55.5 \& 296 \& . 1 \& 39.9 \& 3.5 \& 3.6 \& . 5 \& 19.9 \& . 8 \& . 0 \& 37.4 \& 164 <br>
\hline Greater Accra \& 55.8 \& 676 \& . 0 \& 25.4 \& 9.3 \& . 8 \& 1.2 \& 26.0 \& 7.9 \& . 0 \& 42.3 \& 377 <br>
\hline Volta \& 47.5 \& 252 \& . 6 \& 22.8 \& 3.8 \& ${ }^{3}$ \& 5.3 \& 28.3 \& 2.7 \& . 0 \& 57.2 \& 120 <br>
\hline Eastern \& 39.1 \& 358 \& . 0 \& 27.8 \& 1.5 \& . 0 \& 2.9 \& 49.8 \& 1.3 \& . 0 \& 25.3 \& 140 <br>
\hline Ashanti \& 37.5 \& 638 \& . 0 \& 14.4 \& 2.8 \& . 0 \& 4.6 \& 28.0 \& . 0 \& . 0 \& 51.6 \& 239 <br>
\hline Brong Ahafo \& 28.5 \& 296 \& . 0 \& 58.3 \& 5.3 \& 3.0 \& 5.8 \& 10.8 \& . 0 \& . 0 \& 18.1 \& 84 <br>
\hline Northern \& 43.9 \& 243 \& 3 \& 57.0 \& 7.0 \& 1.8 \& 16.1 \& 8.9 \& 1.8 \& . 0 \& 9.5 \& 106 <br>
\hline Upper East \& 37.0 \& 120 \& 9 \& 49.6 \& 4.6 \& . 0 \& . 6 \& 4.2 \& . 0 \& . 0 \& 40.6 \& 44 <br>
\hline Upper West \& 32.3 \& 91 \& (.0) \& (48.4) \& (2.1) \& (.3) \& (1.8) \& (1.7) \& (1.0) \& (.0) \& (49.5) \& 29 <br>
\hline \multicolumn{13}{|l|}{Residence} <br>
\hline Urban \& 41.2 \& 1746 \& . 0 \& 26.4 \& 7.4 \& 1.1 \& 1.7 \& 30.6 \& 4.4 \& . 0 \& 36.1 \& 719 <br>
\hline Rural \& 47.3 \& 1575 \& . 5 \& 37.0 \& 2.3 \& 1.3 \& 6.1 \& 25.7 \& 1.3 \& . 0 \& 33.8 \& 745 <br>
\hline \multicolumn{13}{|l|}{Age} <br>
\hline 15-19 \& 37.6 \& 657 \& 1.0 \& 47.8 \& . 9 \& 1.6 \& 4.8 \& 9.0 \& 2.1 \& . 0 \& 37.5 \& 247 <br>
\hline 20-24 \& 45.1 \& 379 \& . 0 \& 29.4 \& 2.1 \& 1.9 \& 2.3 \& 21.0 \& . 0 \& . 0 \& 46.8 \& 171 <br>
\hline 25-29 \& 53.7 \& 456 \& . 0 \& 25.3 \& 8.7 \& . 4 \& 3.5 \& 31.8 \& 1.1 \& . 0 \& 32.5 \& 245 <br>
\hline 30-34 \& 47.6 \& 442 \& . 0 \& 24.6 \& 4.0 \& . 0 \& 3.9 \& 41.8 \& 5.0 \& . 0 \& 32.9 \& 210 <br>
\hline 35-39 \& 42.4 \& 363 \& . 1 \& 25.9 \& 6.6 \& 3.9 \& 3.8 \& 41.3 \& 6.4 \& . 0 \& 26.5 \& 154 <br>
\hline 40-44 \& 53.3 \& 288 \& . 2 \& 28.7 \& 2.6 \& 1.3 \& 5.4 \& 36.5 \& 3.0 \& . 0 \& 30.5 \& 153 <br>
\hline 45-49 \& 39.2 \& 313 \& . 6 \& 28.9 \& 5.9 \& 4 \& 5.3 \& 21.5 \& 2.6 \& . 0 \& 44.4 \& 123 <br>
\hline 50-54 \& 38.8 \& 221 \& . 0 \& 45.1 \& 10.5 \& 1.1 \& 4.1 \& 11.6 \& 2.9 \& . 0 \& 30.9 \& 86 <br>
\hline 55-59 \& 37.3 \& 204 \& . 5 \& 33.9 \& 6.3 \& . 0 \& . 7 \& 41.6 \& 4.1 \& . 0 \& 28.2 \& 76 <br>
\hline \multicolumn{13}{|l|}{Education} <br>
\hline None \& 58.4 \& 417 \& 3 \& 48.1 \& 2.2 \& 1.6 \& 8.8 \& 15.1 \& 1.9 \& . 0 \& 31.2 \& 243 <br>
\hline Primary \& 54.9 \& 416 \& . 0 \& 39.3 \& 3.6 \& . 7 \& 3.9 \& 24.7 \& 3 \& . 0 \& 31.9 \& 228 <br>
\hline Middle/ss \& 45.0 \& 1483 \& . 4 \& 32.0 \& 4.3 \& 1.0 \& 2.4 \& 26.8 \& 3.6 \& . 0 \& 37.3 \& 668 <br>
\hline Secondary + \& 32.3 \& 1006 \& . 2 \& 14.0 \& 8.7 \& 1.5 \& 3.4 \& 42.9 \& 3.8 \& . 0 \& 34.9 \& 325 <br>
\hline \multicolumn{13}{|l|}{Wealth index quintile} <br>
\hline Poorest \& 52.6 \& 518 \& . 5 \& 46.7 \& 3.5 \& 1.9 \& 10.4 \& 15.5 \& 1.0 \& . 0 \& 28.2 \& 272 <br>
\hline Second \& 46.9 \& 557 \& 1.0 \& 41.2 \& 2.9 \& 2.2 \& 2.1 \& 24.1 \& . 6 \& . 0 \& 33.2 \& 261 <br>
\hline Middle \& 47.9 \& 621 \& . 1 \& 34.7 \& 5.5 \& . 8 \& 2.6 \& 26.0 \& 2.8 \& . 0 \& 33.5 \& 297 <br>
\hline Fourth \& 45.9 \& 779 \& . 0 \& 26.5 \& 2.9 \& . 2 \& 3.8 \& 35.2 \& 1.1 \& . 0 \& 35.6 \& 358 <br>
\hline Richest \& 32.5 \& 847 \& . 0 \& 11.9 \& 9.6 \& 1.1 \& . 8 \& 37.4 \& 9.1 \& . 0 \& 43.9 \& 275 <br>
\hline Total \& 44.1 \& 3321 \& . 3 \& 31.8 \& 4.8 \& 1.2 \& 3.9 \& 28.1 \& 2.8 \& . 0 \& 34.9 \& 1464 <br>
\hline \multicolumn{13}{|l|}{Figures in parentheses ')' 're based on $25-49$ unweighted cases} <br>
\hline
\end{tabular}

| Table NH.5C: Reason for no registration with NHIS among children under five Percentage of children aged 0-59 months who have never been registered with NHIS and percent distribution of those children never registered according $t$ the reasons for no registration, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Have never registered | Number of children age 0-59 months | Reasons for no registration |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Number } \\ \text { of } \\ \text { children } \\ \text { never } \\ \text { registered } \end{array}$ |
|  |  |  | Have not heard of NHIS | Not aware <br> card is renewable | $\begin{array}{r} \text { No } \\ \text { trust in } \\ \text { NHIS } \end{array}$ | Don't know where to register | Registration Office too far |  |  |  | Other |  |
| Region |  |  |  |  |  |  |  |  |  |  |  |  |
| Western | 53.5 | 758 | 0.0 | 0.0 | 1.2 | 1.7 | 15.5 | 35.5 | 0.5 | 0.0 | 50.0 | 405 |
| Central | 62.9 | 740 | 0.0 | 0.0 | 3.7 | 3.3 | 4.5 | 8.1 | 3.5 | 0.0 | 78.9 | 466 |
| Greater Accra | 55.5 | 1142 | 0.0 | 0.0 | 12.2 | 2.8 | 3.1 | 25.9 | 3.2 | 0.0 | 55.9 | 634 |
| Volta | 49.8 | 601 | 0.6 | 0.0 | 2.3 | 5.3 | 9.6 | 19.3 | 3.0 | 0.0 | 71.1 | 299 |
| Eastern | 46.5 | 827 | 0.0 | 0.0 | 0.0 | 0.8 | 12.6 | 30.1 | 0.0 | 0.0 | 56.5 | 384 |
| Ashanti | 35.6 | 1411 | 0.7 | 0.0 | 2.4 | 2.3 | 5.0 | 7.5 | 1.0 | 0.0 | 81.0 | 503 |
| Brong Ahafo | 34.0 | 671 | 1.2 | 0.0 | 0.0 | 0.8 | 10.1 | 1.1 | 0.0 | 0.0 | 86.9 | 228 |
| Northern | 47.6 | 852 | 0.9 | 0.1 | 2.4 | 6.0 | 38.4 | 16.8 | 0.7 | 0.0 | 39.0 | 405 |
| Upper East | 32.0 | 325 | 0.3 | 0.0 | 2.0 | 0.8 | 4.3 | 2.0 | 0.5 | 0.0 | 90.6 | 104 |
| Upper West | 28.0 | 223 | 0.4 | 0.0 | 0.7 | 0.6 | 11.2 | 2.4 | 0.4 | 0.0 | 86.3 | 63 |
| Residence |  |  |  |  |  |  |  |  |  |  |  |  |
| Urban | 42.9 | 3283 | ${ }^{0.3}$ | 0.0 | 5.9 | 2.1 | 2.9 | 21.9 | 2.2 | 0.0 | 66.2 | 1407 |
| Rural | 48.8 | 4267 | 0.4 | 0.0 | 2.3 | 3.3 | 17.1 | 15.4 | 1.2 | 0.0 | 64.0 | 2084 |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 0-11 | 68.9 | 1543 | 0.3 | 0.0 | 1.2 | 1.6 | 11.3 | 18.9 | 0.9 | 0.0 | 67.4 | 1064 |
| 12-23 | 46.3 | 1453 | 0.2 | 0.0 | 4.3 | 3.8 | 12.4 | 18.9 | 1.1 | 0.0 | 62.1 | 673 |
| 24-35 | 41.0 | 1553 | 0.2 | 0.0 | 6.2 | 2.8 | 11.1 | 15.5 | 2.5 | 0.0 | 65.4 | 637 |
| 36-47 | 36.6 | 1576 | 0.2 | 0.0 | 3.8 | 3.2 | 11.8 | 19.1 | 2.6 | 0.0 | 63.2 | 578 |
| 48-59 | 37.8 | 1426 | 0.9 | 0.0 | 5.0 | 3.6 | 10.0 | 17.3 | 1.4 | 0.0 | 64.7 | 540 |
| Mother's education |  |  |  |  |  |  |  |  |  |  |  |  |
| None | 50.0 | 2455 | 0.5 | 0.0 | 1.8 | 2.9 | 17.4 | 13.0 | 1.0 | 0.0 | 66.8 | 1226 |
| Primary | 49.6 | 1628 | 0.3 | 0.0 | 4.5 | 3.6 | 10.6 | 22.0 | 1.8 | 0.0 | 61.8 | 808 |
| Middle/JSS | 45.0 | 2578 | 0.3 | 0.0 | 4.6 | 2.3 | 6.0 | 19.1 | 1.0 | 0.0 | 67.9 | 1159 |
| Secondary + | 33.4 | 889 | 0.0 | 0.0 | 6.5 | 2.1 | 9.4 | 24.2 | 5.8 | 0.0 | 54.1 | 297 |
| Wealth index quintile |  |  |  |  |  |  |  |  |  |  |  |  |
| Poorest | 54.7 | 1730 | 0.7 | 0.0 | 1.3 | 3.9 | 22.0 | 14.3 | 1.3 | 0.0 | 61.3 | 947 |
| Second | 51.9 | 1551 | 0.0 | 0.0 | 2.4 | 2.5 | 13.9 | 13.5 | 0.6 | 0.0 | 69.7 | 805 |
| Middle | 46.4 | 1559 | 0.2 | 0.0 | 3.3 | 2.5 | 6.3 | 16.5 | 1.0 | 0.0 | 71.4 | 723 |
| Fourth | 37.3 | 1397 | 0.0 | 0.0 | 4.6 | 1.9 | 3.3 | 27.2 | 2.0 | 0.0 | 64.1 | 521 |
| Richest | 37.7 | 1313 | 0.7 | 0.0 | 10.3 | 2.5 | 2.8 | 25.5 | 4.5 | 0.0 | 55.4 | 495 |
| Total | 46.2 | 7550 | 0.3 | 0.0 | 3.8 | 2.8 | 11.4 | 18.1 | 1.6 | 0.0 | 64.9 | 3491 |



XV: Access to Mass Media and Information Communication Technology

Access to Mass Media
The world is now linked together with technology; access to information is done through mass media which is fast becoming a necessary pre-requisite for living a meaningful life. People's choice of life is affected by the decision they make based on information available to them. Education globally is now based on information and technology There is an important link in public education and behavioral change communication through the use of mass media.

The survey collected information from individual men and women on their exposure to mass media: newspaper, radio and television as well as the use of computer and internet. Tables MT. 1 and MT. 1M show the exposure of women and men, respectively, to the three mass media at least once a week.

Overall, the Table MT. 1 shows that 11 percent of women read a newspaper at least once a week; nearly 70 percent listen to the radio at least once a week and 56 percent watch television at least once a week. However, only 8 percent of the women aged 15-49 years were exposed to all three media at least once a week, and 5 percent were exposed to no media at least once a week. Table MT.1M shows that the exposure of men to newspaper and radio was higher than that of women: 20 percent of men aged 15-59 years read newspapers at least once a week and 80 percen listen to the radio at least once a week. The results reveal that about 60 percent of the men watch television at least once a week and 17 percent are exposed to all three media at least once a week, while 4 percent are not exposed to any media.

Exposure of women to mass media among the age-groups revealed that women aged 15-19 years and 20-24 years are more likely ( $15 \%$ ) than women of other age groups to read a newspaper at least once a week. Also, the 20-24 years age-group has the highest proportion (12\%) of exposure to all three media at least once a week. For men in Table MT.1M, the reverse is true - young men aged 15-19 years and 20-24 years had the lowest exposure to newspaper at least once a week ( $16 \%$ and $18 \%$ respectively), and to all three media at least once a week ( $13 \%$ and $14 \%$, respectively. The highest exposure to all three media at least once a week for men aged 15-59 years is recorded among the 55-59 years age-group (31\%).

Differences in exposure to mass media are linked to the area of residence for both women aged 15-49 years, and men aged 15-59 years. Both men and women residing in urban areas have greater exposure to all the categories of mass media, compared to those residing in the rural areas. For example, only 2 percent of women (Table MT.1), and 7 percent of men (Table MT.1M) in the rural areas are exposed to all media at least once a week, while this figure is 14 percent for women and 26 percent for men living in urban areas. Also, 4 percent of women and 10 percent of men residing in rural areas are exposed to newspaper at least once a week compared to 17 percent of women and 30 percent of men living in urban areas. Exposure to radio and TV at least once a week follows the same pattern. In terms of regional exposure to mass media at least once a week, huge variations are observed. For men, Greater Accra region has the highest exposure in reading newspapers ( $40 \%$ ), watching TV $(85 \%)$ and for all three media $36 \%$ ), while the lowest exposure in all categories for men is Upper West region. For women, Greater Accra has the highest exposure to mass media in all categories compared to the lowest exposure recorded in Upper East region.

For both sexes (Tables MT. 1 and MT.1M), the exposure to mass media increases with educational level and household wealth. For example, while 36 percent of women with secondary or higher education were exposed to newspaper at least once a week, less than 1 percent of those with no education were exposed to a newspaper once a week. This is also shown in the overall indicator of exposure to all three media at least once a week with 31 percent of women with secondary or higher education being exposed to all three media at least once a week, compared to less than 1 percent for those with no education. The pattern for men in Table MT.1M is essentially the same with 43 percent

## Communication Technology

Access to Mass Media and Information Communication Technology
of men with secondary or higher education being exposed to all three media at least once a week compared to virtually 0 percent for those with no education.

Exposure to mass media also increases with household wealth for both men and women. The proportion of women with exposure to a newspaper at least once a week is 26 percent among women from the richest households, compared to about 2 percent for women from the poorest wealth quintile. The percentage of women exposed to all three media at least once a week is about 1 percent for the bottom 40 percent. This increases to 3 percent for the women belonging to the middle wealth quintile, to 8 percent for those in the fourth wealth quintile, and to 23 percent for women in the richest wealth quintile. About 82 percent of women in the richest household listen to the radio at least once a week compared to 50 percent of women from the poorest households.

Men exposure to mass media in Table MT.1M, has a similar pattern - 48 percent of men in the richest households have exposure to reading newspaper at least once a week, compared to 4 percent of men in the poorest households. Again there is a significant difference between men exposure to all three media at least once a week and household wealth -1 percent among men living in the poorest households, to 4 percent among those in the second wealth quintile, and 11 percent among men living in the middle wealth quintile. The exposure increases to 16 percent among men in the fourth wealth quintile, and to 44 percent among men living in the richest wealth quintile.

| Table MT.1: Exposure to mass media among women |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of women age $15-49$ years who are exposed to specific mass media on a weekly basis, Ghana, 2011 |  |  |  |  |  |  |
| Background <br> Charateristics | Read a newspaper at least once a week | Listen to the radio at least once a week | Watch television at least once a week | All three media at least once a week | No media at least once a week | Number of women age 15-49 years |
| Region |  |  |  |  |  |  |
| Western | 8.9 | 75.7 | 54.7 | 5.6 | 3.6 | 1022 |
| Central | 8.0 | 71.9 | 56.7 | 5.6 | 5.3 | 1044 |
| Greater Accra | 26.4 | 78.9 | 84.2 | 24.2 | 2.9 | 2074 |
| Volta | 6.1 | 54.8 | 39.8 | 3.0 | 8.6 | 821 |
| Eastern | 8.7 | 70.0 | 58.0 | 6.1 | 6.5 | 1237 |
| Ashanti | 5.9 | 70.6 | 59.8 | 4.1 | 5.1 | 1983 |
| Brong Ahafo | 7.0 | 75.9 | 48.3 | 5.4 | 4.4 | 1005 |
| Northern | 3.4 | 41.2 | 31.0 | 1.6 | 4.5 | 754 |
| Upper East | 3.7 | 48.6 | 17.6 | 2.1 | 7.8 | 404 |
| Upper West | 5.0 | 50.9 | 28 | 3.6 | 8.0 | 282 |
| Residence |  |  |  |  |  |  |
| Urban | 16.5 | 72.4 | 73.6 | 13.5 | 4.2 | 5770 |
| Rural | 3.5 | 64.1 | 36.1 | 2.1 | 6.1 | 4857 |
| Age |  |  |  |  |  |  |
| 15-19 | 15.2 | 64.2 | 58.3 | 9.5 | 12.6 | 1899 |
| 20-24 | 15.2 | 71.0 | 64.6 | 12.4 | 5.1 | 1674 |
| 25-29 | 12.7 | 73.2 | 62.8 | 10.8 | 3.4 | 1768 |
| 30-34 | 8.1 | 69.0 | 57.5 | 7.2 | 2.6 | 1638 |
| 35-39 | 5.6 | 69.2 | 50.1 | 5.1 | 2.6 | 1431 |
| 40-44 | 6.8 | 66.4 | 48.2 | 5.9 | 3.4 | 1195 |
| 45-49 | 5.9 | 65.8 | 45.4 | 4.5 | 3.1 | 1023 |
| Education |  |  |  |  |  |  |
| None | 0.4 | 51.1 | 26.3 | 0.3 | 0.1 | 2224 |
| Primary | 0.7 | 60.0 | 45.8 | 0.5 | 3.9 | 2026 |
| Middle/JSS | 8.3 | 74.5 | 63.4 | 5.6 | 8.6 | 4328 |
| Secondary + | 36.1 | 83.4 | 85 | 30.7 | 4.2 | 2049 |
| Wealth index quintile |  |  |  |  |  |  |
| Poorest | 1.7 | 49.6 | 10.0 | 0.7 | 6.5 | 1659 |
| Second | 2.2 | 62.8 | 28.1 | 0.8 | 8.2 | 1877 |
| Middle | 5.7 | 67.2 | 50.7 | 2.8 | 6.1 | 2101 |
| Fourth | 10.3 | 72.5 | 78.1 | 8.1 | 3.9 | 2345 |
| Richest | 26.2 | 82.2 | 91.0 | 23.0 | 2.2 | 2646 |
| Total | 10.6 | 68.6 | 56.4 | 8.3 | 5.1 | 10627 |
| [1] MICS indicator MT1 |  |  |  |  |  |  |

Access to Mass Media and Information

Table MT.1M: Exposure to mass media among men


## Use of Computers and Internet

MICS 4, this time around, collected information from young men and women aged 15-19 years and 20-24 years who have used a computer and internet during the last 12 months, and the frequency of use during the last one month Tables MT. 2 and MT.2M illustrate respectively the findings for young women and men aged 15-19 years and 20-24 years.
Overall, 1 in 3 young women (32\%) and almost half of young men (46\%) have ever used a computer (Table MT.2), as shown in Table MT. 2 M. The results also reveal that 25 percent of young women and 39 percent of young men used a computer during the last 12 months. Also, 15 percent of the young women and 23 percent of young men used a computer at least once a week during the last one month.

Access to Mass Media and Information Communication Technology

The use of the internet is one of the powerful social tools in mass media communication. It enhances one's ability to accomplish many tasks within a short time provided you are exposed to the use of computer. In the MICS survey, 17 percent of young women, and 33 percent of young men indicated that they have ever used the internet. Young men are more likely to have used the internet during the last 12 months ( $29 \%$ ), compared to young women (15\%). Also, $11 \%$ of young women and $19 \%$ of young men used the internet at least once a week during the last one month.

The area of residence is also linked to the use of computer and internet for both young men and women: as shown in Tables MT. 2 and MT. 2M, both young women and men living in urban areas are more likely to use the computer and internet compared to their counterparts in the rural areas.

Education is seen as one of pre-requisites for the use of the computer and the internet, and for both young women and men; the use of computer and internet increases with educational level. For example, in Table MT.2, less than 1 percent of young women with no education ever used a computer. This increases to 7 percent among young women with primary education, to 24 percent among those with middle/JHS education, and to 74 percent among those with secondary or higher education. In Table MT.2M, virtually 0 percent of young men with no education ever used the computer, against 16 percent among those with primary education, 43 percent among those with middle/JHS education, and 76 percent for the young men with secondary or higher education.

Regional disparities also exist in the use of the computer and the internet for both young women and men. Greater Accra scored higher percentage in all indicators. For example, the proportion of young women who ever used a computer was 50 percent, 41 percent used a computer during the last 12 months, 38 percent ever used the internet, and 33 percent used the internet during the last 12 months. On the other hand, the Northern region has the lowest rates of computer and internet use, especially for internet use, with only 4 percent of young women using the internet during the last 12 months. For young men, Greater Accra region has the highest scores in the use of computer and internet, while the lowest scores are recorded in Upper West region.

The survey has shown that the socio-economic status of households can determine the use of computer and the internet by young people. The proportion of computer and internet use increases with household wealth. About 7 percent of young women from poorest households ever used a computer, which is more than 8 times below that of young women living in the richest households (59\%). Furthermore, less than 1 percent of young women from the poorest households ever used the internet, compared to 46 percent of young women in the richest households. There is a large difference between the fourth and richest quintile on all the indicators related to the use of the computer and internet. This is also true for young men - 84 percent of young men living in the richest households have ever used a computer, compared to 54 percent of young men in the fourth quintile. Also, 76 percent of young men living in the richest households have ever used the internet, compared to 45 percent of young men in the fourth quintile (Table MT.2M). Results also reveal that only 11 percent of young men from the poorest households have ever used a computer

The age-groups also show some variations. For example, young men aged 20-24 years are more likely to use both the computer and internet in comparison to their counterparts aged 15-19 years. The same pattern is also observed in case of young women aged 15-24 years, except for those who had ever used a computer.

## Table MT.2: Use of computers and interne

Percentage of young women age $15-24$ who have ever used a computer, percentage who have used a computer during the last 12 months, and frequency of use during the last one month, Ghana, 2011

| Background Charateristics | Percentage of women age 15-24 who have: |  |  | Percentage of women age 15-24 who have: |  |  | Number of women age 15 24 years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ever used a computer | Used a computer during the last 12 months [1] | Used a computer at least once a week during the last one month | Ever used the internet | Used the internet during the last 12 months [2] | Used the internet at least once a week during the last one month |  |
| Region |  |  |  |  |  |  |  |
| Western | 23.7 | 20.3 | 11.8 | 12.6 | 11.2 | 9.4 | 329 |
| Central | 30.3 | 21.5 | 10.2 | 12.1 | 10.0 | 6.8 | 379 |
| Greater Accra | 49.7 | 40.6 | 31.3 | 38.1 | 33.3 | 27.4 | 632 |
| Volta | 23.0 | 17.1 | 7.4 | 4.3 | 4.1 | 2.8 | 272 |
| Eastern | 35.6 | 29.6 | 14.1 | 16.4 | 14.7 | 9.8 | 398 |
| Ashanti | 34.8 | 28.4 | 18.1 | 18.7 | 17.6 | 9.8 | 718 |
| Brong Ahafo | 24.4 | 16.8 | 10.1 | 0.7 | 5.5 | 3.9 | 396 |
| Northern | 16.3 | 9.9 | 4.8 | 4.7 | 3.7 | 1.8 | 219 |
| Upper East | 20.6 | 15.0 | 4.8 | 6.3 | 4.3 | 2.2 | 132 |
| Upper West | 18.2 | 16.0 | 8.5 | 9.5 | 9.1 | 6.4 | 98 |
| Residence |  |  |  |  |  |  |  |
| Urban | 43.5 | 35.4 | 23.6 | 26.9 | 23.6 | 17.4 | 1939 |
| Rural | 18.1 | 12.9 | 5.4 | 4.5 | 4.1 | 2.3 | 1634 |
| Age |  |  |  |  |  |  |  |
| 15-19 | 32.6 | 25.5 | 14.0 | 14.5 | 12.6 | 7.8 | 1899 |
| 20-24 | 31.1 | 24.7 | 16.8 | 19.1 | 17.1 | 13.5 | 1674 |
| Education |  |  |  |  |  |  |  |
| None | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 286 |
| Primary | 7.0 | 3.7 | 2.0 | 0.8 | 0.8 | 0.3 | 610 |
| Middle/JSS | 23.7 | 16.0 | 8.0 | 0.7 | 5.9 | 3.8 | 1767 |
| Secondary + | 74.4 | 64.9 | 43.3 | 51.3 | 45.7 | 33.7 | 909 |
| Wealth index quintile |  |  |  |  |  |  |  |
| Poorest | 6.9 | 4.3 | 1.2 | 0.8 | 0.5 | 0.1 | 526 |
| Second | 16.3 | 12.6 | 5.2 | 4.1 | 3.4 | 1.8 | 663 |
| Middle | 26.0 | 17.8 | 8.7 | 7.4 | 6.4 | 4.0 | 781 |
| Fourth | 38.8 | 29.0 | 16.0 | 16.7 | 14.4 | 9.8 | 778 |
| Richest | 59.3 | 51.6 | 38.0 | 45.6 | 40.9 | 30.8 | 826 |
| Total | 31.9 | 25.1 | 15.3 | 16.7 | 14.7 | 10.5 | 3573 |
| [1] MICS indicator MT. 2 2] MICS indicator MT. 3 |  |  |  |  |  |  |  |

## Table MT.2M: Use of computers and internet

| Table MT.2M: Use of computers and internet <br> centage of young men age 15-24 years who have ever used a computer, percentage who have used a computer during the last 12 months, and |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | Percentage of men age 15-24 who have: |  |  | Percentage of men age 15-24 who have: |  |  |  |
| Background Charateristics | Ever used a computer | Used a computer during the last 12 months [1] | Used a computer at least once a week during the last one month | Ever used the internet | Used the internet during the last 12 months [2] | Used the internet at least once a week during the last one month | Number of men age 15-24 years |
| Region |  |  |  |  |  |  |  |
| Western | 46.4 | 44.1 | 32.2 | 29.9 | 23.8 | 19.5 | 107 |
| Central | 39.8 | 36.2 | 18.8 | 23.1 | 19.5 | 11.9 | 94 |
| Greater Accra | 74.1 | 63.7 | 31.3 | 69.7 | 60.3 | 35.2 | 194 |
| Volta | 33.1 | 27.9 | 22.4 | 17.3 | 17.3 | 15.6 | 87 |
| Eastern | (51.2) | (39.1) | (15.7) | (16.2) | (15.0) | (7.6) | 95 |
| Ashanti | 50.6 | 40.7 | 29.4 | 36.2 | 34.0 | 22.2 | 195 |
| Brong Ahafo | 36.1 | 32.9 | 17.6 | 21.1 | 19.8 | 14.2 | 92 |
| Northern | 25.4 | 21.7 | 13.3 | 22.3 | 18.3 | 12.2 | 86 |
| Upper East | 20.4 | 13.6 | 7.3 | 12.3 | 8.5 | 4.9 | 49 |
| Upper West | 16.4 | 12.7 | 6.4 | 11.0 | 9.2 | 5.1 | 36 |
| Residence |  |  |  |  |  |  |  |
| Urban | 62.3 | 54.0 | 32.8 | 52.5 | 46.3 | 31.1 | 537 |
| Rural | 28.8 | 23.3 | 12.4 | 11.5 | 9.9 | 5.1 | 499 |
| Education |  |  |  |  |  |  |  |
| None | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41 |
| Primary | 16.3 | 13.3 | 7.7 | 9.3 | 7.7 | 4.9 | 156 |
| Middle/JSS | 42.7 | 34.6 | 18.5 | 25.2 | 20.2 | 11.6 | 560 |
| Secondary + | 76.4 | 68.5 | 43.7 | 65.4 | 61.8 | 42.7 | 280 |
| Age |  |  |  |  |  |  |  |
| 15-19 | 44.0 | 36.7 | 20.0 | 30.2 | 26.4 | 16.0 | 657 |
| 20-24 | 49.9 | 43.5 | 28.2 | 37.0 | 32.9 | 23.0 | 379 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 11.1 | 6.2 | 2.2 | 3.7 | 2.8 | 1.7 | 169 |
| Second | 28.3 | 25.0 | 12.9 | 11.9 | 9.7 | 4.9 | 204 |
| Middle | 48.5 | 38.4 | 21.8 | 25.2 | 24.5 | 18.8 | 246 |
| Fourth | 53.9 | 45.7 | 32.0 | 44.8 | 38.7 | 25.0 | 223 |
| Richest | 83.8 | 76.7 | 43.0 | 75.7 | 65.8 | 40.2 | 193 |
| Total | 46.2 | 39.2 | 23.0 | 32.7 | 28.8 | 18.6 | 1036 |
| [1] MICS indicator 2] MICS indicato Figures in parenth | based on 25-49 | weighted cases. |  |  |  |  |  |



Abuaku, B., Ahorlu C., Koram K., 2010. Final Report on Second Anemia and Parasitemia Survey in Bunkpurugu-Yunyoo District, Northern Ghana. Noguchi Memorial Institute for Medical Research, Univ of Ghana. Unpublished ms.

Academy for Educational Development (AED), the Manoff Group, and USAID, 2005. Maternal survival: Improving access to skilled care, a behaviour approach, CHANGE project. Washington, DC (www.manoffgroup.com),

Asobayire, F.S.P., P. Adou, L. Davidsson, J.D. Cook, and R.F. Hurrell, 2001. Prevalence of Iron Deficiency with and withou Concurrent Anemia in Population Groups with High Prevalences of Malaria and Other Infections: A Study in Cote d'Ivoire. American Journal of Clinical Nutrition, 74: 776-82.

Binka F, Indome F, 1998. Smith T. Impact of spatial distribution of permethrin-impregnated bed nets on child mortality in rural northern Ghana. American Journal of Tropical Medicine and Hygiene, 59:80-85.

Boerma, J.T., Weinstein, K. I., Rutstein, S.O., and Sommerfelt, A. E., 1996. Data on Birth Weight in Developing Countries: Can Surveys Help? Bulletin of the World Health Organization, 74(2), 209-16.

Countdown Coverage Writing Group, 2008. Countdown to 2015 for maternal, newborn, and child survival: the 2008 report on tracking coverage of interventions. The Lancet, 371 (9620): 1247-1258

Doolan DL, Dobano C, and Baird JK, 2009. Acquired immunity to malaria. Clinical Microbiology Review 22(1):13-36.

Gerstl S., Dunkley S., Mukhtar A., et al., 2010. Assessment of two malaria rapid diagnostic tests in children under five years of age, with follow-up of false-positive pLDH test results, in a hyperendemic falciparum malaria area, Sierra Leone. Malaria Journal 2010, 9:28.

Ghana Statistical Service (GSS), Ghana Health Service (GHS) and ICF Macro, 2009. Ghana Demographic Health Survey 2008. Accra, Ghana

Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M et al., 2003. Community- wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am JTrop Med Hyg 2003, 68: 121-127.

Hobcraft, J.N., 1993. Women's education, child welfare and child survival: a review of the evidence. Department of Population Studies and Centre for the study of Global Governance (CsGG), London School of Economics. Health Transition Review, Volume 3 No. 21993.

Koram KA, Owusu-Agyei S, Utz G, Binka FN, Baird JK, Hoffman SL, Nkrumah FK, 2001. Severe anemia in young children after high and low malaria transmission seasons in the Kassena-Nankana district of northern Ghana. In: American Journal of Tropical Medicine and Hygiene 2001;62 (6):670-4.

Korenromp EL, Armstrong-Schellenberg J, Williams B, Nahlen B, and RW Snow, 2004. Impact of malaria control on childhood anemia in Africa - A quantitative review. Tropical Medicine and International Health 2004; 9 (10): 10501065.

Lawn JE, Cousens S., Zupan J., 2005. 4 million neonatal deaths: When? Where? Why? The Lancet, 365(9462):891-900

Liu L, Johnson HL, Cousens S, et al., 2012. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. The Lancet, 379(9832): 2151-2161.

Miller, N. and Goldman, G., 2011. Infant mortality rates regressed against number of vaccine doses routinely given: Is there a biochemical or synergistic toxicity? Human and Experimental Toxicology, pp.1-9.

Ministry of Health, 2007. Child Health Situation Analysis in Ghana. Available at: www.moh- ghana.org/UploadFiles/ Publications/Childhealthsituationalanalysis090825083908.pdf.

Ministry of Local Government and Rural Development, 2009. Births and Deaths Annual Report. Births and Deaths registry Ghana.

Ministry of Local Government and Rural Development, 2010. Births and Deaths Annual Report. Births and Deaths registry Ghana.

Ministry of Local Government and Rural Development, 2011. Births and Deaths Annual Report. Births and Deaths registry Ghana.

Owusu-Agyei S., Fryauff D. J., Chandramohan D., Koram K. A., Binka F. N., Nkrumah F. K., Utz G.C., Hoffman S. L., 2002. Seasonal malaria attack rates in infants and young children in northern Ghana. American Journal of Tropical Medicine and Hygiene. Oct;67(4):371-7; PMID: 12139221

UNICEF, WHO, World Bank, UNDESA/Population Division, 2012. Levels \& Trends in Child Mortality report: Estimates developed by the UN Inter-agency Group for Child Mortality Estimations, 2012, UNICEF, New York.

United Nations, 1983. Manual X: Indirect Techniques for Demographic Estimation (United Nations publication, Sales No. E.83.XIII.2).

United Nations, 1990. QFIVE, United Nations Program for Child Mortality Estimation. New York, UN Pop Division.

United Nations, 1990. Step-by-step Guide to the Estimation of Child Mortality. New York, UN.
USAID, 2002. Situation Analysis of Newborn Care in Ghana - Working paper to inform USAID's 7-year Strategic Plan.

Wongsrichanalai, C., M.J. Barcus, S. Muth, A. Sutamihardja, and W.H.Wernsdorfer, 2007. A review of Malaria Diagnostic Tools: Microscopy and Rapid Diagnostic Test (RDT). American Journal of Tropical Medicine and Hygiene 77:119-127. World Health Organization (WHO), 1993. Prevention and management of severe anaemia in pregnancy. WHO; 1993

World Health Organization (WHO), 2007. WHO/Global Malaria Programme. Insecticide-treated mosquito nets: a WHO position statement. August 2007.

World Health Organization (WHO), 2008. World Malaria Report 2008. Geneva, Switzerland: WHO

WHO/FIND/CDC/TDR, 2011. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of RDTs Round 3 (2010-11).

WHO, UNICEF, UNFPA, The World Bank, 2012. Trends in Maternal Mortality: 1990-2010. Geneva: World Health Organization.

## Websites:

World Health Organization growth standards: http://www.who.int/childgrowth/standards/second_set/technical report_2.pdf

WHO/UNICEF JMP, 2008. MDG assessment report: http://www.wssinfo.org/download?id_document=1279

Measure DHS project: http://www.measuredhs.com/pub

Roll Back Malaria: http://www.malariasurveys.org

The primary objective of the sample design for the Ghana Multiple Indicator Cluster Survey was to produce statistically reliable estimates of most indicators at the national level, for urban and rural areas, and for the 10 regions (Western, Central, Greater Accra, Volta, Eastern, Ashanti, Brong Ahafo, Northern, Upper East and Upper West regions) of the country. Urban and rural areas in each of the 10 regions were defined as the sampling strata.

A multi-stage, stratified cluster sampling approach was used for the selection of the survey sample.

Sample Size and Sample Allocation

1. Introduction

The Multiple Indicator Cluster Survey (MICS) is an international household survey programme developed by UNICEF. Ghana MICS 2011 is part of the 4th round of MICS surveys (MICS4). Its purpose is to collect reliable, disaggregated and internationally comparable statistics on the situation of the Ghanaian people, especially children under 5, women aged 15-49 men aged 15-59 for effective planning, implementation, monitoring and evaluation at national and regional levels

The MICS4 is a random two-stage sample survey. The first stage deals with the selection of Primary Sampling Units (PSUs) from a sampling frame which is the list of the 2010 Ghana Population and Housing Census EAs (enumeration areas). The second stage deals with the selection of the Secondary Sampling Units (SSUs) or the households from each selected EA in first stage.

## 2. Domains and strata

Since MICS4 survey is a nationwide survey, the sampled universe which is considered comprises the whole country with its 10 regions.

A domain is a part of sampled universe for which separated and reliable estimates are required. From the survey plan, the acceptable domains are:

- The whole country ;
- Each of the 10 regions
- The urban and rural areas
- Each of the three ecological zones

Each region is made up of two strata: the urban and the rural areas of the region. The total number of strata is therefore 20 for the whole country. Sample selection and estimation were conducted separately in each stratum.

Table 1 shows some characteristics of the sampled universe, according to the 2010 Ghana Population and Housing Census frame.

| Table 1 : Sampling frame distribution in terms of population size and number of EAs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Region |  | EAs Distribution |  | 2010 Estimated population |  |
| Code | Name | Number | Proportion | Size | Proportion |
| 1 | Western | 3,534 | 0.09 | 2,303,207 | 0.10 |
| 2 | Central | 3,242 | 0.09 | 2,115,757 | 0.09 |
| 3 | Greater Accra | 5,423 | 0.14 | 3,791,559 | 0.16 |
| 4 | Volta | 3,604 | 0.10 | 2,323,841 | 0.10 |
| 5 | Eastern | 4,403 | 0.12 | 2,595,101 | 0.11 |
| 6 | Ashanti | 7,039 | 0.19 | 4,414,651 | 0.18 |
| 7 | Brong Ahafo | 3,664 | 0.10 | 2,278,862 | 0.09 |
| 8 | Northern | 3,867 | 0.10 | 2,515,904 | 0.10 |
| 9 | Upper East | 1,727 | 0.05 | 1,097,838 | 0.05 |
| 10 | Upper West | 1,119 | 0.03 | 684,438 | 0.03 |
| Whole |  | 37,622 | 1.00 | 24,121,158 | 1.00 |

## 3. Households sample size

In order to calculate the sample size, using appropriate mathematical formula, several factors must be specified and values for others be assumed or taken from previous or similar surveys. These factors are:

- The precision or relative sampling error needed which is $12 \%$;
- the level of confidence desired which is $95 \%$;
- p, the estimated or known proportion of the population in the specified target group;
- $r$, the predicted or anticipated coverage rate, or prevalence, for the specified indicator ;
- $f$, the sample deff (sample design effect);
- $h$, the average household size ;
- $1+\mathrm{t}$, an adjustment for potential loss of sample households due to non-response of rate t .

Every indicator has its proper required sample size that is the minimum number of households that gives the precision needed in terms of sampling relative error not greater than $12 \%$ of the predicated or anticipated coverage rate, as recommended in MICS3 and MICS4.

The recommended strategy for calculating the sample size is to choose an important indicator that will yield the largest size. This entails choosing first a target population that comprises a small proportion of the total population. This is generally a target population of a single-year age group. In MICS3, this is children aged 12 to 23 months. Secondly, the particular indicator must be chosen for this same target population. We have labelled it as the key indicator but only for purpose of calculation of the sample size.

The table 2 gives elements of calculation of the required households sample size for a national survey (or for one domain) and for 5 indicators related to the target population of children aged 12 to 23 months. All these 5 indicators refer to immunization: Full immunization, BCG, Polio 3, MMR and DPT.

As recommended, the sampling relative error is $0,12 r$ or $12 \%$ of $r$, the predicted or anticipated coverage rate, or prevalence, for the specified indicator.

The anticipated coverage rates for these 5 immunization indicators for 2011 are deduced from MICS 2006 national average rates. The other values used in the calculation came from MICS 2006 or other similar surveys or from the total population characteristics.
Among the 5 indicators and for the same sampling relative error ( $12 \%$ ), full immunization requires the largest sample size that is 773 . This result suggests that for each region taken as domain the household sub sample size will be about 773, and we chose 780 .

|  | Indicator |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | $\begin{array}{r} \text { Full } \\ \text { Immunization } \end{array}$ | BCG | Polio 3 | MMR | DPT |
| e | 12\% | 12\% | 12\% | 12\% | 12\% |
| r' | 0.734 | 0.943 | 0.824 | 0.854 | 0.835 |
| r | 0.80 | 0.96 | 0.86 | 0.88 | 0.87 |
| f | 1.175 | 1.612 | 1.434 | 1.190 | 1.330 |
| t | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 |
| h | 3.70 | 3.70 | 3.70 | 3.70 | 3.70 |
| p | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
| n | 773 | 177 | 615 | 427 | 523 |

## Formula :

$\left.n=\left[4^{*}(1-r)\right)^{*} f^{*}(1+t)\right] /\left[\left(\left(0,12^{*} r\right) \wedge 2\right) * h^{*} p\right]$
e = relative error $=$ a percentage of the indicator value obtained
$r^{\prime}=2006$ MICS value for the indicator
$r=$ expected rate for the indicator for 2011
= design effect (deff) for the indicator in MICS 2006
$t=$ non response rate for households in MICS 2006
$\mathrm{h}=$ average household size in 2006 DHS
$\mathrm{p}=$ proportion of children aged 12-23 months among the total population
$\mathrm{n}=$ minimum number of households to be interviewed for the indicator Confidence level : $95 \%$

The below formula is used to calculate $n$, the sample size:
$n=\frac{4 r(1-r) f(1+t)}{(0,12 r)^{2} h p}$
Due to the need of assessing the achievements of interventions in the four regions (Central, Northern, Upper East and Upper West), the latter were over sampled compared to their shares at national level. This solution was found to be technically more convenient instead of a district level survey for these four regions, which have 55 districts.

The table 3 presents the structure of the four regions in terms of number of EA and in terms of population size.

Table 3 : Households sample size by region (for full immunization indicator) Minimum required sizes

| Region |  | Variable |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Code | Name | r' | r | f | t | h | p | n | e |
| 2 | Central | 0.618 | 0.70 | 0.781 | 0.080 | 3.6 | 0.03 | 930 | 12\% |
| 8 | Northern | 0.677 | 0.70 | 1.045 | 0.080 | 5.5 | 0.03 | 814 | 12\% |
| 9 | Upper East | 0.826 | 0.83 | 1.457 | 0.080 | 5.3 | 0.03 | 563 | 12\% |
| 10 | Upper West | 0.865 | 0.865 | 0.741 | 0.080 | 5.5 | 0.03 | 210 | 12\% |
| Total |  |  |  |  |  |  |  | 2,517 |  |



## Formula :

$\left.n=\left[4^{*}(1-r)\right)^{*} f^{*}(1+t)\right] /\left[\left(\left(0,12^{*} r\right) \wedge 2\right) * h^{*} p\right]$
$e=$ relative error $=$ a percentage of the indicator value obtained
$r^{\prime}=2006$ MICS rate obtained for the indicator
$r=$ expected rate for the indicator for 2011
$f=$ design effect (deff) for the indicator in MICS 2006
$t=$ non response rate for households in MICS 2006
$\mathrm{h}=$ average household size in DHS 2008
$\mathrm{p}=$ proportion of children aged 12-23 months among the total population
$\mathrm{n}=$ minimum number of households to be interviewed for the indicator
Confidence level: 95\%

| Table 4 : Household and EA samples distribution |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Region | 2006 MICS household sample distribution | 2008 DHS <br> household sample distribution | 2010 estimated population distribution | mics 2011 household sample size | Number of EA to be selected |
| Western | 580 | 585 | 0.10 | 780 | 52 |
| Central | 520 | 510 | 0.09 | 2,010 | 134 |
| Greater Accra | 861 | 900 | 0.16 | 1,005 | 67 |
| Volta | 480 | 525 | 0.10 | 780 | 52 |
| Eastern | 641 | 645 | 0.11 | 780 | 52 |
| Ashanti | 940 | 1,005 | 0.18 | 1,005 | 67 |
| Brong Ahafo | 480 | 570 | 0.09 | 780 | 52 |
| Northern | 710 | 570 | 0.10 | 2,010 | 134 |
| Upper East | 580 | 420 | 0.05 | 1,500 | 100 |
| Upper West | 510 | 450 | 0.03 | 1,500 | 100 |
| Whole country | 6,302 | 6,180 | 1.00 | 12,150 | 810 |

Tables 3 and 4 contain the results of the over sampling exercise for the 4 regions. Table 3 gives the new sizes chosen for each of the 4 regions and the corresponding relative errors. The values of the relative error obtained ( $4.5 \%$ to $8 \%$ ) provide a higher precision for the 4 regions.

By over sampling 4 of the 10 regions, unequal allocation of the total sample was used. However, in each region, the clusters (primary sampling units) were distributed between urban and rural domains, proportional to the size of urban and rural populations. The table below shows the allocation of clusters to the sampling strata.

| Table SD.1: Allocation of Sample Clusters (Primary <br> Sampling Units) to Sampling Strata |  |  |  |
| :--- | ---: | ---: | ---: |
| Number of Clusters |  |  |  |
| Region | Urban | Rural | Total |
| Western | 20 | 32 | 52 |
| Central | 56 | 78 | 134 |
| Greater Accra | 61 | 6 | 67 |
| Volta | 17 | 35 | 52 |
| Eastern | 22 | 30 | 52 |
| Ashanti | 37 | 30 | 67 |
| Brong Ahofo | 21 | 31 | 52 |
| Northern | 40 | 94 | 134 |
| Upper East | 19 | 81 | 100 |
| Upper West | 16 | 84 | 100 |
| Total | $\mathbf{3 0 9}$ | $\mathbf{5 0 1}$ | $\mathbf{8 1 0}$ |

Sampling Frame and Selection of Clusters
The 2010 population and Housing census frame was used for the selection of clusters. Census enumeration areas were defined as primary sampling units (PSUs), and were selected from each of the sampling strata by using systematic probability proportional to size (PPS), based on the estimated sizes of the enumeration areas from the 2010 Population Census. The first stage of sampling was thus completed by selecting the required number of enumeration areas from each of the 10 regions, separately by urban and rural strata.

Listing Activities
Since the 2010 Population Census sampling frame was up-to-date, a new listing of households was not conducted in all the sample enumeration areas prior to the selection of households.

## Selection of Households

With the list of households from the 2012 Population Census, the total number of households in each selected cluster (enumeration area) was sequentially numbered from 1 to n at the Ghana Statistical Service; and then the selection of 15 households in each cluster was carried out using random systematic selection procedures.

Calculation of Sample Weights
The Ghana Multiple Indicator Cluster Survey sample is not self-weighting. Essentially, different sampling fractions were used to allocate households to each of the 10 regions (Central, Northern, Upper East and Upper West regions were over-sampled). For this reason, sample weights were calculated and used in the subsequent analyses of the survey data.

The major component of the weight is the reciprocal of the sampling fraction employed in selecting the number of sample households in that particular sampling stratum (h) and PSU (i):

$$
W_{h i}=\frac{1}{f_{h i}}
$$

The term $\mathrm{f}_{\mathrm{hi}^{\prime}}$ the sampling fraction for the i -th sample PSU in the h -th stratum, is the product of the probabilities of selection at every stage in each sampling stratum, where $\mathrm{ps}_{\mathrm{hi}}$ is the probability of selection of the sampling unit at stage $s$ for the $i$-th sample PSU in the $h$-th sampling stratum.

$$
f_{h i}=p_{1 h i} \times p_{2 h i} \times p_{3 h i}
$$

Since the estimated number of households in each enumeration area (PSU) in the sampling frame used for the first stage selection and the updated number of households in the enumeration area from the listing were different, individual sampling fractions for households in each sample enumeration area (cluster) were calculated. The sampling fractions for households in each enumeration area (cluster), therefore, included the first stage probability of selection of the enumeration area in that particular sampling stratum and the second stage probability of selection of a household in the sample enumeration area (cluster).

A second component in the calculation of sample weights takes into account the level of non-response for the household and individual interviews. The adjustment for household non-response is equal to the inverse value of:

RRh = Number of interviewed households in stratum $\mathrm{h} /$ Number of occupied households listed in stratum h

After the completion of fieldwork, response rates were calculated for each sampling stratum. These were used to adjust the sample weights calculated for each cluster. Response rates in the Ghana Multiple Indicator Cluster Survey are shown in Table HH. 1 in this report.

Similarly, the adjustment for non-response at the individual level (women, men and under-5 children) for each stratum is equal to the inverse value of:

RRh = Completed men and women's (or under-5's) questionnaires in stratum h / Eligible men and women (or under5s) in stratum h

The non-response adjustment factors for men, women's and under-5's questionnaires are applied to the adjusted household weights. Numbers of eligible women, men and under-5 children were obtained from the roster of household members in the Household Questionnaire for households where interviews were completed.

The design weights for the households were calculated by multiplying the above factors for each enumeration area These weights were then standardized (or normalized), one purpose of which was to make the weighted sum of the interviewed sample units equal the total sample size at the national level. Normalization is performed by dividing the aforementioned design weights by the average design weight at the national level. The average design weight is calculated as the sum of the design weights divided by the unweighted total. A similar standardization procedure was followed in obtaining standardized weights for the men, women's and under-5's questionnaires.

Adjusted (normalized) weights varied between 0.04018 and 8.17102 in the 810 sample enumeration areas (clusters).

Sample weights were appended to all data sets and analyses were performed by weighting each household, woman, man or under-5 with these sample weights.


Methods used for Anaemia and Malaria Testing in the MICS 2011
The MICS 2011 incorporated three "malaria biomarkers," namely: anaemia testing, malaria testing using rapid diagnostic tests (RDTs), and thick blood smear samples prepared on microscope slides. After obtaining informed consent from caregivers, blood samples were obtained from a heel- or finger-prick of children aged 6 to 59 months to perform on-the-spot anaemia and malaria tests, and to prepare thick blood smears that were later transported and read in the laboratory at NHRC to determine the presence of malaria parasites. The microscopy was used as the gold standard to obtain prevalence rates. Rapid diagnostic test was utilized primarily for ethical reasons, in order to identify and treat malaria in participating children while in the field.

As described previously, each of the 20 field teams in the MICS 2011 included a health technician, who was responsible for completing the biomarker portion of the Children Under Five Questionnaire, and conducting the biomarker tests. In accordance with the MICS 2011 biomarker testing protocol pre-approved by the GHS Institution Review Board, the health technicians were responsible for ensuring that informed consent was obtained from the children's caregivers; for administering medications for uncomplicated malaria in the field when indicated; and for providing medical referrals for clinically severe malaria, severe anaemia, and other conditions when indicated.

Anaemia Testing with Hemocue©
Due to the internationally recognized correlation between anaemia and malaria infection in endemic settings, the MICS 2011 included anaemia testing for children age 6 to 59 months. After requesting informed consent from the child's parent or guardian, a sample was collected using a microcuvette from a drop of blood taken from a fingerprick (or a heel prick in the case of young children with small fingers). Haemoglobin analysis was carried out on site using a battery-operated portable HemoCue® 201+ photometer which produces results within one minute. Results were given to the child's parent or guardian verbally and in writing. All households with children aged 6 to 59 months were given a brochure explaining the causes and prevention of anaemia regardless of whether they consented to the anaemia testing. Results of the anaemia test were recorded on the Children Under Five Questionnaire.

Malaria Testing with Rapid Diagnostic Test kits (RDTs)
For rapid diagnostic testing, the CareStart Malaria pLDH/HRP2 Combo (Pan/Pf) product (Access Bio, N.J. USA) was used throughout the survey. Test results were provided to the child's parent or guardian verbally and written in a brochure that remained with the household, and also recorded in the Children's Questionnaire. The parents or guardians of all children tested were informed on how to prevent malaria.

Treatment in the field was based on a positive RDT result. Health technicians in each field team offered a full course of artesunate-amodiaquine to children who tested positive for malaria. In Ghana, artesunate-amodiaquine is the first line ACT used to treat uncomplicated malaria. In order to ascertain the correct dose, the parent or guardian was asked about any medications the child may have been taking at the time of the survey. The health technician then provided the appropriate first dose of ACT, along with instructions on how to administer subsequent doses to the child. All drugs for malaria treatment were provided by the NMCP. Children with symptoms of severe illness were referred to a medical facility on an urgent basis, in accordance with the Ghana Health Service national malaria treatment protocol.

The CareStart line of RDTs was selected due to its high performance ratings (WHO/FIND/CDC/TDR 2011), its widespread use in GHS facilities since 2009, and its utilization in other malaria indicator surveys (such as Madagascar 2011 and Kenya 2010). The Pan/Pf product from the CareStart line was specifically selected because recent anaemia and parasitaemia surveys conducted in Ghana by the Noguchi Memorial Institute for Medical Research (Univ. of Ghana) and PMI had used this product, allowing for ready comparison of results (B. Abuaku et al 2010).

All RDTs detect proteins (antigens) which were released into the blood by an ongoing or recently resolved malaria infection. The particular RDT product used in this survey register a positive result for infections caused by any of Ghana's three malaria species, namely: P. falciparum, P. malariae, and P. ovale. A mixed infection (e.g. P. falciparum plus P. malariae) will also register a positive result. However, the CareStart Malaria pLDH/HRP2 Combo (Pan/Pf) product used does not reliably distinguish between the species. Species identification was not an objective of the Ghana MICS4, and was not reported. Moreover, species differentiation would have required the use of thin smear microscopy, which is the gold standard for this purpose, but is logistically cumbersome and costly.

Malaria Testing with Microscopy
In the MICS 2011 survey, malaria prevalence is based on microscopy results from Giemsa-stained thick blood smears, considered the gold standard for malaria diagnosis. Thick blood smears from each child's blood were made in the field; air dried in the field in a dust-free environment; carefully packed and stored in slide boxes; and transported to the Navrongo Health Research Centre (NHRC) in Navrongo, Upper East Region for microscopic reading and determination of the presence of malaria parasites. At the NHRC laboratory, all slides were checked against slide transmittal forms by a slides coordinator before being logged into a computer database. All slides were then stained with 10 percent Giemsa stain for 10-15 minutes, washed, and air-dried. Efforts were made to ensure that the smears arrived at NHRC within two weeks of the specimen being collected. As mentioned, the purpose of the thick blood smear was to apply the "gold standard" to determine whether the child had malaria through observation of the presence of parasites; however, microscopy was not performed for the purpose of ascertaining the type of malaria parasite species.

The laboratory had four experienced malaria microscopists working full-time for a period of three months. Each slide was examined by two independent microscopists, and any discordant results were read by a third microscopist. The final result for any discordant reading was established by two concordant results. A Measure DHS staff member visited the laboratory at NHRC and observed that it had the required capacity and experienced microscopists. Measure DHS project staff also provided technical assistance to the laboratory staff on how to log received samples into the database by scanning the barcodes into an excel spread sheet. Results from the laboratory microscopy were not reported back to the parents or guardians of the children tested, a fact that was included in the informed consent statement.

Training of Field Staff for Anaemia and Malaria Testing
Health technicians did not necessarily have prior medical qualifications. Rather, in accordance with NMCP and NHRP protocols, they had a minimum of a secondary school education and were specially trained to conduct the malaria and anaemia testing. The malaria biomarker training was led by a biomarker specialist from the USAID Measure DHS project (ICF International) with technical assistance from staff from NHRC, NMCP and PMI. The biomarker specialist prepared the biomarker training manual and all biomarker field forms. Biomarker training consisted of 5 days of classroom lectures and practical demonstrations. The health technicians were trained on how to draw blood (1) onto microcuvettes to measure haemoglobin levels using a portable device (HemoCue); (2) onto rapid diagnostic kits to test for malaria parasites, and (3) onto a glass slide to make thick blood smears. They were also instructed on survey protocols for obtaining informed consent from caregivers, interpreting test results, administering antimalarials
when indicated, informing caregivers of results, providing education on malaria prevention, and documenting these processes. Two days of fieldwork practice was an opportunity for the health technicians and interviewers to work as a team under field conditions. This exercise of data collection was done in households in areas that were not selected for the main survey sample. Based on performance during training, 20 health technicians were retained for the survey by the NHRC facilitator, and five were kept as standby.

Biomarker field coordinators participated in the biomarker training. They had also gone through a three-day prior training program held in NHRC for the field coordinators, during which a pilot test was also carried out in Bonia, one of the communities in the Kassena-Nankana East district. The biomarker procedures were evaluated and the standard operating procedures (SOPs) were revised as appropriate.

Quality Control during Field Work and Slide Processing
Quality control during the survey was ensured through effective supervision of the teams during fieldwork. The first level of supervision was provided by the team supervisors and the field editors. The supervisors were responsible for closely monitoring the work of the teams to ensure that all sampled households were visited, all eligible respondents were contacted, and, together with the field editors, that all questionnaires were edited in the field for accuracy and completeness. Supervisors also observed the health technicians' performance to ensure that all procedures were accurately implemented. To ensure high quality of data collection, staff from Measure DHS (ICF), PMI, NHRC, UNICEF, GSS and NMCP visited and supervised teams in the field, especially at the beginning of data collection.

Since close supervision during the first month of fieldwork is critical to establishing high quality standards, NHRC deployed six regional biomarker coordinators who covered the ten regions of Ghana. In addition to providing fieldwork supervision to the health technicians, the biomarker field coordinators picked up and stained the thick smear slides in the regions within a week. The stained slides were then transported to designated central locations across the country, and later picked up by two biomarker field monitors from NHRC and transported to the laboratory for registration and microscopy. In the second and third months of fieldwork, biomarker field supervision was scaled back to three regional field coordinators. Their responsibilities were to visit all teams, provide supervision, pick up thick smear slides and make sure that all slides get to the laboratory within two weeks of sample collection. Slides collected in the second and third months of field work were stained at the laboratory in NHRC.

All slides were read as "positive" or "negative" for malaria parasites by two experienced microscopists at the NHRC laboratory in Navrongo. As mentioned, in cases of discordant readings, a third reader decided the final result. NHCR results were submitted to GSS, for merging of laboratory results with the questionnaire dataset by means of the bar code that was common to the slide and the questionnaire.


## UNICEF

Dr. Iyobode Alusanmi
Julianna Lindsey
Attila Hancioglu
Michèle Seroussi
Jane Mwangi
Etienne Rusamira
Maria Dyrberg
vana Bjelic
Yadigar Coskun
Consultants/UNICEF
Julien Amegandjin
Bo Pedersen
Rajesh Sharma
Jacob Armah
Ebenezer Asibey-Berko

Administrative/Logistic Support Staff/GSS
Timothy Afful
Gideon Abbey
Vivian Ashantiy
Ethel A. N. A. Koney
Titus Quartey
Daniel Oboubie
Emmanuel Cobbinah
Mabruk Fuseini
Bettylove Hemans Cobbinah
Abdalla Muhammed
Mariam Ibrahim

GSS Field Monitors
Dr. Grace Bediako
Anthony Amuzu
Peter Takyi Peprah
Kofi Agyeman-Duah
K. B Danso Manu

Festus Manuh
Stephen Amoah
Augusta Okantey
Emmanuel George Ossei
Amadu Salifu

## Representative

Chief of ACMA section
Global MICS Senior Adviser
MICS Regional Coordinator
Monitoring and Evaluation Specialist
Monitoring and Evaluation Specialist
Monitoring and Evaluation Officer
Statistics Specialist
Statistics and Monitoring Specialist

Sampling and Survey Design Expert
Trainer of Data collectors
Data Processing Expert
Anthropometry Training Expert
Salt titration Expert

Project Accountant
Assistant Project Accountant
Project Secretary
Assistant Project Secretary
Transport Officer
Assistant Transport Officer
Procurement Officer
Assistant Procurement Officer
Head, Audit
Head, Stores
Stores Assistant

Dr. Philomena Nyarko
Sylvester Gyamfi
Johnson Owusu Kagya
John Foster Agyaho
Abena Osei-Akoto
Robertson Adjei
Rochester Appiah Kusi
Francis Bright Mensah
Alexander Awortwe
Joseph Asiedu Tenkorang

Opoku-Manu Asare Edith Mote
Emmannuel Cobbinah David Kombat Anthony Pharin Amuzu Michael Beckoe Chris Assem Omar Seidu Emmanuel Nana Poku

| Other Field Monitors |  |  |
| :---: | :---: | :---: |
| Etienne Rusamira | UNICEF |  |
| Jane Mwangi | UNICEF |  |
| Maria Dyrberg | UNICEF |  |
| Dr. Paul Psychas | CDC/USAID |  |
| Dr. David Mensah | NMCP |  |
| Victor Asuala | NHRC |  |
| Report Writers |  |  |
| Emmanuel George Ossei | Omar Seidu | Francis Bright Mensah |
| Stephen Amoah | Anthony Pharin Amuzu | Godwin Odei-Gyebi |
| Gershon Togoh | Emmannuel Cobbinah | Festus Manuh |
| Peter Takyi Peprah | Johnson Owusu Kagya | Emmanuel Boateng |
| Francis Nyarkoh-Larbi | Cyprian Ekor | Andrews Lamptey |
| Abena Osei-Akoto | Rochester Appiah Kusi | Sylvester Kyei Gyamfi |
| Dr. Fred Nana Poku | Rejoice Nutakor | Dr. Rhoda Manu |
| Jacob Ofrocheng | David Mensah | Victor Asuala |
| Thomas Anyorigiya | Jane Mwangi | Etienne Rusamira |
| Dr. Paul Psychas | Adrienne Cox |  |
| Supervisors |  |  |
| Alhaji Enum Salihu | Oswald Andoh Jacob | Ernest Kwame Kpentey |
| Isaac Addae | Francisca Drai | Emmanuel Baidoo |
| Fuseini Jibril | Kwame Djangba | Abaka Ansah |
| Bismark Owusu Adjei | Seth Kwaku Amoah | Charles Boateng |
| Jude Koomson | Richard Atsu Kuadamah | Bawa Abdul-Kadri |
| Bernard Oduro | Daniel Agumeh | Kofi Worae-Kusi |
| Evans Worlanyo | Solomon Owusu Bempah |  |
| Editors |  |  |
| Evelyn Amassah | Josephine Mallet | Phylicia Saforo |
| Comfort Araba Crentsil | Ani Laud Budu | Jolene Mantey Amoo |
| Elizabeth Agbenyegah | Eleanor Takyi | Boakye Asiamah |
| Dorcas Manu-Larbi | Caroline Anipah | Harriet Agyei |
| Adam Faiza | Zainab Maltiti Ibrahim | Love Lariba Azure |
| Rita Osei Owusu | Nartey Magnus Kofi | Mavis Ntiwa Akomeah |
| William Eyimah | Ramatu Ussif | Abdallah A. Mogtar |
| Interviewers |  |  |
| Edward Banful | Benedicta Ofosuaa | Drucilia Arthur |
| Ignatius Max-Acquah | Bernice Fremah | Benedicta Tutuani |
| Bright Amegbor | Vida Afful | Baffoe Ivy Baaba |
| Josephine Pauline Amoako | Justice Geshon Suronipa | Acquah Rashie Everlove |
| Esther Adjanor | Isaac Kwame Yeboah | Charleen Adongo |
| Esther Teye | Benson Akpah | Adonu Lolynda Kekeli |
| Gladys Ataa Dabison | Emmanuel Pharin | Doris Dzifa Buamah |

Krah Happy Mawuse
Vivian Nkansah
Esi Bentum Botchway Raphaelka K. Tenkorang Dorcas Owusuaa Mavis Mwinnome Begohn Lady Talata Bawa Arimiyawu Umul Klusum
Rabiatu Seidu
Salomey Efua Fleku
Augustina Darkwa
Anthony Okyere
Philip Kwasi Appiah
Christiana Mwinbatiere

List of Biomarkers
Godwin Pwatirah
John M. Akanson Akanlu
Michael Ayelazuno
Rashida Ibrahim James Aninyiga Mahami Wuni
Mercy Dassah
List of Drivers for Teams Mike Mensah Ernest Kadi Benjamin Jerry Clottey Philip Baiden Kobby K. Ashanti Glastone Adovor
Maxwell Ofori
List of Drivers for Monitors Godfred Forson
Ebenezer Abrokwa Ernest Anang Danso Atipim Gershon Nornyibey George Karikari Victor Mensah Elvis Agyei Philip Andoh Simon Kasakwa

Jacob Mensah Hagan
Ernest Gyedu-Acheampong Emmanuel Ohemeng Osei
Mark Larbi
Anthony Ankumah
Bala Godfred
Shayawu Fuseini
John Awole Akurugu
Shelta Pharin
David Afful
Richard Darko-Lartey
Abubakari Issah
Abdallah A. Mogtar
Ibrahim M. Sachibu

Apokola Williams
Edmond Aninga Rhoda Anipuna Stephen Aberinga Felix Akundingya
Sylvester Afiya
Denis Abilla

Ben C. Clottey Charles Apisige Nicholas Ofori Louis P. Nelson Adam Abdui Yaw Nuamah Asare Boitey

James Laryea Jonathan Gogovie Felix Osei Samuel Ayequaye Isaac Addae Gyasi Tweneboa Samuel Dam Vincent Afful Felix Osei George Ansah

Smart Quao
Roseline Sintim-Gyimah Eunice Owusu Afriyie Muhammed Biliques Agboka Edna Hilda Mohammed F. Ruhaina Bawa Humu-Sulaim Stella S. Piilug Barikisu Sulley Mildred Osei-Diko Badger Patience Awo Mumuni Asibi Ophelia Naale

Cosmas Amenga-Etego Ebenezer Nyaaba Jeremiah Agooh Agnes Ayileoh Boniface Ayeliwu Oswald Ayirewora

Elvis K. Nuh George K. Ankomah Sarpong Daniel Osei Owusu Nuhu Ibrahim Abass Entsie

Isaac Opare
Michael Adoquaye John Okine Emmanuel Badasu Emmanuel Chartey Kwesi Donkor Isaac Fosu Eugene Aniapam Jonathan Lawluvi Emmanuel Anani


The sample of respondents selected in the Ghana Multiple Indicator Cluster Survey is only one of the samples that could have been selected from the same population, using the same design and size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between the estimates from all possible samples. The extent of variability is not known exactly, but can be estimated statistically from the survey data.

The following sampling error measures are presented in this appendix for each of the selected indicators:

- Standard error (se): Sampling errors are usually measured in terms of standard errors for particular indicators (means, proportions, etc.). Standard error is the square root of the variance of the estimate. The Taylor linearization method is used for the estimation of standard errors.
- Coefficient of variation (se/r) is the ratio of the standard error to the value of the indicator, and is a measure of the relative sampling error.
- Design effect (deff) is the ratio of the actual variance of an indicator, under the sampling method used in the survey, to the variance calculated under the assumption of simple random sampling. The square root of the design effect (deft) is used to show the efficiency of the sample design in relation to the precision. A deft value of 1.0 indicates that the sample design is as efficient as a simple random sample, while a deft value above 1.0 indicates the increase in the standard error due to the use of a more complex sample design.
- Confidence limits are calculated to show the interval within which the true value for the population can be reasonably assumed to fall, with a specified level of confidence. For any given statistic calculated from the survey, the value of that statistic will fall within a range of plus or minus two times the standard error ( $r+2 . \operatorname{se~or~} r-2 . s e)$ of the statistic in 95 percent of all possible samples of identical size and design.

For the calculation of sampling errors from MICS data, SPSS Version 18 Complex Samples module has been used. The results are shown in the tables that follow. In addition to the sampling error measures described above, the tables also include weighted and unweighted counts of denominators for each indicator.

Sampling errors are calculated for indicators of primary interest, for the national level, for the regions, and for urban and rural areas. Three of the selected indicators are based on households, 8 are based on household members, 13 are based on women, and 15 are based on children under 5 . Ten are based on men. All indicators presented here are in the form of proportions. Table SE. 1 shows the list of indicators for which sampling errors are calculated, including the base population (denominator) for each indicator. Tables (SE.2 to SE.14) show the calculated sampling errors for selected domains.

| Table SE.1: Indicators selected for sampling error calculations <br> List of indicators selected for sampling error calculations, and base populations (denominators) for each indicator, Country, Year |  |  |
| :---: | :---: | :---: |
|  | MICS4 Indicator | Base Population |
| HOUSEHOLDS |  |  |
| 2.16 | lodized salt consumption | All households in which salt was tested or with no salt |
| 3.12 | Household availability of insecticide-treated nets (ITNs) | All households |
| HOUSEHOLD MEMBERS |  |  |
| 4.1 | Use of improved drinking water sources | All household members |
| 4.3 | Use of improved sanitation facilities | All household members |
| 7.5 | Secondary school net attendance rate (adjusted) | Children of secondary school age |
| 9.18 | Prevalence of children with at least one parent dead | Children age $0-17$ years |
| 8.5 | Violent discipline | Children age $2-14$ years |
| women |  |  |
| - | Pregnant women | Women age 15-49 years |
| 3.19 | Pregnant women sleeping under insecticide-treated nets (ITNs) | Pregnant women |
| 3.20 | Intermittent preventive treatment for malaria | Women age 15-49 years with a live birth in the 2 years preceding the survey |
| 5.2 | Early childbearing | Women age $20-24$ years |
| 5.3 | Contraceptive prevalence | Women age 15-49 years who are currently married or in union |
| 5.4 | Unmet need | Women age 15-49 years who are currently married or in union |
| 5.5a | Antenatal care coverage - at least once by skilled personnel | Women age 15-49 years with a live birth in the 2 years preceding the survey |
| 5.5b | Antenatal care coverage - at least four times by any provider | Women age 15-49 years with a live birth in the 2 years preceding the survey |
| 5.7 | Skilled attendant at delivery | Women age 15-49 years with a live birth in the 2 years preceding the survey |
| 5.8 | Institutional deliveries | Women age $15-49$ years with a live birth in the 2 years preceding the survey |
| 5.9 | Caesarean section | Women age 15-49 years with a live birth in the 2 years preceding the survey |
| 7.1 | Literacy rate among young women | Women age $15-24$ years |
| 8.7 | Marriage before age 18 | Women age 20-49 years |
| 8.9 | Polygyny | Women age 15-49 years who are currently married or in union |
| 8.12 | Prevalence of female genital mutilation/cutting (FGM/C) among women | Women age 15-49 years |
| 9.2 | Comprehensive knowledge about HIV prevention among young people | Women age $15-24$ years |
| 9.3 | Knowledge of mother-to-child transmission of HIV | Women age 15-49 years |
| 9.4 | Accepting attitudes towards people living with HIV | Women age 15-49 years who have heard of HIV |
| 9.6 | Women who have been tested for HIV and know the results | Women age 15-49 years |
| 9.7 | Sexually active young women who have been tested for HIV and know the results | Women age $15-24$ years who have had sex in the 12 months preceding the survey |
| 9.11 | Sex before age 15 among young women | Women age 15-24 years |
| 9.16 | Condom use with non-regular partners | Women age 15-24 years who had a non-marital, non-cohabiting partner in the 12 months preceding the survey |
| 8.13 | Prevalence of female genital mutilation/cutting (FGM/C) among girls | Girls age $0-14$ years |
| UNDER-5s |  |  |
| 2.1a | Underweight prevalence | Children under age 5 |
| 2.2a | Stunting prevalence | Children under age 5 |
| 2.3a | Wasting prevalence | Children under age 5 |
| 2.6 | Exclusive breastfeeding under 6 months | Total number of infants under 6 months of age |
| 2.14 | Age-appropriate breastfeeding | Children age 0-23 months |
| - | Tuberculosis immunization coverage | Children age 12-23 months |
| - | Received polio immunization | Children age 12-23 months |
| - | Received DPT immunization | Children age 12-23 months |


| Table SE.1: Indicators selected for sampling error calculations (cont'd) |  |  |
| :---: | :---: | :---: |
| MICS4 Indicator |  | Base Population |
| - | Received measles immunization | Children age 12-23 months |
| - | Received Hepatitis B immunization | Children age 12-23 months |
| - | Diarrhoea in the previous 2 weeks | Children under age 5 |
| - | IIlness with a cough in the previous 2 weeks | Children under age 5 |
| - | Fever in last two weeks | Children under age 5 |
| 3.8 | Oral rehydration therapy with continued feeding | Children under age 5 with diarrhoea in the previous 2 weeks |
| 3.10 | Antibiotic treatment of suspected pneumonia | Children under age 5 with suspected pneumonia in the previous 2 weeks |
| 3.15 | Children under age 5 sleeping under insecticide-treated nets (ITNs) | Children under age 5 |
| 3.18 | Anti-malarial treatment of children under age 5 | Children under age 5 reported to have had fever in the previous 2 weeks |
| 6.1 | Support for learning | Children age 36-59 months |
| 6.7 | Attendance to early childhood education | Children age $36-59$ month |
| 8.1 | Birth registration | Children under age 5 |
| MEN |  |  |
| 7.1 | Literacy rate among young men | Men age $15-24$ years |
| 8.7 | Marriage before age 18 | Men age 15-59 years |
| 8.9 | Polygyny | Men age 15-59 years who are currently married or in union |
| 9.2 | Comprehensive knowledge about HIV prevention among young men | Men age 15-24 years |
| 9.3 | Knowledge of mother-to-child transmission of HIV | Men age 15-59 years |
| 9.4 | Accepting attitudes towards people living with HIV | Men age 15-59 years who have heard of HIV |
| 9.6 | Men who have been tested for HIV during last 12 months and who have been told the results | Men age 15-59 years who took HIV test in the 12 months preceding the survey |
| 9.7 | Sexually active young men who have been tested for HIV and know the results | Men age $15-24$ years who have had sex in the 12 months preceding the survey |
| 9.11 | Sex before age 15 among young men | Men age 15-24 years |
| 9.16 | Condom use with non-regular partners | Men age 15-24 years who had a non-marital, non-cohabiting partner in the 12 months preceding the survey |


| Table SE.2: Sampling errors: Total sample |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 2011 |  |  |  |  |  |  |  |  |  |  |
| Background | mics | Value (r) | Standard | Coefficient | Design | Square root | Weighted | Unweighted | Confiden | limit |
| Characteristics |  |  |  | of variation (se/r) |  | of design effect (deft) |  |  | $\underset{\text { res }}{\substack{r}}$ | ${ }_{\text {2 }}^{\text {re }}$ |
| households |  |  |  |  |  |  |  |  |  |  |
| Iodized salt consumption | 2.16 | 0.3449 | 0.0095 | 0.0274669 | 4.67175 | 2.16142341 | 11819 | 11762 | 0.326 | 0.364 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.4890 | 0.009 | 0.0184741 | 3.89428 | 1.97339317 | 11925 | 11925 | 0.471 | 0.507 |
| household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.7929 | 0.0117 | 0.015 | 9.950 | 3.154 | 46093 | 11925 | 0.770 | 0.816 |
| Use of improved sanitation facilities | 4.3 | 0.1497 | 0.0081 | 0.054 | 6.132 | 2.476 | 46093 | 11925 | 0.134 | 0.166 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.4161 | 0.0097 | 0.023 | 3.079 | 1.755 | 6443 | 7917 | 0.397 | 0.436 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0766 | 0.0034 | 0.044 | 4.379 | 2.093 | 22005 | 27466 | 0.070 | 0.083 |
| Child discipline | 8.5 | 0.9355 | 0.0043 | 0.005 | 2.494 | 1.579 | 16913 | 8156 | 0.927 | 0.944 |
| women |  |  |  |  |  |  |  |  |  |  |
| Pregnant women | - | ${ }^{0.0773}$ | 0.0042 | 0.054 | 2.601 | 1.613 | 10627 | 10627 | 0.069 | 0.086 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.3258 | 0.0148 | 0.045 | 0.908 | 0.953 | 811 | 909 | 0.296 | 0.355 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6709 | 0.0133 | 0.020 | 2.163 | 1.471 | 2436 | 2706 | 0.644 | 0.697 |
| Early childbearing | 5.2 | 0.1615 | 0.0107 | 0.066 | 1.277 | 1.130 | 1674 | 1503 | 0.140 | 0.183 |
| Contraceptive prevalence | 5.3 | 0.3469 | 0.0089 | 0.026 | 2.422 | 1.556 | 6574 | 6926 | 0.329 | 0.365 |
| Unmet need | 5.4 | 0.2643 | 0.0074 | 0.028 | 1.960 | 1.400 | 6574 | 6926 | 0.249 | 0.279 |
| Antenatal care coverage - at least once by skilled personnel | 5.5 a | 0.9636 | 0.0042 | 0.004 | 1.411 | 1.188 | 2528 | 2873 | 0.955 | 0.972 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.8662 | 0.0102 | 0.012 | 2.562 | 1.601 | 2528 | 2873 | 0.846 | 0.887 |
| Skilled attendant at delivery | 5.7 | 0.6837 | 0.0125 | 0.018 | 2.886 | 1.444 | 2528 | 2873 | 0.659 | 0.709 |
| Institutional deliveries | 5.8 | 0.6737 | 0.0133 | 0.020 | 2.306 | 1.518 | 2528 | 2873 | 0.647 | 0.700 |
| Caesarean section | 5.9 | 0.1136 | ${ }^{0.0093}$ | 0.082 | 2.883 | 1.576 | 2528 | 2873 | 0.095 | 0.132 |
| Literacy rate among young women | 7.1 | 0.6139 | 0.0139 | 0.023 | 2.864 | 1.692 | 3573 | 3531 | 0.586 | 0.642 |
| Marriage before age 18 | 8.7 | 0.2698 | 0.0082 | 0.330 | 2.940 | 1.715 | 8728 | 8599 | 0.253 | 0.286 |
| Polygyny | 8.9 | 0.1829 | 0.0072 | 0.339 | 2.400 | 1.549 | 6574 | 6926 | 0.168 | 0.197 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0382 | 0.0023 | 0.061 | 1.576 | 1.255 | 10627 | 10627 | 0.034 | 0.043 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3681 | 0.0117 | 0.032 | 2.078 | 1.442 | 3573 | 3531 | 0.345 | 0.392 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5716 | 0.0073 | 0.013 | 2.321 | 1.524 | 10627 | 10627 | 0.557 | 0.586 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0629 | 0.0044 | 0.070 | 3.308 | 1.819 | 10431 | 10182 | 0.054 | 0.072 |


| Table SE.2: Sampling errors: Total sample (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { Mics } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root <br> of design effect (deft) | Weighted count | Unweighted count | $\begin{gathered} \mathrm{r} \\ \text { 2se } \end{gathered}$ | $\underset{\text { 2se }}{\text { r }}$ |
| Women who have been tested for HIV and know the results | 9.6 | 0.1676 | 0.0055 | 0.033 | 2.304 | 1.518 | 10627 | 10627 | 0.157 | 0.179 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1732 | 0.0126 | 0.073 | 1.923 | 1.387 | 1936 | 1743 | 0.148 | 0.198 |
| Sex before age 15 among young women | 9.11 | 0.0971 | 0.0072 | 0.074 | 2.096 | 1.448 | 3573 | 3531 | 0.083 | 0.112 |
| Condom use with nonregular partners | 9.16 | 0.4092 | 0.0216 | 0.053 | 1.795 | 1.340 | 1092 | 929 | 0.366 | 0.453 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0045 | 0.0009 | 0.190 | 1.471 | 1.213 | 8276 | 9079 | 0.003 | 0.006 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.12 | 0.1335 | 0.0058 | 0.044 | 2.182 | 1.477 | 7375 | 7395 | 0.122 | 0.145 |
| Stunting prevalence | 2.22 | 0.2275 | 0.0077 | 0.034 | 2.505 | 1.583 | 7338 | 7342 | 0.212 | 0.243 |
| Wasting prevalence | 2.33 | 0.0622 | 0.0037 | 0.059 | 1.713 | 1.309 | 7381 | 7381 | 0.055 | 0.070 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.4566 | 0.0216 | 0.047 | 1.493 | 1.222 | 818 | 792 | 0.413 | 0.500 |
| Age-appropriate breastfeeding | 2.14 | 0.6393 | 0.0116 | 0.018 | 1.735 | 1.317 | 2995 | 2963 | 0.616 | 0.663 |
| Tuberculosis immunization coverage |  | 0.9810 | 0.0041 | 0.004 | 1.335 | 1.155 | 1453 | 1451 | 0.973 | 0.989 |
| Received polio immunization |  | 0.9123 | 0.0110 | 0.012 | 2.194 | 1.481 | 1451 | 1449 | 0.890 | 0.934 |
| Received penta immunization |  | 0.9288 | 0.0087 | 0.009 | 1.641 | 1.281 | 1451 | 1449 | 0.912 | 0.946 |
| Received measles immunization |  | 0.9373 | 0.0087 | 0.009 | 1.853 | 1.361 | 1450 | 1447 | 0.920 | 0.955 |
| Received yellow fever immunization | - | 0.9378 | 0.0088 | 0.009 | 1.899 | 1.378 | 1447 | 1445 | 0.920 | 0.955 |
| Diarrhoea in the previous 2 weeks |  | 0.1266 | 0.0068 | 0.053 | 3.119 | 1.766 | 7550 | 7550 | 0.113 | 0.140 |
| Illness with a cough in the previous 2 weeks | - | 0.0293 | 0.0031 | 0.105 | 2.497 | 1.580 | 7550 | 7550 | 0.023 | 0.035 |
| Fever in last two weeks |  | 0.1891 | 0.0065 | 0.034 | 2.088 | 1.445 | 7550 | 7550 | 0.176 | 0.202 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.4391 | 0.0170 | 0.039 | 1.325 | 1.151 | 956 | 1126 | 0.405 | 0.473 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.5568 | 0.0276 | 0.050 | 0.835 | 0.914 | 221 | 271 | 0.502 | 0.612 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.3903 | 0.0113 | 0.029 | 4.010 | 2.002 | 7461 | 7487 | 0.368 | 0.413 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.3488 | 0.0196 | 0.056 | 3.062 | 1.750 | 1427 | 1803 | 0.310 | 0.388 |
| Support for learning | 6.1 | 0.3984 | 0.0142 | 0.036 | 2.583 | 1.607 | 3002 | 3069 | 0.370 | 0.427 |
| Attendance to early childhood education | 6.7 | 0.6822 | 0.0138 | 0.020 | 2.704 | 1.644 | 3002 | 3069 | 0.655 | 0.710 |
| Birth registration | 8.1 | 0.6249 | 0.0115 | 0.018 | 4.233 | 2.057 | 7550 | 7550 | 0.602 | 0.648 |


| Table SE.2: Sampling errors: Total sample (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background <br> Characteristics | $\begin{gathered} \text { MICs } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root <br> of design <br> effect (deft) | Weighted count | Unweighted count | $\begin{gathered} \mathrm{r} \\ 2 \mathrm{se} \end{gathered}$ |  |
| Literacy rate among young men | - | 0.7129 | 0.0140 | 0.020 | 1.105 | 1.051 | 1036 | 1160 | 0.685 | 0.741 |
| Marriage before age 18 | - | 0.0456 | 0.0054 | 0.118 | 1.698 | 1.303 | 2664 | 2554 | 0.035 | 0.056 |
| Polygyny | - | 0.0935 | 0.0084 | 0.090 | 1.501 | 1.225 | 1856 | 1787 | 0.077 | 0.110 |
| Comprehensive knowledge about HIV prevention among young men | - | 0.3863 | 0.0195 | 0.050 | 1.850 | 1.360 | 1036 | 1160 | 0.347 | 0.425 |
| Knowledge of mother-tochild transmission of HIV | - | 0.5734 | 0.0129 | 0.022 | 2.254 | 1.501 | 3321 | 3321 | 0.548 | 0.599 |
| Accepting attitudes towards people living with HIV | - | 0.1525 | 0.0088 | 0.058 | 1.939 | 1.392 | 3292 | 3229 | 0.135 | 0.170 |
| Men who have been tested for HIV during last 12 months and who have been told the results | - | 0.0997 | 0.0079 | 0.079 | 2.295 | 1.515 | 3321 | 3321 | 0.084 | 0.115 |
| Sexually active young men who have been tested for HIV and know the results | - | 0.0836 | 0.0056 | 0.067 | 0.131 | 0.362 | 333 | 319 | 0.072 | 0.095 |
| Sex before age 15 among young men | - | 0.0487 | 0.0066 | 0.135 | 1.081 | 1.040 | 1036 | 1160 | 0.036 | 0.062 |
| Condom use with nonregular partners | - | 0.5386 | 0.0242 | 0.045 | 0.671 | 0.819 | 293 | 285 | 0.490 | 0.587 |


| Table SE.3: Sampling errors: Urban areas <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { Mics } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficientof variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square rootof design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r}- \\ 2 \mathrm{se} \end{gathered}$ | $\underset{\text { 2se }}{\substack{\text { 2 }}}$ |
| households |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.4495 | 0.0142 | 0.031 | 3.618 | 1.902 | 6303 | 4469 | 0.421 | 0.478 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.3910 | 0.0126 | 0.332 | 3.053 | 1.747 | 6358 | 4545 | 0.366 | 0.416 |
| household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.9074 | 0.0109 | 0.012 | 6.390 | 2.528 | 22266 | 4545 | 0.886 | 0.929 |
| Use of improved sanitation facilities | 4.3 | 0.2124 | 0.0147 | 0.069 | 5.861 | 2.421 | 22266 | 4545 | 0.183 | 0.242 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.5109 | 0.0135 | 0.026 | 1.745 | 1.321 | 2952 | 2405 | 0.484 | 0.538 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0697 | 0.0048 | 0.069 | 2.757 | 1.661 | 9707 | 7777 | 0.060 | 0.079 |
| Child discipline | 8.5 | 0.9367 | 0.0073 | 0.008 | 2.435 | 1.560 | 7435 | 2683 | 0.922 | 0.951 |
| women |  |  |  |  |  |  |  |  |  |  |
| Pregnant women | - | 0.0625 | 0.0063 | 0.100 | 2.723 | 1.650 | 5770 | 4056 | 0.050 | 0.075 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.1879 | 0.0189 | 0.100 | 0.614 | 0.783 | 360 | 264 | 0.150 | 0.226 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6660 | 0.0198 | 0.030 | 1.362 | 1.167 | 1047 | 772 | 0.626 | 0.706 |
| Early childbearing | 5.2 | 0.1070 | 0.0132 | 0.123 | 1.214 | 1.102 | 963 | 668 | 0.081 | 0.133 |
| Contraceptive prevalence | 5.3 | 0.3693 | 0.0132 | 0.036 | 1.709 | 1.307 | 3220 | 2269 | 0.343 | 0.396 |
| Unmet need | 5.4 | 0.2443 | 0.0111 | 0.045 | 1.501 | 1.225 | 3220 | 2269 | 0.222 | 0.266 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9798 | 0.0061 | 0.006 | 1.472 | 1.213 | 1068 | 791 | 0.968 | 0.992 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.9406 | 0.0097 | 0.010 | 1.336 | 1.156 | 1068 | 791 | 0.921 | 0.960 |
| Skilled attendant at delivery | 5.7 | 0.8821 | 0.0139 | 0.016 | 1.460 | 1.208 | 1068 | 791 | 0.854 | 0.910 |
| Institutional deliveries | 5.8 | 0.8747 | 0.0144 | 0.016 | 1.490 | 1.221 | 1068 | 791 | 0.846 | 0.903 |
| Caesarean section | 5.9 | 0.1734 | 0.0181 | 0.104 | 1.809 | 1.345 | 1068 | 791 | 0.137 | 0.210 |
| Literacy rate among young women | 7.1 | 0.7267 | 0.0190 | 0.026 | 2.608 | 1.615 | 1939 | 1440 | 0.689 | 0.76 |
| Marriage before age 18 | 8.7 | 0.1945 | 0.0113 | 0.058 | 2.689 | 1.640 | 4794 | 3284 | 0.172 | 0.217 |
| Polygyny | 8.9 | 0.1248 | 0.0095 | 0.076 | 1.872 | 1.368 | 3220 | 2269 | 0.106 | 0.144 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0255 | 0.0036 | 0.142 | 2.123 | 1.457 | 5770 | 4056 | 0.018 | 0.033 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.4227 | 0.0165 | 0.039 | 1.602 | 1.266 | 1939 | 1440 | 0.390 | 0.456 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5775 | 0.0105 | 0.018 | 1.826 | 1.351 | 5770 | 4056 | 0.557 | 0.598 |


| Table SE.3: Sampling errors: Urban areas (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { MICS } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square rootof design effect (deft) | Weighted | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} r- \\ 2 \mathrm{re} \end{gathered}$ | $\underset{\text { 2se }}{\substack{\text { c }}}$ |
| Women who have been tested for HIV and know the results | 9.6 | 0.1892 | 0.0078 | 0.041 | 1.596 | 1.263 | 5770 | 4056 | 0.174 | 0.205 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1961 | 0.0205 | 0.104 | 1.793 | 1.339 | 959 | 676 | 0.155 | 0.237 |
| Sex before age 15 among young women | 9.11 | 0.0601 | 0.0071 | 0.118 | 1.275 | 1.129 | 1939 | 1440 | 0.046 | 0.074 |
| Condom use with nonregular partners | 9.16 | 0.4867 | 0.0300 | 0.062 | 1.622 | 1.274 | 634 | 452 | 0.427 | 0.547 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0020 | 0.0010 | 0.511 | 1.436 | 1.198 | 4087 | 2786 | 0.000 | 0.004 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.1a | 0.1050 | 0.0087 | 0.083 | 1.654 | 1.286 | 3196 | 2066 | 0.088 | 0.122 |
| Stunting prevalence | 2.2a | 0.1811 | 0.0129 | 0.071 | 2.311 | 1.520 | 3194 | 2063 | 0.155 | 0.207 |
| Wasting prevalence | 2.38 | 0.0566 | 0.0055 | 0.097 | 1.169 | 1.081 | 3191 | 2061 | 0.046 | 0.068 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.4891 | 0.0324 | 0.066 | 0.929 | 0.964 | 344 | 222 | 0.424 | 0.554 |
| Age-appropriate breastfeeding | 2.14 | 0.6117 | 0.0194 | 0.032 | 1.300 | 1.140 | 1276 | 824 | 0.573 | 0.650 |
| Tuberculosis immunization coverage | - | 0.9821 | 0.0070 | 0.007 | 1.096 | 1.047 | 619 | 397 | 0.968 | 0.996 |
| Received polio immunization | - | 0.8770 | 0.0225 | 0.026 | 1.846 | 1.359 | 618 | 396 | 0.832 | 0.922 |
| Received penta immunization | - | 0.9163 | 0.0161 | 0.018 | 1.335 | 1.156 | 618 | 396 | 0.884 | 0.948 |
| Received measles immunization | - | 0.9657 | 0.0092 | 0.010 | 1.004 | 1.002 | 617 | 395 | 0.947 | 0.984 |
| Received yellow fever immunization | - | 0.9658 | 0.0091 | 0.009 | 0.991 | 0.995 | 615 | 394 | 0.948 | 0.984 |
| Diarrhoea in the previous 2 weeks | - | 0.1044 | 0.0098 | 0.094 | 2.181 | 1.477 | 3283 | 2117 | 0.085 | 0.124 |
| IIIness with a cough in the previous 2 weeks | - | 0.0182 | 0.0038 | 0.209 | 1.721 | 1.312 | 3283 | 2117 | 0.011 | 0.026 |
| Fever in last two weeks | - | 0.1505 | 0.0103 | 0.068 | 1.757 | 1.326 | 3283 | 2117 | 0.130 | 0.171 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.5123 | 0.0272 | 0.053 | 0.814 | 0.902 | 343 | 276 | 0.458 | 0.567 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.7302 | 0.0075 | 0.010 | 0.013 | 0.114 | 60 | 47 | 0.715 | 0.745 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.3010 | 0.0187 | 0.062 | 3.502 | 1.871 | 3253 | 2099 | 0.263 | 0.338 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.4374 | 0.0346 | 0.079 | 2.030 | 1.425 | 494 | 417 | 0.368 | 0.507 |
| Support for learning | 6.1 | 0.5267 | 0.0233 | 0.044 | 1.894 | 1.376 | 1304 | 870 | 0.880 | 0.573 |
| Attendance to early childhood education | 6.7 | 0.8053 | 0.0210 | 0.026 | 2.439 | 1.562 | 1304 | 870 | 0.763 | 0.847 |
| Birth registration | 8.1 | 0.7197 | 0.0174 | 0.024 | 3.192 | 1.787 | 3283 | 2117 | 0.685 | 0.755 |


| Table SE.3: Sampling errors: Urban areas (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { MICs } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square rootof design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\underset{2 \mathrm{re}}{\mathrm{r}}$ |  |
| Literacy rate among young men | - | 0.8309 | 0.0215 | 0.026 | 1.244 | 1.115 | 537 | 380 | 0.788 | 0.874 |
| Marriage before age 18 | - | 0.0287 | 0.0057 | 0.199 | 1.131 | 1.064 | 1430 | 968 | 0.017 | 0.040 |
| Polygyny | - | 0.0568 | 0.0106 | 0.186 | 1.268 | 1.126 | 917 | 607 | 0.336 | 0.078 |
| Comprehensive knowledge about HIV prevention among young men | - | 0.4862 | 0.0300 | 0.062 | 1.369 | 1.170 | 537 | 380 | 0.426 | 0.546 |
| Knowledge of mother-tochild transmission of HIV | - | 0.5551 | 0.0179 | 0.032 | 1.544 | 1.243 | 1746 | 1189 | 0.519 | 0.591 |
| Accepting attitudes towards people living with HIV | - | 0.2023 | 0.0146 | 0.072 | 1.557 | 1.248 | 1744 | 1183 | 0.173 | 0.231 |
| Men who have been tested for HIV during last 12 months and who have been told the results | - | 0.1268 | 0.0129 | 0.102 | 1.793 | 1.339 | 1746 | 1189 | 0.101 | 0.153 |
| Sexually active young men who have been tested for HIV and know the results | - | 0.0825 | 0.0058 | 0.071 | 0.057 | 0.239 | 182 | 127 | 0.071 | 0.094 |
| Sex before age 15 among young men | - | 0.0293 | 0.0071 | 0.241 | 0.664 | 0.815 | 537 | 380 | 0.015 | 0.043 |
| Condom use with nonregular partners | - | 0.6383 | 0.0384 | 0.060 | 0.741 | 0.861 | 165 | 117 | 0.562 | 0.715 |


| Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root <br> of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | r 2se | r 2se |
| households |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.2255 | 0.0110 | 0.049 | 5.007 | 2.238 | 5516 | 7293 | 0.204 | 0.247 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.6010 | 0.0128 | 0.021 | 5.022 | 2.241 | 5567 | 7380 | 0.575 | 0.627 |
| Household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.6859 | 0.0200 | 0.029 | 13.697 | 3.701 | 23827 | 7380 | 0.646 | 0.726 |
| Use of improved sanitation facilities | 4.3 | 0.0911 | 0.0072 | 0.079 | 4.589 | 2.142 | 23827 | 7380 | 0.077 | 0.105 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.3359 | 0.0133 | 0.040 | 4.384 | 2.094 | 3490 | 5512 | 0.309 | 0.363 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0821 | 0.0047 | 0.057 | 5.672 | 2.381 | 12298 | 19889 | 0.073 | 0.091 |
| Child discipline | 8.5 | 0.9346 | 0.0051 | 0.005 | 2.289 | 1.513 | 9478 | 5473 | 0.924 | 0.945 |
| women |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0948 | 0.0052 | 0.055 | 2.072 | 1.440 | 4857 | 6571 | 0.084 | 0.105 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.4358 | 0.0195 | 0.045 | 0.995 | 0.998 | 451 | 645 | 0.397 | 0.475 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6746 | 0.0178 | 0.026 | 2.795 | 1.672 | 1390 | 1934 | 0.639 | 0.710 |
| Early childbearing | 5.2 | 0.2356 | 0.0178 | 0.076 | 1.474 | 1.214 | 710 | 835 | 0.200 | 0.271 |
| Contraceptive prevalence | 5.3 | 0.3254 | 0.0118 | 0.036 | 2.950 | 1.717 | 3353 | 4657 | 0.302 | 0.349 |
| Unmet need | 5.4 | 0.2836 | 0.0097 | 0.034 | 2.167 | 1.472 | 3353 | 4657 | 0.264 | 0.303 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9518 | 0.0057 | 0.006 | 1.448 | 1.204 | 1460 | 2082 | 0.940 | 0.963 |
| Antenatal care coverage <br> - at least four times by <br> any provider | 5.5b | 0.8117 | 0.0154 | 0.019 | 3.248 | 1.802 | 1460 | 2082 | 0.781 | 0.843 |
| Skilled attendant at delivery | 5.7 | 0.5386 | 0.0179 | 0.033 | 2.695 | 1.642 | 1460 | 2082 | 0.503 | 0.574 |
| Institutional deliveries | 5.8 | 0.5266 | 0.0188 | 0.036 | 2.947 | 1.717 | 1460 | 2082 | 0.489 | 0.564 |
| Caesarean section | 5.9 | 0.0699 | 0.0087 | 0.125 | 2.427 | 1.558 | 1460 | 2082 | 0.052 | 0.087 |
| Literacy rate among young women | 7.1 | 0.4801 | 0.0195 | 0.041 | 3.170 | 1.780 | 1634 | 2091 | 0.441 | 0.519 |
| Marriage before age 18 | 8.7 | 0.3616 | 0.0111 | 0.331 | 2.829 | 1.682 | 3934 | 5315 | 0.339 | 0.384 |
| Polygyny | 8.9 | 0.2387 | 0.0103 | 0.043 | 2.708 | 1.646 | 3353 | 4657 | 0.218 | 0.259 |
| Prevalence of female genital mutilation/ cutting (FGM/C) among women | 8.12 | 0.0533 | 0.0030 | 0.057 | 1.189 | 1.091 | 4857 | 6571 | 0.047 | 0.059 |


| Table SE.4: Sampling errors: Rural areas (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { MICs } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root <br> of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r} \\ 2 \mathrm{se} \end{gathered}$ | $\begin{gathered} \text { r+ } \\ \text { 2se } \end{gathered}$ |
| Comprehensive <br> knowledge about HIV <br> prevention among young <br> people | 9.2 | 0.3034 | 0.0155 | 0.051 | 2.371 | 1.540 | 1634 | 2091 | 0.272 | 0.334 |
| Knowledge of mother-to-child transmission of HIV | 9.3 | 0.5645 | 0.0099 | 0.018 | 2.644 | 1.626 | 4857 | 6571 | 0.545 | 0.584 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0507 | 0.0041 | 0.081 | 2.173 | 1.474 | 4698 | 6190 | 0.042 | 0.059 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1420 | 0.0077 | 0.054 | 3.191 | 1.786 | 4857 | 6571 | 0.127 | 0.157 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1507 | 0.0145 | 0.096 | 1.743 | 1.320 | 977 | 1067 | 0.122 | 0.180 |
| Sex before age 15 among young women | 9.11 | 0.1409 | 0.0128 | 0.091 | 2.818 | 1.679 | 1634 | 2091 | 0.115 | 0.166 |
| Condom use with nonregular partners | 9.16 | 0.3020 | 0.0248 | 0.082 | 1.391 | 1.179 | 458 | 477 | 0.252 | 0.352 |
| Prevalence of female genital mutilation/ cutting (FGM/C) among girls | 8.13 | 0.0069 | 0.0014 | 0.200 | 1.762 | 1.328 | 4189 | 6293 | 0.004 | 0.010 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.12 | 0.1554 | 0.0077 | 0.049 | 2.398 | 1.548 | 4178 | 5329 | 0.140 | 0.171 |
| Stunting prevalence | 2.2 a | 0.2632 | 0.0095 | 0.036 | 2.437 | 1.561 | 4145 | 5279 | 0.244 | 0.282 |
| Wasting prevalence | 2.3 a | 0.0664 | 0.0049 | 0.074 | 2.089 | 1.446 | 4190 | 5320 | 0.056 | 0.076 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.4330 | 0.0286 | 0.066 | 1.902 | 1.379 | 473 | 570 | 0.376 | 0.490 |
| Age-appropriate breastfeeding | 2.14 | 0.6597 | 0.0143 | 0.022 | 1.942 | 1.394 | 1719 | 2139 | 0.631 | 0.688 |
| Tuberculosis immunization coverage |  | 0.9802 | 0.0050 | 0.005 | 1.362 | 1.167 | 833 | 1054 | 0.970 | 0.990 |
| Received polio immunization | - | 0.9386 | 0.0090 | 0.010 | 1.477 | 1.215 | 833 | 1053 | 0.921 | 0.957 |
| Received penta immunization |  | 0.9381 | 0.0091 | 0.010 | 1.515 | 1.231 | 833 | 1053 | 0.920 | 0.956 |
| Received measles immunization | - | 0.9163 | 0.0132 | 0.014 | 2.398 | 1.549 | 833 | 1052 | 0.890 | 0.943 |
| Received yellow fever immunization | - | 0.9171 | 0.0134 | 0.015 | 2.488 | 1.577 | 832 | 1051 | 0.890 | 0.944 |
| Diarrhoea in the previous 2 weeks | - | 0.1436 | 0.0090 | 0.063 | 3.613 | 1.901 | 4267 | 5433 | 0.126 | 0.162 |
| Illness with a cough in the previous 2 weeks | - | 0.0377 | 0.0045 | 0.119 | 3.037 | 1.743 | 4267 | 5433 | 0.029 | 0.047 |
| Fever in last two weeks | - | 0.2187 | 0.0084 | 0.038 | 2.251 | 1.500 | 4267 | 5433 | 0.202 | 0.236 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.3982 | 0.0219 | 0.055 | 1.699 | 1.303 | 613 | 850 | 0.354 | 0.442 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.4923 | 0.0349 | 0.071 | 1.084 | 1.041 | 161 | 224 | 0.423 | 0.562 |


| Table SE.4: Sampling errors: Rural areas (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICs } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r}- \\ 2 \mathrm{se} \end{gathered}$ | r 2se er |
| Children under age 5 sleeping under insecticide-treated nets (ITNs) | 3.15 | 0.4594 | 0.0137 | 0.030 | 4.086 | 2.021 | 4208 | 5388 | 0.432 | 0.487 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.3019 | 0.0221 | 0.073 | 3.203 | 1.790 | 933 | 1386 | 0.258 | 0.346 |
| Support for learning | 6.1 | 0.2999 | 0.0166 | 0.056 | 2.901 | 1.703 | 1698 | 2199 | 0.267 | 0.333 |
| Attendance to early childhood education | 6.7 | 0.5876 | 0.0188 | 0.032 | 3.207 | 1.791 | 1698 | 2199 | 0.550 | 0.625 |
| Birth registration | 8.1 | 0.5519 | 0.0152 | 0.028 | 5.099 | 2.258 | 4267 | 5433 | 0.521 | 0.582 |
| MEN |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.5861 | 0.0201 | 0.034 | 1.294 | 1.138 | 499 | 780 | 0.546 | 0.626 |
| Marriage before age 18 | - | 0.0652 | 0.0096 | 0.147 | 2.380 | 1.543 | 1234 | 1586 | 0.046 | 0.084 |
| Polygyny | - | 0.1294 | 0.0124 | 0.096 | 1.599 | 1.264 | 939 | 1180 | 0.105 | 0.154 |
| Comprehensive knowledge about HIV prevention among young men | - | 0.2790 | 0.0207 | 0.074 | 1.662 | 1.289 | 499 | 780 | 0.238 | 0.320 |
| Knowledge of mother-tochild transmission of HIV | - | 0.5936 | 0.0187 | 0.032 | 3.102 | 1.761 | 1575 | 2132 | 0.556 | 0.631 |
| Accepting attitudes towards people living with HIV | - | 0.0964 | 0.0084 | 0.087 | 1.665 | 1.290 | 1548 | 2046 | 0.880 | 0.113 |
| Men who have been tested for HIV during last 12 months and who have been told the results | - | 0.0696 | 0.0075 | 0.107 | 1.839 | 1.356 | 1575 | 2132 | 0.055 | 0.085 |
| Sexually active young men who have been tested for HIV and know the results | - | 0.0849 | 0.0102 | 0.120 | 0.254 | 0.504 | 151 | 192 | 0.065 | 0.105 |
| Sex before age 15 among young men |  | 0.0696 | 0.0111 | 0.160 | 1.487 | 1.220 | 499 | 780 | 0.047 | 0.092 |
| Condom use with nonregular partners | - | 0.4099 | 0.0228 | 0.056 | 0.358 | 0.598 | 128 | 168 | 0.364 | 0.455 |


| Table SE.5: Sampling errors: Western Region <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard errors, coefficient | of variatio | , design e | ects (deff), | square root Ghana, | design effec <br> 11 | s (deft) and | onfidence | intervals for se | ected in | ators, |
|  | mics | Value (r) | Standard | Coefficient | Design | Square root | Weighted | Unweighted | Confiden | limit |
| Background Characteristics | Indicator |  | error (se) | of variation (se/r) | effect (deff) | $\begin{array}{r} \text { of design } \\ \text { effect (deft) } \end{array}$ | count | count | $\begin{gathered} \mathrm{r}- \\ 2 \mathrm{re} \end{gathered}$ | $\begin{gathered} \text { r+ } \\ \text { 2se } \end{gathered}$ |
| Households |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.4404 | 0.0276 | 0.063 | 2.328 | 1.526 | 1108 | 752 | 0.385 | 0.496 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.4273 | 0.0316 | 0.074 | 3.079 | 1.755 | 1116 | 757 | 0.364 | 0.490 |
| HOUSEHOLD MEMBERS |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.7153 | 0.0385 | 0.054 | 5.513 | 2.348 | 4318 | 757 | 0.638 | 0.792 |
| Use of improved sanitation facilities | 4.3 | 0.1733 | 0.0286 | 0.165 | 4.327 | 2.080 | 4318 | 757 | 0.116 | 0.231 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.4583 | 0.0259 | 0.056 | 1.139 | 1.067 | 603 | 423 | 0.407 | 0.510 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0542 | 0.0106 | 0.195 | 3.163 | 1.778 | 2082 | 1454 | 0.033 | 0.075 |
| Child discipline | 8.5 | 0.9191 | 0.0165 | 0.018 | 1.724 | 1.313 | 1552 | 473 | 0.886 | 0.952 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women | - | 0.0799 | 0.0100 | 0.125 | 0.868 | 0.932 | 1022 | 640 | 0.060 | 0.100 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.2152 | 0.0418 | 0.194 | 0.475 | 0.689 | 80 | 47 | 0.132 | 0.299 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6297 | 0.0493 | 0.078 | 1.686 | 1.299 | 256 | 163 | 0.531 | 0.728 |
| Early childbearing | 5.2 | 0.2368 | 0.0509 | 0.215 | 1.321 | 1.149 | 141 | 93 | 0.135 | 0.339 |
| Contraceptive prevalence | 5.3 | 0.3599 | 0.0270 | 0.075 | 1.320 | 1.149 | 672 | 417 | ${ }^{0.306}$ | 0.414 |
| Unmet need | 5.4 | 0.2508 | 0.0264 | 0.105 | 1.546 | 1.243 | 672 | 417 | 0.198 | 0.304 |
| Antenatal care coverage - at least once by skilled personnel | 5.5 a | 0.9499 | 0.0155 | 0.016 | 0.866 | 0.931 | 270 | 173 | 0.919 | 0.981 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.7852 | 0.0237 | 0.030 | 0.574 | 0.757 | 270 | 173 | 0.738 | 0.833 |
| Skilled attendant at delivery | 5.7 | 0.6450 | 0.0322 | 0.050 | 0.778 | 0.882 | 270 | 173 | 0.581 | 0.709 |
| Institutional deliveries | 5.8 | 0.6255 | 0.0350 | 0.056 | 0.897 | 0.947 | 270 | 173 | 0.556 | 0.695 |
| Caesarean section | 5.9 | 0.0716 | 0.0199 | 0.278 | 1.027 | 1.014 | 270 | 173 | 0.332 | 0.111 |
| Literacy rate among young women | 7.1 | 0.5683 | 0.0397 | 0.070 | 1.353 | 1.163 | 329 | 212 | 0.489 | 0.648 |
| Marriage before age 18 | 8.7 | 0.3665 | 0.0224 | 0.061 | 1.125 | 1.060 | 834 | 521 | 0.322 | 0.411 |
| Polygyny | 8.9 | 0.1173 | 0.0170 | 0.145 | 1.161 | 1.077 | 672 | 417 | 0.083 | 0.151 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0213 | 0.0051 | 0.238 | 0.790 | 0.889 | 1022 | 640 | 0.011 | 0.031 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3894 | 0.0345 | 0.089 | 1.056 | 1.028 | 329 | 212 | 0.320 | 0.458 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5524 | 0.0266 | 0.048 | 1.826 | 1.351 | 1022 | 640 | 0.499 | 0.606 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0505 | 0.0137 | 0.271 | 2.442 | 1.563 | 1002 | 626 | 0.023 | 0.078 |


| Table SE.5: Sampling errors: Western Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root <br> of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} r- \\ 25 \end{gathered}$ | r 2se er |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1124 | 0.0274 | 0.243 | 1.021 | 1.010 | 214 | 137 | 0.058 | 0.167 |
| Sex before age 15 among young women | 9.11 | 0.1898 | 0.0298 | 0.157 | 1.222 | 1.105 | 329 | 212 | 0.130 | 0.249 |
| Condom use with nonregular partners | 9.16 | 0.4024 | 0.0588 | 0.146 | 1.077 | 1.038 | 122 | 76 | 0.285 | 0.520 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0021 | 0.0021 | 0.974 | 1.255 | 1.120 | 1004 | 624 | 0.000 | 0.006 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.19 | 0.1434 | 0.0205 | 0.143 | 1.336 | 1.156 | 718 | 390 | 0.102 | 0.184 |
| Stunting prevalence | 2.2 a | 0.2260 | 0.0288 | 0.127 | 1.829 | 1.352 | 713 | 387 | 0.168 | 0.284 |
| Wasting prevalence | 2.33 | 0.0767 | 0.0145 | 0.190 | 1.169 | 1.081 | 722 | 392 | 0.048 | 0.106 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.4678 | 0.0788 | 0.168 | 1.121 | 1.059 | 72 | 46 | 0.310 | 0.625 |
| Age-appropriate breastfeeding | 2.14 | 0.7032 | 0.0387 | 0.055 | 1.273 | 1.128 | 315 | 178 | 0.626 | 0.781 |
| Tuberculosis immunization coverage | - | 0.9906 | 0.0096 | 0.010 | 0.810 | 0.900 | 151 | 82 | 0.971 | 1.000 |
| Received polio immunization | - | 0.9507 | 0.0159 | 0.017 | 0.435 | 0.660 | 151 | 82 | 0.919 | 0.982 |
| Received penta immunization | - | 0.9812 | 0.0193 | 0.020 | 1.635 | 1.279 | 151 | 82 | 0.943 | 1.000 |
| Received measles immunization | - | 0.9637 | 0.0224 | 0.023 | 1.160 | 1.077 | 151 | 82 | 0.919 | 1.000 |
| Received yellow fever immunization | - | 0.9637 | 0.0224 | 0.023 | 1.160 | 1.077 | 151 | 82 | 0.919 | 1.000 |
| Diarrhoea in the previous 2 weeks | - | 0.1369 | 0.0126 | 0.092 | 0.554 | 0.745 | 758 | 414 | 0.112 | 0.162 |
| IIIness with a cough in the previous 2 weeks | - | 0.0188 | 0.0083 | 0.444 | 1.561 | 1.250 | 758 | 414 | 0.002 | 0.035 |
| Fever in last two weeks | - | 0.2197 | 0.0257 | 0.117 | 1.589 | 1.260 | 758 | 414 | 0.168 | 0.271 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.3429 | 0.0700 | 0.204 | 1.261 | 1.123 | 104 | 59 | 0.203 | 0.483 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.4474 | 0.0000 | 0.000 | 0.000 | 0.000 | 14 | 9 | 0.447 | 0.447 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.3267 | 0.0353 | 0.108 | 2.293 | 1.514 | 743 | 405 | 0.256 | 0.397 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.2270 | 0.0366 | 0.161 | 0.664 | 0.815 | 166 | 88 | 0.154 | 0.300 |
| Support for learning | 6.1 | 0.2572 | 0.0349 | 0.136 | 1.012 | 1.006 | 310 | 160 | 0.187 | 0.327 |
| Attendance to early childhood education | 6.7 | 0.6781 | 0.0559 | 0.082 | 2.277 | 1.509 | 310 | 160 | 0.566 | 0.790 |
| Birth registration | 8.1 | 0.4894 | 0.0382 | 0.078 | 2.408 | 1.552 | 758 | 414 | 0.413 | 0.566 |
| MEN |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men | - | 0.8376 | 0.0383 | 0.046 | 0.712 | 0.844 | 107 | 67 | 0.761 | 0.914 |
| Marriage before age 18 | - | 0.0605 | 0.0197 | 0.326 | 1.154 | 1.074 | 275 | 170 | 0.021 | 0.100 |
| Polygyny | - | 0.0559 | 0.0182 | 0.325 | 0.831 | 0.911 | 214 | 134 | 0.020 | 0.092 |


| Table SE.5: Sampling errors: Western Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { Mics } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | $\begin{array}{r} \text { Design } \\ \text { effect (deff) } \end{array}$ | Square root of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\underset{\text { 2se }}{\substack{r-}}$ | rit |
| Comprehensive knowledge about HIV prevention among young men |  | 0.3125 | 0.0363 | 0.116 | 0.406 | 0.637 | 107 | 67 | 0.240 | 0.385 |
| Knowledge of mother-tochild transmission of HIV |  | 0.5240 | 0.0413 | 0.079 | 1.489 | 1.220 | 352 | 219 | 0.441 | 0.607 |
| Accepting attitudes towards people living with HIV | - | 0.1356 | 0.0231 | 0.170 | 0.987 | 0.993 | 351 | 218 | 0.089 | 0.182 |
| Men who have been tested for HIV during last 12 months and who have been told the results |  | 0.0698 | 0.0205 | 0.293 | 1.409 | 1.187 | 352 | 219 | 0.029 | 0.111 |
| Sexually active young men who have been tested for HIV and know the results |  | 0.0000 | 0.0000 |  |  |  | 26 | 15 | 0.000 | 0.000 |
| Sex before age 15 among young men | - | 0.0425 | 0.0272 | 0.640 | 1.198 | 1.095 | 107 | 67 | 0.000 | 0.097 |
| Condom use with nonregular partners |  | 0.3800 | 0.0792 | 0.208 | 0.319 | 0.565 | 23 | 13 | 0.222 | 0.538 |


|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | Square |  |  | Confid | limit |
| Background Characteristics | $\begin{gathered} \text { MICS } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | design effect (deft) | Weighted count | Unweighted count | $\begin{gathered} \mathrm{r} \\ 2 \mathrm{se} \end{gathered}$ | r 2se |
| HOUSEHOLDS |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.2410 | 0.0189 | 0.078 | 3.846 | 1.961 | 1225 | 1973 | 0.203 | 0.279 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.3210 | 0.0141 | 0.044 | 1.805 | 1.344 | 1236 | 1989 | 0.293 | 0.349 |
| Household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.8045 | 0.0202 | 0.025 | 5.137 | 2.266 | 4557 | 1989 | 0.764 | 0.845 |
| Use of improved sanitation facilities | 4.3 | 0.1330 | 0.0128 | 0.096 | 2.819 | 1.679 | 4557 | 1989 | 0.107 | 0.159 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.4144 | 0.0188 | 0.045 | 1.637 | 1.280 | 692 | 1124 | 0.377 | 0.452 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0666 | 0.0062 | 0.094 | 2.302 | 1.517 | 2238 | 3663 | 0.054 | 0.079 |
| Child discipline | 8.5 | 0.9344 | 0.0072 | 0.008 | 1.004 | 1.002 | 1693 | 1192 | 0.920 | 0.949 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0787 | 0.0070 | 0.088 | 1.046 | 1.023 | 1044 | 1571 | 0.065 | 0.093 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.2935 | 0.0445 | 0.152 | 1.136 | 1.066 | 80 | 120 | 0.204 | 0.382 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6776 | 0.0222 | 0.033 | 0.828 | 0.910 | 236 | 367 | 0.633 | 0.722 |
| Early childbearing | 5.2 | 0.1461 | 0.0202 | 0.138 | 0.786 | 0.887 | 164 | 241 | 0.106 | 0.187 |
| Contraceptive prevalence | 5.3 | 0.4143 | 0.0175 | 0.042 | 1.140 | 1.068 | 598 | 908 | 0.379 | 0.449 |
| Unmet need | 5.4 | 0.2261 | 0.0162 | 0.071 | 1.352 | 1.163 | 598 | 908 | 0.194 | 0.258 |
| Antenatal care coverage - at least once by skilled personnel | 5.5 a | 0.9596 | 0.0107 | 0.011 | 1.136 | 1.066 | 246 | 385 | 0.938 | 0.981 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.8802 | 0.0164 | 0.019 | 0.979 | 0.989 | 246 | 385 | 0.847 | 0.913 |
| Skilled attendant at delivery | 5.7 | 0.6341 | 0.0332 | 0.052 | 1.829 | 1.352 | 246 | 385 | 0.568 | 0.701 |
| Institutional deliveries | 5.8 | 0.6093 | 0.0334 | 0.055 | 1.796 | 1.340 | 246 | 385 | 0.543 | 0.676 |
| Caesarean section | 5.9 | 0.1125 | 0.0190 | 0.169 | 1.384 | 1.176 | 246 | 385 | 0.075 | 0.150 |
| Literacy rate among young women | 7.1 | 0.6667 | 0.0262 | 0.039 | 1.759 | 1.326 | 379 | 569 | 0.614 | 0.719 |
| Marriage before age 18 | 8.7 | 0.3122 | 0.0162 | 0.052 | 1.519 | 1.232 | 830 | 1243 | 0.280 | 0.345 |
| Polygyny | 8.9 | 0.1493 | 0.0145 | 0.097 | 1.500 | 1.225 | 598 | 908 | 0.120 | 0.178 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0079 | 0.0027 | 0.334 | 1.404 | 1.185 | 1044 | 1571 | 0.003 | 0.013 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3041 | 0.0312 | 0.103 | 2.616 | 1.617 | 379 | 569 | 0.242 | 0.367 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5890 | 0.0124 | 0.021 | 1.002 | 1.001 | 1044 | 1571 | 0.564 | 0.614 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0509 | 0.0071 | 0.141 | 1.651 | 1.285 | 1038 | 1561 | 0.037 | 0.065 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1921 | 0.0111 | 0.058 | 1.246 | 1.116 | 1044 | 1571 | 0.170 | 0.214 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1980 | 0.0229 | 0.116 | 0.978 | 0.989 | 196 | 296 | 0.152 | 0.244 |
| Sex before age 15 among young women | 9.11 | 0.1027 | 0.0101 | 0.098 | 0.630 | 0.793 | 379 | 569 | 0.082 | 0.123 |


| Table SE.6: Sampling errors: Central Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | Square root of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{array}{r} r- \\ 2 \mathrm{re} \end{array}$ | r 2se |
| Condom use with nonregular partners | 9.16 | 0.4279 | 0.0425 | 0.099 | 1.386 | 1.177 | 128 | 189 | 0.343 | 0.513 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0000 | 0.0000 |  |  |  | 718 | 1097 | 0.000 | 0.000 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.12 | 0.1353 | 0.0125 | 0.092 | 1.306 | 1.143 | 727 | 982 | 0.110 | 0.160 |
| Stunting prevalence | 2.2a | 0.2307 | 0.0166 | 0.072 | 1.504 | 1.226 | 723 | 975 | 0.19 | 0.264 |
| Wasting prevalence | 2.3 a | 0.0545 | 0.0071 | 0.130 | 0.951 | 0.975 | 727 | 98 | 0.040 | 0.069 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.3947 | 0.0314 | 0.079 | 0.424 | 0.651 | 73 | 104 | 0.332 | 0.457 |
| Age-appropriate breastfeeding | 2.14 | 0.6168 | 0.0221 | 0.036 | 0.842 | 0.918 | 309 | 409 | 0.573 | 0.661 |
| Tuberculosis immunization coverage | - | 0.9602 | 0.0133 | 0.014 | 0.918 | 0.958 | 154 | 200 | 0.934 | 0.987 |
| Received polio immunization |  | 0.8824 | 0.0213 | 0.024 | 0.869 | 0.932 | 153 | 199 | 0.840 | 0.925 |
| Received penta immunization |  | 0.8528 | 0.0216 | 0.025 | 0.737 | 0.859 | 153 | 199 | 0.810 | 0.896 |
| Received measles immunization |  | 0.9060 | 0.0172 | 0.019 | 0.689 | 0.830 | 153 | 199 | 0.872 | 0.940 |
| Received yellow fever immunization | - | 0.9082 | 0.0199 | 0.022 | 0.938 | 0.968 | 153 | 199 | 0.868 | 0.948 |
| Diarrhoea in the previous 2 weeks |  | 0.1188 | 0.0124 | 0.104 | 1.456 | 1.207 | 740 | 999 | 0.094 | 0.144 |
| Illness with a cough in the previous 2 weeks |  | 0.0291 | 0.0063 | 0.216 | 1.394 | 1.181 | 740 | 999 | 0.017 | 0.042 |
| Fever in last two weeks |  | 0.2018 | 0.0134 | 0.066 | 1.112 | 1.055 | 740 | 999 | 0.175 | 0.229 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.4751 | 0.0346 | 0.073 | 0.597 | 0.772 | 88 | 125 | 0.406 | 0.544 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.5153 | 0.0671 | 0.130 | 0.558 | 0.747 | 22 | 32 | 0.381 | 0.649 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.2773 | 0.0205 | 0.074 | 2.057 | 1.434 | 729 | 985 | 0.236 | 0.318 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.3559 | 0.0279 | 0.078 | 0.669 | 0.818 | 149 | 198 | 0.300 | 0.412 |
| Support for learning | 6.1 | 0.3940 | 0.0239 | 0.061 | 0.937 | 0.968 | 286 | 392 | 0.346 | 0.442 |
| Attendance to early childhood education | 6.7 | 0.6771 | 0.0238 | 0.035 | 1.017 | 1.008 | 286 | 392 | 0.629 | 0.725 |
| Birth registration | 8.1 | 0.6738 | 0.0197 | 0.029 | 1.768 | 1.330 | 740 | 999 | 0.634 | 0.713 |
| MEN |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.7690 | 0.0306 | 0.040 | 0.768 | 0.876 | 94 | 147 | 0.708 | 0.830 |
| Marriage before age 18 | - | 0.0273 | 0.0103 | 0.377 | 1.443 | 1.201 | 245 | 363 | 0.007 | 0.048 |
| Polygyny |  | 0.0731 | 0.0176 | 0.240 | 1.109 | 1.053 | 162 | 245 | 0.038 | 0.108 |
| Comprehensive knowledge about HIV prevention among young men |  | 0.2312 | 0.0311 | 0.134 | 0.792 | 0.890 | 94 | 147 | 0.169 | 0.293 |
| Knowledge of mother-tochild transmission of HIV |  | 0.6027 | 0.0297 | 0.049 | 1.654 | 1.286 | 296 | 451 | 0.543 | 0.662 |
| Accepting attitudes towards people living with HIV |  | 0.1395 | 0.0192 | 0.138 | 1.386 | 1.177 | 296 | 451 | 0.101 | 0.178 |
| Men who have been tested for HIV during last 12 months and who have been told the results |  | 0.0864 | 0.0146 | 0.169 | 1.213 | 1.101 | 296 | 451 | 0.057 | 0.116 |


| Table SE.6: Sampling errors: Central Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | Square root of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r} \\ 2 \mathrm{se} \end{gathered}$ | r 2se - |
| Sexually active young men who have been tested for HIV and know the results |  | 0.0920 | 0.0306 | 0.333 | 0.596 | 0.772 | 37 | 54 | 0.031 | 0.153 |
| Sex before age 15 among young men |  | 0.0397 | 0.0131 | 0.330 | 0.655 | 0.809 | 94 | 147 | 0.014 | 0.066 |
| Condom use with nonregular partners |  | 0.5496 | 0.0357 | 0.065 | 0.263 | 0.513 | 36 | 52 | 0.478 | 0.621 |


| Table SE.7: Sampling errors: Greater Accra Region <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mics | Value (r) | Standard | Coefficient | Design effect | Square root | Weighted | Unweighted | Confiden |  |
| Background Characteristics | Indicator |  | error (s) | of variation (se/r) | (deff) | of design effect (deft) | count | count | r- 2se | r 2se |
| households |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.5613 | 0222 | 0.039 | 1.958 | 1.399 | 304 | 982 | 0.517 | 0.606 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.2554 | 0.0195 | 0.076 | 1.966 | 1.402 | 2321 | 989 | 0.217 | 0.294 |
| HOUSEHOLD MEMBERS |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.8559 | 0.0350 | 0.041 | 9.811 | 3.132 | 7625 | 989 | 0.786 | 0.926 |
| Use of improved sanitation facilities | 4.3 | 0.2803 | 0.0342 | 0.122 | 5.742 | 2.396 | 7625 | 989 | 0.212 | 0.349 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.5111 | 0.0304 | 0.059 | 1.355 | 1.164 | 855 | 368 | 0.450 | 0.572 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0526 | 0.0071 | 0.136 | 1.323 | 1.150 | 3028 | 1294 | 0.038 | 0.067 |
| Child discipline | 8.5 | 0.9044 | 0.0177 | 0.020 | 1.839 | 1.356 | 2306 | 511 | 0.869 | 0.940 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0516 | 0.0078 | 0.151 | 1.020 | 1.010 | 2074 | 829 | 0.336 | 0.067 |
| Pregnant women sleeping under insecticide-treated nets (TNNs) | 3.19 | 0.1178 | 0.0458 | 0.389 | 0.789 | 0.888 | 107 | 40 | 0.026 | 0.209 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6254 | 0.0386 | 0.062 | 0.961 | 0.981 | 391 | 152 | 0.548 | 0.703 |
| Early childbearing | 5.2 | 0.0745 | 0.0205 | 0.275 | 0.855 | 0.925 | 367 | 141 | 0.033 | 0.116 |
| Contraceptive prevalence | 5.3 | 0.4363 | 0.0260 | 0.060 | 1.197 | 1.094 | 1089 | 436 | 0.384 | 0.488 |
| Unmet need | 5.4 | 0.1968 | 0.0227 | 0.115 | 1.412 | 1.188 | 1089 | 436 | 0.152 | 0.242 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9850 | 0.0076 | 0.008 | 0.604 | 0.777 | 397 | 155 | 0.970 | 1.000 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.9194 | 0.0420 | 0.046 | 3.665 | 1.915 | 397 | 155 | 0.835 | 1.000 |
| Skilled attendant at delivery | 5.7 | 0.8971 | 0.0338 | 0.338 | 1.901 | 1.379 | 397 | 155 | 0.830 | 0.965 |
| Institutional deliveries | 5.8 | 0.8757 | 0.0431 | 0.049 | 2.624 | 1.620 | 397 | 155 | 0.790 | 0.962 |
| Caesarean section | 5.9 | 0.2322 | 0.0361 | 0.156 | 1.127 | 1.062 | 397 | 155 | 0.160 | 0.304 |
| Literacy rate among young women | 7.1 | 0.8114 | 0.0308 | 0.038 | 1.561 | 1.249 | 632 | 252 | 0.750 | 0.873 |
| Marriage before age 18 | 8.7 | 0.1216 | 0.0148 | 0.122 | 1.476 | 1.215 | 1809 | 718 | 0.092 | 0.151 |
| Polygyny | 8.9 | 0.0849 | 0.0236 | 0.279 | 3.131 | 1.769 | 1089 | 436 | 0.038 | 0.132 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0121 | 0.0042 | 0.347 | 1.221 | 1.105 | 2074 | 829 | 0.004 | 0.020 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.4952 | 0.0291 | 0.059 | 0.848 | 0.921 | 632 | 252 | 0.437 | 0.553 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.6003 | 0.0130 | 0.022 | 0.587 | 0.766 | 2074 | 829 | 0.574 | 0.626 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0857 | 0.0154 | 0.179 | 2.491 | 1.578 | 2074 | 829 | 0.055 | 0.116 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1662 | 0.0132 | 0.079 | 1.041 | 1.021 | 2074 | 829 | 0.140 | 0.193 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1963 | 0.0478 | 0.243 | 1.752 | 1.324 | 325 | 122 | 0.101 | 0.292 |
| Sex before age 15 among young women | 9.11 | 0.0517 | 0.0121 | 0.233 | 0.744 | 0.863 | 632 | 252 | 0.028 | 0.076 |
| Condom use with nonregular partners | 9.16 | 0.5635 | 0.0573 | 0.102 | 1.109 | 1.053 | 224 | 84 | 0.449 | 0.678 |


| Table SE.8: Sampling errors: Volta Region <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence inter |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MICS | Value (r) | Standard | Coefficient | Design effect | Square root | Weighted | Unweighted | Confiden | imit |
| Background Characteristics | Indicator |  | or (s) | of variation (se/r) | (deff) | $\begin{aligned} & \text { of design } \\ & \text { effect (deft) } \end{aligned}$ | cour | count | $\begin{array}{r} \mathrm{r}-\mathrm{r} \\ 2 \mathrm{e} \end{array}$ | r 2se + |
| Households |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 16 | 0.1767 | 0.0234 | 133 | 2.882 | 1.698 | 986 | 765 | 0.13 | 0.22 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.8540 | 0.0164 | 0.019 | 1.661 | 289 | 992 | 771 | 0.821 | 87 |
| HOUSEHOLD MEMBERS |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.6180 | 0.0555 | 0.090 | 10.058 | 3.171 | 3947 | 771 | 0.507 | 0.729 |
| Use of improved sanitation facilities | 4.3 | 0.0698 | 0.0151 | 0.216 | 2.697 | 1.642 | 3947 | 771 | 0.040 | 0.100 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.3951 | 0.0358 | 0.091 | 2.390 | 1.546 | 554 | 447 | 0.324 | 0.467 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0931 | 0.0123 | 0.133 | 2.751 | 1.658 | 1910 | 1526 | 0.068 | 0.118 |
| Child discipline | 8.5 | 0.9489 | 0.0129 | 0.014 | 1.678 | 1.295 | 1503 | 491 | 0.923 | 0.975 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0917 | 0.0133 | 0.145 | 1.250 | 1.118 | 821 | 593 | 0.065 | 0.118 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.5778 | 0.0553 | 0.096 | 0.764 | 0.874 | 74 | 62 | 0.467 | 0.688 |
| Intermittent preventive treatment for malaria | 3,20 | 0.4047 | 0.0497 | 0.123 | 1.386 | 1.177 | 183 | 136 | 0.305 | 0.504 |
| Early childbearing | 5.2 | 0.3170 | 0.0467 | 0.147 | 0.855 | 0.925 | 116 | 86 | 0.224 | 0.410 |
| Contraceptive prevalence | 5.3 | 0.1991 | 0.0190 | 0.095 | 0.886 | 0.941 | 541 | 393 | 0.161 | 0.237 |
| Unmet need | 5.4 | 0.3786 | 0.0211 | 0.056 | 0.739 | 0.860 | 541 | 393 | 0.336 | 0.421 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9719 | 0.0125 | 0.013 | 0.809 | 0.900 | 189 | 142 | 0.947 | 0.99 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.8263 | 0.0398 | 0.048 | 1.556 | 1.247 | 189 | 142 | 0.747 | 0.906 |
| Skilled attendant at delivery | 5.7 | 0.6435 | 0.0521 | 0.081 | 1.666 | 1.291 | 189 | 142 | 0.539 | 0.748 |
| Institutional deliveries | 5.8 | 0.6207 | 0.0531 | 0.886 | 1.689 | 1.300 | 189 | 142 | 0.514 | 0.72 |
| Caesarean section | 5.9 | 0.1468 | 0.0380 | 0.259 | 1.624 | 1.274 | 189 | 142 | 0.071 | 0.22 |
| Literacy rate among young women | 7.1 | 0.5985 | 0.0364 | 0.061 | 1.097 | 1.047 | 272 | 200 | 0.526 | 0.671 |
| Marriage before age 18 | 8.7 | 0.2930 | 0.0307 | 0.105 | 2.170 | 1.473 | 665 | 479 | 0.232 | 0.354 |
| Polygyny | 8.9 | 0.2763 | 0.0303 | 0.110 | 1.800 | 1.342 | 541 | 393 | 0.216 | 0.33 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0038 | 0.0022 | 0.565 | 0.726 | 0.852 | 821 | 593 | 0.000 | 0.008 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3610 | 0.0432 | 0.120 | 1.610 | 1.269 | 272 | 200 | 0.275 | 0.447 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5834 | 0.0294 | 0.050 | 2.110 | 1.453 | 821 | 593 | 0.525 | 0.642 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0766 | 0.0107 | 0.140 | 0.948 | 0.974 | 818 | 588 | 0.055 | 0.098 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1848 | 0.0225 | 0.122 | 1.996 | 1.413 | 821 | 593 | 0.140 | 0.230 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1416 | 0.0364 | 0.257 | 1.296 | 1.138 | 158 | 120 | 0.069 | 0.214 |
| Sex before age 15 among young women | 9.11 | 0.1248 | 0.0216 | 0.173 | 0.850 | 0.922 | 272 | 200 | 0.082 | 0.168 |
| Condom use with nonregular partners | 9.16 | 0.3287 | 0.0644 | 0.196 | 1.014 | 1.007 | 66 | 55 | 0.200 | 0.457 |


| Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | $\begin{gathered} \text { MICS } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | $\underset{\substack{\text { coefficient } \\ \text { of variation }}}{\text { chen }}$ | Design effect ${ }_{\text {(deff) }}$ | Square root of designeffect (deft) effect (defi) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  | $\begin{array}{r} \text { /ariation } \\ \text { (se/r) } \end{array}$ |  |  |  |  | 2 se | ${ }_{\text {r }}^{\text {re }}$ |
| USEHOLDS |  |  |  |  |  |  |  |  |  |  |
| d salt consumption | 2.16 | 2729 | . 0324 | 0.119 | 4.038 | 2.010 | 1523 | 762 | 0.208 | 0.338 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.7816 | 0.0244 | 0.031 | 2.682 | 1.638 | 1533 | 767 | 0.733 | 0.831 |
| Household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.7649 | 0.0350 | 0.046 | 5.205 | 2.281 | 5247 | 767 | 0.695 | 0.835 |
| Use of improved sanitation facilities | 4.3 | 0.1688 | 0.0266 | 0.158 | 3.865 | 1.966 | 5247 | 767 | 0.116 | 0.222 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.3948 | 0.0267 | 0.068 | 1.127 | 1.062 | 726 | 379 | 0.341 | 0.448 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0767 | 0.0112 | 0.146 | 2.192 | 1.481 | 2416 | 1244 | 0.054 | 0.099 |
| Child discipline | 8.5 | 9696 | 102 | 0 | . 601 | . 265 | 1853 | 457 | 0.949 | 0.990 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0590 | 0.0089 | 0.151 | 0.845 | 0.919 | 1237 | 596 | 0.041 | 0.077 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.6232 | 0.0665 | 0.107 | 0.677 | 0.823 | 71 | 37 | 0.490 | 0.756 |
| Intermittent preventive treatment for malaria | 3,20 | . 7412 | 0.0440 | . 059 | 1.321 | 1.149 | 277 | 132 | 0.653 | 0.829 |
| Early childbearing | 5.2 | 0.1529 | 0.0341 | 0.223 | 0.827 | 0.909 | 189 | 93 | 0.085 | 0.221 |
| Contraceptive prevalence | 5.3 | 0.4278 | 0.0295 | 0.069 | 1.293 | 1.137 | 752 | 365 | 0.369 | 0.887 |
| Unmet need | 5.4 | 0.223 | 0.0221 | 0.099 | 1.025 | 1.013 | 752 | 365 | 0.180 | 0.26 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9631 | 0.0190 | . 020 | 1.367 | 1.169 | 288 | 136 | 0.925 | 1.00 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.9318 | 0.0284 | 0.030 | 1.708 | 1.307 | 288 | 136 | 0.875 | 0.989 |
| Skilled attendant at delivery | 5.7 | 0.7788 | 0.0444 | 0.057 | 1.546 | 1.243 | 288 | 136 | 0.690 | 0.868 |
| Institutional deliveries | 5.8 | 0.7788 | 0.0444 | 0.057 | 1.546 | 1.243 | 88 | 136 | 0.690 | 0.868 |
| Caesarean section | 5.9 | 0.1188 | 0.0338 | 0.284 | 1.471 | 1.213 | 288 | 136 | 0.051 | 0.186 |
| Literacy rate among young women | 7.1 | 0.7058 | 0.0387 | 0.055 | 1.432 | 1.197 | 398 | 200 | 0.628 | 0.783 |
| Marriage before age 18 | 8.7 | 0.2719 | 0.0290 | 0.107 | 2.080 | 1.442 | 1029 | 489 | 0.214 | 0.330 |
| Polygyny | 8.9 | 0.1168 | 0.018 | 0.1 | 1.216 | 1.103 | 752 | 365 | 0.880 | 0.15 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0131 | 0.0048 | 0.368 | 1.064 | 1.032 | 1237 | 596 | 0.003 | 0.023 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.4678 | 0.0399 | 0.085 | 1.275 | 1.129 | 398 | 200 | 0.388 | 0.548 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.6477 | 0.0180 | 0.028 | 0.848 | 0.921 | 1237 | 596 | 0.612 | 0.68 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0456 | 0.0088 | 0.193 | 1.047 | 1.023 | 1226 | 588 | 0.028 | 0.063 |
| Women who have been tested for HIV and know the results | 9.6 | 0.2049 | 0.0140 | 0.068 | 0.715 | 0.845 | 1237 | 596 | 0.177 | 0.233 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.2463 | 0.0351 | 0.142 | 0.782 | 0.884 | 232 | 119 | 0.176 | 0.316 |
| Sex before age 15 among young women | 9.11 | 0.0872 | 0.0227 | 0.260 | 1.283 | 1.133 | 398 | 200 | 0.042 | 0.133 |
| Condom use with nonregular partners | 9.16 | 0.3723 | 0.0565 | 0.152 | 0.928 | 0.963 | 131 | 69 | 0.259 | 0.485 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0039 | 0.0037 | 0.954 | 1.385 | 1.177 | 848 | 391 | 0.000 | 0.011 |


| Table SE.9: Sampling errors: Eastern Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { Mics } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard error (se) | Coefficientof variation(selr) | Design effect (deff) | Square rootof design effect (deft) | Weighted | Unweighted | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} r- \\ 2 \mathrm{se} \end{gathered}$ | 2se |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | $2.11{ }^{\text {a }}$ | 0.1054 | 0.0219 | 0.208 | 1.725 | 1.314 | 816 | 339 | 0.062 | 0.149 |
| Stunting prevalence | 2.2 a | 0.2133 | 0.0201 | 0.094 | 0.808 | 0.899 | 812 | 338 | 0.173 | 0.253 |
| Wasting prevalence | 2.33 | 0.0683 | 0.0150 | 0.220 | 1.192 | 1.092 | 812 | 338 | 0.038 | 0.098 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.4262 | 0.0705 | 0.166 | 0.895 | 0.946 | 107 | 45 | 0.285 | 0.567 |
| Age-appropriate breastfeeding | 2.14 | 0.5881 | 0.0383 | 0.065 | 0.867 | 0.931 | 352 | 144 | 0.511 | 0.665 |
| Tuberculosis immunization coverage | - | 1.0000 | 0.0000 | 0.000 |  |  | 141 | 60 | 1.000 | 1.000 |
| Received polio immunization |  | 0.9688 | 0.0232 | 0.024 | 1.051 | 1.025 | 141 | 60 | 0.922 | 1.000 |
| Received penta immunization |  | 0.9446 | 0.0245 | 0.026 | 0.678 | 0.823 | 141 | 60 | 0.895 | 0.994 |
| Received measles immunization |  | 0.9266 | 0.0351 | 0.038 | 1.070 | 1.035 | 141 | 60 | 0.856 | 0.997 |
| Received yellow fever immunization |  | 0.9266 | 0.0351 | 0.038 | 1.070 | 1.035 | 141 | 60 | 0.856 | 0.997 |
| Diarrhoea in the previous 2 weeks |  | 0.0652 | 0.0143 | 0.219 | 1.149 | 1.072 | 827 | 345 | 0.037 | 0.094 |
| Illness with a cough in the previous 2 weeks |  | 0.0417 | 0.0133 | 0.320 | 1.532 | 1.238 | 827 | 345 | 0.015 | 0.068 |
| Fever in last two weeks |  | 0.1047 | 0.0190 | 0.181 | 1.320 | 1.149 | 827 | 345 | 0.067 | 0.143 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.3714 | 0.0508 | 0.137 | 0.265 | 0.515 | 54 | 25 | 0.270 | 0.473 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.7308 | 0.0053 | 0.007 | 0.002 | 0.045 | 34 | 15 | 0.720 | 0.741 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.6017 | 0.0377 | 0.063 | 2.017 | 1.420 | 819 | 341 | 0.526 | 0.677 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.5497 | 0.0773 | 0.141 | 0.869 | 0.332 | 87 | 37 | 0.395 | 0.704 |
| Support for learning | 6.1 | 0.6213 | 0.0426 | 0.069 | 1.009 | 1.005 | 307 | 132 | 0.536 | 0.706 |
| Attendance to early childhood education | 6.7 | 0.8388 | 0.0334 | 0.040 | 1.080 | 1.039 | 307 | 132 | 0.772 | 0.906 |
| Birth registration | 8.1 | 0.5680 | 0.0340 | 0.060 | 1.621 | 1.273 | 827 | 345 | 0.500 | 0.636 |
| men |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.7397 | 0.0364 | 0.049 | 0.324 | 0.569 | 95 | 48 | 0.667 | 0.813 |
| Marriage before age 18 |  | 0.1087 | 0.0279 | 0.257 | 1.159 | 1.076 | 287 | 145 | 0.053 | 0.165 |
| Polygyny |  | 0.1055 | 0.0287 | 0.272 | 0.996 | 0.998 | 229 | 115 | 0.048 | 0.163 |
| Comprehensive knowledge about HIV prevention among young men |  | 0.4123 | 0.0599 | 0.145 | 0.696 | 0.834 | 95 | 48 | 0.293 | 0.532 |
| Knowledge of mother-tochild transmission of HIV |  | 0.6718 | 0.0399 | 0.059 | 1.294 | 1.138 | 358 | 180 | 0.592 | 0.752 |
| Accepting attitudes towards people living with HIV |  | 0.2078 | 0.0273 | 0.131 | 0.804 | 0.897 | 355 | 179 | 0.153 | 0.262 |
| Men who have been tested for HIV during last 12 months and who have been told the results |  | 0.1309 | 0.0326 | 0.249 | 1.672 | 1.293 | 358 | 180 | 0.066 | 0.196 |
| Sexually active young men who have been tested for HIV and know the results |  | 0.0325 | 0.0010 | 0.030 | 0.001 | 0.024 | 42 | 20 | 0.031 | 0.035 |
| Sex before age 15 among young men |  | 0.1529 | 0.0337 | 0.220 | 0.412 | 0.642 | 95 | 48 | 0.085 | 0.220 |
| Condom use with nonregular partners |  | 0.6450 | 0.0043 | 0.007 | 0.001 | 0.033 | 33 | 15 | 0.636 | 0.654 |


| Table SE.10: Sampling errors: Ashanti Region <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | MICS | Value (r) | Standard | Coefficient | Design effect | Square root | Weighted | Unweighted | Confiden | imit |
| Background Characteristics | Indicator |  | error (se) | of variation (se/r) | (deff) | $\begin{array}{r} \text { of design } \\ \text { effect (deft) } \end{array}$ | count | count | $\begin{gathered} \mathrm{r}- \\ 2 \mathrm{se} \end{gathered}$ | r 2se |
| households |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.3005 | 0.0216 | 0.072 | 2.181 | 1.477 | 2304 | 987 | 0.257 | 0.344 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.3975 | 0.0212 | 0.053 | 1.858 | 1.363 | 2321 | 993 | 0.355 | 0.440 |
| HOUSEHOLD MEMBERS |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.9053 | 0.0311 | 0.034 | 11.203 | 3.347 | 8397 | 993 | 0.843 | 0.968 |
| Use of improved sanitation facilities | 4.3 | 0.1753 | 0.0171 | 0.098 | 2.008 | 1.417 | 8397 | 993 | 0.141 | 0.210 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.4922 | 0.0302 | 0.061 | 1.866 | 1.366 | 1192 | 513 | 0.432 | 0.553 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0895 | 0.0115 | 0.129 | 2.729 | 1.652 | 4026 | 1682 | 0.066 | 0.112 |
| Child discipline | 8.5 | 0.9372 | 0.0123 | 0.013 | 1.462 | 1.209 | 3111 | 568 | 0.913 | 0.962 |
| women |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0947 | 0.0158 | 0.167 | 2.357 | 1.535 | 1983 | 813 | 0.063 | 0.126 |
| Pregnant women sleeping under insecticide-treated nets (TNS) | 3.19 | 0.2130 | 0.0327 | 0.154 | 0.447 | 0.668 | 186 | 71 | 0.148 | 0.278 |
| Intermittent preventive treatment for malaria | 3,20 | 0.7611 | 0.0333 | 0.044 | 1.050 | 1.025 | 443 | 173 | 0.694 | 0.828 |
| Early childbearing | 5.2 | 0.1654 | 0.0219 | 0.132 | 0.535 | 0.731 | 359 | 155 | 0.122 | 0.209 |
| Contraceptive prevalence | 5.3 | 0.3264 | 0.0276 | 0.085 | 1.732 | 1.316 | 1310 | 501 | 0.271 | 0.382 |
| Unmet need | 5.4 | 0.2979 | 0.0187 | 0.063 | 0.833 | 0.913 | 1310 | 501 | 0.261 | 0.335 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9860 | 0.0080 | 0.008 | 0.818 | 0.904 | 449 | 176 | 0.970 | 1.000 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.9097 | 0.0265 | 0.029 | 1.502 | 1.225 | 449 | 176 | 0.857 | 0.963 |
| Skilled attendant at delivery | 5.7 | 0.7371 | 0.0323 | 0.044 | 0.942 | 0.971 | 449 | 176 | 0.673 | 0.802 |
| Institutional deliveries | 5.8 | 0.7440 | 0.0334 | 0.045 | 1.024 | 1.012 | 449 | 176 | 0.677 | 0.811 |
| Caesarean section | 5.9 | 0.1226 | 0.0273 | 0.222 | 1.210 | 1.100 | 449 | 176 | 0.068 | 0.177 |
| Literacy rate among young women | 7.1 | 0.5469 | 0.0383 | 0.070 | 1.840 | 1.356 | 718 | 312 | 0.470 | 0.623 |
| Marriage before age 18 | 8.7 | 0.3048 | 0.0241 | 0.079 | 1.800 | 1.342 | 1623 | 656 | 0.257 | 0.353 |
| Polygyny | 8.9 | 0.1292 | 0.0168 | 0.130 | 1.251 | 1.118 | 1310 | 501 | 0.096 | 0.163 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0185 | 0.0067 | 0.365 | 2.035 | 1.427 | 1983 | 813 | 0.005 | 0.032 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3322 | 0.0288 | 0.087 | ${ }^{1.163}$ | 1.078 | 718 | 312 | 0.275 | 0.390 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5256 | 0.0260 | 0.049 | 2.202 | 1.484 | 1983 | 813 | 0.474 | 0.578 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0770 | 0.0112 | 0.145 | 1.414 | 1.189 | 1972 | 809 | 0.055 | 0.099 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1957 | 0.0161 | 0.082 | 1.344 | 1.159 | 1983 | 813 | 0.163 | 0.228 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1642 | 0.0291 | 0.177 | 1.056 | 1.028 | 406 | 172 | 0.106 | 0.222 |
| Sex before age 15 among young women | 9.11 | 0.0808 | 0.0194 | 0.241 | 1.584 | 1.259 | 718 | 312 | 0.042 | 0.120 |
| Condom use with nonregular partners | 9.16 | 0.3180 | 0.0495 | 0.156 | 0.970 | 0.985 | 186 | 87 | 0.219 | 0.417 |


| Table SE.11: Sampling errors: Brongo Ahafo Region <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background |  | Value (r) | Standard | Coefficient | Design effect | Square root | Weighted | Unweighted | Confide | limit |
| Characteristics | Indicator |  | error (se) | of variation (se/r) | (deff) | of design effect (deft) | count | count | 2se | ${ }_{\text {2se }}^{\text {r }}$ |
| HOUSEHOLDS |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.4528 | 0.0337 | 0.074 | 3.274 | 1.809 | 1007 | 715 | 0.385 | 0.520 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.5344 | 0.0273 | 0.051 | 2.154 | 1.468 | 1011 | 718 | 0.480 | 0.589 |
| HOUSEHOLD MEMBERS |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.8043 | 0.0404 | 0.050 | 7.428 | 2.725 | 4234 | 718 | 0.724 | 0.885 |
| Use of improved sanitation facilities | 4.3 | 0.0990 | 0.0200 | 0.202 | 3.207 | 1.791 | 4234 | 718 | 0.059 | 0.139 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.4212 | 0.0313 | 0.074 | 1.921 | 1.386 | 684 | 479 | 0.359 | 0.484 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0920 | 0.0109 | 0.118 | 2.87 | 1.479 | 2173 | 1544 | 0.070 | 0.114 |
| Child discipline | 8.5 | 0.9435 | 0.0114 | 0.012 | 1.157 | 1.076 | 1646 | 480 | 0.921 | 0.966 |
| Women |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0734 | 0.0148 | 0.201 | 2.105 | 1.451 | 1005 | 658 | 0.044 | 0.103 |
| Pregnant women sleeping under insecticide-treated nets (TNNs) | 3.19 | 0.3612 | 0.0542 | 0.150 | 0.661 | 0.813 | 72 | 53 | 0.253 | 0.470 |
| Intermittent preventive treatment for malaria | 3,20 | 0.6384 | 0.0371 | 0.058 | 0.878 | 0.937 | 221 | 148 | 0.564 | 0.713 |
| Early childbearing | 5.2 | 0.2110 | 0.0468 | 0.222 | 1.340 | 1.158 | 153 | 103 | 0.117 | 0.305 |
| Contraceptive prevalence | 5.3 | 0.4019 | 0.0253 | 0.063 | 1.023 | 1.012 | 585 | 385 | 0.351 | 0.453 |
| Unmet need | 5.4 | 0.2728 | 0.0220 | 0.081 | 0.938 | 0.969 | 585 | 385 | 0.229 | 0.317 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9701 | 0.0125 | 0.013 | 0.819 | 0.905 | 227 | 153 | 0.945 | 0.99 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.8387 | 0.0293 | 0.035 | 0.965 | 0.982 | 227 | 153 | 0.780 | 0.897 |
| Skilled attendant at delivery | 5.7 | 0.6371 | 0.0459 | 0.072 | 1.384 | 1.176 | 227 | 153 | 0.545 | 0.729 |
| Institutional deliveries | 5.8 | 0.621 | 0.0510 | 0.082 | 1.682 | 1.297 | 227 | 153 | 0.519 | 0.723 |
| Caesarean section | 5.9 | 0.0612 | 0.0154 | 0.251 | 0.624 | 0.790 | 227 | 153 | 0.330 | 0.09 |
| Literacy rate among young women | 7.1 | 0.4940 | 0.0277 | 0.056 | 0.812 | 0.901 | 396 | 266 | 0.439 | 0.549 |
| Marriage before age 18 | 8.7 | 0.2905 | 0.0194 | 0.067 | 0.903 | 0.950 | 762 | 495 | 0.252 | 0.32 |
| Polygyny | 8.9 | 0.181 | 0.0211 | 0.116 | 1.144 | 1.069 | 585 | 385 | 0.140 | 0.2 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0449 | 0.0113 | 0.252 | 1.964 | 1.401 | 1005 | 658 | 0.022 | 0.06 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.2743 | 0.0290 | 0.106 | 1.117 | 1.057 | 396 | 266 | 0.216 | 0.332 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.5200 | 0.0235 | 0.045 | 1.452 | 1.205 | 1005 | 658 | 0.473 | 0.567 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0366 | 0.0071 | 0.194 | 0.893 | 0.945 | 964 | 625 | 0.022 | 0.051 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1547 | 0.0174 | 0.113 | 1.523 | 1.234 | 1005 | 658 | 0.120 | 0.189 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1769 | 0.0295 | 0.167 | 0.879 | 0.938 | 215 | 148 | 0.118 | 0.236 |
| Sex before age 15 among young women | 9.11 | 0.1489 | 0.0299 | 0.201 | 1.871 | 1.368 | 396 | 266 | 0.089 | 0.209 |


| Table SE. 11 : Sampling errors: Brongo Ahafo Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { Mics } \\ \text { Indicator } \end{gathered}$ | Value (r) | $\begin{aligned} & \text { Standard } \\ & \text { error (se) } \end{aligned}$ | Coefficient of variation (se/r) | Design effect | $\begin{aligned} & \text { Square root } \\ & \text { of design } \\ & \text { effect (deft) } \end{aligned}$ | Weighted | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r}-\mathrm{a} \\ 2 \mathrm{se} \end{gathered}$ | r+ 2 2e |
| Condom use with nonregular partners | 9.16 | 0.3114 | 0.0409 | . 131 | 0.766 | 0.875 | 150 | 99 | 0.230 | 93 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0046 | 0.0026 | 0.558 | 0.755 | 0.869 | 799 | 523 | 0.000 | 0.010 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.19 | 0.1183 | 0.0185 | 0.156 | 1.301 | 1.141 | 660 | 398 | 0.081 | 0.155 |
| Stunting prevalence | $2.2 a$ | 0.1927 | 0.0213 | 10 | 1.142 | 1.069 | 655 | 3 | 0.150 | 0.235 |
| Wasting prevalence | 2.3 a | 0.0324 | 0.0095 | 0.293 | 1.146 | 1.070 | 662 | 1 | 013 | 0.051 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.6979 | 0.0246 | 0.035 | 0.135 | 0.367 | 82 | 48 | 0.649 | 0.747 |
| Age-appropriate breastfeeding | 2.14 | 0.7231 | 0.0366 | 0.051 | 1.046 | 1.023 | 259 | 157 | 0.650 | 0.796 |
| Tuberculosis immunization coverage |  | 0.9936 | 0.0065 | 0.007 | 0.487 | 0.698 | 122 | 74 | 0.981 | 1.000 |
| Received polio immunization |  | 0.9556 | 0.0296 | 0.031 | 1.504 | 1.226 | 122 | 74 | 0.896 | 1.000 |
| Received penta immunization |  | 0.9747 | 0.0239 | 0.025 | 1.694 | 1.302 | 122 | 74 | 0.927 | 1.000 |
| Received measles immunization |  | 0.9957 | 0.0006 | 0.001 | 0.006 | 0.075 | 122 | 74 | 0.995 | 0.997 |
| Received yellow fever immunization |  | 0.9957 | 0.0006 | 0.001 | 0.006 | 0.075 | 122 | 74 | 0.995 | 0.997 |
| Diarrhoea in the previous 2 weeks |  | 0.1616 | 0.0194 | 0.120 | 1.124 | 1.060 | 671 | 407 | 0.123 | 0.200 |
| Illness with a cough in the previous 2 weeks |  | 0.0363 | 0.0116 | 0.321 | 1.573 | 1.254 | 671 | 407 | 0.013 | 0.060 |
| Fever in last two weeks |  | 0.2881 | 0.0224 | 0.078 | 0.991 | 0.995 | 671 | 407 | 0.243 | 0.333 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.4268 | 0.0610 | 0.143 | 0.990 | 0.995 | 108 | 66 | 0.305 | 0.54 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.3707 | 0.1555 | 0.419 | 1.554 | 1.247 | 24 | 16 | 0.060 | 0.682 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.4135 | 0.0332 | 0.080 | 1.828 | 1.352 | 663 | 402 | 0.347 | 0.480 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.3046 | 0.0542 | 0.178 | 1.584 | 1.259 | 193 | 115 | 0.196 | 0.413 |
| Support for learning | 6.1 | 0.3337 | 0.0502 | 0.150 | 1.789 | 1.338 | 260 | 159 | 0.233 | 0.434 |
| Attendance to early childhood education | 6.7 | 0.5636 | 0.0350 | 0.062 | 0.789 | 0.888 | 260 | 159 | 0.494 | 0.634 |
| Birth registration | 8.1 | 0.5259 | 0.0460 | 0.087 | 3.440 | 1.855 | 671 | 407 | 0.434 | 0.618 |
| men |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.5696 | 0.0616 | 0.108 | 0.960 | 0.980 | 92 | 63 | 0.446 | 0.693 |
| Marriage before age 18 |  | 0.0224 | 0.0098 | 0.438 | 0.675 | 0.822 | 238 | 154 | 0.003 | 0.042 |
| Polygyny |  | 0.0501 | 0.0234 | 0.467 | 1.149 | 1.072 | 149 | 101 | 0.003 | 0.097 |
| Comprehensive knowledge about HIV prevention among young men |  | 0.3127 | 0.0660 | 0.211 | 1.257 | 1.121 | 92 | 63 | 0.181 | 0.445 |
| Knowledge of mother-tochild transmission of HIV |  | 0.5795 | 0.0390 | 0.067 | 1.213 | 1.101 | 296 | 195 | 0.501 | 0.658 |
| Accepting attitudes towards people living with HIV |  | 0.1279 | 0.0201 | 0.157 | 0.696 | 0.835 | 295 | 193 | 0.088 | 0.168 |
| Men who have been tested for HIV during last 12 months and who have been told the results |  | 0.0632 | 0.0140 | 0.221 | 0.639 | 0.799 | 296 | 195 | 0.035 | 0.091 |
| Sexually active young men who have been tested for HIV and know the results |  | 0.0000 | 0.0000 |  |  |  | 31 | 21 | 0.000 | 0.000 |
| Sex before age 15 among young men |  | 0.0109 | 0.0108 | 0.992 | 0.673 | 0.820 | 92 | 63 | 0.000 | 0.033 |
| Condom use with nonregular partners |  | 0.4310 | 0.0720 | 0.167 | 0.402 | 0.634 | 29 | 20 | 0.287 | 0.575 |


| Table SE.12: Sampling errors: Northern Region <br> Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | Square root <br> of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{array}{r} \mathrm{r} \\ 2 \mathrm{re} \end{array}$ | $\begin{gathered} r+ \\ 2 s e \end{gathered}$ |
| HOUSEHOLDS |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.1537 | 0.0115 | 0.075 | 2.013 | 1.419 | 725 | 1967 | 0.131 | 0.177 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.6718 | 0.0154 | 0.023 | 2.118 | 1.45 | 27 | 1972 | 0.641 | . 73 |
| Household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.6844 | 0.0307 | 0.045 | 8.584 | 2.930 | 4261 | 1972 | 0.623 | 0.746 |
| Use of improved sanitation facilities | 4.3 | 0.0519 | 0.0101 | 0.195 | 4.094 | 2.023 | 4261 | 1972 | 0.032 | 0.072 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.2508 | 0.0216 | 0.086 | 4.115 | 2.028 | 597 | 1654 | 0.208 | 0.294 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0642 | 0.0054 | 0.085 | 3.216 | 1.793 | 2315 | 6528 | 0.053 | 0.075 |
| Child discipline | 8.5 | 0.9504 | 0.0069 | 0.007 | 1.628 | 1.276 | 1830 | 1615 | 0.937 | 0.964 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.1145 | 0.0091 | 0.080 | 1.599 | 1.265 | 754 | 1938 | 0.096 | 0.133 |
| Pregnant women sleeping under insecticide-treated nets (TNS) | 3.19 | 0.3791 | 0.0360 | 0.095 | 1.253 | 1.120 | 86 | 229 | 0.307 | 0.451 |
| Intermittent preventive treatment for malaria | 3,20 | 0.7409 | 0.0180 | 0.024 | 1.130 | 1.063 | 255 | 670 | 0.705 | 0.777 |
| Early childbearing | 5.2 | 0.1648 | 0.0226 | 0.137 | 0.949 | 0.974 | 102 | 256 | 0.120 | 0.210 |
| Contraceptive prevalence | 5.3 | 0.2010 | 0.0160 | 0.080 | 2.427 | 1.558 | 576 | 1522 | 0.169 | 0.233 |
| Unmet need | 5.4 | 0.3039 | 0.0120 | 0.039 | 1.033 | 1.017 | 576 | 1522 | 0.280 | 0.328 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9038 | 0.0131 | 0.014 | 1.467 | 1.211 | 283 | 749 | 0.878 | 0.930 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.7513 | 0.0222 | 0.030 | 1.977 | 1.406 | 283 | 749 | 0.707 | 0.796 |
| Skilled attendant at delivery | 5.7 | 0.3726 | 0.0308 | 0.083 | 3.045 | 1.745 | 283 | 749 | 0.311 | 0.434 |
| Institutional deliveries | 5.8 | 0.3706 | 0.0311 | 0.084 | 3.093 | 1.759 | 283 | 749 | 0.308 | 0.433 |
| Caesarean section | 5.9 | 0.0342 | 0.0093 | 0.271 | 1.950 | 1.396 | 283 | 749 | 0.016 | 0.053 |
| Literacy rate among young women | 7.1 | 0.4429 | 0.0338 | 0.076 | 2.444 | 1.563 | 219 | 530 | 0.375 | 0.510 |
| Marriage before age 18 | 8.7 | 0.2741 | 0.0129 | 0.047 | 1.393 | 1.180 | 637 | 1664 | 0.248 | 0.300 |
| Polygyny | 8.9 | 0.4489 | 0.0215 | 0.048 | 2.833 | 1.683 | 576 | 1522 | 0.406 | 0.492 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.0284 | 0.0058 | 0.203 | 2.329 | 1.526 | 754 | 1938 | 0.017 | 0.040 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.2252 | 0.0192 | 0.085 | 1.112 | 1.055 | 219 | 530 | 0.187 | 0.264 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.4933 | 0.0158 | 0.032 | 1.934 | 1.391 | 754 | 1938 | 0.462 | 0.525 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0400 | 0.0071 | 0.177 | 2.208 | 1.486 | 675 | 1700 | 0.026 | 0.054 |
| Women who have been tested for HIV and know the results | 9.6 | 0.0875 | 0.0082 | 0.094 | 1.645 | 1.282 | 754 | 1938 | 0.071 | 0.104 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.0699 | 0.0159 | 0.228 | 1.016 | 1.008 | 106 | 261 | 0.038 | 0.102 |
| Sex before age 15 among young women | 9.11 | 0.0835 | 0.0150 | 0.180 | 1.552 | 1.246 | 219 | 530 | 0.053 | 0.113 |


| Table SE.12: Sampling errors: Northern Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | Square root of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r}- \\ 2 \mathrm{se} \end{gathered}$ | r 2se |
| Condom use with nonregular partners | 9.16 | 0.4021 | 0.0576 | 0.143 | 1.380 | 1.175 | 44 | 101 | 0.287 | 0.517 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0164 | 0.0077 | 0.470 | 3.600 | 1.897 | 387 | 976 | 0.001 | 0.032 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.19 | 0.2416 | 0.0128 | 0.053 | 1.759 | 1.326 | 836 | 1956 | 0.216 | 0.267 |
| Stunting prevalence | 2.2a | 0.3745 | 0.0156 | 0.042 | 2.031 | 1.425 | 834 | 1950 | 0.343 | 0.406 |
| Wasting prevalence | 2.33 | 0.0811 | 0.0072 | 0.089 | 1.364 | 1.168 | 840 | 1962 | 0.067 | 0.096 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.6359 | 0.0371 | 0.058 | 1.113 | 1.055 | 79 | 188 | 0.562 | 0.710 |
| Age-appropriate breastfeeding | 2.14 | 0.7658 | 0.0146 | 0.019 | 0.935 | 0.967 | 334 | 783 | 0.736 | 0.795 |
| Tuberculosis immunization coverage |  | 0.9709 | 0.0071 | 0.007 | 0.703 | 0.838 | 173 | 399 | 0.957 | 0.985 |
| Received polio immunization |  | 0.8829 | 0.0189 | 0.021 | 1.381 | 1.175 | 173 | 399 | 0.845 | 0.921 |
| Received penta immunization |  | 0.9167 | 0.0174 | 0.019 | 1.570 | 1.253 | 173 | 399 | 0.882 | 0.951 |
| Received measles immunization |  | 0.8982 | 0.0213 | 0.024 | 1.968 | 1.403 | 173 | 399 | 0.856 | 0.941 |
| Received yellow fever immunization | - | 0.8987 | 0.0212 | 0.024 | 1.973 | 1.405 | 173 | 399 | 0.856 | 0.941 |
| Diarrhoea in the previous 2 weeks |  | 0.2137 | 0.0151 | 0.071 | 2.703 | 1.644 | 852 | 1989 | 0.183 | 0.244 |
| Illness with a cough in the previous 2 weeks |  | 0.0627 | 0.0076 | 0.122 | 1.967 | 1.402 | 852 | 1989 | 0.047 | 0.078 |
| Fever in last two weeks |  | 0.3178 | 0.0138 | 0.043 | 1.738 | 1.318 | 852 | 1989 | 0.290 | 0.345 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.3480 | 0.0278 | 0.080 | 1.381 | 1.175 | 182 | 407 | 0.292 | 0.404 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.5976 | 0.0371 | 0.062 | 0.675 | 0.822 | 53 | 119 | 0.523 | 0.672 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.4176 | 0.0230 | 0.055 | 4.315 | 2.077 | 847 | 1980 | 0.372 | 0.464 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.2749 | 0.0252 | 0.092 | 1.931 | 1.389 | 271 | 607 | 0.224 | 0.325 |
| Support for learning | 6.1 | 0.2155 | 0.0199 | 0.092 | 1.939 | 1.392 | 360 | 830 | 0.176 | 0.255 |
| Attendance to early childhood education | 6.7 | 0.5047 | 0.0272 | 0.054 | 2.452 | 1.566 | 360 | 830 | 0.450 | 0.559 |
| Birth registration | 8.1 | 0.6186 | 0.0214 | 0.035 | 3.863 | 1.965 | 852 | 1989 | 0.576 | 0.661 |
| MEN |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.5664 | 0.0407 | 0.072 | 1.486 | 1.219 | 86 | 221 | 0.485 | 0.648 |
| Marriage before age 18 | - | 0.0258 | 0.0072 | 0.279 | 0.982 | 0.991 | 188 | 475 | 0.011 | 0.040 |
| Polygyny |  | 0.2728 | 0.0257 | 0.094 | 1.082 | 1.040 | 129 | 325 | 0.221 | 0.324 |
| Comprehensive knowledge about HIV prevention among young men |  | 0.2990 | 0.0375 | 0.125 | 1.477 | 1.215 | 86 | 221 | 0.224 | 0.374 |
| Knowledge of mother-tochild transmission of HIV |  | 0.5263 | 0.0226 | 0.043 | 1.260 | 1.123 | 243 | 617 | 0.481 | 0.572 |
| Accepting attitudes towards people living with HIV | - | 0.1344 | 0.0154 | 0.114 | 1.172 | 1.083 | 230 | 578 | 0.104 | 0.165 |
| Men who have been tested for HIV during last 12 months and who have been told the results | - | 0.0653 | 0.0099 | 0.152 | 0.987 | 0.994 | 243 | 617 | 0.045 | 0.085 |


|  |  | Table SE.12: Sampling errors: |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


| Table SE.13: Sampling errors: Upper East Region |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for selected indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| Background |  | Value (r) | Standard | Coefficient | Design effect | Square root | Weighted | Unweighted | Confide | limit |
| Characteristics | Indicator |  | error (se) | of variation (se/r) | (deff) | of design effect (deft) | count | count | r 2se | r 2se |
| HOUSEHOLDS |  |  |  |  |  |  |  |  |  |  |
| lodized salt consumption | 2.16 | 0.1820 | 0.0136 | 0.074 | 1.695 | 1.302 | 386 | 1375 | 0.155 | 0.209 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.5178 | 01 | 0.039 | 2.392 | 1.547 | 414 | 1475 | 0.478 | . 558 |
| HOUSEHOLD MEMBERS |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.7834 | 0.0267 | 0.034 | 6.213 | 2.493 | 2113 | 1475 | 0.730 | 0.837 |
| Use of improved sanitation facilities | 4.3 | 0.0296 | 0.0052 | 0.175 | 1.375 | 1.172 | 2113 | 1475 | 0.019 | 0.040 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.2796 | 0.0147 | 0.053 | 1.287 | 1.134 | 327 | 1199 | 0.250 | 0.309 |
| Prevalence of children with at least one parent dead | 9.18 | 0.1144 | 0.0112 | 0.097 | 4.912 | 2.216 | 1094 | 4001 | 0.092 | 0.137 |
| Child discipline | 8.5 | 0.9395 | 0.0100 | 0.011 | 2.052 | 1.433 | 859 | 1158 | 0.919 | 0.960 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0799 | 0.0082 | 0.103 | 1.297 | 1.139 | 404 | 1412 | 0.063 | 0.09 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.5047 | 0.0369 | 0.073 | 0.633 | 0.796 | 32 | 117 | 0.431 | 0.579 |
| Intermittent preventive treatment for malaria | 3,20 | 0.7017 | 0.0297 | 0.042 | 1.504 | 1.226 | 104 | 359 | 0.642 | 0.761 |
| Early childbearing | 5.2 | 0.1618 | 0.0266 | 0.164 | 0.781 | 0.884 | 45 | 151 | 0.109 | 0.215 |
| Contraceptive prevalence | 5.3 | 0.2162 | 0.0149 | 0.069 | 1.199 | 1.095 | 264 | 921 | 0.186 | 0.246 |
| Unmet need | 5.4 | 0.2621 | 0.0126 | 0.048 | 0.752 | 0.867 | 264 | 921 | 0.237 | 0.287 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9894 | 0.0055 | 0.006 | 1.059 | 1.029 | 105 | 363 | 0.978 | 1.000 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.8876 | 0.0237 | 0.027 | 2.044 | 1.430 | 105 | 363 | 0.840 | 0.935 |
| Skilled attendant at delivery | 5.7 | 0.6703 | 0.0347 | 0.052 | 1.976 | 1.406 | 105 | 363 | 0.601 | 0.740 |
| Institutional deliveries | 5.8 | 0.6625 | 0.0346 | 0.052 | 1.937 | 1.392 | 105 | 363 | 0.593 | 0.732 |
| Caesarean section | 5.9 | 0.0408 | 0.0103 | 0.252 | 0.982 | 0.991 | 105 | 363 | 0.020 | 0.061 |
| Literacy rate among young women | 7.1 | 0.4763 | 0.0277 | 0.058 | 1.437 | 1.199 | 132 | 467 | 0.421 | 0.532 |
| Marriage before age 18 | 8.7 | 0.3917 | 0.0172 | 0.044 | 1.355 | 1.164 | 317 | 1096 | 0.35 | 0.42 |
| Polygyny | 8.9 | 0.3928 | 0.0238 | 0.061 | 2.179 | 1.476 | 264 | 921 | 0.345 | 0.440 |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.2781 | 0.0208 | 0.075 | 3.043 | 1.744 | 404 | 1412 | 0.237 | 0.320 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3670 | 0.0319 | 0.087 | 2.038 | 1.428 | 132 | 467 | 0.303 | 0.431 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.6493 | 0.0150 | 0.023 | 1.396 | 1.182 | 404 | 1412 | 0.619 | 0.679 |


| Table SE.13: Sampling errors: Upper East Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics |  | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | Square root of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | r- 2se | r 2se er |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0618 | 0.0102 | 0.164 | 2.458 | 1.568 | 396 | 1383 | 0.041 | 0.082 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1074 | 0.0093 | 0.087 | 1.284 | 1.133 | 404 | 1412 | 0.089 | 0.126 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.1790 | 0.0186 | 0.104 | 0.383 | 0.619 | 46 | 163 | 0.142 | 0.216 |
| Sex before age 15 among young women | 9.11 | 0.0355 | 0.0091 | 0.257 | 1.128 | 1.062 | 132 | 467 | 0.017 | 0.054 |
| Condom use with nonregular partners | 9.16 | 0.5545 | 0.0463 | 0.083 | 0.651 | 0.807 | 21 | 76 | 0.462 | 0.647 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0079 | 0.0036 | 0.454 | 3.124 | 1.767 | 537 | 1900 | 0.001 | 0.015 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.19 | 0.1998 | 0.0155 | 0.077 | 1.469 | 1.212 | 323 | 981 | 0.169 | 0.231 |
| Stunting prevalence | 2.2a | 0.3153 | 0.0200 | 0.063 | 1.791 | 1.338 | 318 | 968 | 0.275 | 0.355 |
| Wasting prevalence | 2.38 | 0.0724 | 0.0087 | 0.120 | 1.089 | 1.044 | 319 | 969 | 0.055 | 0.090 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.5841 | 0.0483 | 0.083 | 1.008 | 1.004 | 35 | 106 | 0.487 | 0.681 |
| Age-appropriate breastfeeding | 2.14 | 0.7588 | 0.0259 | 0.034 | 1.344 | 1.159 | 123 | 369 | 0.707 | 0.811 |
| Tuberculosis immunization coverage | - | 0.9929 | 0.0051 | 0.005 | 0.638 | 0.799 | 61 | 175 | 0.983 | 1.000 |
| Received polio immunization |  | 0.9767 | 0.0107 | 0.011 | 0.870 | 0.933 | 61 | 175 | 0.955 | 0.998 |
| Received penta immunization |  | 0.9767 | 0.0107 | 0.011 | 0.870 | 0.933 | 61 | 175 | 0.955 | 0.998 |
| Received measles immunization |  | 0.9777 | 0.0103 | 0.010 | 0.839 | 0.916 | 61 | 175 | 0.957 | 0.998 |
| Received yellow fever immunization |  | 0.9702 | 0.0126 | 0.013 | 0.960 | 0.980 | 61 | 175 | 0.945 | 0.995 |
| Diarrhoea in the previous 2 weeks |  | 0.1578 | 0.0133 | 0.084 | 1.315 | 1.147 | 325 | 988 | 0.131 | 0.184 |
| Illness with a cough in the previous 2 weeks | - | 0.0227 | 0.0053 | 0.235 | 1.264 | 1.124 | 325 | 988 | 0.012 | 0.033 |
| Fever in last two weeks |  | 0.2484 | 0.0155 | 0.062 | 1.263 | 1.124 | 325 | 988 | 0.217 | 0.279 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.4755 | 0.0349 | 0.073 | 0.773 | 0.879 | 51 | 159 | 0.406 | 0.545 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.5649 | 0.0138 | 0.024 | 0.017 | 0.130 | 7 | 23 | 0.537 | 0.592 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.4501 | 0.0209 | 0.047 | 1.747 | 1.322 | 324 | 987 | 0.408 | 0.492 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.5129 | 0.0376 | 0.073 | 1.350 | 1.162 | 81 | 239 | 0.438 | 0.588 |
| Support for learning | 6.1 | 0.5685 | 0.0249 | 0.044 | 1.078 | 1.038 | 140 | 428 | 0.519 | 0.618 |
| Attendance to early childhood education | 6.7 | 0.5309 | 0.0336 | 0.063 | 1.936 | 1.391 | 140 | 428 | 0.464 | 0.598 |
| Birth registration | 8.1 | 0.5832 | 0.0228 | 0.039 | 2.117 | 1.455 | 325 | 988 | 0.538 | 0.629 |
| MEN |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.4695 | 0.0394 | 0.084 | 1.149 | 1.072 | 49 | 185 | 0.391 | 0.548 |
| Marriage before age 18 |  | 0.0567 | 0.0118 | 0.207 | 0.770 | 0.877 | 85 | 299 | 0.033 | 0.080 |
| Polygyny |  | 0.2477 | 0.0316 | 0.128 | 1.172 | 1.083 | 64 | 220 | 0.185 | 0.311 |
| Comprehensive knowledge about HIV prevention among young men |  | 0.2933 | 0.0405 | 0.138 | 1.455 | 1.206 | 49 | 185 | 0.212 | 0.374 |


| Table SE.13: Sampling errors: Upper East Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{array}{r} \text { MICS } \\ \text { Indicator } \end{array}$ | Value (r) | Standard error (se) | Coefficient of variation (se/r) | Design effect (deff) | Square root <br> of design effect (deft) | Weighted count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | r- 2se | r 2se e |
| Knowledge of mother-tochild transmission of HIV |  | 0.5214 | 0.0292 | 0.056 | 1.471 | 1.213 | 120 | 432 | 0.463 | 0.580 |
| Accepting attitudes towards people living with HIV |  | 0.1203 | 0.0189 | 0.157 | 1.429 | 1.195 | 118 | 424 | 0.082 | 0.158 |
| Men who have been tested <br> for HIV during last 12 months and who have been told the results |  | 0.0799 | 0.0192 | 0.240 | 2.163 | 1.471 | 120 | 432 | 0.041 | 0.118 |
| Sexually active young men who have been tested for HIV and know the results |  | 0.0588 | 0.0299 | 0.508 | 0.677 | 0.823 | 11 | 43 | 0.000 | 0.118 |
| Sex before age 15 among young men |  | 0.0425 | 0.0166 | 0.390 | 1.243 | 1.115 | 49 | 185 | 0.009 | 0.076 |
| Condom use with nonregular partners |  | 0.6909 | 0.0218 | 0.031 | 0.082 | 0.286 | 10 | 38 | 0.647 | 0.734 |

Table SE. 14: Sampling errors: Upper West Region
Table SE. 14: Sampling errors: Upper West Region
Standard errors, coefficients of variation, design effects (deff), square root of design effects (deft) and confidence intervals for

| Background | mics | Value (r) | Standa | Coefficient | Design effect | Square root | Weighted | Unweighted | Confide |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Characteristics | Indicator |  | error (se) | of variation (se/r) | (deff) | of design effect (deft) | count | count | r- 2se | r+ 2 se |
| HOUSEHOLDS |  |  |  |  |  |  |  |  |  |  |
| Iodized salt consumption | 2.16 | ${ }^{0.3203}$ | 0.0174 | 0.054 | 2.064 | 1.437 | 250 | 1484 | 0.285 | 0.355 |
| Household availability of insecticide-treated nets (ITNs) | 3.12 | 0.6075 | 0.0173 | 0.028 | 1.864 | 1.365 | 253 | 1494 | 0.573 | 0.642 |
| Household members |  |  |  |  |  |  |  |  |  |  |
| Use of improved drinking water sources | 4.1 | 0.8863 | 0.0203 | 0.023 | 6.130 | 2.476 | 1395 | 1494 | 0.846 | 0.927 |
| Use of improved sanitation facilities | 4.3 | 0.0527 | 0.0111 | 0.211 | 3.698 | 1.923 | 1395 | 1494 | 0.030 | 0.075 |
| Secondary school net attendance rate (adjusted) | 7.5 | 0.2777 | 0.0184 | 0.066 | 2.255 | 1.502 | 213 | 1331 | 0.241 | 0.315 |
| Prevalence of children with at least one parent dead | 9.18 | 0.0941 | 0.0076 | 0.081 | 3.058 | 1.749 | 721 | 4530 | 0.079 | 0.109 |
| Child discipline | 8.5 | 0.8774 | 0.0115 | 0.013 | 1.478 | 1.216 | 561 | 1211 | 0.854 | 0.900 |
| WOMEN |  |  |  |  |  |  |  |  |  |  |
| Pregnant women |  | 0.0774 | 0.0075 | 0.097 | 1.249 | 1.118 | 282 | 1577 | 0.062 | 0.092 |
| Pregnant women sleeping under insecticide-treated nets (ITNs) | 3.19 | 0.4121 | 0.0372 | 0.090 | 0.753 | 0.867 | 22 | 133 | 0.338 | 0.486 |
| Intermittent preventive treatment for malaria | 3,20 | 0.7025 | 0.0259 | 0.037 | 1.303 | 1.142 | 70 | 406 | 0.651 | 0.754 |
| Early childbearing | 5.2 | 0.1141 | 0.0277 | 0.242 | 1.385 | 1.177 | 37 | 184 | 0.059 | 0.169 |
| Contraceptive prevalence | 5.3 | 0.2718 | 0.0169 | 0.062 | 1.555 | 1.247 | 188 | 1078 | 0.238 | 0.306 |
| Unmet need | 5.4 | 0.2801 | 0.0160 | 0.057 | 1.365 | 1.168 | 188 | 1078 | 0.248 | 0.312 |
| Antenatal care coverage - at least once by skilled personnel | 5.5a | 0.9289 | 0.0130 | 0.014 | 1.121 | 1.059 | 75 | 441 | 0.903 | 0.955 |
| Antenatal care coverage at least four times by any provider | 5.5b | 0.9031 | 0.0132 | 0.015 | 0.879 | 0.938 | 75 | 441 | 0.877 | 0.930 |
| Skilled attendant at delivery | 5.7 | 0.6040 | 0.0326 | 0.054 | 1.959 | 1.400 | 75 | 441 | 0.539 | 0.669 |
| Institutional deliveries | 5.8 | 0.6141 | 0.0336 | 0.055 | 2.097 | 1.448 | 75 | 441 | 0.547 | 0.681 |
| Caesarean section | 5.9 | 0.0436 | 0.0127 | 0.292 | 1.707 | 1.307 | 75 | 441 | 0.018 | 0.069 |
| Literacy rate among young women | 7.1 | 0.5027 | 0.0293 | 0.058 | 1.791 | 1.338 | 98 | 523 | 0.444 | 0.561 |
| Marriage before age 18 | 8.7 | 0.3634 | 0.0176 | 0.049 | 1.664 | 1.290 | 222 | 1238 | 0.32 | 0.399 |
| Polygyny | 8.9 | 0.3554 | 0.0201 | 0.057 | 1.908 | 1.381 | 188 | 1078 | 0.31 | 0.396 |


| Table SE.14: Sampling errors: Upper West Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | $\begin{gathered} \text { MICS } \\ \text { Indicator } \end{gathered}$ | Value (r) | Standard <br> error (se) | Coefficient of variation (se/r) | Design effect <br> (deff) | Square root <br> of design effect (deft) | Weighted <br> count | Unweighted count | Confidence limit |  |
|  |  |  |  |  |  |  |  |  | 2se | r+ 2 se |
| Prevalence of female genital mutilation/cutting (FGM/C) among women | 8.12 | 0.4107 | 0.0184 | 0.045 | 2.209 | 1.486 | 282 | 1577 | 0.374 | 0.448 |
| Comprehensive knowledge about HIV prevention among young people | 9.2 | 0.3028 | 0.0234 | 0.077 | 1.359 | 1.166 | 98 | 523 | 0.256 | 0.350 |
| Knowledge of mother- tochild transmission of HIV | 9.3 | 0.6013 | 0.0176 | 0.029 | 2.042 | 1.429 | 282 | 1577 | 0.566 | 0.637 |
| Accepting attitudes towards people living with HIV | 9.4 | 0.0657 | 0.0074 | 0.113 | 1.318 | 1.148 | 266 | 1473 | 0.051 | 0.881 |
| Women who have been tested for HIV and know the results | 9.6 | 0.1733 | 0.0146 | 0.084 | 2.350 | 1.533 | 282 | 1577 | 0.144 | 0.203 |
| Sexually active young women who have been tested for HIV and know the results | 9.7 | 0.2298 | 0.0410 | 0.178 | 1.938 | 1.392 | 39 | 205 | 0.148 | 0.312 |
| Sex before age 15 among young women | 9.11 | 0.0433 | 0.0089 | 0.206 | 0.999 | 0.999 | 98 | 523 | 0.025 | 0.061 |
| Condom use with nonregular partners | 9.16 | 0.5558 | 0.0404 | 0.073 | 0.608 | 0.780 | 19 | 93 | 0.475 | 0.637 |
| Prevalence of female genital mutilation/cutting (FGM/C) among girls | 8.13 | 0.0511 | 0.0127 | 0.249 | 6.390 | 2.528 | 325 | 1919 | 0.026 | 0.077 |
| UNDER-5s |  |  |  |  |  |  |  |  |  |  |
| Underweight prevalence | 2.11 a | 0.1498 | 0.0121 | 0.081 | 1.282 | 1.132 | 219 | 1117 | 0.126 | 0.174 |
| Stunting prevalence | 2.28 | 0.2311 | 0.0136 | 0.059 | 1.139 | 1.067 | 215 | 1101 | 0.204 | 0.258 |
| Wasting prevalence | 2.33 | 0.0922 | 0.0074 | 0.080 | 0.712 | 0.844 | 215 | 1097 | 0.077 | 0.107 |
| Exclusive breastfeeding under 6 months | 2.6 | 0.6700 | 0.0262 | 0.039 | 0.372 | 0.610 | 23 | 121 | 0.618 | 0.722 |
| Age-appropriate breastfeeding | 2.14 | 0.8883 | 0.0200 | 0.025 | 1.131 | 1.064 | 87 | 441 | 0.768 | 0.848 |
| Tuberculosis immunization coverage |  | 0.9858 | 0.0112 | 0.011 | 1.970 | 1.403 | 45 | 221 | 0.963 | 1.000 |
| Received polio immunization |  | 0.9608 | 0.0126 | 0.013 | 0.927 | 0.963 | 44 | 220 | 0.936 | 0.986 |
| Received penta immunization |  | 0.9741 | 0.0143 | 0.015 | 1.775 | 1.332 | 44 | 220 | 0.946 | 1.000 |
| Received measles immunization |  | 0.9724 | 0.0127 | 0.013 | 1.309 | 1.144 | 44 | 218 | 0.947 | 0.998 |
| Received yellow fever immunization |  | 0.9748 | 0.0106 | 0.011 | 0.992 | 0.996 | 44 | 218 | 0.954 | 0.996 |
| Diarrhoea in the previous 2 weeks |  | 0.1252 | 0.0117 | 0.093 | 1.428 | 1.195 | 223 | 1143 | 0.102 | 0.149 |
| IIIness with a cough in the previous 2 weeks |  | 0.0259 | 0.0056 | 0.215 | 1.401 | 1.184 | 223 | 1143 | 0.015 | 0.037 |
| Fever in last two weeks |  | 0.2944 | 0.0154 | 0.052 | 1.297 | 1.139 | 223 | 1143 | 0.264 | 0.32 |
| Oral rehydration therapy with continued feeding | 3.8 | 0.3124 | 0.0467 | 0.150 | 1.493 | 1.222 | 28 | 148 | 0.219 | 0.406 |
| Antibiotic treatment of suspected pneumonia | 3,10 | 0.4370 | 0.0532 | 0.122 | 0.334 | 0.578 | 6 | 30 | 0.331 | 0.543 |
| Children under age 5 sleeping under insecticidetreated nets (ITNs) | 3.15 | 0.4693 | 0.0169 | 0.036 | 1.301 | 1.141 | 222 | 1139 | 0.436 | 0.503 |
| Anti-malarial treatment of children under age 5 the same day | 3.17 | 0.3352 | 0.0331 | 0.099 | 1.661 | 1.289 | 66 | 339 | 0.269 | 0.401 |
| Support for learning | 6.1 | 0.3409 | 0.0289 | 0.885 | 1.678 | 1.296 | 89 | 454 | 0.283 | 0.399 |
| Attendance to early childhood education | 6.7 | 0.5190 | 0.0286 | 0.055 | 1.483 | 1.218 | 89 | 454 | 0.462 | 0.576 |
| Birth registration | 8.1 | 0.7255 | 0.0214 | 0.029 | 2.620 | 1.619 | 223 | 1143 | 0.683 | 0.768 |


| Table SE.14: Sampling errors: Upper West Region (cont'd) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Mics | Value (r) | Standard error (se) | Coefficient <br> of variation <br> (se/r) | Design effect (deff) | Square root <br> of design effect (deft) | Weighted count | Unweighted count | Confidence li |  |
|  | Indicator |  |  |  |  |  |  |  | $\begin{gathered} \mathrm{r} \\ 2 \mathrm{se} \end{gathered}$ | r 2se |
| MEN |  |  |  |  |  |  |  |  |  |  |
| Literacy rate among young men |  | 0.5421 | 0.0368 | 0.068 | 1.154 | 1.074 | 36 | 213 | 0.469 | 0.616 |
| Marriage before age 18 |  | 0.0232 | 0.0076 | 0.327 | 0.925 | 0.962 | 65 | 365 | 0.008 | 0.338 |
| Polygyny |  | 0.2023 | 0.0246 | 0.121 | 0.976 | 0.988 | 46 | 262 | 0.153 | 0.251 |
| Comprehensive knowledge about HIV prevention among young men |  | 0.3518 | 0.0379 | 0.108 | 1.336 | 1.156 | 36 | 213 | 0.276 | 0.42 |
| Knowledge of mother-tochild transmission of HIV |  | 0.4868 | 0.0229 | 0.047 | 1.085 | 1.041 | 91 | 517 | 0.441 | 0.533 |
| Accepting attitudes towards people living with HIV |  | 0.1960 | 0.0249 | 0.127 | 1.877 | 1.370 | 85 | 479 | 0.146 | 0.246 |
| Men who have been tested for HIV during last 12 months and who have been told the results |  | 0.1415 | 0.0194 | 0.137 | 1.599 | 1.264 | 91 | 517 | 0.103 | 0.180 |
| Sexually active young men who have been tested for HIV and know the results |  | 0.1440 | 0.0228 | 0.158 | 0.186 | 0.431 | 9 | 45 | 0.098 | 0.190 |
| Sex before age 15 among young men |  | 0.0188 | 0.0123 | 0.652 | 1.731 | 1.316 | 36 | 213 | 0.000 | 0.043 |
| Condom use with nonregular partners |  | 0.5459 | 0.0327 | 0.060 | 0.160 | 0.400 | 8 | 38 | 0.880 | 0.611 |


| Table DQ.1: Age distribution of household population Single-year age distribution of household population by sex, Ghana, 2011 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Sex |  |  |  |  |  |
|  | Male |  | Female |  | Missing |  |
|  | Number | Percent | Number | Percent | Number | Percent |
| Age |  |  |  |  |  |  |
| 0 | 641 | 2.9 | 628 | 2.6 | 0 | . 0 |
| 1 | 590 | 2.6 | 607 | 2.6 | 0 | . 0 |
| 2 | 616 | 2.8 | 668 | 2.8 | 0 | . 0 |
| 3 | 679 | 3.0 | 629 | 2.6 | 0 | . 0 |
| 4 | 579 | 2.6 | 603 | 2.5 | 0 | . 0 |
| 5 | 712 | 3.2 | 634 | 2.7 | 0 | . 0 |
| 6 | 702 | 3.1 | 674 | 2.8 | 0 | . 0 |
| 7 | 697 | 3.1 | 691 | 2.9 | 0 | . 0 |
| 8 | 617 | 2.8 | 654 | 2.8 | 0 | . 0 |
| 9 | 642 | 2.9 | 610 | 2.6 | 0 | . 0 |
| 10 | 661 | 3.0 | 628 | 2.6 | 0 | . 0 |
| 11 | 677 | 3.0 | 689 | 2.9 | 0 | . 0 |
| 12 | 708 | 3.2 | 666 | 2.8 | 0 | . 0 |
| 13 | 636 | 2.8 | 592 | 2.5 | 0 | . 0 |
| 14 | 568 | 2.5 | 683 | 2.9 | 0 | . 0 |
| 15 | 519 | 2.3 | 418 | 1.8 | 0 | . 0 |
| 16 | 483 | 2.2 | 418 | 1.8 | 0 | . 0 |
| 17 | 407 | 1.8 | 383 | 1.6 | 0 | . 0 |
| 18 | 475 | 2.1 | 331 | 1.4 | 0 | . 0 |
| 19 | 369 | 1.7 | 312 | 1.3 | 0 | . 0 |
| 20 | 358 | 1.6 | 309 | 1.3 | 0 | . 0 |
| 21 | 303 | 1.4 | 313 | 1.3 | 0 | . 0 |
| 22 | 307 | 1.4 | 342 | 1.4 | 0 | . 0 |
| 23 | 248 | 1.1 | 316 | 1.3 | 0 | . 0 |
| 24 | 261 | 1.2 | 345 | 1.5 | 0 | . 0 |
| 25 | 298 | 1.3 | 361 | 1.5 | 0 | . 0 |
| 26 | 282 | 1.3 | 295 | 1.2 | 0 | . 0 |
| 27 | 201 | . 9 | 399 | 1.7 | 0 | . 0 |
| 28 | 287 | 1.3 | 387 | 1.6 | 0 | . 0 |
| 29 | 285 | 1.3 | 264 | 1.1 | 0 | . 0 |
| 30 | 309 | 1.4 | 371 | 1.6 | 0 | . 0 |
| 31 | 214 | 1.0 | 329 | 1.4 | 0 | . 0 |
| 32 | 310 | 1.4 | 317 | 1.3 | 0 | . 0 |
| 33 | 243 | 1.1 | 311 | 1.3 | 0 | . 0 |
| 34 | 210 | . 9 | 244 | 1.0 | 0 | . 0 |
| 35 | 296 | 1.3 | 348 | 1.5 | 0 | . |
| 36 | 257 | 1.1 | 280 | 1.2 | 0 | . 0 |
| 37 | 236 | 1.1 | 208 | . 9 | 0 | . 0 |
| 38 | 236 | 1.1 | 316 | 1.3 | 0 | . 0 |
| 39 | 248 | 1.1 | 220 | . 9 | 0 | . 0 |
| 40 | 242 | 1.1 | 310 | 1.3 | 0 | . 0 |
| 41 | 225 | 1.0 | 204 | . 9 | 0 | . 0 |
| 42 | 227 | 1.0 | 262 | 1.1 | 0 | . 0 |
| 43 | 183 | . 8 | 223 | . 9 | 0 | . 0 |
| 44 | 156 | . 7 | 174 | . 7 | 0 | . 0 |
| 45 | 253 | 1.1 | 277 | 1.2 | 0 | . 0 |


| Table DQ.1: Age distribution of household population (cont'd) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Sex |  |  |  |  |  |
|  | Male |  | Female |  | Missing |  |
|  | Number | Percent | Number | Percent | Number | Percent |
| Age |  |  |  |  |  |  |
| 46 | 162 | . 7 | 201 | . 8 | 0 | . 0 |
| 47 | 173 | . 8 | 168 | . 7 | 0 | . 0 |
| 48 | 177 | . 8 | 181 | . 8 | 0 | . 0 |
| 49 | 212 | . 9 | 171 | . 7 | 0 | . 0 |
| 50 | 165 | . 7 | 207 | . 9 | 0 | . 0 |
| 51 | 181 | . 8 | 274 | 1.2 | 0 | . 0 |
| 52 | 143 | . 6 | 251 | 1.1 | 0 | . 0 |
| 53 | 111 | . 5 | 197 | . 8 | 0 | . 0 |
| 54 | 188 | . 8 | 255 | 1.1 | 0 | . 0 |
| 55 | 134 | . 6 | 171 | . 7 | 0 | . 0 |
| 56 | 106 | . 5 | 166 | . 7 | 0 | . 0 |
| 57 | 122 | . 5 | 129 | . 5 | 0 | . 0 |
| 58 | 106 | . 5 | 135 | . 6 | 0 | . 0 |
| 59 | 118 | . 5 | 94 | . 4 | 0 | . 0 |
| 60 | 136 | . 6 | 163 | . 7 | 0 | . 0 |
| 61 | 104 | . 5 | 91 | . 4 | 0 | . 0 |
| 62 | 95 | . 4 | 111 | . 5 | 0 | . 0 |
| 63 | 89 | . 4 | 87 | . 4 | 0 | . 0 |
| 64 | 102 | . 5 | 82 | . 3 | 0 | . 0 |
| 65 | 101 | . 5 | 108 | . 5 | 0 | . 0 |
| 66 | 44 | . 2 | 53 | . 2 | 0 | . 0 |
| 67 | 55 | . 2 | 55 | . 2 | 0 | . 0 |
| 68 | 53 | . 2 | 88 | . 4 | 0 | . 0 |
| 69 | 64 | . 3 | 39 | . 2 | 0 | . 0 |
| 70 | 106 | . 5 | 123 | . 5 | 0 | . 0 |
| 71 | 62 | . 3 | 37 | . 2 | 0 | . 0 |
| 72 | 70 | . 3 | 98 | . 4 | 0 | . 0 |
| 73 | 36 | . 2 | 40 | . 2 | 0 | . 0 |
| 74 | 48 | . 2 | 59 | . 2 | 0 | . 0 |
| 75 | 59 | . 3 | 119 | . 5 | 0 | . 0 |
| 76 | 41 | . 2 | 61 | . 3 | 0 | . 0 |
| 77 | 37 | . 2 | 32 | . 1 | 0 | . 0 |
| 78 | 41 | . 2 | 32 | . 1 | 0 | . 0 |
| 79 | 29 | . 1 | 29 | . 1 | 0 | . 0 |
| 80+ | 223 | 1.0 | 382 | 1.6 | 0 | . 0 |
| DK/missing | 6 | . 0 | 8 | . 0 | 0 | . 0 |
| Total | 22353 | 100.0 | 23739 | 100.0 | 0 | . 0 |

## Appendix E. Data Quality Tables

| Table DQ.2: Age distribution of eligible and interviewed women Household population of women age 10-54, interviewed women age 15-49, and percentage of eligible women who were interviewed, by five-year age groups, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Household population of women age 10-54 | Interviewed | $\begin{array}{r} \text { omen age } \\ 15-49 \end{array}$ | Percentage of eligible women interviewed (Completion rate) |
|  | Number | Number | Percent |  |
| Age |  |  |  |  |
| 10-14 | 3258 |  |  |  |
| 15-19 | 1860 | 1790 | 17.9 | 96.2 |
| 20-24 | 1625 | 1578 | 15.8 | 97.1 |
| 25-29 | 1706 | 1665 | 16.6 | 97.6 |
| 30-34 | 1573 | 1544 | 15.4 | 98.2 |
| 35-39 | 1372 | 1348 | 13.5 | 98.3 |
| 40-44 | 1173 | 1125 | 11.2 | 95.9 |
| 45-49 | 998 | 964 | 9.6 | 96.6 |
| 50-54 | 1184 |  |  |  |
| Total (15-49) | 10307 | 10014 | 100.0 | 97.2 |
| Ratio of $50-54$ to 45-49 | 1.19 |  |  |  |


| Table DQ.2M: Age distribution of eligible and interviewed men Household population of men age 10-64, interviewed men age $15-59$, and percentage of eligible men who were interviewed, by five-year age groups, Ghana, 2011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Household population of men age 10-64 | Interviewed men age 15-59 |  | Percentage of eligible men interviewed (Completion rate) |
|  | Number | Number | Percent |  |
| Age |  |  |  |  |
| 10-14 | 3250 |  |  |  |
| 15-19 | 2254 | 618 | 19.8 | 27.4 |
| 20-24 | 1477 | 356 | 11.4 | 24.1 |
| 25-29 | 1354 | 428 | 13.7 | 31.6 |
| 30-34 | 1286 | 415 | 13.3 | 32.3 |
| 35-39 | 1273 | 341 | 10.9 | 26.8 |
| 40-44 | 1033 | 271 | 8.7 | 26.2 |
| 45-49 | 978 | 295 | 9.4 | 30.2 |
| 50-54 | 788 | 208 | 6.7 | 26.4 |
| 54-59 | 587 | 191 | 6.1 | 32.5 |
| 60-64 | 526 |  |  |  |
| Total (15-59) | 11028 | 3122 | 100.0 | 28.3 |
| $\begin{aligned} & \text { Ratio of 60-64 to } \\ & 55-59 \end{aligned}$ | . 90 |  |  |  |


| Table DQ.3: Age distribution of under-5s in household whose mothers/ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| caretakers were interviewed |$|$


| Table DQ.4: Women's completion rates by socio-economic characteristics of households <br> Household population of women age 15-49, interviewed women age 15-49, and percentage of eligible women who were interviewed, by selected social and economic characteristics of the household, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Household p | 49 years | Interviewed | men age | eligible wo interviewed (Completion rates) |
| Region |  |  |  |  |  |
| Western | 989 | 9.6 | 940 | 9.4 | 95.1 |
| Central | 1014 | 9.8 | 999 | 10.0 | 98.4 |
| Greater Accra | 2007 | 19.5 | 1937 | 19.3 | 96.5 |
| Volta | 794 | 7.7 | 782 | 7.8 | 98.5 |
| Eastern | 1200 | 11.6 | 1191 | 11.9 | 99.3 |
| Ashanti | 1930 | 18.7 | 1888 | 18.9 | 97.8 |
| Brong Ahafo | 974 | 9.5 | 931 | 9.3 | 95.5 |
| Northern | 732 | 7.1 | 701 | 7.0 | 95.6 |
| Upper East | 392 | 3.8 | 381 | 3.8 | 97.1 |
| Upper West | 273 | 2.7 | 266 | 2.7 | 97.2 |
| Area |  |  |  |  |  |
| Urban | 5592 | 54.3 | 5436 | 54.3 | 97.2 |
| Rural | 4715 | 45.7 | 4578 | 45.7 | 97.1 |
| Household size |  |  |  |  |  |
| 1-3 | 2951 | 28.6 | 2877 | 28.7 | 97.5 |
| 4-6 | 4745 | 46.0 | 4629 | 46.2 | 97.6 |
| 7+ | 2611 | 25.3 | 2508 | 25.0 | 96.0 |
| Education of household head |  |  |  |  |  |
| None | 3544 | 34.4 | 3431 | 34.3 | 96.8 |
| Primary | 1439 | 14.0 | 1402 | 14.0 | 97.4 |
| Middle/SSS | 4049 | 39.3 | 3932 | 39.3 | 97.1 |
| Secondary + | 1271 | 12.3 | 1246 | 12.4 | 98.1 |
| Missing/DK | 3 | . 0 | 3 | . 0 | 100.0 |
| Wealth index quintiles |  |  |  |  |  |
| Poorest | 1593 | 15.5 | 1542 | 15.4 | 96.8 |
| Second | 1818 | 17.6 | 1749 | 17.5 | 96.2 |
| Middle | 2046 | 19.9 | 1997 | 19.9 | 97.6 |
| Richest | 2579 | 25.0 | 2511 | 25.1 | 97.3 |
| Ethnicity of household head |  |  |  |  |  |
| Akan | 4769 | 46.3 | 4636 | 46.3 | 97.2 |
| Ga/Dangme | 1005 | 9.7 | 983 | 9.8 | 97.9 |
| Ewe | 1435 | 13.9 | 1407 | 14.0 | 98.0 |
| Guan | 371 | 3.6 | 358 | 3.6 | 96.5 |
| Gruma | 389 | 3.8 | 380 | 3.8 | 97.5 |
| Mole Dagbani | 1651 | 16.0 | 1594 | 15.9 | 96.5 |
| Grusi | 319 | 3.1 | 303 | 3.0 | 94.8 |
| Mande | 122 | 1.2 | 116 | 1.2 | 95.5 |
| Non-Ghanaian | 176 | 1.7 | 169 | 1.7 | 96.1 |
| Others | 70 | . 7 | 69 | . 7 | 98.1 |
| Religion of household head |  |  |  |  |  |
| Catholic | 1276 | 12.4 | 1231 | 12.3 | 96.5 |
| Protestant | 1646 | 16.0 | 1610 | 16.1 | 97.8 |
| Penticostal/ | 3594 | 34.9 | 3505 | 35.0 | 97.5 |
| Charismatic |  |  |  |  |  |
| Deeper Life | 72 | . 7 | 72 | . 7 | 100.0 |
| Jehovah witness | 148 | 1.4 | 142 | 1.4 | 95.9 |
| SDA | 268 | 2.6 | 259 | 2.6 | 96.5 |
| Other Christian | 370 | 3.6 | 360 | 3.6 | 97.1 |
| Muslim | 1588 | 15.4 | 1522 | 15.2 | 95.9 |
| Traditional | 484 | 4.7 | 473 | 4.7 | 97.7 |
| Spritualist | 202 | 2.0 | 200 | 2.0 | 98.7 |
| Other religion | 32 | . 3 | 31 | . 3 | 96.8 |
| No Religion | 626 | 6.1 | 610 | 6.1 | 97.4 |
| Total | 10307 | 100.0 | 10014 | 100.0 | 97.2 |


| Table DQ.4M: Men's completion rates by socio-economic characteristics of households Household population of men age $15-59$, interviewed men age $15-59$, and percentage of eligible men who were interviewed, by selected social and economic characteristics of the household, Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Househo men | $\begin{aligned} & \text { ation of } \\ & 9 \text { years } \end{aligned}$ | Interviewe 15 | $\begin{aligned} & \text { n age } \\ & \text { years } \end{aligned}$ | Percent of eligible men interviewed (Completion rates) |
| Region |  |  |  |  |  |
| Western | 1131 | 10.3 | 316 | 10.1 | 89.6 |
| Central | 1039 | 9.4 | 285 | 9.1 | 96.7 |
| Greater Accra | 2154 | 19.5 | 630 | 20.2 | 95.0 |
| Volta | 952 | 8.6 | 245 | 7.9 | 98.2 |
| Eastern | 1240 | 11.2 | 355 | 11.4 | 99.2 |
| Ashanti | 2008 | 18.2 | 591 | 18.9 | 90.9 |
| Brong Ahafo | 947 | 8.6 | 275 | 8.8 | 94.0 |
| Northern | 852 | 7.7 | 228 | 7.3 | 93.7 |
| Upper East | 414 | 3.8 | 112 | 3.6 | 94.7 |
| Upper West | 291 | 2.6 | 85 | 2.7 | 93.5 |
| Residence |  |  |  |  |  |
| Urban | 5795 | 52.5 | 1630 | 52.2 | 93.6 |
| Rural | 5233 | 47.5 | 1492 | 47.8 | 95.0 |
| Household size |  |  |  |  |  |
| 1-3 | 3730 | 33.8 | 1231 | 39.4 | 96.6 |
| 4-6 | 4453 | 40.4 | 1233 | 39.5 | 93.4 |
| 7+ | 2845 | 25.8 | 658 | 21.1 | 91.6 |
| Education of household head |  |  |  |  |  |
| None | 3778 | 34.3 | 1022 | 32.7 | 93.0 |
| Primary | 1303 | 11.8 | 375 | 12.0 | 95.3 |
| Middle/SSS | 4358 | 39.5 | 1216 | 38.9 | 94.8 |
| Secondary + | 1570 | 14.2 | 510 | 16.3 | 94.8 |
| Missing/DK | 19 | . 2 |  |  |  |
| Wealth index quintiles |  |  |  |  |  |
| Poorest | 1809 | 16.4 | 466 | 14.9 | 92.7 |
| Second | 1866 | 16.9 | 533 | 17.1 | 94.7 |
| Middle | 2083 | 18.9 | 578 | 18.5 | 95.8 |
| Fourth | 2459 | 22.3 | 715 | 22.9 | 92.6 |
| Richest | 2812 | 25.5 | 829 | 26.6 | 95.2 |
| Ethnicity of household head |  |  |  |  |  |
| Akan | 4928 | 44.7 | 1334 | 42.7 | 94.7 |
| Ga/Dangme | 966 | 8.8 | 333 | 10.7 | 96.9 |
| Ewe | 1694 | 15.4 | 438 | 14.0 | 96.6 |
| Guan | 430 | 3.9 | 128 | 4.1 | 93.3 |
| Gruma | 485 | 4.4 | 125 | 4.0 | 89.8 |
| Mole Dagbani | 1779 | 16.1 | 526 | 16.8 | 90.9 |
| Grusi | 326 | 3.0 | 113 | 3.6 | 96.7 |
| Mande | 127 | 1.2 | 50 | 1.6 | 91.6 |
| Non-Ghanaian | 210 | 1.9 | 59 | 1.9 | 91.8 |
| Others | 82 | . 7 | 17 | . 5 | 100.0 |
| Total | 11028 | 100.0 | 3122 | 100.0 | 94.2 |


| Table DQ.5: Completion rates for under-5 questionnaires by socio-economic |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Household population of under-5 children, under-5 questionnaires completed, and percentage of under-5 children for whom interviews were completed, by selected socio-economic characteristics of the household, Ghana, 2011 |  |  |  |  |  |
| Background Characteristics | Household und | ion of ildren | Interviewe | under-5 children | Percent of eligible under-5s with completed under-5 questionnaires (Completion rates) |
| Region |  |  |  |  |  |
| Western | 625 | 10.0 | 616 | 10.0 | 98.7 |
| Central | 614 | 9.8 | 606 | 9.8 | 98.6 |
| Greater Accra | 940 | 15.1 | 927 | 15.0 | 98.7 |
| Volta | 498 | 8.0 | 495 | 8.0 | 99.3 |
| Eastern | 683 | 10.9 | 681 | 11.0 | 99.8 |
| Ashanti | 1167 | 18.7 | 1156 | 18.7 | 99.0 |
| Brong Ahafo | 555 | 8.9 | 551 | 8.9 | 99.2 |
| Northern | 704 | 11.3 | 697 | 11.3 | 99.0 |
| Upper East | 269 | 4.3 | 266 | 4.3 | 98.8 |
| Upper West | 184 | 3.0 | 182 | 2.9 | 98.8 |
| Residence |  |  |  |  |  |
| Urban | 2711 | 43.4 | 2679 | 43.4 | 98.8 |
| Rural | 3528 | 56.6 | 3498 | 56.6 | 99.1 |
| Household size |  |  |  |  |  |
| 1-3 | 939 | 15.1 | 925 | 15.0 | 98.5 |
| 4-6 | 3305 | 53.0 | 3273 | 53.0 | 99.0 |
| 7+ | 1994 | 32.0 | 1978 | 32.0 | 99.2 |
| Education of household head |  |  |  |  |  |
| None | 2287 | 36.7 | 2263 | 36.6 | 98.9 |
| Primary | 995 | 15.9 | 991 | 16.0 | 99.6 |
| Middle/sss | 2366 | 37.9 | 2344 | 37.9 | 99.0 |
| Secondary + | 591 | 9.5 | 579 | 9.4 | 98.1 |
| Wealth index quintiles |  |  |  |  |  |
| Poorest | 1438 | 23.0 | 1425 | 23.1 | 99.1 |
| Second | 1265 | 20.3 | 1257 | 20.4 | 99.4 |
| Middle | 1299 | 20.8 | 1288 | 20.9 | 99.1 |
| Fourth | 1149 | 18.4 | 1140 | 18.5 | 99.2 |
| Richest | 1087 | 17.4 | 1067 | 17.3 | 98.1 |
| Total | 6239 | 100.0 | 6177 | 100.0 | 99.0 |


| Table DQ.6: Completeness of reporting Percentage of observations that are missing information for selected questions and indicators, Ghana, 2011 |  |  |
| :---: | :---: | :---: |
| Background Characteristics | Percent with missing/ incomplete information* | Number of cases |
| Date of birth: Only month | . 6 | 7550 |
| Date of birth: Both month and year | . 0 | 7550 |
| Anthropometric measurements: Weight | 1.6 | 7550 |
| Anthropometric measurements: Height | 1.6 | 7550 |
| Anthropometric measurements: Both weight and height | 1.4 | 7550 |
| Starting time of interview | . 0 | 7550 |
| Ending time of interview | . 0 | 7550 |
|  |  |  |
| Age | . 0 | 54228 |
|  |  |  |
| Salt testing | . 0 | 11925 |
| Starting time of interview | . 0 | 11925 |
| Ending time of interview | . 0 | 11925 |


| Table DQ.7: Completeness of information for anthropometric indicators Distribution of children under 5 by completeness of information for anthropometric indicators, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Reason for exclusion from analysis |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | $\begin{array}{r} \begin{array}{r} \text { Valid } \\ \text { weight } \\ \text { and } \\ \text { height } \end{array} \end{array}$ |  | Height not measured | Weight and height not | Incomplete date of birth | Weight not measured, incomplete date of birth | Height not measured, incomplete date of birth | Weight and height not measured, incomplete date of birth | $\begin{array}{r} \text { Flagged } \\ \text { cases } \\ \text { (outliers) } \end{array}$ | Total |  |  |
| Weight by height |  |  |  |  |  |  |  |  |  |  |  |  |
| <6 months | 95.5 | . 1 | . 4 | 1.8 | . 0 | 0 | . 0 | . 0 | 2.3 | 100.0 | 4.5 | 792 |
| 6-11 months | 97.5 | 4 | 3 | . 6 | . 0 | . 0 | . 0 | . 0 | 1.3 | 100.0 | 2.5 | 720 |
| 12-23 months | 97.6 | 2 | 1 | 1.2 | . 1 | . 0 | . 0 | . 1 | . 8 | 100.0 | 2.4 | 1451 |
| $24-35$ months | 97.7 | . 1 | . 2 | . 8 | 4 | . 0 | . 0 | . 0 | . 8 | 100.0 | 2.3 | 1518 |
| 36-47 months | 96.7 | . 0 | 3 | 1.1 | 1.3 | . 0 | . 0 | . 0 | . 6 | 100.0 | 3.3 | 1599 |
| 48-59 months | 96.9 | 3 | . 2 | . 6 | 1.6 | . 0 | . 0 | . 0 | 3 | 100.0 | 3.1 | 1470 |
| Total | 97.1 | . 2 | . 2 | 1.0 | . 7 | . 0 | . 0 | . 0 | . 9 | 100.0 | 2.9 | 7550 |


| Table DQ.10: Observation of women's health cards <br> Percent distribution of women with a live birth in the last 2 years by presence of a health card,and the percentage of health cards seen by the interviewers, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Woman does not have health card | Woman has health card |  | Missing/DK | Total | $\begin{array}{r} \text { Percent of } \\ \text { health cards } \\ \text { seen by the } \\ \text { interviewer } \\ (1) /(1+2)^{*} 100 \end{array}$ | Number of women with a live birth in the last two years |
|  |  | Seen by the interviewer | Not seen by the interviewer |  |  |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 11.0 | 27.7 | 61.3 | . 0 | 100.0 | 31.2 | 173 |
| Central | 11.9 | 27.8 | 60.0 | . 3 | 100.0 | 31.7 | 385 |
| Greater Accra | 5.8 | 34.2 | 59.4 | . 6 | 100.0 | 36.6 | 155 |
| Eastern | 5.1 | 36.8 | 57.4 | . 7 | 100.0 | 39.1 | 136 |
| Ashanti | 5.7 | 41.5 | 51.1 | 1.7 | 100.0 | 44.8 | 176 |
| Brong Ahafo | 13.7 | 49.0 | 37.3 | . 0 | 100.0 | 56.8 | 153 |
| Northern | 13.6 | 42.1 | 44.1 | . 3 | 100.0 | 48.8 | 749 |
| Upper East | 5.2 | 51.0 | 43.3 | . 6 | 100.0 | 54.1 | 363 |
| Upper West | 9.3 | 46.5 | 44.0 | . 2 | 100.0 | 51.4 | 441 |
| Residence |  |  |  |  |  |  |  |
| Urban | 8.3 | 41.5 | 49.9 | . 3 | 100.0 | 45.4 | 791 |
| Rural | 11.4 | 40.3 | 47.8 | . 5 | 100.0 | 45.7 | 2082 |
| Wealth index quintiles |  |  |  |  |  |  |  |
| Poorest | 12.2 | 41.8 | 45.5 | . 5 | 100.0 | 47.8 | 1324 |
| Second | 11.2 | 39.1 | 49.3 | . 3 | 100.0 | 44.2 | 578 |
| Middle | 9.6 | 36.3 | 53.9 | . 3 | 100.0 | 40.2 | 397 |
| Fourth | 9.7 | 41.5 | 47.8 | . 9 | 100.0 | 46.5 | 318 |
| Richest | 3.1 | 43.8 | 53.1 | . 0 | 100.0 | 45.2 | 256 |
| Total | 10.6 | 40.6 | 48.4 | . 4 | 100.0 | 45.6 | 2873 |


| Table DQ.11: Observation of under-5s birth certificates <br> Percent distribution of children under 5 by presence of birth certificates,and percentage of birth calendar seen, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Child does not have birth certificate | Child has birth certificate |  | Missing/DK | Total | Percent of birth certificates seen by the interviewer (1)/ $(1+2)^{*} 100$ | didren unde <br> child age 5 |
|  |  | Seen by the interviewer (1) | Not seen by the interviewer (2) |  |  |  |  |
| Region |  |  |  |  |  |  |  |
| Western | 56.5 | 20.3 | 23.2 | . 0 | 100.0 | 46.7 | 414 |
| Central | 38.6 | 28.8 | 32.1 | . 4 | 100.0 | 47.3 | 999 |
| Greater Accra | 23.4 | 42.7 | 32.8 | 1.0 | 100.0 | 56.6 | 393 |
| Volta | 57.0 | 23.3 | 19.0 | . 8 | 100.0 | 55.0 | 400 |
| Eastern | 50.7 | 24.6 | 23.8 | . 9 | 100.0 | 50.9 | 345 |
| Ashanti | 35.4 | 38.3 | 25.6 | . 6 | 100.0 | 59.9 | 472 |
| Brong Ahafo | 55.0 | 20.1 | 24.6 | . 2 | 100.0 | 45.1 | 407 |
| Northern | 51.5 | 28.9 | 19.4 | . 3 | 100.0 | 59.9 | 1989 |
| Upper East | 46.7 | 36.4 | 16.6 | . 3 | 100.0 | 68.7 | 988 |
| Upper West | 34.8 | 36.7 | 27. | 1.3 | 100.0 | . 5 | 1143 |
| Residence |  |  |  |  |  |  |  |
| Urban | 28.1 | 41.8 | 29.5 | . 7 | 100.0 | 58.6 | 2117 |
| Rural | 51.4 | 26.7 | 21.3 | . 5 | 100.0 | 55.6 | 5433 |
| Child's age |  |  |  |  |  |  |  |
| 0 | 63.0 | 22.2 | 14.6 | . 2 | 100.0 | 60.4 | 1507 |
| 1 | 41.8 | 34.3 | 23.7 | . 2 | 100.0 | 59.1 | 1451 |
| 2 | 41.6 | 32.7 | 25.4 | . 3 | 100.0 | 56.3 | 1512 |
| 3 | 38.8 | 33.1 | 27.5 | . 6 | 100.0 | 54.6 | 1608 |
| 4 | 39.4 | 32.4 | 26.7 | 1.5 | 100.0 | 54.8 | 1472 |
| Total | 44.9 | 30.9 | 23.6 | . 6 | 100.0 | 56.7 | 7550 |


| Table DQ.12: Observation of vaccination cards <br> Percent distribution of children under 5 by presence of a vaccination card, and the percentage of vaccination cards seen by the interviewers, Ghana, 2011 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Background Characteristics | Child does not have vaccination card |  | Child has vaccination card |  | Missing/DK | Total | $\begin{array}{r} \text { Percent of } \\ \text { vaccination } \\ \text { cards seen } \\ \text { by the } \\ \text { interviewer } \\ (1) /(1+2) * 100 \end{array}$ | Number of children under age 5 |
|  | vaccination card previously | Never had vaccination card | Seen by the interviewer | Not seen by the interviewer (2) |  |  |  |  |
| Region |  |  |  |  |  |  |  |  |
| Western | . 5 | 4.1 | 76.6 | 18.8 | 0 | 100.0 | 80.3 | 414 |
| Central | . 9 | 2.8 | 79.0 | 17.3 | 0 | 100.0 | 82.0 | 999 |
| Greater Accra | 2.5 | . 5 | 77.1 | 19.8 | . | 100.0 | 79.5 | 393 |
| Volta | 2.0 | 2.8 | 82.5 | 12.8 | . | 100.0 | 86.6 | 400 |
| Eastern | 2.6 | 1.2 | 80.6 | 15.7 | . | 100.0 | 83.7 | 345 |
| Ashanti | . 4 | 1.3 | 84.7 | 13.6 | . | 100.0 | 86.2 | 472 |
| Brong Ahafo | 3.2 | 2.5 | 82.8 | 11.5 | . 0 | 100.0 | 87.8 | 407 |
| Northern | 3.8 | 3.9 | 77.3 | 14.9 | 0 | 100.0 | 83.8 | 1989 |
| Upper East | . 5 | 1.2 | 86.4 | 11.8 | 0 | 100.0 | 88.0 | 988 |
| Upper West | 2.8 | 1.1 | 88.5 | 7.6 | . 0 | 100.0 | 92.1 | 1143 |
| Residence |  |  |  |  |  |  |  |  |
| Urban | 1.7 | 1.3 | 78.0 | 19.0 | . 0 | 100.0 | 80.4 | 2117 |
| Rural | 2.4 | 2.8 | 82.9 | 11.9 | . 0 | 100.0 | 87.5 | 5433 |
| Child's age |  |  |  |  |  |  |  |  |
| 0 | . 5 | 6.4 | 88.3 | 4.8 | . 0 | 100.0 | 94.8 | 1507 |
| 1 | . 7 | 1.2 | 89.6 | 8.5 | . 0 | 100.0 | 91.3 | 1451 |
| 2 | 2.3 | 1.3 | 84.1 | 12.3 | . 0 | 100.0 | 87.2 | 1512 |
| 3 | 2.6 | 1.3 | 75.6 | 20.5 | . 0 | 100.0 | 78.7 | 1608 |
| 4 | 4.8 | 1.8 | 70.7 | 22.7 | . 0 | 100.0 | 75.7 | 1472 |
| Total | 2.2 | 2.4 | 81.5 | 13.9 | . 0 | 100.0 | 85.5 | 7550 |

Table DQ.13: Presence of mother in the household and the person interviewed for the under-5 questionnaire
Distribution of chidren under five by whether the mother lives in the same household, and the

| Distribution of children under five by whether the mother lives in the same household, and the person interviewed for the under-5 questionnaire, Ghana, 2011 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Mother in the household |  | Mother not in the household |  |  | Total | Number of children under |
|  | Mother interviewed | Other adult female interviewed |  | Other adult female interviewed |  |  |  |
| Age |  |  |  |  |  |  |  |
| 0 | 98.6 | . 1 | . 1 | 1.1 | . 1 | 100.0 | 1268 |
| 1 | 97.3 | . 2 | . 1 | 2.3 | . 1 | 100.0 | 1197 |
| 2 | 91.0 | . 2 | 1.0 | 7.4 | . 3 | 100.0 | 1284 |
| 3 | 87.7 | . 0 | 1.8 | 10.1 | . 3 | 100.0 | 1307 |
| 4 | 83.4 | . 2 | 3.2 | 12.1 | 1.1 | 100.0 | 1182 |
| Total | 91.6 | . 1 | 1.2 | 6.6 | . 4 | 100.0 | 6239 |

## Table DQ.14: Selection of children age 2-14 years for the child discipline module discipline modul

Percent of households with at least two children age 2-14 years where correct selection of one child for the child discipline module was performed, Ghana, 2011

| Background | Percent of households <br> where correct selection | Number of <br> Characteristics |
| :--- | ---: | ---: |
| households with 2 |  |  | was performed or more children age


|  |  | 2-14 years |
| :---: | :---: | :---: |
| Region |  |  |
| Western | 97.1 | 312 |
| Central | 97.4 | 793 |
| Greater Accra | 94.9 | 277 |
| Volta | 98.5 | 336 |
| Eastern | 96.4 | 278 |
| Ashanti | 95.5 | 377 |
| Brong Ahafo | 98.5 | 332 |
| Northern | 91.9 | 1279 |
| Upper East | 94.6 | 867 |
| Upper West | 93.9 | 948 |
| Residence |  |  |
| Urban | 95.9 | 1685 |
| Rural | 94.7 | 4114 |
| Number of households by number of children 2-14 |  |  |
| 2 | 96.6 | 2160 |
| 3 | 96.8 | 1714 |
| 4 | 95.6 | 1028 |
| 5+ | 87.2 | 897 |
| Total | 95.0 | 5799 |

Table DQ.15: School attendance by single age

| Distribution of household population age 5-24 by educational level and educational level and grade attended in the current (or most recent) school year, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Not | Preschool |  |  | Prim |  |  |  |  | niddle/ | Is5/ HL |  | Secondary | Vocl | Postsec | Tertiary | Total | Number of |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 |  |  |  |  |  |  |
| Age at beginning of school year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 17.4 | 74.4 | 7.0 | 1.2 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . | . 0 | . 0 | . 0 | . 0 | . | 1000 | ${ }^{1336}$ |
| 6 | 11.1 | 55.1 | 23.1 | 8.7 | 1.4 | . 6 | . 0 | . 0 | . 0 | . | . 0 | . 0 | . 0 | . 0 | . 0 | . | 1000 | 1396 |
| 7 | 8.6 | 32.9 | 24.9 | 23.7 | 8.1 | 1.5 | . 0 | . 0 | . 1 | 1 | . | . 0 | . 0 | . 0 | . 0 | . | 100.0 | 1369 |
| 8 | 6.7 | 14.0 | 17.8 | 29.8 | 22.6 | 7.9 | 5 | . | . 0 | 2 | 1 | . 0 | . 0 | . 0 | . 0 | . | 100.0 | 1250 |
| 9 | 6.3 | 7.0 | 7.7 | 25.5 | 28.4 | 19.6 | 4.7 | . 8 | 1 | . | . 0 | . 0 | . 0 | . 0 | . 0 | . | 100.0 | 1288 |
| 10 | 6.3 | 4.6 | 3.7 | 16.1 | 23.0 | 24.6 | 15.9 | 4.7 | . 8 | 3 | . 1 | . 1 | . 0 | . 0 | . 0 | . 0 | 1000 | ${ }^{1289}$ |
| 11 | 4.4 | 1.9 | 2.0 | 8.6 | 16.0 | 23.4 | 21.3 | 16.5 | 3.7 | 1.9 | . 0 | . 2 | . 0 | . | . 0 | . | 1000 | 1357 |
| 12 | 6.3 | . 5 | 1.0 | 5.7 | 9.7 | 16.5 | 21.4 | 22.3 | 12.0 | 3.6 | 1.1 | . 0 | . | . 0 | . 0 | . | 1000 | 1358 |
| 13 | 7.5 | . 0 | 9 | 3.5 | 4.8 | 10.4 | 16.8 | 24.5 | 14.3 | ${ }^{13.4}$ | ${ }^{3.4}$ | . 0 | . 4 | . 0 | . 0 | . 0 | 1000 | ${ }^{124}$ |
| 14 | 9.0 | ${ }^{5}$ | . 4 | 2.3 | 2.8 | 5.6 | 12.0 | 19.1 | 15.1 | 20.9 | 11.5 | . 0 | . 6 | . 0 | . 0 | . | 100.0 | ${ }^{1231}$ |
| 15 | 19.9 | 2 | . 1 | 8 | 2.3 | 2.5 | 5.7 | 15.6 | 14.4 | 19.8 | 15.0 | . 0 | 3.8 | . 0 | . 0 | . | 100.0 | 926 |
| 16 | 24.3 | . 0 | . 0 | 2 | 4 | 1.8 | 4.8 | 9.5 | 11.3 | 19.7 | 20.4 | 1 | 7.4 | . 0 | . | . | 1000 | 891 |
| 17 | 35.1 | . | . 1 | 3 | 4 | . 5 | 2.0 | 4.4 | 7.5 | 14.8 | 16.9 | . 0 | 18.0 | . 0 | . 0 | . | 100.0 | 796 |
| 18 | 42.7 | . 0 | 5 | 5 | 1 | 3 | 1.3 | 4.3 | 4.0 | 10.6 | 14.5 | . | 20.7 | . 2 | . 0 | 2 | 100.0 | 813 |
| 19 | 60.3 | . | . | . 0 | . 2 | . | 1.6 | 1.5 | 1.9 | 6.0 | 7.7 | . 0 | 18.4 | 5 | . 0 | 1.8 | 100.0 | 655 |



| Table DQ.16: Sex ratio at birth among children ever born and living <br> Sex ratio (number of males per 100 females) among children ever born (at birth), children living, and deceased children, by age of women, Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Children Ever Born |  |  | Children Living |  |  | Children Deceased |  |  | Number of women |
|  | $\begin{aligned} & \begin{array}{c} \text { Number } \\ \text { of sons } \\ \text { ever born } \end{array} \end{aligned}$ |  | Sex ratio | Number of sons living |  | Sex ratio |  |  | Sex ratio |  |
| Age |  |  |  |  |  |  |  |  |  |  |
| 15-19 | 111 | 113 | . 98 | 101 | 103 | . 98 | 10 | 10 | 1.00 | 2028 |
| 20-24 | 689 | 636 | 1.08 | 628 | 582 | 1.08 | 61 | 54 | 1.13 | 1503 |
| 25-29 | 1793 | 1647 | 1.09 | 1616 | 1514 | 1.07 | 177 | 133 | 1.33 | 1650 |
| 30-34 | 2878 | 2838 | 1.01 | 2567 | 2566 | 1.00 | 311 | 272 | 1.14 | 1616 |
| 35-39 | 3536 | 3344 | 1.06 | 3085 | 2978 | 1.04 | 451 | 366 | 1.23 | 1487 |
| 40-44 | 3468 | 3274 | 1.06 | 2933 | 2830 | 1.04 | 535 | 444 | 1.20 | 1231 |
| 45-49 | 3580 | 3238 | 1.11 | 2906 | 2715 | 1.07 | 674 | 523 | 1.29 | 1112 |
| Total | 16055 | 15090 | 1.06 | 13836 | 13288 | 1.04 | 2219 | 1802 | 1.19 | 10627 |


| Table DQ.17: Births by calendar years |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of births, percentage with complete birth date, sex ratio at birth, and calendar year ratio by calendar year, according to living, dead, and total children (weighted, unimputed), Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | Number of births |  |  | Percent with complete birth date** |  |  | Sex ratio at birth*** |  |  | Calendar year ratio****** |  |  |
|  | Living | Dead | Total |
| Year of birth |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 | 1149 | 47 | 1196 | 100.0 | 96.7 | 99.9 | 100.9 | 221.1 | 103.9 | na | na | na |
| 2010 | 1199 | 61 | 1261 | 100.0 | 90.7 | 99.5 | 94.1 | 333.5 | 99.5 | 100.5 | 78.0 | 99.1 |
| 2009 | 1237 | 110 | 1348 | 99.6 | 88.6 | 98.7 | 98.6 | 101.0 | 98.8 | 99.7 | 115.4 | 100.8 |
| 2008 | 1284 | 130 | 1414 | 99.0 | 79.4 | 97.2 | 105.6 | 145.4 | 108.7 | 108.6 | 136.7 | 110.7 |
| 2007 | 1127 | 80 | 1207 | 98.7 | 78.3 | 97.4 | 96.5 | 150.4 | 99.3 | 89.4 | 70.1 | 87.8 |
| 2006 | 1238 | 97 | 1335 | 97.1 | 68.1 | 95.0 | 106.1 | 89.4 | 104.8 | 107.6 | 124.9 | 108.7 |
| 2005 | 1173 | 76 | 1249 | 97.1 | 72.9 | 95.6 | 112.3 | 121.0 | 112.8 | 93.6 | 69.6 | 91.7 |
| 2004 | 1268 | 122 | 1390 | 96.4 | 70.6 | 94.1 | 100.3 | 136.5 | 103.0 | 113.8 | 130.1 | 115.0 |
| 2003 | 1056 | 111 | 1167 | 95.9 | 75.3 | 93.9 | 113.3 | 108.7 | 112.8 | 90.3 | 94.8 | 90.7 |
| 2002 | 1069 | 113 | 1182 | 95.7 | 72.3 | 93.5 | 108.3 | 204.0 | 114.8 | 102.9 | 98.6 | 102.5 |
| 2001 | 1024 | 117 | 1141 | 93.4 | 68.4 | 90.8 | 110.8 | 107.5 | 110.4 | 94.3 | 92.2 | 94.1 |
| 2000 | 1102 | 141 | 1243 | 95.6 | 62.3 | 91.8 | 102.1 | 77.3 | 99.0 | 107.6 | 129.4 | 109.7 |
| 1999 | 1025 | 101 | 1127 | 92.2 | 64.5 | 89.7 | 105.2 | 77.7 | 102.4 | 99.6 | 75.1 | 96.8 |


| Number of births, percentage with complete birth date, sex ratio at birth, and calendar year ratio by calendar year, according to living, dead, and total children (weighted, unimputed), Ghana, 2011 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Background Characteristics | Number of births |  |  | Percent with complete birth date** |  |  | Sex ratio at birth*** |  |  | Calendar year ratio**** |  |  |
|  | Living | Dead | Total |
| 1998 | 956 | 128 | 1084 | 93.4 | 62.0 | 89.6 | 107.3 | 163.4 | 112.7 | 103.3 | 126.3 | 105.6 |
| 1997 | 826 | 102 | 928 | 93.8 | 62.4 | 90.4 | 86.1 | 122.3 | 89.5 | 92.7 | 82.5 | 91.5 |
| 1996 | 825 | 119 | 944 | 90.3 | 73.3 | 88.2 | 95.7 | 71.6 | 92.3 | 103.9 | 122.1 | 105.9 |
| 1995 | 762 | 93 | 855 | 91.9 | 61.9 | 88.7 | 102.9 | 148.3 | 107.0 | 97.2 | 79.1 | 94.9 |
| Year of birth |  |  |  |  |  |  |  |  |  |  |  |  |
| 1994 | 743 | 116 | 859 | 90.8 | 67.7 | 87.7 | 97.3 | 129.7 | 101.1 | 102.1 | 113.4 | 103.5 |
| 1993 | 693 | 111 | 804 | 89.9 | 62.3 | 86.1 | 116.1 | 187.2 | 123.8 | 101.9 | 108.7 | 102.8 |
| 1992 | 617 | 89 | 706 | 87.4 | 71.3 | 85.4 | 101.0 | 134.4 | 104.7 | 22.2 | 38.6 | 23.4 |
| 2008-2012 | 4869 | 349 | 5218 | 99.6 | 86.7 | 98.8 | 99.8 | 155.2 | 102.8 | na | na | na |
| 2003-2007 | 5861 | 486 | 6348 | 97.0 | 72.8 | 95.2 | 105.3 | 118.5 | 106.3 | na | na | na |
| 1998-2002 | 5176 | 601 | 5777 | 94.1 | 65.7 | 91.1 | 106.7 | 115.4 | 107.5 | na | na | na |
| 1993-1997 | 3850 | 540 | 4390 | 91.4 | 65.8 | 88.3 | 98.6 | 123.7 | 101.4 | na | na | na |
| <1993 | 4216 | 832 | 5048 | 87.3 | 67.3 | 84.0 | 100.8 | 121.9 | 104.0 | na | na | na |
| DK/missing | 10 | 13 | 23 | . 0 | . 0 | 5.8 | 235.2 | 3.5 | 128.8 | na | na | na |
| Total | 23981 | 2821 | 26802 | 94.3 | 69.7 | 91.7 | 102.6 | 123.6 | 104.6 | na | na | na |

## DQ.18: Reporting of age at death in days

Distribution of reported deaths under one month of age by age at death in days and the percentage of neonatal deaths reported to occur at ages $0-6$ days, by 5 -year periods preceding the survey (weighted, unimputed) Ghana 2011

| Background Characteristics | Number of years preceding the survey |  |  |  | Total 0-19 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-4 | 5-9 | 10-14 | 15-19 |  |
| Age at death (days) |  |  |  |  |  |
| 0 | 45 | 47 | 44 | 44 | 179 |
| 1 | 63 | 65 | 74 | 44 | 245 |
| 2 | 3 | 10 | 7 | 10 | 30 |
| 3 | 16 | 11 | 19 | 10 | 57 |
| 4 | 5 | 8 | 5 | 3 | 22 |
| 5 | 8 | 7 | 1 | 9 | 25 |
| 6 | 2 | 4 | 1 |  | 9 |
| 7 | 7 | 18 | 14 | 14 | 53 |
| 8 | 1 | 1 | 4 | 5 | 11 |
| 9 | 0 | 1 | 1 | 3 | 5 |
| 10 | 0 | 1 | 1 | 0 | 2 |
| 11 | 0 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 1 | 0 | 2 |
| 13 | 0 | 0 | 5 | 0 | 5 |
| 14 | 4 | 9 | 7 | 19 | 39 |
| 15 | 2 | 0 | 1 | 1 | 4 |
| 16 | 1 | 0 | 2 | 1 | 4 |
| 18 | 0 | 0 | 2 | 0 | 2 |
| 19 | 2 | 0 | 0 | 0 | 2 |
| 20 | 0 | 0 | 0 | 0 | 0 |
| 21 | 8 | 9 | 12 | 3 | 32 |
| 23 | 1 | 0 | 0 | 0 | 1 |
| 24 | 0 | 0 | 0 | 2 | 2 |
| 25 | 0 | 0 | 0 | 0 | 1 |
| 28 | 0 | 1 | 1 | 1 | 2 |
| 29 | 0 | 0 | 0 | 0 | 0 |
| Total 0-30 days |  |  |  |  |  |
| 1.00 | 169 | 191 | 203 | 170 | 733 |
| Percent early neonatal* | 84.4 | 79.7 | 74.5 | 71.4 | 77.4 |


| DQ.19: Reporting of age at death in months <br> Distribution of reported deaths under two years of age by age at death in months and the percentage of infant deaths reported to occur at age under one month, by 5 -year periods preceding the survey (weighted, unimputed), Ghana, 2011 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Background Characteristics | Number of years preceding the survey |  |  |  | Total 0-19 |
|  | 0-4 | 5-9 | 10-14 | 15-19 |  |
| Age at death (months) |  |  |  |  |  |
| 0 | 170 | 191 | 203 | 170 | 733 |
| 1 | 24 | 15 | 16 | 10 | 64 |
| 2 | 9 | 9 | 18 | 14 | 51 |
| 3 | 12 | 12 | 19 | 18 | 60 |
| 4 | 11 | 9 | 5 | 7 | 31 |
| 5 | 10 | 7 | 4 | 7 | 28 |
| 6 | 12 | 24 | 16 | 7 | 59 |
| 7 | 20 | 5 | 10 | 12 | 47 |
| 8 | 4 | 3 | 6 | 16 | 28 |
| 9 | 4 | 8 | 18 | 14 | 44 |
| 10 | 3 | 6 | 6 | 3 | 17 |
| 11 | 4 | 4 | 4 | 0 | 13 |
| 12 | 2 | 19 | 9 | 6 | 37 |
| 13 | 0 | 1 | 5 | 0 | 6 |
| 14 | 0 | 0 | 0 | 2 | 2 |
| 15 | 1 | 4 | 1 | 0 | 6 |
| 16 | 0 | 1 | 0 | 0 | 1 |
| 17 | 2 | 2 | 2 | 0 | 5 |
| 18 | 6 | 5 | 12 | 3 | 26 |
| 19 | 0 | 1 | 0 | 0 | 1 |
| 21 | 0 | 2 | 1 | 0 | 3 |
| 22 | 0 | 0 | 0 | 0 | 0 |
| 23 | 0 | 1 | 0 | 0 | 1 |
| Total 0-11 months | 283 | 291 | 325 | 278 | 1177 |
| Percent neonatal* | 60.0 | 65.4 | 62.4 | 61.3 | 62.3 |

Appendix F. MICS4 Indicators: Numerators

## and Denominators

| micsa indicator [m] |  | Mod | ule ${ }^{39}$ | Numerator | Denominator |  | MDG ${ }^{40}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. MORTALITY |  |  |  |  |  |  |  |
| U |  | Under-five mortality rate ${ }^{41}$ |  | CM - BH | Probability of dying before turning age 5 years |  | MDG 4.1 |
| 1.2 |  | Infant mortality rate ${ }^{42}$ |  | CM - BH | Probability of dying before turning age 1 year |  | MDG 4.2 |
| 1.3 |  | Neonatal mortality rate |  | BH | Probability of dying within the first month of life, during the 5 -year period preceding the survey |  |  |
| 1.4 |  | Post-neonatal mortality rate |  | BH | Difference between infant and neonatal mortality rates, during the 5 -year period preceding the survey |  |  |
| 1.5 |  | Child mortality rate |  | BH | Probability of dying between exact ages one and five, during the 5 -year period preceding the survey |  |  |
| MICS4 INDICATOR [M] |  |  | Module ${ }^{\text {³ }}$ | Numerator |  | Denominator | MDG ${ }^{44}$ |
| 2. NUTRITION |  |  |  |  |  |  |  |
| $\begin{aligned} & 2.1 \mathrm{a} \\ & 2.1 \mathrm{~b} \end{aligned}$ | Underweight prevalence |  | AN | Number of children under age 5 who <br> (a) fall below minus two standard deviations (moderate and severe) (b) fall below minus three standard deviations (severe) from the median weight for age of the WHO standard |  | Total number of children under age 5 | MDG 1.8 |
| $\begin{aligned} & 2.2 a \\ & 2.2 b \end{aligned}$ | Stunting prevalence |  | AN | Number of children under age 5 who <br> (a) fall below minus two standard deviations (moderate and severe) (b) fall below minus three standard deviations (severe) from the median height for age of the WHO standard |  | Total number of children under age 5 |  |
| $\begin{aligned} & 2.3 \mathrm{a} \\ & 2.3 \mathrm{~b} \end{aligned}$ | Wasting prevalence |  | AN | Number of children under age 5 who <br> (a) fall below minus two standard deviations (moderate and severe) (b) fall below minus three standard deviations (severe) from the median weight for height of the WHO standard |  | Total number of children under age 5 |  |

[^8]| MICS4 INDICATOR ${ }^{\text {[ }}$ ] |  | Module ${ }^{5}$ | Numerator <br> (b) fall below minus three standard deviations (severe) from the median weight for height of the WHO standard | Denominator | MDG ${ }^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 2.4 | Children ever breastfed | mN | Number of women with a live birth in the 2 years preceding the survey who breastfed the child at any time | Total number of women with a live birth in the 2 years preceding the survey |  |
| 2.5 | Early initiation of breastfeeding | MN | Number of women with a live birth in the 2 years preceding the survey who put the newborn infant to the breast within 1 hour of birth | Total number of women with a live birth in the 2 years preceding the survey |  |
| 2.6 | Exclusive breastfeeding under 6 months | BF | Number of infants under 6 months of age who are exclusively breastfed ${ }^{45}$ | Total number of infants under 6 months of age |  |
| 2.7 | Continued breastfeeding at 1 year | BF | Number of children age 12-15 months who are currently breastfeeding | Total number of children age 12-15 months |  |
| 2.8 | Continued breastfeeding at 2 years | BF | Number of children age 20-23 months who are currently breastfeeding | Total number of children age 20-23 months |  |
| 2.9 | Predominant breastfeeding under 6 months | BF | Number of infants under 6 months of age who received breast milk as the predominant source of nourishment ${ }^{46}$ during the previous day | Total number of infants under 6 months of age |  |
| 2.10 | Duration of breastfeeding | BF | The age in months when 50 percent of children age $0-35$ months did not receive breast milk during the previous day |  |  |
| 2.11 | Bottle feeding | BF | Number of children age $0-23$ months who were fed with a bottle during the previous day | Total number of children age 0-23 months |  |
| 2.12 | Introduction of solid, semi-solid or soft foods | BF | Number of infants age 6-8 months who received solid, semisolid or soft foods during the previous day | Total number of infants age 6-8 months |  |
| 2.13 | Minimum meal frequency | BF | Number of children age $6-23$ months receiving solid, semi-solid and soft foods (plus milk feeds for non-breastfed children) the minimum times ${ }^{47}$ or more, according to breastfeeding status, during the previous day | Total number of children age 6-23 months |  |
| 2.14 | Age-appropriate breastfeeding | BF | Number of children age $0-23$ months appropriately fed ${ }^{48}$ during the previous day | Total number of children age 0-23 months |  |
| 2.15 | Milk feeding frequency for non-breastfed children | BF | Number of non-breastfed children age $6-23$ months who received at least 2 milk feedings during the previous day | Total number of nonbreastfed children age 6-23 months |  |

[^9]Appendix F. MICS4 Indicators: Numerators

## and Denominators

Appendix F. MICS4 Indicators: Numerators and Denominators

| MICS4 INDICATOR ${ }^{\text {[m] }}$ |  | Module ${ }^{\text {5 }}$ | Numerator | Denominator | MDG ${ }^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.16 | Iodized salt consumption | SI | Number of households with salt testing 15 parts per million or more of iodide/iodate | Total number of households in which salt was tested or with no salt |  |
| 2.17 | Vitamin A supplementation (children under age 5) | IM | Number of children age 6-59 months who received at least one high-dose vitamin A supplement in the 6 months preceding the survey | Total number of children age 6-59 months |  |
| 2.18 | Low-birth weight infants | MN | Number of last live births in the 2 years preceding the survey weighing below 2,500 grams at birth | Total number of last live births in the 2 years preceding the survey |  |
| 2.19 | Infants weighed at birth | mN | Number of last live births in the 2 years preceding the survey who were weighed at birth | Total number of last live births in the 2 years preceding the survey |  |


| 3. CHILD HEALTH |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.1 | Tuberculosis immunization coverage | IM | Number of children age 12-23 months ${ }^{49}$ who received BCG vaccine before their first birthday | Total number of children age 12-23 months |  |
| 3.2 | Polio immunization coverage | IM | Number of children age 12-23 months who received OPV3 vaccine before their first birthday | Total number of children age 12-23 months |  |
| 3.3 | Immunization coverage for diphtheria, pertussis and tetanus (DPT) | IM | Number of children age 12-23 months who received DPT3 vaccine before their first birthday | Total number of children age 12-23 months |  |
| 3.4 | Measles immunization coverage | IM | Number of children age 12-23 months who received measles vaccine before their first birthday | Total number of children age 12-23 months | $\begin{aligned} & \text { MDG } \\ & 4.3 \end{aligned}$ |
| 3.5 | Hepatitis B immunization coverage | IM | Number of children age 12-23 months who received the third dose of Hepatitis $B$ vaccine before their first birthday | Total number of children age 12-23 months |  |
| 3.6 | Yellow fever immunization coverage | IM | Number of children age 12-23 months who received yellow fever vaccine before their first birthday | Total number of children age 12-23 months |  |
| 3.7 | Neonatal tetanus protection | MN | Number of women age 15-49 years with a live birth in the 2 years preceding the survey who were given at least two doses of tetanus toxoid vaccine within the appropriate interval ${ }^{50}$ prior to giving birth | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey |  |
| 3.8 | Oral rehydration therapy with continued feeding | CA | Number of children under age 5 with diarrhoea in the previous 2 weeks who received ORT (ORS packet or recommended homemade fluid or increased fluids) and continued feeding during the episode of diarrhoea | Total number of children under age 5 with diarrhoea in the previous 2 weeks |  |
| 3.9 | Care-seeking for suspected pneumonia | CA | Number of children under age 5 with suspected pneumonia in the previous 2 weeks who were taken to an appropriate health provider | Total number of children under age 5 with suspected pneumonia in the previous 2 weeks |  |


| MICS4 INDICATOR ${ }^{\text {[ }}$ ] |  | Module ${ }^{5}$ <br> CA | Numerator <br> Number of children under age 5 with suspected pneumonia in the previous 2 weeks who received antibiotics | Denominator <br> Total number of children under age 5 with suspected pneumonia in the previous 2 weeks | MDG ${ }^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.10 | Antibiotic treatment of suspected pneumonia |  |  |  |  |
| 3.11 | Solid fuels | нс | Number of household members in households that use solid fuels as the primary source of domestic energy to cook | Total number of household members |  |
| 3.12 | Household availability of insecticide-treated nets (ITNs) ${ }^{51}$ | TN | Number of households with at least one insecticide treated net (ITN) | Total number of households |  |
| 3.13 | Households protected <br> by a vector control <br> method | TN-IR | Number of households with at least one insecticide-treated net (ITN) or that received spraying through an IRS ${ }^{52}$ campaign in the last 12 months preceding the survey | Total number of households |  |
| 3.14 | Children under age 5 sleeping under any type of mosquito net | TN | Number of children under age 5 who slept under any type of mosquito net the previous night | Total number of children under age 5 |  |
| 3.15 | Children under age 5 sleeping under insecticide-treated nets (ITNs) | TN | Number of children under age 5 who slept under an insecticide-treated mosquito net (ITN) the previous night | Total number of children under age 5 | MDG 6.7 |
| 3.16 | Malaria diagnostics usage | ML | Number of children under age 5 reported to have had fever in the previous 2 weeks who had a finger or heel stick for malaria testing | Total number of children under age 5 reported to have had fever in the previous 2 weeks |  |
| 3.17 | Anti-malarial treatment of children under age 5 the same or next day | ML | Number of children under age 5 reported to have had fever in the previous 2 weeks who were treated with any anti-malarial drug within the same or next day of onset of symptoms | Total number of children under age 5 reported to have had fever in the previous 2 weeks |  |
| 3.18 | Anti-malarial treatment of children under age 5 | ML | Number of children under age 5 reported to have had fever in the previous 2 weeks who received any antimalarial treatment | Total number of children under age 5 reported to have had fever in the previous 2 weeks | MDG 6.8 |
| 3.19 | Pregnant women sleeping under insecticide-treated nets (ITNs) | TN | Number of pregnant women who slept under an insecticide-treated net (ITN) the previous night | Total number of pregnant women |  |
| 3.20 | Intermittent preventive treatment for malaria | mN | Number of women age 15-49 years who received at least 2 doses of SP/Fansidar to prevent malaria during antenatal care visits for their last pregnancy leading to a live birth in the 2 years preceding the survey | Total number of women age 15-49 years who have had a live birth in the 2 years preceding the survey |  |
| 4. WATER AND SANITATION |  |  |  |  |  |
| 4.1 | Use of improved drinking water sources | ws | Number of household members using improved sources of drinking water | Total number of household members | MDG 7.8 |

[^10][^11]Appendix F. MICS4 Indicators: Numerators

## and Denominators

|  |  | $\begin{aligned} & \text { Module }{ }^{5} \\ & \hline \text { WS } \end{aligned}$ | Numerator <br> Number of household members using unimproved drinking water who use an appropriate treatment method | Denominator <br> Total number of household members in households using unimproved drinking water sources | MDG ${ }^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4.2 | Water treatment |  |  |  |  |
| 4.3 | Use of improved sanitation | ws | Number of household members using improved sanitation facilities which are not shared | Total number of household members | MDG 7.9 |
| 4.4 | Safe disposal of child's faeces | CA | Number of children age $0-2$ years whose last stools were disposed of safely | Total number of children age 0-2 years |  |
| 4.5 | Place for handwashing | Hw | Number of households with a specific place for hand washing where water and soap are present | Total number of households |  |
| 4.6 | Availability of soap | HW | Number of households with soap anywhere in the dwelling | Total number of households |  |


| 5. REPRODUCTIVE HEALTH |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.1 | Adolescent birth rate ${ }^{53}$ | CM - BH | Age-specific fertility rate for women age 15-19 years for the one year period preceding the survey |  | MDG 5.4 |
| 5.2 | Early childbearing | CM - BH | Number of women age $20-24$ years who had at least one live birth before age 18 | Total number of women age $20-24$ years |  |
| 5.3 | Contraceptive prevalence rate | CP | Number of women age 15-49 years currently married or in union who are using (or whose partner is using) a (modern or traditional) contraceptive method | Total number of women age 15-49 years who are currently married or in union | MDG 5.3 |
| 5.4 | Unmet need ${ }^{54}$ | UN | Number of women age 15-49 years who are currently married or in union who are fecund and want to space their births or limit the number of children they have and who are not currently using contraception | Total number of women age 15-49 years who are currently married or in union | MDG 5.6 |


| MICS4 INDICATOR ${ }^{\text {[m] }}$ |  | Module ${ }^{5}$ | Numerator | Denominator | MDG ${ }^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 5.5 \mathrm{a} \\ & 5.5 \mathrm{~b} \end{aligned}$ | Antenatal care coverage | mN | Number of women age 15-49 years who were attended during pregnancy in the 2 years preceding the survey <br> (a) at least once by skilled personnel <br> (b) at least four times by any provider | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey | MDG 5.5 |
| 5.6 | Content of antenatal care | mN | Number of women age 15-49 years with a live birth in the 2 years preceding the survey who had their blood pressure measured and gave urine and blood samples during the last pregnancy | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey |  |
| 5.7 | Skilled attendant at delivery | MN | Number of women age 15-49 years with a live birth in the 2 years preceding the survey who were attended during childbirth by skilled health personnel | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey | MDG 5.2 |
| 5.8 | Institutional deliveries | mN | Number of women age 15-49 years with a live birth in the 2 years preceding the survey who delivered in a health facility | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey |  |
| 5.9 | Caesarean section | MN | Number of last live births in the 2 years preceding the survey who were delivered by caesarean section | Total number of last live births in the 2 years preceding the survey |  |
| 5.10 | Post-partum stay in health facility | PN | Number of women age 15-49 years who stayed in the health facility for 12 hours or more after the delivery of their last live birth in the 2 years preceding the survey | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey |  |
| 5.11 | Post-natal health check for the newborn | PN | Number of last live births in the last 2 years who received a health check while in facility or at home following delivery, or a post-natal care visit within 2 days after birth | Total number of last live births in the last 2 years |  |
| 5.12 | Post-natal health check for the mother | PN | Number of women age 15-49 years who received a health check while in facility or at home following delivery, or a post-natal care visit within 2 days after delivery | Total number of women age 15-49 years with a live birth in the 2 years preceding the survey |  |
| 5.13 | Maternal mortality ratio | мм | Deaths during pregnancy, childbirth, or within two $m$ pregnancy, per 100.000 births within the 7 -year period | ths after delivery or termination of preceding the survey | MDG 5.1 |


| 6. CHILD DEVELOPMENT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6.1 | Support for learning | EC | Number of children age $36-59$ months with whom an adult has engaged in four or more activities to promote learning and school readiness in the past 3 days | Total number of children age 36-59 months |  |
| 6.2 | Father's support for learning | EC | Number of children age $36-59$ months whose father has engaged in one or more activities to promote learning and school readiness in the past 3 days | Total number of children age 36-59 months |  |
| 6.3 | Learning materials: children's books | EC | Number of children under age 5 who have three or more children's books | Total number of children under age 5 |  |
| 6.4 | Learning materials: playthings | EC | Number of children under age 5 with two or more playthings | Total number of children under age 5 |  |
| 6.5 | Inadequate care | EC | Number of children under age 5 left alone or in the care of another child younger than 10 years of age for more than one hour at least once in the past week | Total number of children under age 5 |  |
| 6.6 | Early child development index | EC | Number of children age 36 - 59 months who are developmentally on track in literacy-numeracy, physical, social-emotional, and learning domains | Total number of children age 36-59 months |  |
| 6.7 | Attendance to early childhood education | EC | Number of children age 36-59 months who are attending an early childhood education programme | Total number of children age 36-59 months |  |

[^12]Appendix F. MICS4 Indicators: Numerators and Denominators

| CATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.1 | Literacy rate among young women [M] | WB | Number of women age $15-24$ years who are able to read a short simple statement about everyday life or who attended secondary or higher education | Total number of women age 15-24 years | MDG 2.3 |
| 7.2 | School readiness ED | ED | Number of children in first grade of primary school who attended pre-school during the previous school year | Total number of children attending the first grade of primary school |  |
| 7.3 | Net intake rate in primary education | ED | Number of children of school-entry age who enter the first grade of primary school | Total number of children of schoolentry age |  |
| 7.4 | Primary school net attendance rate (adjusted) | ED | Number of children of primary school age currently attending primary or secondary school | Total number of children of primary school age | MDG 2.1 |
| 7.5 | Secondary school net attendance rate (adjusted) | ED | Number of children of secondary school age currently attending secondary school or higher | Total number of children of secondary school age |  |
| 7.6 | Children reaching last grade of primary | ED | Proportion of children entering the first grade of primary grade | ry school who eventually reach last | MDG 2.2 |
| 7.7 | Primary completion rate ED | ED | Number of children attending the last grade of primary school (excluding repeaters) | Total number of children of primary school completion age (age appropriate to final grade of primary school) |  |
| 7.8 | Transition rate to <br> secondary school | ED | Number of children attending the last grade of primary school during the previous school year who are in the first grade of secondary school during the current school year | Total number of children attending the last grade of primary school during the previous school year |  |
| 7.9 | Gender parity index  <br> (primary school) ED | ED | Primary school net attendance rate (adjusted) for girls | Primary school net attendance rate (adjusted) for boys | MDG 3.1 |
| 7.10 | Gender parity index (secondary school) | ED | Secondary school net attendance rate (adjusted) for girls | Secondary school net attendance rate (adjusted) for boys | MDG 3.1 |
| 8. CHILD PROTECTION |  |  |  |  |  |
| 8.1 | Birth registration | BR | Number of children under age 5 whose births are reported registered | Total number of children under age 5 |  |
| 8.1 | Birth registration | BR | Number of children under age 5 whose births are reported registered | Total number of children under age 5 |  |
| 8.2 | Violent discipline | CD | Number of children age 2-14 years who experienced psychological aggression or physical punishment during the past month | Total number of children age 2-14 years |  |
| 8.3 | Marriage before age 15 [M] | MA | Number of women age 15-49 years who were first married or in union by the exact age of 15 | Total number of women age 15-49 years |  |
| 8.4 | Marriage before age 18 [M] | MA | Number of women age 20-49 years who were first married or in union by the exact age of 18 | Total number of women age 20-49 years |  |
| 8.5 | Young women age 15-19 years currently married or in union [M] | MA | Number of women age 15-19 years who are currently married or in union | Total number of women age 15-19 years |  |
| 8.6 | Polygyny [M] | MA | Number of women age 15-49 years who are in a polygynous union | Total number of women age 15-49 years who are currently married or in union |  |
| $\begin{aligned} & 8.7 \mathrm{a} \\ & 8.7 \end{aligned}$ | Spousal age difference | MA | Number of women currently married or in union whose spouse is 10 or more years older, <br> (a) for women age 15-19 years, <br> (b) for women age $20-24$ years | Total number of women currently married or in union <br> (a) age 15-19 years, <br> (b) age $20-24$ years |  |
| 8.8 | Approval for female genital mutilation/ cutting (FGM/C) | FG | Number of women age 15-49 years favouring the continuation of FGM/C | Total number of women age 15-49 years who have heard of $\mathrm{FGM} / \mathrm{C}$ |  |
| 8.9 | Prevalence of female genital mutilation/ cutting (FGM/C) among women | FG | Number of women age 15-49 years who report to have undergone any form of FGM/C | Total number of women age 15-49 years |  |


| 8. CHILD PROTECTION (cont'd) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8.10 | Prevalence of female genital mutilation/ cutting (FGM/C) among girls | FG | Number of girls age $0-14$ years who have undergone any form of FGM/C, as reported by mothers | Total number of girls age 0-14 years |  |
| 8.11 | Attitudes towards domestic violence [M] | DV | Number of women who state that a husband/ partner is justified in hitting or beating his wife in at least one of the following circumstances: (1) she goes out without telling him, (2) she neglects the children, (3) she argues with him, (4) she refuses sex with him, (5) she burns the food | Total number of women age 15-49 years |  |
| 8.12 | Children's living arrangements | HL | Number of children age 0-17 years not living with a biological parent | Total number of children age 0-17 years |  |
| 8.13 | Prevalence of children with one or both parents dead | HL | Number of children age $0-17$ years with one or both parents dead | Total number of children age 0-17 years |  |
| 9. HIV/AIDS, SEXUAL BEHAVIOUR AND ORPHANS |  |  |  |  |  |
| 9.1 | Comprehensive knowledge about HIV prevention [M] | HA | Number of women age 15-49 years who correctly identify two ways of preventing HIV infection ${ }^{55}$, know that a healthy looking person can have HIV, and reject the two most common misconceptions about HIV transmission | Total number of women age 15-49 years |  |
| 9.2 | Comprehensive knowledge about HIV prevention among young people [M] | HA | Number of women age 15-24 years who correctly identify two ways of preventing HIV infection12, know that a healthy looking person can have HIV, and reject the two most common misconceptions about HIV transmission | Total number of women age 15-24 years | MDG 6.3 |
| 9.3 | Knowledge of mother-to-child transmission of HIV [M] | HA | Number of women age 15-49 years who correctly identify all three means ${ }^{56}$ of mother-to-child transmission of HIV | Total number of women age 15-49 years |  |
| 9.4 | Accepting attitudes towards people living with HIV [M] | HA | Number of women age 15-49 years expressing accepting attitudes on all four questions ${ }^{57}$ toward people living with HIV | Total number of women age 15-49 years who have heard of HIV |  |
| 9.5 | Women who know where to be tested for HIV [M] | HA | Number of women age 15-49 years who state knowledge of a place to be tested for HIV | Total number of women age 15-49 years |  |
| 9.6 | Women who have been tested for HIV and know the results [M] | HA | Number of women age 15-49 years who have been tested for HIV in the 12 months preceding the survey and who know their results | Total number of women age 15-49 years |  |
| 9.7 | Sexually active young women who have been tested for HIV and know the results [M] | HA | Number of women age $15-24$ years who have had sex in the 12 months preceding the survey, who have been tested for HIV in the 12 months preceding the survey and who know their results | Total number of women age 15-24 years who have had sex in the 12 months preceding the survey |  |
| 9.8 | HIV counselling during antenatal care | HA | Number of women age 15-49 years who gave birth in the 2 years preceding the survey and received antenatal care, reporting that they received counselling on HIV during antenatal care | Total number of women age 15-49 years who gave birth in the 2 years preceding the survey |  |
| 9.9 | HIV testing during antenatal care | HA | Number of women age 15-49 years who gave birth in the 2 years preceding the survey and received antenatal care, reporting that they were offered and accepted an HIV test during antenatal care and received their results | Total number of women age 15-49 years who gave birth in the 2 years preceding the survey |  |

[^13]Appendix F. MICS4 Indicators: Numerators

## and Denominators

11. ACCESS TO MASS MEDIA AND USE OF INFORMATION/COMMUNICATION TECHNOLOGY

| 11.1 | Exposure to mass media by women [M] | мт | Number of women age 15-49 years who are exposed to specific mass media on a weekly basis | Total number of women age 15-49 years |
| :---: | :---: | :---: | :---: | :---: |
| 11.2 | Exposure to mass media by men [M | мт | Number of men age 15-59 years who are exposed to specific mass media on a weekly basis | Total number of men age 15-59 years |
| 11.3 | Use of computer and internet by young women | мт | Number of young women age 15-24 who have ever used a computer during the last 12 months | Total number of young women age $15-24$ years |
| 11.4 | Use of computer and internet by young men | MT | Number of young men age 15-24 who have ever used a computer during the last 12 months | Total number of young men age 15-24 years |

10. NATIONAL HEALTH INSURANCE
10.1 Membershin of NHIS

Nembership of NHIS NHIS among women Membership of
among men among men Membership of NHS
among children
. 4 Reasons for not hav valid card among women
10.5 Reasons for not having

Ralid card among men Reasons for not having
valid card among valid card
children
10.7 Achievement of membership among women
0.8 Achievement of membership among
men
0.9 Achievement of membership among children
0.10 Opinion on quality of service provided
to NHIS card holders among women
10.11 Opinion on quality of services provided to NHIS card holders
among men among men
N.12 NHIS registration

13 NHIS registration among men
10.14 NHIS registration NHIS registration
among children
NHIS

NHIS
NHIS

NHIS Number of women age $15-49$ years registered
with NHIS and the status of their NHIS valid card Number of men age $15-59$ years registered with
NHIS and the status of their NHIS valid cards Number of children under-5 years registered with NHIS and status of their valid NHIIS cards. Number of women age 15-49 years who did not have a valid card for various reasons
Number of men age $15-59$ years who did not have a valid card for various reasons Number of children age e $0-4$ years who did not
have a alid card for yarious reasons

Number of women age $15-49$ registered according to achievement of membership
NHIS

Number of men age 15 -59 registered according to achievement of membership

NHIS Number of children age $0-4$ years registered according to achievement of membership
NHIS Number of women age $15-49$ years registered Number of women age $15-49$ years registere
according to opinion on quality of service according to opinion on quarity
offered to NHIS card holders

Number of men age 15 -59 years registered according to opinion on quality of service offered to NHIS card holders egister for various reasons
Number of men age $15-59$ who did not register
Total number of women age $15-49$ years
Nor various reasons
Number of children age $0-59$ months who did not register with NHIS for various reasons Total number of women and men age 15
49 , and children age $0-59$ months

Denominator
Total number of never married women age $15-24$ years
Total number of women age $15-24$ years
Total number of women age $15-24$ years who have had sex in the 12 months preceding the survey
Total number of women age $15-49$ years

Total number of women age $15-49$ years who reported having had more than one sexual partner in the 12 months preceding the survey

Total number of women age $15-24$ years Total number of women age $15-24$ y
who have had sex in the 12 months preceding the survey

Total number of women age $15-24$ years
Total number of women age $15-24$ years partner in the 12 months preceding the survey

Total number of women age $15-49$ years Tot


Total number of children under-5 years
Total number of women age 15-49 years.
Total number of men age $15-59$ years
Total number of children age $0-4$ years
Total number of women age $15-49$ years
Total number of men age $15-59$ years
otal number of children age $0-4$ years
Total number of women age $15-49$ years

Total number of men age $15-59$ years , and children age $0-59$ month

HH1. Locality Name Cluster No.: $\qquad$
HH3. Interviewer name and number: $\qquad$ HH5. Date of interview:
(DD/MM /YYYY) $\qquad$ ___/2011
HH6. Area:
Urban
Urban
Rural
HH7D. Structure Address
WE ARE FROM THE GHANA STATISTICAL SERVICE. WE ARE CONDUCTING A SURVEY THAT IS CONCERNED WITH FAMILY HEALTH AND EDUCATION. IWOULD LIKE TO ASK YOU A FEW OUESTIONS ON THESE AREAS. THE INTERVIEW WILLTAKE ABOUT 45 MINUTES. ALL THE INFORMATION WE OBTAIN WILL REMAIN STRICTLY CONFIDENTIAL AND YOUR ANSWERS WILL NEVER BE SHARED WITH ANYONE.

## MAY I START NOW?

Yes, permission is given $\mathbb{G}$ o to HH 10 to get signature, then HH 18 to record time, then begin interview.
$\square$ No, permission is not given $\boxtimes C$ omplete HH . Discuss this result with your supervisor.

After all questionnaires for the household have been completed, fill in the following information
HH8. Name of head of household:
HH9. Result of household interview:
Completed
No household member or no competent
Entire househ home at time of visit
period of time
Refused
Dwelling vacant / Address not a dwelling
Dwelling destroyed
Dwelling not found
Other (specify)
HH12. Number of women
age 15-49 years: __
HH14. Number of children

## under age 5

$\qquad$

HH15A. Number of men
A. Number of men
aged $15-59$ years

HH16. Field edited by (Name and number):
Name $\qquad$
completed: _-
HH10. Respondent to household questionnaire:
Name: $\qquad$
(Respondent's signature or thumbprint)
Line Number:
HH11. Total number of household
members: - -
HH13. Number of women's
questionnaires completed: HH15. Number of under-5 questionnaires

EAVE HH15A AND HH15B BLANK

## HH15B. Number of men's

questionnaires completed:
HH17. Data entry clerk (Name and number):
Name



| - | Codes |
| :---: | :---: |
| 0 Pre-school 1 Primary |  |

for
$\begin{aligned} & \text { 2 Middle/fs5//Hs } \\ & 3 \text { Secondary/ss/sHS }\end{aligned}$
Educational
Level:
4 Voc/CommTrech
5 Post Secondary (NursingTeacher Training

${ }^{\text {ED6, }}$

WATER AND SANITATION

\begin{tabular}{|c|c|c|c|}
\hline WATER AND SANITATION \& \& \& ws \\
\hline WS1. WHAT IS THE MAIN SOURCE OF DRINKING WATER FOR MEMBERS OF YOUR HOUSEHOLD? \& \begin{tabular}{l}
Piped water \\
Piped into dwelling Piped into compound, yard or plot Piped to neighbour Public tap / standpipe \\
Tube Well, Borehole \\
Dug well \\
Protected well \\
Unprotected well \\
Protected spring \\
Unprotected spring \\
Rainwater collection \\
Tanker-truck \\
Cart with small tank / drum \\
Surface water \\
River/ stream \\
Dam, lake, pond, canal, irrigation channel) Bottled water \\
Sachet water \\
Other (specify)
\end{tabular} \& 11
12
13
14
21
21

31
32
41
42
41
51
61
71
81
82
91
92

96 \& $$
\begin{aligned}
& 11 \rightarrow \text { WS6 } \\
& 12 \rightarrow \text { WS6 } \\
& 13 \rightarrow \text { WS6 } \\
& 14 \rightarrow \text { WS3 } \\
& 21 \rightarrow \text { WS3 } \\
& \\
& 31 \rightarrow \text { WS3 } \\
& 32 \rightarrow \text { WS3 } \\
& 41 \rightarrow \text { WS3 } \\
& 42 \rightarrow \text { WS3 } \\
& 51 \rightarrow \text { WS3 } \\
& 61 \rightarrow \text { WS6 } \\
& 71 \rightarrow \text { WS6 } \\
& 81 \rightarrow \text { WS3 } \\
& 82 \rightarrow \text { WS3 } \\
& 96 \rightarrow \text { WS3 }
\end{aligned}
$$ <br>

\hline WS2. WHAT IS THE MAIN SOURCE OF WATER USED BY YOUR HOUSEHOLD FOR OTHER PURPOSES SUCH AS COOKING AND HAND WASHING? \& | Piped water |
| :--- |
| Piped into dwelling Piped into compound, yard or plot Piped to neighbour |
| Public tap / standpipe |
| Tube Well, Borehole |
| Dug well |
| Protected well |
| Unprotected well |
| Water from spring |
| Protected spring |
| Unprotected spring |
| Rainwater collection |
| Tanker-truck |
| Cart with small tank / drum |
| Surface water |
| River/ stream |
| Dam, lake, pond, canal, irrigation channel) |
| Other (specify) | \& 11

12
13
13
14
21

31
32

41
42
51
61
71
81
81
82

96 \& $$
\begin{aligned}
& 12 \rightarrow \text { WS6 } \\
& 13 \rightarrow \text { WS6 } \\
& 14 \rightarrow \text { WS4 } \\
& \\
& \\
& \\
& \\
& 61 \rightarrow \text { WS6 } \\
& 71 \rightarrow \text { WS6 }
\end{aligned}
$$ <br>

\hline WS3. Where is that water source Located? \& | In own dwelling |
| :--- |
| In own yard / plot |
| Elsewhere | \& 1

2

3 \& $$
\begin{aligned}
& 1 \rightarrow \text { WS6 } \\
& 2 \rightarrow \text { WS6 }
\end{aligned}
$$ <br>

\hline WS4. HOW LONG DOES It TAKE TO GOTHERE, GET WATER, AND COME BACK? \& | Number of minutes $\qquad$ |
| :--- |
| DK 998 | \& \& <br>

\hline
\end{tabular}

| WATER AND SANITATION (cont'd) |  |  | ws |
| :---: | :---: | :---: | :---: |
| WS5. WHO USUALLY GOES TO THIS SOURCE TO COLLECT THE WATER FOR YOUR HOUSEHOLD? <br> Probe: <br> IS THIS PERSON UNDER AGE 15? <br> WHAT SEX? | Adult woman (age 15+ years) Adult man (age 15+ years) Female child (under 15) Male child (under 15) DK | 1 2 3 4 8 |  |
| WS6. DO YOU DO ANYTHING TOTHE WATERTO MAKEIT SAFERTO DRINk? | $\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | 1 2 8 | $\begin{aligned} & 2 \rightarrow \text { WSTA A } \\ & 8 \rightarrow \text { WSTA } \end{aligned}$ |
| WS7. WHAT DO YOU USUALLY DO TO MAKE THE WATER SAFER TO DRINK? Probe: <br> ANYTHING ELSE? <br> Record all items mentioned. | Boil <br> Add bleach / chlorine <br> Strain it through a cloth <br> Use water filter (ceramic, sand, composite, etc.) <br> Solar disinfection <br> Let it stand and settle <br> Add camphor/naphthalene <br> Add water tablet <br> Other (specify) <br> DK | A B C D E F G H |  |
| WS7A. Check WS1 <br> $\square$ WS1 $=11$ to $14 \rightarrow$ Continue with WS7B WS1 $=21$ or 31 or $41 \rightarrow$ Go to WS7C <br> $\square$ WS $1=$ other answers $\rightarrow$ Go to WS8 |  |  |  |
| WS7B. DURING THE LAST MONTH, HOW OFTEN DID THE WATER FLOW THROUGH THE PIPE? | Everyday <br> 3 to 5 days a week <br> Once a week <br> Less than once a week <br> Twice a month <br> Less than twice a month <br> DK | 1 2 3 4 5 6 8 | $\begin{aligned} & \text { 1 } \rightarrow \text { WS8 } \\ & \text { 2 } \rightarrow \text { SW8 } \\ & \text { 3 } \rightarrow \text { SS8 } \\ & \text { 4 } \rightarrow \text { SW8 } \\ & \text { 6 } \rightarrow \text { SS8 } \\ & \text { 8 } \rightarrow \text { WS8 } \end{aligned}$ |
| WSTC. When was the Last timethe water faility broke down? | During last week One month ago Three months ago More than 3 month ago Never broke down DK | 1 2 3 4 5 8 | $\begin{aligned} & 5 \rightarrow \text { WS8 } \\ & 8 \rightarrow \text { WS8 } \end{aligned}$ |
| WSTD. LAST TIME THE FACILITY WATER BROKE DOWN, HOW LONG DID IT TAKE TO HAVE IT FIXED AND WORKING AGAIN? | Immediately/Few days One week During the same month More than one month Not fixed yet <br> DK | 1 2 3 4 5 8 |  |
| WS8. WHAT KIND OF TOILET FACILITY DO MEMBERS OF YOUR HOUSEHOLD USUALLY USE? <br> If"flush", probe: <br> WHERE DOES IT FLUSH TO? <br> If necessary, ask permission to observe the facility. | Flush <br> Flush to piped sewer system <br> Flush to septic tank <br> Flush to pit (latrine) <br> Flush to somewhere else <br> Flush, don't know where <br> Pit latrine <br> Ventilated Improved Pit latrine (VIP) <br> Pit latrine with slab <br> Pit latrine without slab / Open pit <br> Composting toilet <br> Bucket <br> Hanging toilet, Hanging latrine <br> Mobile Toilet <br> No facility, Bush, Field, Beach <br> Other (specify) | 11 <br> 12 <br> 13 <br> 14 <br> 14 <br> 15 <br>  <br> 21 <br> 22 <br> 23 <br> 31 <br> 41 <br> 41 <br> 51 <br> 61 <br> 95 <br> 1 <br> 96 | $\begin{gathered} \text { 95 } \rightarrow \text { Next } \mathrm{Module} \end{gathered}$ |
| WS9. DO YOU SHARETHIS FACLLTY WITH OTHERS WHO ARE NOT MEMBERS OF YOUR HOUSEHOLD? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 | $\underset{\text { 2-Next }}{2 \rightarrow \text { Module }}$ |
| WS10. DO YOU SHARE THIS FACILITY ONLY WITH MEMBERS OF OTHER HOUSEHOLDS THAT YOU KNOW, OR IS THE FACIILTY OPEN TO THE USE OF THE GENERAL PUBLIC? | Other households only (not public) Public facility | 1 2 |  |


| WATER AND SANITATION (contd) |  |  | ws |
| :---: | :---: | :---: | :---: |
| WS11. HOW MANY HOUSEHOLDS IN TOTAL USE THIS TOILET FACIIITY, INCLUDING YOUR OWN HOUSEHOLD? | Number of households (if less than 10) <br> Ten or more households <br> DK | $\begin{aligned} & 0 \\ & 10 \\ & 98 \end{aligned}$ |  |
| HOUSEHOLD CHARACTERISTICS |  |  |  |
| HC1A. WHAT IS THE RELIGION OF THE HEAD OF THIS HOUSEHOLD? | Catholic <br> Protestant <br> Pentecostal/Charismatic <br> Deeper Life <br> Jehovah Witness <br> SDA <br> Other Christian <br> Moslem <br> Traditional <br> Spiritualist <br> Other religion (specify) <br> No Religion 97 | $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 17 \\ & 21 \\ & 31 \\ & 32 \\ & 96 \end{aligned}$ |  |
| HC1B. TO WHAT ETHNIC GROUP DOES THE HEAD OF THIS HOUSEHOLD BELONG? <br> Refer to Manual for Ethnic classifications | Akan <br> Ga/Dangme <br> Ewe <br> Guan <br> Gruma <br> Mole Dagbani <br> Grusi <br> Mand <br> Non-Ghanaian <br> Other ethnic group (specify) | 11 12 13 14 15 21 22 23 24 24 96 |  |
| HC2. How many rooms In THIS HOUSEHOLD ARE USED FOR SLEEPING? | Number of rooms -_ |  |  |
| HC3. Main material of the dwelling floor. <br> Record observation. | Natural Floor <br> Earth/sand/mud/mud bricks <br> Rudimentary floor <br> Wood planks <br> Palm / Bamboo <br> Stone <br> Finished floor <br> Parquet or polished wood <br> Vinyl titles/Asphalt strips <br> Ceramic tiles/marble tiles/porcelain <br> Cement/Concrete <br> Terrazzo <br> Burnt Bricks <br> Other (specify) | $\begin{aligned} & 11 \\ & 21 \\ & 22 \\ & 23 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 36 \\ & 37 \\ & 96 \end{aligned}$ |  |
| HC4. Main material of the roof. <br> Record observation. | Natural Roof <br> Thatch / Palm leaf/Raffia <br> Rudimentary Roof <br> Palm/Bamboo <br> Wood planks <br> Mud/mud bricks/earth <br> Cardboard/Polythene sheets Finished Roof <br> Metal Sheet <br> Parquet/Polished Wood <br> Ceramic tiles <br> Cement <br> Roofing titles <br> Slate/asbestos <br> Other (specify) | $\begin{aligned} & 12 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 31 \\ & 32 \\ & 34 \\ & 34 \\ & 36 \\ & 37 \\ & 36 \end{aligned}$ |  |
| HC5. Main material of the exterior walls. <br> Record observation. | Natural Wall <br> Cane / Palm / Trunks Earth/mud/mud bricks <br> Rudimentary Wal <br> Palm/Bamboo with mud <br> Stone with mud <br> Plywood <br> Cardboard <br> Re-used wood <br> Finished Wall <br> Stone with lime / cement Burned Bricks <br> Cement blocks/concrete. <br> Other (specify) Wood planks | $\begin{aligned} & 12 \\ & 13 \\ & 21 \\ & 22 \\ & 22 \\ & 24 \\ & 25 \\ & 26 \\ & 32 \\ & 33 \\ & 34 \\ & 36 \\ & 96 \end{aligned}$ |  |


| HOUSEHOLD CHARACTERISTICS（cont＇d） |  |  |  |
| :---: | :---: | :---: | :---: |
| HC6．What TYPE OF FUEL DOES YOUR HOUSEHOLD MAINLY USE FOR COOKING？ | Electricity <br> Liquefied Petroleum Gas（LPG） <br> Biogas <br> Kerosene <br> Charcoal <br> Wood／Firewood <br> Straw／Shrubs／Grass <br> Animal waste <br> Agricultural crop residue／sawdust <br> No food cooked in household <br> Other（specify） | $\begin{aligned} & 01 \\ & 02 \\ & 04 \\ & 04 \\ & 05 \\ & 07 \\ & 08 \\ & 09 \\ & 10 \\ & 11 \\ & 95 \\ & 96 \end{aligned}$ | $\begin{aligned} & 01 \rightarrow \mathrm{HC8} \\ & 02 \rightarrow \mathrm{HC8} \\ & 04 \rightarrow \mathrm{HC8} \\ & 05 \rightarrow \mathrm{HC} 8 \end{aligned}$ |
| HC6A．IN THIS HOUSEHOLD，IS FOOD COOKED ON AN OPEN FIRE，A COAL POT OR A CLOSED STOVE？ | Open fire Coal pot <br> Closed stove <br> Other（specify） |  |  |
| HC7．IS THE COOKING USUALLY DONE INTHE HOUSE，IN A SEPARATE BULLING，OR outdoors？ KITCHEN？ <br> If＇In the house＇，probe：IS IT DONE IN A SEPARATE ROOM USED AS A | In the house In a separate room used as kitchen Elsewhere in the house <br> In a separate building <br> Outdoors <br> Other（specify） |  |  |
| HC8．Does Your household have： | A．Electricity <br> B．Radio <br> C．Black and white television <br> C1．Colour Television <br> D．Land／Fixed Telephone <br> E．Refrigerator／freezer <br> F．Washing Machine <br> G．Laptop Computer <br> H．Desktop Computer <br> I．Video Deck <br> J．DVD／VCD Player <br> K．Sewing Machine | Yes No <br> 1 2 |  |
|  | A．A watch <br> B．Mobile Telephone <br> C．Bicycle <br> D．Motorcycle or Scooter <br> E．Animal drawn－cart <br> F．Car／Truck <br> G．Canoe／Boat with motor <br> H．Canoe／Boat without a motor | Yes No <br> 1 2 |  |
| HC10．What Is THE OCCUPANCY STATUS OF Y OUR HOUSEHOLD IN THIS DWELING？ | Own <br> Rent <br> Squatting <br> Caretaker <br> Rent Free <br> Other（specify） | $\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 04 \\ & 05 \\ & 06 \\ & 96 \\ & \hline \end{aligned}$ |  |
| HC11．DOES ANY MEMBER OF THIS HOUSEHOLD OWN ANY PIECE OF LAND THAT IS USED OR CAN BE USED FOR AGRICULTURE？ | $\begin{array}{\|l\|} \hline \text { Yes } \\ \text { No } \end{array}$ |  | $2 \rightarrow \mathrm{HC12A}$ |
| HC12．HOW MANY（HECTARES POLES／ACRES／PLOT）OF AGRICULTURAL LAND DO MEMBERS OF THIS HOUSEHOLD OWN？ <br> If less than 1 ，record＂ 00 ＂．If 95 or more，record＇ 95 ＇．If unknown，record＇ 98 for Number． <br> If Unit is not known，circle＂ 998 ＂． | Hectares <br> Poles <br> Acres <br> Plot <br> Ropes <br> DK | Unit Number $1=-$ $2=-$ $3-=$ $4=-$ 998 |  |
| HC12A．APART FROM THE PLOT DESCRIBED IN HC11 ABOVE，DOES ANY MEMBER OF THIS HOUSEHOLD OWN ANY PIECE OF LAND THAT IS USED OR CAN BE USED FOR RESIDENTIAL AND／OR COMMERCIAL PURPOSES？ |  | 1 | $2 \rightarrow \mathrm{HC13}$ |


| HOUSEHOLD CHARACTERISTICS（conts） |  |  |  |
| :---: | :---: | :---: | :---: |
| HC12B．HOW MANY（HECTARES POLES／ACRES／PLOT／ROPES）OF RESIDENTIAL PLOTS DO MEMBERS OF THIS HOUSEHOLD OWN？ <br> If less than 1 ，record＂ 00 ＂．If 95 or more，record＇ 95 ＇．If unknown，record＇ 98 ＇ for Number． <br> If Unit is not known，circle＂ 998 ＂． | Hectares <br> Poles <br> Acre <br> Plot <br> Ropes <br> DK | Unit Number <br> 2 ——— <br> 3 4 <br> 4 $\qquad$ <br> 998 $\qquad$ |  |
| HC13．DOES THIS HOUSEHOLD OWN ANY LIVESTOCK，HERDS，OTHER FARM ANIMALS， OR POULTRY？ | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $2 \rightarrow \mathrm{HC} 15$ |
|  | Cattle，milk cows，or bulls Horses，donkeys，or mules <br> Goats <br> Sheep <br> Chickens／Roosters <br> Pigs <br> Rabbits <br> Ducks <br> Other（specify） | Number 二二 二二 二二 |  |
| HC15．DOES ANY MEMBER OF THIS HOUSEHOLD HAVE A BANK ACCOUNT？ | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $1$ |  |
| HC16．OVER THE PAST 12 MONTHS，HAS ANY MEMBER OF THIS HOUSEHOLD RECEIVED ANY FORM OF SUPPORT（KIND OR CASH）FROM NON－HOUSEHOLD MEMBER？ | $\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $1$ |  |
| HC17．OVER THE PAST 12 MONTHS，HAS ANY MEMBER OF THIS HOUSEHOLD RECEIVED ANY FORM OF SUPPORT（KIND OR CASH）FROM GOVERNMENT OR OTHER ORGANIZATION？ | $\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $1$ | $\begin{aligned} & 2 \rightarrow H C 19 \\ & 8 \rightarrow H C 19 \end{aligned}$ |
| HC18．FROM WHICH SOURCE DID THE HOUSEHOLD MEMBER（S）RECEIVE THIS FORM OF SUPPORT？ <br> Circle all that apply． | LEAP <br> District Assembly NGO <br> Religious group <br> Social group <br> Other（specify） <br> DK | $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$ |  |
| HC19．OVER THE PAST 12 MONTHS，HAS ANY MEMBER OF THIS HOUSEHOLD SENT OUT ANY FORM OF SUPPORT（KIND OR CASH）TO NON－HOUSEHOLD MEMBERS？ | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ |  |



INSECTICIDE TREATED NETS (cont'd)
TN5. Observe or ask the brand/type
of mosquito net.
If brand is unknown and
$\begin{gathered}\text { you cannot observe the net, show } \\ \text { pictures of typical net types/brands }\end{gathered}$ to respondent.

NSA.
TN5A.
NET?

| TN6A. HOW MUCH DID IT COST YOU TO ACQUIRE THIS NET (GHC)? <br> If received free of charge, record " $00^{\prime \prime}$ |  | $\begin{aligned} & \text { Cedis } \quad---- \\ & \text { DK................... } 9998 \end{aligned}$ | $\begin{aligned} & \text { Cedis } \quad---- \\ & \text { DK................... } 9998 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| TN7. Check TN5 for type of net | $\begin{aligned} & \square \text { Long-lasting (11-18) } \\ & \rightarrow \text { TN11 } \\ & \square \text { Pre-treated (21-28) } \\ & \square \text { Else } \rightarrow \text { Continue } \end{aligned}$ | $\begin{aligned} & \square \text { Long-lasting (11-18) } \\ & \rightarrow \text { TNN11 } \\ & \square \text { Pre-treated (21-28) } \\ & \rightarrow \text { Els } \\ & \square \text { Else } \rightarrow \text { Continue } \end{aligned}$ | $\begin{gathered} \square \text { Long-lasting (11-18) } \\ \rightarrow \text { TN11 } \\ \square \text { Pre-treated (21-28) } \\ \rightarrow \text { TN9 } \\ \square \text { Else } \rightarrow \text { Continue } \end{gathered}$ |  |
| TN8. WHEN YOU GOT THE NET, WAS IT ALREADY TREATED WITH AN INSECTICIDE TO KILL OR REPEL MOSOUITOES? | Yes <br> No <br> DK / Not sure | Yes <br> DK/Not sure | Yes <br> No <br> DK / Not sure | 1 2 8 |
| tNo. SINCE YOU GOT THE NET, HAS IT EVER BEEN SOAKED OR DIPPED IN A LIQUID TO KILL OR REPEL MOSQUITOES? | Yes <br> No <br> DK / Not sure $\qquad$ | Yes <br> No $\qquad$ $\rightarrow$ TN11 <br> DK / Not sure $\qquad$ | Yes <br> No $\qquad$ $\rightarrow T \mathrm{~N} 11$ <br> DK / Not sure $\qquad$ $\rightarrow$ TN11 | 1 2 8 |




| TN |  |
| :---: | :---: |
| Long-lasting treated nets |  |
| Olyset | 11 |
| Permanet | 12 |
| Interceptor | 13 |
| Netprotect | 14 |
| Duranet | 15 |
| Icon Life | 16 |
| Other (specify) |  |
| DK brand | 18 |
| Pre-treated nets |  |
| Dawa | 21 |
| Dawa Plus | 22 |
| MOH/NGO treated net | 23 |
| Other (specify) | 26 |
| DK brand | 28 |
| Other nets | 31 |
| DK brand/type | 98 |
| Public Sector |  |
| Govt. Hospita//Clinic | 11 |
| Govt. Health Centre | 12 |
| Govt. Health Post/CHPS | 13 |
| Fieldworker/Outreach |  |
| /Peer Education | 14 |
| Campaign | 15 |
| Other public | 16 |
| Private Medical Sector |  |
| Private Hosp/Clinic | 21 |
| Pharmacy/Chemical/ |  |
| Drug store/shop | 22 |
| Other private medical | 26 |
| Other Source |  |
| NGO/CBAs | 31 |
| Shop/Market | 32 |
| Street Vendor | 33 |
| Other Institution | 34 |
| Other | 36 |
| Don't know | 98 |
| Months ago |  |
| More than 94 mo ago | 95 |
| DK/Not sure | 98 |



| TN14. DURING THE LAST 12 MONTHS, HAS ANY MEMBER OF YOUR HOUSEHOLD DISPOSED OFF ANY TREATED MOSQUITO NETS? | Yes No DK | 1 2 8 | $\begin{array}{\|c\|c\|} \hline 2 \rightarrow \text { Next } \\ \quad \text { Module } \\ 8 \rightarrow \text { Next } \\ \text { Module } \end{array}$ |
| :---: | :---: | :---: | :---: |
| TN15. NOW I WANT TO TALK ABOUT THE LAST TREATED NET THAT YOU DISPOSED OFF. <br> HOW DID YOU DISPOSE OFF YOUR LAST TREATED MOSQUITO NET? | Burned <br> Buried <br> Garbage/refuse dump Reused for other purposes <br> Other (specify) | 1 2 3 4 6 |  |
| TN16. HOW LONG DID YOU USE IT BEFORE DISPOSING IT OFF? | Less than 2 years <br> 2 to 4 years <br> More than 4 years | 1 2 3 |  |
| TN17. WHAT WAS THE MAIN REASON FOR DISPOSING OFF THIS NET? | Torn <br> Could not repel mosquitoes anymore Got a new one <br> Other (specify) | 3 |  |


| INDOOR RESIDUAL SPRAYING |  |  | IR |
| :---: | :---: | :---: | :---: |
| IR1. AT ANY TIME IN THE PAST 12 MONTHS, HAS ANYONE COME INTO YOUR DWELLING TO SPRAY THE INTERIOR WALLS AGAINST MOSQUITOES? | Yes <br> No <br> DK | 1 2 8 | $\begin{gathered} \text { 2 } \rightarrow \text { Next } \\ \text { Module } \\ 8 \rightarrow \text { Next } \\ \text { Module } \end{gathered}$ |
| IR2. WHO SPRAYED THE INTERIOR WALLS OF YOUR DWELLING? Circle all that apply. | Government worker / program Private company Non-governmental organization Private individual <br> Other (specify) <br> DK | A B C D X L Z |  |



- If there is only one child age $2-14$ years in the household, skip table 2 and go to $C D 8$; write down'1' and continue with CD 9

Table 2: Selection of Random Child for Child Discipline Questions

- Use Table 2 to select one child between the ages of 2 and 14 years, if there is more than one child in that age range in the household.
- Check the last digit of the household number (HH2) from the cover page. This is the number of the row you should go to in the table below.
- Find the box where the row and the column meet and circle the number that appears in the box. This is the rank number of the child (CD1) about whom the questions will be asked.

| CD7. | Total Number of Eligible Children in the Household (CD6) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Last digit of household number (HH2) | 1 | 2 | 23 | 4 | 5 | 6 | 7 | $8+$ |
| 0 | 1 | 2 | 2 | 4 | 43 | 6 | 5 | 4 |
| 1 | 1 | 1 | 3 | 1 | 4 | 1 | 6 | 5 |
| 2 | 1 | 2 | 1 | 2 | 25 | 2 | 7 | 6 |
| 3 | 1 | 1 | 2 | 3 | $3 \quad 1$ | 3 | 1 | 7 |
| 4 | 1 | 2 | 3 | 4 | 4 | 4 | 2 | 8 |
| 5 | 1 | 1 | 1 | 1 | 3 | 5 | 3 | 1 |
| 6 | 1 | 2 | 2 | 2 | 24 | 6 | 4 | 2 |
| 7 | 1 | 1 | 3 | 3 | 3 | 1 | 5 | 3 |
| 8 | 1 | 2 | 1 | 4 | 4 | 2 | 6 | 4 |
| 9 | 1 | 1 | 2 | 1 | 1 2 | 3 | 7 | 5 |

CD8. Record the rank number of the selected child

| CHILD DISCIPLINE (cont'd) |  |  | CD |
| :---: | :---: | :---: | :---: |
| CD9. Write the name and line number of the child selected for the module from CD3 and CD2, based on the rank number in CD8. | Name <br> Line number |  |  |
| CD10. ADULTS USE CERTAIN WAYS TO TEACH CHILDREN THE RIGHT BEHAVIOUR ORTO ADDRESS A BEHAVIOUR PROBLEM. IWILL READ VARIOUS METHODS THAT ARE USED AND I WANT YOU TO TELL ME IF YOU OR ANYONE ELSE IN YOUR HOUSEHOLD HAS USED THIS METHOD WITH (name) IN THE PAST MONTH. <br> CD11. TOOK AWAY PRIVILEGES, FORBADE SOMETHING (name) LIKED OR DID NOT ALLOW HIM/ her to leave house. | Yes No | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD11A. IGNORED/REFUSED TO COMMUNICATE TO (name). | Yes | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD12. EXPLAINED WHY (name)'S BEHAVIOR WAS WRONG. | $\begin{aligned} & \text { Yes } \\ & \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD13. SHOOK HIM/HER. | Yes | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD14. SHOUTED, YELLED AT OR SCREAMED AT HIM/HER. | Yes | $1$ |  |
| CD15. GAVE HIM/HER SOMETHING ELSE TO DO. | Yes | $2$ |  |
| CD16. SPANKED, HIT, PUSHED OR SLAPPED HIM/HER ON THE BOTTOM WITH BARE HAND. | Yes | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD17. HIT HIM/HER ON THE BOTTOM OR ELSEWHERE ON THE BODY WITH SOMETHING LIKE A BELT, COMB, HAIRBRUSH, CANE, STICK OR OTHER HARD OBJECT. | $\begin{aligned} & \text { Yes } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD18. CALLED HIM/HER DUMB, LAZY, OR ANOTHER NAME LIKE THAT. | Yes | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD19. HIT OR SLAPPED HIM/HER ON THE FACE, HEAD OR EARS. | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD20. HIT OR SLAPPED HIM/HER ON THE HAND, ARM, OR LEG. | Yes | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD21. BEAT HIM/HER UP, THAT IS HIT HIM/HER OVER AND OVER AS HARD AS ONE COULD. | $\begin{aligned} & \text { Yes } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |
| CD22. DO YOU BELIEVE THAT IN ORDERTO BRING UP, RAISE, OR EDUCATE A CHILD PROPERLY, THE CHILD NEEDS TO BE PHYSICALLY PUNISHED? | Yes <br> No <br> Don't know / <br> No opinion | $1$ |  |

\begin{tabular}{|c|c|c|c|}
\hline HAND WASHING \& \& \& Hw \\
\hline HW1. PLEASE SHOW ME WHERE MEMBERS OF YOUR HOUSEHOLD MOST OFTEN WASH THEIR HANDS. \& \begin{tabular}{l}
Observed \\
Not observed \\
Not in dwelling / plot / yard No permission to see Other reason
\end{tabular} \& 1

2
3

6 \& $$
\begin{aligned}
& 2 \rightarrow \mathrm{HW} 4 \\
& 3 \rightarrow \mathrm{HW} 4 \\
& 6 \rightarrow \mathrm{HW} 4
\end{aligned}
$$ <br>

\hline | HW2. Observe presence of water at the specific place for hand washing. |
| :--- |
| Verify by checking the tap/pump, or basin, bucket, water container or similar objects for presence of water. | \& | Water is available |
| :--- |
| Water is not available | \& 1

2 \& <br>

\hline | HW3. Record if soap or detergent or other traditional detergents are present at the specific place for hand washing. |
| :--- |
| Circle all that apply. |
| Skip to Next Module if any soap or detergent code (A, B, C, D, E or X) is circled. If "None" ( Y ) is circled, continue with HW4. | \& | Washing Soap (e.g. Key soap) |
| :--- |
| Detergent (Powder / Liquid / Paste) |
| Liquid hand washing soap |
| Ash |
| Toilet Soap (e.g. Lux) |
| Other (specify) |
| None | \& A

B
C
D
E
E
X

Y \& | $\mathrm{A} \rightarrow \mathrm{HH} 19$ |
| :--- |
| $\mathrm{B} \rightarrow \mathrm{HH} 19$ |
| $\mathrm{C} \rightarrow \mathrm{HH} 19$ |
| $\mathrm{D} \rightarrow \mathrm{H} 19$ |
| $\mathrm{E} \rightarrow \mathrm{HH} 19$ |
| $\mathrm{X} \rightarrow \mathrm{HH} 19$ | <br>

\hline HW4. DO YOU HAVE ANY SOAP OR DETERGENT OR ANY OTHER TRADITIONAL DETERGENTS IN YOUR HOUSEHOLD FOR WASHING HANDS? \& | Yes |
| :--- |
| No | \& 1

2 \& $2 \rightarrow \mathrm{HH} 19$ <br>

\hline HW5. CAN YOU PLEASE SHOW ITTO ME? Record observation. Circle all that apply. \& | Washing Soap (e.g. Key soap) |
| :--- |
| Detergent (Powder / Liquid / Paste) |
| Liquid handwashing soap |
| Toilet Soap (e.g. Lux) |
| Ash |
| Other (specify) |
| Not able / Does not want to show | \& A

B
C
E
D
D
X
Y \& <br>
\hline HH19. Record the time. \& Hour and minutes __-:_ \& \& <br>
\hline SALt Iodization \& \& \& SI <br>

\hline | SII. WE WOULD LIKE TO CHECK WHETHER THE SALT USED IN YOUR HOUSEHOLD IS IODIZED. MAY I HAVE A SAMPLE OF THE SALT USED TO COOK MEALS IN YOUR HOUSEHOLD? |
| :--- |
| Once you have tested the salt, circle the number that corresponds to the test outcome. | \& | Not iodized 0 PPM |
| :--- |
| More than 0 PPM \& less than 15 PPM |
| 15 PPM or more |
| No salt in the house |
| Salt not tested | \& 2

3
6
7 \& $6 \rightarrow \mathrm{HH2O}$ <br>

\hline | SI1A. Has the household been selected for male questionnaire? |
| :--- |
| Check HH5A=1 Yes $\rightarrow$ Collect salt sample from the household for further $t$ No $\rightarrow$ Skip to HH 20 | \& esting. \& \& <br>


\hline SI2. HAS THE SALT SAMPLE BEEN COLLECTED FROM THIS HOUSEHOLD? \& | Yes |
| :--- |
| No Refused | \& 1

2
3 \& <br>
\hline
\end{tabular}

## SALT IODIZATION (cont'd)

## HH2O. Does any eligible woman age $15-49$ reside in the household?

Check Household Listing Form, column HL7 for any eligible woman
You should have a questionnaire with the Information Panel filled in for each eligible woman.

```
\square Y e s ~ \rightarrow G o ~ t o ~ Q U E S T I O N N A I R E ~ F O R ~ I N D I V I D U A L ~ W O M E N ~
Administer the questionnaire to the first eligible woman.
\square N o \rightarrow C o n t i n u e .
```

HH21. Does any child under the age of 5 reside in the household?
Check Household Listing Form, column HL9 for any eligible child under age 5 , You should have a questionnaire with the Information Panel filled in for each eligible child.
$\square$ Yes $\rightarrow$ Go to QUESTIONNAIRE FOR CHILDREN UNDER FIVE
Administer the questionnaire to mother or caretaker of the first eligible child
$\square$ No $\rightarrow$ Continue.

HH22. [IF THIS HOUSEHOLD WAS SELECTED FOR THE MALE QUESTIONNAIRE] Does any eligible man age 15 -59 reside in the household?
Check Household Listing Form, column HL7A for any eligible man.
You should have a questionnaire with the Information Panel filled in for each eligible man.
Yes $\rightarrow$ Go to QUESTIONNAIRE FOR INDIVIDUAL MEN
Administer the questionnaire to the first eligible man.
$\square \mathrm{No} \rightarrow$ End the interview by thanking the respondent for his/her cooperation.
Gather together all questionnaires for this household and complete HH8 TO HH15B on the cover page

| Interviewer's Observations |
| :--- |
|  |
|  |

- 1 IMICS

This questionnaire is to be administered to all women age 15 through 49 (see Household Listing Form, column HL7). A separate questionnaire should be used for each eligible woman.
WM1. Cluster Number:
WM3. Woman's name:
WM5. Interviewer name and number
Name of Region: $\qquad$ WM4. Woman's line number: WM6. Day / Month / Year of interview: Name of District:

Repeat greeting if not already read to this woman:
WE ARE FROM GHANA STATISTICAL SERVICE. WE ARE WORKING ON A PROJECT CONCERNED WITH FAMILY HEALTH AND EDUCATION. I WOULD LIKE TO TALK TO YOU ABOUT THESE SUBJECTS. THE INTERVIEW WILL TAKE ABOUT 45 MINUTES. ALL THE INFORMATION WE OBTAIN WILL REMAIN STRICTLY CONFIDENTIAL AND YOUR ANSWERS WILL NEVER BE SHARED WITH ANYONE OTHER THAN OUR PROJECT TEAM.

## MAY I START NOW?

$\square$ Yes, permission is given $\rightarrow$ Go to WM10 to record the time and then begin the interview.
If yes ask for all documents for her and for her children as IDs, maternity card, child's immunization card, birth certificate, antenatal card, baptismal card and any other card on which the child's records are written
$\square$ No, permission is not given $\rightarrow$ Complete WM7. Discuss this result with your supervisor.


| WOMANS BACKGROUND |  |  | wB |
| :---: | :---: | :---: | :---: |
| WB1. IN WHAT MONTH AND YEAR WERE YOU BORN? |  |  |  |
| WB2. HOW OLD ARE YOU? <br> Probe: HOW OLD WERE YOU AT YOUR LAST BIRTHDAY? <br> Compare and correct WB1 and/or WB2 if inconsistent | Age (in completed years) _- |  |  |
| WB3. HAVE YOU EVER ATTENDED SCHOOL? (INCLUDING PRESCHOOL) | Yes | 2 | 2区WB7 |
| WB4. WHAT IS THE HIGHEST LEVEL OF SCHOOL YOU ATTENDED? | Preschool <br> Primary <br> Middle/JSS/JHS <br> Secondary/SSS/SHS <br> Voc/Comm/Tech <br> Post Secondary (Nursing/Teacher Trg) <br> Tertiary | 0 1 2 3 4 5 6 | 0\&WB7 |


| WOMANS BACKGROUND (cont'd) |
| :--- |
| WB5. WHAT IS THE HIGHEST CLASS/YEAR YOU COMPLETED AT THAT <br> LEVEL? |
| If no class/year completed at that level, <br> enter" 0 " |
| WB6. Check WB4: |
| $\quad \square$ Secondary or Higher (WB4=3 or WB4=4 or WB4=5 or WB4=6) $\rightarrow$ Go to WB8 |
|  |
| $\quad \square$ Primary /Middle/JSS/JHS (WB4=1 or WB4=2 $\rightarrow$ Continue with WB7 |


| WB7. NOW I WOULD LIKE YOU TO READ THIS SENTENCE TO ME. |  |  |
| :---: | :---: | :---: |
| Show sentence on the card to the respondent | Cannot read at all <br> Able to read only parts of sentence | 1 2 |
| If respondent cannot read whole sentence, probe: | Able to read only parts of sentence <br> Able to read whole sentence | 3 |
| CAN YOU READ PART OF THE SENTENCE TO ME? | No sentence in required language (specify language) | 4 |
|  | Blind / mute, visually / speech impaired | 5 |
| WM8.WHAT IS YOUR RELIGION? | Catholic | 11 |
|  | Protestant | 12 |
|  | Pentecostal/Charismatic | 13 |
|  | Deeper Life | 14 |
|  | Jehovah Witness | 15 |
|  | SDA | 16 |
|  | Other Christian | 17 |
|  | Moslem | 21 |
|  | Traditional | 31 |
|  | Spiritualist | 32 |
|  | Other religion (specify) | 96 |
|  | No Religion | 97 |
| WM9.WHAT IS YOUR ETHNIC GROUP? | Akan | 1 |
|  | Ga/Dangme | 12 |
|  | Ewe | 13 |
|  | Guan | 14 |
|  | Gruma | 15 |
|  | Mole Dagbani | 21 |
|  | Grusi | 22 |
|  | Mande Non-Ghanaian | 23 24 |
|  | Other ethnic group (specify) | 96 |

## ACCESS TO MASS MEDIA AND USE OF INFORMATION/COMMUNICATION TECHNOLOGY

## MT1. Check WB7:

$\square$ Question left blank (Respondent has Secondary or Higher education) $\rightarrow$ Continue with MT2
$\square$ Able to read or no sentence in required language (codes 2,3 or 4$) \rightarrow$ Continue with MT2
$\square$ Cannot read at all or blind (codes 1 or 5 ) $\rightarrow$ Go to MT3 MT2. DO YOU READ A NEWSPAPER OR MAGAZINE ALMOST EVERY DAY, AT LEAST ONCE A WEEK, LESS THAN ONCE AWEEK OR NOT AT ALL?

At least once a w Less than once a week Not at all

INFANT/CHILD MORTALITY (cont'd)
CM11. JUST TO MAKE SURE THAT I HAVE THIS RIGHT, YOU HAVE HAD IN TOTAL (total number in CM10) LIVE BIRTHS DURING YOUR LIFE. IS THIS CORRECT?
$\square$ Yes. Check below:
$\square$ No live births $\rightarrow$ Go to ILLNESS SYMPTOMS Module
$\square$ One or more live births $\rightarrow$ Continue with the BIRTH HISTORY module
$\square$ No $\rightarrow$ Check responses to CM1-CM10 and make corrections as necessary before proceeding to the BIRTH HISTORY Module or ILLNESS SYMPTOMS Module

| BIRTH HISTORY |  |  |  |  |  |  |  |  |  |  |  | BH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NOW I WOULD LIKE TO RECORD THE NAMES OF ALL OF YOUR BIRTHS, WHETHER STILL ALIVE OR NOT, STARTING WITH THE FIRST ONE YOU HAD Record names of all of the births in BH . Record twins and triplets on separate lines. If there are more than 14 births, use an additional questionnaire. |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{\|l\|l\|} \hline \text { BHe } \\ \text { Line } \\ \text { No } \end{array}$ | BH1. <br> NAME WAS <br> Given <br> To Your <br> BaBr? | BH2. <br> OF THESE BIRTHS TWINS? <br> 1 Single <br> 2 Multiple | BH3. <br> IS (name) A <br> GIRL? <br> 1 Boy 2 Girl | BH4. <br> YEAR WA <br> Probe: W <br> BIRTHD | AND me) BORN? S HIS/HER | вн5. Is (name) Stlue? <br> 1 Yes 2 No | BH6. How oldwas $\underset{\substack{\text { (name) } \\ \text { ATHIS } \\ \hline}}{ }$ HER LAST BRITHACAY? Record age in years. | BH7. LIVING WITH YOU? <br> 1 Yes | BH8. Record household line number HL1) <br> Record " 00 " if child is not listed. | $\stackrel{\text { B4. }}{\substack{\text { B. } \\ \text { tdea }}}$ HOW OLD [f"1 yarr" How MANY WAS ( name Record days monthi iecar | S (name) E DIED? <br> be: MONTHS OLD <br> fless than 1 months if less or years | BH 10 <br> WERE THERE ANY OTHER LIVE BIRTHS previous birth) AND (name), INCLUDING ANY CHILDREN WHO DIED AFTER BIRTH? 1 Yes 2 No |
| Line | Name | 5 m | в 6 | Month | Year | r n | Age | r n | Line No | Unit | Number | y N |
| 01 |  | 12 | 2 |  |  | $\underset{\text { BH9 }}{\underset{\text { BH }}{2}}$ |  | 2 | $\rightarrow$ Next Line | $\begin{aligned} & \text { Days } \\ & \begin{array}{l} \text { Month } \\ \text { Mears } \end{array} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 1 \\ & \begin{array}{l} 1 \\ \text { Add } \\ \text { Birth } \end{array} \text { Next } \\ & \text { Birth } \end{aligned}$ |
| 02 |  | 12 | 2 |  |  | $\underset{\text { ВНн }}{\stackrel{2}{2}}$ |  | 2 | $\rightarrow$ вн1о | $\begin{array}{ll} \text { Days } & 1 \\ \text { Menths } \\ \text { Mears } & 2 \end{array}$ |  | $\begin{aligned} & \text { Add } \\ & \begin{array}{l} \text { Adext } \\ \text { Birth } \\ \text { Birt } \end{array} \end{aligned}$ |
| 03 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  | 2 | $\rightarrow$ в ${ }^{\text {r }}$ | $\begin{aligned} & \text { Days } \\ & \begin{array}{l} \text { Nonth } \\ \text { Mears } \end{array} \\ & \text { Year } \end{aligned}$ |  |  |
| 04 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  | 12 | $\rightarrow$ в ${ }^{\text {r }}$ | $\begin{aligned} & \text { Days } \\ & \begin{array}{l} \text { Nonth } \\ \text { Mears } \end{array} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 1^{1}{ }^{2} \\ & \text { Add } \\ & \text { Birth Next } \\ & \text { Birth } \end{aligned}$ |
| 05 |  | 12 | 2 |  |  | $1 \underset{\text { BH9 }}{\underset{~}{2}}$ |  | 2 | $\rightarrow$ в ${ }^{\text {r }}$ | $\begin{aligned} & \text { Days } \\ & \text { Nenth } \\ & \text { Mears } \\ & \text { Yeas } \end{aligned}$ |  |  |
| 06 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  | 2 | $\rightarrow$ в 110 | Days $\begin{aligned} & \text { Dansth } \\ & \text { Years } \\ & \text { Yeas } \\ & 3\end{aligned}$ |  |  |
| 07 |  | 2 | 12 |  |  | $\underset{\text { вНя }}{\underset{\sim}{2}}$ |  |  | $\rightarrow$ в ${ }^{\text {¢ }}$ | $\begin{array}{ll} \text { Days } & 1 \\ \text { Menths } \\ \text { Mears } \end{array}$ |  | $\begin{aligned} & \text { Add }^{1}{ }^{2} \text { Nerx } \\ & \text { Birth Birth } \end{aligned}$ |
| 08 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  | 2 | $\rightarrow$ в ${ }^{\text {¢ }}$ | $\begin{aligned} & \text { Days } \\ & \begin{array}{l} \text { Nonth } \\ \text { Mears } \end{array} \\ & \text { Year } \end{aligned}$ |  | $\begin{aligned} & \mathbf{1}^{1} \begin{array}{c} \text { Add } \\ \text { Birth } \\ \text { Birth } \end{array} \end{aligned}$ |
| 09 |  | 12 | 12 |  |  | $\mathrm{l}_{\mathrm{l}}^{\underset{\text { BH9 }}{2}}$ |  | 2 | $\rightarrow$ в ${ }^{\text {r }}$ | $\begin{array}{ll} \text { Days } & 1 \\ \text { Menths } \\ \text { Mears } \end{array}$ |  | $\begin{aligned} & 1 \text { Add } \\ & \begin{array}{l} \text { Alith } \\ \text { Bext } \\ \text { Birth } \end{array} \end{aligned}$ |
| 10 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  | 2 | $\rightarrow$ BH10 | $\begin{array}{ll} \text { Days } & 1 \\ \text { Menars } & 2 \\ \text { Meas } \end{array}$ |  | $\begin{aligned} & 1^{1} \text { Add } \\ & \text { Birth } \\ & \text { Bext } \\ & \text { Birth } \end{aligned}$ |
| 11 |  | 12 | 12 |  |  | $1 \underset{\text { BH9 }}{2}$ |  | 2 | $\rightarrow$ в 110 | $\begin{aligned} & \text { Days } \\ & \text { Nenth } \\ & \text { Mears } \\ & \text { Yeas } \end{aligned}$ |  | $\begin{array}{ll} 1 & 2 \\ \text { Add } \\ \text { Birth } & \text { Next } \\ \text { Birth } \end{array}$ |
| 12 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  |  | $\rightarrow$ в ${ }^{\text {¢ }}$ | $\begin{array}{ll} \text { Days } & 1 \\ \text { Menths } \\ \text { Meas } & 2 \end{array}$ |  | $\begin{aligned} & \mathbf{1}^{2} \begin{array}{c} \text { Adt } \\ \text { Birth } \\ \text { Birth } \end{array} \end{aligned}$ |
| ${ }^{13}$ |  | 12 | 12 |  |  | ${ }_{1}^{1} \underset{\text { BH9 }}{2}$ |  | 2 | $\rightarrow$ в ${ }^{\text {¢ }}$ | $\begin{array}{ll} \text { Days } & 1 \\ \text { Menths } \\ \text { Mears } \end{array}$ |  | $\begin{array}{ll} 1 & { }^{2} \\ \begin{array}{c} \text { Add } \\ \text { Birth } \end{array} & \begin{array}{c} \text { Brith } \end{array} \end{array}$ |
| 14 |  | 12 | 12 |  |  | $\underset{\text { BH9 }}{\underset{\rightarrow}{2}}$ |  |  | $\rightarrow$ в 110 | $\begin{aligned} & \text { Days } \\ & \begin{array}{l} \text { Nonth } \\ \text { Mears } \end{array} \\ & \hline \end{aligned}$ |  | $\begin{array}{ll} 1 & 2 \\ \text { Add } \\ \text { Antat } \\ \text { Birth } & \text { Berth } \end{array}$ |

## BIRTH HISTORY (cont'd)

CM12. Compare number in CM10 with number of births in the Birth History above and check:
$\square$ Numbers are same $\rightarrow$ Continue with CM13
$\square$ Numbers are different $\rightarrow$ Probe and reconcile
CM13. Check BH4 in BIRTH HISTORY: Last birth occurred within the last 2 years, that is, since (day and month of interview) in 2009
$\square$ No live birth in last 2 years. $\rightarrow$ Go to ILLNESS SYMPTOMS Module.
$\square$ One or more live births in last 2 years. $\rightarrow$ Record name of last born child and continue with CM14 Name of child $\qquad$ _
CM14: Check BH5 in BIRTH HISTORY if last child born during the last 2 years(since 2009) is alive or dead

## $\square$ Alive $\rightarrow$ Go to Next Module.

$\square$ Not Alive $\rightarrow$ Continue with CM15
CM15 WAS (NAME) REGISTERED WITH THE BIRTHS AND DEATHS REGISTRY WHEN S/HE DIED?


MATERNAL AND NEWBORN HEALTH
This module is to be administered to all women with a live birth in the 2 years preceding date of interview.
Check child mortality module CM13 and record name of last-born child here $\qquad$ Use this child's name in the following questions, where indicated.
MN1. DID YOU SEE ANYONE FOR ANTENATAL CARE DURING YOUR PREGNANCY WITH (name)?

| ATERNAL AND NEWBORN HEALTH (cont'd) |  |  | MN |
| :---: | :---: | :---: | :---: |
| MN2. WHOM DID YOU SEE? <br> Probe: <br> ANYONE ELSE? <br> Probe for the type of person seen and circle all answers given. | Health professional: <br> Doctor <br> Nurse / Midwife <br> Auxiliary midwife <br> Other person <br> Traditional birth attendant Community health worker <br> Other (specify) | $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { F } \\ & \text { G } \\ & \end{aligned}$ |  |
| MN3. HOW MANY TIMES DID YOU RECEIVE ANTENATAL CARE DURING THIS PREGNANCY? | Number of times $-\quad$ <br> DK 98 |  |  |
| MN4. AS PART OF YOUR ANTENATAL CARE DURING THIS PREGNANCY, WERE ANY OF THE FOLLOWING DONE AT LEAST ONCE: <br> [A] WAS YOUR BLOOD PRESSURE MEASURED? <br> [B] DID YOU GIVE A URINE SAMPLE? <br> [C] DID YOU GIVE A BLOOD SAMPLE? | Blood pressure <br> Urine sample <br> Blood sample | Yes No <br> 1 2 <br> 1 2 <br> 1 2 |  |
| MN5. DO YOU HAVE A CARD OR OTHER DOCUMENT WITH YOUR OWN IMMUNIZATIONS LISTED? <br> MAY I SEE IT PLEASE? <br> If a card is presented, use it to assist with answers to the following questions. | Yes (card seen) <br> Yes (card not seen) <br> No <br> DK |  |  |
| MN6. WHEN YOU WERE PREGNANT WITH (name), DID YOU RECEIVE ANY INJECTION IN THE ARM OR SHOULDER TO PREVENT THE BABY FROM GETTING TETANUS, THAT IS CONVULSIONS AFTER BIRTH? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ | $\begin{aligned} & 2 \rightarrow \mathrm{MN9} 9 \\ & 8 \rightarrow \mathrm{MN9} \end{aligned}$ |
| MN7. HOW MANY TIMES DID YOU RECEIVE THIS TETANUS INJECTION DURING YOUR PREGNANCY WITH (name)? <br> If 7 or more times, record ' 7 '. | Number of times $\qquad$ DK | 8 | $8 \rightarrow$ MN9 |
| MN8. How many tetanus injections during last pregnancy were reported in MN7?At least two tetanus injections during last pregnancy. $\rightarrow$ Go to MN12Fewer than two tetanus injections during last pregnancy. $\rightarrow$ Continue with MN9 |  |  |  |
| MN9. DID YOU RECEIVE ANY TETANUS INJECTION AT ANY TIME BEFORE YOUR PREGNANCY WITH (name), EITHER TO PROTECT YOURSELF OR ANOTHER BABY? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $2$ | $\begin{aligned} & 2 \rightarrow \mathrm{MN} 12 \\ & 8 \rightarrow \mathrm{MN} 12 \end{aligned}$ |
| MN10. HOW MANY TIMES DID YOU RECEIVE A TETANUS INJECTION BEFORE YOUR PREGNANCY WITH (name)? <br> If 7 or more times, record '7? | Number of times $\qquad$ <br> DK | 8 | $8 \rightarrow$ MN12 |
| MN11. HOW MANY YEARS AGO DID YOU RECEIVE THE LAST TETANUS INJECTION BEFORE YOUR PREGNANCY WITH (name)? | Years ago_- |  |  |
| MN12. Check MN1 for presence of antenatal care during this pregna Yes, antenatal care received. $\rightarrow$ Continue with MN13 No antenatal care received $\rightarrow$ Go to MN17 |  |  |  |
| MN13. DURING ANY OF THESE ANTENATAL VISITS FOR THE PREGNANCY, DID YOU TAKE ANY MEDICINE IN ORDER TO PREVENT YOU FROM GETTING MALARIA? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $8$ | $\begin{aligned} & 2 \rightarrow \mathrm{MN} 17 \\ & 8 \rightarrow \mathrm{MN} 17 \end{aligned}$ |
| MN14. WHICH MEDICINES DID YOU TAKE TO PREVENT MALARIA? <br> Circle all medicines taken. If type of medicine is not determined, show typical anti-malarial to respondent. | SP / Fansidar / Malafan <br> Chloroquine <br> Other (specify) <br> DK | A B X Z | $\begin{aligned} & \mathrm{B} \rightarrow \mathrm{MN} 17 \\ & \mathrm{X} \rightarrow \mathrm{MN} 17 \\ & \mathrm{Z} \rightarrow \mathrm{MN} 17 \end{aligned}$ |



| MATERNAL AND NEWBORN HEALTH (cont'd) |  |  | MN |
| :---: | :---: | :---: | :---: |
| MN23. HAS YOUR MENSTRUAL PERIOD RETURNED SINCE THE BIRTH OF (name)? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 |  |
| MN24. DID YOU EVER BREASTFEED (name)? | $\begin{aligned} & \text { Yes } \\ & \text { ner } \end{aligned}$ | 1 | $2 \rightarrow$ Next Module |
| MN25. HOW LONG AFTER BIRTH DID YOU FIRST PUT (name) TO THE BREAST? <br> If less than 1 hour, record ' 00 ' hours. If less than 24 hours, record hours. Otherwise, record days. | Immediately 000 <br> Hours $1--$ <br> Days $2-\overline{-}$ <br> Don't know / remember 998 |  |  |
| MN26. IN THE FIRST THREE DAYS AFTER DELIVERY, WAS (name) GIVEN ANYTHING TO DRINK OTHER THAN BREAST MILK? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 2 | 2 $\rightarrow$ Next Module |
| MN27. WHAT WAS (name) GIVEN TO DRINK? <br> Probe: <br> ANYTHING ELSE? | Milk (other than breast milk) <br> Plain water <br> Sugar or glucose water <br> Gripe water <br> Sugar-salt-water solution <br> Fruit juice <br> Infant formula <br> Tea / Infusions <br> Honey <br> Other (specify) | D E F G H I |  |

## POST-NATAL HEALTH CHECKS

PN
This module is to be administered to all women with a live birth in the 2 years preceding the date of interview.

Check child mortaity module CM13 and record name of last-born child here $\qquad$ Use this child's name in the following questions, where indicated.
PN1. Check MN18: Was the child delivered in a health facility?
$\square$ Yes, the child was delivered in a health facility (MN18=21-26 or 31-36) $\rightarrow$ Continue with PN2
$\square$ No, the child was not delivered in a health facility (MN18=11-12 or 96) $\rightarrow$ Go to PN6
PN2. NOW IWOULD LIKE TO ASK YOU SOME QUESTIONS ABOUT WHAT HAPPENED IN THE HOURS AND DAYS AFTER THE BIRTH OF (name).

YOU HAVE SAID THAT YOU GAVE BIRTH IN (name or type of facility in MN18). HOW LONG DID YOU STAY THERE AFTER THE DELIVERY?

| Hours | $1--$ |
| :--- | :--- |
| Days | $2--$ |
| Weeks | $3--$ |
| Don't know / remember | 998 |

If less than one hour, record ' 00 ' for Hours If less than one day, record hours. If less than one week, record days. Otherwise, record weeks.
PN3. I WOULD LIKE TO TALK TO YOU ABOUT CHECKS ON (name)'S HEALTH AFTER DELIVERY - FOR EXAMPLE, SOMEONE EXAMINING
(name) CHECKING THE CORD, OR SEEING IF (name) IS OK. (name), CHECKING THE CORD, OR SEEING IF (name) IS OK.

BEFORE YOU LEFT THE (name or type of facility in MN18), DID ANYONE CHECK ON (name)'S HEALTH?
PN4. AND WHAT ABOUT CHECKS ON YOUR HEALTH - IMEAN, XAMPLE ASKING

DID ANY HEALTH CARE PROVIDER CHECK ON YOU MN18)?

| POST-NATAL HEALTH CHECKS (cont'd) |  | PN |  |
| :--- | :--- | :--- | :--- | :--- |
| NOW I WOULD LIKE TO TALK TO YOU ABOUT WHAT HAPPENED <br> AFTER YOU LEFT (name or type of facility in MN18). | Yes | 1 | $1 \rightarrow$ PN11 |
| PN5. DID ANY HEALTH CARE PROVIDER CHECK ON (child's name)'S <br> HEALTH AFTER YOU LEFT (name or type of facility in MN18) ? | No | 2 | $2 \rightarrow$ PN16 |

PN6. Check MN17: Did a health professional, traditional birth attendant, or community health worker assist with the delivery?
$\square$ Yes, delivery assisted by a health
professional or other health worker $($ MN17 $=A-G) \rightarrow$ Continue with PN7
$\square$ No, delivery not assisted by a health
professional or other health worker (A-G not circled in MN17) $\rightarrow$ Go to PN10
YOU HAVE ALREADY SAID THAT (person or persons in MN17) ASSISTED WITH THE BIRTH. NOW WWOULD LIKE TO TALK KO YOU ABOUT CHECKS ON (name)'S HEALTH AFTER DELIVERY, FOR EXAMPLE EXAMINING (name), CHECKING THE CORD, OR SEEING IF (name) IS OK.

PN7. AFTER THE DELIVERY WAS OVER AND BEFORE (person or persons in MN17) LEFT YOU, DID (person or persons in MN17) CHECK ON (name)'S HEALTH?
PN8. AND DID (person or persons in MN17) CHECK ON YOUR
HEALTH BEFORE LEAVING?
BY CHECK ON YOUR HEALTH, I MEAN ASSESSING YOUR HEALTH, FOR EXAMPLE ASKING QUESTIONS ABOUT YOUR HEALTH OR EXAMINING YOU. ANYONE CHECK ON THE HEALTH OF (name)?

PN10. I WOULD LIKE TO TALK TO YOU ABOUT CHECKS ON (name)'S HEALTH AFTER DELIVERY - FOR EXAMPLE, SOMEONE EXAMINING (name), CHECKING THE CORD, OR SEEING IF THE BABY IS OK. HIS/HER HEALTH?

| Yes | 1 |  |
| :---: | :---: | :---: |
| No | 2 |  |
| Yes | 1 | $1 \rightarrow$ PN11 |
| No | 2 | $2 \rightarrow$ PN18 |
| Yes | 1 |  |
| No | 2 | $2 \rightarrow$ PN19 |
| Once | 1 | $1 \rightarrow$ PN12A |
| More than once | 2 | $2 \rightarrow$ PN12B |

PN11. DID SUCH A CHECK ON (name) HAPPEN ONLY ONCE, OR MORE THAN ONCE?

\begin{tabular}{|c|c|c|c|}
\hline POST-NATAL HEALTH CHECKS (cont'd) \& \& \& PN \\
\hline \begin{tabular}{l}
PN12A. HOW LONG AFTER DELIVERY DID THAT CHECK HAPPEN? \\
PN12B. HOW LONG AFTER DELIVERY DID THE FIRST OF THESE CHECKS HAPPEN? \\
If less than one hour, record ' \(00^{\prime}\) ' for Hours \\
If less than one day, record hours. \\
If less than one week, record days. \\
Otherwise, record weeks.
\end{tabular} \& \begin{tabular}{ll} 
Hours \& \(1--\) \\
Days \& \(2--\) \\
Weeks \& \(3--\) \\
Don't know / remember \& 998
\end{tabular} \& \& \\
\hline \begin{tabular}{l}
PN13. WHO CHECKED ON (name)'S HEALTH AT THAT TIME? \\
Probe: \\
ANYONE ELSE? \\
Probe for the type of person seen and circle all answers given.
\end{tabular} \& \begin{tabular}{l}
Health professional \\
Doctor \\
Nurse / Midwife \\
Auxiliary midwife \\
Other person \\
Traditional birth attendant \\
Community health worker \\
Relative / Friend \\
Other (specify)
\end{tabular} \& A
B
C
F
G
H
S \& \\
\hline \begin{tabular}{l}
PN14. WHERE DID THIS CHECK TAKE PLACE? \\
Probe to identify the type of source. \\
If unable to determine whether public or private, write the name of the place. \\
(Name of place)
\end{tabular} \& \begin{tabular}{l}
Home \\
Your home \\
Other home \\
Public sector \\
Govt. hospital/Polyclinic \\
Govt. clinic / health centre \\
Govt. health post//CHPS compound \\
Other public (specify) \\
Private medical sector \\
Private hospital \\
Private clinic \\
Private maternity home \\
Other private medical (specify) \\
Other (specify)
\end{tabular} \& 11
12

21
22
23
26

31
32
33
36
96 \& <br>
\hline PN15. Check MN18: Was the child delivered in a health facility?
Yes, the child was delivered in a health facility (MN18=2
No, the child was not delivered in a health facility (MN18 \& or 31-36) $\rightarrow$ Continue with PN16

$$
1-12 \text { or } 96) \rightarrow \text { Go to PN17 }
$$ \& \& <br>

\hline PN16. AFTER YOU LEFT (name or type of facility in MN18), DID ANYONE CHECK ON YOUR HEALTH? \& $$
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
$$ \& 1

2 \& $$
\begin{gathered}
\text { 1 } \rightarrow \text { PN20 } \\
\text { 2 } \rightarrow \text { Next } \\
\text { Module }
\end{gathered}
$$ <br>

\hline | PN17. Check MN17: Did a health professional, traditional birth atten |
| :--- |
| $\square$ Yes, delivery assisted by a health |
| professional or other health worker (MN17=A-G) $\rightarrow$ Contin |
| No, delivery not assisted by a health professional or other health worker (A-G not circled in MN17) $\rightarrow$ Go to PN | \& t, or community health worker assist with the with PN18 \& \& <br>


\hline PN18. AFTER THE DELIVERY WAS OVER AND (person or persons in MN17) LEFT, DID ANYONE CHECK ON YOUR HEALTH? \& | Yes |
| :--- |
| No | \& 1

2 \&  <br>

\hline | PN19. AFTER THE BIRTH OF (name), DID ANYONE CHECK ON YOUR HEALTH? |
| :--- |
| I MEAN SOMEONE ASSESSING YOUR HEALTH, FOR EXAMPLE ASKING QUESTIONS ABOUT YOUR HEALTH OR EXAMINING YOU. | \& Yes

No \& 1
2 \&  <br>
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|}
\hline CONTRACEPTION \& \& \& cP \\
\hline \begin{tabular}{l}
CP1.I WOULD LIKE TO TALK WITH YOU ABOUT ANOTHER SUBJECT FAMILY PLANNING. \\
ARE YOU PREGNANT NOW?
\end{tabular} \& \begin{tabular}{l}
Yes, currently pregnant \\
No \\
Unsure or DK
\end{tabular} \& 2 \& \[
\begin{aligned}
\& \text { 1 } \rightarrow \text { Next } \\
\& \quad \text { Module }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
CP2. COUPLES USE VARIOUS WAYS OR METHODS TO DELAY OR AVOID A PREGNANCY. \\
ARE YOU OR YOUR PARTNER CURRENTLY DOING SOMETHING OR USING ANY METHOD TO DELAY OR AVOID GETTING PREGNANT?
\end{tabular} \& \begin{tabular}{l}
Yes \\
No \\
Don't know
\end{tabular} \& 2 \& \[
\begin{gathered}
\text { 2 } \rightarrow \text { Next } \\
\text { Module } \\
8 \rightarrow \text { Next } \\
\quad \text { odulule }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
CP3. WHAT ARE YOU OR YOUR PARTNER DOING TO DELAY OR AVOID A PREGNANCY? \\
Do not prompt. \\
If more than one method is mentioned, circle each one.
\end{tabular} \& \begin{tabular}{l}
Female sterilization \\
Male sterilization \\
IUD \\
Injectable \\
Implants \\
Pill \\
Male condom \\
Female condom \\
Diaphragm \\
Foam / Jelly \\
Lactational amenorrhoea \\
method (LAM) \\
Periodic abstinence / Rhythm \\
Withdrawal \\
LNG-IUS N \\
Other (specify)
\end{tabular} \& A
B
C
D
E
F
G
H
I
J
K
L
M

X \& <br>
\hline \multicolumn{4}{|l|}{} <br>
\hline UN1. Check CP1. Currently pregnant?
Yes, currently pregnant $\rightarrow$ Continue with UN2
No, unsure or $\mathrm{DK} \rightarrow$ Go to UN5 \& \& \& <br>

\hline UN2. NOW I WOULD LIKE TO TALK TO YOU ABOUT YOUR CURRENT PREGNANCY. WHEN YOU GOT PREGNANT, DID YOU WANT TO GET PREGNANT AT THAT TIME? \& | Yes |
| :--- |
| No | \& 1 \& $1 \rightarrow$ UN4 <br>


\hline UN3. DID YOU WANTTO HAVE A BABY LATER ON OR DID YOU NOT WANT ANY (MORE) CHILDREN? \& | Later |
| :--- |
| No more | \& 1 \& <br>

\hline UN4. NOW IWOULD LIKE TO ASK SOME QUESTIONS ABOUT THE FUTURE. AFTER THE CHILD YOU ARE NOW EXPECTING, WOULD YOU LIKE TO HAVE ANOTHER CHILD, OR WOULD YOU PREFER NOT TO HAVE ANY MORE CHILDREN? \& Have another child No more / None Undecided / Don't know \& 1

2 \& $$
\begin{aligned}
& 1 \rightarrow \text { UN7 } \\
& 2 \rightarrow \text { UN13 } \\
& 8 \rightarrow \text { UN13 }
\end{aligned}
$$ <br>

\hline UN5. Check CP3. Currently using "Female sterilization"?
Yes $\rightarrow$ Go to UN13
No $\rightarrow$ Continue with UN6 \& \& \& <br>

\hline UN6. NOW IWOULD LIKE TO ASK YOU SOME QUESTIONS ABOUT THE FUTURE. WOULD YOU LIKE TO HAVE (A/ANOTHER) CHILD, OR WOULD YOU PREFER NOT TO HAVE ANY (MORE) CHILDREN? \& | Have (a/another) child |
| :--- |
| No more / None |
| Says she cannot get pregnant Undecided / Don't know | \& 1

2

3 \& $$
\begin{aligned}
& \text { 2 } \rightarrow \text { UN9 } \\
& \begin{array}{l}
\text { 3-UN11 } \\
8 \rightarrow \text { UN9 }
\end{array}
\end{aligned}
$$ <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline FEMALE GENITAL MUTILATION/CUTTING \& \& \& FG \\
\hline FG1. HAVE YOU EVER HEARD OF FEMALE CIRCUMCISION? \& Yes \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& 1 \(\rightarrow\) FG3 \\
\hline FG2. IN SOME COMMUNITIES, THERE IS A PRACTICE IN WHICH A GIRL MAY HAVE PART OF HER GENITALS CUT. HAVE YOU EVER HEARD ABOUT THIS PRACTICE? \& Yes \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \(2 \rightarrow\) Next Module \\
\hline FG3. HAVE YOU YOURSELF EVER BEEN CIRCUMCISED? \& Yes \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& 2 \(\rightarrow\) FG9 \\
\hline \begin{tabular}{l}
FG4. NOW I WOULD LIKE TO ASK YOU WHAT WAS DONE TO YOU AT that time. \\
WAS ANY FLESH REMOVED FROM THE GENITAL AREA?
\end{tabular} \& \begin{tabular}{l}
Yes \\
No \\
DK
\end{tabular} \& \[
2
\] \& \(1 \rightarrow\) FG6 \\
\hline FG5. WAS THE GENITAL AREA JUST NICKED/CUT WITHOUT REMOVING ANY FLESH? \& \[
\begin{aligned}
\& \text { Yes } \\
\& \text { No } \\
\& \text { DK }
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 8
\end{aligned}
\] \& \\
\hline FG6. WAS THE GENITAL AREA SEWN/STITCH CLOSED? If necessary, probe: WAS IT SEALED? \& \[
\begin{aligned}
\& \text { Yes } \\
\& \text { No } \\
\& \text { DK }
\end{aligned}
\] \& 1
2
8 \& \\
\hline \begin{tabular}{l}
FG7. HOW OLD WERE YOU WHEN YOU WERE CIRCUMCISED? \\
If the respondent does not know the exact age, probe to get an estimate
\end{tabular} \& \begin{tabular}{l}
Age at circumcision \\
DK / Don't remember / Not sure
\end{tabular} \& 98 \& \\
\hline FG8. WHO PERFORMED THE CIRCUMCISION? \& \begin{tabular}{l}
Health professional \\
Doctor \\
Nurse/Midwife \\
Other health professional (specify) \\
Traditional persons \\
Traditional 'circumciser' Traditional birth attendant Other traditional (specify) \\
DK
\end{tabular} \& 11
12
16

21
22
26
98 \& <br>
\hline FG9. Check CM5 for Number of daughters at home and CM7 for Number of daughters elsewhere, and sum the answers here \& Total number of living daughters \& \& <br>

\hline | FG10. JUST TO MAKE SURE THAT I HAVE THIS RIGHT, YOU HAVE (total number in FG9) LIVING DAUGHTERS. |
| :--- |
| IS THIS CORRECT? Yes One or more living daughters $\rightarrow$ Continue with FG11 Does not have any living daughters $\rightarrow$ Go to FG22 No $\rightarrow$ Check responses to CM1-CM10 and make corrections as necessary, until FG10 $=$ Yes | \& \& \& <br>


\hline | FG11. Ask the respondent to tell you the name(s) of her daughter(s), Write down the name of each daughter in FG12. Then, ask question |
| :--- |
| The total number of daughters in FG12 should be equal to | \& ginning with the youngest daughter (if G13 to FG20 for each daughter at a time number in FG9 \& \& aughter) <br>

\hline
\end{tabular}

The total number of daughters in FG12 should be equal to the number in FG9
If more than 4 daughters, use additional questionnaires

|  | Daughter \#1 | Daughter \#2 | Daughter \#3 | Daughter \#4 |
| :---: | :---: | :---: | :---: | :---: |
| FG12. Name of daughter |  |  |  |  |
| FG13. HOW OLD IS (name)? | Age | Age | Age | Age |


| FEMALE GENITAL MUTILATION/CUTTING (contd) |  |  |  |  |  |  | FG |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FG14. Is (name) younger than 15 years of age? | Yes <br> No <br> If"No" next daug | 1 <br> 2 <br> o to FG13 for ughter. If no more ers, go to FG22 | Yes <br> No <br> If" N <br> nex <br> daug | 1 <br> 2 <br> go to FG13 for ughter. If no more ers, go to FG22 | Yes <br> No <br> If"No" next daugh | 1 <br> 2 <br> o to FG13 for ughter. If no more rs, go to FG22 | No | 1 <br> 2 <br> o to FG13 for ughter. If no more rs, go to FG22 |
| FG15. IS (name) CIRCUMCISED? | Yes <br> No <br> If "No" <br> next <br> daug | 1 <br> 2 <br> o to FG13 for ughter. If no more rs, go to FG22 | Yes <br> No <br> If" N <br> next <br> daug | 1 <br> 2 <br> go to FG13 for ughter. If no more ers, go to FG22 | Yes <br> No <br> If "No" <br> next <br> daug | 1 <br> 2 <br> o to FG13 for ughter. If no more rs, go to FG22 | No | 1 <br> 2 <br> o to FG13 for ighter. If no more rs, go to FG22 |
| FG16. HOW OLD WAS (name) WHEN THIS OCCURRED? <br> If the respondent does not know the age, probe to get an estimate. | Age <br> DK | 98 |  | 98 | $\begin{aligned} & \text { Age } \\ & \text { DK } \end{aligned}$ | $98$ | Age DK | 98 |
| FG17. NOW IWOULD LIKE TO ASK YOU WHAT WAS DONE TO (name) AT THAT TIME. <br> WAS ANY FLESH REMOVED FROM THE GENITAL AREA? | Yes <br> No <br> DK | $\begin{aligned} & 19 \\ & 2 \\ & 8 \end{aligned}$ | Yes <br> No <br> DK | $\begin{array}{r} 1 \\ \text { G19 } \\ 2 \\ 8 \end{array}$ | Yes <br> No DK | $\begin{array}{r} 1 \\ 519 \\ 2 \\ 8 \end{array}$ | No DK | $\begin{aligned} & 2 \\ & 8 \end{aligned}$ |
| FG18. WAS HER GENITAL AREA JUST NICKED WITHOUT REMOVING ANY FLESH? | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 8 \end{aligned}$ | No | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ |
| FG19. WAS HER GENITAL AREA SEWN CLOSED? <br> If necessary, probe: WAS IT SEALED? | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & \\ & 8 \end{aligned}$ | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ | Yes No DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ |


| FEMALE GENITAL MUTILATION/CUTTING (contd) |  |  |  | FG |
| :---: | :---: | :---: | :---: | :---: |
| FG20. WHO PERFORMED THE CIRCUMCISION? | Health professional  <br> Doctor 11 <br> Nurse/midwife 12 <br> Other health  <br> professional  <br> (specify) 16 <br> Traditional persons  <br> Traditional  <br> 'circumciser' 21 <br> Traditional birth  <br> attendant 22 <br> Other traditional  <br> (specify) 26 <br>   | Health professional Doctor <br> Nurse/midwife Other health professional (specify) <br> Traditional persons Traditional 'circumciser' Traditional birth attendant 22 Other traditional (specify) 26 | Health professional <br> Doctor 11 <br> Nurse/midwife 12 <br> Other health <br> professional (specify) <br> Traditional persons <br> Traditional <br> 'circumciser' 21 <br> Traditional birth <br> attendant 22 <br> Other traditional (specify) | Health professional <br> Doctor 11 <br> Nurse/midwife <br> Other health <br> professional <br> (specify) <br> Traditional persons <br> Traditional <br> 'circumciser' <br> Traditional birth attendant Other traditional (specify) |
| FG21. | Go back to FG13 for next daughter. If no more daughters, go to FG22 | Go back to FG13 for next daughter. If no more daughters, go to FG22 | Go back to FG13 for next daughter. If no more daughters, go to FG22 | Go back to FG13 in first column of additional questionnaire for next daughter. If no more daughters, go to FG22 |
|  |  |  |  | Check box if additional questionnaire used |
| FG22. DO YOU THINK THIS PRACTICE SHOULD BE CONTINUED OR SHOULD IT BE DISCONTINUED? |  | Continued <br> Discontinued <br> Depends <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  |


| BEHAVIOUR CHANGE COMMUNICATION ON MALARIA |  |  | вС |
| :---: | :---: | :---: | :---: |
| BC1. NOW I WOULD LIKE YOU TO TALK ABOUT MALARIA | Eating sweet foods | A |  |
|  | Standing/ working in the sun | B |  |
| IN YOUR OPINION, WHAT CAUSES MALARIA? | Eating contaminated food | C |  |
|  | Mosquito bites | D |  |
| Probe: | Malaria parasite(p. falciparum) | E |  |
| WHAT ELSE? | Hereditary | F |  |
|  | Dirty surroundings | G |  |
|  | Weedy surroundings and stagnant water | H |  |
|  | Other (specify) | x |  |
|  | DK | Z |  |
| BC2. HOW WOULD YOU KNOW THAT SOMEONE HAS MALARIA? | Hot body fever | A |  |
|  | Vomiting/Diarrhea | B |  |
|  | Strong headaches/Dizziness | C |  |
|  | Loss of appetite | D |  |
| Probe: | Weakness of the body | E |  |
| WHAT ELSE? | Cough | F |  |
|  | Chills | G |  |
|  | Bitterness in the mouth | H |  |
|  | Other (specify) | X |  |
|  | DK | Z |  |


| BEHAVIOUR CHANGE COMMUNICATION ON MALARIA (cont'd) |  |  |  |  | BC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BC3. HOW CAN ONE PROTECT HIM/HERSELF AGAINST MALARIA? | Sleep under a mosquito net Sleep under a insecticide treated mosquito net <br> Use Mosquito repellent Avoid mosquito bites Clear Weeds around the house Fill in Stagnant waters (puddles) Keep surrounding clean Put mosquito screen window Other (specify) DK |  |  | A B C D E F G H P |  |
| BC4. CAN MALARIA BE TREATED? | $\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \text { DK } \\ & \hline \end{aligned}$ |  |  | 1 |  |
| BC5. IN THE PAST SIX MONTHS, HAVE YOU SEEN OR HEARD ANY MALARIA MESSAGES? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ |  |  | 2 | $2 \rightarrow \mathrm{BC} 10$ |
| BC6. WHAT MESSAGES ABOUT MALARIA HAVE YOU SEEN OR HEARD IN THE PAST 6 MONTHS ? <br> Probe: <br> WHAT ELSE? <br> Circle all that mentioned | If have fever go to Sleep under a in mosquito net Pregnant women malaria <br> Malaria kills <br> Other (specify) <br> None <br> DK/Don't remem | health facility cticide treated <br> should take dru <br> er | ugs to prevent | A B C D X Y |  |
| BC7. IN THE PAST SIX MONTHS, HAVE YOU SEEN/HEARD ANY OF THE FOLLOWING MALARIA MESSAGES ON TELEVISION OR RADIO: <br> [A] NANA BORO'S "AHA YE DE-NTONTOM BE WU" MUSIC VIDEO/ SONG? <br> [B] ADVERT WHERE WOMAN DOESN'T WANT TO STAY THE NIGHT WITH THE MAN UNLESS HE HAS A TREATED NET? <br> [C] SHORT DOCUMENTARIES FEATURING THE TRUE STORIES OF GHANAIAN FAMILIES CHILDREN SUFFERING EPILEPSY AND LEARNING DISABILITIES DUE TO SEVERE MALARIA? <br> (D) ADVERT WHERE PEOPLE FROM ALL WALKS OF LIFE ARE SLEEPING UNDER TREATED NETS? |  Yes on TV <br> A 1 <br> B 1 <br> C 1 <br> D 1 | Yes on radio <br> 2 <br> 2 <br> 2 <br> 2 | Yes on both <br> 3 <br> 3 <br> 3 <br> 3 | No |  |
| BC8 DURING THE PAST 6 MONTHS, HAVE YOU SEEN/HEARD ANY ADVERT ON THE USE OF ACT WITH GREEN LEAF? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ |  |  | 1 | $2 \rightarrow \mathrm{BC} 10$ |
| BC9. WHERE DID YOU SEE/HEAR THE ADVERT ON THE USE OF ACT WITH GREEN LEAF? <br> Probe: <br> ANY OTHER MEDIA? | TV <br> Radio <br> Newspaper/Mag <br> Poster /Leaflets <br> Billboard <br> Other (specify) <br> DK/Don't remem | zine <br> er |  | B C D E X Z |  |
| BC10. HAVE YOU PARTICIPATED IN ANY COMMUNITY EVENT EDUCATING COMMUNITY MEMBERS ON PREVENTION AND CONTROL OF MALARIA? | $\begin{array}{ll}\text { Yes } & 1 \\ \text { No } & 2\end{array}$ |  |  |  |  |


| ATtITUDES TOWARD DOMESTIC VIOLENCE |  |  |  |  | DV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DV1. SOMETIMES A HUSBAND IS ANNOYED OR ANGERED BY THINGS THAT HIS WIFE DOES. IN YOUR OPINION, IS A HUSBAND JUSTIFIED IN HITTING OR BEATING HIS WIFE IN THE FOLLOWING SITUATIONS: |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Yes | No | DK |  |
|  |  |  |  |  |  |
| [A] IF SHE GOES OUT WITHOUT TELLING HIM? | Goes out without telling | 1 | 2 | 8 |  |
| [B] IF SHE NEGLECTS THE CHILDREN? | Neglects children | 1 | 2 | 8 |  |
| [C] IF SHE ARGUES WITH HIM? | Argues with him | 1 | 2 | 8 |  |
| [D] IF SHE REFUSES TO HAVE SEX WITH HIM? | Refuses sex | 1 | 2 | 8 |  |
| [E] IF SHE BURNS THE FOOD? | Burns food | 1 | 2 | 8 |  |
| [F] IF SHE INSULTS HIM? | Insults him | 1 | 2 | 8 |  |
| [G] IF SHE REFUSES TO GIVE HIM FOOD? | Refuses to give food | 1 | 2 | 8 |  |
| [H] IF SHE HAS ANOTHER PARTNER? | Another partner | 1 | 2 | 8 |  |
| [I] IF SHE STEALS? | Stealing | 1 | 2 | 8 |  |
| [J] IF SHE GOSSIPS? | Gossiping | 1 | 2 | 8 |  |
| [K] OTHER, (SPECIFY)? | Other (specify | 1 | 2 | 8 |  |


| MARRIAGE/UNION |  |  | MA |
| :---: | :---: | :---: | :---: |
| MA1. ARE YOU CURRENTLY MARRIED OR LIVING TOGETHER WITH A MAN AS IF MARRIED? | Yes, currently married <br> Yes, living with a man <br> No, not in union | 1 2 3 | $3 \rightarrow$ MA5 |
| MA2. HOW OLD IS YOUR HUSBAND/PARTNER? <br> Probe: HOW OLD WAS YOUR HUSBAND/PARTNER ON HIS LAST BIRTHDAY? | $\begin{aligned} & \text { Age in years_-- } \\ & \text { DK } \end{aligned}$ |  |  |
| MA3. BESIDES YOURSELF, DOES YOUR HUSBAND/PARTNER HAVE ANY OTHER WIVES OR PARTNERS OR DOES HE LIVE WITH OTHER WOMEN AS IF MARRIED? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 2 | $2 \rightarrow$ MA7 |
| MA4. HOW MANY OTHER WIVES OR PARTNERS DOES HE HAVE? | Number $\qquad$ <br> DK <br> 98 |  | $\begin{aligned} & \rightarrow \text { MA7 } \\ & 98 \rightarrow \text { MA7 } \end{aligned}$ |
| MA5. HAVE YOU EVER BEEN MARRIED OR LIVED TOGETHER WITH A MAN AS IF MARRIED? | Yes, formerly married <br> Yes, formerly lived with a man No | 1 2 3 | $3 \rightarrow$ Next Module |
| MA6. WHAT IS YOUR MARITAL STATUS NOW: ARE YOU WIDOWED, DIVORCED OR SEPARATED? | Widowed Divorced Separated | 1 2 3 |  |
| MA7. HAVE YOU BEEN MARRIED OR LIVED WITH A MAN ONLY ONCE OR MORE THAN ONCE? | Only once <br> More than once | 1 2 |  |
| MA8. IN WHAT MONTH AND YEAR DID YOU FIRST MARRY OR START LIVING WITH A MAN AS IF MARIIED? | Date of first marriage Month $\qquad$ DK month <br> Year $\qquad$ <br> DK year 9998 |  | $\rightarrow$ Next Module |
| MA9. HOW OLD WERE YOU WHEN YOU STARTED LIVING WITH YOUR FIRST HUSBAND/PARTNER? | Age in years _- |  |  |



| SEXUAL BEHAVIOUR (cont'd) |  |  | SB |
| :---: | :---: | :---: | :---: |
| SB11. Check MA1 and MA7: <br> $\square$ Currently married or living with a man (MA1 = 1 or 2 ) <br> AND <br> Married only once or lived with a man only once $(M A 7=1) \rightarrow$ Go to SB13 <br> $\square$ Else $\rightarrow$ Continue with SB12 |  |  |  |
| SB12. HOW OLD IS THIS PERSON? <br> If response is DK , probe: ABOUT HOW OLD IS THIS PERSON? | Age of sexual partner $\qquad$ <br> DK <br> 98 |  |  |
| SB13. OTHERTHAN THESE TWO PERSONS, HAVE YOU HAD SEXUAL INTERCOURSE WITH ANY OTHER PERSON IN THE LAST 12 MONTHS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ |  | 2 $\rightarrow$ SB15 |
| SB14. IN TOTAL, WITH HOW MANY DIFFERENT PEOPLE HAVE YOU HAD SEXUAL INTERCOURSE IN THE LAST 12 MONTHS? | Number of partners_- |  |  |
| SB15. IN TOTAL, WITH HOW MANY DIFFERENT PEOPLE HAVE YOU HAD SEXUAL INTERCOURSE IN YOUR LIFETIME? <br> If a non-numeric answer is given, probe to get an estimate. If number of partners is 95 or more, write '95'. | Number of lifetime partners $\qquad$ <br> DK <br> 98 |  |  |
| SB16. DO YOU KNOW OF A PLACE WHERE A PERSON CAN GET CONDOMS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 | 2 $\rightarrow$ Next <br> Module |
| SB17. WHERE CAN YOU GET CONDOM FROM? <br> Probe for any other source. | Public Sector <br> Govt. Hospital/Polyclinic <br> Govt. Clinic/ Health Center <br> Govt. Health Post/CHPS <br> Family Planning Clinic <br> Mobile Clinic/ Field Worker/ Outreach/ <br> Peer Educator <br> Other Public (specify ) <br> Private Medical Sector <br> Private Hospital/Clinic/Doctor <br> Pharmacy/ Chemical/Drug Store <br> FP/PPAG Clinic <br> Maternity Home <br> Other Private Medical <br> Other Source <br> Shop/Market <br> Church/ Community Volunteer <br> Friend/Relative <br> Other (specify) | A B C D E F F G H I J K L M N X |  |
| SB18. IF YOU WANTED TO, COULD YOU YOURSELF GET A CONDOM? | Yes <br> No Don't know/Unsure | 1 |  |
| HIV/AIDS |  |  | HA |
| HA1. NOW I WOULD LIKE TO TALK WITH YOU ABOUT SOMETHING ELSE. <br> HAVE YOU EVER HEARD OF AN ILLNESS CALLED AIDS? | Yes <br> No | 1 2 | $2 \rightarrow$ Next Module |
| HA2. CAN PEOPLE REDUCE THEIR CHANCE OF GETTING THE AIDS VIRUS BY HAVING JUST ONE UNINFECTED SEX PARTNER WHO HAS NO OTHER SEX PARTNERS? | Yes <br> No <br> DK | 1 |  |
| HA3. CAN PEOPLE GET THE AIDS VIRUS BECAUSE OF WITCHCRAFT OR OTHER SUPERNATURAL MEANS? | Yes <br> No <br> DK | 1 2 |  |
| HA4. CAN PEOPLE REDUCE THEIR CHANCE OF GETTING THE AIDS VIRUS BY USING A CONDOM EVERYTIME THEY HAVE SEX? | Yes <br> No <br> DK | 1 |  |



| HIV/AIDS (cont'd) |  |  | HA |
| :---: | :---: | :---: | :---: |
| HA16. I DON'T WANT TO KNOW THE RESULTS, BUT WERE YOU TESTED FOR THE AIDS VIRUS AS PART OF YOUR ANTENATAL CARE? | Yes <br> No <br> DK | $1$ | $\begin{aligned} & 2 \rightarrow \mathrm{HA} 19 \\ & 8 \rightarrow \mathrm{HA} 19 \end{aligned}$ |
| HA17.I DON'T WANTTO KNOW THE RESULTS, BUT DID YOU GET THE RESULTS OF THE TEST? | Yes <br> No <br> DK | $\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2 \rightarrow \text { HA22 } \\ & 8 \rightarrow \text { HA222 } \end{aligned}$ |
| HA18. REGARDLESS OF THE RESULT, ALL WOMEN WHO ARE TESTED ARE SUPPOSED TO RECEIVE COUNSELING AFTER GETTING THE RESULT. <br> AFTER YOU WERE TESTED, DID YOU RECEIVE COUNSELLING? | Yes <br> No <br> DK | $1$ | $\xrightarrow{1 \rightarrow \text { HA22 }} \begin{aligned} & 2 \rightarrow \text { HA22 }\end{aligned}$ <br> $8 \rightarrow H A 22$ |
| HA19. Check MN17: Birth delivered by health professional ( $\mathrm{A}, \mathrm{B}$ or C )?Yes, birth delivered by health professional $\rightarrow$ Continue with HA2ONo, birth not delivered by health professional $\rightarrow$ Go to HA24 |  |  |  |
| HA2O. I DON'T WANT TO KNOW THE RESULTS, BUT WERE YOU TESTED FOR THE AIDS VIRUS BETWEEN THE TIME YOU WENT FOR DELIVERY AND BEFORE THE BABY WAS BORN? | $\begin{aligned} & \hline \text { Yes } \\ & \text { No } \end{aligned}$ | 1 | $2 \rightarrow H A 24$ |
| HA21.I DON'T WANT TO KNOW THE RESULTS, BUT DID YOU GET THE RESULTS OF THE TEST? |  |  |  |
| HA22. HAVE YOU BEEN TESTED FOR THE AIDS VIRUS SINCE THAT TIME YOU WERE TESTED DURING YOUR PREGNANCY? | Yes | 1 2 | $1 \rightarrow$ HA25 |
| HA23. WHEN WAS THE MOST RECENT TIME YOU WERE TESTED FOR THE AIDS VIRUS? | Less than 12 months ago <br> 12-23 months ago <br> 2 or more years ago | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{array}{\|c} \hline 1 \rightarrow \text { Next } \\ \text { Module } \\ 2 \rightarrow \text { Next } \\ \text { Module } \\ 3 \rightarrow \text { Next } \\ \text { Module } \end{array}$ |
| HA24. I DON'T WANT TO KNOW THE RESULTS, BUT HAVE YOU EVER BEEN TESTED TO SEE IF YOU HAVE THE AIDS VIRUS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 | $2 \rightarrow$ HA27 |
| HA25. WHEN WAS THE MOST RECENT TIME YOU WERE TESTED? | Less than 12 months ago <br> 12-23 months ago <br> 2 or more years ago | 1 |  |
| HA26.I DON'T WANTTO KNOW THE RESULTS, BUT DID YOU GET THE RESULTS OF THE TEST? | Yes <br> No | 1 |  |
| HA27. DO YOU KNOW OF A PLACE WHERE PEOPLE CAN GOTO GET TESTED FOR THE AIDS VIRUS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 |  |


| NATIONAL HEALTH INSURANCE (cont'd) |  |  | NH |
| :---: | :---: | :---: | :---: |
| NH9. IN YOUR OPINION, DO NHIS CARD HOLDERS GET BETTER/ SAME/WORSE SERVICES WHEN THEY ATTEND HEALTH CARE FACILITIES? | Better <br> Same <br> Worse <br> Never used <br> Don't know | 1 2 3 4 8 | $1 \rightarrow$ WM11 <br> $2 \rightarrow$ WM11 <br> $3 \rightarrow$ WM11 <br> $4 \rightarrow$ WM11 <br> $8 \rightarrow$ WM11 |
| NH10. WHY HAVE YOU NOT REGISTERED OR RENEWED REGISTRATION WITH THE NHIS? <br> Probe: <br> ANY OTHER REASON? | Not heard of NHIS <br> Premium too expensive <br> Do not trust NHIS <br> Do not know where to register <br> Registration office too far <br> Do not need health insurance <br> NHIS does not cover the services I need <br> NHIS does not cover the facilities I use H <br> Other (specify) | A B C D E G | A $\rightarrow$ WM11 <br> $\mathrm{B} \rightarrow \mathrm{WM} 11$ <br> $\mathrm{C} \rightarrow \mathrm{WM} 11$ <br> D $\rightarrow$ WM11 <br> $\mathrm{E} \rightarrow \mathrm{WM} 11$ <br> $\mathrm{F} \rightarrow \mathrm{WM} 11$ <br> G $\rightarrow$ WM11 <br> $\mathrm{H} \rightarrow \mathrm{WM} 11$ <br> $\mathrm{X} \rightarrow \mathrm{WM} 11$ |
| NH11. IS YOUR INSURANCE CURRENTLY VALID FOR 2011? | Yes <br> No Don't know/ Not sure | 1 2 8 |  |
| WM11. Record the time. | Hour and minutes _ _ : _ _ |  |  |
| WM12. Check Household Listing Form, column HL9. <br> Is the respondent the mother or caretaker of any child age 0-4 living in this household? <br> $\square \mathrm{Yes} \rightarrow$ Go to QUESTIONNAIRE FOR CHILDREN UNDER FIVE for that child and start the interview with this respondent. No $\rightarrow$ End the interview with this respondent by thanking her for her cooperation. Check for the presence of any other eligible woman, or children under-5 in the household. If none, check for the presence of any eligible male 15-59 years in the household (i.e. in Households where the Male Questionnaire is to be administered). |  |  |  |

## -llmics

UNDER-FIVE CHILD INFORMATION PANEL lives with them and is under the age of 5 years (see Household Listing Form, column HL6). A separate questionnaire should be used for each eligible child.

| F1. Cluster Number | UF2. Household number: |  |
| :---: | :---: | :---: |
| UF3. Child's name: | UF4. Child's line number: |  |
| Name |  |  |
| UF5. Mother's / Caretaker's name: | UF6. Mother's / Caretaker's line number: |  |
| Name |  |  |
| UF7. Interviewer name and number: __ _ _ | UF8. Day / Month / Year of interview: |  |
| Name | ____/ ____/2011 |  |
| Name of Region | Name of District: |  |
| Repeat greeting if not already read to this respondent: | If greeting at the beginning of the household questionnaire has already been read to this woman, then read the following: |  |
| WE ARE FROM GHANA STATISTICAL SERVICE. WE ARE WORKING ON | NOW I WOULD LIKE TO TALK TO YOU MORE ABOUT (child's |  |
| WOULD LIKE TOTALK TO YOU ABOUT (name)'S HEALTH AND WELL- | name from UF3)'S HEALTH AND OTHER TOPICS. THIS INTERVIEW |  |
| BEING. THE INTERVIEW WILL TAKE ABOUT 20 MINUTES. ALL THE | WILL TAKE ABOUT 20 MINUTES. AGAIN, ALL THE INFORMATION WE OBTAIN WILL REMAIN STRICTLY CONFIDENTIAL AND YOUR |  |
| INFORMATION WE OBTAIN WILL REMAIN STRICTLY CONFIDENTIAL |  |  |
| AND YOUR ANSWERS WILL NEVER BE SHARED WITH ANYONE |  |  |
| OTHER THAN OUR PROJECT TEAM. | ANSWERS WILL NEVER BE SHARED WITH ANYONE OTHER THANOUR PROJECT TEAM. |  |
| MAY I START NOW? |  |  |
| $\square$ Yes, permission is given $\rightarrow$ Go to UF12 to record the time and then begin the interview. |  |  |
| If yes ask for child's immunization card, birth certificate, antenatal card, baptismal card and any other card on which the child's records written. |  |  |
| $\square$ No, permission is not given $\rightarrow$ Complete UF9. Discuss this result with your supervisor. |  |  |
| UF9. Result of interview for children under 5 | Completed | 01 |
|  | Not at home | 02 |
| Codes refer to mother/caretaker. | Refused | 03 |
|  | Partly completed | 04 |
|  | Incapacitated | 05 |
|  | Other (specify) | 96 |
| UF10. Field edited by (Name and number): | UF11. Data entry clerk (Name and number): |  |
| Name | Name |  |
| UF12. Record the time. | Hour and minutes ___: |  |

## AGE <br> AG1. NOW I WOULD LIKE TO ASK YOU SOME QUESTIONS ABOUT

Date of birth
Day _-
DK day 98
Month
--
Year _---

| AGE (cont'd) |  |  | AG |
| :---: | :---: | :---: | :---: |
| AG2. HOW OLD IS (name)? <br> Probe: <br> HOW OLD WAS (name) AT HIS / HER LAST BIRTHDAY? <br> Record age in completed years. <br> Record '0' if less than 1 year. <br> Compare and correct AG1 and/or AG2 if inconsistent. | Age (in completed years) - |  |  |
| Birth recistration |  |  | BR |
| BR1. DOES (NAME) HAVE A BIRTH CERTIFICATE? <br> If yes, ask: <br> MAY I SEE IT? | Yes, seen <br> Yes, not seen <br> No <br> DK | 1 2 3 8 | $\begin{aligned} & 1 \rightarrow \mathrm{BR} 2 \mathrm{~A} \\ & 2 \rightarrow \mathrm{BR} 2 \mathrm{~A} \end{aligned}$ |
| BR2 HAS (NAME)'S BIRTH BEEN REGISTERED WITH THE BIRTHS AND DEATHS REGISTRY? | Yes <br> No <br> DK | 1 2 8 | $\begin{aligned} & 2 \rightarrow \mathrm{BR} 2 \mathrm{~B} \\ & 8 \rightarrow \mathrm{BR} 2 \mathrm{~B} \end{aligned}$ |
| BR2A. WAS (NAME)'S BIRTH REGISTERED WITHIN THE FIRST YEAR OF BIRTH? | Yes <br> No <br> DK | 1 2 8 | $\begin{aligned} & 1 \rightarrow B R 4 \\ & 2 \rightarrow B R 4 \\ & 8 \rightarrow B R 4 \end{aligned}$ |
| BR2B. WHAT IS THE MAIN REASON WHY (NAME)'S BIRTH IS NOT REGISTERED? | Costs too much <br> Must travel too far <br> Did not know it should be registered <br> Did not want to pay fine <br> Did not find important <br> Do not know where to register <br> Other (specify) <br> DK | $\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $6 \rightarrow$ BR4 |
| BR3. DO YOU KNOW WHERE TO REGISTER YOUR CHILD'S BIRTH? | Yes | 1 |  |
| BR4. HOW MUCH DOES IT COST TO REGISTER A CHILD WITH THE BIRTHS AND DEATHS REGISTRY IF THE CHILD IS UNDER 1 YEAR OLD? | Free <br> Less than GHC10 <br> GHC10 <br> More than GHC10 <br> DK | 4 |  |
| EARLY CHILDHOOD DEVELOPMENT |  |  | EC |
| EC1. HOW MANY CHILDREN'S BOOKS OR PICTURE BOOKS DO YOU HAVE FOR (name)? | None 00 <br> Number of children's books 0 $\qquad$ <br> Ten or more books 10 |  |  |



| EARLY CHILDHOOD DEVELOPMENT (cont'd) |  |  | EC |
| :---: | :---: | :---: | :---: |
| EC8. I IWOULD LIKE TO ASK YOU SOME QUESTIONS ABOUT THE HEALTH AND DEVELOPMENT OF YOUR CHILD. CHILDREN DO NOT all develop and learn at the same rate. for example, some walk earlier than others. These questions are related to SEVERAL ASPECTS OF YOUR CHILD'S DEVELOPMENT. <br> CAN (name) IDENTIFY OR NAME AT LEAST TEN LETTERS OF THE ALPHABET? | Yes DK | 1 2 8 |  |
| EC9. CAN (name) READ AT LEAST FOUR SIMPLE, POPULAR WORDS? | Yes <br> No <br> DK | 1 2 8 |  |
| EC10. DOES (name) KNOW THE NAME AND RECOGNIZE THE SYMBOL OF ALL NUMBERS FROM 1 TO 10? | Yes <br> No <br> DK | 8 |  |
| EC11. CAN (name) PICK UP A SMALL OBJECT WITH TWO FINGERS, LIKE A STICK OR A ROCK (STONE) FROM THE GROUND? | Yes <br> No <br> DK |  |  |
| EC12. IS (name) OFTEN TOO SICK TO PLAY? | Yes <br> No <br> DK | 8 |  |
| EC13. DOES (name) FOLLOW SIMPLE DIRECTIONS ON HOW TO DO SOMETHING CORRECTLY? | Yes <br> No <br> DK |  |  |
| EC14. WHEN GIVEN SOMETHING TO DO, IS (name) ABLE TO DO IT INDEPENDENTLY? | Yes <br> No <br> DK | 1 2 |  |
| EC15. DOES (name) GET ALONG WELL WITH OTHER CHILDREN? | Yes <br> No <br> DK | 2 |  |
| EC16. DOES (name) KICK, BITE, OR HIT OTHER CHILDREN OR ADULTS? | Yes <br> No <br> DK | 1 2 |  |
| EC17. DOES (name) GET DISTRACTED EASILY? | Yes <br> No <br> DK | 2 |  |


| BREASTFEEDING |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| BF1. HAS (NAME) EVER BEEN BREASTFED? | Yes | 1 | BF |
|  | No | 2 | $2 \rightarrow$ BF3 |
|  | DK | 8 | $8 \rightarrow$ BF3 |
| BF2. IS (NAME) STILL BEING BREASTFED? | Yes | 1 |  |
|  | No | 2 |  |
|  | DK | 8 |  |


| BREASTFEEDING (contid) |  |  |  |  | BF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BF10. DID (name) DRINK OR EAT VITAMIN OR MINERAL SUPPLEMENTS OR ANY MEDICINES YESTERDAY, DURING THE DAY OR NIGHT? | Yes <br> No <br> DK |  | $1$ |  |  |
| BF11. DID (name) DRINK ORS (ORAL REHYDRATION SOLUTION) YESTERDAY, DURING THE DAY OR NIGHT? | Yes <br> No <br> DK |  | $1$ <br> 8 |  |  |
| BF18. YESTERDAY, DURING THE DAY OR NIGHT, DID (name) DRINK ANYTHING FROM A BOTTLE WITH A NIPPLE? | Yes No DK |  | $2$ |  |  |
| diet diversity |  |  |  |  | DD |
| NOW I WOULD LIKE TO ASK YOU ABOUT (OTHER) LIQUIDS AND FOODS THAT (NAME) MAY HAVE HAD YESTERDAY DURING THE DAY OR THE NIGHT. I AM INTERESTED TO KNOW WHETHER YOUR CHILD HAD THE ITEM EVEN IF COMBINED WITH OTHER FOODS. DD1. DID (NAME) DRINK/EAT (NAME OF FOOD) DURING THE DAY OR THE NIGHT BEFORE: |  |  |  |  |  |
| A. MILK SUCH AS TINNED, POWDERED OR FRESH ANIMAL MILK? <br> B. INFANT FORMULA (SMA, LACTOGEN...)? <br> C. BABY CEREAL (NESTLE CERELAC, FRESOCREM...)? <br> D. TEA OR COFFEE? <br> E. ANY OTHER LIQUIDS (JUICE, COCOA, COCONUT WATER...)? <br> F. BREAD, RICE, NOODLES OR OTHER FOODS MADE FROM GRAIN (KENKEY, BANKU, KOKO, TUO ZAAFI, AKPLE, WEANIMIX...)? |  | Yes | No | DK | DD2 <br> HOW MANY <br> TIMES DID (name) DRINK |
| C. BABY CEREAL (NESTLE CERELAC, FRESOCREM...)? <br> D. TEA OR COFFEE? <br> E. ANY OTHER LIQUIDS (JUICE, COCOA, COCONUT WATER...)? <br> F. BREAD, RICE, NOODLES OR OTHER FOODS MADE FROM GRAIN (K TUO ZAAFI, AKPLE, WEANIMIX...)? <br> G. PUMPKIN, RED OR YELLOW YAMS, CARROTS, AND ORANGE OR YEI POTATOES...? <br> H. WHITE POTATOES, WHITE YAMS, MANIOC, CASSAVA, COCOYAM, F FOODS MADE FROM ROOTS, TUBERS OR PLANTAIN? <br> I. ANY DARK GREEN LEAFY VEGETABLES (KONTOMIRE, ALEEFU, AYO LEAVES)? <br> J. RIPE MANGOES, PAWPAW? <br> K. ANY OTHER FRUITS OR VEGETABLES (BANANAS, AVOCADOS, TOM APPLES...)? <br> L. LIVER, KIDNEY, HEART OR OTHER ORGAN MEATS? <br> M. ANY MEAT SUCH AS BEEF, PORK, LAMB, GOAT, CHICKEN OR DUC N. EGGS? <br> O. FRESH OR DRIED FISH OR SHELLFISH (PRAWNS, LOBSTERS...)? <br> P. ANY FOODS MADE FROM BEANS, PEAS, LENTILS OR NUTS? <br> Q. CHEESE, YOGURT OR OTHER MILK PRODUCTS? <br> R. ANY OIL, FATS OR BUTTER, OR FOODS MADE WITH ANY OF THIS? <br> S. ANY SUGARY FOODS AS CHOCOLATE, SWEET CANDIES, PASTRIES, <br> T. ANY OTHER SOLID OR SEMI-SOLID FOODS? | KEY, BANKU, KOKO, <br> OW SWEET <br> U OR ANY OTHER <br> , KALE, CASSAVA <br> TOES, ORANGES, <br> AKES OR BISCUITS? | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 2 2 | 8 8 8 8 8 8 8 8 8 |  |
| CHECK DD1 : FOOD CONSUMED DURING THE DAY OR NIGHT BEFOR At least one Yes in F to $\mathrm{T} \rightarrow$ Continue with BF17 Not a single Yes in F to $\mathrm{T} \rightarrow$ Go to next module |  |  |  |  |  |
| BF17. HOW MANY TIMES DID (name) EAT SOLID OR SEMI-SOLID (SO YESTERDAY, DURING THE DAY OR NIGHT? | , MUSHY) FOOD | Number of | of times |  |  |
| CA1. IN THE LASTTWO WEEKS, HAS (name) HAD DIARRHOEA? | Yes <br> No <br> DK |  |  | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \rightarrow \text { CA7 } \\ & 8 \rightarrow \text { CA7 } \end{aligned}$ |

NOW I WOULD LIKE TO ASK YOU ABOUT (OTHER) LIQUIDS AND FOODS THAT (NAME) MAY HAVE HAD YESTERDAY DURING THE DAY OR THE NIGHT. I AM INTERESTED TO KNOW WHETHER YOUR CHILD HAD THE ITEM EVEN IF COMBINED WITH OTHER FOODS.
A. MILK SUCH AS TINNED, POWDERED OR FRESH ANIMAL MILK?
D. TEA OR COFFEE?
F. BREAD, RICE, NOODLES OR OTHER FOODS MADE FROM GRAIN (KENKEY, BANKU, KOKO, TUO ZAAFI, AKPLE, WEANIMIX....)?
G. PUMPKIN, R
POTATOES...?
H. WHITE POTATOES, WHITE YAMS, MANIOC, CASSAVA, COCOYAM, FUFU OR ANY OTHER FOODS MADE FROM ROOTS, TUBERS OR PLANTAIN? LEAVES)?
J. RIPE MANGOES, PAWPAW
K. ANY OTHER FRUITS OR VEGETABLES (BANANAS, AVOCADOS, TOMATOES, ORANGES,
M. ANY MEAT SUCH AS BEEF, PORK, LAMB, GOAT, CHICKEN OR DUCK?
O. FRESH OR DRIED FISH OR SHELLFISH (PRAWNS, LOBSTERS...)

CHEESE YOGURT OR OTHER MI Y PRODUCTS?
Q. CHEESE, YOGURT ORTTER OR FOODS MADE WITH ANY OF THIS?
R. ANY OLL, FATS OR BUTTER O
S. ANY SUGARY FOODS AS CHOCOLATE, SWEET CANDIES, PASTRIES, CAKES OR BISCUITS?
T. ANY OTHER SOLID OR SEMI-SOLID FOODS

CHECK DD1 :FOOD CONSUMED DURING THE DAY OR NIGHT BEFORE
$\square$ Anteastor

BF17. HOW MANYTMES DID (name) EAT SOLID OR SEMI-SOLID (SOFT, MUSHY) FOOD



\begin{tabular}{|c|c|c|c|}
\hline CARE OF ILLNESS (cont'd) \& \& \& CA \\
\hline \begin{tabular}{l}
CA13. WHAT MEDICINE WAS (name) GIVEN? \\
Probe: \\
ANY OTHER MEDICINE? \\
Circle all medicines given. Write brand name(s) of all medicines mentioned. \\
(Names of medicines)
\end{tabular} \& \begin{tabular}{l}
Antibiotic \\
Pill / Syrup \\
Injection \\
Anti-malarials \\
Paracetamol / Panadol / Acetaminophen \\
Aspirin \\
Ibuprofen \\
Other (specify) \\
DK
\end{tabular} \&  \& \[
\begin{aligned}
\& \mathrm{M} \rightarrow \mathrm{CA} 14 \\
\& \mathrm{P} \rightarrow \mathrm{CA} 14 \\
\& \mathrm{Q} \rightarrow \mathrm{CA} 14 \\
\& \mathrm{R} \rightarrow \mathrm{CA} 14 \\
\& \mathrm{X} \rightarrow \mathrm{CA} 14 \\
\& \mathrm{Z} \rightarrow \mathrm{CA} 14
\end{aligned}
\] \\
\hline \begin{tabular}{l}
CA13A. FROM WHERE DID YOU GET THE ANTIBIOTIC (PILL/SYRUP OR INJECTION)? \\
Probe: \\
ANYWHERE ELSE?
\end{tabular} \& \begin{tabular}{l}
Public sector \\
Govt. hospital/Polyclinic \\
Govt. clinic/health centre \\
Govt. health post/CHPS Compound \\
Community health worker \\
Mobile / Outreach clinic \\
Other public (specify) \\
Private medical sector \\
Private hospital / clinic/ physician \\
Private pharmacy/Chemical shop \\
Mobile/Outreach clinic \\
Herbal Centre/HerbalClinic \\
Other private (specify) \\
Other source \\
Relative / Friend \\
Shop \\
Traditional practitioner \\
Other (specify)
\end{tabular} \&  \& \\
\hline CA14. Check AG2: Child aged under 3?
Yes \(\rightarrow\) Continue with CA15
No \(\rightarrow\) Go to Next Module \& \& \& \\
\hline CA15.THE LAST TIME (name) PASSED STOOLS, WHAT WAS DONE TO DISPOSE OF THE STOOLS? \& \begin{tabular}{l}
Child used toilet / latrine \\
Put / Rinsed into toilet or latrine \\
Put / Rinsed into drain or ditch \\
Thrown into garbage (solid waste) \\
Buried \\
Left in the open \\
Other (specify) \\
DK
\end{tabular} \& 01
02
03
04
05
06

96
98 \& <br>
\hline \multicolumn{4}{|l|}{MALARIA} <br>

\hline ML1. IN THE LAST TWO WEEKS, HAS (name) BEEN ILL WITH A FEVER AT ANY TIME? \& | Yes |
| :--- |
| No |
| DK | \& 1

2

8 \& $$
\begin{gathered}
\text { 2 } \rightarrow \text { Next } \\
\text { Module } \\
8 \rightarrow \text { Next } \\
\text { Module }
\end{gathered}
$$ <br>

\hline ML2. AT ANY TIME DURING THE ILLNESS, DID (name) HAVE BLOOD TAKEN FROM HIS/HER FINGER OR HEEL FORTESTING? \& | Yes |
| :--- |
| No |
| DK | \& 1

2
8 \& <br>
\hline
\end{tabular}

| MALARIA (cont'd) |  |  | ML |
| :---: | :---: | :---: | :---: |
| ML3. DID YOU SEEK ANY ADVICE OR TREATMENT FOR THE ILLNESS FROM ANY SOURCE? | Yes <br> No <br> DK | 1 2 8 | $\begin{aligned} & 2 \rightarrow M L 8 \\ & 8 \rightarrow M L 8 \end{aligned}$ |
| ML4. WAS (name) TAKEN TO A HEALTH FACILITY DURING THIS ILLNESS? | Yes <br> No <br> DK | $1$ | $\begin{aligned} & 2 \rightarrow \mathrm{ML8} 8 \\ & 8 \rightarrow \mathrm{ML8} \end{aligned}$ |
| ML4A. WHERE WAS (name) TAKEN DURING THIS ILLNESS? | Public sector <br> Govt. Hospital <br> Govt. clinic Heath center <br> Govt. Health post/CHPS compound Village health worker/CBA <br> Mobile/outreach clinic <br> Other (specify) <br> Private medical sector <br> Private hospital/clinic <br> Private physician <br> Private pharmacy/Chemical shop <br> Mobile/Outreach clinic <br> Other (specify) <br> Other source <br> Relative or Friend <br> Shop <br> Traditional practitioner <br> Drug peddlers <br> Other (specify <br> DK | $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 21 \\ & 22 \\ & 23 \\ & 23 \\ & 24 \\ & 26 \\ & \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 96 \\ & 98 \end{aligned}$ |  |
| ML5. WAS (name) GIVEN ANY MEDICINE FOR FEVER OR MALARIA AT THE HEALTH FACILITY? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ | $\begin{aligned} & 2 \rightarrow \mathrm{ML7} 7 \\ & 8 \rightarrow \mathrm{ML7} \end{aligned}$ |
| ML6. WHAT MEDICINE WAS (name) GIVEN? <br> Probe: <br> ANY OTHER MEDICINE? <br> Circle all medicines mentioned. Write brand name(s) of all medicines, if given. <br> (Name) | Anti-malarials: <br> SP / Fansidar <br> Chloroquine <br> Amodiaquine <br> Quinine <br> Artemisinin-based Combination <br> ACT with the green leaf <br> Other anti-malarial (specify) <br> Antibiotic drugs <br> Pill / Syrup <br> Injection <br> Other medications: <br> Paracetamol/ Panadol / <br> Acetaminophen <br> Aspirin <br> Ibuprofen <br> Other (specify) <br> DK | A <br> B <br> C <br> D <br> E <br> F <br>  <br> H <br> I <br> I |  |
| ML7. WAS (name) GIVEN ANY MEDICINE FOR THE FEVER OR MALARIA BEFORE BEING TAKEN TO THE HEALTH FACILITY? | Yes <br> No <br> DK | 1 2 8 | $\begin{aligned} & 1 \rightarrow \mathrm{ML9} \\ & 2 \rightarrow \mathrm{ML} 10 \\ & 8 \rightarrow \mathrm{ML10} \end{aligned}$ |
| ML8. WAS (name) GIVEN ANY MEDICINE FOR FEVER OR MALARIA DURING THIS ILLNESS? | Yes <br> No <br> DK | 1 2 8 | $\begin{aligned} & 2 \rightarrow \mathrm{ML} 10 \\ & 8 \rightarrow \mathrm{ML} 10 \end{aligned}$ |


| MALARIA (cont'd) |  |  | ML |  |
| :---: | :---: | :---: | :---: | :---: |
| ML9. WHAT MEDICINE WAS (name) GIVEN? <br> Probe: <br> ANY OTHER MEDICINE? <br> Circle all medicines mentioned. Write brand name(s) of all medicines, if given. <br> (Name) |  | Anti-malarials: <br> SP / Fansidar <br> Chloroquine <br> Amodiaquine <br> Quinine <br> Artemisinin-based Combination <br> ACT with the green leaf <br> Other anti-malarial (specify) <br> Antibiotic drugs <br> Pill / Syrup <br> Injection <br> Other medications: <br> Paracetamol/ Panadol/ <br> Acetaminophen <br> Aspirin <br> Ibuprofen <br> Other (specify) <br> DK | A <br> B <br> C <br> D <br> E <br> F <br> H <br> H <br>  <br>  |  |
| ML10. Check ML6 and ML9: Anti-malarial mentioned (codes A - H)?Yes $\rightarrow$ Continue with ML11$\mathrm{No} \rightarrow$ Go to Next Module |  |  |  |  |
| ML11. HOW LONG AFTER THE FEVER STARTED DID (name) FIRST TAKE (name of anti-malarial from ML6 or ML9)? <br> If multiple anti-malarials mentioned in ML6 or ML9, name all antimalarial medicines mentioned. |  | Same day <br> Next day <br> 2 days after the fever <br> 3 days after the fever <br> 4 or more days after the fever <br> DK | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 8 \end{aligned}$ |  |
| immunization |  |  |  | IM |
| If an immunization card is available, copy the dates in IM3 for each type of immunization recorded on the card. IM6-IM17 are for registering vaccinations that are not recorded on the card. IM6-IM17 will only be asked when a card is not available. |  |  |  |  |
| IM1. DO YOU HAVE A CARD WHERE (name)'S VACCINATIONS ARE WRITTEN DOWN? <br> (If yes) MAY I SEE IT PLEASE? | Yes, seen Yes, not seen No card |  | 1 2 3 | $\begin{aligned} & 1 \rightarrow \mathrm{IM} 3 \\ & 2 \rightarrow \mathrm{IM} 6 \end{aligned}$ |
| IM2. DID YOU EVER HAVE A VACCINATION CARD FOR (name)? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ |  | 1 | $\begin{aligned} & \substack{1 \rightarrow \mathrm{I} 6 \\ 2 \rightarrow \mathrm{M} 6} \end{aligned}$ |


| IMMUNIZATION (cont'd) |  |  |  |  |  |  | IM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date of Immunization |  |  |  |  |  |  |
| (a) Copy dates for each vaccination from the card. <br> (b) Write ' 44 ' in day column if card shows that vaccination was given but no date recorded. | Day |  | Month | Year |  |  |  |
| BCG BCG |  |  |  |  |  |  |  |
| POLIO AT BIRTH OPVO |  |  |  |  |  |  |  |
| POLIO 1 OPV1 |  |  |  |  |  |  |  |
| POLIO 2 OPV2 |  |  |  |  |  |  |  |
| POLIO3 OPV3 |  |  |  |  |  |  |  |
| PENTA1 (DPT/HEPB/INFL1) PEN1 |  |  |  |  |  |  |  |
| PENTA2 (DPT/HEPB/INFL2) PEN2 |  |  |  |  |  |  |  |
| PENTA3 (DPT/HEPB/INFL3) PEN3 |  |  |  |  |  |  |  |
| MEASLES MEASLES |  |  |  |  |  |  |  |
| YELLOW FEVER YF |  |  |  |  |  |  |  |
| VITAMIN A (1) (MOST RECENT) VITA1 |  |  |  |  |  |  |  |
| VITAMIN A (2) (2ND MOST RECENT) VITA2 |  |  |  |  |  |  |  |
| IM4. Check IM3. Are all vaccines (BCG to Yellow Fever) recorded?Yes $\rightarrow$ Go to IM18No $\rightarrow$ Continue with IM5 |  |  |  |  |  |  |  |
| IM5. IN ADDITION TO WHAT IS RECORDED ON THIS CARD, DID (name) RECEIVE ANY OTHER VACCINATIONS - INCLUDING VACCINATIONS RECEIVED IN CAMPAIGNS OR IMMUNIZATION DAYS? <br> Record 'Yes' only if respondent mentions vaccines shown in the table above. |  | Yes <br> (Probe for vaccinations and write ' 66 ' in the corresponding day column for each vaccine mentioned. Then skip to IM18) |  |  |  |  | $\begin{aligned} & 2 \rightarrow \text { IM18 } \\ & 8 \rightarrow \text { IM18 } \end{aligned}$ |
| IM6. HAS (name) EVER RECEIVED ANY VACCINATIONS TO PREVENT HIM/HER FROM GETTING DISEASES, INCLUDING VACCINATIONS RECEIVED IN A CAMPAIGN OR IMMUNIZATION DAY? |  | Yes |  |  |  | 1 | $\begin{aligned} & 2 \rightarrow \text { IM18 } \\ & 8 \rightarrow \text { IM18 } \end{aligned}$ |
| IM7. HAS (name) EVER RECEIVED A BCG VACCINATION AGAINST TUBERCULOSIS - THAT IS, AN INJECTION IN THE ARM OR SHOULDER THAT USUALLY CAUSES A SCAR? |  | Yes <br> No DK |  |  |  | 1 |  |
| IM8. HAS (name) EVER RECEIVED ANY "VACCINATION DROPS IN THE MOUTH"TO PROTECT HIM/HER FROM GETTING DISEASES - THAT IS, POLIO? |  | Yes <br> No <br> DK |  |  |  | 1 2 8 | $\begin{array}{\|l\|l\|} 2 \rightarrow \text { IM11 } \\ 8 \rightarrow \text { IM11 } \end{array}$ |
| IM9. WAS THE FIRST POLIO VACCINE RECEIVED IN THE FIRST TWO WEEKS AFTER BIRTH OR LATER? |  | First two weeks Later |  |  |  | 1 |  |
| IM10. HOW MANY TIMES WAS THE POLIO VACCINE RECEIVED? |  | Number of times |  |  |  |  |  |



| NATIONAL HEALTH INSURANCE (cont'd) |  |  | HI |
| :---: | :---: | :---: | :---: |
| HI5. DOES (NAME) HOLD A VALID NATIONAL HEALTH INSURANCE SCHEME (NHIS) CARD? <br> If child has valid insurance card, request to see it. Check to make sure it is valid for 2011 | Yes, card seen Yes, card not seen No | 1 2 3 | $\begin{gathered} 1 \rightarrow \mathrm{HI} 19 \\ 2 \rightarrow \mathrm{HII} \end{gathered}$ |
| HI6. WHY DOES (NAME) NOT HAVE A VALID NHIS CARD? | Registered/Renewed, card not received <br> Registered, in waiting period <br> Registration not renewed <br> Lost NHIS card <br> Not aware of need to renew the card Other (specify) | 2 3 4 5 7 6 | $\begin{aligned} & 2 \rightarrow \mathrm{HI9} \\ & 3 \rightarrow \mathrm{NI9} \\ & 5 \rightarrow \mathrm{HI9} \\ & 6 \rightarrow \mathrm{HI9} \end{aligned}$ |
| HI7.DO YOU PLAN TO RENEW (NAME'S) NHIS REGISTRATION? | ```Yes No Don't know/ Not sure``` | 1 2 8 | $\begin{aligned} & 1 \rightarrow \mathrm{HI9} \\ & 8 \rightarrow \mathrm{HI9} \end{aligned}$ |
| HI8. WHY DO YOU NOT WANTTO RENEW (NAME's) NHIS REGISTRATION? <br> Probe: <br> ANY OTHER REASON? | Has not been sick <br> Still pay out of pocket <br> Poor quality care with card <br> Waiting time for card too long <br> Desired services not covered <br> Clinics used/ traditional services not <br> Covered by NHIS <br> Not aware that card is renewable <br> Other (specify) $\qquad$ | A C D E F G H H X |  |
| HI9. IN YOUR OPINION, DOES A CHILD WITH THE NHIS CARD GET BETTER/SAME/WORSE SERVICES WHEN THEY VISIT HEALTH CARE FACILITIES? | Better <br> Same <br> Worse <br> Never used <br> Don't know | 1 | $\begin{aligned} & 1 \rightarrow \text { UF13 } \\ & 2 \rightarrow \text { UF13 } \\ & 3 \rightarrow \text { UF13 } \\ & 4 \rightarrow \text { UF13 } \\ & 8 \rightarrow \text { UF13 } \end{aligned}$ |
| HI10. WHY HAVE YOU NOT REGISTERED OR RENEWED REGISTRATION FOR (NAME) WITH THE NHIS? <br> Probe: <br> ANY OTHER REASON? | Not heard of NHIS <br> Do not trust NHIS <br> Do not know where to register <br> Registration office too far <br> Do not need health insurance <br> NHIS does not cover the services needed <br> NHIS does not cover the facilities used H <br> Not aware that card is renewable <br> Other (specify) $\qquad$ | A C D E F G I I X | $\mathrm{A} \rightarrow \mathrm{UF} 13$ <br> $\mathrm{C} \rightarrow$ UF13 <br> D $\rightarrow$ UF13 <br> $\mathrm{E} \rightarrow$ UF13 <br> $\mathrm{F} \rightarrow$ UF13 <br> $\mathrm{G} \rightarrow \mathrm{UF} 13$ <br> $\mathrm{H} \rightarrow$ UF13 $\mathrm{X} \rightarrow \text { UF13 }$ |
| HI11. IS (NAME'S) INSURANCE CURRENTLY VALID FOR 2011? | Yes <br> No <br> Don't know/ Not sure | 1 |  |
| UF13. Record the time. | Hour and minutes ___:__ |  |  |
| UF14. Is the respondent the mother or caretaker of another child age $0-4$ living in this household? Yes $\rightarrow$ Indicate to the respondent that the health technician will need to measure the weight and height of the child later. Go to the next QUESTIONNAIRE FOR CHILDREN UNDER FIVE to be administered to the same respondent No $\rightarrow$ End the interview with this respondent by thanking him/her for his/her cooperation and tell her/him that the health technician will need to measure the weight and height of the child <br> Check to see if there are other woman's, under-5's or man's questionnaires to be administered in this household. <br> Move to another woman's,under-5 or man's questionnaire, or start making arrangements for anthropometric measurements of all eligible children in the household. |  |  |  |


| ANTHROPOMETRY |  |  | AN |
| :---: | :---: | :---: | :---: |
| After questionnaires for all children are complete, the measurer weighs and measures each child. Record weight and length/height below, taking care to record the measurements on the correct questionnaire for each child. Check the child's name and line number on the household listing before recording measurements. Also observe and record whether the child has oedema or not. |  |  |  |
| AN1. Measurer's name and number: | Name - - |  |  |
| AN2. Result of height / length and weight measurement | Either or both measured <br> Child not present <br> Child or caretaker refused <br> Other (specify) |  | $\begin{aligned} & 2 \rightarrow \text { AN6 } \\ & \text { 3 } \rightarrow \text { AN6 } \\ & \text { 6 } \rightarrow \text { AN6 } \end{aligned}$ |
| AN3. Child's weight | Kilograms $(\mathrm{kg}) \quad-\quad-\quad$ Weight not measured $\quad 99.9$ |  |  |
| AN4. Child's length or height <br> Check age of child in AG2: Child under 2 years old. $\rightarrow$ Measure length (lying down). <br> $\square$ Child age 2 or more years. $\rightarrow$ Measure height (standing up). | Length (cm) <br> Lying down $\qquad$ <br> Height (cm) <br> Standing up $\qquad$ <br> Length / Height not measured | 9999.9 |  |
| AN5. Oedema <br> EXAMINE AND RECORD. | Checked <br> Oedema present <br> Oedema not present <br> Unsure <br> Not checked (specify reason) | 1 2 3 <br> 7 |  |

AN6. Is there another child in the household who is eligible for measurement?
$\square$ Yes $\rightarrow$ Record measurements for next child.
$\square \mathrm{No} \rightarrow$ End measurement with this household by thanking all participants for their cooperation Health technician will then proceed to the anemia and malaria testing for eligible children in the house hold.

| ANAEMIA AND MALARIA TESTING FOR CHILDREN UNDER FIVE <br> After weighing and measuring the child, the health technician will request to do the anaemia and malaria testing. AM <br> a |  |
| :---: | :---: |
|  |  |
| AM1. Check AG1: Yes <br> Was child born in month of interview or five previous months? No | $1 \rightarrow$ END |
| AM2. Ask consent for anaemia test from mother or caretaker: <br> AS PART OF THIS SURVEY, WE ARE ASKING THAT CHILDREN ALL OVER THE COUNTRY TAKE AN ANAEMIA TEST. ANAEMIA IS A SERIOUS HEALTH PROBLEM THAT USUALLY RESULTS FROM POOR NUTRITION, INFECTION, OR DISEASE. THIS SURVEY WILL HELP THE GOVERNMENT TO DEVELOP PROGRAMS TO PREVENT AND TREAT ANAEMIA. <br> WE ASK THAT ALL CHILDREN AGE 6 MONTHS TO 5 YEARS PARTICIPATE IN THE ANAEMIA TESTING PART OF THIS SURVEY AND GIVE A FEW DROPS OF BLOOD FROM A FINGER. THE EQUIPMENT USED TO TAKE THE BLOOD IS CLEAN AND COMPLETELY SAFE. IT HAS NEVER BEEN USED BEFORE AND WILL BE THROWN AWAY AFTER EACH TEST. YOUR CHILD WILL FEEL SOME PAIN THAT LASTS A FEW SECONDS WHEN HIS/HER FINGER IS PRICKED. THERE IS ALSO A SLIGHT RISK OF BLEEDING AND INFECTION WHERE THE FINGER IS PRICKED, BUT WE TAKE PRECAUTIONS TO REDUCE THIS RISK. <br> THE BLOOD WILL BE TESTED FOR ANAEMIA IMMEDIATELY AND THE RESULT WILL BE MADE KNOWN TO YOU RIGHT AWAY. THE RESULT WILL BE KEPT CONFIDENTIAL AND WILL NOT BE SHARED WITH ANYONE OTHER THAN MEMBERS OF OUR SURVEYTEAM. <br> DO YOU HAVE ANY QUESTIONS? <br> YOU CAN SAY YES TO THE TEST OR YOU CAN SAY NO. IT IS UP TO YOU TO DECIDE. <br> WILL YOU ALLOW (NAME OF CHILD) TO PARTICIPATE IN THE ANAEMIA TEST? |  |
| AM3. Anaemia testing consent outcome. <br> Granted 1 |  |
| AM4. Ask consent for malaria test from mother or caretaker: <br> AS PART OF THIS SURVEY, WE ARE ASKING THAT CHILDREN ALL OVER THE COUNTRY TAKE A MALARIA TEST. MALARIA IS A SERIOUS ILLNESS CAUSED BY A PARASITE TRANSMITTED BY A MOSQUITO BITE. THIS SURVEY WILL HELP THE GOVERNMENT TO DEVELOP PROGRAMS TO PREVENT MALARIA. <br> WE ASK THAT ALL CHILDREN AGE 6 MONTHS TO 5 YEARS PARTICIPATE IN THE MALARIA TESTING PART OF THIS SURVEY AND GIVE A FEW DROPS OF BLOOD FROM A FINGER. THE EQUIPMENT USED TO TAKE THE BLOOD IS CLEAN AND COMPLETELY SAFE. IT HAS NEVER BEEN USED BEFORE AND WILL BE THROWN AWAY AFTER EACH TEST. YOUR CHILD WILL FEEL SOME PAIN THAT LASTS A FEW SECONDS WHEN HIS/HER FINGER IS PRICKED. THERE IS ALSO A SLIGHT RISK OF BLEEDING AND INFECTION WHERE THE FINGER IS PRICKED, BUT WE TAKE PRECAUTIONS TO REDUCE THIS RISK. WE WILL USE BLOOD FROM THE SAME FINGER PRICK MADE FOR THE ANAEMIA TEST. <br> ONE BLOOD DROP WILL BE TESTED FOR MALARIA IMMEDIATELY AND THE RESULT WILL BE MADE KNOWN TO YOU RIGHT AWAY. ANOTHER DROP WILL BE COLLECTED ON A SLIDE AND TAKEN TO A LABORATORY FOR TESTING. YOU WILL NOT BE TOLD THE RESULTS OF THE LABORATORY TESTING. ALL RESULTS WILL BE KEPT CONFIDENTIAL AND WILL NOT BE SHARED WITH ANYONE OTHER THAN MEMBERS OF OUR SURVEY TEAM. <br> DO YOU HAVE ANY QUESTIONS? <br> YOU CAN SAY YES TO THE TEST OR YOU CAN SAY NO. IT IS UP TO YOU TO DECIDE. <br> WILL YOU ALLOW (NAME OF CHILD) TO PARTICIPATE IN THE MALARIA TESTING? |  |


| ANAEMIA AND MALARIA TESTING FOR CHILDREN UNDER FIVE (cont'd) |  | AM |
| :---: | :---: | :---: |
| AM5. Malaria testing consent outcome. | Granted 1 <br> (mother/caretaker's signature or thumbprint) |  |
| AM6. Prepare supplies for the tests for which consent was granted and proceed with the tests. |  |  |
| AM7. Bar code label. <br> Put the first bar code label here, the 2nd on the RDT, the 3rd on the slide and the 4th and 5th on the transmittal forms. | PASTE THE 1st BAR CODE LABEL HERE |  |
| AM8. Haemoglobin level. <br> Record the haemoglobin level here and in the anaemia and malaria brochure. | G/DL $\square$ . 1 <br> Refused 994 <br> Child not present 995 <br> Other 996 |  |
| AM9. Malaria rapid test outcome. | Tested 1 <br> Refused 2 <br> Child not present 3 <br> Other 6 | $\begin{aligned} & 2 \rightarrow \text { AM11 } \\ & 3 \rightarrow \text { AM11 } \\ & 6 \rightarrow \text { AM11 } \end{aligned}$ |
| AM10. Malaria rapid test result. <br> Record the result of the RDT here and in the anaemia and malaria brochure. | Positive, falciparum only (Pf) 1 <br> Positive, other species (O,M,V) 2 <br> Positive, both falciparum and OMV 3 <br> Negative 4 <br> Other 6 | $\begin{aligned} & 1 \rightarrow \text { AM13 } \\ & 2 \rightarrow \text { AM13 } \\ & 3 \rightarrow \text { AM13 } \end{aligned}$ |
| AM11. Check AM8: Haemoglobin result | Below $7.0 \mathrm{~g} / \mathrm{dll}$, severe anaemia 1 <br> 7.0 g d lor above 2 <br> Refused 3 <br> Child not present 4 <br> Other 6 | $\begin{aligned} & 2 \rightarrow \text { END } \\ & 3 \rightarrow \text { NND } \\ & 4 \rightarrow \text { END } \\ & 6 \rightarrow \text { END } \end{aligned}$ |
| AM12. Severe anaemia referral <br> THE ANAEMIA TEST SHOWS THAT (NAME OF CHILD) HAS SEVERE ANAEMIA. YOUR CHILD IS VERY ILL AND MUST BE TAKEN TO A HEALTH FACILITY IMMEDIATELY. |  |  |
| AM13. DOES (NAME) SUFFER FROM ANY OF THE FOLLOWING ILLNESSES OR SYMPTOMS: <br> EXTREME WEAKNESS? <br> HEART PROBLEMS? <br> FAINTING, LOSS OF CONSCIOUSNESS? <br> RAPID OR DIFFICULT BREATHING? <br> SEIZURES? <br> ABNORMAL BLEEDING? <br> JAUNDICE (YELLOW SKIN)? <br> DARK URINE? | Extreme weakness A <br> Heart problems B <br> Fainting, loss of consciousness C <br> Rapid or difficult breathing D <br> Seizures E <br> Abnormal bleeding F <br> Jaundice G <br> Dark urine H |  |
| AM14. Check AM13: Any code circled? | No code circled Any code circled | $2 \rightarrow$ AM 17 |
| AM15. Check AM8: Haemoglobin result | Below $6.0 \mathrm{~g} / \mathrm{dl}$, severe anaemia 1 <br> $6.0 \mathrm{~g} / \mathrm{dl}$ or above 2 <br> Refused 3 <br> Child not present 4 <br> Other 6 | $1 \rightarrow$ AM 17 |
| AM16. IN THE PAST 2 WEEKS HAS (NAME) TAKEN ANY MEDICINE GIVEN BY A DOCTOR OR HEALTH CENTER TO TREAT THE MALARIA? <br> Check if it is AL/AS-AQ by asking to see the medicine. Circle ' 1 ' only if it is AL or $\mathrm{AS}-\mathrm{AQ}$. | Yes <br> No | $\begin{aligned} & 1 \rightarrow \text { AM } 18 \\ & 2 \rightarrow \text { AM } 19 \end{aligned}$ |


| ANAEMIA AND MALARIA TESTING FOR CHILDREN UNDER FIVE (cont'd) <br> AM17. Severe malaria referral <br> THE MALARIA TEST SHOWS THAT (NAME OF CHILD) HAS MALARIA. YOUR CHILD ALSO HAS SYMPTOMS OF SEVERE MALARIA. THE MALARIA TREATMENT I HAVE WILL NOT HELP YOUR CHILD, AND I CANNOT GIVE YOU THE MEDICATION. YOUR CHILD IS VERY ILL AND MUST BE TAKEN TO A HEALTH FACILITY RIGHT AWAY. |  | AM |
| :---: | :---: | :---: |
|  |  | $\rightarrow$ END |
| AM18. Referral for those who are already taking AL or AS-AQ <br> YOU HAVE TOLD ME THAT (NAME OF CHILD) HAS ALREADY RECEIVED GIVE YOU ADDITIONAL MEDICATION. HOWEVER, THE TEST SHOWS TH HAS A FEVER FOR TWO DAYS AFTER THE LAST DOSE OF MEDICATION HEALTH FACILITY FOR FURTHER EXAMINATION. | MEDICATION FOR MALARIA. THEREFORE, I CANNOT HAT HE/SHE IS POSITIVE FOR MALARIA. IF YOUR CHILD , YOU SHOULD TAKE THE CHILD TO THE NEAREST | $\rightarrow$ END |
| AM19. Consent for malaria treatment <br> THE MALARIA TEST SHOWS THAT YOUR CHILD HAS MALARIA. WE CA AS-AQ. IT IS VERY EFFECTIVE AND IN A FEW DAYS IT SHOULD GET RID HAVE TO GIVE THE CHILD THE MEDICINE. IT IS UP TO YOU TO DECIDE. | N GIVE YOU FREE MEDICINE. THE MEDICINE IS CALLED OF THE FEVER AND OTHER SYMPTOMS. YOU DO NOT PLEASE TELL ME IF YOU ACCEPT THE MEDICINE OR NOT. |  |
| AM20. Accepted medicine? | Accepted medicine Refused medicine 2 <br> Other 6 |  |

ABLE 1A: ARTESUNATE + AMODIAQUINE FIXED DOSE COMBINATION
STANDARD REGIMEN, USING THE 3 AVAILABLE DOSING STRENGTHS

| Weight <br> $(\mathrm{kg})$ | Age | Artesunate + Amodiaquine Fixed Dose Combination* |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* Each tablet contains both Artesunate (AS) and Amodiaquine (AQ), at the dosages indicated. The product packaging clearly indicates which dosing strength applies to which age group.

TABLE 1B: ARTESUNATE + AMODIAQUINE CO-BLISTERED FORMULATION
REGIMEN FOR ONCE DAILY DOSING

| Weight (kg) | Age (yr) | Artesunate 50 mg tablets |  |  | Amodiaquine 150 mg base tablets |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 |
| 5-10 kg | Under 1 | $1 / 2$ tab | $1 / 2$ tab | 1/2tab | 1/2 tab | $1 / 2$ tab | $1 / 2$ tab |
| $11-24 \mathrm{~kg}$ | 1-6 | 1 tab |
| $24-50 \mathrm{~kg}$ | 7-13 | 2 tabs |
| $50-70 \mathrm{~kg}$ | 14-18 | 3 tabs |
| 270 kg | $\geq 18$ | 4 tabs |

Note: The dose in $\mathrm{mg} /$ body weight is: Amodiaquine $10 \mathrm{mg} / \mathrm{kg}$ body weight + Artesunate $4 \mathrm{mg} / \mathrm{kg}$ body weight, taken as a SINGLE DOSE daily for three (3) days, after meals.

|  |  |  |
| :--- | :--- | :--- |


| MANS BACKGROUND (cont'd) |  |  | MB |
| :---: | :---: | :---: | :---: |
| MB4. WHAT IS THE HIGHEST LEVEL OF SCHOOL YOU ATTENDED? | Preschool <br> Primary <br> Middle/JSS/JHS <br> Secondary/SSS/SHS <br> Voc/Comm/Tech <br> Post Secondary (Nursing/Teacher Trg) <br> Tertiary | 0 1 2 3 4 5 6 | $0 \rightarrow$ MB7 |
| MB5. WHAT IS THE HIGHEST CLASS/YEAR YOU COMPLETED AT THAT LEVEL? <br> If no class/year completed at that level, enter " 0 " | Class/Year |  |  |
| MB6. Check MB4:Secondary or Higher (MB4=3 or MB4=4 or MB4=5 or MB4=6) $\rightarrow$ Go to MB8Primary /Middle/JSS/JHS (MB4=1 or MB4=2) $\rightarrow$ Continue with MB7 |  |  |  |
| MB7. NOW IWOULD LIKE YOU TO READ THIS SENTENCE TO ME. <br> Show sentence on the card to the respondent. If respondent cannot read whole sentence, probe: <br> CAN YOU READ PART OF THE SENTENCE TO ME? | Cannot read at all <br> Able to read only parts of sentence <br> Able to read whole sentence <br> No sentence in <br> required language <br> (specify language) <br> Blind/mute, visually/speech impaired | 1 2 3 4 4 |  |
| MB8. WHAT IS YOUR RELIGION? | Catholic <br> Protestant <br> Pentecostal/Charismatic <br> Deeper Life <br> Jehovah Witness <br> SDA <br> Other Christian <br> Moslem <br> Traditional <br> Spiritualist <br> Other religion (specify) <br> No Religion | 11 <br> 12 <br> 13 <br> 14 <br> 15 <br> 16 <br> 17 <br> 21 <br> 31 <br> 32 <br> 96 <br> 97 |  |
| MB9. TO WHAT ETHNIC GROUP DO YOU BELONG? | Akan <br> Ga/Dangme <br> Ewe <br> Guan <br> Gruma <br> Mole Dagbani <br> Grusi <br> Mande <br> Non-Ghanaian <br> Other ethnic group (specify) | 11 12 13 14 15 21 21 23 23 24 96 |  |

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ACCESS TO MASS MEDIA AND USE OF INFORMATION/COMMUNICATION TECHNOLOGY} \\
\hline AC1. Check MB7:
Question left blank (Respondent has Secondary or High
Able to read or no sentence in required language (code
Cannot read at all or blind (codes 1 or 5) \(\rightarrow\) Go to AC3 \& \begin{tabular}{l}
r education) \(\rightarrow\) Continue with AC2 \\
\(2,3\) or 4\() \rightarrow\) Continue with AC2
\end{tabular} \& \& \\
\hline AC2. DO YOU READ A NEWSPAPER OR MAGAZINE ALMOST EVERY DAY, AT LEAST ONCE A WEEK, LESS THAN ONCE A WEEK OR NOT AT ALL? \& Almost every day At least once a week Less than once a week Not at all \& 1
2
3
4 \& \\
\hline AC3. DO YOU LISTEN TO THE RADIO ALMOST EVERY DAY, AT LEAST ONCE A WEEK, LESS THAN ONCE A WEEK OR NOT AT ALL? \& Almost every day At least once a week Less than once a week Not at all \& 1
2
3
4 \& \\
\hline AC4. DO YOU WATCH TELEVISION ALMOST EVERY DAY, AT LEAST ONCE A WEEK, LESS THAN ONCE A WEEK OR NOT AT ALL? \& \begin{tabular}{l}
Almost every day \\
At least once a week Less than once a week Not at all
\end{tabular} \& 1
2
3
4 \& \\
\hline AC6. HAVE YOU EVER USED A COMPUTER? \& \[
\begin{aligned}
\& \text { Yes } \\
\& \text { No }
\end{aligned}
\] \& 1 \& \(2 \rightarrow A C 9\) \\
\hline AC7. HAVE YOU EVER USED A COMPUTER IN THE LAST 12 MONTHS? \& \[
\begin{aligned}
\& \hline \text { Yes } \\
\& \text { No }
\end{aligned}
\] \& 1 \& \(2 \rightarrow A C 9\) \\
\hline AC8. DURING THE LAST ONE MONTH, DID YOU USE A COMPUTER ALMOST EVERY DAY, AT LEAST ONCE A WEEK, LESS THAN ONCE A WEEK OR NOT AT ALL? \& Almost every day At least once a week Less than once a week Not at all \& 1
2
3
4 \& \\
\hline AC9. HAVE YOU EVER USED THE INTERNET? \& Yes \& 1 \& \[
\begin{aligned}
\& \text { 2 } \rightarrow \text { NEXT } \\
\& \text { MODULE }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
AC10. HAVE YOU EVER USED THE INTERNET IN THE LAST 12 MONTHS? \\
If necessary, probe for use from any location, with any device
\end{tabular} \& Yes \& 1 \& \[
\begin{aligned}
\& \text { 2-NEXT } \\
\& \text { MODULE }
\end{aligned}
\] \\
\hline AC11. DURING THE LAST ONE MONTH, DID YOU USE THE INTERNET ALMOST EVERY DAY, AT LEAST ONCE A WEEK, LESS THAN ONCE A WEEK OR NOT AT ALL? \& Almost every day At least once a week Less than once a week Not at all 4 \& 1
2
3 \& \\
\hline Marriaceunion \& \& \& mu \\
\hline MU1. ARE YOU CURRENTLY MARRIED OR LIVING TOGETHER WITH A WOMAN AS IF MARRIED? \& \begin{tabular}{l}
Yes, currently married \\
Yes, cohabiting with a woman No , not in union
\end{tabular} \& 1
2
3 \& \[
\begin{aligned}
\& 2 \rightarrow \text { MU1B } \\
\& 3 \rightarrow \text { MU5 }
\end{aligned}
\] \\
\hline MU1A. WHAT TYPE OF MARRIAGE? \& \begin{tabular}{l}
Consensual union \\
Customary marriage only \\
Customary and religious \\
Civil marriage only \\
Customary and civil \\
Customary, religious and civil \\
Betrothed(incl. customary not completed) \\
Other (specify) \\
DK
\end{tabular} \& 01
02
03
04
05
06
07

96
98 \& <br>
\hline MU1B. HOW MANY WOMEN DO YOU CURRENTLY LIVE WITH (MARRIED OR AS IF MARRIED)? \& Number of women _- \& \& <br>
\hline
\end{tabular}

| MARRIACEJUNION (cont'd) |  |  | mu |
| :---: | :---: | :---: | :---: |
| If only one wife <br> MU2. HOW OLD IS YOUR WIFE/PARTNER? <br> Probe: HOW OLD WAS YOUR WIFE/PARTNER ON HER LAST BIRTHDAY? <br> If more than one wife <br> MU2A. HOW OLD IS YOUR YOUNGEST WIFE/PARTNER (RANK)? <br> Probe: HOW OLD WAS YOUR YOUNGEST WIFE/PARTNER ON HER LAST BIRTHDAY? | $\begin{array}{ll} \text { Age in years } & -- \\ \text { DK } \quad 98 \end{array}$ |  | $\begin{aligned} & \rightarrow \mathrm{MU8} \\ & \rightarrow \mathrm{MU8} \end{aligned}$ |
| MU5. HAVE YOU EVER BEEN MARRIED OR LIVED TOGETHER WITH A WOMAN AS IF MARRIED? | Yes, formerly married Yes, formerly lived with a woman No | 1 2 3 | $3 \rightarrow$ Next Module |
| MU6. WHAT IS YOUR MARITAL STATUS NOW: ARE YOU WIDOWED, DIVORCED OR SEPARATED? | Widowed <br> Divorced <br> Separated | 1 2 3 |  |
| MU7. HAVE YOU BEEN MARRIED OR LIVED WITH A WOMAN ONLY ONCE OR MORE THAN ONCE? | Only once More than once | 1 |  |
| MU8. IN WHAT MONTH AND YEAR DID YOU FIRST MARRY OR START LIVING WITH A WOMAN AS IF MARRIED? | Date of first marriage Month $\qquad$ DK month 98 Year $\qquad$ <br> DK year 9998 |  | $\rightarrow$ Next Module |
| MU9. HOW OLD WERE YOU WHEN YOU STARTED LIVING WITH YOUR FIRST WIFE/PARTNER? | Age in years _- |  |  |
| ATTITUDE TOWARDS CONTRACEPTION <br> MR1. I WOULD LIKE TO TALK WITH YOU ABOUT ANOTHER SUBJECT - FAMILY PLANNING. |  |  |  |
|  |  |  |  |
| MR2. COUPLES USE VARIOUS WAYS OR METHODS TO DELAY OR AVOID A PREGNANCY. <br> ARE YOU OR (ANY OF) YOUR WIFE(S)/PARTNER(S) CURRENTLY DOING SOMETHING OR USING ANY METHOD TO DELAY OR AVOID HER GETTING PREGNANT? | Yes <br> No <br> DK | 1 2 8 | $\begin{aligned} & 2 \rightarrow \text { MR4 } \\ & 8 \rightarrow M R 4 \end{aligned}$ |
| MR3. WHAT ARE YOU / ANY OF YOUR WIVE(S)/PARTNER(S) DOING TO DELAY OR AVOID A PREGNANCY? <br> Do not prompt. <br> If more than one method is mentioned, circle each one. | Female sterilization <br> Male sterilization <br> IUD <br> Injectables <br> Implants <br> Pill <br> Male condom <br> Female condom <br> Diaphragm <br> Foam / Jelly <br> Lactational amenorrhoea <br> method (LAM) <br> Periodic abstinence / Rhythm <br> Withdrawal <br> LNG-IUS <br> Other (specify) | A B C D E F G H I J K L M N | NEXT <br> MODULE |


| ATTITUDE TOWARDS CONTRACEPTION (cont'd) |  |  | MR |
| :---: | :---: | :---: | :---: |
| MR4. WOULD YOU YOURSELF USE OR WOULD YOU ALLOW (ANY OF) YOUR WIFE(S)/PARTNER(S) TO USE ANY SUCH METHODS? | Yes <br> No DK / not sure / depends | 1 2 8 | $1 \rightarrow$ NEXT MODULE <br> $8 \rightarrow$ NEXT MODULE |
| MR5. WHY WOULDN'T YOU ALLOW YOUR WIFE(S)/PARTNER(S) TO USE ANY SUCH METHODS? <br> Probe: ANY OTHER REASON? Record all reasons mentioned. | Religious beliefs <br> Partner refuses <br> Can't afford / expensive <br> Side effects <br> Not sexually active <br> Do not wish to avoid pregnancy <br> Encourages promiscuity <br> Other (specify) | A B C D E F G P |  |


| BEHAVIOUR CHANGE COMMUNICATION ON MALARIA |  |  | mC |
| :---: | :---: | :---: | :---: |
| MC1. NOW I WOULD LIKE YOU TO TALK ABOUT MALARIA <br> IN YOUR OPINION, WHAT CAUSES MALARIA? <br> Probe: <br> WHAT ELSE? | Eating sweet foods <br> Standing/ working in the sun <br> Eating contaminated food <br> Mosquito bites <br> Malaria parasite (p. falciparum) <br> Hereditary <br> Dirty surroundings <br> Weedy surroundings and stagnant water <br> Other (specify) <br> DK | A B C D E F G H |  |
| MC2. HOW WOULD YOU KNOW THAT SOMEONE HAS MALARIA? <br> Probe: <br> WHAT ELSE? | Hot body fever <br> Vomiting/Diarrhea <br> Strong headaches/Dizziness <br> Loss of appetite <br> Weakness of the body <br> Cough <br> Chills <br> Bitterness in the mouth <br> Other (specify) <br> DK | A B C D E F G H H |  |
| MC3. HOW CAN ONE PROTECT HIM/HERSELF AGAINST MALARIA? | Sleep under a mosquito net <br> Sleep under a insecticide treated mosquito net <br> Use Mosquito repellent Avoid mosquito bites Clear Weeds around the house Fill in Stagnant waters (puddles) Keep surrounding clean Put mosquito screen window <br> Other (specify) <br> DK | A B C D E F G H P |  |
| MC4. CAN MALARIA BE TREATED? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ | 1 2 8 |  |
| MC5. IN THE PAST SIX MONTHS, HAVE YOU SEEN OR HEARD ANY MALARIA MESSAGES? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 | $2 \rightarrow$ MC10 |


|  |  |  |  |  | MC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MC6. WHAT MESSAGES ABOUT MALARIA HAVE YOU SEEN OR HEARD IN THE PAST 6 MONTHS? <br> Probe: <br> WHAT ELSE? <br> Circle all that mentioned <br> MC7. IN THE PAST SIX MONTHS, HAVE YOU SEEN/HEARD ANY OF THE FOLLOWING MALARIA MESSAGES ON TELEVISION OR RADIO: <br> [A] NANA BORO'S "AHA YE DE-NTONTOM BE WU" MUSIC VIDEO/ SONG? <br> [B] ADVERT WHERE WOMAN DOESN'T WANT TO STAY THE NIGHT WITH THE MAN UNLESS HE HAS A TREATED NET? <br> [C] SHORT DOCUMENTARIES FEATURING THE TRUE STORIES OF GHANAIAN FAMILIES CHILDREN SUFFERING EPILEPSY AND LEARNING DISABILITIES DUE TO SEVERE MALARIA? <br> [D] ADVERT WHERE PEOPLE FROM ALL WALKS OF LIFE ARE SLEEPING UNDER TREATED NETS? | If have fever go to health facility Sleep under a insecticide treated mosquito net Pregnant women should take drugs to prevent malaria <br> Malaria kills <br> Other (specify) <br> None |  |  |  |  |
|  |  | Yes on radio <br> 2 <br> 2 <br> 2 | Yes on both <br> 3 <br> 3 <br> 3 <br> 3 | No 4 4 4 4 4 4 |  |
| MC8 DURING THE PAST 6 MONTHS, HAVE YOU SEEN/HEARD ANY ADVERT ON THE USE OF ACT WITH GREEN LEAF? | $\begin{array}{ll} \text { Yes } & 1 \\ \text { No } & 2 \\ \hline \end{array}$ |  |  |  | $2 \rightarrow$ MC10 |
| MC9. WHERE DID YOU SEE/HEAR THE ADVERT ON THE USE OF ACT WITH GREEN LEAF? <br> Probe: <br> ANY OTHER MEDIA? | TV <br> Radio <br> Newspaper/M <br> Poster/Leaflet <br> Billboard <br> Other (specify) <br> DK/Don't reme |  | $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \\ & \text { E } \\ & \text { X } \\ & \text { Z } \end{aligned}$ |  |  |
| MC10. HAVE YOU PARTICIPATED IN ANY COMMUNITY EVENT EDUCATING COMMUNITY MEMBERS ON PREVENTION AND CONTROL OF MALARIA? | Yes No |  | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |  |



## sexual behaviour

Check for the presence of others. Before continuing, ensure privacy. MS1. NOW I WOULD LIKE TO ASK YOU SOME QUESTIONS ABOUT SEXUAL ACTIVITY IN ORDER TO GAIN A BETTER UNDERSTANDING
OF SOME IMPORTANT LIFE ISSUES.

THE INFORMATION YOU SUPPLY WILL REMAIN STRICTLY CONFIDENTIAL.

HOW OLD WERE YOU WHEN YOU HAD SEXUAL INTERCOURSE FOR THE VERY FIRST TIME?
MS2. THE FIRST TIME YOU HAD SEXUAL INTERCOURSE, WAS A CONDOM USED?

MS2A. WHAT WAS THE MAIN REASON WHY YOU USED THE CONDOM?

MS3. WHEN WAS THE LAST TIME YOU HAD SEXUAL INTERCOURSE?
Record'years ago' only if last intercourse was one or more years ago If 12 months or more the answer must be recorded in years.

Never had intercourse 00
Age in years
First time when started living with (first) wife/partner 95

| Yes | 1 |  |
| :---: | :---: | :---: |
| No | 2 | $2 \rightarrow$ MS3 |
| DK / Don't remember | 8 | $8 \rightarrow$ MS3 |
| To prevent STD/HIV | 1 |  |
| To prevent pregnancy | 2 |  |
| To prevent both STD/HIV and pregnancy | 3 |  |
| Partner requested/insisted | 4 |  |
| Other (specify) | 6 |  |
| Days ago ${ }^{1}-$ |  |  |
| Weeks ago 2-- |  |  |
| Months ago 3-- |  |  |
| Years ago 4 - - |  | $4 \rightarrow$ MS15 |
| Yes | 1 |  |
| No | 2 | $2 \rightarrow$ MS5 |


| SEXUAL BEHAVIOUR (cont'd) |  |  | ms |
| :---: | :---: | :---: | :---: |
| MS4A. WHAT WAS THE MAIN REASON WHY YOU USED THE CONDOM? | To prevent STD/HIV <br> To prevent pregnancy To prevent both STD/HIV and pregnancy Partner requested/insisted Other (specify) | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |  |
| MS5. WHAT WAS YOUR RELATIONSHIP TO THIS PERSON WITH WHOM YOU LAST HAD SEXUAL INTERCOURSE? <br> Probe to ensure that the response refers to the relationship at the time of sexual intercourse <br> If'girlfriend', then ask: WERE YOU LIVING TOGETHER AS IF MARRIED? If'yes', circle '02'.If 'no', circle'03'. | Spouse <br> Cohabiting partner/concubine Girlfriend/fiancée Casual acquaintance Ex-girlfriend/fiancée Commercial sex worker Other (specify) | $\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & \\ & 96 \end{aligned}$ |  |

If'yes', circle '02'If'no', circle'03
MS6. Check MU1:
$\square$ Currently married or living with a woman (MU1 =1 or 2) $\rightarrow$ Go to MS8
$\square$ Not married / Not in union $($ MU1 $=3) \rightarrow$ Continue with MS7

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
MS7. HOW OLD IS THIS PERSON? \\
If response is DK , probe: \\
ABOUT HOW OLD IS THIS PERSON?
\end{tabular} \& \begin{tabular}{l}
Age of sexual partner \\
DK 98
\end{tabular} \& \& \\
\hline MS8. HAVE YOU HAD SEXUAL INTERCOURSE WITH ANY OTHER PERSON IN THE LAST 12 MONTHS? \& \[
\begin{aligned}
\& \text { Yes } \\
\& \text { No } \\
\& \hline
\end{aligned}
\] \& 1 \& \(2 \rightarrow\) MS14B \\
\hline \begin{tabular}{l}
MS9. THE LAST TIME YOU HAD SEXUAL INTERCOURSE WITH THIS OTHER PERSON, WAS \\
A CONDOM USED?
\end{tabular} \& \[
\begin{aligned}
\& \text { Yes } \\
\& \text { No }
\end{aligned}
\] \& 1 \& \\
\hline \begin{tabular}{l}
MS10. WHAT WAS YOUR RELATIONSHIP TO THIS PERSON? \\
Probe to ensure that the response refers to the relationship at the time of sexual intercourse \\
If'girlfriend', then ask: WERE YOU LIVING TOGETHER AS IF MARRIED? If'yes', circle '02'.1f'no', circle'03'.
\end{tabular} \& \begin{tabular}{l}
Spouse \\
Cohabiting partner/concubine Girlfriend/fiancée Casual Acquaintance Ex-Girlfriend/fiancée Commercial Sex Worker Other (Specify)
\end{tabular} \& 01
02
03
04
05
06

96 \& <br>

\hline | MS11. Check MU1 and MU7: |
| :--- |
| - Currently married or living with a woman (MU1 = 1 or 2) |
| AND |
| Married only once or lived with a woman only once (MU7 |
| - Else $\rightarrow$ Continue with MS12 | \& \[

7=1) \rightarrow Go to MS13
\] \& \& <br>

\hline | MS12. HOW OLD IS THIS PERSON? |
| :--- |
| If response is DK, probe: |
| ABOUT HOW OLD IS THIS PERSON? | \& | Age of sexual partner |
| :--- |
| DK 98 | \& \& <br>

\hline MS13. OTHER THAN THESE TWO PERSONS, HAVE YOU HAD SEXUAL INTERCOURSE WITH ANY OTHER PERSON IN THE LAST 12 MONTHS? \& $$
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
$$ \& 1 \& $2 \rightarrow$ MS14B <br>

\hline MS14. IN TOTAL, WITH HOW MANY DIFFERENT PEOPLE HAVE YOU HAD SEXUAL INTERCOURSE IN THE LAST 12 MONTHS? \& Number of partners \& \& <br>

\hline MS14A. WAS A CONDOM USED EVERY TIME YOU HAD SEXUAL INTERCOURSE IN THE LAST 12 MONTHS? \& $$
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
$$ \& 1 \& <br>

\hline MS14B. HAVE YOU EVER HAD SEX WITH A COMMERCIAL SEX WORKER? \& $$
\begin{aligned}
& \hline \text { Yes } \\
& \text { No }
\end{aligned}
$$ \& 1 \& $2 \rightarrow$ MS15 <br>

\hline
\end{tabular}

| SEXUAL BEHAVIOUR (contd) |  |  | ms |
| :---: | :---: | :---: | :---: |
| MS14C. WHEN WAS THE LAST TIME YOU HAD SEXUAL INTERCOURSE WITH A COMMERCIAL SEX WORKER? <br> Record'years ago' only if last intercourse was one or more years ago. If 12 months or more the answer must be recorded in years. | Days ago $1--$ <br> Weeks ago ${ }^{2}--$ <br> Months ago $3--$ <br> Years ago $4--$ |  |  |
| MS15. IN TOTAL, WITH HOW MANY DIFFERENT PEOPLE HAVE YOU HAD SEXUAL INTERCOURSE IN YOUR LIFETIME? <br> If a non-numeric answer is given, probe to get an estimate. If number of partners is 95 or more, write ' 95 '. | Number of lifetime partners $\qquad$$\text { DK } \quad 98$ |  |  |
| HIV/AIDS |  |  | мн |
| MH1. NOW IWOULD LIKE TO TALK WITH YOU ABOUT SOMETHING ELSE. <br> HAVE YOU EVER HEARD OF AN ILLNESS CALLED AIDS? | Yes <br> No |  | $2 \rightarrow$ Next <br> Module |
| MH2. CAN PEOPLE REDUCE THEIR CHANCE OF GETTING THE AIDS VIRUS BY HAVING JUST ONE UNINFECTED SEX PARTNER WHO HAS NO OTHER SEX PARTNERS? | Yes 1 <br> No 2 <br> DK 8 |  |  |
| MH3. CAN PEOPLE GET THE AIDS VIRUS BECAUSE OF WITCHCRAFT OR OTHER SUPERNATURAL MEANS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ |  |  |
| MH4. CAN PEOPLE REDUCE THEIR CHANCE OF GETTING THE AIDS VIRUS BY USING A CONDOM EVERY TIME THEY HAVE SEX? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ |  |  |
| MH5. CAN PEOPLE GET THE AIDS VIRUS FROM MOSQUITO BITES? | Yes <br> No <br> DK |  |  |
| MH6. CAN PEOPLE GET THE AIDS VIRUS BY SHARING FOOD WITH A PERSON WHO HAS AIDS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ |  |  |
| MH7. IS IT POSSIBLE FOR A HEALTHY-LOOKING PERSON TO HAVE THE AIDS VIRUS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \text { DK } \end{aligned}$ |  |  |
| MH8. CAN THE VIRUS THAT CAUSES AIDS BE TRANSMITTED FROM A MOTHER TO HER BABY: <br> [A] DURING PREGNANCY? <br> [B] DURING DELIVERY? <br> [C] BY BREASTFEEDING? |   <br>  Yes <br> During pregnancy 1 <br> During delivery 1 <br> By breastfeeding 1 | No DK <br> 2 8 <br> 2 8 <br> 2 8 |  |
| MH9. IN YOUR OPINION, IF A FEMALE TEACHER HAS THE AIDS VIRUS BUT IS NOT SICK, SHOULD SHE BE ALLOWED TO CONTINUE TEACHING IN SCHOOL? | Yes <br> No <br> DK/Not sure/Depends | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ |  |
| MH9A. IN YOUR OPINION, IF A MALE TEACHER HAS THE AIDS VIRUS BUT IS NOT SICK, SHOULD HE BE ALLOWED TO CONTINUE TEACHING IN SCHOOL? | Yes No DK / Not sure / Depends | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ |  |
| MH10. WOULD YOU BUY FRESH VEGETABLES FROM A SHOPKEEPER OR VENDOR IF YOU KNEW THAT THIS PERSON HAD THE AIDS VIRUS? | Yes <br> No <br> DK/ Not sure / Depends | $\begin{aligned} & 1 \\ & 2 \\ & 8 \end{aligned}$ |  |


| HIVIAIDS (cont'd) |  |  | м |
| :---: | :---: | :---: | :---: |
| MH11. IF A MEMBER OF YOUR FAMILY GOT INFECTED WITH THE AIDS VIRUS, WOULD YOU WANT OTHER PEOPLE TO KNOW ABOUT IT? | Yes <br> No <br> DK / Not sure / Depends | 1 2 8 |  |
| MH12. IF A MEMBER OF YOUR FAMILY BECAME SICK WITH AIDS, WOULD YOU BE WILLING TO CARE FOR HER OR HIM IN YOUR OWN HOUSEHOLD? | Yes <br> No <br> DK / Not sure / Depends | 1 2 8 |  |
| MH12A. IN YOUR OPINION, CAN THE HIV VIRUS BE TRANSMITTED THROUGH ORAL SEX? | Yes <br> No <br> DK / Not sure / Depends | 1 2 8 |  |
| MH12B. IN YOUR OPINION, CAN THE HIV VIRUS BE TRANSMITTED THROUGH ANAL SEX? | Yes <br> No <br> DK / Not sure / Depends | 1 2 8 |  |
| MH12C. IN YOUR OPINION, CAN HIV/AIDS BE CURED? | Yes <br> No <br> DK / Not sure | 1 2 8 | $\begin{aligned} & 2 \rightarrow \mathrm{MH} 24 \\ & 8 \rightarrow \mathrm{MH} 24 \end{aligned}$ |
| MH12D. IN YOUR OPINION, CAN A MAN INFECTED WITH HIV/AIDS BE CURED BY HAVING SEX WITH A VIRGIN WOMAN? | Yes <br> No <br> DK / Not sure | 2 |  |
| MH24.I IDON'T WANTTO KNOW THE RESULTS, BUT HAVE YOU EVER BEEN TESTED TO SEE IF YOU HAVE THE AIDS VIRUS? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 | $2 \rightarrow$ MH27 |
| MH 25. I DON'T WANT TO KNOW THE RESULTS BUT, WHEN WAS THE MOST RECENT TIME YOU WERE TESTED? | Less than 12 months ago 12-23 months ago 2 or more years ago | 1 2 3 |  |
| MH25A. DID YOU, YOURSELF, ASK FOR THE TEST, WAS IT OFFERED AND YOU ACCEPTED, OR WAS IT REQUIRED? | Asked for the test Offered and accepted Required | 1 2 3 |  |
| MH25B. WHERE DID YOU GO FOR THE TEST? <br> Probe to identify the type of source. <br> If unable to determine whether public or private, write the name of the place. <br> (NAME OF PLACE) | Public sector <br> Govt. hospital <br> Govt. health centre <br> Govt. clinic/PHU <br> Govt. VCT Centre <br> Other public (specify) <br> Private Medical Sector <br> Private hospital <br> Private clinic <br> Other private medical (specify) <br> Other sources <br> NGO VCT Centre <br> Mission hospital <br> Other (specify) <br> DK | 11 <br> 12 <br> 13 <br> 14 <br> 16 <br>  <br>  <br> 21 <br> 22 <br> 26 <br>  <br> 31 <br> 32 <br> 96 <br> 98 |  |

Probe to identify the type of source.

If unable to determine whether public or private, write the name of the place.

| HIV/AIDS (contt ${ }^{\text {d }}$ ) |  |  | MH |
| :---: | :---: | :---: | :---: |
| MH 26. I DON'T WANT TO KNOW THE RESULTS, BUT DID YOU GET THE RESULTS OF THE TEST? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 2 | $\begin{gathered} 1 \rightarrow \text { Next } \\ \text { Module } \\ \text { 2 } \rightarrow \text { Next } \\ \text { Module } \end{gathered}$ |
| MH 26. I DON'T WANT TO KNOW THE RESULTS, BUT DID YOU GET THE RESULTS OF THE TEST? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 1 2 | $\begin{gathered} \text { 1 } \rightarrow \text { Next } \\ \text { Module } \\ \text { 2 } \rightarrow \text { Next } \\ \text { Module } \end{gathered}$ |
| MH 27. DO YOU KNOW OF A PLACE WHERE PEOPLE CAN GO TO GET TESTED FOR THE AIDS VIRUS? | Yes <br> No | 1 |  |


| NATIONAL HEALTH INSURANCE |  |  | N |
| :---: | :---: | :---: | :---: |
| NI1. HAVE YOU EVER REGISTERED WITH ANY HEALTH INSURANCE SCHEME? | Yes |  | $2 \rightarrow \mathrm{~N} 110$ |
| NI2. WHAT TYPE OF HEALTH INSURANCE DO YOU HAVE? RECORD ALL MENTIONED | National/District Health Insurance (NHIS Mutual Health Organization/ Community-based Health Insurance Other privately purchased commercial Health Insurance <br> Other Health Insurance (specify) | A B C C |  |
| NI3. Check NI2: <br> $\square$ NHIS NOT CHECKED. $\rightarrow$ Go to NI11. |  |  |  |
| NI4. HOW WAS YOUR MEMBERSHIP OF THE NHIS ACHIEVED? | Paid premium myself <br> Premium paid by a relative or friend <br> Premium paid by employers <br> Premium paid by SSNIT <br> Exempt as indigent <br> Other (specify) |  |  |
| NI5. DO YOU HAVE A VALID NATIONAL HEALTH INSURANCE SCHEME (NHIS) CARD? <br> If person has valid insurance card, request to see it. Check to make sure it is valid for 2011 | Yes, card seen Yes, card not seen No |  | $\begin{array}{\|l\|l\|} \hline 1 \rightarrow \mathrm{~N} I 9 \\ 2 \rightarrow \mathrm{~N} I 9 \end{array}$ |
| NI6. WHY DO YOU NOT HAVE A VALID NHIS CARD? | Registered, but not fully paid yet 1 <br> Registered/Renewed, card 2 <br> not received  <br> Registered, in waiting period 3 <br> Registration not renewed 4 <br> Lost NHIS card 5 <br> Other (specify) 6 |  | $\begin{aligned} & 1 \rightarrow \mathrm{~N} 19 \\ & 2 \rightarrow \mathrm{~N} 19 \\ & 3 \rightarrow \mathrm{~N} 19 \\ & \\ & 5 \rightarrow \mathrm{~N} 19 \\ & 6 \rightarrow \mathrm{~N} 19 \end{aligned}$ |
| NIT.DO YOU PLAN TO RENEW THE NHIS REGISTRATION? | Yes No Don't know/ Not sure |  | $\begin{aligned} & 1 \rightarrow \mathrm{~N} 19 \\ & 8 \rightarrow \mathrm{NI9} 9 \end{aligned}$ |
| NI8.WHY DO YOU NOT WANT TO RENEW THE NHIS REGISTRATION? |  |  |  |


| NATIONAL HEALTH INSURANCE (cont'd) |  |  | N |
| :---: | :---: | :---: | :---: |
| NIG. IN YOUR OPINION, DO NHIS CARD HOLDERS GET BETTER/ SAME/WORSE SERVICES WHEN THEY ATTEND HEALTH CARE FACILITIES? | Better <br> Same <br> Worse <br> Never used <br> Don't know | 2 3 4 8 | $\begin{aligned} & 1 \rightarrow \text { MM11 } \\ & 2 \rightarrow \text { MM11 } \\ & 3 \rightarrow \text { MM11 } \\ & 4 \rightarrow \text { MM11 } \\ & 8 \rightarrow \text { MM11 } \end{aligned}$ |
| NI10. WHY HAVE YOU NOT REGISTERED OR RENEWED REGISTRATION WITH THE NHIS? | Not heard of NHIS <br> Premium too Expensive <br> Do not trust NHIS <br> Do not know where to register <br> Registration office too far <br> Do not need health insurance <br> NHIS does not cover the <br> services I need <br> NHIS does not cover the <br> facilities I use <br> Other | B C D E F G H H X | $\mathrm{A} \rightarrow \mathrm{MM} 11$ <br> $B \rightarrow M M 11$ <br> C $\rightarrow$ MM11 <br> D $\rightarrow$ MM11 <br> $\mathrm{E} \rightarrow \mathrm{MM} 11$ <br> $\mathrm{F} \rightarrow \mathrm{MM} 11$ <br> G $\rightarrow$ MM11 <br> $\mathrm{H} \rightarrow$ MM11 <br> $\mathrm{X} \rightarrow \mathrm{MM} 11$ |
| NI11. IS YOUR INSURANCE CURRENTLY VALID FOR 2011? | Yes <br> No <br> Don't know / Not sure | 1 2 8 |  |
| MM11. Record the time. | Hour and minutes ___:_ |  |  |
| MM12. End the interview with this respondent by thanking him for his cooperation. Check for the presence of any other eligible man in the household. |  |  |  |



Field Editor's Observations

## Ghana


[^0]:    Symmary of Vital Statistics 2010 , New York City Infant Mortaity, Bureau of Vita Ser Neil Z Miller and Gary Sooldman, 2011. Infant mortality rates regressed against number of vaccine doses routinely given: Is there a biochemical or synergistic toxicity? Human and Neil Z Miller and Gary S Goldma
    Experimental Toxicology, pp.1-9
    -United Nations, 1983. Manual : I Indirect Techniques for Demographic Estimation (United Nations publication, Sales No. E.83. XIII.2). United Nations, 1990 . OFIVE, United Nations , Hill K, Choi Y. (2006): Neoonatal mortality in the developing world. Demographic Research, volume 14, pp.429-452, Max-Planck-Gesellschaft

[^1]:    MoH,"Child Health Situation Analysis in Ghana,"2007, www.moh-ghana.org/UploadFiles/Publications/Childhealthsituationalanalysis90825083908
    Gha Situation Analysis of Newborn Care in Ghana - Working paper to inform USAID's 7 -year Strategic Plan, 2002
    Ghana Demographic Health Survey 2008, p. 138

[^2]:    "UNICEF, PAMM, MI, ICCIDD, WHO. Sullivan KM et al., eds. Monitoring universal salt iodization programmes. Atlanta, PAMM, MI, ICCIDD, 1995.
    ${ }^{18}$ Pieter L.J. Emmerentia S. (2010): Methods for determining lodine in Urine and Salt. Best Practice \& Research Clinical Endocrinology \& Metabolism 24 (2010), $77-88$

[^3]:     higher in Table .NU. 12 than in Table NU. 10

[^4]:    Figures in parentheses'()' are based on $25-49$ unweighted cases.

[^5]:    s determined an "ideal rate" of all cesarean deliveries at 15 percent for a population, given that about 15 percent of women who give birth

[^6]:    Liu L. Johnson HL, Cousens S, etal. Global
    $50140-6736(12) 60560-1$.
    
    ${ }^{30}$ WHO, UNLCEF, UNFPA, The World Bank. TTends in Maternal Mortality: 1990 -2010. Geneva: World Health Organization 2012.
    ${ }^{31}$ Academy for Educational Development (AED), the Manoff Group, and USAD, 2005 . Maternal survival: Improving access to skilled care, a behaviour approach, CHANGE project.
    Washington, DC (www.manofffroup.com).
    ${ }^{32}$ Countdown to 2015: Tracking Progress in Maternal, Newborn \& Child Survival, The 2008 Report. New York: UNICEF 2008.

[^7]:    Excision is partial or total removal of the clitoris and the labia minora, with or without excision of the labia majora, while clitoridectomy is to remove partially or totally the clitoris and/or the prepuce. Inficiclation is to narrow the vaginal orifice with creation of a covering seal by cutting and appositioning the labia minora and/or the labia majora, with or without excision of the clitoris.
    Section $69 \mathrm{~A}(1)$ reads:"Whoever excises, infibulates, or otherwise mutilates the whole or any part of the labia majora and the clitoris of another person commits an offence and shall be guilty of a second degree felony and liable on conviction to imprisonment of not less than three years."

[^8]:    MI Indicates that the indicator is also calculated for men, for the same age group, in surveys where the
    S.
    most of the necessary information is is indicated.
    MDG indicate
    Indicaticators as of February 2010
    survey" when estimated from the birth history
    Indicator is defined as "Probability of dying be
    Indicator is defined as "Probability of dying between birth and the first birthday, during the 5 -year period preceding
    the survey"when estimated from the birth history
    [M] Indicates that the indicator is also calculated for men, for the same age group, in surveys where the euestionnaire
    for Individual Men has been included. Calculations are carried out by using modulus in the Men's Questionnaire
    Some indicators are constructed by using questions in several modules. In such cases, only the module(s)
    Some indicators are constructed by using questions in several
    which c ontains most of the neesessary information is indicated.
    MDG indicators as of february 2010

[^9]:    ${ }^{45}$ Infants receiving breast milk, and not receiving any other fluids or foods, with the exception of
    oral rehydration solution, vitamins, mineral supplements and medicines
    ts and medicines
    Infants who receive breast milk and certain fluidss (water and water-based drinks, fruit juice, ritual fluids,
    oral rehyydration solution, drops, vitamins, minerals, and medicines, but do not oral rehycration solution, ropos, vitamins, minerals, and
    (in particular, non-human milk and food-based fluids)
    Breastfeeding children: Solid, semi-solid, or sofft foods, two times for infants age $6-8$ months, 3 times $f$
    Breastreeding children: Solid, semi.solid, or soff foods , two times for infants $\mathrm{age} 6-8$ months 3 , 3 tim
    chididren -23 months four times for chidrrin agene 6-23 mosteoding
    Infants age $0-5$ who are exclusively breastfed, and children age $6-23$ months who are

[^10]:    49 Indicators $3.1,3,2,3,3,3,3.4,3.5$ and 3.6 may be calculated for an older age group, such as
    $15-26$ months or $18-29$ months, depending on the immunization schedule
    ${ }^{50}$ See MICS4 manual for a detailed description

[^11]:    An iTN is (a) a factory treated net which does not require any treatment, (b) a pretreated net obtained
    within the past 12 months, or (c) a net that has been sooked with or dipped in insecticide within the
    Indoor residual spraying, or (c) a net that has been soaked with or dipped in insecticide within the past 12 months

[^12]:    Indicato is defined as"Age-specific fertility rate for women age $15-19$ years, for the 3 -year period preceding the survey" when estimated from the birth history
    See MICS4 manual for a detailed description

[^13]:    ${ }^{56}$ Using condoms and limiting sex to one faithful, uninfected partner
    ${ }^{5}$ T' Womsmiss (1) who thing pregnancy, during delivery, and by breasterfeeding teacher with the AIDS virus should be allowed to teach in school, (2) who would buy fresth hegetatales frime a shopkeeper or vendor who has the ADS virus, (3) who would
    not want to keep it as a secret if fa fanily member became infected with the ADS not wint to keepit a a s asecritt fif amily member became infected with the $A$ A
    be willing to care for a family member who became sick with the AlDS

