
Client-side Reconstruction of Composite Mementos Using
ServiceWorker

Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson
Department of Computer Science, Old Dominion University

Norfolk, Virginia, USA - 23529
{salam,mkelly,mweigle,mln}@cs.odu.edu

ABSTRACT

We use the ServiceWorker (SW) API to intercept HTTP requests
for embedded resources and reconstruct Composite Mementos
without the need for conventional URL rewriting typically per-
formed by web archives. URL rewriting is a problem for archival
replay systems, especially for URLs constructed by JavaScript,
that frequently results in incorrect URI references. By intercept-
ing requests on the client using SW, we are able to strategically
reroute instead of rewrite. Our implementation moves rewrit-
ing to clients, saving servers’ computing resources and allowing
servers to return responses more quickly. In our experiments, re-
trieving the original instead of rewritten pages from the archive
resulted in a one-third reduction in time overhead and a one-fifth
reduction in data overhead. Our system, reconstructive.js,
prevents the live web from leaking into Composite Mementos
while being easy to distribute and maintain.

CCS CONCEPTS

�Information systems �Digital libraries and archives;
World Wide Web;

KEYWORDS

ServiceWorker, Memento, Composite Memento, Web Archive,
Archival Replay

ACM Reference format:
Sawood Alam, Mat Kelly, Michele C. Weigle, and Michael L. Nelson.

2016. Client-side Reconstruction of Composite Mementos Using Ser-
viceWorker. In Proceedings of ACM Conference, Washington, DC,
USA, July 2017 (Conference’17), 4 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

ServiceWorker (SW) is a new client-side web API [11] that can
be used to intercept all the network requests, originating from
web pages in its scope, for embedded resources. A Compos-
ite Memento [2] is an archived HTML page along with all the
embedded resources (page requisites) that are necessary to ren-
der the page correctly. Web archival replay systems rewrite em-
bedded resource references to point to their archival versions
e.g., a reference to external.example.net/logo.png is changed to
archive.example.org/<datetime>/external.example.net/logo.png.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

We use SW API to reconstruct Composite Mementos from the
originally captured data without any such URL rewriting. By
intercepting requests on the client-side, we are essentially rerout-
ing instead of rewriting. Rerouting is an effective mechanism
to block live web leakage, or “zombies”. URIs constructed by
JavaScript (JS) are often difficult to discover by static analysis
for rewriting. For example, in Figure 1 the page was archived on
September 3, 2008, but when observed on September 28, 2012,
it pulled in a banner ad from the live web, which seems to pro-
vide a prophetic look at the 2012 presidential candidates [5].
Client-side rerouting also saves bandwidth by allowing necessary
rewriting of the content (such as archival banner inclusion) on
the client side. Hence, there is no need to send extra data with
each HTML response. Client-side solutions, such as Memento for
Chrome1, involve installing a browser add-on, which limits the
adoption by users. Additionally, each add-on/extension adds the
maintenance burden to developers while being available for users
of only specific platforms. Our exploratory technique works well
when SW is supported. However, a server-side fallback is neces-
sary for production usage to avoid the risk of zombies and broken
references when SW is not supported.

In our experiments, retrieving the original instead of rewritten
pages from the the Internet Archive (IA) resulted in a one-third
reduction in time overhead and a one-fifth reduction in data over-
head. Our system prevents zombies from Composite Mementos
while being easy to distribute and maintain. It is a lightweight
and portable system that can be used with any Memento server
such as a web archive or a Memento aggregator.

2 BACKGROUND

A memento is a timestamped representation of a web resource
identified by a URI-M [13]. A web page is often comprised of
a base HTML page and various embedded resources such as im-
ages, stylesheets, JS, fonts, and other media (each with an in-
dependent URI) that are necessary to render the page correctly.
A Composite Memento is a memento of a base HTML page and
mementos of all corresponding embedded resources around the
same time as the base page to render the page the way it looked
in the past [2].

References to these embedded resources can be absolute URIs,
absolute paths, or relative paths in attributes like href or src.
A relative path is relative to the base URL, either explicitly spec-
ified using <base> element or implicitly derived from the URL of
the current page. In order to dereference a resource over HTTP
the client must resolve its reference to an absolute URL. To do
so, a client may use various pieces of information to accomplish
this such as domain’s root URL, origin’s base URL, and the path
of the resource. When the domain name or the root path of the
site changes, some of these references may resolve incorrectly.

1http://bit.ly/memento-for-chrome

Figure 1: Live Ad Zombie Leaks into an Archived Page

When an archived page is replayed, both the domain name
and the root path are changed. To correctly route all the re-
source references, web archival replay systems (such as Open-
Wayback2, PyWB3, Memento Reconstruct4) perform static anal-
ysis of HTML pages, CSS, and JS files to rewrite href and src

attributes in a way that points to their archival versions. Alter-
natively, a proxy can be configured or a browser add-on can be
installed to reroute requests appropriately.

ServiceWorker is a new client-side web API that acts as a
proxy between a web application and the web server. It can
intercept all the network requests originating from web pages in
its scope. A SW is installed in the form of a JS file loaded from a
path on a host like any other resource. Any resource under that
path of the host is in the scope of the SW. Subsequent requests
originating from any web page in scope are also intercepted by
the SW, even if the resource resides on an external domain. This
API is often used to make web applications accessible offline
using client-side caching, background data synchronization, and
push notifications. We use this API to reconstruct Composite
Mementos from the originally captured data without any URL-
rewriting. Our technique can be utilized by other URI-based
services such as web annotations. SW is still in the working
draft phase, but already implemented by many major browsers.

3 RELATED WORK

Ainsworth introduced a framework for assessing temporal coher-
ence of a Composite Memento [1]. A temporal violation may
occur due to poor archiving or poor playback. The latter is the
focus of our work.

Kelly created the state-of-the-art Acid test suite for archival
systems [10], both capture and replay. While Kelly’s Archival
Acid test was focused on evaluating the capture quality and pixel-
perfect rendering, it does not cover all cases of how a network
request can be initiated and where the responses come from. Our
focus is mainly on the network activity to make sure that each
response is coming from the appropriate archive and there are
no zombies. We evaluate rerouting of all the requests originated
explicitly, implicitly, or after any interaction with the page.

Measuring the quality of the crawling or capture is beyond the
scope of this work. Brunelle has done exhaustive research about

2https://github.com/iipc/openwayback
3https://github.com/ikreymer/pywb
4http://timetravel.mementoweb.org/

the impact of missing resources [6] and capturing the deferred
representation [7] (rendered state of a page after some interac-
tivity or JS execution). Our focus is to load those resources
properly if present in the archive.

Jones proposed using the Prefer HTTP header with the exist-
ing Memento protocol [13] to request the unaltered (raw) archived
web content [8]. Current practice is to use a URL based tech-
nique (appending id to the datetime digits), which has been a
little-known feature of the Wayback Machine.

Sanderson discussed the challenges and solutions discovered
for implementing the Memento protocol in a variety of environ-
ments, including MementoFox (a Firefox add-on), a plugin for
Internet Explorer, and an Android-based browser [12].

4 METHODOLOGY

Figure 2 illustrates the workflow of our reconstruction method.
Suppose a user visits archive.example.org, which installs a SW
reconstructive.js in the user’s web browser under the root
of the domain. This SW is detached from the page and per-
sists in the browser independently to watch all network activ-
ities originated under its scope. The user then loads a copy
of www.example.com from archive.example.org that was archived on
January 26, 2017. This memento has an embedded image that
points to an external domain external.example.net. The browser
would have sent the request to the external domain, but due
to the presence of the SW, it will be intercepted. The SW
reconstructive.js gets access to the request object that con-
tains a referer header (the URL of the originating page that is
shown in the address bar of the browser). Based on the available
information (e.g., the datetime of the originating page) the SW
can create a new request, load the corresponding resource from
the archive, make any modification in the response (if needed,
such as adding banners in HTML pages), and return the response
to the page for rendering. To maintain the same-origin bound-
ary for external resources that might load more resources, such
as iframe source or CSS, we first issue a 302 redirect to the corre-
sponding URI-M locally from the SW. All the logic of exclusions
and rerouting is present in the reconstructive.js file, which
can be updated on the server when needed. When the user visits
the home page of the archive, the corresponding SW will be up-
dated automatically. Every request originating from our SW has
a custom header, X-ServiceWorker: reconstructive.js:v1, so
the server can decide whether it needs to return a server-side

Figure 2: ServiceWorker reconstructive.js Intercepts a Zombie Resource and Reroutes to its Archived Copy

rewritten response as a fallback for unsupported clients or at-
tempt to install/update the SW.

Our goal in this exploratory work was to effectively recon-
struct a Composite Memento with zero rewriting. However, us-
ing client-side rewriting we can add other useful features such
as an archival banner with metadata and toolbar, pointing hy-
perlinks to the archived version, or JS handlers adding custom
behavior when hyperlinks are followed.

5 IMPLEMENTATION

The reference implementation of the reconstructive.js is be-
ing used by our InterPlanetary Wayback archival replay sys-
tem [3, 9]. Additionally, we use reconstructive.js in our
Memento aggregator, MemGator [4], to facilitate cross-archive
Composite Memento reconstruction. To deal with the Cross-
Origin Resource Sharing (CORS) [14] restrictions we added
Memento Proxy feature in MemGator. We open-sourced
reconstructive.js5, IPWB6, and MemGator7.

6 EVALUATION

To quantify the benefits of client-side rerouting we collected 500
domains8 and sequentially fetched their mementos closest to Jan-
uary 26, 2017 (using 20170126000000 as the 14-digit datetime

string) in both original and rewritten forms from the IA. We re-
peated this three times and found the time variance less than 30
seconds. The rewritten responses took an average of 26.97 min-
utes while the original versions took only 19.88 minutes. Hence,
there is an overhead of 35.66% in the mean response time with
the server-side rewriting and banner inclusion.

Among the 500 requests there were 33 403 Forbidden, five
404 Not Found, and one 504 Gateway Timeout. There were 19
cases where the original archived memento was a 302 Found with
a Location header containing an absolute path. If not rewrit-
ten by the server, the path would resolve to an irrelevant or
non-existing resource. There were 79 301 Moved Permanently

responses for which IA shows a splash page for a few seconds
then redirects. We eliminated all of these 137 problematic re-
sponses and evaluated the data sizes for the two cases. Original
responses were 44.98 MB total while the rewritten responses
were 50.74 MB accumulated, hence, a 12.80% overhead. If we
also include the 3.09 MB of 79 301 Moved Permanently splash
pages then the data overhead becomes 19.68%. We also found
that IA can lead to a different chain of redirects for original

5https://github.com/oduwsdl/reconstructive
6https://github.com/oduwsdl/ipwb
7https://github.com/oduwsdl/memgator
8Moz’s list of the top 500 domains on the web ranked by the number of
linking root domains on January 26, 2017. https://moz.com/top500.

and rewritten requests when negotiating with the same starting
datetime value, resulting in different terminal mementos for the
two cases.

While the time and data overhead evaluations are not directly
tied to the SW, the benefit is worth knowing as the server-side
URL rewriting and banner inclusion is not necessary when SW-
based rerouting is utilized. Reported data overhead is calculated
over sampled home pages that are all HTML pages, which might
differ significantly for a different sample set. Rewriting is only
performed on text files (i.e., HTML, CSS, or JS) while binary
files such as images are served unchanged. Also, reported time
values may differ significantly depending on the network latency
when the experiment is carried out. However, we always expect
some savings in both time and data overheads when requesting
the original, instead of the rewritten content from the archive.

To evaluate the archival replay reconstruction quality we cre-
ated the Archival Capture Replay Test Suite (ACRTS)9 with
different scenarios of how a web page might initiate a network
request. We archived ACRTS and saved the resulting Web
ARChive (WARC) file. We then changed the live ACRTS site
in a way that all the resource references remained the same,
but their content was changed. Using various replay systems we
loaded the archived ACRTS from the stored WARC file. Depend-
ing on how effective the replay system is, it might load resources
from the archive (✓□), leak from the live site (⊠), or not load at
all (□). The latter might happen either because the requested
resource was not present in the archive or the replay system re-
solved the location incorrectly. Correct routing from the archive
is desired in an effective archival replay system.

Table 1 shows how well each of the listed archival replay sys-
tems reconstructs a composite memento when resource requests
are originated from different conditions. OpenWayback relies
only on server-side rewriting, hence, fails when URLs are con-
structed using string concatenation and variables in JS. PyWB
uses both server-and client-side rewriting to mitigate live leak-
age, which results in good reconstruction. Memento Reconstruct
uses PyWB as the replay engine, but reconstructs the page from
aggregated resources in an iframe. The scrolling issue is caused
by the iframe configuration, while others are due to the CORS
restrictions when archives return rewritten responses. Memento
for Chrome is a pure client-side system that redirects the base
page to corresponding URI-M without intercepting embedded re-
source requests, hence the quality depends on the target archive.
Our SW based system, reconstructive.js, requests for the orig-
inal content from archives and makes all the rerouting decisions
on the client. This saves bandwidth and prevents zombies.

9https://ibnesayeed.github.io/acrts/

Table 1: URL Rewriting/Rerouting Results in Different
Archival Replay Systems (A: OpenWayback, B: PyWB, C: Memento

Reconstruct, D: Memento for Chrome, and E: Reconstructive)

Resource Loading Scenarios ABCDE

Relative path ✓□✓□✓□✓□✓□
Absolute rooted path ✓□✓□✓□✓□✓□
Absolute local URL ✓□✓□✓□✓□✓□
Absolute external URL ✓□✓□✓□✓□✓□
External resource from an external iframe ✓□✓□✓□✓□✓□
Loaded by an inline CSS ✓□✓□✓□✓□✓□
Loaded by a CSS file ✓□✓□✓□✓□✓□
Loaded by CSS @font-face ✓□✓□□✓□✓□
Loaded by image srcset ✓□✓□✓□✓□✓□
Added by an inline JS on page load ⊠✓□✓□⊠✓□
Added by an inline JS on page scroll ⊠✓□□⊠✓□
Added by an inline JS on click ⊠✓□✓□⊠✓□
Added by a JS file ⊠✓□✓□⊠✓□
Added by an Ajax request ⊠✓□□⊠✓□

Apart from the evaluated quantitative advantages there are
some other advantages as well. Our method enables the abil-
ity to verify the fixity of the archived content on the client side
as the server returns the original archived content without any
modification. It has many of the same features that are provided
by browser add-ons such as MementoFox (deprecated). However,
maintaining separate add-ons for each popular browser and keep-
ing them up-to-date is a difficult task. Encouraging users to in-
stall add-ons is another barrier to adoption. In contrast, a SW is
easier to maintain, update, and distribute as it is a JS file hosted
on the web server and updates in clients’ browsers automatically.
Additionally, the same code works in many different browsers.

The support for SW was introduced in Chrome 40 and Opera
27 in January 2015. Firefox 44 added support in January 2016.
Firefox does not support SW in private browsing mode. For
security reasons SW only runs over HTTPS. There is 61.55%
support globally as of January 31, 201710.

7 FUTURE WORK

We would use the Prefer header for content negotiation [8] when
it is supported by web archives. We would like to add a customiz-
able archival banner as part of the client-side rewriting using
HTML5 Web Components11 to avoid any style conflicts with
the page. Ability to verify the fixity of the archived content
would be another valuable addition.

SW is an emerging technology, which has many opportunities
to create useful services and tools. We would like to investi-
gate the possibility of a variation to our SW that can be used
by webmasters in personal sites, wikis, blogs, or other content
management systems to use web archives as a fallback cache
when embedded resources are gone missing from the live web.
Missing resources are a big issue in social platforms like forums
where users post content, including external media, that make
the thread less useful when gone. Additionally, we can add the
ability to request web archives to capture resources that are
loaded by any user of a page from a domain that hosts our SW.
These use cases can encourage utilization of web archives by
webmasters to cause fewer 404s for users.

10http://caniuse.com/#feat=serviceworkers
11https://www.webcomponents.org/specs

8 CONCLUSIONS

We utilized the ServiceWorker web API to explore intercepting
requests and reconstruct Composite Mementos without the need
for conventional URL rewriting of web archives. We developed
a prototype implementation and used it as the replay system
for an InterPlanetary File System (IPFS) based standalone web
archive and for a Memento aggregator for cross-archive recon-
struction. We created a test suite to evaluate different archival
replay systems to measure the rerouting quality where our im-
plementation passes all the cases. In our experiments, retrieving
the original instead of rewritten pages from the IA resulted in a
one-third reduction in time overhead and a one-fifth reduction in
data overhead. Our system prevents Composite Mementos from
zombies while being easy to distribute and maintain. It is a light-
weight and portable system suitable for any Memento server.

9 ACKNOWLEDGEMENTS

This work is supported in part by NSF grant III 1526700. We
thank Scott Ainsworth for his feedback.

REFERENCES
[1] Scott G. Ainsworth, Michael L. Nelson, and Herbert Van de Sompel.

2014. A Framework for Evaluation of Composite Memento Temporal
Coherence. (2014). http://arxiv.org/abs/1402.0928

[2] Scott G. Ainsworth, Michael L. Nelson, and Herbert Van de Sompel.
2015. Only One Out of Five Archived Web Pages Existed As Pre-
sented. In Proceedings of the 26th ACM Conference on Hypertext
& Social Media (HT ’15). 257–266. DOI:http://dx.doi.org/10.1145/
2700171.2791044

[3] Sawood Alam, Mat Kelly, and Michael L. Nelson. 2016. InterPlane-
tary Wayback: The Permanent Web Archive. In Proceedings of the
16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL
’16). 273–274. DOI:http://dx.doi.org/10.1145/2910896.2925467

[4] Sawood Alam and Michael L. Nelson. 2016. MemGator - A
Portable Concurrent Memento Aggregator. In Proceedings of the 16th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’16).
243–244. DOI:http://dx.doi.org/10.1145/2910896.2925452

[5] Justin F. Brunelle. 2012. Zombies in the Archives. http://ws-dl.
blogspot.com/2012/10/2012-10-10-zombies-in-archives.html

[6] Justin F. Brunelle, Mat Kelly, Hany SalahEldeen, Michele C. Wei-
gle, and Michael L. Nelson. 2015. Not All Mementos Are Created
Equal: Measuring The Impact Of Missing Mementos. Int. J. on Dig-
ital Libraries 16, 3-4 (2015), 283–301. http://dx.doi.org/10.1007/
s00799-015-0150-6

[7] Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson. 2015.
Archiving Deferred Representations Using a Two-Tiered Crawling Ap-
proach. (2015). http://arxiv.org/abs/1508.02315

[8] Shawn M. Jones, Lyudmila Balakireva, Harihar Shankar, Michael L.
Nelson, and Herbert Van de Sompel. 2016. Mementos In
the Raw, Take Two. http://ws-dl.blogspot.com/2016/08/
2016-08-15-mementos-in-raw-take-two.html

[9] Mat Kelly, Sawood Alam, Michael L. Nelson, and Michele C. Weigle.
2016. InterPlanetary Wayback: Peer-To-Peer Permanence of Web
Archives. In Proceedings of the 20th International Conference on
Theory and Practice of Digital Libraries (TPDL ’16). 411–416. DOI:
http://dx.doi.org/10.1007/978-3-319-43997-6 35

[10] Mat Kelly, Michael L. Nelson, and Michele C. Weigle. 2014. The
Archival Acid Test: Evaluating Archive Performance on Advanced
HTML and JavaScript. In Proceedings of the 14th ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL ’14). 25–28. DOI:
http://dx.doi.org/10.1109/JCDL.2014.6970146

[11] Alex Russell, Jungkee Song, and Jake Archibald. 2015. Service Work-
ers. https://www.w3.org/TR/service-workers/

[12] Robert Sanderson, Harihar Shankar, Scott Ainsworth, Frank Mc-
Cown, and Sam Adams. 2011. Implementing Time Travel for the
Web. Code{4}Lib Journal 13 (2011). http://journal.code4lib.org/
articles/4979

[13] Herbert Van de Sompel, Michael L. Nelson, and Robert Sanderson.
2013. HTTP Framework for Time-Based Access to Resource States –
Memento. RFC 7089.

[14] Anne van Kesteren. 2014. Cross-Origin Resource Sharing. https://
www.w3.org/TR/cors/

