
ELSEVIER

On the security of pay-per-click and other Web advertising schemes

Vinod Anupam Ł,a,1, Alain Mayer a,1, Kobbi Nissim b,2, Benny Pinkas b,2,3,
Michael K. Reiter a,4

a Bell Laboratories, Lucent Technologies, Murray Hill, NJ, USA
b Department of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel

Abstract

We present a hit inflation attack on pay-per-click Web advertising schemes. Our attack is virtually impossible for the
program provider to detect conclusively, regardless of whether the provider is a third-party ‘ad network’ or the target of
the click itself. If practiced widely, this attack could accelerate a move away from pay-per-click programs and toward
programs in which referrers are paid only if the referred user subsequently makes a purchase (pay-per-sale) or engages in
other substantial activity at the target site (pay-per-lead). We also briefly discuss the lack of auditability inherent in these
schemes. 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Electronic commerce; Secure systems; On-line advertising; Pay-per-click

1. Introduction

Click-through payment programs (‘pay-per-
click’) have become a popular branch of Internet
advertising. In the simplest case, the Webmaster of
the site running the program, here called the tar-
get site, agrees to pay each referrer site for each
user who clicks through the referrer to the target.
That is, if a user views a Web page served from
the referrer site, and then clicks on a hypertext link
(e.g., banner ad, logo) in that page to the target site,
then the target site owes the referrer site some pre-
determined amount of money. The target site runs

1 Corresponding author.
1 E-mail: {anupam, alain}@research.bell-labs.com
2 E-mail: {kobbi, bennyp}@wisdom.weizmann.ac.il
3 Research partly supported by an Eshkol fellowship from the
Israeli Ministry of Science.
4 E-mail: reiter@research.bell-labs.com

a click-through payment program in order to moti-
vate the referrer to prominently display ads for the
target site on its Web pages. Often, the target site
does not administer such a program itself but rather
employs a third-party ad network to administer the
click-through program on its behalf 5.

Click-through counts are also used by the Internet
advertising industry at large to determine the effec-
tiveness of a banner ad (its location, design, etc.).
Often the click-through rate (i.e., the percentage of
users who clicked on the banner after seeing it) is
used as a metric to determine the cost of placing the
banner ad on a particular Web page 6.

As has been recognized in the click-through pay-

5 Examples of such third-party services include ClickTrade
(http://clicktrade.linkexchange.com/), eAds (http://www.eads.co
m/), and ValueClick (http://www.valueclick.com/).
6 See BannerNetwork (http://adnetwork.linkexchange.com) and
BannerSwap (http://www.bannerswap.com/).

 1999 Published by Elsevier Science B.V. All rights reserved.

14

ment industry, click-through payment programs are
susceptible to hit inflation, where a referrer artifi-
cially inflates the click-through count for which it
should be paid. Consequently, most ad networks in-
clude clauses in their service agreement that explic-
itly prohibit hit inflation by the referrer and mention
that they have “effective software to detect such
misuse”.

The goal of this paper is to explore the extent
to which hit inflation can be detected or prevented
in click-through payment programs. The main result
of this paper is negative: we present a hit inflation
attack that on one hand is very difficult for the
target site (or the ad network site, if present) to
detect conclusively and that on the other hand can be
used by the perpetrating referrer to inflate its referral
count at the target site. The attack allows the referrer
to transform every visit by a user on any site that is
collaborating with the referrer into a click through
to the target. We have tested the attack with both
Netscape Navigator and Microsoft Internet Explorer
browsers.

The practical implications of our attack are po-
tentially significant. If our attack becomes common-
place, then it could accelerate a move away from
pay-per-click programs and toward advertising pro-
grams where payment is offered to a referrer only
if the referred user either makes a purchase at the
target site (pay-per-sale) or shows some demon-
strable interest (pay-per-lead). Such variations of
click-through programs have already appeared on
the Web, presumably motivated by the desire of tar-
get sites to pay only for ‘high quality’ referrals. Our
attack is ineffective against pay-per-sale and pay-per-
lead programs. However, as we will discuss, these
programs are susceptible to another form of fraud
that present Web infrastructure offers little ability to
detect.

Aside from its potential impact, our attack em-
ploys an interesting technique. In the attack, two
collaborating Web sites ‘team up’ so that whenever
a user visits one of these sites, the click-through
count of the other Web site is incremented at the
target. Moreover, this is invisible to the user, and
the target has little ability to detect that this is not
a legitimate referral, even if its Webmaster suspects
that the attack is happening. Rather, to convincingly
detect this attack, the Webmaster of the target must

locate the Web page on the site that is initiating the
attack (i.e., the one that the user actually visited),
which should be very difficult unless the target has
prior knowledge of the collaborating Web sites.

The rest of this paper is organized as follows.
We introduce the hit inflation problem in more detail
in Section 2. We describe our attack in Section 3,
and we discuss the security of alternative adver-
tising schemes (pay-per-sale and pay-per-click) in
Section 4.

2. The hit inflation problem

In order to understand the hit inflation problem,
we first must understand how a legitimate click-
through is manifested in HTTP protocol messages.
Our initial treatment is for the simple case of a
click-through program run directly by a target site
for referrers. The case of a third-party click-through
program provider will be discussed subsequently.

Let R denote a referring site, T denote the tar-
get site, and U denote a user’s Web browser. A
click-through begins when U retrieves a Web page
pageR.html from R that contains a hypertext link
to a page pageT.html on site T (see Fig. 1). When
the user clicks on that link, the user’s browser issues
a request to site T for pageT.html. An important
component of this request is the Referer header
of the HTTP request for pageT.html. This header
is set by the user’s browser and names the Web
page that ‘referred’ the user to pageT.html, in this
case pageR.html. T uses this Referer header to

R

1
(pageR.html) (pageT.html)

2
3

T

U

Fig. 1. A click-through: User U retrieves pageR.html from R
(message 1) and clicks on a link in it, causing pageT.html on
site T to be requested (message 2) and loaded (message 3).

15

record the URL of the page that referred the user to
pageT.html, along with the IP address of U. T then
returns pageT.html to U for display in the browser.

In a click-through payment program, T will peri-
odically pay R some previously agreed-upon amount
for each click-through from R to T. The fact that T
pays for click-throughs provides to R an incentive to
mount hit inflation attacks on T, in which R some-
how causes T’s record of click-throughs from R to be
increased above the correct number. Here we do not
define precisely what the ‘correct number’ is. Rather,
we simply characterize a hit inflation attack as one in
which T receives a request for pageT.html with a
Referer header naming pageR.html when no cor-
responding Web user clicked to pageT.html after
viewing pageR.html. For example, a straightfor-
ward attempt to inflate R’s click-through count is for
the Webmaster of R to run a program that repeatedly
sends requests of the appropriate form to T. How-
ever, because most click-through programs pay only
for ‘unique’ referrals, i.e., click-throughs from users
with different IP addresses, multiple click-throughs
where the user is at the same site are counted as
only one click-through for payment purposes. On the
side we remark that counting unique IP addresses
is becoming increasingly ineffective, as more user
requests are directed through proxy servers either
due to the default configuration of the user’s ISP
(e.g., 99% of AOL subscribers) or to enhance user
privacy 7.

A sophisticated attacker could issue multiple re-
quests to T with forged IP source addresses, thereby
circumventing the unique referrals rule. However,
this requires a further degree of technical sophis-
tication and effort on the attacker’s part (see, e.g.,
[3]). Moreover, these attacks can be detected by T,
due to the fact that in all likelihood, no browser
will receive the response from T. So, for example, if
pageT.html is constructed with links to images or
other HTML elements that a browser would immedi-
ately retrieve upon interpreting pageT.html, then a
request for pageT.html with a forged IP source ad-
dress will not be followed by requests for the HTML
elements contained in pageT.html. If it is feared

7 Example privacy-enhancing proxies include the Anonymizer
(http://www.anonymizer.com) and the Lucent Personalized Web
Assistant (http://lpwa.com).

that the attacker will go one step further and even
issue these follow-up requests in a predictive fashion
to avoid detection, then T can dynamically generate
pageT.html each time with links to different URLs
(in the limit, containing a nonce in the URL), thereby
foiling any such attempt by the attacker to predict
the URLs to request. The end result is that requests
with forged IP addresses will stand out to T as those
for which correct follow-up requests were not re-
ceived. Moreover, the perpetrator of this attack will
be revealed by the Referer field of these requests,
as this Referer field must indicate the referrer that
is trying to inflate its hits.

Because of the difficulty and detectability of IP
address forgery attacks, probably the most common
form of hit inflation today is one in which the referrer
R forces the user to visit the target T by constructing
pageR.html so as to automatically ‘click’ the user
to pageT.html (e.g., see [6]). This simulated click
can be accomplished using constructs that will also
play a role in our attacks; we thus defer an explana-
tion of these techniques to Section 3. This simulated
click can be visible to the user, in which case the user
will see, e.g., a new window popped up on his screen
unsolicited and containing pageT.html. Alterna-
tively, the window can be hidden from the user (e.g.,
behind the window containing pageR.html), so that
the user is unaware that she is being ‘used’ by R to
gain payment from T. Regardless of whether this hit
inflation is visible to the user, it is still the case that
these attacks can be detected by T if the Webmaster
of T periodically visits the Web pages of the referrers
that she pays (preferably from a machine outside
her own domain, to avoid detection by the referrer).
By inspecting the constructions in those Web pages,
and observing the behavior of these pages when in-
terpreted by her browser, the Webmaster of T can
detect that hit inflation is occurring. Indeed, this ex-
amination could even be automated, as it suffices to
detect if the referrer’s page, when interpreted, causes
a request to T’s site automatically.

There are numerous variations on click-through
programs as described above. In particular, in a pro-
gram run by a third-party provider, the interaction
differs from the above description in that the third
party takes the place of T. The third party records the
click-through and then redirects the request to the ac-
tual target site. Another variation is that some click-

16

through programs do not make use of the HTTP
Referer header, but rather simply have each refer-
rer refer to a different URL on the target site. This
approach has the advantage of not relying on the
Referer field to be set correctly and thus function-
ing in conjunction with privacy-enhancing tools that
eliminate the Referer field in the HTTP header.
However, this approach exposes the click-through
program to additional risks: in particular, the refer-
rer Webmaster can broadcast-email (‘spam’) his own
banner ad to increase its click-through count. Thus,
most click-through programs of this form explicitly
prohibit spamming to increase click-throughs, and
will cancel the referrer’s account if the referrer is
detected doing so.

None of these variations deter the attack we
present in Section 3. On the contrary, if the Ref-
erer header is not used by the target site, then
our attack becomes easier, as will be discussed in
Section 3.

3. Undetectable hit inflation for click-through
counts

In this section we describe an approach to hit
inflation that is very effective on two counts: it en-
ables a referrer to inflate hits arbitrarily, and it does
so in a way that is very difficult for the target to
detect, even if the target suspects that the attack is
being conducted. The attack is equally applicable to
both direct click-throughs from a referrer to a tar-
get and third-party click-through program providers.
Here we present our attack in the context of a direct
click-through program. Its full implications will be
discussed in Section 3.3.

In our attack, the referrer site R inflates its click-
through count by translating hits on another site
S that it controls into referrals from site R to the
target site T. That is, when a user visits a certain
pageS.html on site S — which may have no ap-
parent relationship with site R — this has the side
effect of causing a click-through to be credited to
pageR.html at site T. The Webmaster of site T
can detect this only if she happens to stumble upon
pageS.html and examines it carefully. However, if
she has no reason to suspect a relationship between
R and S, then confirming this attack is effectively as

(pageS.html)

S R

1

(pageR.html)

(pageT.html)

2
5

3 4

T

U

Fig. 2. The attack: User U retrieves pageS.html from
S (message 1), which simulates a click to pageR.html
(message 2). In response to this request (with a Ref-
erer field of pageS.html), R returns a manipulated ver-
sion of pageR.html (message 3) that simulates a click
to pageT.html (message 4). T receives a request for
pageT.html with a Referer field of pageR.html, causing
R to be credited for the click-through. For any request that R
receives that does not name pageS.html as its Referer, R
returns the benign version of pageR.html.

difficult as exhaustively searching all pages on all
Web sites to find pageS.html, i.e., the page that
is originating the hit inflation attack. In particular,
retrieving pageR.html for examination is of no as-
sistance to the Webmaster of site T in detecting this
attack.

At a very high level, the attack works as follows;
see Fig. 2. The page pageS.html causes a ‘simu-
lated click’ to pageR.html on site R. As mentioned
previously, this simulated click can be done in a way
that is invisible to the user. This simulated click will
cause the user’s browser to send a request to site
R with a Referer field naming pageS.html on
site S. In response to this request referred by site
S, site R returns a modified version of pageR.html
to the browser that in turn causes a simulated click
to pageT.html, the target page. This causes the
browser to request pageT.html from T with a Ref-
erer field naming pageR.html, thereby causing T
to credit site R with the referral. However, in re-
sponse to any request for pageR.html that does not
contain a Referer field naming pageS.html, site
R returns the normal and innocuous pageR.html
that, in particular, does not simulate a click to
pageT.html. So, if the Webmaster of site T re-
trieves pageR.html herself, the page she retrieves
yields no evidence of foul play. In the following
subsections, we detail the components of this attack.

17

3.1. Simulated clicks

A component of our attack is the ‘simulated
click’, in which one Web page (the referrer) causes
the user’s browser to request another Web page (the
target) on another Web site, with a Referer field
naming the referrer. Indeed, our attack of Fig. 2 con-
sists essentially of two simulated clicks, one from S
to R and one from R to T. The preservation of the
Referer field is critical for a simulated click (and
our attack), and this requirement rules out some of
the most straightforward possible implementations:
e.g., if the referrer serves a page that ‘refreshes’ the
browser to the target page using HTML’s <meta>
tag (see [4]), then this retrieves the target page but
does not preserve the Referer field. As discussed
in Section 1, simulated clicks are already practiced
in hit inflation attacks on the Web today. However,
presently there seems to be little attempt to hide
these simulated clicks from users (e.g., see [6]),
whereas we use techniques to hide simulated clicks
from users to limit detectability of our attack and the
annoyance caused to users.

One feature that makes simulated clicks possible
is that modern browsers transmit Referer infor-
mation not only for pages requested by explicit
user clicks, but also for components embedded in
pages like images, and especially subdocuments like
frames and layers (see, e.g., [4] for an introduction
to these constructs in HTML). For example, the Web
page containing a layer is named in the Referer
header of the request for the document contained in
the layer, even though no user clicks are involved
when the layer contents are retrieved. Therefore, a
simple and effective simulated click can be achieved
for Netscape Navigator 4.x (NN4) and Microsoft In-
ternet Explorer 4.x (IE4) if the referring site serves
a page with a layer that contains the target page
(NN3 and IE3 do not support layers). To hide this
simulated click from the user, the layer containing
the target page can be made of zero size, or stacked
below the containing document so that it is invisible
to the user. Another form of simulated click can be
achieved using frames with IE3 and IE4, since these
browsers report the document containing a frame-
set as the Referer for the documents in each of
the frames. Thus, a referrer can create an invisible,
simulated click to a target by serving a page that con-

tains a frameset with a zero-size frame that loads the
target page. Interestingly, NN3 and NN4 report the
Referer of the page containing the frameset as the
Referer for each of the documents in the frames.
Thus, we use layers to conduct a subdocument-
based simulated click in NN4. It is somewhat more
awkward to perform a subdocument-based simulated
click in NN3. In order to use the appropriate form of
simulated click, the server can determine the user’s
browser and version from the User-Agent header
in the browser’s request.

For reasons that will be described in Section 3.2,
these subdocument-based forms of simulated click
will not suffice to make our attack as effective as
it can be. Rather we will also employ JavaScript
for explicitly simulating a click on a link (see, e.g.,
[2] for more information about JavaScript). When a
JavaScript script in a Web page causes this simulated
click on one of its own links, the browser behaves
as if the user clicked on the link, and thus requests
the URL of the link and loads it into the browser.
In order to hide this simulated click from the user,
the referring page can cause the contents of the
‘clicked’ URL to be loaded into a separate window
that lies beneath the user’s browser window. Then the
referring page can quickly close this window once
the referred-to page has started loading, or after a
brief duration in which the page should have started
loading. The attentive user might notice an additional
window indicated on her desktop toolbar for a brief
moment, but otherwise this additional window will
almost certainly go unnoticed by the random user for
the brief period of time in which it is present. And
even if the user does notice the additional window,
the JavaScript script can still prevent the user from
exposing it before it is closed by repeatedly raising
the main browser window above it.

The JavaScript mechanism to simulate a click on
a link differs slightly from browser to browser, and
care must be taken to ensure that this simulated click
preserves the Referer field received by the target. In
IE4, link objects support the click() method that,
when invoked, causes the browser to behave as if a
user clicked on the link. Referrer information is pre-
served, i.e., the document containing the link is re-
ported to the target Web site as the Referer. In NN3
and NN4, as well as in IE3, link objects do not have
the convenient click() method. However, using a

18

script to send the browser window to the URL cor-
responding to the link causes the script’s page to be
reported as the referrer to the target Web site.

To summarize, the attack that we detail in the fol-
lowing section will use two different forms of simu-
lated clicking. The first employs a subdocument (i.e.,
layer or frame) form of simulated click in the refer-
ring page and will be called a subdocument-based
simulated click. The second employs JavaScript and
will be called the JavaScript simulated click.

3.2. Detailing the attack

As described in Section 3.1, at a high level our
attack consists of two simulated clicks, one from S
to R and one from R to T (see Fig. 2). However,
the nature of these two simulated clicks is quite
different. Recall that S and R are collaborating in
this attack, and indeed it is important for the attack
that in the first simulated click, R recognizes that the
simulated click from S is happening (so that it can
serve the ‘attack’ version of pageR.html that causes
the simulated click to T). On the other hand, in order
to make our attack truly undetectable to T, it is
important that T be unable to detect that the referral
from R is by a simulated click. Because of these
conflicting requirements, the two simulated clicks in
our attack are conducted via different mechanisms.

The simulated click from S to R, so that R rec-
ognizes the simulated click from S, is the easiest to
achieve. Since S and R are in collaboration, their
Webmasters can set up the Web sites so that any
request that R receives for pageR.html with a Ref-
erer field of pageS.html is by a simulated click
from S. This can be ensured if pageS.html has
no link to pageR.html that can be clicked by the
user. Thus, the subdocument-based approach of Sec-
tion 3.1, in which the only link to pageR.html is
for a layer’s contents, for example, is ideally suited
for this simulated click.

The simulated click from R to T is more sensitive,
as it is essential that T be unable to detect that the
click is simulated. In particular, if JavaScript is en-
abled in the browser, then a script in pageT.html
could detect the subdocument-based simulated click
of Section 3.1. Specifically, in current browsers
pageT.html can use JavaScript to detect whether
it is displayed in a frame. Moreover, in version 4

browsers, pageT.html can use JavaScript to detect
the size of its window, layer, or frame, and thus
pageT.html can be designed to detect the case
when it is displayed in a zero-size frame or layer.
For these reasons, pageR.html must test for various
conditions when conducting its simulated click and
tailor its method of attack to them. Specifically, the
simulated click from R to T should occur as follows:
(1) pageR.html first tests if JavaScript is enabled

in the browser. If not (i.e., JavaScript is dis-
abled), then it simulates a click to pageT.html
using the subdocument-based simulated click of
Section 3.1.

(2) If JavaScript is enabled in the browser (and thus
pageT.html has greater detection capabilities
at its disposal), then pageR.html performs the
simulated click using the JavaScript method of
Section 3.1 that directs pageT.html to a new
window, hidden from the user.

There is always the possibility that the Webmaster
of site T will request pageR.html for inspection,
and so we remind the reader that for any request for
pageR.html that does not name pageS.html as
the Referer, R should respond with an innocuous
Web page that does not simulate a click to T.

3.3. Discussion

The attack detailed in this section is effective even
if a third-party click-through program provider is
used. In this case, T is the third-party provider and
not the actual target site, but this distinction has no
bearing on the mechanism behind our attack. An-
other difference is that third-party programs often do
not make use of the Referer header for identifying
the referrer, but rather simply use a different URL
per referrer. In this case, however, our attack just
becomes easier since there may be less of a need to
retain the correct Referer header when performing
simulated clicks.

Our attack has other implications. As mentioned
in Section 2, most click-through programs are not
agreeable to the use of spamming by a referrer
to increase click-through counts, and in fact, many
click-through programs explicitly prohibit the use
of spamming in their contracts with referrers. Our
attack, however, makes target sites susceptible to
‘indirect’ spamming that is hard to detect: a spammer

19

(an agent of S) can drive a large number of users to S,
triggering the inflation attack. The lack of an obvious
relationship between R and the spammer or S makes
it difficult for the Webmaster of T to detect this
practice.

Many click-through programs desire ‘high qual-
ity’ referrals, i.e., referrer sites with a targeted au-
dience (e.g., technology oriented sites). Our attack
enables a referrer site R with appropriate content to
register in the click-through program, while using
a different site S with completely different con-
tent to attract the click-throughs. Furthermore, many
click-through programs disallow referrers with illicit
material, regardless of their popularity. Our attack
enables referrers R to use such sites to draw users
and register click-throughs for R at the target.

To see the potential for profit from this attack,
consider that the average click-through rate for
banner ads is 1–3%, and that payments for click-
throughs are calculated accordingly. Our attack can
yield an effective rate of almost 100% for users
who visit pageS.html and thus (unknowingly) click
through pageR.html to pageT.html. We can go
a step further and use S in conjunction with sev-
eral (say 10) sites R1; : : :; R10 that are enrolled in
different click-through programs, and thereby get an
effective click-through rate of 1000%. This is unde-
tectable as long as the different target sites do not
compare the IP addresses from which they receive
clicks at the same time. (Thus, this multi-target at-
tack might be impossible with target sites that are on
the same third-party click-through program).

An attacker might draw suspicion if the target
site T monitors the click through rate (CTR) of
its ads. The target can monitor the CTR if R’s
page is required to load the ads from a site that is
controlled by the target. A high click-through rate
(say greater than 5%) is likely attract the attention of
the target’s Webmaster, if only to learn the marketing
practices of the referrer. The attacker can prevent
such inquiries by keeping the CTR low. One way
to achieve this is to register site R with, say, 20
different targets. Whenever R receives a request with
a Referer field naming pageS.html, it returns
a page containing ads for each of the targets, and
performs a simulated click on one of these ads at
random. The attacker is paid for 100% of the visits
to S, while keeping the CTR below 5% at each target.

This method can of course be extended to achieve
lower CTR or higher payment rates.

Another way for the target site T to detect the
attack is to search for pages that have links to
pageR.html, in an effort to find pageS.html. A
simple approach would be to use existing search
engines to find pages that refer to pageR.html 8.
However, S can easily avoid detection by serving a
different, benign version of pageS.html to spiders
of search engines 9. A second approach that T can try
is to perform the search for pages like pageS.html
itself, using a spider. This reconnaissance operation
is of almost the same scale as building a search
engine, and can be complex and costly. Moreover,
R and S can extend the attack in a natural way to
use a chain of three or more simulated clicks, e.g.,
from some S0 to S to R to T. This further complicates
efforts to ‘trace backward’ along the chain to find the
page that initiates the attack.

Probably the most viable way of detecting the
attack is for T to monitor user activity (e.g., mouse
movement, mouse clicks, or filling out a form) on
T’s site. A real user will typically either click further
into the site or leave the site immediately. The for-
mer is easily detectable and confirms the existence
of a real user. To detect the latter case, pageT.html
could be constructed to include a ‘Back’ button
that both returns the user to the referrer page and
informs T that the user clicked on this button. How-
ever, this does not capture the case that a user
next directs her browser to a bookmarked loca-
tion, uses the browser’s ‘Back’ button to leave T’s
site, or closes the window containing pageT.html.
Similarly, pageT.html could be constructed with
JavaScript code to inform T of mouse movement
over pageT.html, or to inform T of the length
of time that the page was active in the browser
(e.g., by causing a message to be sent to T ev-
ery few seconds). The latter offers little information
to T if pageR.html closes the window contain-
ing pageT.html after a random amount of time.

8 For example, InfoSeek (http://www.infoseek.com) explicitly of-
fers the ability to query for such information, via a ‘field search’
using the syntax link:pageR.
9 Search engine spider queries can be easily identified as such.
For example, see http://searchenginewatch.com/webmasters/spid
ers.html.

20

The former, i.e., detecting mouse movement over
pageT.html, possibly lets T confirm that a user
sees the page (if the user moves the mouse over it).
However, again it does not enable T to determine
that a user did not see the page. In the limit, T could
occasionally serve a version of pageT.html that
contains a newly generated question for the user to
answer (and perhaps offers a financial incentive to
do so), to see if a user responds.

While none of these techniques can offer proof
that the attack is taking place, they can offer T
statistical evidence of the attack if the attack is
mounted aggressively through a single referrer R.
As such, detecting user activity seems to be the
most promising direction for coping with this attack,
and in fact is the same principle that is behind
pay-per-lead and pay-per-sale schemes discussed in
Section 4.

Finally, it is worth noting that legal means could
also be used to discourage hit inflation attacks. Ex-
treme hit inflation attacks could be grounds for a
civil lawsuit if detected. If the threat of civil action
is combined with suitable criminal penalties, these
threats may effectively deter large-scale hit inflation.

4. Pay-per-sale and pay-per-lead

If pay-per-click programs are going to be de-
emphasized in the future, then it is worth considering
the security of the programs that are likely to re-
place them. Presently, the foremost alternative to
pay-per-click programs are programs in which target
sites pay only for ‘high quality’ referrals, i.e., for
referred users who perform some substantial activ-
ity or make purchases at the target site. There are
essentially two forms of such programs:
ž Pay-per-lead: Referrers are paid only if the user

has performed a significant action at the target
site, e.g., if she registered an account at the target
site or performed successive hits at the target site
for more than five minutes.
ž Pay-per-sale: Referrers are paid some commis-

sion for purchases the user makes at the target
site 10. Typically the referrer displays a link for

10 An example is the Associates program run by Amazon (http://
www.amazon.com).

a specific item for sale at the target site, and is
paid some percentage for purchases of this item
by referred users.
Payments in these programs are typically larger

than in pay-per-click programs, since they are more
valuable for the target sites.

It is virtually impossible for referrer sites to
mount useful hit inflation attacks on such schemes,
since simple clicks are worthless to the referrer.
However, these programs are susceptible to a differ-
ent form of fraud, known as hit shaving. In hit shav-
ing, the target site fails to report that a referred user
executed a lead or sale, thereby denying the user’s
referrer rightful payment (regardless of whether a
third-party program provider is used). Current Web
technology offers referrers little ability to detect such
fraud (cf. [5]), short of the Webmaster of a referrer
site simply clicking through her own site to the target
and, e.g., making a purchase to verify that her site
is credited with this referral. This type of detection
can be powerful: even if the target site attempts to
shave just 5% of the commissions it is required to
pay, this fraud is expected to be discovered after only
20 such probes by the referrer. However, this type of
detection is not always feasible, for example if the
target site sells rather expensive items (e.g., cars). In
such cases, the referrers are presently at the mercy of
target sites to faithfully report the leads and sales for
which the referrers should be paid.

Future versions of browsers may provide a mech-
anism to enable a referrer to monitor the user’s be-
havior at a target site to a limited extent. Specifically,
at Bell Labs we have designed and implemented a
new JavaScript security model in the free Mozilla
source code (see [1]), and this is presently being
considered for inclusion in Netscape 5.x browsers.
This security model enables (among other things) a
JavaScript program from one domain to interact with
a page loaded from a different domain, provided that
the latter page allows this. This feature can be used
to enable the referrer site to monitor the user’s ac-
tions at the target site with a JavaScript program. For
example, this program could report to the referrer
when the user registers or makes a transaction at the
target site. The model further allows the target site to
have fine-grained control over what information on
a page is made available to the referrer; e.g., on the
sales page, the target could make the total purchase

21

amount available without revealing what books the
user bought or the user’s credit card information.

Even this new security architecture, however, does
not provide machinery sufficient to fully address the
hit shaving problem in pay-per-lead and pay-per-sale
programs. This is the case for two reasons. First,
the additional exposure of user activities to referrers
that is enabled by this security architecture, which
seems to be needed to combat hit shaving, may be an
unacceptable privacy intrusion for many users. And
consequently, the security architecture of [1] allows
this exposure only with user consent. Thus, the Web
advertising industry may need to consider ways to
motivate users to allow greater exposure of their Web
activities to referrers, in order to combat the threat
of hit shaving. Second, a more common and uninten-
tional form of hit shaving occurs when a user clicks
from a referrer to a target, exits the browser, and then
returns directly to the target later to explore the site
or make a purchase. In this case, the referral is (per-
haps unintentionally) ‘shaved’, and foreseeable Web
infrastructure offers little machinery for the referrer
to detect this.

5. Conclusion

Pay-per-click programs are a popular form of
advertising incentive on the Web today. We have
presented a hit inflation attack on these programs
that appears to be virtually undetectable to target
sites and very effective in inflating referral counts.
Our attack involves two collaborating Web sites,
where each user’s visit to the first causes a target
to register a referral from the second. There seem
to be no sure ways of detecting this attack, short of
locating the page on the first site that initiates the
attack, though testing by the target site to attempt
to determine if a user sees its page may give some
indication to the target.

In our opinion, this attack brings the viability of
pay-per-click programs into question and, if prac-
ticed widely, may accelerate an ongoing trend to
move toward pay-per-sale and pay-per-lead pro-
grams. As discussed in Section 4, these programs
have fraud problems of their own that seem difficult
to address given today’s Web infrastructure. How
to achieve sufficient auditability to eliminate fraud

in these Web advertising schemes remains an open
problem.

Acknowledgements

We are very grateful to the anonymous reviewers
for the 8th International World Wide Web Con-
ference, who offered useful comments on how to
improve the presentation of this work.

References

[1] V. Anupam and A. Mayer, Secure Web scripting, IEEE
Internet Computing 2 (6) (1998).

[2] D. Flanagan, JavaScript: The Definitive Guide, 3rd ed.,
O’Reilly and Associates, 1998.

[3] R.T. Morris, A weakness in the 4.2 BSD Unix TCP=IP
software, Computer Science Technical Report 117, AT&T
Bell Laboratories, February 25, 1985.

[4] C. Musciano and B. Kennedy, HTML: The Definitive Guide,
2nd ed., O’Reilly & Associates, 1997.

[5] M.K. Reiter, V. Anupam and A. Mayer, Detecting hit shaving
in click-through payment schemes, in: Proc. 3rd USENIX
Workshop on Electronic Commerce, September 1998, pp.
155–166.

[6] Web surfers wary of ‘kidnapping’ sites, USA Today, Septem-
ber 28, 1998, http://www.usatoday.com/life/cyber/tech/ctd54
0.htm.

Vinod Anupam is a member of the
Database Systems Research Depart-
ment in the Systems and Software
Research Center of Bell Labs, Lu-
cent Technologies. He received a
Ph.D. in computer science from Pur-
due University in 1994. His research
interests include collaborative com-
puting, Internet and Web security,
electronic commerce, graphics and
visualization, and mobile computing.

Alain Mayer is a Research Scientist
in the Secure Systems Research De-
partment at Bell Labs=Lucent Tech-
nologies. He joined Bell Labs in
September 1996 from System Man-
agement Arts (SMARTS), a network
management start-up company. He
received his Ph.D. in computer sci-
ence in 1995 from Columbia Uni-
versity. Alain’s research interests in-
clude electronic commerce, network
and Web security, cryptography, pri-

22

vacy, and network management. During 1999, he is serving on
the program committee of both the USENIX Security Sympo-
sium and the ACM Conference on Computer and Communica-
tions Security.

Benny Pinkas is a Computer Sci-
ence doctoral student at the Depart-
ment of Applied Math and Com-
puter Science of the Weizmann In-
stitute of Science, Rehovot, Israel.
He received his B.A. (Summa Cum
Laude) and his M.Sc., both in Com-
puter Science, from the Technion
— Israel Institute of Technology, in
1988 and 1991, respectively. During
1991-1996 he served in the Israel
Defense Forces, where he worked in

computer science and communications research and develop-
ment. His main research interests are computer security and
cryptography, and in particular communication efficient security

protocols. His research is supported by an Eshkol Fellowship
from the Israeli Ministry of Science.

Michael K. Reiter (www.bell-labs.c
om/user/reiter) is Department Head
of the Secure Systems Research De-
partment in Bell Laboratories, Lu-
cent Technologies. He received the
B.S. degree in mathematical sci-
ences from the University of North
Carolina in 1989, and the M.S. and
Ph.D. degrees in computer science
from Cornell University in 1991 and
1993, respectively. During 1998–
2000, he will serve as Program Chair

of the flagship computer security conferences of both the Asso-
ciation for Computing Machinery (ACM) and the Institute of
Electrical and Electronic Engineers (IEEE). Dr. Reiter’s research
interests include all areas of computer and communications se-
curity, electronic commerce, and distributed computing.

