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A NOTE ON THE WEAK LAW OF LARGE NUMBERS

FOR EXCHANGEABLE RANDOM VARIABLES�

Dug Hun Hong and Sung Ho Lee

Abstract. In this note, we study a weak law of large numbers for se-
quences of exchangeable random variables. As a special case, we have
an extension of Kolmogorov's generalization of Khintchine's weak law
of large numbers to i.i.d. random variables.

1. Introduction and preliminaries

The classical weak law of large numbers due to Khintchine asserts that
if fXng is a sequence of independent identically distributed (i.i.d.) ran-
dom variables, then Sn=n ! EX1 in probability whenever EjX1j < 1
where Sn =

Pn
i=1Xi. Of course, this result is itself an immediate con-

sequence of the Kolmogorov's strong law of large numbers. But the
Khintchine's weak law of large numbers can hold, in slightly modi�ed
from, even if EjX1j = 1. The weak law of large numbers is sometimes
called Kolmogorov's generalization of Khintchine's weak law of large
numbers. It was stated in a theorem of Kolmogorov (1929) as follows. If
X1; X2; � � � ; are i.i.d., then there exist constants an with Sn=n� an ! 0
in probability if and only if nP (jX1j > n)! 0 as n!1 (Revesz(1968,
p.51). In the theorem we can take an = E(X1I[jX1j�n]) (Chow and Te-
icher(1988, p.128)). However, there appears to have been no discussion
on the classical weak law of large numbers of this form for exchangeable
random variables. Hence we address this problem in this paper and as
a special case we have an extension of Kolmogorov's generalization of
Khintchine's weak law of large numbers to i.i.d. random variables.

Let X1; X2; � � � ; Xn; � � � be a sequence of random variables. We say
that it is exchangeable if the joint distribution of (X1; X2; � � � ; Xn) is the
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same as that of (X�(1); � � � ; X�(n)) for each n � 1 where �(1); � � � ; �(n)
is a permutation of f1; 2; � � � ; ng. Let F be the class of one-dimensional
distribution functions and U be the �- �eld generated by the topology
of weak convergence of the distribution functions. Then, de Finetti's
theorem asserts that for an in�nite sequence of exchangeable random
variables fXng there exists a probability measure � on (F ;U) such that

Pfg(X1; � � � ; Xn) 2 Bg =

Z
F

PF fg(X1; � � � ; Xn) 2 Bgd�(F )

for any Borel set B and any Borel function g : Rn !R; n � 1. Moreover,
PFfg(X1; � � � ; Xn) 2 Bg is computed under the assumption that the
random variables fXng are i.i.d. with common distribution F . We de�ne
EF g(X1; � � � ; Xn) =

R
g(X1; � � � ; Xn)dPF . Blum, Cherno�, Rosenblatt,

and Teicher (1958) showed that for a sequence of exchangeable random

variables fXng such that EX1 = 0 and EX1
2 < 1, n�

1

2

Pn
j=1Xj !

N(0; �2) in distribution if and only if EFX1 = 0 �{a.s. and EFX1
2 =

�2 �{a.s., where EFX1 = 0 �{a.s. and EFX
2
1 = �2 are equivalent to

EX1X2 = 0 and E(X2
1 � �2)(X2

2 � �2) = 0, respectively. Taylor and
Hu (1987) showed that for a sequence of exchangeable random variables
fXng such that EF jX1j < 1 �{a.s., EFX1 = 0 �{a.s. if and only if
n�1

Pn
j=1Xj ! 0 a.s. Hong and Kwon (1993) and Zang and Taylor

(1995) showed that for a sequence of exchangeable random variables

fXng and for a constant 0<�<1; limn!1 sup
Pn

j=1Xj=(2n log logn)
1

2

= � a.s. if and only if EFX1 = 0 �{a.s. and �F
2 = EF (X1�EFX1)

2 =
�2 �{a.s.

2. The weak law of large numbers

In this section, we study a weak law of large numbers for sequences
of exchangeable random variables.

Theorem 2.1. Let fXn; n � 1g be a sequence of exchangeable ran-

dom variables such that

(2.1) nPf(jX1j
p > ng ! 0

for some 0 < p < 2 and

(2.2) lim
n!1

n(2� 2

p
)�2
�(EFX1I[jX1jp�n]) = 0
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where �2
�(EFX1I[jX1jp�n])=

R
F
fEFX1I[jX1jp�n]�EX1I[jX1jp�n]g

2d�(F ).
Then

(2.3)
Sn � nEX1I[jX1jp�n]

n1=p

P
�! 0:

Proof. Set X 0
j = XjI[jXjjp�n] for 1 � j � n and S0n =

Pn
j=1X

0
j.

Then, for each n � 2 and for � > 0, Pfj(Sn=n
1

p ) � (S0n=n
1

p )j � �g �
PfSn 6= S0ng � Pf[nj=1[Xj 6= X 0

j]g � nPfjX1j
p > ng, so that (2.1)

entails (S0n=n
1

p ) � (Sn=n
1

p )
P
�! 0. Thus to prove (2.3) it su�ces to

verify that

(2.4)
S0n � ES0n

n1=p

P
�! 0:

By de Finetti's theorem,

E(Sn
0 � ESn

0)2 =

Z
F

EF (Sn
0 �ESn

0)2d�(F )

=

Z
F

EF [(Sn
0 � EFSn

0) + (EFSn
0 � ESn

0)]2d�(F )

=

Z
F

[EF (Sn
0 �EFSn

0)2 + (EFSn
0 �ESn

0)2]d�(F )

=

Z
F

nX
i=1

�F
2(Xi

0)d�(F ) +

Z
F

(EFSn
0 �ESn

0)2d�(F )

�

Z
F

nX
i=1

EF (Xi
0)2d�(F ) + n2

Z
F

(EFX1
0 � EX1

0)2d�(F )

= n

Z
F

EF (X1
0)2d�(F ) + n2��

2(EFX1
0)

= nE(X1
0)2 + n2��

2(EFX1
0):

From (2.2), n2�2
�(EFX

0
1) = o(n

2

p ) and hence it remains to show that
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nE(X 0
1)

2 = o(n
2

p ). Using summation by parts,

nE(X1
0)2 = n

nX
j=1

Z
fj�1<jX1jp�jg

X1
2dP

� n
nX
j=1

j2=p[PfjX1j
p > j � 1g � PfjX1j

p > jg]

= n[PfjX1j
p > 0g � n2=pPfjX1j

p > ng

+
n�1X
j=1

((j + 1)2=p � j2=p)PfjX1j
p > jg]

� n[1 + c
n�1X
j=1

((j + 1)
2

p
�1 � j

2

p
�1)jPfjX1j

p > jg];

where c is a constant independent of n. By the hypothesis (2.1), jPfjX1j
p

> jg goes to zero as j !1 and
Pn

j=1((j+1)
2

p
�1�j

2

p
�1) = (n+1)

2

p
�1�1.

Thus, by Toeplitz Lemma (see Ash(1972, p.270), nE(X 0
1)

2 = o(n2=p),
which implies (2.4) and hence establishes (2.3).

IfX1; X2; � � � ; are i.i.d., (EX1)
2 = E(X1X2) =

R
F
EF (X1X2)d�(F ) =R

F
(EFX1)

2d�(F ) and hence �2
�(EFX1I[jX1jp�n]) =

R
F
(EFX1I[jX1jp�n])

2

d�(F ) � (EX1I[jX1jp�n])
2 = 0 for all n. Thus (2.2) holds and we have

the following result for i.i.d. case.

Corollary 2.1. Let fXn; n � 1g be a sequence of i.i.d. random

variables such that nPfjX1j
p > ng ! 0 for some 0 < p < 2. Then

Sn � nEX1I[jX1jp�n]

n1=p

P
�! 0

as n!1.

We now consider a converse of Theorem 2.1. In this case we need
stronger conditions.

Theorem 2.2. Let fXn; n � 1g be a sequence of exchangeable ran-

dom variables such that

(2.5)
Sn � nEX1I[jX1jp�n]

n1=p

PF�! 0 �� a:s:
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for some 0 < p < 2 and

(2.6)

Z
F

sup
n
fnPFfjX1j

p > nggd�(F ) <1:

The we have

(2.7) nPfjX1j
p > ng �! 0

as n!1.

Proof. Suppose (2.5) and (2.6) holds. If we set Cn = nEX1I[jX1jp�n]

and dn = Cn � Cn�1, n � 1, C0 = 0,

Xn � dn
n1=p

=
Sn � Cn
n1=p

�
(n� 1)1=p

n1=p

�Sn�1 � Cn�1

(n� 1)1=p
� PF�! 0 �� a:s:;

whence (Xn � dn)=n
1=p PF�! 0, necessitating dn = o(n1=p). By L�evy's

inequality (see Chow and Teicher(1988), Lemma 3.3.5), for any � > 0
and �� a:s: F

(2.8)
PFf max

1�j�n
jSj � Cj �mF (Sj � Cj � Sn + Cn)j �

1

2
n1=p�g

� 2PFfjSn � Cnj �
1

2
n1=p�g = o(1)

where mF (X) is a median of X with respect to PF .
But, takingXj = Sj�Cj in Exercise 3.3.7 of Chow and Teicher(1988),

(2.9) max
1�j�n

jmF (Sj � Cj � Sn + Cn)j = o(n1=p) �� a:s:

Thus, from (2.8) and (2.9), for all � > 0

(2.10) lim
n!1

PF f max
1�j�n

jSj � Cj j < n1=p�g = 1 �� a:s:

Moreover, for max1�j�n jdj j < n1=p� and hence for all large n and for
�� a:s: F ,

PF f max
1�j�n

jSj � Cj j < n1=p�g � PF f max
1�j�n

jXj � dj j < 2n1=p�g

� PF f max
1�j�n

jXjj < 3n1=p�g;
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which, in conjuction with (2.10), yields

Pn
F fjX1j < 3n1=p�g = PF f max

1�j�n
jXj j < 3n1=p�g �! 1 �� a:s:

equivalently, for all � > 0

(2.11) nlog[1� PFfjX1j � 3n1=p�g]! 0 �� a:s:

as n!1. Since log(1� x) = �x+ o(x) as x! 0, (2.11) entails

(2.12) nPF fjX1j
p > ng ! 0 �� a:s:

as n!1. Hence, by the Dominated Convergence Theorem using (2.6)
and (2.12), we have the desired result.

Corollary 2.2. Let fXn; n � 1g be a sequence of i.i.d. random

variables such that (Sn�nEX1I[jX1jp�n])=n
1=p P

�! 0 for some 0 < p < 2.
Then we have nPfjX1j

p > ng ! 0 as n!1.

Combining Corollary 2.1 and 2.2, we have an extension of the Kol-
mogorov's generalization of Khintchine's weak law of large numbers to
i.i.d. random variables.

Corollary 2.3. If fXn; n � 1g is a sequence of i.i.d. random vari-

ables and 0 < p < 2, then (Sn�nEX1I[jX1jp�n])=n
1=p P

�! 0 i� nPfjX1j
p

> ng ! 0, as n!1.
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