
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000 919

Easily Testable and Fault-Tolerant FFT
Butterfly Networks

Jin-Fu Li, Shyue-Kung Lu, Shih-Arn Hwang, Member, IEEE, and Cheng-Wen Wu, Senior Member, IEEE

Abstract—With the advent of deep submicron very large
scale integration technology, the integration of a large
fast-Fourier-transform (FFT) network into a single chip is
becoming possible. However, a practical FFT chip is normally
very big, so effective testing and fault-tolerance techniques usually
are required. In this paper, we first propose a C-testable FFT
network design. Only 20 test patterns are required to cover
all combinational single-cell faults and interconnect stuck-at
and break faults for the FFT network, regardless of its size. A
spare-row based fault-tolerant FFT network design is subse-
quently proposed. Compared with previous works, our approach
shows higher reliability and lower hardware overhead, and only
three bit-level cell types are needed for repairing a faulty row in
the multiply–subtract–add module. Also, special cell design is not
required to implement the reconfiguration scheme. The hardware
overhead for the testable design is low—about 4% for 16-bit
numbers, regardless of the FFT network size.

Index Terms—Butterfly network, C-testable, concurrent error
detection, design-for-testability, fault tolerance, FFT, logic testing.

I. INTRODUCTION

T HE DISCRETE Fourier transform (DFT) is widely used
in analysis and design of linear time-invariant systems in

the digital domain, and is more and more important as digital
signal processing (DSP) is finding more and more applications.
To increase its speed, many efficient algorithms have been de-
veloped in the past. The most notable one is the fast Fourier
transform (FFT) algorithm. The FFT algorithm is currently used
in various DSP applications, such as digital filtering, correla-
tion, image processing, speech and audio coding, and spectrum
analysis [1]–[4]. The algorithm is also an excellent candidate for
parallelization. A typical -point FFT network is constructed
using two-input butterflies. The network has stages, and
each stage consists of butterflies as shown in Fig. 1, where

. Although in practice can be very large, with the
advent of deep-submicron very large scale integration (VLSI)
technology and system-on-chip design methodology, we have
seen the possibility of integrating a large FFT network on a
single chip [2], [5]–[9]. Limited accessibility of the circuit com-
ponents in such a chip, however, poses considerable challenges
in testing and diagnosis. Particularly, the cost of diagnosis is

Manuscript received August 1999; revised April 2000. This work was sup-
ported in part by the National Science Council, R.O.C., under Contract NSC87-
2218-E262-005 and Contract NSC89-2215-E007-001. This paper was recom-
mended by Associate Editor S. Sriram.

J.-F. Li, S.-A. Hwang, and C.-W. Wu are with the Department of Electrical
Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C.

S.-K. Lu is with the Department of Electronics Engineering, Fu Jen Univer-
sity, Taipei, Taiwan.

Publisher Item Identifier S 1057-7130(00)07758-2.

Fig. 1. An 8-point FFT butterfly network.

rapidly increasing along with the complexity of the chip. It is
indispensable to control these costs and provide a cost-effec-
tive solution. Therefore, it is important to develop a fault detec-
tion and fault location approach. Continuous advances in VLSI
processing technologies also have increased the density and re-
duced the feature size of the components, resulting in a higher
degree of difficulty for guaranteeing the reliability and quality
of today’s VLSI chips. Therefore, fault-tolerance techniques are
required.

To improve the chip testability and reliability of FFT net-
works, several testable structures and fault-tolerant designs
have been proposed [10]–[23]. Jou and Abraham [10] intro-
duced a fault-secure FFT network design, whose hardware
overhead ratio is . A time-redundancy method
was also used to detect and locate the faulty modules. In [11],
a recomputing by alternate pathapproach was proposed to
detect errors during normal operation. Once an error is found,
the faulty butterfly module is located within extra
cycles. A wafer-scale 170 000-gate FFT processor with built-in
self-test (BIST) circuits was also reported in [12]. Then, in
[13], a novel partition scheme and self-testing of arithmetic
cells to obtain higher fault coverage was reported. The one-pass
procedure derived from the algorithmic flow proposed in [14]
allows detection and location of specified functional faults.
This procedure needs operations for an -point FFT
network. In [15], a fault-detection and -location approach for

1057–7130/00$10.00 © 2000 IEEE

920 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

homogeneous VLSI/WSI FFT architectures was reported. Tao
and Hartmann [17] then developed a fault detection approach
with 5% hardware penalty and less incurred time delays than
the scheme in [10], and fairly increased the fault coverage.
Feng et al. [16] put emphasis on the design of a C-testable
FFT network based on the single butterfly-module fault model
and a linear testability scheme without modification of the
circuit. In their design, one can locate a faulty module with time
complexity . In [18], the butterfly networks were
shown to be testable with only 32 test patterns by using a novel
design-for-testability technique. The proposed test scheme
guarantees 100% coverage of combinational single cell faults.
An algorithm-based fault-tolerance approach for FFT networks
with lower hardware overhead and higher fault coverage than
that in [10] was later proposed [20]. Also, Oh and Youn [21]
presented two concurrent error location and correction methods
for FFT networks. With an extra try in addition to
comparisons of corrected outputs, a faulty component can
be located. They later presented an algorithm-based concurrent
error detection scheme using the checksum approach [22]. This
design allows high error coverage with low false-alarm rate
by applying linear weight factors to the checksums. In one of
our previous works [23], we proposed a bit-level fault-tolerant
design for FFT networks. The reliability was increased signifi-
cantly, and the hardware overhead was about 23% for an FFT
network with 16-bit input words.

In this paper, an improved design-for-testability scheme
based on C-testability conditions is presented. We show that
only 18 test patterns are sufficient to achieve 100% coverage of
single cell faults in theiterative logic array(ILA) test mode.
All the undetected stuck-at and break faults of interconnects
can be covered with two additional patterns, i.e., only 20 test
patterns are required for the FFT network, regardless of its size.
The proposed scheme also allows us to use row redundancy
instead of column redundancy for reconfiguration, resulting
in a lower hardware overhead. Simulation results show that
the reliability of the proposed row-replacement scheme is
higher than that of the column-replacement scheme with lower
hardware overhead. For example, the overhead of the testable
FFT network is only 4% for 16-bit words regardless of the
network size. Compared with previous works, our approach
shows higher reliability and lower hardware overhead, and only
three bit-level cell types are needed for repairing a faulty row
in the multiply–subtract–add (MSA) module. Also, special cell
design is not required to implement the reconfiguration scheme.

II. C-TESTABLE FFT NETWORK

A. FFT

The discrete Fourier transform of a data sequence
is defined as

(1)

where . The FFT network takes complex-
valued quantities in real applications. The butterfly module per-
forms the radix-two butterfly computation, in which the com-

Fig. 2. A butterfly constructed with four MSA modules.

Fig. 3. Bit-level array design for an MSA module.

Fig. 4. 2-D ILA.

plex numbers and are computed according to the following
equations:

(2)

LI et al.: EASILY TESTABLE AND FAULT-TOLERANT FFT BUTTERFLY NETWORKS 921

Fig. 5. (a) Multiplier cell. (b) Subtractor cell. (c) Adder cell.

Fig. 6. Modified multiplier cell.

where represents the twiddle factor, i.e., .
To implement these equations, it is common to use a function-
ally equivalent butterfly which employs only real number oper-
ations.

Let us express , , and in complex form as follows:

(3)
where is the square root of . Combining these equations,

and can be recast as follows:

(4)
The computation of (4) can be done by four identical MSA mod-
ules [12], [13], as shown in Fig. 2. Each MSA module can be im-

Fig. 7. Configuration of a butterfly in test mode.

plemented in the form of an ILA, as shown in Fig. 3 [23], where
and represent the subtrahend and addend of the subtractor

and adder, respectively. The array size is , where
is the word length of the operands.

It has been known that the general logic testing problem is
-complete, but for certain ILA’s the testing problem is solv-

able in polynomial time [24], [25]. We will show next that the
FFT network can be treated as an ILA which can be tested easily
after a simple design-for-testability technique is applied.

B. C-Testable ILAs

The definitions given in [25] are followed in this paper. Acell
is a combinational machine (, ,), where is the
cell function and and for , .
An ILA is an array of cells with identical function. We assume
that the cell function is invariant over time and there is at most
one faulty cell in the array. That is, sequential faults are not con-
sidered, and thesingle-cell fault modelis adopted. A cell func-
tion is injectiveif , . If
a function is injective and , then the function isbijective.
An input sequence consisting of all possible input combinations
for a cell is aminimal complete input sequence. A minimal com-
plete output sequenceis defined analogously. AC-testablearray
is an array testable with a constant number of test patterns in-
dependent of the size of the array. A-dimensional ILA with a
bijective cell function has been shown to be C-testable, where

is an arbitrary positive integer [25]. Fig. 4 depicts a 2-D ex-
ample. If a minimal complete input sequence () is fed to

, then all cells lie in the same diagonal receive the
same minimal complete input sequence. This input sequence
forms the tessellation [25], [26]. When this sequence is
applied, any fault can automatically be propagated to some ob-
servable primary outputs. If the cell function is not bijective,
then a design-for-testability technique can be used to modify
the cell function to make it bijective [27].

C. Design for C-Testability

The MSA module shown above can be implemented with a
2-D bit-level ILA, in which three types of basic cells are used:
1) the multiplier () cell; 2) the subtractor () cell; and 3) the

922 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Fig. 8. Modified CMOS core circuit for the multiplier cell.

TABLE I
TRUTH TABLE OF THE

MULTIPLIER CELL

adder () cell, as shown in Fig. 5. They differ slightly in com-
plexity. Note that none of the three cell functions are bijective,
so we have to modify them to make them bijective. Without loss
of generality, we show the modification procedure only for the
multiplier cell. The adder and subtractor cells can be modified
in a similar way.

As Fig. 3 shows, the twiddle factor is normally preloaded,
i.e., it cannot be controlled in test mode. Since in the ILA all
the cell inputs have to be controllable, we modify thecell
as shown in Fig. 6. The coefficient bit is preloaded, and is
the output from the previous cell. The selection is made by:

when , and when . All cell inputs can
be controlled from the primary inputs when , and the cell
input set is equal to the cell output set, i.e., . The truth
table of the cell is shown as Table I, where there are four

TABLE II
MODIFIED TRUTH TABLE OF THE

MULTIPLIER CELL

TABLE III
CONFIGURATIONS OFS AND T

pairs of identical output rows which are highlighted. The cell
function apparently is not bijective, so it is modified to become
bijective during test mode [27], as shown in Table II. From the
table, the output carry bit is assigned the same values as the
input carry bit , such that all the output entries become distinct,
and the modified cell function is bijective. The inner box of the
schematic shown in Fig. 6 represents the circuit which imple-
ments the core logic for both Tables I and II. A CMOS circuit

LI et al.: EASILY TESTABLE AND FAULT-TOLERANT FFT BUTTERFLY NETWORKS 923

Fig. 9. (a) Applying the all-1 pattern to the array multiplier. (b) Detection of a faulty cell.

Fig. 10. Sample of the SPICE simulation for the Phase-1 test. Fault simulation of s/0 and s/1 at all modes.

for the core is shown in Fig. 8, where a multiplexer is added
to the original circuit. The multiplexer is controlled by the
mode selection signal that selects either (when) or
(when). From the above discussion, the modified multi-
plier is controlled by two signals: and , and their configura-
tions are shown in Table III. The MSA modules are connected
as a butterfly network during thenormal operation mode, and
as a bit-level C-testable ILA during thetest mode, as shown in
Fig. 7. In the Phase-1 test, the cell function is bijective, and only
16 test patterns are required to test the array pseudoexhaustively
since there are four inputs to each cell.

In Fig. 8, the node is connected to through two in-
verters. Since the inverter automatically propagates fault effect,
observing from is guaranteed. However, the highlighted
line segments are not tested in this phase. In order to cover
possible defects there, we apply the all-0 and all-1 patterns to
the cell in the Phase-2 test. These two patterns can detect all the
stuck-at faults of the inverters and the highlighted interconnects
during normal operation mode. Also, parallel testing of all the
cells and automatic fault propagation using these two tests is
guaranteed. For example, a array multiplier receiving the
all-1 pattern is shown in Fig. 9(a). Each and every cell receives

924 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Fig. 11. (a) The test pattern for stuck-at-0 faults. (b) The test pattern for
stuck-at-1 faults.

the input sequence . If a faulty cell
exists, such as the shaded one in Fig. 9(b), then the fault effect
can be propagated to the primary sum output of the neighboring
row below. The all-0 test pattern can detect stuck-at faults in a
similar way. Therefore, only 18 patterns are required to achieve
100% fault coverage for the MSA module. No extra data pins
are required since the truth table is not augmented. This also
results in a design of lower area overhead.

We have simulated the modified multiplier cell by SPICE.
The simulation results show that 100% fault coverage is
achieved after Phase-1 and -2 tests. A sample of the Phase-1
test is shown in Fig. 10, where the first row is the fault-free
waveform of the sum output (), and each of the other rows
represent the waveform of a particular fault. For example, the
second row represents the sum output when there is a stuck-at-0
fault at node 6 in Fig. 8. Since it is different from the fault-free
output, this fault is detected.

Fig. 12. (a) Module-level ILA. (b) Interconnect testing in normal mode.

As discussed above, the butterfly module configured as an
ILA can be tested with only 18 test patterns, regardless of the
array size. However, some interconnects which are used only
in normal mode are not covered. In order to test those faults,
two additional patterns are applied in normal mode, wherein
the adder and subtractor cells of the two neighboring MSA
modules are connected as in the original network (see Fig. 11)
instead of the ILA form. We test the stuck-at and break faults
of the interconnects (highlighted in the figure) by two test
patterns. Let , ,

, and . The
first pattern is the all-0 pattern, i.e.,

, as
shown in Fig. 11(a). It is easy to see that the fault-free output
of the MSA module is also all-0. The second pattern is

, , ,
, as shown in Fig. 11(b). The input

pattern at the periphery indeed propagates to the input
() of each multiplier cell in the last column of the
array multiplier. The fault-free output of the multiplier cell is
1 according to Table I, so the fault-free output of the MSA
module is the all-1 pattern. Apparently, any stuck-at or break
faults of the highlighted interconnects in the MSA module
can be detected by these two patterns. Therefore, as a whole,
only 20 test patterns are required: 18 are used to detect all
combinational single cell faults of the MSA module, and two

LI et al.: EASILY TESTABLE AND FAULT-TOLERANT FFT BUTTERFLY NETWORKS 925

are used to detect the internal interconnect stuck-at and break
faults.

Now we consider the entire FFT network. It can be configured
in the form of a mesh-connected ILA based on the butterfly
module discussed above, as shown in Fig. 12(a). Again, some
original interconnects which are not part of the ILA, and thus
not covered in test mode, have to be tested in normal mode [see
the highlighted interconnects in Fig. 12(b)]. Fortunately, these
interconnects can be tested by the Phase-2 test for all stuck-at
and break faults, and the entire FFT network can be tested with
only 20 test patterns.

III. FAULT-TOLERANT FFT NETWORK

A. Reconfiguration Scheme

Fault-tolerant design by adding spare columns and/or spare
rows is a well-known technique [28]. A fault-tolerant FFT net-
work design using a spare column was proposed in [23]. In
their scheme, the faulty column is replaced by the neighboring
column to its right, which is in turn replaced by the next column
to the right, and so on. Since the cells in different columns have
different functions, special cells are required to implement the
array. The functions of these cells are selected by control signals
after reconfiguration.

We have noted that in the MSA module, all cells in the same
column are the same. Furthermore, there are fewer cells in a row
than in a column. Therefore, it is better to use a spare row instead
of a spare column if possible. A fault-tolerant MSA module with
a spare row (called the MMSA module) is shown in Fig. 13,
where the spare row is located on the top of the array. Since
two’s-complement numbers are assumed, the array multiplier
only needs to calculate a partial product term in the first row of
the array [29], i.e., only one physical multiplier cell is required
in the first row of the array, and the rest of the multiplier cells are
dummy, as shown in the figure. Therefore, only three cell types
(i.e., , , and) are required for the spare row. Note that this
number is independent of the word length, and the cells need
not be modified. Since the primary sum inputs of the multiplier
should be all-0 in normal operation, the primary sum input of the
spare row is grounded. Therefore, only reconfiguration switches
are required to be added to thecells, cells, and primary
outputs. The number of switches required is smaller than that in
the spare-column scheme, which requires switches to be added
to the multiplier, in addition to those mentioned above.

The reconfiguration of our fault-tolerant design is simple. If
the th row is faulty, then it is replaced by the st row, which
is in turn replaced by the nd row, and so on. Finally, the
first row is replaced by the spare row. Every cell in the faulty row
must be bypassed. An example is shown in Fig. 14. Suppose the
second row is faulty, it is replaced by the first row, and the first
row by the spare row. The cells in the second row are bypassed
after reconfiguration. The horizontal inputs of theand cells
(i.e., and , respectively) of the second row are routed to
the first row, and those of the first row to the spare row, respec-
tively. The outputs are rerouted likewise. The reconfiguration
mechanism is simple, and only one control signal is needed to
reconfigure the array. In contrast, to reconfigure columns with
different functions, eight control signals are required in addition
to more complicated cells [23].

Fig. 13. MMSA module.

Fig. 14. A reconfiguration example.

B. Fault-Location Scheme

We will show that using the proposed approach, a faulty row
can be located in time, where is the word length. As
shown above, the bit-level ILA can be tested by 18 test patterns.
The fault location and reconfiguration procedure is simple.

1) The 18 test patterns are applied to the array. If a fault is
detected, the first row is replaced by the spare row.

2) The same test patterns are applied to the reconfigured
array. If the output is correct, then the faulty cell is in the
first row, else the first row is in turn replaced by the spare
row, and the second row by the first row, and so on.

3) Repeat the previous step until the output is correct.
The worst case is that the faulty cell is in the last row and the
reconfiguration step must be repeated times, i.e., a faulty
row can be located by at most test patterns. Note that the
reconfiguration is completed concurrently.

IV. RELIABILITY AND HARDWARE OVERHEAD ANALYSIS

A. Reliability

Let the reliability of the fault-tolerant schemes using a spare
row and a spare column be and , respectively, and the size
of 2-D array be . Assume that each cell becomes faulty

926 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

Fig. 15. Comparison of reliability between the spare-row and spare-column
schemes for� =0.0002.

randomly and independently, with a constant failure rate. The
cell reliability is represented by , and the reliability of a row
and a column are and , respectively. Then

(5)

(6)

The MSA module is implemented by an bit-level array.
As shown in Fig. 3, , and . Therefore

(7)

(8)

The spare-row approach has higher reliability as compared with
the spare-column approach. The comparison of reliability over
time for is plotted in Fig. 15, where the reliability
is normalized by .

In the above reliability calculation we assumed that the extra
switches are fault free. If the switch reliability () is not ne-

Fig. 16. Reliability of the spare-row scheme with and without considering the
switch reliability.

glected, then the cell reliability should be , and the
MMSA module reliability becomes

(9)

The switches reduce the reliability of the MMSA module
since . To estimate the effect, let the failure rate be
proportional to the hardware complexity, i.e., the cell reliability
is , wherein . For example, if the
hardware overhead ratios (discussed later) are 4% and 23%
for spare-row and spare-column schemes (typical for 16-bit
words), respectively, then the reliability differences for both
schemes are as shown in Figs. 16 and 17, respectively, where

0.0002. Note that and represent the reliability with
the switches considered, for the spare-row and spare-column
schemes, respectively. From Fig. 16, we see that the switch
effect on the reliability is small. On the contrary, Fig. 17 shows
that the reliability of the spare-column scheme is significantly
affected by the switches.

B. Hardware Overhead

Let and be the transistor counts of the MSA
and MMSA modules, respectively. The hardware overhead ratio
is defined as

(10)

LI et al.: EASILY TESTABLE AND FAULT-TOLERANT FFT BUTTERFLY NETWORKS 927

Fig. 17. Reliability of the spare-column scheme with and without considering
the switch reliability.

The switches in the MMSA module are implemented by trans-
mission gates, so and

[23]. We obtain

(11)

Note that is only about 4% for 16. Since the reconfig-
uration mechanism is simple and the cell function needs not be
modified, the area for additional interconnects in our design is
small. In contrast, the spare-column scheme needs complex re-
configuration mechanism and more control signals. In addition,
the cell function must be modified, and the amount of additional
interconnects is very large. The interconnects in the FFT net-
work is the major contributor to silicon area, so the proposed
scheme is much more cost-effective. The comparison be-
tween the spare-row (this work) and spare-column [23] schemes
is shown in Fig. 18. From the figure, we see that the of the
spare-row scheme is about one-sixth of that of the spare-column
scheme.

Similarly, the hardware overhead introduced by the multi-
plexers and of the design-for-testability scheme is

(12)

Fig. 18. Comparison ofHO between the spare-row and spare-column
schemes.

and the value is 3.1% for . Note however that can be
shared with the fault-tolerant design, since a multiplexer must
be added to the carry output of each multiplier cell to prevent
the fault effect from propagating to the next row. Therefore, the
overall hardware overhead for the testable and fault-tolerant de-
sign is about 4% 1.56% 5.56%.

V. COMPARISON AND EXAMPLE

Several off-line testing schemes for FFT networks were
proposed in the past [12]–[14], [16]. The comparison of our
C-testable design with these schemes is shown in Table IV.
The scheme in [12] uses a BIST circuitry in each 8-point
FFT network with 16-bit words. Since the pseudo-random
test patterns are applied, 100% fault coverage (FC) can not be
guaranteed with a test length (TL) of 4096. With a two-level test
scheme, the interconnect faults (IFs) can be covered. Similarly,
the scheme in [13] also is equipped with a BIST circuitry using
10 752 deterministic test patterns, achieving 99.1% FC. To test
the IF’s and the functionality of the system, a 1149.1 test-bus
is required. In [14], the test procedure derived from algorithm
flow graphs (AFGs) allows detection and location of all single
faults. In addition, the IFs can be covered in operations
for an -point FFT network. In [16], a C-testability scheme
based on component-level faults was proposed. In this scheme,

test patterns are needed to test an FFT network,

928 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 2000

TABLE IV
TEST FEATURE COMPARISON WITH PREVIOUS SCHEMES

Fig. 19. Reliability of the entire FFT butterfly network with� = 4� 10 .

where is the number of test vectors required for testing a
component. However, the IF’s are not covered. Our proposed
scheme, an improvement over our previous work [23], is
superior to these as can be seen from the table. Moreover, our
design has the fault location (FL) capability as in [14].

Example 1: Assume that there is a 512-points FFT butterfly
network with 8-bit words. A 2-point butterfly module without
design-for-testability circuit requires test patterns to guar-
antee 100% combinational fault coverage, since there arein-
puts to the module. Moreover, test patterns are needed
to exhaustively test the entire network since the primary inputs
are composed of the inputs of 256 2-point butterfly modules.
With the proposed C-testable scheme, however, only 20 test pat-
terns are required.

Since each 2-point butterfly module has 4 MSA modules, the
FFT circuit has MSA modules. Assume that

the reliability of an MSA module without spare is, then the
reliability of the entire FFT butterfly network is

(13)

For , . If each MSA module has one
spare row (column), then the reliability of the entire FFT net-
work is (). The comparative results are shown
in Fig. 19, where we assume . From the figure, we
see that the reliability can be considerably improved by using
just one spare row or one spare column. Also, the spare-row
scheme is superior to the spare-column scheme.

VI. CONCLUSION

We have proposed a design-for-C-testability technique for
the FFT butterfly network. The entire network can be com-
pletely tested with only 20 test patterns, regardless of the net-
work size. A fault-tolerant extension to the scheme based on row
redundancy also has been presented. We showed that only three
bit-level cell types are required, and the cell function needs not
be modified for reconfiguration. The reliability of the proposed
design is higher than that of the previous column-redundancy
design. For 16-bit words, e.g., the hardware overhead for the
testable FFT network is only about 4%, regardless of the net-
work size, which is much lower than that of the previous work,
and is within a practical limit.

The proposed design-for-C-testability scheme based on the
assumption that the FFT array is no sharing of hardware. If it
is applied to the time-multiplexing architecture, then the por-
tion of faults for the multiplexers can not be detected. But they
can easily be covered with specified test patterns. The hardware
overhead due to the interconnections for configuring the net-
work between test and normal modes is not estimated. How-
ever, the interconnections are local and located at the same metal
layer. Thus, they cannot result in larger hardware overhead than
that of the previous approach [16] (additional global intercon-
nects are required).

REFERENCES

[1] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[2] C. C. W. Hui, T. J. Ding, J. V. McCanny, and R. F. Woods, “A 64-point
Fourier transform chip for video motion compensation using phase cor-
relation,” IEEE J. Solid-State Circuits, vol. 31, pp. 1751–1761, Nov.
1996.

[3] A. E. Cetin, O. N. Gerek, and Y. Yardimci, “Equiripple FIR filter de-
sign by FFT algorithm,”IEEE Signal Processing Mag., pp. 60–64, Mar.
1997.

[4] P. Noll, “MPEG digital audio coding,”IEEE Signal Processing Mag.,
pp. 59–81, Sept. 1997.

[5] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-chip
implementation of 8192 complex point FFT,”IEEE J. Solid-State Cir-
cuits, pp. 300–305, Mar. 1995.

[6] J. O’Brien, J. Mather, and B. Holland, “A 200 MIPS single-chip 1k FFT
processor,” inProc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.
1989, pp. 166–167 and 327.

[7] M. Wosnitza, M. Cavadini, M. Thaler, and G. Troster, “A high precision
1024-point FFT processor for 2D convolution,” inProc. IEEE Int. Solid-
States Circuits Conf. (ISSCC), Feb. 1998, pp. 118–119 and 424.

[8] B. M. Baas, “A low-power, high-performance, 1024-point FFT pro-
cessor,”IEEE J. Solid-State Circuits, vol. 34, pp. 380–387, Mar. 1999.

LI et al.: EASILY TESTABLE AND FAULT-TOLERANT FFT BUTTERFLY NETWORKS 929

[9] T. Chen, G. Sunada, and J. Jin, “COBRA: a 100-MOPS single-chip pro-
grammable and expandable FFT,”IEEE Trans. VLSI Syst., vol. 7, pp.
174–182, June 1999.

[10] J.-Y. Jou and J. A. Abraham, “Fault-tolerant FFT networks,”IEEE
Trans. Comput., vol. 37, pp. 548–461, May 1988.

[11] Y.-H. Choi and M. Malek, “A fault-tolerant FFT processor,”IEEE Trans.
Comput., vol. 37, pp. 617–621, May 1988.

[12] K. Yamashita, A. Kanasugi, S. Hijiya, G. Goto, N. Matsumura, and T.
Shirato, “A wafer-scale 170 000-gate FFT processor with built-in test
circuits,” IEEE J. Solid-State Circuits, vol. 23, pp. 336–342, Apr. 1988.

[13] V. K. Jain, S. A. Al-Arian, D. L. Landis, and H. A. Nienhaus, “Fully par-
allel and testable WSI architecture for an FFT processor,”Int. J. Com-
puter-Aided VLSI Design, vol. 3, pp. 113–13, 1991.

[14] A. Antola and M. G. Sami, “Testing and diagnosis of FFT arrays,”J.
VLSI Signal Processing, no. 3, pp. 225–236, 1991.

[15] F. Lombardi and J. Muzio, “Concurrent error detection and fault loca-
tion in an FFT architecture,”IEEE J. Solid-State Circuits, vol. 27, pp.
728–736, May 1992.

[16] C. Feng, J. C. Muzio, and F. Lombardi, “On the testability of the array
structures for FFT computation,”J. Electron. Testing: Theory and Ap-
plic., vol. 4, pp. 215–224, Aug. 1993.

[17] D. L. Tao and C. R. P. Hartmann, “A novel concurrent error detection
scheme for FFT networks,”IEEE Trans. Parallel Distrib. Syst., vol. 4,
pp. 198–221, Feb. 1993.

[18] C.-W. Wu and C.-T. Chang, “FFT butterfly network design for easy
testing,”IEEE Trans. Circuits Syst. II, vol. 40, pp. 110–115, Feb. 1993.

[19] S.-K. Lu, C.-W. Wu, and S.-Y. Kuo, “Enhancing testability of VLSI ar-
rays for fast Fourier transform,”Proc Inst. Elect. Eng.—E, vol. 140, no.
3, pp. 161–166, May 1993.

[20] S. J. Wang and N. K. Jha, “Algorithm-based fault tolerance for FFT
networks,”IEEE Trans. Comput., vol. 43, pp. 849–854, July 1994.

[21] C. G. Oh and H. Y. Youn, “On concurrent error location and correction
of FFT networks,”IEEE Trans. VLSI Syst., vol. 2, pp. 257–260, June
1994.

[22] C. G. Oh, H. Y. Youn, and V. K. Raj, “An efficient algorithm-based con-
current error detection for FFT network,”IEEE Trans. Comput., vol. 44,
pp. 1157–1162, Sept. 1995.

[23] S.-K. Lu, C.-W. Wu, and S.-Y. Kuo, “On fault-tolerant FFT butterfly
network design,”Proc. IEEE Int. Symp. Circuits and Systems (ISCAS),
pp. 69–72, May 1996.

[24] H. Fujiwara and S. Toida, “The complexity of fault detection problems
for combinational logic circuits,”IEEE Trans. Comput., vol. C-31, pp.
555–560, June 1982.

[25] C.-W. Wu and P. R. Cappello, “Easily testable iterative logic arrays,”
IEEE Trans. Comput., vol. 39, pp. 640–652, May 1990.

[26] P. R. Menon and A. D. Friedman, “Fault detection in iterative arrays,”
IEEE Trans. Comput., vol. C-20, pp. 524–535, May 1971.

[27] S.-K. Lu, J.-C. Wang, and C.-W. Wu, “C-testable design techniques for
iterative logic arrays,”IEEE Trans. VLSI Systems, vol. 3, pp. 146–152,
Mar. 1995.

[28] B. W. Johnson,Design and Analysis of Fault Tolerant Digital Sys-
tems. Reading, MA: Addison-Wesley, 1989.

[29] P. R. Cappello and C.-W. Wu, “Computer-aided design of VLSI FIR
filters” (in also translated into Russian),Proc. IEEE, vol. 75, pp.
1260–1271, Sept. 1987.

Jin-Fu Li received the B.S.E.E. degree in 1995
from National Taiwan University of Science and
Technology, Taipei, Taiwan, and the M.S.E.E.
degree in 1999 from National Tsing Hua University,
Hsinchu, Taiwan, where he is currently working
toward the Ph.D. degree.

His research interests include VLSI design and
testing, fault-tolerant design, memory testing,
diagnosis, and self-repair.

Shyue-Kung Lu received the Ph.D. degree in elec-
trical engineering from National Taiwan University,
Taipei, Taiwan, in 1995.

From 1995 to 1998, he was an Associate Pro-
fessor in the Department of Electrical Engineering,
Lunghwa Junior College of Technology and Com-
merce. Since 1998, he has been with the Department
of Electronics Engineering, Fu Jen Catholic Uni-
versity, Taipei, Taiwan, where he is an Associate
Professor. His research interests include the areas of
VLSI testing and fault-tolerant computing.

Shih-Arn Hwang (S’96–M’98) received the B.S.
and Ph.D. degrees in electrical engineering from
National Tsing Hua University, Hsinchu, Taiwan, in
1994 and 1998, respectively.

His research interests include VLSI testing and
design of high performance application-specific
VLSI circuits and systems. He is currently with
Realtek Semiconductor Corp., Hsinchu, Taiwan.

Cheng-Wen Wu (S’86–M’87–SM’95) received
the B.S.E.E. degree in 1981 from National Taiwan
University, Taipei, Taiwan, and the M.S. and Ph.D.
degrees, both in electrical and computer engineerin
from the University of California at Santa Barbara
(UCSB) in 1985 and 1987, respectively.

From 1981 to 983, he was an Ensign Instructor
at the Chinese Naval Petty Officers’ School of Com-
munications and Electronics, Tsoying, Taiwan. From
1983 to 1984, he was with the Information Processing
Center of the Bureau of Environmental Protection,

Executive Yuan, Taipei, Taiwan. From 1985 to 1987, he was a Post Graduate
Researcher at the Center for Computational Sciences and Engineering, UCSB.
Since 1988, he has been with the Department of Electrical Engineering, National
Tsing Hua University, Hsinchu, Taiwan, where he is currently a Professor. He
also has served as the Director of the University’s Computer and Communica-
tions Center during 1996–1998, and the Director of the University’s Technology
Service Center during 1998–1999. From August 1999 to February 2000, he was
a Visiting Faculty of the ECE Department, UCSB. His interests lie in design and
testing of high-performance VLSI circuits and systems.

Dr. Wu was the Technical Program Chair of the IEEE Fifth Asian Test Sympo-
sium (ATS’96), and is the General Chair of ATS’00. He also is the Guest Editor
of theJournal of Information Science and Engineering, Special Issue on VLSI
Testing. He received the Distinguished Teaching Award from NTHU in 1996
and the Outstanding Electrical Engineering Professor Award from the Chinese
Institute of Electrical Engineers (CIEE) in 1997.He is a Member of CIEE.

