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This note is to correct some of the misperceptions and misinformation by some about
the so-called mirror conjecture controversy.

In section 1, we provide a historical and mathematical background of the conjecture,
including many of the ideas leading up its final proofs. We outline some of the gaps in the
paper [1], which claimed a proof of the conjecture. We then highlight original contributions
in our proof [2] of the conjecture. In section 2, we address point-by-point the issues raised
in [5].

1. The dispute on the quintic mirror conjecture
1.1. historical and mathematical background

In 1989, B. Greene, a postdoc of Yau at the time, and R. Plesser constructed an
important example of mirror manifolds. Using physics argument, they proved the first case
of mirror symmetry for Calabi-Yau threefolds. Their result is considered fundamental,
though its proof lacks the precision of a mathematical proof, hence the result does not
constitute a mathematical theorem. Two years later, Candelas-de la Ossa-Green-Parkes
built on the result, and with even greater mathematical precision, produced a spectacular
solution to a long-standing problem in enumerative geometry. Since the solution still
contains important mathematical gaps, the result is considered a conjecture, now known
as the mirror conjecture.

The conjecture asserts that the prepotential function Fp;;, a section of a certain line
bundle on the complex moduli space of mirror quintics, coincides with the corresponding
prepotential function Fjq;, on the complexified Kahler moduli space of quintics in C'P*,
after a suitable change of variables or mirror transformation. The conjectural equality (up
to an irrelevant quadratic polynomial)

JTcplm — :Fkah (11)
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became mathematically precise when an algebraic geometric definition of F,;, was given
by Kontsevich [7] in 1994; among other things, gravitational descendants were also studied,
and the Atiyah-Bott equivariant localization on stable map moduli was carried out to give
a complete determination of F,, in principle, and his method was able to check the
conjecture numerically.

Since 1991, a group in Boston led by Yau had begun a program to study the mirror
conjecture and its generalizations. A long series of papers, both in physics and mathemat-
ics, by Yau and his collaborators have appeared, and a number of important new ideas have
been developed toward understanding the conjecture over the next several years. Some
of those ideas have later proved crucial to the final proof of the mirror conjecture. For
example, in 1993-95, Yau et al published a series of papers identifying the fundamental role
of the so-called Frobenius parameter. In particular, an explicit cohomology valued formula
for the period of toric CY hypersurfaces, including the quintics, was found in terms of the
Frobenius parameter, in the framework of the GKZ theory. The F,p,, can be recovered
from the period through the special geometry of the complex structure moduli space. This
relation can be stated as an integral relation for the period and F,p,. This suggests that
there must be an object analogous to the period that bears a similar relation to Fy,n on
the Kahler side. Thus, the next step in our program was to find this object. A crucial
break came in 1995 when we found that the gravitational descendant does precisely that.
(See Theorems 3.2ii and Theorem 3.4 [2].) Thus, the remaining piece of the puzzle (1.1) for
us was to connect the period with the gravitational descendant.

Around the same time, Morrison-Plesser studied the so-called linear sigma model
(after Witten), in which Ny = CP" 14+ was explicitly used as a compactification of
an algebraic analogue of loop space consisting of degree d maps CP! — CP", which
is equipped with the standard S' action. As a simple exercise, we computed the Euler
class of the normal bundle at a particular fixed point component C'P" in N; and found
Hi:1(H — ka)™*! precisely the denominator in our period series formula, convincing
evidence that localization on Ny must be an important ingredient (an observation made by
others as well.) Furthermore, there was an obvious (at least set theoretic) correspondence
¢ between the graph space M, and N, that tied all of the essential structures together in
a diagram. (See p730 [2].)

Earlier, Kontsevich has shown that two types of T' fixed points are sufficient to de-
termine all of Fy.p: the singular ones obtained by gluing two 1-pointed stable maps, and
the smooth ones given by d-fold covers of CP! onto a T invariant line in CP™ (n = 4.)
This led us immediately to the idea that we should consider how a vector bundle near the
singular fixed points would behave. We found a short exact sequence which results in a
simple quadratic identity involving Euler classes (see p730 [2].) This was the geometrical
insight that led to our notion of Euler data. By a (functorial) localization argument at the
same singular fixed points, we found a similar quadratic identity on Ng involving those
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Euler classes. (See Theorem 2.8 [2].) But it wasn’t enough to determine Fj,p,. Since the
smooth fixed points were the only information left, localization there must be needed to
determine it all. It is obvious that the correspondence ¢ is a local isomorphism at these
smooth fixed points.

In March 1996, [1] claimed a proof of the mirror conjecture. There were a number of
ingredients common to both the approach in [1] and ours. (See section 2 of this note.) But
some were not. The main interesting idea in [1] was to use recursions to connect the period
to the gravitational descendant. Unfortunately, many of the arguments had no details and
some of them were simply wrong. Furthermore, there was no proof of the main theorem
in [1], and neither was there a proof of the main conjecture (1.1).

We spent the ensuing months trying to reconstruct the proof in [1], often consulting
with other experts, but without success. We eventually gave up and decided to continue
with our own approach to the mirror conjecture. By mid 1997, we had completed our proof,
the genesis of which was also spelled out in the introduction [2]. Prior to its publication,
we had numerous e-mail communications with Givental asking him to explain details of a
number of specific points in his proof. All communications with him were cc’ed to a number
of other experts. Despite many attempts, we were unable to get the details necessary to
ascertain the completeness of [1]. As we have documented, many independent experts were
consulted on [1], and they had reached the same conclusion we did. We had, therefore,
decided to publish [2], in which we cited [1] and the accompanying expert opinions we’d
documented.

Two papers [3][4] appeared later in 1998; [3] partially filled the mathematical gaps in
[1], and [4], using crucial arguments of [2], completed the rest of the proof in [1]. Despite
the fact that results of [2] were used, we had stated publicly that [1][2] should be considered
independent proofs. Most workers in the field have since credited both papers [1][2] for
the solution to the mirror conjecture. Evidently, the mathematical community has spoken
on this issue overwhelmingly.

1.2. gaps in [1]

We now point out places in [1] where arguments were wrong, missing, or incompre-
hensible (to us and others.) Some of them might be technical, but others were crucial.
The list is not meant to be exhaustive. The reader is strongly advised to examine [1] and
make an informed judgment for himself.

p9: The paper asserted that the correlator “(t,..,t),.q” are correlators of the GW
theory on X’. We could not find a proof of this assertion anywhere in the paper or any
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of the references cited there. It turned out that a proof did not exist at least until around
1999.

ppl13-14: The proof of Corollary 6.2. There was a 1-line assertion, without proof, of
the Euler class of the normal bundle of fixed points in the graph space. But the argument
there was wrong because it did not take into account several important special cases. The
correct answer turned out to be crucial also for proving the “convolution” property (second
assertion in “main lemma” on p35) later. A correct proof was given later in [3] pp22-26
and p78.

p42: Remarks 1)-3). This was the only other place in [1] where the main theorem in
its introduction was mentioned. No proof was given. An assertion of this theorem, say,
in the case of quintic, was a statement that a certain vector-function I coincided with
another vector-function J, after a change of variable. I was an explicit power series, with
the hyperplane section of C'P* being one of the expansion parameters. J was a certain
generating function for certain virtual numbers ny of degree d curves in quintics.

Remark 1) was two sentences about S* (= I when i = 1) and the mirror transfor-
mation in the 1991 paper of Candelas et al. The first was about expanding S* using the
hyperplane section as a parameter; the second said that the change of variable coincided
with the mirror transformation of Candelas et al.

Remark 2) first referred to a 1993 paper of Batyrev about mirror CY manifolds con-
structed as complete intersections in toric manifolds. This was irrelevant to the quintic
case. It then asserted that Corollary 11.8 proved the mirror conjecture described in detail
i a 1993 paper of Batyrev et al. But this 1993 paper generalized only the period compu-
tation of Candelas et al to projective complete intersections. It did not have an algebraic
geometric formulation of the mirror conjecture because it predated Kontsevich’s theory of
stable maps. The 1991 mirror conjecture of Candelas et al states that

fcplm - :Fkah

where the left side is the prepotential of special geometry on the complex structure moduli
space, and the right side is the prepotential on the Kahler side. This formula became a
precise conjecture once the right side was mathematically defined. An algebraic geometric
definition of Fr,, was not available until stable maps were invented in 1994. Thus the
references made in Remark 2) to Batyrev’s 1993 papers, as important as they were, were
irrelevant to the mirror conjecture for quintics.

Remark 3) read “The description ‘[14] of the quantum cohomology algebra of a Calabi-
Yau 3-fold in terms of the numbers ng of rational curves of all degrees d (see for instance
‘(9] for the description of the corresponding class S in these terms) has been rigorously
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jJustified in ‘[13]’. Combining these results with Corollary 11.8 we arrive to the theorem
formulated in the introduction.”

Giving argument for the main theorem of a paper in a subremark was inappropri-
ate. But more importantly, the argument was wrong. Corollary 11.8 in [1]asserted that
after a change of variable, S* coincides with the S series, the gravitational descendant, a
generating function for certain cohomology classes on C'P%. ‘[14] was a paper of Aspinwall-
Morrison in which they derived a version of the so-called multi-cover formula. ‘[13]" was
a paper of Manin in which the same formula was derived, but using the stable map com-
pactification. It was a statement purely about C' P!, not about quintics or C'P%.

‘9]’ was a paper of Givental in which he studied the mirror formula from the point
of view of “D-modules” and ODEs. This paper made no use and made no reference to
stable map theory, and it predated stable map theory. So, Remark 3) failed, as did 1)-2), to
connect Corollary 11.8 to, let alone proving, the mirror conjecture. This was an important
mathematical gap.

There were numerous other assertions in [1] that had little or no mathematical argu-
ments, and, sometimes, no definitions.

pl8: Proposition 7.1. There was just one sentence in the proof. “It can be obtained
by a straightforward calculation quite analogous to that in ‘[2]’.” Here ‘[2]” was a 228-page

long paper of Dubrovin.

p27: Proposition 9.6. In the middle of its proof, a sentence read “It is a half of the
geometrical argument mentioned above.” It’s not clear what this was referring to (above
where? which half?)

p28: Apparently continuing with the proof of Proposition 9.6, a paragraph began with
“In the Borel localization formula for [ ef(¢) - - - the fixed point will have zero contribution
unless the marked point xg is mapped to the i-th fixed point in CP™ (since ¢; has zero
localizations at all other fixed points.)” It’s unclear what “[ ef(¢)---” meant and where
this assertion was proved. In Lemma 9.7 (apparently crucial later), there was a similar
sentence involving the notation “[ c(nH1=0d=1 .7 which we couldn’t follow either.

p29: Proposition 9.8. This was about certain recursion relation involving Z;. The
proof was again one sentence. The second and third sentences read “This is how the
recursion for the correlators z; beomes possible. The rest is straightforward.” Thus the
second sentence said the first sentence showed how a recursion was possible, and the third
said the rest was easy. We couldn’t see why something being possible implies its truth.
It’s unclear what “the rest” meant, so it’s hard to say if it was easy or not.
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p30: Proposition 9.9. This was about certain uniqueness property of the recursion
relations. The proof was half a sentence “Now it is easy to check” But, again since we
couldn’t check, it’s hard to tell if it was easy or not.

p30: Lemma 10.1. Again this is about Borel localization formulas for something
denoted by “fy2 . c=1...7 Tt’s unclear what this meant.

p31l: Apparently stating certain analogues of propositions in Section 9, Propositions
10.2,10.4, Corollary 10.3 were stated without proof. Prior to stating them, there was one
sentence that said “Let us modify the results of Section 9 accordingly.” We didn’t know
what “accordingly” meant here. After this was Proposition 10.5 and a corollary of it. The
next page began with “We have proved the following Theorem 10.7.” It’s unclear how the
theorem followed from those propositions or where their proofs were.

p37: Proposition 11.4. This had multiple parts. One of the key parts seemed to be (3),
a recursion relation for the Z; in the Calabi-Yau case. It asserts existence and uniqueness of
solution to this relation. In its proof, Lemma 9.7 and Lemma 10.1 were quoted, though we
couldn’t follow how there were being used. Apparently referring to two integrals appearing
in Z;, a sentence said “Thus these integrals have a recursive expressions identical to those
of Sections 9 and 10.” We could not find any recursive expression for those integrals in
Section 9 or 10.

1.3. what’s new in [2]

We now highlight some of what’s new in our approach.

In [2], the idea of Euler data was introduced. As we pointed out, the geometrical
insight that led to this was a short exact sequence and the gluing identity at singular
fixed points. This notion turns out to allow one to completely sidestep the recursions in
[1] (which required a number complicated fixed point computations, as done in [3] later.)
This idea was adopted in numerous subsequent papers.

As we pointed out earlier, one of the key ingredients in both [1][2] was the use of the
Frobenius parameter to write down a cohomology valued period. The Frobenius method
is of course classical in ODE theory. But the fundamental role of the Frobenius parameter
in the mirror conjecture was first noticed in the 1993 paper of Hosono-Klemm-Theisen-
Yau, and its generalizations in 1995 by Hosono-Lian-Yau, where the mirror conjecture was
studied and generalized. Our period formula was given in terms of Gamma function earlier,
but it’s easy to translate them into product formula. The same idea also proved crucial in
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later generalizations. For example, in [12] there is an essentially the same period formula,
but our papers are never cited there.

A proof of the regularity of the collapsing map (lemma 2.6 in [2]) was given. A def-
inition of the correspondence is elementary, and was certainly well known to experts at
the time. Thus no originality was claimed for this correspondence, and it’s explicitly men-
tioned that [1] also contained the statement of the lemma. J. Li was asked to help write
down a rigorous proof. The proof uses an algebraic geometric argument: essentially repre-
senting the correspondence as a natural transformation of functors realized by a universal
determinant line bundle. This proof was cited in [4]. The ideas in this proof were also
cited in a number of later papers. For example, these ideas, in contrast with the argument
in [1], were used extensively in [15]. After [2], two proofs were given by [3]. The first
one was new. The second one apparently provided details for the argument in [1], with a
number of differences. The second proof in [3] constructs the line bundle differently on a
“prequotient” to realize the same correspondence.

The collapsing map serves two purposes in our approach. One, to set up the so-called
functorial localization: an equivariant commutative diagram involving the linear sigma
model, the graph space, a singular fixed point component on the graph space and its
counterpart in the linear sigma model. It was proved in [2] using the Atiyah-Bott formula.
The commutative diagram gave us a simple way to compare a class on one space (restricted
to a fixed point component) and its pushforward. This functorial localization method, as
far as we know, was new. This was a key method used in a number of subsequent papers
(e.g. Theorem 4.6 [15].) The collapsing map was also used to compare Euler data at
certain smooth fixed points in [2]. Here a trivial but important observation was that the
map is a local isomorphism at those smooth fixed points.

We derived the Euler class of the normal bundle of fixed points in the graph space My
in Theorem 2.8 [2]. This was a crucial result needed to carry out the functorial localization.
The very same result was used later in [3] in order to correct and complete at least two
crucial proofs in [1]: Corollary 6.2 and the “convolution” property.

We introduced the notion concavex bundles. For the quintic mirror conjecture, this
is not strictly necessary. But the point is that our approach applied naturally and im-
mediately to this general setting. In particular, it gave a very easy but different proof of
the multiple cover formula. There were two earlier approaches to the same formula using
different methods. Our approach also applies immediately to general multiplicative classes,
of which the Euler class is the simplest example.

The proof (Theorem 3.4 in [2]) that the prepotential Fiqp, generating Euler numbers
on stable map moduli spaces, coincides with the prepotential F,p;,, was new. A crucial step
in this proof was the special geometry relation Theorem 3.2ii [2], which remains the only
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way we know to connect Fy,p to the Euler data arising from the gravitational descendant,
and to see how it is the prepotential of the special geometry on the Kahler moduli space.
The same relation has been quoted and used by others in recent papers.

Note: B. Kim, a fresh PhD student of A. Givental at the time, posted a paper (alg-
geom/9712008v1) right before our preprint of [2] appeared (alg-geom/9712011.) Several
weeks later, he posted a new version (alg-geom/9712008v3) in which substantial revisions
had been made. In particular, a key integral formula, virtually identical to that in Theorem
3.2ii in [2], was added in the new version to connect the gravitational descendant to Euler
numbers on stable map moduli spaces. In the following year in [4], the very same integral
formula was used to fill a mathematical gap in [1], and Kim’s paper was cited as a reference
for this result. Another substantial revision was the inclusion of a proof of the “double
construction” using a crucial result on the normal bundles of fixed points to carry out
localization on the graph space. Again, that result first appeared and proved in Theorem
2.8 [2]. Kim also used the notion of concavex bundles, introduced in [2]. Our preprint was
not cited anywhere in Kim’s.

2. The footnote [5]

We shall address point-by-point (our response labelled “R” below) the issues raised
in [5], where the two papers [1][2] on the mirror conjecture are compared. First, note
that what is actually compared is aspects of the overall strategies adopted by the two
papers, not the proofs; what’s pointed out in [5] is a parallel of the two sets of languages
(and notations), not the underlying mathematical structures of the two proofs. Second,
since so many pre-existing sources have influenced both papers, it would be surprising if
there were no parallel, especially given the narrow scope of the mathematical problem at
hand. Third, the comparison in [5] is inaccurate in that it often overstates results in [1],
understates those in [2] or ignore altogether the mathematical insights leading to them,

as we shall point out. For a more comprehensive comparison of the two papers [1][2], see
[16].

1. The genus 0 mirror conjecture for complete intersections in the projective space X =
CP™ has now five proofs — the four variations of the same proof (in [1] , in [12], the
one outlined above but applied to convex bundles over X instead of concave bundles,
and the one in Section 5 of this paper based on nonlinear Serre duality), and the proof
recently given in [2] . Here we compare the methods in [2] with our approach.
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R1.

R2.

The first statement in 1 understates the generality of [2] . Not only does it apply to
general concavex bundles, a notion introduced in [2], but also does it apply to general
multiplicative classes, of which Euler class is the simplest example, and it is certainly
more general then [1]. Second, it is more accurate to say that [5] compares merely
aspects of the overall strategies of [1] [2], and not the proofs.

The key idea (see Step 2 above) — to study GW-invariants of the product X x CP*
equivariant with respect to the S*-action on CP* instead of GW-invariants on X — is
borrowed in [2] from our paper [1] , Sections 6 and 11. In fact this idea is profoundly
rooted in the heuristic interpretation [13]of GW-invariants of X in terms of Floer
cohomology theory on the loop space LX where the S'-action is given by rotation
of loops. The generator in the cohomology algebra of BS' denoted h in our papers
corresponds to o in [2].

The first statement in 2 is factually wrong. [2] did not borrow this idea from [1].
First, there is an obvious identification (parameterized vs. unparameterized curve)

cprttopry = jcptopr x cpl) (2.1)

(This was also pointed out in hep-th/9401130.) For degree d maps, what [1] called
the toric compactification of the left side is what [2] called a linear sigma model,
following [6] which introduced it explicitly in 1994 after [8] to do just that: to give
a “naive” compactification of the algebraic analogue of loop space of C'P™. This is
Cp+thd+n  In the same year the stable map theory [7] gave a compactification
of the right side. This is the graph space M,. Second, the idea of circle action
on loop spaces is ancient. The heuristic interpretation of the relationship between
Floer cohomology and quantum cohomology mentioned in 2 goes back to at least
[9] of 1993, (which entitled “On equivalence of Floer’s and quantum cohomology,”)
which predated [13] by a year. Thus the idea of S* localization on loop spaces and
the background heuristic behind the Floer/quantum cohomology relation seem to be
known well before [1] or [13]. The idea was used in [1] as well, and we have also cited
this in [2]. For a description of how the S! localization arose and how the earlier
papers influenced [2] on this point, see subsection 1.1. Third, the issue here is full
proofs, since heuristic arguments were already available from physics.

Another idea, which is used in all known proofs and is due to M. Kontsevich [1994], is
to replace the virtual fundamental cycles of spaces of curves in a complete intersection
by the Euler cycles of suitable vector bundles over spaces of curves in the ambient
space. Both papers [1] and [2] are based on computing the push forward of such cycles
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R3.

RA4.

to simpler spaces. Namely, the cycles are S'-equivariant Euler classes of suitable
bundles over stable map compactifications of spaces of bi-degree (d, 1) rational curves
in X x CPY, the simpler spaces are toric compactifications of spaces of degree d maps
CP! — X = CP", and the push-forwards are denoted Eq in [1] and o\(xa) in [2].

There seems to be no real mathematical issue raised here, except that the comparison
of notations is wrong, because ¢i(xq) was never used in [2], and the notation FEy
apparently denoted more than one different objects in Propositions 11.4 and 11.6 [1].
The correct comparison should be that the notation ¢ier(Vy) in [2] corresponds to a
certain 0-pointed analogue of the notation p.(&y) in [1].

The toric compactification is just the projective space CP(Dd+n of (n + 1)-tuples
of degree < d polynomials in one variable z, which genericly describe degree d maps
CP! — X = CP™; the space is provided with the S*-action z — zexp(it) (as in the
loop space!) Thus both papers depend on continuity of certain natural map (denoted
woin [1] and ¢ in [2] ) between the two compactifications. The continuity is stated
in [2] as Lemma 2.6. It coincides with our Main Lemma in [1] , Section 11. The
proof of Lemma 2.6 attributed in [2] to J. Li coincides with our proof of the Main
Lemma. The difference occurs in the proof of a key step formulated as Claim in [1] :
our proof of the Claim by bare hand inductive computation in the spirit of G. Segal’s
representation of vector bundles over curves via loop groups is replaced (and this is
the contribution of J. Li) by a more standard algebraic-geometrical argument based on
the proof of Theorem 9.9 in Hartshorne’s book. It is worth repeating here the remark
from [1] that a different proof of the lemma was provided to me by M. Kontsevich,
with whom we first discussed the map between the two compactifications in Fall 1994.

By collapsing all but one component of a rational curve, (2.1) extends immediately
to a set theoretic correspondence My — CP™+tDd+n  This correspondence (and a
number of variants thereof) was, of course, known to experts before [1], including
Kontsevich. The regularity proof in [2] was written with J. Li’s help. One should
not confuse Lemma 2.6 [2] with the Main Lemma [1]. First, the former statement
is (a 0-pointed version of) one of two assertions in the latter (which is a 2-pointed
version.) Second, the proofs are not the same. The contrast is explained in subsection
1.3. The main point in the regularity proof in [2] is the construction of the universal
determinant line bundle, not Theorem 9.9 in Hartshorne’s book. Third, the proof of
the second assertion, the convolution property, in [1] is wrong. It turns out that a
correct proof requires a crucial result on normal bundles obtained first in [2]. In fact,
[3] gives a correct proof later using essentially this result (see pp22-26 and p78 there.)
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5.

R5.

The new concept introduced in [1] — the eulerity property of the classes E4 (Def-
inition 2.3 in [2] ) — is to replace both the recursion relation (Step 1 above) and
the polynomiality property (Step 2) of the gravitational GW-invariant (J in the above
outline). Eulerity is actually equivalent to recursion + polynomiality. Theorem 2.5
in [2] asserting the eulerity property of the classes {E4} coincides with Proposition
11.4(2) in [1] deduced there from the recursion + polynomiality. The proof of Theo-
rem 2.5 in [2] is based on the same localization to fived points of S'-action on spaces
of curves as in our proof of Corollary 6.2 in [1] which guarantees the polynomiality.
The recursion is derived in [1] by further fized point localization with respect to the
torus acting on X = CP™. Thus the proof in [2] shows that the latter localization
argument is unnecessary.

We are, of course, glad that [5] acknowledged our contributions. However, statement
5 is inaccurate and ignoring our mathematical insight leading to Euler data in our
approach. First, the new notion of Euler data was not introduced in [2] for the purpose
of replacing recursions+polynomiality. As spelled out on p2 [2], Euler data is a notion
built on the linear sigma model CP("t1Dd+7 to capture the behavior of vector bundles
at singular fixed points, with respect to the multiplicative nature of the Euler class.
These singular points arise from gluing two 1-pointed stable maps, as described in [7] in
1994 and did not come from [1]. Second, there may well be a language dictionary to
compare statements about Euler data to those about recursions solutions, after the
fact. But this is merely a linguistic comparison. Furthermore, it is misleading. For in
order to compare the mathematical contents, one must first derive the recursions with
full proofs, which the Euler data approach completely sidesteps, not to mention that
the two notions are defined on two different spaces. Note that a lot of the missing
details in [1] (cf. [3]) were in fact directly related to the recursions. Third, there is
no way Theorem 2.5 [2] can coincide with Proposition 11.4(2) [1]. The former is a
statement that the gravitational descendant gives rise to an Euler data. The latter
is a completely different statement about certain polynomials being determined by
their values at certain fixed points. Fourth, the argument in [1] is the sentence: “(2)
follows from the definition of ® in terms of Z;.” The proof of Theorem 2.5 of [2],
on the other hand, is an application of functorial localization at the singular fixed
points, and the short exact sequence mentioned above, plus a crucial result on normal
bundles, as in pp740-744 [2]. A more plausible comparison may be the statement
of Theorem 2.5 [2] and some version of the second assertion of “Main Lemma” [1].
But once again, it is important to keep in mind that at issue here is full proofs, not
languages or notations.

The relationship among the two solutions to the recursion relation — the gravitational
GW-invariant and the explicitly defined hypergeometric series (I in the above outline)
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R6.

— is based on some uniqueness result (Proposition 11.5 in [1] ) for solutions to the
recursion relation satisfying the polynomiality property. The corresponding result in
[2] is Theorem 2.11 about linked FEuler data. Linked there translates to our terminology
as the recursion coefficients in the recursion relations for I and J being the same. The
proof of the uniqueness result in [2] is the same as in [1] or [12]. The difference
is that the uniqueness property is formulated in [2] solely in terms of the Euler data
{E4} and not in terms of gravitational GW-invariant the data generate.

Again, the notion of linking in [2] was not introduced for the purpose of replacing
or translating to the recursions coefficients in [1]. But rather, it was to capture the
structure of the smooth fixed points, given by maps CP! — CP"™ which are d-fold
covers of a T-invariant line in C'P". Why these smooth fixed points? First, [7] has
already shown that precisely two types of fixed points: the singular ones and the
smooth ones just described are sufficient to determine all virtual numbers n, for
quintics in CP*. Thus, any proof of the mirror conjecture by localization should
at least include a reformulation of this result. The question is how? In [2], we saw
that the singular fixed points enter through an exact sequence and Euler data. Thus
the remaining question is how the smooth fixed points enter. Since our only task
at hand is to compare two Euler data via a mirror transformation, and the smooth
fixed points are, by default, the only information left, one must expect that they
enter the comparison of the two Euler data, which as we saw has nothing to do with
recursions. In our approach, the geometrical origin of linking is precisely that ¢ is a
local isomorphism at the smooth fixed points, an easy fact, and it is not about and
does not require deriving recursions or computing their coefficients.

Obviously, having a dictionary for two notions after the fact sometimes allows you to
restate a result about one notion in the language of the other. But it is not true that
theorems, let alone their proofs, about Euler data and their mathematical origin must
be coming from their recursions-solutions counterparts, or vice versa.

The uniqueness result allows to identify the gravitational and hypergeometric so-
lutions to the recursion by some changes of variables (the mirror transformations).
This is deduced in [1] from Proposition 11.6 which states that both the recursion re-
lation and the polynomiality property are preserved by the mirror transformation (see
Step 4 above). The corresponding result in [2] is Lemma 2.15 which says that the
(equivalent!) eulerity property is invariant under mirror transformations. It turns
out however that while it is straightforward to check the invariance of recursion and
polynomiality (Proposition 11.6 in [1] ), it is technically harder to give a direct proof
of the wnvariance of eulerity, which requires the notion of lagrangian lifts introduced
in [2] . The use of lagrangian lifts is therefore unnecessary.
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R7. Our proof of Lemma 2.15 [2] is two pages of pure manipulations. We, however, would

RS.

wager that if we leave out details the way it was routinely done in [1], it could have
been done in five lines. It is not appropriate to point to a technical lemma to suggest
that [2] 1is inferior to [1] in terms of degree of technicality. This suggestion is, of
course, false. To actually fill gaps in [1], the paper [3], which does not even prove
the main theorem, already exceeds 80 pages. On the other hand, the full proof of
the mirror conjecture in our approach [2] takes less than 20 pages, not to mention
the greater conceptual generality of [2] and its instant universal acceptance. That, we
believe, is a more appropriate way to compare the degree of technicality of the two
approaches.

The last part of the proof in [2] (see Section 3 there) addresses the following is-
sue: while the previous results allow to compute some GW-invariants in terms of
hypergeometric functions, what do these GW-invariants have to do with the structural
constants of quantum cohomology algebra involved in the formulation of the mirror
congjecture?

The computational approach to the issue in [2] is also not free of overlaps with [1].
However it remains unclear to us why the authors of [2] ignore the fundamental
relationship between the gravitational GW-invariant and quantum cohomology which
resolves the issue momentarily. The relationship was described by R. Dijkgraaf and B.
Dubrovin [10] in the axiomatic context of 2-dimensional field theories and adjusted
to the setting of equivariant GW-theory in Section 6 of [1]. According to these results
the structural constants of quantum cohomology algebra (such as Yukawa coupling in
the case of quintic 3-folds) are coefficients of the linear differential equations satisfied
by the gravitational GW-invariants in question. In fact such a relationship was the
initial point of the whole project started by [11],[13] and completed in [1][12].

First, 8 has misstated the issue. The mirror conjecture of Candelas et al is the
statement that (1.1)
F. cplex — F kah-

The prepotential Fi,p may, in principle, be determined by determining the quantum
differential equation in question. But that is not the issue. The issue is proving the
conjecture (1.1). After all, it has already been known since 1994 [7], that Fy.n can be
determined in principle by an ezplicit recursion relation of GW invariants.

Second, section 3 of [2] is mot a computational approach. Instead it is a series of
applications of the Mirror Principle, chief among them is the proof of the mirror con-
jecture (1.1). For this, a key conceptual result Theorem 3.2ii [2] is crucial, which says

13



R9.

10.

that Fp.p, bears the same special geometry relation to the gravitational descendant,
as Feplx does to the period. Special geometry is a conceptual underpinning of mir-
ror symmetry for Calabi-Yau threefolds. Thus, calling our result “computational” is
a gross mischaracterization. A year after [2], the paper [4] uses the special geome-
try relation to fill a mathematical gap in [1], precisely on this point. In fact, it is
shown that our result can be reproved using three equations of GW invariants, of
which [4](p5) sketches a proof. In turn, the proof relies at least on a key comparison
result obtained in alg-geom/9608011, which appeared five months after [1]. Neither
the special geometry relation in [2] nor those three equations of GW invariants in
[4] are contained or cited in section 6 of [1]. Third, 8 falsely claims that (1.1) follows
immediately (“resolves momentarily”) from section 6 of [1]. Contrary to the claim,
the purported argument for (1.1) (remarks 1-3 on p42 of [1]) does not even mention
section 6 anywhere, nor is there a statement of our result or its equivalent, let alone
its proof. (See ‘Note’ in subsection 1.3 above.)

The last sentence in 8 falsely claims that [1] already contains a full proof of the mirror
conjecture, for we have already given ample reasons to show otherwise. The paper
[12] contains an argument for a toric version of the mirror conjecture which was based
on eight explicitly stated axioms, not proved in [12]. Thus it is inappropriate to call
the project “completed.” A complete proof of the general toric mirror conjecture
appears in [14] without assuming any axioms.

Thus the two proofs of the same theorem appear to be variants of the same proof rather

than two different ones, except that our reference to the general theory of equivariant
quantum cohomology, developed in [1] , Sections 1 — 6, for concave and convex vector
bundles over convex manifolds, is replaced in [2] by a computation.

This false conclusion in 9 is based, in large part, on a number inaccurate or factually
wrong assumptions, which we have addressed above. Again, the main theorem we have
proved in [2] is the mirror conjecture (1.1). It is not proved in [1], neither is our proof
a variant of [1]. What is indicated in [5] is merely a parallel between some aspects of
the respective overall strategies and languages adopted in the two approaches. Their
underlying mathematical structures, not to mention the proofs, are different, as we
have explained.

It is worth straightening some inaccuracy of [2] in quotation. As it is commonly
known, “Givental’s idea of studying equivariant Euler classes” (see p. 1 in [2] ) is
due to M. Kontsevich [1994] who proposed a fized point computation of such classes
via summation over trees. The idea of the equivariant version of quantum cohomology
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R10.

listed on p. 6 of [2] among “a number of beautiful ideas introduced by Givental
in [1][11]” was actually suggested two years earlier in [GK] by a different group of
authors. The statement in the abstract that the paper [2] “is completing the program
started by Candelas et al, Kontsevich, Manin and Givental, to compute rigorously the
instanton prepotential function for the quintic in P*” is also misleading: the paper is
more likely to confirm that the program has been complete for two years.

It seems that [5] has mistakenly relied on an old draft of [2]. The statements quoted
might have been inaccurate, but for reasons different than those asserted in 10. In
fact, we had decided to revise a number of statements, including the above-mentioned,
in an old draft long before [5] appeared. For example, since we were unable to ascertain
the completeness of [1] even after repeated communications with the author, we felt
that perhaps calling some of the ideas there “beautiful” might have been premature
at that point.
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