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A Question Answering (QA) system must provide concise answers from large collections of
documents to questions stated by the user in natural language. However, although many QA systems
for open domain exist, its adaptation for restricted domains (such as those of healthcare, agri culture,
transportation, or science) is a far from trivial task. The principal problem is that domain experts ask
more precise questions (and expect more precise answers), including specific terminology, and this
is costly to integrate into a QA system. To overcome this drawback, this paper presents an innovative
approach based on model-driven software development. It uses restricted-domain resources to
automatically and effortlessly adapt open-domain QA systems in order to make them useful in
restricted-domain scenarios. Finally, a set of experiments has been carried out to show the
approach’s applicability.
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1. INTRODUCTION 
Question Answering (QA) is defined as the task of searching for and extracting the text that contains
the answer for a specific question, stated in natural language, from a collection of text documents or
a corpus (Mollá and Vicedo, 2007). QA systems can be classified in two types, depending on the
application domain: Open-Domain Question Answering (ODQA) or Restricted-Domain Question
Answering (RDQA) systems. While the former is concerned with a wide spectrum of questions (e.g.
who is the president of Spain?), the latter is properly adapted to a particular area (e.g. what antipyretic
is recommended to patients with a risk of gastrointestinal bleeding? in a medical domain), thus
obtaining more precise results regarding a specific topic.

The development of ODQA systems has been stimulated by evaluation forums such as TREC
(Text REtrieval Conference, http://trec.nist.gov/) and CLEF (Cross-Language Evaluation Forum,
http://clef-campaign.org/). From these forums, it will be observed that most QA systems present a
common architecture (as shown in the Searching Module of Figure 1). This architecture consists of
three different sequential phases: (i) question analysis for understanding the question by detecting
the expected answer type and extracting the significant keywords; (ii) these keywords are used by
an Information Retrieval (IR) system in order to select and retrieve the relevant passages or
documents; and (iii) finding and extracting the expected answer by using natural language
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processing tools (such as PoS tagger, syntactical parser, entity annotator, semantic role parser, etc.)
to analyze this set of passages or documents. If this architecture is analyzed, then it is obvious that
the phases of question analysis and answer extraction are dependent on the knowledge from the
domain which is usually included in patterns. Note that for the purpose of this paper, we shall refer
to all the possible strategies for detecting relationships between elements in both question and
answer (e.g., logic forms, regular expressions, syntactical relations and so forth) as patterns.
Moreover, it is important to note that within the question analysis phase (see Figure 1) it is crucial
to determine the semantic type of the answer or Expected Answer Type (EAT) by means of a
predefined taxonomy (also known as question hierarchy (Li and Roth, 2006) or question ontology
(Metzler and Croft, 2005)). A correct specification of the EAT taxonomy implies an accurate EAT
detection, thus reducing the search space of possible answers and providing a more precise answer
in a more efficient manner (Li and Roth, 2006; Hovy, Hermjakob and Ravichandran, 2002). Indeed,
more than 36.4% of QA errors are related to an incorrect EAT detection of the question (Moldovan,
Pasca, Harabagiu and Surdeanu, 2003).

Bearing these considerations in mind, for ODQA systems to perform well in restricted domains
both patterns and EAT taxonomy must be adapted. However, two main problems arise in the current
approaches dealing with this adaptation: (i) manually tuning QA patterns (Peñas, Forner, Sutcliffe,
Rodrigo, Forascu, Alegria, Giampiccolo, Moreau and Osenova, 2009) and EAT taxonomies
(Sekine, Sudo and Nobata, 2002; Hovy et al, 2002; Li and Roth, 2006) for restricted domains
requires a huge effort in time and cost owing to the inherent complexity of the concepts provided
by these domains (Mollá and Vicedo, 2007); and (ii) defining restricted-domain QA patterns and
EAT taxonomies by analyzing potential questions to be answered (Kosseim and Yousefi, 2008) is
not realistic, since restricted-domain questions are highly complex and difficult to acquire. For
example, IBM’s computer system Watson (http://www-03.ibm.com/innovation/us/watson/) has
been quite popular in the media thanks to its participation and success in the quiz show Jeopardy!
(http://www.jeopardy.com/). The sources of information for Watson include encyclopedias,
dictionaries, thesauri, newswire articles, databases, taxonomies, and ontologies; and it is based on
an ODQA system named DeepQA (Ferrucci, Brown, Chu-Carroll, Fan, Gondek, Kalyanpur, Lally,
Murdock, Nyberg, Prager, Schlaefer and Welty, 2010). Recently, there is an increasing necessity for
Watson’s capabilities to be adapted to other domains, e.g., the medical domain, as a clinical decision
support system to aid the diagnosis and treatment of patients. This adaptation is not trivial because
it implies that DeepQA would refer to new sources of information and the development of new
patterns and EAT taxonomies is required.

To overcome these drawbacks we propose an approach with which to design EAT taxonomies
for restricted domains, and to obtain existing patterns from an ODQA system and adapt them by
using knowledge resources from a specific domain in a systematic and comprehensive manner. Our
approach is based on model-driven software development (Selic, 2003) which has proved useful for
defining and managing several kinds of software models in an easy and well-structured manner with
a high degree of automatization (Lasheras, Valencia-García, Fernández-Breis and Toval, 2009). Our
initial hypothesis is that the adaptation of ODQA systems to a new domain can be seen as a model-
driven software development scenario, in such a way that existing QA patterns and knowledge from
the domain are captured in a model which will guide the derivation of the new patterns and the EAT
taxonomy for the restricted domain, thus significantly reducing the amount of manual labor
required. Moreover, a set of experiments has been conducted with the objective of validating our
approach and showing its applicability in a real-world case study in the agricultural domain.
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The remainder of this paper is structured as follows. Section 2 presents related work. Section 3
describes our model-driven approach for adapting QA systems to restricted domains. Section 4
validates our approach by means of a set of experiments. Finally, Section 5 shows our conclusions
and future work.

2. RELATED WORK
Some of the current approaches for adapting both patterns and EAT taxonomy are described as
follows.

2.1 Adapting QA Patterns for Restricted Domains
The process of adapting existing QA systems to a specific domain is currently done manually by
using linguistic resources (Peñas et al, 2009; Roger, Vila, Ferrández, Pardiño, Gómez, Puchol-
Blasco and Peral, 2008), which is thus costly and prone-to-fail. Potential questions to be answered
are traditionally analyzed (Kosseim and Yousefi, 2008). This is feasible for open domains, in which
repositories of questions are easily acquired from the Web, but difficult to apply in restricted
domains since sufficiently comprehensive training corpora are hard to find (Mollá and Vicedo,
2007). Moreover, there exist some QA systems based on ontologies (Valencia-García, Sánchez,
Nieves and Fernández-Breis, 2011; Ferrández, Izquierdo, Ferrández and Vicedo, 2009; Lopez,
Uren, Motta and Pasin, 2007) that could be easily adapted to new domains, although they do not
consider textual sources, but structured information.

From our point of view, patterns should be tuned by using different kinds of knowledge
resources from a specific domain. These resources are also known as KOS (Knowledge
Organization Systems) which include a variety of schemes that organize, manage, and retrieve
information. This term is intended to encompass all types of schemes for promoting knowledge
management (Hodge, 2000), e.g., dictionaries, thesaurus, or ontologies. According to the level of
detail or granularity of the knowledge they refer to, two kind of KOS exist: generic KOS (such as
WordNet, http://wordnet.princeton.edu/) or the more precise domain KOS (such as Agrovoc
thesaurus, http://www.fao.org/agrovoc/) for the agricultural domain). However, these KOS have
their own formats and interfaces which must be unified by the QA system, thus being a costly task
(Mollá and Vicedo, 2007).

Our model-driven approach overcomes this scenario since it allows question answering patterns
in the ODQA system to be automatically adapted to a restricted domain from the collection of
documents by integrating available KOS.

2.2 Adapting EAT Taxonomies for Restricted Domains
Many EAT taxonomy proposals for ODQA systems currently exist which are concerned with a wide
spectrum of questions (Metzler and Croft, 2005; Li and Roth, 2006; Sekine et al, 2002; Hovy et al,
2002). Within these approaches, EAT taxonomies are manually developed from large collections of
questions (from the Web, e.g. Ask.com: http://www.ask.com; Yahoo Answers: http://answer.yahoo.
com or from TREC or CLEF conferences) by obtaining knowledge from WordNet. These
approaches take into account the question stem or interrogative clause (e.g., What, Which, Who
questions, etc.), later adding semantic knowledge to obtain more accurate answers. Of all the answer
types, those having an ambiguous question stem (What, Which) are the most difficult to analyze,
since they can be related to any answer type (What object, What substance, What enzyme, etc.),
unlike the question stems Who, When and Where, which may correspond to person, date, and
location concepts. In fact, the more ambiguous the question is the more semantic knowledge is
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required to specify an adequate EAT taxonomy for the application domain of the QA system.
Furthermore, in spite of being hierarchical, these approaches are not sufficiently refined to be useful
in restricted domains, and specific approaches for developing restricted-domain EAT taxonomies
are required. For example, the EAT taxonomies defined in Ely, Osheroff, Gorman, Ebell,
Chambliss, Pifer and Stavri (2000) and Sang, Bouma and de Rijke (2005) were obtained from a
collection of 1001 questions asked by physicians and from 435 questions in the RSI (Repetitive
Strain Injury) corpus, respectively. Both works manually develop the EAT taxonomy by using the
UMLS metathesaurus as the domain KOS. In (Ferrés and Rodríguez, 2006) an EAT taxonomy of a
baseline QA system is manually tuned by using domain ontology concepts and relationships. A
common drawback of these approaches is that the EAT taxonomy is based on analyzing potential
questions from users, which may not be feasible in real applications, since acquiring a large number
of restricted-domain questions from domain experts is difficult.

Our model-driven approach again contributes towards overcoming these problems since it uses
several KOS in order to automatically adapt an EAT taxonomy to a restricted domain from the
collection of documents.

3. MODEL-DRIVEN QA SYSTEMS ADAPTATION TO RESTRICTED DOMAINS
Our model-driven approach for adapting QA systems to restricted domain is depicted on the right-
hand side of Figure 1, while a common architecture for a QA system is represented on the left-hand
side. Our approach is based on defining (i) a set of models containing the most relevant terms in the
collection of documents, and useful concepts from different kind of KOS and QA patterns; and (ii)
a set of transformations to be applied to these models in order to obtain the code of the new patterns
to be used by the adapted QA system.

Figure 1: Model-driven adaptation of QA systems to restricted domains
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3.1 Metamodels for Adapting QA Systems
Under the model-driven umbrella, and according to Kleppe, Warmer and Bast (2003), “a model is
a description of (part of) a system written in a well-defined language”, while “a well-defined
language is a language with well-defined form (syntax), and meaning (semantics), which is suitable
for automated interpretation by a computer”. Therefore, on the one hand, a model must focus on
those important parts of a system, thus abstracting superfluous details. On the other hand, well-
defined languages can be designed by means of metamodeling (Bézivin, 2005), which provides the
foundation for creating models in a meaningful, precise and consistent manner. Our metamodels for
restricted domains, question patterns, and answer patterns are described as follows.

3.1.1 Restricted Domain Metamodel
A restricted domain metamodel (see Figure 2) has been defined to create models for representing
terms from a restricted-domain corpus and joining them to their corresponding concepts from the
available KOS.

The core element in this metamodel is the RestrictedDomainModel metaclass which is useful for
creating a model for a particular restricted domain. The CorpusTerm metaclass is useful for
representing any of the terms appearing in a corpus. A metaattribute value is used to store the
lemmatized value of each term. There are several lexical types of corpus terms, such as adjectives,
nouns or verbs, which are represented as several subclasses of the CorpusTerm, i.e. AdjectiveTerm,
NounTerm or VerbTerm metaclasses. It is worth noting that syntactical relations between these terms
(which can be easily provided by a PoS tagger and a syntactical parser when the corpus is
processed) are valuable for use in further steps of our approach. Specifically, the VerbTerm
metaclass has relations to indicate which NounTerm can be seen as a subject or as an object. The
NounTerm can also be related to an adjective or to other nouns. These relations are important to
detect the multi-words which often appear in restricted domains (e.g. “calcium hydroxide” or
“adrenal cortex hormones” in the chemical domain). Each kind of CorpusTerm also has its own type
(originating from several Enumerations as shown in Figure 2). Finally, each CorpusTerm may also
contain some semantic information (SemanticLabel metaclass). This semantic information can be
provided by open-domain tools when the corpus is being processed in the QA task, such as semantic

Figure 2: Restricted domain metamodel
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role parser, name entity recognizer, temporal or numerical expressions recognizer, etc. The
SemanticLabel metaclass indicates the name of the technique used to acquire the semantic
information, the value obtained by applying these techniques and, also the probability of the
certainty of this value.

Furthermore, the Concept and Equivalence metaclasses allow the elements of this restricted-
domain metamodel to be semantically enriched with concepts and relationships from several KOS.
The Concept metaclass refers to an element from a particular KOS. Each of these elements is
represented with a value. Each concept can additionally be related to one or more concepts through
relations of synonymy, hypernymy and hyponymy. Each concept may be related to more than one
KOS for which the name is indicated and also an ID for the concept within this KOS. This metaclass
has an isTop metaattribute that states whether it is a top concept in that KOS. Equivalences between
a term and a concept can be defined: the metaclass Equivalence represents an association between
Concept and NounTerm.

3.1.2 Question and Answer Patterns Metamodels
Existing question patterns from ODQA systems must be represented in a model to enable them to
be adapted to the domain represented in a restricted domain model. To this aim we have defined the
question pattern metamodel which contains the elements needed to create a variety of these
question pattern models (see Figure 3). These models will define the system question typology, i.e.
question types that the system will be able to answer, thus detecting the kind of expected answer
and the keywords of the question. A pattern is represented as a Pattern metaclass in order for it to
contain several associated expressions (i.e. Expression and Association metaclasses) which
represent a pattern. Moreover, a pattern is associated with an answer type (i.e. AnswerType
metaclass), in such a way that the kind of expected answer is known when the question is classified
by choosing the pattern that best fits the question. A metaclass Expression is used to consider every
kind of expression. For example, syntactical labels such as PP-preposition, PtDt-interrogative
pronoun or determinant, VBC-verbal head, SNP-simple noun phrase, SPP-simple preposition
phrase and their values (e.g., an expression PtDt could have “which” as a value). Expressions may

Figure 3: Question pattern metamodel
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have some related concepts (e.g., an SNP may have hyponyms of certain concepts within their
expression). A metaclass Association relates expressions in order to ascertain a sequential order. It
has an antecedent and a consequent. An example could be an association with the name “PtDt-
VBC” whose antecedent is an expression “PtDt” and whose consequent is “VBC”. An AnswerType
metaclass refers to one or more concepts in order to determine the type of the answer. A metaclass
Concept contains one or more IDs stored in the attribute that identifies the different KOS in which
this concept is supposed to appear, along with several verbs that are frequently associated with 
the concept.

In the same way, the Answer Pattern metamodel has been defined (see Figure 4). In this case,
each Concept metaclass has a set of valid lexical types (typeSet), which are represented by means
of the ELexicalType enumeration.

3.2 Transformations for Adapting QA Systems
Having defined our metamodels we shall now describe the transformations required to adapt the
existing QA systems to a restricted domain.

3.2.1 Obtaining Restricted-domain EAT Taxonomies
A set of transformations has been designed to automatically define an EAT taxonomy for restricted-
domain QA by using KOS within them (see transformations T1, T2, and T3 in Figure 1): the most
relevant restricted domain terms from the corpus are defined in a model (by using transformation
T1). This model is then enriched with concepts from restricted and open domain KOS
(transformation T2). Finally, once this knowledge is represented, a restricted-domain EAT
taxonomy is derived (transformation T3).

Obtaining a restricted-domain model from the corpus. Transformation T1 (see Figure 1) obtains
a restricted domain model by selecting the most relevant terms appearing in the corpus based on
two constraints: lexical (each term must originate from a meaningful category, such as a noun, an
adjective or a verb), and statistical (terms must have certain frequencies, e.g. relative frequency (fr)
or tf-idf frequency (Baeza-Yates and Ribeiro-Neto, 1999)). It is worth noting that the threshold
values for these frequencies can be modified depending on the specific domain. A class CorpusTerm
is created (AdjectiveTerm, VerbTerm or NounTerm) from each selected term, with its corresponding
lexical, syntactic and semantic information obtained from the corpus processing in the QA task (see
Indexing Module in Figure 1), including the different kinds of relationships between them.

Figure 4: Answer pattern metamodel
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To illustrate the benefits of our approach throughout this paper, consider the following
motivating example based on the agricultural domain from the Cuban Journal of Agricultural
Science or RCCA (Revista Cubana de Ciencia Agrícola, http://www.ica.inf.cu/productos/rcca/).
This journal comprises topics related to agricultural science, such as Animal Science, Pastures and
Forages, etc. In this paper, we use the English part of this journal as the corpus. One sample question
about the agricultural domain is: “Which is the enzyme that increases the animals’ digestibility of
organic phosphorus?”

This question cannot be answered by our open-domain QA system, denominated as AliQAn
(Roger et al, 2008). This system has an EAT taxonomy with two levels, based on WordNet Based-
Types, that consists of the categories shown in the part of Figure 5 labeled as OD-EATT. By using
the EAT taxonomy of AliQAn, the classification of the previous sample question is object. It is
worth pointing out that AliQAn’s classification of the question could be considered to be correct
since enzyme has a top-concept hypernym object (the whole hypernym path is shown by means of
rectangles in Figure 5). However, object is too wide a concept which may accept some incorrect
candidate answers such as: artifact, ground, yeast, acids, salts, etc. as being semantically correct.

It is therefore necessary to apply our set of transformations to obtain an EAT taxonomy for the
agricultural domain to be used in AliQAn. Figure 6 shows how transformation T1 works, by taking
the sample question and a passage of a document related to that question.

Within this example, the text is lexically and syntactically labeled by using Freeling
(http://nlp.lsi.upc.edu/freeling/), specifically by means of its PoS-tagger and its shallow syntactic
parser, respectively. Freeling’s labels starting with: (i) “NN:common noun” or “NNP:proper noun”
are added to the restricted domain model as NounTerm with “NC” or “NP” Type respectively, (ii)

Figure 5: Excerpt of an EAT taxonomy for open (OD-EATT) and restricted (RD-EATT) domains
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“VB:verb” as VerbTerm with “VM” Type and (iii) “JJ:adjective” as AdjectiveTerm with “AO” Type.
The following syntactical information was also extracted: the “phosphorus” noun is related to the
“organic” adjective, while the “digestibility” noun is the object of the verb “increase” and the
“enzyme” noun is the subject. These syntactical relationships are obtained by using the following
chunking tags for English in the Freeling shallow parser: “S:sentence”, “n-chunk:noun”, “sn-
chunk:noun with definite article” and “vb-chunk:verb” in the following way: (i) the noun and
adjective within the same “n-chunk” or “sn-chunk” are related by means of a Related Adjectives
attribute; (ii) nouns within the same “n-chunk” or “sn-chunk” are related by means of a Related
Nouns attribute; and (iii) noun and verbs within the same “S” are related by means of a Subject or
Object attribute, according to the function of the name with regard to the verb.

Enriching the restricted-domain model. The second step of our approach consists of adding
semantic knowledge to the already defined elements of the restricted-domain model by means of
concepts and relationships from different kinds of KOS in order to create an enriched restricted
domain model. This enrichment step takes place in the T2 transformation (see Figure 1) which
allows heterogeneous KOS to be managed (from a simple taxonomy to a complex ontology) by
ensuring integration and interoperability among them. The reason for this is that our metamodel is
sufficiently sound to specify in a model those parts of KOS that will be useful in the following steps

Figure 6: Overview of how to obtain a restricted-domain model
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of our approach, thus abstracting unnecessary details. This transformation also makes the system
adaptable since if a new KOS has to be considered, we are not obliged to change the whole QA
system, but can adapt T2 to the new KOS.

Transformation T2 associates each corpus term previously detected with a particular concept
from the domain KOS. Simple words from the NounTerm are searched for first, followed by multi-
words by using the Related Adjectives and Related Nouns attributes. An Equivalence class is created
to associate each new Concept class (including its corresponding KOS classes) with some existing
NounTerm classes. The following step is to search for synonyms, hyponyms and hypernyms of the
new Concept class in a domain KOS until a top concept is reached. Every top concept from the
domain KOS is then checked for its subsequent association with a particular concept from a generic
KOS (a disambiguation algorithm can be used at this stage), and if this association does not exist
then hyponyms (and their synonyms) of this top concept are checked. For each concept belonging
to a generic KOS, its hypernyms (and its synonyms) are added to the restricted-domain model until
a top concept is found. The rationale behind the T2 transformation is to associate corpus terms with
concepts from the domain KOS and not with the concept from the generic KOS, since (i) it is more
likely that restricted-domain terms will appear in the domain KOS, and (ii) polysemy is avoided
because restricted-domain terms that appear in the generic KOS are previously disambiguated with
the domain KOS.

Following our running example, we have chosen to use the Agrovoc thesaurus as the agricultural
domain KOS, and WordNet as the generic KOS. The following NounTerms in the previously obtained
restricted-domain model (see Figure 6) are found in Agrovoc: “phytase”, “digestibility” and
“enzyme”. These are specified as Concepts in the enriched restricted-domain model (see Figure 7).
From these concepts, transformation T2 uses Agrovoc and WordNet to obtain 249 new Concepts (185
from Agrovoc, 15 from WordNet, and 49 from both) and 9 levels in accordance with their hypernym-

Figure 7: Example showing how to obtain an enriched restricted-domain model
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hyponym hierarchical structure. For example, the Concept enzymes is obtained from the NounTerm
enzyme along with its hypernyms in Agrovoc until the top concept agents is attained (see the part of
Figure 5 labeled as RD-EATT). This Agrovoc top concept agents is intended to be mapped with the
same concept in WordNet. However, it has five senses, which causes a high degree of polysemy in our
enriched restricted-domain model. A simple disambiguation strategy is therefore used in which an
Agrovoc concept is mapped with its WordNet counterpart only if it has one sense. Otherwise, some of
the hyponyms of the concept from Agrovoc are intended to be mapped with one WordNet concept that
has only one sense. In our example, the concept from Agrovoc that is successfully mapped is enzymes,
thus obtaining the concepts from WordNet shown in Figure 5 starting at proteins.

Obtaining EAT taxonomies from the enriched restricted-domain model. The enriched restricted-
domain model obtained previously is used to create an EAT taxonomy for the restricted domain by
applying transformation T3 (see Figure 1). Concepts in this taxonomy can obviously be refined to
a greater or lesser extent, so a level of granularity should be selected in T3 by applying certain
criteria over the enriched restricted-domain model: if a loose criterion is chosen, such as “including
those concepts without a hypernym in the EAT taxonomy”, then a generic taxonomy is obtained,
while if a tighter criterion is defined, such as “including those concepts that have a number of
hyponyms greater than N in the EAT taxonomy”, then a more refined taxonomy is obtained. A tight
criterion is more appropriate in restricted-domain QA because it is highly advisable for these kinds
of taxonomies to be refined in order to improve their precision. We advocate the creation of an EAT
taxonomy from the terms in the enriched restricted-domain model (and not directly from the domain
KOS) in order to ensure that it contains those semantic classes that are more closely related to the
domain. Finally, it is worth noting that the result of transformation T3 is a sub-model of the enriched
restricted-domain model (see Figure 1).

By taking the first criterion, a generic EAT taxonomy is obtained for our running example with
a single level with two concepts entity and agents. By using this taxonomy, the example question
can be classified as entity (thus retrieving erroneous candidate answers such as any kind of
profession, event, group, etc.). The question could also be unclassified since the enzyme class is not
in the taxonomy. Conversely, if the second criterion is used, a refined EAT taxonomy is obtained
with 9 levels and 13 concepts (as shown in the taxonomy excerpt in Figure 5). The question would
therefore be classified as enzymes and the search space would be restricted to kinds of enzymes
(such as “hydrolases” or its hyponyms) which would be accepted as a correct answer. Finally, by
using this EAT taxonomy, the answer to the question will be “phytase” (a hyponym of the EAT
taxonomy concept “hydrolase”). Furthermore, this EAT taxonomy would be useful for more
specific questions, e.g. the sample question could be redefined as “Which is the esterase that
increases the animals’ digestibility of organic phosphorus?”

3.2.2 Adapting QA Patterns for Restricted Domains
The EAT taxonomy previously defined is used in several transformations (see transformations T4,
T5, T6, T7, T8, and T9 in Figure 1) to adapt both question and answer patterns to a restricted domain
in an automatic manner.

Obtaining QA pattern models. In order to adapt existing patterns to a new domain, they must first
be acquired from the baseline ODQA system. Transformations T4 and T5 are responsible for
obtaining existing question and answer patterns in their respective models. These transformations
depend on the kind of the implementation of the system, and our approach can therefore manage
every kind of pattern by simply updating T4 and T5.
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Figure 8(a) shows an example of a question pattern from AliQAn, called “patternEO1”, which
is implemented in C++. It is important to note that the answer type (e.g. “entity_object”) is defined
through the TGroup class, while the pattern (e.g. “patternEO1”) is defined with the TPattern class.
In AliQAn system the elements of the question (e.g. “which” as PtDt, “be” as Verb and SNP) and
the syntactical relations between them are defined in the TPattern class. Finally, the SNP type
elements are defined by the identifier of the concepts that are related to the answer type and their
corresponding kind of semantic relation (i.e. L-Literal, S-Synonym, and H-Hyponym). The
corresponding question pattern model (obtained when applying T4) is shown in Figure 9(a), and it
has the following expressions: PtDt (value: “which”), VBC (value: “be”) and SNP (whose related
concepts are “musical_instrument”, “building”, etc.); the associations are “PtDt-VBC” and “VBC-
SNP”; and the answer type is “entity_object”. Lastly, it is worth noting that this pattern signifies
that ODQA system is able to identify questions of the kind: “Which is the musical instrument that
Beethoven played?”

(a) Question pattern code

Figure 8: Sample of open-domain pattern code

(b) Answer pattern code

(a) Question pattern model

Figure 9: Sample of open-domain pattern models

(b) Answer pattern model
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We must also obtain the patterns that make the answer extraction possible in a similar way. For
example, Figure 8(b) shows an answer pattern from AliQAn system called “patternAnswerEO”.
The corresponding answer pattern model (obtained when applying T5) is shown in Figure 9(b). This
model has the following elements: an element of the Pattern class called “patternAnswerEO”, an
element of the AnswerType class that represents the answer type associated with this pattern (value:
“entity_object”) and several elements of the Concept class correlated to this answer type (value: the
concept of “inanimate_object” and their hyponyms). This answer pattern permits the answer to the
question previously formulated to be found in the following text: “[…] Beethoven, the last great
representative of the Viennese classic style, played the piano from youth […]”.

Adapting QA pattern models. Transformation T6 (see Figure 1) collects both the EAT taxonomy
of the enriched restricted-domain model and models of existing question patterns in order to generate
new question pattern models that are specifically tuned to the restricted domain. The first step is to
obtain the concepts from the EAT taxonomy of the enriched restricted-domain model (previously
obtained in Sect. 3.2.1) and represent them with the Concept metaclass of the adapted question
pattern model, together with the information required to fill in all the attributes of this class. The next
step is to search for relationships between concepts which have been added to the adapted question
pattern model (new concepts), along with those existing concepts in the question pattern model (old
concepts) that allow us to decide whether patterns from an old concept can be used to define patterns
for a new concept. Assuming that every top-level concept of the generic KOS used by the ODQA
system has patterns, we will create a new pattern derived from an existing one if the following
conditions hold when comparing the old concept and the new concept: (i) they are equal, (ii) they
have a common hypernym provided by the same KOS, i.e. they are siblings in the hierarchy, or (iii)
they maintain a hyponym-hypernym relation, i.e. they are parent and child in the hierarchy.

Transformation T7 aims to derive an adapted answer pattern model from existing patterns by
using the same strategy as T6. This transformation collects both the EAT taxonomy from the
enriched restricted-domain model and models of existing answer patterns in the QA system. The
result of this transformation will be the answer pattern model adapted to the new restricted domain.

For example, if we recall our case study, the “enzyme” concept’s “object” is the hypernym top
concept which is an old concept with defined patterns. A new pattern for the “enzyme” concept is
therefore also created from the old pattern previously explained for the “object” concept (i.e.
“patternEO1” in Figure 9(a)). The name of the new pattern is “patternEnzyme1” (see Figure 10(a)),
and it has the following expressions: PtDt (value: “which”), VBC (value: “be”) and SNP (whose
related concepts are “enzyme”, “hydrolases”, “esterases”, “proteases”, and “glycosidases”); the
associations are “PtDt-VBC” and “VBC-SNP”, and the answer type is “object_enzyme”. Finally, it
is worth pointing out that a new kind of question can be answered: “Which is the enzyme that
increases the animals’ digestibility of organic phosphorus?”

We must also obtain the adapted answer patterns “patternAnswerObjectEnzyme” (see Figure 10(b))
for the “enzyme” concept and its hyponyms in a similar way, as occurred with the open-domain
answer pattern “patternAnswerEO”, by associating the “object” concept (see Figure 9(b)). This model
has the following elements: an element of the Pattern class called “patternAnswerObjectEnzyme”, an
element of the AnswerType class that represents the answer type associated with this pattern (value:
“object_enzyme”) and several elements of the Concept class correlated to this answer type (value: the
concept of “enzyme” and its hyponyms). This answer pattern permits the answer to the question
previously formulated to be found in the following text: “[…] The use of enzymes that increase the
digest  ibility of the organic phosphorus (phytase) is a means to reduce the excretion of this mineral […]”.
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Generating new QA pattern code. Finally, transformations T8 and T9 automatically deploy the
corresponding code for a specific QA system pattern. This is done by basing these transformations
on the notion of customizable templates in order to capture rules for translating question and answer
pattern models into corresponding code for different QA systems. As examples, an adapted question
pattern “patternEnzyme1” and an adapted answer pattern “patternAnswerObjectEnzyme” resulting
from applying our approach are shown in Figure 11(a) and Figure 11(b), respectively.

3.3 Implementation
The metamodels and transformations have been implemented by using the Eclipse Framework
(http://www.eclipse.org). Eclipse is an open source project conceived as a modular platform which
can be extended by plugins in order to add features to the development environment. In order to

(a) Adapted question pattern model  

Figure 10: Sample of adapted pattern models

(b) Adapted answer pattern model

(a) Adapted question pattern code 

Figure 11: Sample of adapted pattern code

(b) Adapted answer pattern code
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support modeling tasks, we have used facilities provided by the Eclipse Modeling Framework
(EMF, http://www.eclipse.org/emf) and the Graphical Modeling Framework (GMF,
http://www.eclipse.org/gmf). To implement transformations between models, ATL (Atlas
Transformation Language, http://www.eclipse.org/atl) has been used. ATL is integrated with EMF,
thus allowing the definition and execution of model transformations by means of rules that match
elements in source and target models. Finally, the transformations that generate code have been
implemented by using Acceleo (http://www.eclipse.org/acceleo), which is also integrated into EMF
in order to obtain code from models by labeling metamodels.

4. EXPERIMENTS
Two experiments have been conducted in order to validate our approach. The first one aims to show
how unfeasible a baseline ODQA is for a restricted domain. To do so, a previous study of AliQAn,
was carried out with 180 training questions over the RCCA corpus (i.e. 2024 articles from the
RCCA journal), in which it was detected that 73.3% of errors in the adaptation of the system were
caused by (i) a poor and incorrect EAT taxonomy, (ii) an incorrect classification of questions owing
to the absence or inefficiency of the question patterns, and (iii) 17.2% of errors were owing to
failures in the answer patterns. The precision of the AliQAn system obtained 28.8% with regard to
only the first answer retrieved and 13.6% when considering the first three answers. These results
are very low in comparison to the average (i.e. around 43% precision) attained by AliQAn in the
CLEF evaluation forum (i.e. open-domain scenario). It also attained an overall recall of 33%. It is
consequently crucial to adapt AliQAn to a restricted domain in order to increase its precision and
obtain actionable information from the Web.

Our second experiment aims to show how our approach can be used to adapt the baseline ODQA
to increase precision and recall. The first step in this experiment consisted of processing the RCCA
corpus with a PoS tagger and a syntactical parser (by means of the Freeling PoS-tagger and the
Freeling shallow syntactic parser), indexing it and computing frequencies for each term. Since we
consider the most relevant terms to be those which have fr>25 and tf-idf>0.01, 8696 relevant terms
were obtained and specified in a restricted-domain model by means of transformation T1. Noun
terms were then used in transformation T2 to enrich the restricted-domain model by using Agrovoc
and WordNet. Table 1 shows a summary of our results: the restricted-domain model has 9022
concepts of which 3029 are multi-words. Most of the concepts (8530) originate from the domain
KOS (Agrovoc) and 3473 concepts originate from the generic KOS (WordNet), which has 2981
common concepts that represent the enrichment of the restricted domain model. The EAT taxonomy
was then obtained from the restricted-domain model by applying transformation T3 with the
criterion of choosing those concepts with more than two hyponyms. Table 1 shows that the EAT
taxonomy contains roughly 10% of concepts from the restricted-domain model. Finally, the other
transformations in our approach were executed (i.e. from T4 to T9), thus generating 325 new EAT
concepts and their corresponding code for about 2600 question patterns and 325 answer patterns
(one for each concept). These data show how much effort would be required to accomplish
restricted-domain adaptation manually and the benefit of applying our approach to support this
process. Furthermore, it is worth noting that, by using our approach, the precision and recall are
58.3% and 75%, respectively. If we compare these values with the results of our first experiment,
we can appreciate an increment of 29.5% in the precision and 42% in the recall. Therefore, there
were 57.8% less errors for question patterns and 7.8% for answer patterns. These results show the
effectiveness of our approach in the adaptation of AliQAn to the agricultural domain of the RCCA
journal.
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5. CONCLUSIONS AND FUTURE WORK
For a question to be efficiently and effectively answered in real-world scenarios, QA systems must
be adapted to restricted domains. However, current approaches suffer from the following principal
problems: (i) Expected Answer Types (EAT) taxonomies and QA patterns are manually tuned for
restricted-domains, which requires a huge amount of effort in both time and cost, and (ii) the tuning
of EAT taxonomies and QA patterns is based on analyzing potential questions to be answered,
which is not a realistic situation since, in restricted domains, questions are highly complex and
difficult to acquire.

This paper presents an approach with which to overcome these problems in a systematic, well-
structured, and comprehensive manner by using an innovative point of view borrowed from model-
driven software development. Specifically, problem (i) is overcome by means of an automatic
process that uses as input the different kinds of knowledge resources (KOS) from the specific
domain and the most relevant terms from the corpora. With regard to problem (ii), since compre -
hensive training corpora are hard to find, our approach automatically obtains the EAT taxonomies
and the code of the QA patterns to be used for both the classification of the query and the extraction
of the answer. They are just obtained by an automatic process of the corpora and the KOS.

Finally, the implementation of our approach has been used for conducting two experiments
within the agricultural domain: the first one has shown how unfeasible a baseline ODQA is for a
restricted domain (precision of 28.8% with the first answer, and 13.6% with the first three answers);
whilst the second one has shown how our approach can be used to adapt the baseline ODQA (an
increment of 29.5% in the precision and 42% in the recall).

Restricted Domain Model EAT Taxonomy

Levels Agrovoc WordNet Multi-words Total Agrovoc WordNet Multi-words Total

0 438 174 212 462 149 77 69 161

1 1382 479 812 1429 133 83 67 149

2 1565 551 568 1627 98 70 40 121

3 1144 486 334 1233 79 77 24 111

4 839 362 250 935 70 68 19 105

5 896 375 261 979 76 53 24 94

6 1002 433 255 1053 66 52 17 82

7 562 291 140 587 37 18 12 43

8 284 156 61 289 32 19 4 32

9 291 95 84 295 11 9 3 13

10 72 41 28 77 5 2 1 5

11 30 17 12 30 4 2 1 4

12 20 11 8 20 1 1 0 1

13 3 1 2 3 0 0 0 0

Total 8530 3473 3029 9022 761 531 281 921

Table 1: Statistics of Restricted Domain Model and EAT taxonomy created (# semantic classes)
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Our future work will consist of evaluating our approach with a more complete set of
experiments in other domains and with other baseline ODQA systems.
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