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§0. Introduction

The objective of these notes is to present the basic aspects of the theory of
insurance, concentrating on the part of this theory related to life insurance. An
understanding of the basic principles underlying this part of the subject will form a
solid foundation for further study of the theory in a more general setting.

Throughout these notes are various exercises and problems. The reader should
attempt to work all of these.

Also, problem sets consisting of multiple choice problems similar to those found
on examinations given by the Society of Actuaries are provided. The reader should
work these problem sets in the suggested time allocation after the material has been
mastered. The Tables for Exam M provided by the Society of Actuaries can be used
as an aid in solving any of the problems given here. The Illustrative Life Table
included here is a copy of the life table portion of these tables. The full set of tables
can be downloaded from the Society’s web site. Familiarity with these tables is an
essential part of preparation for the examination.

Readers using these notes as preparation for the Society of Actuaries examina-
tion should master the material to the extent of being able to deliver a course on this
subject matter.

A calculator, such as the one allowed on the Society of Actuaries examinations,
will be useful in solving many of the problems here. Familiarity with this calculator
and its capabilities is an essential part of preparation for the examination.
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§1. Overview

The central theme of these notes is embodied in the question, “What is the value
today of a random sum of money which will be paid at a random time in the future?”
Such a random payment is called a contingent payment.

The theory of insurance can be viewed as the theory of contingent payments.
The insurance company makes payments to its insureds contingent upon the oc-
currence of some event, such as the death of the insured, an auto accident by an
insured, and so on. The insured makes premium payments to the insurance company
contingent upon being alive, having sufficient funds, and so on. A natural way to
model these contingencies mathematically is to use probability theory. Probabilistic
considerations will, therefore, play an important role in the discussion that follows.

The other central consideration in the theory of insurance is the time value of
money. Both claims and premium payments occur at various, possibly random,
points of time in the future. Since the value of a sum of money depends on the
point in time at which the funds are available, a method of comparing the value
of sums of money which become available at different points of time is needed.
This methodology is provided by the theory of interest. The theory of interest will
be studied first in a non-random setting in which all payments are assumed to be
sure to be made. Then the theory will be developed in a random environment, and
will be seen to provide a complete framework for the understanding of contingent
payments.
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§2. Elements of the Theory of Interest

A typical part of most insurance contracts is that the insured pays the insurer
a fixed premium on a periodic (usually annual or semi–annual) basis. Money has
time value, that is, $1 in hand today is more valuable than $1 to be received one year
hence. A careful analysis of insurance problems must take this effect into account.
The purpose of this section is to examine the basic aspects of the theory of interest.
A thorough understanding of the concepts discussed here is essential.

To begin, remember the way in which compound interest works. Suppose an
amount A is invested at interest rate i per year and this interest is compounded
annually. After 1 year, the amount in the account will be A + iA = A(1 + i), and this
total amount will earn interest the second year. Thus, after n years the amount will
be A(1 + i)n. The factor (1 + i)n is sometimes called the accumulation factor. If
interest is compounded daily after the same n years the amount will be A(1+ i

365 )365n.
In this last context the interest rate i is called the nominal annual rate of interest.
The effective annual rate of interest is the amount of money that one unit invested
at the beginning of the year will earn during the year, when the amount earned is paid
at the end of the year. In the daily compounding example the effective annual rate
of interest is (1 + i

365 )365 − 1. This is the rate of interest which compounded annually
would provide the same return. When the time period is not specified, both nominal
and effective interest rates are assumed to be annual rates. Also, the terminology
‘convertible daily’ is sometimes used instead of ‘compounded daily.’ This serves as
a reminder that at the end of a conversion period (compounding period) the interest
that has just been earned is treated as principal for the subsequent period.

Exercise 2–1. What is the effective rate of interest corresponding to an interest rate
of 5% compounded quarterly?

Two different investment schemes with two different nominal annual rates of
interest may in fact be equivalent, that is, may have equal dollar value at any fixed
date in the future. This possibility is illustrated by means of an example.

Example 2–1. Suppose I have the opportunity to invest $1 in Bank A which pays
5% interest compounded monthly. What interest rate does Bank B have to pay,
compounded daily, to provide an equivalent investment? At any time t in years

the amount in the two banks is given by
(
1 + 0.05

12

)12t
and

(
1 + i

365

)365t
respectively.

Finding the nominal interest rate i which makes these two functions equal is now
an easy exercise.

Exercise 2–2. Find the interest rate i. What is the effective rate of interest?

Situations in which interest is compounded more often than annually will arise
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§2: Elements of the Theory of Interest 5

frequently. Some notation is needed to discuss these situations conveniently. Denote
by i(m) the nominal annual interest rate compounded m times per year which is
equivalent to the interest rate i compounded annually. This means that

(

1 +
i(m)

m

)m

= 1 + i.

Exercise 2–3. Compute 0.05(12).

An important abstraction of the idea of compound interest is the idea of con-
tinuous compounding. If interest is compounded n times per year the amount after

t years is given by
(
1 + i

n

)nt
. Letting n → ∞ in this expression produces eit, and

this corresponds to the notion of instantaneous compounding of interest. In this
context denote by δ the rate of instantaneous compounding which is equivalent
to interest rate i. Here δ is called the force of interest. The force of interest is
extremely important from a theoretical standpoint and also provides some useful
quick approximations.

Exercise 2–4. Show that δ = ln(1 + i).

Exercise 2–5. Find the force of interest which is equivalent to 5% compounded
daily.

The converse of the problem of finding the amount after n years at compound
interest is as follows. Suppose the objective is to have an amount A n years hence.
If money can be invested at interest rate i, how much should be deposited today in
order to achieve this objective? The amount required is A(1 + i)−n. This quantity is
called the present value of A. The factor (1+ i)−1 is often called the discount factor
and is denoted by v. The notation vi is used if the value of i needs to be specified.

Example 2–2. Suppose the annual interest rate is 5%. What is the present value of
a payment of $2000 payable 10 years from now? The present value is $2000(1 +
0.05)−10 = $1227.83.

The notion of present value is used to move payments of money through time
in order to simplify the analysis of a complex sequence of payments. In the simple
case of the last example the important idea is this. Suppose you were given the
following choice. You may either receive $1227.83 today or you may receive $2000
10 years from now. If you can earn 5% on your money (compounded annually)
you should be indifferent between these two choices. Under the assumption of an
interest rate of 5%, the payment of $2000 in 10 years can be replaced by a payment
of $1227.83 today. Thus the payment of $2000 can be moved through time using the
idea of present value. A visual aid that is often used is that of a time diagram which
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shows the time and amounts that are paid. Under the assumption of an interest rate
of 5%, the following two diagrams are equivalent.

Two Equivalent Cash Flows

0 10
time (years)

0 10
time (years)

$2000 $1227.83


The advantage of moving amounts of money through time is that once all
amounts are paid at the same point in time, the most favorable option is readily
apparent.

Exercise 2–6. What happens in comparing these cash flows if the interest rate is
6% rather than 5%?

Notice too that a payment amount can be easily moved either forward or back-
ward in time. A positive power of v is used to move an amount backward in time; a
negative power of v is used to move an amount forward in time.

In an interest payment setting, the payment of interest of i at the end of the
period is equivalent to the payment of d at the beginning of the period. Such a
payment at the beginning of a period is called a discount. Formally, the effective
annual rate of discount is the amount of discount paid at the beginning of a year
when the amount invested at the end of the year is a unit amount. What relationship
between i and d must hold for a discount payment to be equivalent to the interest
payment? The time diagram is as follows.

Equivalence of Interest and Discount

0 1 0 1

i d
............................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................

The relationship is d = iv follows by moving the interest payment back in time
to the equivalent payment of iv at time 0.

Exercise 2–7. Denote by d(m) the rate of discount payable m times per year that is
equivalent to a nominal annual rate of interest i. What is the relationship between
d(m) and i? Between d(m) and i(m)? Hint: Draw the time diagram illustrating the two
payments made at time 0 and 1/m.

Exercise 2–8. Treasury bills (United States debt obligations) pay discount rather
than interest. At a recent sale the discount rate for a 3 month bill was 5%. What is
the equivalent rate of interest?
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The notation and the relationships thus far are summarized in the string of
equalities

1 + i =

(

1 +
i(m)

m

)m

=

(

1 −
d(m)

m

)−m

= v−1 = eδ
.

Another notion that is sometimes used is that of simple interest. If an amount
A is deposited at interest rate i per period for t time units and earns simple interst,
the amount at the end of the period is A(1 + it). Simple interest is often used over
short time intervals, since the computations are easier than with compound interest.

The most important facts are these.

(1) Once an interest rate is specified, a dollar amount payable at one time can
be exchanged for an equivalent dollar amount payable at another time by
multiplying the original dollar amount by an appropriate power of v.

(2) The five sided equality above allows interest rates to be expressed relative
to a convenient time scale for computation.

These two ideas will be used repeatedly in what follows.



§2: Elements of the Theory of Interest 8

Problems

Problem 2–1. Show that if i > 0 then

d < d(2) < d(3) < ⋅ ⋅ ⋅ < δ < ⋅ ⋅ ⋅ < i(3) < i(2) < i.

Problem 2–2. Show that limm→∞ d(m) = limm→∞ i(m) = δ .

Problem 2–3. Calculate the nominal rate of interest convertible once every 4 years
that is equivalent to a nominal rate of discount convertible quarterly.

Problem 2–4. Interest rates are not always the same throughout time. In theoretical
studies such scenarios are usually modelled by allowing the force of interest to
depend on time. Consider the situation in which $1 is invested at time 0 in an
account which pays interest at a constant force of interest δ . What is the amount
A(t) in the account at time t? What is the relationship between A′(t) and A(t)? More
generally, suppose the force of interest at time t is δ (t). Argue that A′(t) = δ (t)A(t),
and solve this equation to find an explicit formula for A(t) in terms of δ (t) alone.

Problem 2–5. Suppose that a fund initially containing $1000 accumulates with a
force of interest δ (t) = 1/ (1 + t), for t > 0. What is the value of the fund after 5
years?

Problem 2–6. Suppose a fund accumulates at an annual rate of simple interest of i.
What force of interest δ (t) provides an equivalent return?

Problem 2–7. Show that d = 1 − v. Is there a similar equation involving d(m)?

Problem 2–8. Show that d = iv. Is there a similar equation involving d(m) and i(m)?

Problem 2–9. Show that if interest is paid at rate i, the amount at time t under
simple interest is more than the amount at time t under compound interest provided
t < 1. Show that the reverse inequality holds if t > 1.

Problem 2–10. Compute the derivatives
d
di

d and
d
dv

δ .
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Solutions to Problems
Problem 2–1. An analytic argument is possible directly from the formulas.
For example, (1 + i(m)/m)m = 1 + i = eδ so i(m) = m(eδ /m − 1). Consider m as a
continuous variable and show that the right hand side is a decreasing function
of m for fixed i. Can you give a purely verbal argument? Hint: How does
an investment with nominal rate i(2) compounded annually compare with an
investment at nominal rate i(2) compounded twice a year?

Problem 2–2. Since i(m) = m((1 + i)1/m − 1) the limit can be evaluated directly
using L’Hopitals rule, Maclaurin expansions, or the definition of derivative.

Problem 2–3. The relevant equation is
(
1 + 4i(1/4)

)1/4
=
(
1 − d(4)/4

)−4
.

Problem 2–4. In the constant force setting A(t) = eδ t and A′(t) = δA(t).
The equation A′(t) = δ (t)A(t) can be solved by separation of variables to give

A(t) = A(0)e
∫ t

0
δ (s) ds.

Problem 2–5. The amount in the fund after 5 years is 1000e
∫ 5

0
δ (t) dt =

1000eln(6)−ln(1) = 6000.

Problem 2–6. The force of interest must satisfy 1 + it = e
∫ t

0
δ (s) ds for all t > 0.

Thus
∫ t

0
δ (s) ds = ln(1 + it), and differentiation using the Fundamental Theorem

of Calculus shows that this implies δ (t) = i/ (1 + it), for t > 0.

Problem 2–7. 1 − d(m)/m = v1/m.

Problem 2–8. d(m)/m = v1/mi(m)/m.

Problem 2–9. The problem is to show that 1 + it > (1 + i)t if t < 1, with the
reverse inequality for t > 1. The function 1 + it is a linear function of t taking
the value 1 when t = 0 and the value 1 + i when t = 1. The function (1 + i)t is a
convex function which takes the value 1 when t = 0 and 1 + i when t = 1.

Problem 2–10.
d
di

d =
d
di

(1−1/ (1+i)) = (1+i)−2, and
d
dv

δ =
d
dv

(− ln(v)) = −v−1.
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Solutions to Exercises
Exercise 2–1. The equation to be solved is (1 + 0.05/4)4 = 1 + i, where i is the
effective rate of interest.

Exercise 2–2. Taking tth roots of both sides of the equation shows that t plays
no role in determining i and leads to the equation i = 365((1+0.05/12)12/365−1) =
0.04989.

Exercise 2–3. 0.05(12) = 12((1 + 0.05)1/12 − 1) = 0.04888.

Exercise 2–4. The requirement for equivalence is that eδ = 1 + i.

Exercise 2–5. Here eδ = (1 + 0.05/365)365, so that δ = 0.4999. So as a rough
approximation when compounding daily the force of interest is the same as the
nominal interest rate.

Exercise 2–6. The present value in this case is $2000(1 + 0.06)−10 = $1116.79.

Exercise 2–7. A payment of d(m)/m made at time 0 is required to be equivalent
to a payment of i(m)/m made at time 1/m. Hence d(m)/m = v1/mi(m)/m. Since
v−1/m = (1+ i)1/m = 1+ i(m)/m this gives d(m)/m = 1−v1/m or 1+ i = (1−d(m)/m)−m.
Another relation is that d(m)/m − i(m)/m = (d(m)/m)(i(m)/m).

Exercise 2–8. The given information is d(4) = 0.05, from which i can be
obtained using the formula of the previous exercise as i = (1 − 0.05/4)−4 − 1 =
0.0516.



§3. Cash Flow Valuation

Most of the remainder of these notes will consist of analyzing situations similar
to the following. Cash payments of amounts C0, C1, . . . , Cn are to be received at
times 0, 1, . . . , n. A cash flow diagram is as follows.

A General Cash Flow

0 1 . . . n

C0 C1 Cn


The payment amounts may be either postive or negative. A positive amount denotes
a cash inflow; a negative amount denotes a cash outflow.

There are 3 types of questions about this general setting.

(1) If the cash amounts and interest rate are given, what is the value of the cash
flow at a given time point?

(2) If the interest rate and all but one of the cash amounts are given, what should
the remaining amount be in order to make the value of the cash flow equal
to a given value?

(3) What interest rate makes the value of the cash flow equal to a given value?

Here are a few simple examples.

Example 3–1. What is the value of this stream of payments at a given time t? The
payment Cj made at time j is equivalent to a payment of Cjvj−t at time t. So the value

of the cash flow stream at time t is
n∑

j=0

Cjv
j−t.

Example 3–2. Instead of making payments of 300, 400, and 700 at the end of
years 1, 2, and 3, the borrower prefers to make a single payment of 1400. At what
time should this payment be made if the interest rate is 6% compounded annually?
Computing all of the present values at time 0 shows that the required time t satisfies
the equation of value 300(1.06)−1 + 400(1.06)−2 + 700(1.06)−3 = 1400(1.06)−t, and
the exact solution is t = 2.267.

Example 3–3. A borrower is repaying a loan by making payments of 1000 at the
end of each of the next 3 years. The interest rate on the loan is 5% compounded
annually. What payment could the borrower make at the end of the first year in
order to extinguish the loan? If the unknown payment amount at the end of the year
is P, the equation of value obtained by computing the present value of all payments
at the end of this year is P = 1000+1000v+1000v2, where v = 1/1.05. Computation
gives P = 2859.41 as the payment amount. Notice that the same solution is obtained
using any time point for comparison. The choice of time point as the end of the first
year was made to reduce the amount of computation.
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Problems

Problem 3–1. What rate of interest compounded quarterly is required for a deposit
of 5000 today to accumulate to 10,000 after 10 years?

Problem 3–2. An investor purchases an investment which will pay 2000 at the end
of one year and 5000 at the end of four years. The investor pays 1000 now and
agrees to pay X at the end of the third year. If the investor uses an interest rate of
7% compounded annually, what is X?

Problem 3–3. A loan requires the borrower to repay 1000 after 1 year, 2000 after 2
years, 3000 after 3 years, and 4000 after 4 years. At what time could the borrower
make a single payment of 10000 to repay the loan? Assume the interest rate is 4%
effective.

Problem 3–4. A note that pays 10,000 3 months from now is purchased by an
investor for 9500. What is the effective annual rate of interest earned by the
investor?
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Solutions to Problems
Problem 3–1. The equation of value is 5000(1 + i/4)40 = 10000, from which
i = 0.0699.

Problem 3–2. The equation of value today is 2000v + 5000v4 = 1000 + Xv3

where v = 1/1.07. Thus X = 5773.16.

Problem 3–3. The exact time t is the solution of 1000v + 2000v2 + 3000v3 +
4000v4 = 10000vt, where v = 1/1.04. Thus t = 2.98 years.

Problem 3–4. The equation involving the annual rate of interest i is 9500(1 +
i)1/4 = 10000, from which i = 0.2277.



§4. Sample Question Set 1

Solve the following 6 problems in no more than 30 minutes.

Question 4–1 . Fund A accumulates at a force of interest
0.05

1 + 0.05t
at time t (t ≥ 0).

Fund B accumulates at a force of interest 0.05. You are given that the amount in
Fund A at time zero is 1,000, the amount in Fund B at time zero is 500, and that the
amount in Fund C at any time t is equal to the sum of the amount in Fund A and
Fund B. Fund C accumulates at force of interest δt. Find δ2.

A.
31

660

B.
21

440

C.
1 + e0.1

22 + 20e0.1

D.
2 + e0.1

44 + 20e0.1

E.
2 + e0.1

22 + 20e0.1

Question 4–2 . Gertrude deposits 10,000 in a bank. During the first year the bank
credits an annual effective rate of interest i. During the second year the bank credits
an annual effective rate of interest (i−5%). At the end of two years she has 12,093.75
in the bank. What would Gertrude have in the bank at the end of three years if the
annual effective rate of interest were (i + 9%) for each of the three years?

A. 16,851

B. 17,196

C. 17,499

D. 17,936

E. 18,113

Question 4–3 . Fund X starts with 1,000 and accumulates with a force of interest

δt =
1

15 − t
for 0 ≤ t < 15. Fund Y starts with 1,000 and accumulates with an

interest rate of 8% per annum compounded semi-annually for the first three years
and an effective interest rate of i per annum thereafter. Fund X equals Fund Y at the
end of four years. Calculate i.

A. 0.0750

B. 0.0775

C. 0.0800

D. 0.0825

E. 0.0850
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Question 4–4 . Jeff puts 100 into a fund that pays an effective annual rate of discount

of 20% for the first two years and a force of interest of rate δt =
2t

t2 + 8
, 2 ≤ t ≤ 4,

for the next two years. At the end of four years, the amount in Jeff’s account is the
same as what it would have been if he had put 100 into an account paying interest at
the nominal rate of i per annum compounded quarterly for four years. Calculate i.

A. 0.200

B. 0.219

C. 0.240

D. 0.285

E. 0.295

Question 4–5 . On January 1, 1980, Jack deposited 1,000 into Bank X to earn
interest at the rate of j per annum compounded semi-annually. On January 1, 1985,
he transferred his account to Bank Y to earn interest at the rate of k per annum
compounded quarterly. On January 1, 1988, the balance at Bank Y is 1,990.76. If
Jack could have earned interest at the rate of k per annum compounded quarterly from
January 1, 1980 through January 1, 1988, his balance would have been 2,203.76.
Calculate the ratio k/ j.

A. 1.25

B. 1.30

C. 1.35

D. 1.40

E. 1.45

Question 4–6 . You are given two loans, with each loan to be repaid by a single
payment in the future. Each payment includes both principal and interest. The
first loan is repaid by a 3,000 payment at the end of four years. The interest is
accrued at 10% per annum compounded semi-annually. The second loan is repaid
by a 4,000 payment at the end of five years. The interest is accrued at 8% per
annum compounded semi-annually. These two loans are to be consolidated. The
consolidated loan is to be repaid by two equal installments of X, with interest at
12% per annum compounded semi-annually. The first payment is due immediately
and the second payment is due one year from now. Calculate X.

A. 2,459

B. 2,485

C. 2,504

D. 2,521

E. 2,537



§4: Sample Question Set 1 16

Answers to Sample Questions

Question 4–1 . The amount in fund A at time t is A(t) = 1000e
∫ t

0
0.05

1+0.05s ds = 1000+50t,
the amount in fund B at time t is B(t) = 500e0.05t and the amount in fund C at time
t is C(t) = A(t) + B(t). So δ2 = C′(2)/C(2) = (A′(2) + B′(2))/ (A(2) + B(2)) =
(50 + 25e0.1)/ (1100 + 500e0.1) = (2 + e0.1)/ (44 + 20e0.1). D.

Question 4–2 . From the information given, 10000(1 + i)(1 + i − 0.05) = 12093.75,
from which i = 0.125. Thus 10000(1 + i + 0.09)3 = 17, 936.13. D.

Question 4–3 . After 4 years the amount in fund X is 15000/ (15 − 4) = 15000/11
and the amount in fund Y is 1000(1.04)6(1+ i). Equating these two gives i = 0.0777.
B.

Question 4–4 . The amount Jeff actually has is 100(1 − 0.20)−2e
∫ 4

2
δt dt = 312.50,

while what he would have under the other option is 100(1 + i/4)16. Equating and
solving gives i = 0.2952.E.

Question 4–5 . The given information gives two equations. First, 1000(1+j/2)10(1+
k/4)12 = 1990.76 and second 1000(1+k/4)32 = 2203.76. The second gives k = 0.10,
and using this in the first gives j = 0.0799. Thus k/ j = 1.25. A .

Question 4–6 . From the information given, 3000(1.05)−8 + 4000(1.04)−10 = X +
X(1.06)−2, from which X = 2504.12. C .



§5. Annuities, Amortization, and Sinking Funds

Many different types of financial transactions involve the payment of a fixed
amount of money at regularly spaced intervals of time for a predetermined period.
Such a sequence of payments is called an annuity certain or, more simply, an
annuity. A common example is loan payments. The concept of present value is
easily used to evaluate the worth of such a cash stream at any point in time. Here is
an example.

Example 5–1. Suppose you have the opportunity to buy an annuity, that is, for
a certain amount A > 0 paid by you today you will receive monthly payments of
$400, say, for the next 20 years. How much is this annuity worth to you? Suppose
that the payments are to begin one month from today. Such an annuity is called an
annuity immediate (a truly unfortunate choice of terminology). The cash stream
represented by the annuity can be visualized on a time diagram.

An Annuity Immediate

0 1 2 239 240

$400 $400 . . . . . . $400 $400

Clearly you would be willing to pay today no more than the present value of the
total payments made by the annuity. Assume that you are able to earn 5% interest
(nominal annual rate) compounded monthly. The present value of the payments is

240∑

j=1

(1 +
.05
12

)−j 400.

This sum is simply the sum of the present value of each of the payments using the
indicated interest rate. This sum is easily found since it involves a very simple
geometric series.

Exercise 5–1. Evaluate the sum.

Since expressions of this sort occur rather often, actuaries have developed some
special notation for this sum. Write an for the present value of an annuity which
pays $1 at the end of each period for n periods.

The Standard Annuity Immediate

0 1 . . . n − 1 n n + 1

0 1 1 1 0


Then

an =
n∑

j=1

vj =
1 − vn

i
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where the last equality follows from the summation formula for a geometric series.
The interest rate per period is usually not included in this notation, but when such
information is necessary the notation is an i. The present value of the annuity in the
previous example may thus be expressed as 400a240 .05/12.

A slightly different annuity is the annuity due which is an annuity in which the
payments are made starting immediately. The notation än denotes the present value
of an annuity which pays $1 at the beginning of each period for n periods.

The Standard Annuity Due

0 1 . . . n − 1 n n + 1

1 1 1 0 0


Clearly

än =
n−1∑

j=0

vj =
1 − vn

d

where again the last equality follows by summing the geometric series. Note that n
still refers to the number of payments. If the present time is denoted by time 0, then
for an annuity immediate the last payment is made at time n, while for an annuity
due the last payment is made at time n − 1, that is, the beginning of the nth period.
Evidently, an = v än , and there are many other similar relationships.

Exercise 5–2. Show that an = v än .

The connection between an annuity due and an annuity immediate can be viewed
in the following way. In an annuity due the payment for the period is made at the
beginning of the period, whereas for an annuity immediate the payment for the
period is made at the end of the period. Clearly a payment of 1 at the end of the
period is equivalent to the payment of v = 1/ (1 + i) at the beginning of the period.
This gives an intuitive description of the equality of the previous exercise.

Annuity payments need not all be equal. Here are a couple of important special
modifications.

Example 5–2. An increasing annuity immediate with a term of n periods pays
1 at the end of the first period, 2 at the end of the second period, 3 at the end of
the third period, . . . , n at the end of the nth period. What is (Ia)n , the present
value of such an annuity? From the definition, (Ia)n =

∑n
j=1 jvj. Although this

is not a geometric series, the same technique can be used. This procedure gives
(Ia)n − v(Ia)n = v + v2 + . . . + vn − nvn+1 which gives (Ia)n = (an − nvn+1)/ (1 − v) =
(än − nvn)/ i.

Exercise 5–3. A decreasing annuity immediate with a term of n periods pays n
at the end of the first period, n − 1 at the end of the second period, n − 2 at the end
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of the third period, . . . , 1 at the end of the nth period. Find (Da)n , the present value
of such an annuity.

Exercise 5–4. An annuity immediate with 2n − 1 payments pays 1 at the end of the
first period, 2 at the end of the second, . . . , n at the end of the nth period, n − 1 at the
end of the n + 1st period, . . . , 1 at the end of the 2n − 1st period. What is the present
value of this annuity?

Example 5–3. A deferred annuity is an annuity in which the payments start at
some future time. A standard deferred annuity immediate in which payments are
deferred for k periods, has the first payment of 1 made at time k +1, that is, at the end
of year k + 1. Notice that from the perspective of a person standing at time k, this
deferred annuity immediate looks like a standard n period annuity immediate. The
present value of a k year deferred, n year annuity immediate is denoted k | an . The
present value of the deferred annuity at time k is an . Bringing this to an equivalent
value at time 0 gives k | an = vkan . A time diagram shows that the deferred payments
can be obtained by paying back payments that are received during the first k periods.
Thus k | an = an+k − ak .

Exercise 5–5. What is k | än ?

Theoretically, an annuity could be paid continuously, that is, the annuitant
receives money at a constant rate of 1 dollar per unit time. The present value of such
an annuity that pays 1 per unit time for n time periods is denoted by an . Now the
value at time 0 of such a continuously paid annuity can be computed as follows. The
value of the dt dollars that arrive in the time interval from t to t + dt is vt dt = e−δ t dt.

Hence an =
∫ n

0
e−δ t dt =

1 − vn

δ
.

Annuity payments can be made either more or less often than interest is com-
pounded. In such cases, the equivalent rate of interest can be used to most easily
compute the value of the annuity.

Example 5–4. The symbol a(m)
n i denotes the present value of an annuity immediate

that pays 1/m at the end of each mth part of a period for n periods under the
assumption that the effective interest rate is i per period. For example, if m = 12
and the period is a year, payments of 1/12 are made at the end of each month. What
is a formula for a(m)

n assuming the effective rate of interest is i per period? Notice
here that the payments are made more frequently than interest is compounded.
Using the equivalent rate i(m) makes the computations easy. Using geometric series,
a(m)

n = 1
m

∑nm
j=1(1 + i(m)/m)−j = (1 − vn)/ i(m) = ian / i(m).

Exercise 5–6. The symbol ä(m)
n i denotes the present value of an annuity due that pays

1/m at the beginning of each mth part of a period for n periods when the effective
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periodic interest rate is i. Find a formula for ä(m)
n assuming the effective periodic

rate of interest is i.

Exercise 5–7. The symbol (Ia)(m)
n is the present value of an annuity that pays 1/m

at the end of each mth part of the first period, 2/m at the end of each mth part of
the second period, . . . , n/m at the end of each mth part of the nth period when the
effective annual interest rate is i. Find a computational formula for (Ia)(m)

n .

Thus far the value of an annuity has been computed at time 0. Another common
time point at which the value of an annuity consisting of n payments of 1 is computed
is time n. Denote by sn the value of an annuity immediate at time n, that is,
immediately after the nth payment. Then sn = (1 + i)nan from the time diagram.
The value sn is called the accumulated value of the annuity immediate. Similarly
s̈n is the accumulated value of an annuity due at time n and s̈n = (1 + i)nän .

Exercise 5–8. Similarly, s(m)
n , s̈(m)

n , and sn are the values of the corresponding annu-
ities just after time n. Find a formula for each of these in terms of sn .

Exercise 5–9. What do the symbols (Is)n and (Is̈)n represent?

Now a common use of annuities will be examined.

Example 5–5. You are going to buy a house for which the purchase price is $100,000
and the downpayment is $20,000. You will finance the $80,000 by borrowing this
amount from a bank at 10% interest with a 30 year term. What is your monthly
payment? Typically such a loan is amortized, that is, you will make equal monthly
payments for the life of the loan and each payment consists partially of interest and
partially of principal. From the banks point of view this transaction represents the
purchase by the bank of an annuity immediate. The monthly payment, p, is thus
the solution of the equation 80000 = pa360 0.10/12. In this setting the quoted interest
rate on the loan is assumed to be compounded at the same frequency as the payment
period unless stated otherwise.

Exercise 5–10. Find the monthly payment. What is the total amount of the pay-
ments made?

An amortization table is a table which lists the principal and interest portions
of each payment for a loan which is being amortized. An amortization table can be
constructed from first principles. Denote by bk the loan balance immediately after
the kth payment and write b0 for the original loan amount. Then the interest part
of the kth payment is ibk−1 and the principal amount of the kth payment is P − ibk−1

where P is the periodic payment amount. Notice too that bk+1 = (1 + i)bk − P. These
relations allow the rows of the amortization table to be constructed sequentially.
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Taking a more sophisticated viewpoint will exhibit a method of constructing
any single row of the amortization table that is desired, without constructing the
whole table. In the prospective method the loan balance at any point in time
is seen to be the present value of the remaining loan payments. The prospective
method gives the loan balance immediately after the kth payment as bk = Pan−k .
In the retrospective method the loan balance at any point in time is seen to be
the accumulated original loan amount less the accumulated value of the past loan
payments. The retrospective method gives the loan balance immediately after the
kth payment as bk = b0(1 + i)k − Psk . Either method can be used to find the loan
balance at an arbitrary time point. With this information, any given row of the
amortization table can be constructed.

Exercise 5–11. Show that for the retrospective method, b0(1 + i)k − Psk = b0 + (ib0 −
P)sk .

Exercise 5–12. Show that the prospective and retrospective methods give the same
value.

A further bit of insight is obtained by examining the case in which the loan
amount is an , so that each loan payment is 1. In this case the interest part of the kth
payment is ian−k+1 = 1 − vn−k+1 and the principal part of the kth payment is vn−k+1.
This shows that the principal payments form a geometric series.

Finally observe that the prospective and retrospective method apply to any series
of loan payments. The formulas obtained when the payments are not all equal will
just be messier.

A second way of paying off a loan is by means of a sinking fund.

Example 5–6. As in the previous example, $80,000 is borrowed at 10% annual
interest. But this time, only the interest is required to be paid each month. The
principal amount is to be repaid in full at the end of 30 years. Of course, the borrower
wants to accumulate a separate fund, called a sinking fund, which will accumulate to
$80,000 in 30 years. The borrower can only earn 5% interest compounded monthly.
In this scenario, the monthly interest payment is 80000(0.10/12) = 666.67. The
contribution c each month into the sinking fund must satisfy cs360 0.05/12 = 80000,
from which c = 96.12. As expected, the combined payment is higher, since the
interest rate earned on the sinking fund is lower than 10%.

Here is a summary of the most useful formulas thus far.

an =
1 − vn

i
sn =

v−n − 1
i

= v−nan
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än =
1 − vn

d
s̈n =

v−n − 1
d

= v−nän

(Ia)n =
än − nvn

i
(Is)n =

s̈n − n
i

= v−n(Ia)n

(Da)n =
n − an

i
(Ds)n =

nv−n − sn

i
= v−n(Da)n

vän = an

The reader should have firmly in mind the time diagram for each of the basic
annuities, as well as these computational formulas.
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Problems

Problem 5–1. Show that an < an < än . Hint: This should be obvious from the
picture.

Problem 5–2. True or False: For any two interest rates i and i′, (1 + i)−n(1 + i′sn i) =
1 + (i′ − i)an i.

Problem 5–3. True or False:
1
an

=
1
sn

+ i.

Problem 5–4. True or False: ä(m)
n =

( i
i(m)

+
i
m

)
an .

Problem 5–5. Show that a2n = an (1 + vn).

Problem 5–6. Show that a3n = an + vna2n = a2n + v2nan .

Problem 5–7. Suppose an annuity immediate pays p at the end of the first period,
pr at the end of the second period, pr2 at the end of the third period, and so on, until
a final payment of prn−1 is made at the end of the nth period. What is the present
value of this annuity?

Problem 5–8. John borrows $1,000 from Jane at an annual effective rate of interest
i. He agrees to pay back $1,000 after six years and $1,366.87 after another 6 years.
Three years after his first payment, John repays the outstanding balance. What is
the amount of John’s second payment?

Problem 5–9. A loan of 10,000 carries an interest rate of 9% compounded quarterly.
Equal loan payments are to be made monthly for 36 months. What is the size of
each payment?

Problem 5–10. An annuity immediate pays an initial benefit of one per year, in-
creasing by 10.25% every four years. The annuity is payable for 40 years. If the
effective interest rate is 5% find an expression for the present value of this annuity.

Problem 5–11. Humphrey purchases a home with a $100,000 mortgage. Mortgage
payments are to be made monthly for 30 years, with the first payment to be made one
month from now. The rate of interest is 10%. After 10 years, Humphrey increases
the amount of each monthly payment by $325 in order to repay the mortgage more
quickly. What amount of interest is paid over the life of the loan?

Problem 5–12. On January 1, an insurance company has $100,000 which is due to
Linden as a life insurance death benefit. He chooses to receive the benefit annually
over a period of 15 years, with the first payment made immediately. The benefit
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he receives is based on an effective interest rate of 4% per annum. The insurance
company earns interest at an effective rate of 5% per annum. Every July 1 the
company pays $100 in expenses and taxes to maintain the policy. How much money
does the company have remaining after 9 years?

Problem 5–13. A loan of 10,000 is to be repaid with equal monthly payments of p.
The interest rate for the first year is 1.9%, while the interest rate for the remaining
2 years is 10.9%. What is p? What is the balance after the 6th payment? After the
15th payment? What are the principal and interest components of the 7th payment?
Of the 16th payment?

Problem 5–14. A loan of 10,000 is to be repaid as follows. Payments of p are to
be made at the end of each month for 36 months and a balloon payment of 2500 is
to be made at the end of the 36th month as well. If the interest rate is 5%, what is
p? What is the loan balance at the end of the 12th month? What part of the 13th
payment is interest? Principal?

Problem 5–15. A loan is being amortized with a series of 20 annual payments. If
the amount of principal in the third payment is 200, what is the amount of principal
in the last 3 payments? The interest rate is 4%.

Problem 5–16. A loan is amortized with 10 annual installments. The principal part
of the fifth payment is 20 and the interest part is 5. What is the rate of interest on
the loan?

Problem 5–17. A loan is amortized with payments of 1 at the end of each year for
20 years. Along with the fifth payment the borrower sends the amount of principal
which would have been paid with the sixth payment. At the time of the sixth
payment, the borrower resumes payment of 1 until the loan is repaid. How much
interest is saved by this single modified payment?

Problem 5–18. A loan of 1000 is being repaid by equal annual installments of 100
together with a smaller final payment at the end of 10 years. If the interest rate is
4%, show that the balance immediately after the fifth payment is 1000 − 60s5 .04.

Problem 5–19. A loan of 1200 is to be repaid over 20 years. The borrower is to
make annual payments of 100 at the end of each year. The lender receives 5% on
the loan for the first 10 years and 6% on the loan balance for the remaining years.
After accounting for the interest to be paid, the remainder of the payment of 100 is
deposited in a sinking fund earning 3%. What is the loan balance still due at the
end of 20 years?

Problem 5–20. A loan is being repaid with 10 payments. The first payment is 10,
the second payment is 9, and so on. What is the amount of interest in the fourth
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payment?

Problem 5–21. A standard perpetuity immediate is an annuity which pays 1 at the
end of each period forever. What is a∞ , the present value of a standard perpetuity
immediate? A standard perpetuity due pays 1 at the beginning of each period
forever. What is ä∞ , the present value of a standard perpetuity due?

Problem 5–22. A standard perpetuity due has a present value of 20, and will be
exchanged for a perpetuity immediate which pays R per period. What is the value
of R that makes these two perpetuities of equal value?

Problem 5–23. You are given an annuity immediate paying $10 for 10 years, then
decreasing by $1 per year for nine years and paying $1 per year thereafter, forever.
If the annual effective rate of interest is 5%, find the present value of this annuity.

Problem 5–24. A loan is being repaid with a payment of 200 at the end of the first
year, 190 at the end of the second year, and so on, until the final payment of 110
at the end of the tenth year. If the interest rate is 6%, what was the original loan
amount?

Problem 5–25. A loan is being repaid with a payment of 200 at the end of the first
year, 190 at the end of the second year, and so on, until the final payment of 110 at
the end of the tenth year. The borrower pays interest on the original loan amount
at a rate of 7%, and contributes the balance of each payment to a sinking fund that
earns 4%. If the amount in the sinking fund at the end of the tenth year is equal to
the orginal loan amount, what was the original loan amount?

Problem 5–26. A loan of 1 was to be repaid with 25 equal payments at the end of
the year. An extra payment of K was made in addition to the sixth through tenth
payments, and these extra payments enabled the loan to be repaid five years early.
Show that K = (a20 − a15 )/a25 a5 .

Problem 5–27. A loan is being repaid with quarterly payments of 500 at the end of
each quarter for seven years at an interest rate of 8% compounded quarterly. What
is the amount of principal in the fifth payment?

Problem 5–28. A borrower is repaying a loan with 20 annual payments of 500
made at the end of each year. Half of the loan is repaid by the amortization method
at 6% effective. The other half of the loan is repaid by the sinking fund method
in which the interest rate is 6% effective and the sinking fund accumulates at 5%
effective. What is the amount of the loan?

Problem 5–29. A loan of 18000 is made for 12 years in which the lender receives 6%
compounded semiannually for the first six years and 4% compounded semiannually
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for the last six years. The borrower makes seminannual payments of 1000, and
the balance after paying interest is deposited into a sinking fund which pays 3%
compounded semiannually. What is the net amount remaining on the loan after 12
years?

Problem 5–30. The interest on an inheritance invested at 4% effective would have
been just sufficient to pay 16000 at the end of each year for 15 years. Payments
were made as planned for the first five years, even though the actual interest earned
on the inheritance for years 3 through 5 was 6% effective instead of 4% effective.
How much excess interest had accumulated at the end of the fifth year?
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Solutions to Problems
Problem 5–1. Isn’t the chain of inequalities simply expressing the fact that
getting a given amount of money sooner makes it worth more? An analytic proof
should be easy to give too.

Problem 5–2. True, since vn(1 + i′sn i) = vn + i′an i = 1 − ian i + i′an i.

Problem 5–3. True. Write 1/ (1 − vn) = v−n/ (v−n − 1) = (v−n − 1 + 1)/ (v−n − 1) =
1 + 1/ (v−n − 1), multiply by i and use the definitions. This also has a verbal
explanation. 1/an is the periodic payment to amortize a loan of 1 with n
payments. The loan can also be paid off by paying i per period and contributing
1/sn to a sinking fund. Similar reasoning shows that 1/a(m)

n = i(m) + 1/s(m)
n and

1/ ä(m)
n = d(m) + 1/ s̈(m)

n .

Problem 5–4. True, since ä(m)
n = (1 + i)1/ma(m)

n = (1 + i(m)/m)(i/ i(m))an .

Problem 5–5. Breaking the period of length 2n into two periods of length n
gives a2n = an + vnan , and the result follows.

Problem 5–6. Just break the period of length 3n into two pieces, one of length
n and the other of length 2n.

Problem 5–7. Direct computation gives the present value as
n∑

j=1

prj−1vj =

(pv − pvn+1rn)/ (1 − vr) = p(1 − vnrn)/ (1 + i − r), provided vr ≠ 1.

Problem 5–8. From Jane’s point of view the equation 1000 = 1000(1 + i)−6 +
1366.87(1 + i)−12 must hold. The outstanding balance at the indicated time is
1366.87(1 + i)−3, which is the amount of the second payment.

Problem 5–9. An interest rate of 9% compounded quarterly is equivalent to an
interest rate of 8.933% compounded monthly. The monthly payment is therefore
10000/a36 .0893/12 = 10000/31.47 = 317.69.

Problem 5–10. Each 4 year chunk is a simple annuity immediate. Taking the
present value of these chunks forms an annuity due with payments every 4 years
that are increasing.

Problem 5–11. The initial monthly payment P is the solution of 100, 000 =
Pa360 . The balance after 10 years is Pa240 so the interest paid in the first 10
years is 120P − (100, 000 − Pa240 ). To determine the number of new monthly
payments required to repay the loan the equation Pa240 = (P + 325)ax should be
solved for x. Since after x payments the loan balance is 0 the amount of interest
paid in the second stage can then be easily determined.

Problem 5–12. Since the effective rate of interest for the insurance company
is 5%, the factor (1.05)−1/2 should be used to move the insurance company’s
expenses from July 1 to January 1.

Problem 5–13. The present value of the monthly payments must equal the
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original loan amount. Thus 10000 = pa12 0.019/12 + (1 + 0.019/12)−12pa24 0.109/12,
from which p = 303.49. The balance after the sixth payment is most easily
found by the retrospective method. The balance is 10000(1 + 0.019/12)6 −
303.49s6 0.019/12 = 8267.24. The balance after the 15th payment is most easily
found by the prospective method. The balance is 303.49a21 0.109/12 = 5778.44.
The interest portion of the 7th payment is (0.0109/12)(8267.24) = 13.09 and
the principal portion is 303.49 − 13.09 = 290.40. Similar computations give the
interest portion of the 16th payment as 52.49 and the principal portion as 251.00.

Problem 5–14. The payment p = 235.20 since 10000 = pa36 .05/12 + (1 +
.05/12)−362500. Using the retrospective method, the loan balance at the end of
the 12th month is 10000(1 + .05/12)12 − ps12 .05/12 = 7623.65. The interest part
of the 13th payment is 31.77.

Problem 5–15. If p is the annual payment amount, the principal part of the
third payment is pv18 = 200. Thus p = 405.16, and the loan balance after the
seventeenth payment is pa3 0.04 = 1124.36.

Problem 5–16. Let p denote the annual payment amount. Then pv6 = 20 and
p(1 − v6) = 5. Adding these two equations gives p = 25, so v6 = 0.8, from which
i = 0.0379.

Problem 5–17. The borrower saves the interest on the sixth payment, which is
1 − v20−6+1 = 1 − v15.

Problem 5–18. The retrospective method gives the balance as 1000v−5 −
100s5 .04, which re-arranges to the stated quantity using the identity v−n = 1 + isn .

Problem 5–19. The amount in the sinking fund at the end of 20 years is
40s10 (1.03)10 + 28s10 = 937.25, so the loan balance is 1200 − 937.25 = 262.75.

Problem 5–20. The loan balance immediately after the third payment is
(Da)7 = (7 − a7 )/ i, so the interest paid with the fourth payment is 7 − a7 .

Problem 5–21. Summing the geometric series gives a∞ = 1/ i and ä∞ = 1/d.
These results can also be obtained by letting n → ∞ in the formulas for an and
än .

Problem 5–22. From the information given, 1/d = 20 (and so d = 1/20) and
Rv/d = 20. Since v = 1 − d = 19/20, R = 20/19.

Problem 5–23. What is the present value of an annuity immediate paying
$1 per year forever? What is the present value of such an annuity that begins
payments k years from now? The annuity described here is the difference of a
few of these.

Problem 5–24. The payments consist of a level payment of 100 together with
a decreasing annuity. The present value of these payments at the date of issue of
the loan is the loan amount, which is therefore 100a10 .06+10(Da)10 .06 = 1175.99.

Problem 5–25. Let A be the original loan amount. The contribution to the
sinking fund at the end of year j is then 100 + 10(11 − j) − .07A, and these



§5: Annuities, Amortization, and Sinking Funds 29

contributions must accumulate to A. Thus 100s10 .04 + 10(Ds)10 .04 − .07As10 .04 =
A, from which A = 1104.24.

Problem 5–26. Denote the original payment amount by p. Then p = 1/a25 .
The fact that the additional payments extinguish the loan after 20 years means
1 = pa20 + v5Ka5 . Thus K = (a25 − a20 )/v5a5 a25 . The result follows since
v−5(a25 − a20 ) = a20 − a15 .

Problem 5–27. Using i = 0.02, the loan balance immediately after the fourth
payment is 500a24 , so the principal part of the fifth payment is 500 − 10a24 =
310.86.

Problem 5–28. Denote by L the loan amount. From the information given,
(500 − L/ (2a20 0.06) − 0.03L)s20 0.05 = L/2, so that L = 500/ (1/2s20 0.05 + 0.03 +
1/2a20 0.06) = 5636.12.

Problem 5–29. The semiannual contributions to the sinking fund are 460 for
the first six years and 640 for the last six years. The sinking fund balance at the
end of 12 years is (1.015)12460s12 0.015 + 640s12 0.015 = 15518.83. So the net loan
balance is 18000 − 15518.83 = 2481.17.

Problem 5–30. The accumulated interest is (24000 − 16000)s3 .06 = 25468.80.
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Solutions to Exercises
Exercise 5–1. The sum is the sum of the terms of a geometric series. So∑240

j=1 (1+ .05
12 )−j 400 = 400((1+0.05/12)−1−(1+0.05/12)−241)/ (1−(1+0.05/12)−1) =

60, 610.12.

Exercise 5–2. This follows from the formulas for the present value of the two
annuities and the fact that d = iv.

Exercise 5–3. The method of the example could be used again, but the formula
can also be obtained from (Ia)n + (Da)n = (n + 1)an , which gives (Da)n =
(n − an )/ i.

Exercise 5–4. The present value is (Ia)n + vn(Da)n−1 = (1 + an−1 − vn −
vnan−1 )/ i = (1 − vn)(1 + an−1 )/ i = än an .

Exercise 5–5. This is the present value of an annuity with payments of 1 which
start at the beginning of period k + 1 (that is, at time k) and continue for a total
of n payments. Thus k | än = vkän = äk+n − äk .

Exercise 5–6. As in the previous example, ä(m)
n = (1 − vn)/d(m) = dän /d(m).

Exercise 5–7. Proceeding as in the derivation of the formula for (Ia)n gives

(Ia)(m)
n =

än − nvn

i(m)
.

Exercise 5–8. Direct computation using the parallel facts for the values at time
0 give s(m)

n = isn / i(m), s̈(m)
n = isn /d(m), and sn = isn /δ .

Exercise 5–9. The symbol (Is)n is the value of an increasing annuity immediate
computed at time n; (Is̈)n is the value of an increasing annuity due at time n.

Exercise 5–10. Using the earlier formula gives a360 0.10/12 = 113.95 from
which p = 702.06 and the total amount of the payments is 360p = 252740.60.

Exercise 5–11. Simply use the identity v−n = 1 + isn .

Exercise 5–12. Direct computation using the formulas gives an−k = v−k(an −ak )
and P = b0/an gives Pan−k = b0v−k(an − ak )/an = b0(1 + i)k − Psk .
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Solve the following 12 problems in no more than 60 minutes.

Question 6–1 . The present value of a series of payments of 2 at the end of every
eight years, forever, is equal to 5. Calculate the effective rate of interest.

A. 0.023

B. 0.033

C. 0.040

D. 0.043

E. 0.052

Question 6–2 . An annuity immediate pays an initial benefit of one per year,
increasing by 10.25% every four years. The annuity is payable for 40 years. Using
an annual effective interest rate of 5%, determine an expression for the present value
of this annuity.

A. (1 + v2)ä20

B. (1 + v2)a20

C. 2 a20

D.
a20

s2

E.
a40

a2

Question 6–3 . Determine an expression for
a5

a6
.

A.
a2 + a3

2 a3

B.
a2 + s3

1 + a3 + s2

C.
a2 + s3

a3 + s3

D.
1 + a2 + s2

a3 + s3

E.
1 + a2 + s2

1 + a3 + s2
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Question 6–4 . Which of the following are true?
I. (an − d

δ
)(1 + i) = an−1

II. The present value of a 10 year temporary annuity immediate paying 10 per month
for the first eight months of each year is 120a10 a(12)

8/12 .
III. The present value of a perpetuity paying one at the end of each year, except

paying nothing every fourth year, is
s3

i s4
.

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given
by A, B, C, or D

Question 6–5 . Warren has a loan with an effective interest rate of 5% per annum.
He makes payments at the end of each year for 10 years. The first payment is
200, and each subsequent payment increases by 10 per year. Calculate the interest
portion in the fifth payment.

A. 58

B. 60

C. 62

D. 65

E. 67

Question 6–6 . An investment fund accrues interest with force of interest δt =
K

1 + (1 − t)K
for 0 ≤ t ≤ 1. At time zero, there is 100,000 in the fund. At time one

there is 110,000 in the fund. The only two transactions during the year are a deposit
of 15,000 at time 0.25 and a withdrawal of 20,000 at time 0.75. Calculate K.

A. 0.047

B. 0.051

C. 0.141

D. 0.150

E. 0.154



§6: Sample Question Set 2 33

Question 6–7 . You are given an annuity immediate with 11 annual payments of
100 and a final balloon payment at the end of 12 years. At an annual effective
interest rate of 3.5%, the present value at time 0 of all the payments is 1,000. Using
an annual effective interest rate of 1%, calculate the present value at the beginning
of the ninth year of all remaining payments.

A. 412

B. 419

C. 432

D. 439

E. 446

Question 6–8 . Using an annual effective interest rate j > 0, you are given

(1) The present value of 2 at the end of each year for 2n years, plus an additional
1 at the end of each of the first n years, is 36

(2) The present value of an n-year deferred annuity immediate paying 2 per year
for n years is 6

Calculate j.
A. 0.03

B. 0.04

C. 0.05

D. 0.06

E. 0.07

Question 6–9 . An 11 year annuity has a series of payments 1, 2, 3, 4, 5, 6, 5, 4, 3,
2, 1, with the first payment made at the end of the second year. The present value
of this annuity is 25 at interest rate i. A 12 year annuity has a series of payments 1,
2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, with the first payment made at the end of the first year.
Calculate the present value of the 12 year annuity at interest rate i.

A. 29.5

B. 30.0

C. 30.5

D. 31.0

E. 31.5
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Question 6–10 . Joan has won a lottery that pays 1,000 per month in the first year,
1,100 per month in the second year, 1,200 per month in the third year, etc. Payments
are made at the end of each month for 10 years. Using an effective interest rate of
3% per annum, calculate the present value of this prize.

A. 107,000

B. 114,000

C. 123,000

D. 135,000

E. 148,000

Question 6–11 . A 5% 10 year loan of 10,000 is to be repaid by the sinking fund
method, with interest and sinking fund payments made at the end of each year. The
effective rate of interest earned in the sinking fund is 3% per annum. Immediately
before the fifth year’s payment would have fallen due, the lender requests that the
outstanding principal be repaid in one lump sum. Calculate the amount that must
be paid, including interest, to extinguish the debt.

A. 6,350

B. 6,460

C. 6,740

D. 6,850

E. 7,000

Question 6–12 . A company agrees to repay a loan over five years. Interest
payments are made annually and a sinking fund is built up with five equal annual
payments made at the end of each year. Interest on the sinking fund is compounded
annually. You are given

(1) The amount in the sinking fund immediately after the first payment is X

(2) The amount in the sinking fund immediately after the second payment is Y

(3) Y/X = 2.09

(4) The net amount of the loan immediately after the fourth payment is 3,007.87

Calculate the amount of the sinking fund payment.
A. 1,931

B. 2,031

C. 2,131

D. 2,231

E. 2,431
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Answers to Sample Questions

Question 6–1 . The information given is that 2
∑∞

j=1 v8j = 5. Using geometric series
gives this equation as v8/ (1 − v8) = 5/2, from which v = (5/7)1/8 and i = 0.0429. D .

Question 6–2 . Note that (1.05)2 = 1.1025, so that the quadrennial increase is v−2.
Writing out directly the present value of the payments gives (v + v2 + v3 + v4) + (v3 +
v4 + v5 + v6) + (v5 + v6 + v7 + v8) + . . . + (v19 + v20 + v21 + v22) which re-arranges to
a20 + v2a20 , or B.

Question 6–3 . Write a5 = v + v2 + v3 + v4 + v5, and to likewise for a6 . Multiply top
and bottom by v−3 to get answer C.

Question 6–4 . That I is true follows from (an − d/δ )(1 + i) = (1 − d − e−nδ )eδ /δ =
(veδ − e(n−1)δ )/δ = an−1 . II is false, since the middle factor should be ä10 . III is also
false. The correct value is s3 /ds4 . E.

Question 6–5 . The loan balance at the beginning of the fifth year is 240v + 250v2 +
. . .+290v6 = 1337.84, where v = 1/ (1.05). The interest for the fifth year is therefore
0.05(1337.84) = 66.89. E.

Question 6–6 . The equation of value is 100e
∫ 1

0
δt dt + 15e

∫ 1

1/4
δt dt − 20e

∫ 1

3/4
δt dt = 110.

Simplifying gives (425/4)K + 95 = 110 from which K = 12/85 = 0.1411. C.

Question 6–7 . From the given information, 1000 = 100a11 .035 +(1.035)−12B, where
B is the amount of the balloon payment. Thus B = 150.87. The present value at the
beginning of the ninth year is 100a3 .01 + (1.01)−4B = 439.08. D.

Question 6–8 . Looking at the first annuity as paying 3 for 2n years and taking
back 1 in each of the last n years shows that 36 = 3a2n − 6/2, from which a2n = 13.
Similarly, 6 = 2a2n − 2an , so an = 10. But 6 = 2vnan also, so that vn = 6/20 Finally,
10 = an = (1 − vn)/ i = (1 − (6/20))/ i, from which i = 7/100. E.

Question 6–9 . Write T for the present value of the twelve year annuity and
E for the present value of the eleven year annuity. Looking at a time diagram
shows that T − E = a6 , and direct computation gives E = vä6 a6 = (a6 )2. Thus
T = E + a6 = 25 + 5 = 30. B.

Question 6–10 . By breaking off the increasing part from a constant payment of
1000 per month for the life of the payments, the present value is 1000s12 (.03)(12)a10 .03+
(1.03)−1100s12 (.03)(12)(Ia)9 = 147928.85. E.

Question 6–11 . The annual sinking fund contribution is 10000/s10 .03 = 872.31.
The amount in the sinking fund just before the fifth payment is 872.31s4 .03(1.03) =
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3758.88. The amount due is 10000 − 3758.88 + 500 = 6741.12. C.

Question 6–12 . The sinking fund payment is X. Let the loan amount be A. Then
X = A/s5 . Also Y = X(1 + i) + X = (2 + i)X = 2.09X. Thus i = .09. Finally
A − Xs4 = 3007.87. So X = 3007.87/ (s5 − s4 ) = 2130.85. C.



§7. Brief Review of Probability Theory

Another aspect of insurance is that money is paid by the company only if some
event, which may be considered random, occurs within a specific time frame. For
example, an automobile insurance policy will experience a claim only if there is an
accident involving the insured auto. In this section a brief outline of the essential
material from the theory of probability is given. Almost all of the material presented
here should be familiar to the reader. The concepts presented here will play a crucial
role in the rest of these notes.

The underlying object in probability theory is a sample space S, which is simply
a set. This set is sometimes thought of as the collection of all possible outcomes
of a random experiment. Certain subsets of the sample space, called events, are
assigned probabilities by the probability measure (or probability set function)
which is usually denoted by P. This function has a few defining properties.

(1) For any event E ⊂ S, 0 ≤ P[E] ≤ 1.

(2) P[∅] = 0 and P[S] = 1.

(3) If E1, E2, . . . are events and Ei ∩ Ej = ∅ for i ≠ j then P[
⋃∞

i=1 Ei] =
∑∞

i=1 P[Ei].

From these basic facts one can deduce all manner of useful computational formulas.

Exercise 7–1. Show that if A ⊂ B are events, then P[A] ≤ P[B].

Another of the basic concepts is that of a random variable. A random variable
is a function whose domain is the sample space of a random experiment and whose
range is the real numbers.

In practice, the sample space of the experiment fades into the background and
one simply identifies the random variables of interest. Once a random variable has
been identified, one may ask about its values and their associated probabilities. All
of the interesting probability information is bound up in the distribution function of
the random variable. The distribution function of the random variable X, denoted
FX(t), is defined by the formula FX(t) = P[X ≤ t].

Two types of random variables are quite common. A random variable X with
distribution function FX is discrete if FX is constant except at at most countably
many jumps. A random variable X with distribution function FX is absolutely

continuous if FX(t) =
∫ t

−∞

d
ds

FX(s) ds holds for all real numbers t.

If X is a discrete random variable, the density of X, denoted fX(t) is defined by
the formula fX(t) = P[X = t]. There are only countably many values of t for which
the density of a discrete random variable is not 0. If X is an absolutely continuous

random variable, the density of X is defined by the formula fX(t) =
d
dt

FX(t).

Copyright  2006 Jerry Alan Veeh. All rights reserved.
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Example 7–1. A Bernoulli random variable is a random variable which takes on
exactly two values, 0 and 1. Such random variables commonly arise to indicate the
success or failure of some operation. A Bernoulli random variable is discrete.

Exercise 7–2. Sketch the distribution function of a Bernoulli random variable with
P[X = 1] = 1/3.

Example 7–2. An exponentially distributed random variable Y with parameter
λ > 0 is a non-negative random variable for which P[Y ≥ t] = e−λ t for t ≥ 0. Such a
random variable is often used to model the waiting time until a certain event occurs.
An exponential random variable is absolutely continuous.

Exercise 7–3. Sketch the distribution function of an exponential random variable
with parameter λ = 1. Sketch its density function also.

Exercise 7–4. A random variable X is uniformly distributed on an interval (a, b) if
X represents the result of selecting a number at random from (a, b). Find the density
and distribution function of a random variable which is uniformly distributed on the
interval (0, 1).

Exercise 7–5. Draw a picture of a distribution function of a random variable which
is neither discrete nor absolutely continuous.

Another useful tool is the indicator function. Suppose A is a set. The indicator
function of the set A, denoted 1A(t), is defined by the equation

1A(t) =
{

1 if t ∈ A
0 if t ∉ A.

Exercise 7–6. Graph the function 1[0,1)(t).

Exercise 7–7. Verify that the density of a random variable which is exponential
with parameter λ may be written λe−λx1(0,∞)(x).

Example 7–3. Random variables which are neither of the discrete nor absolutely
continuous type will arise frequently. As an example, suppose that a person has a fire
insurance policy on a house. The amount of insurance is $50,000 and there is a $250
deductible. Suppose that if there is a fire the amount of damage may be represented
by a random variable D which has the uniform distribution on the interval (0, 70000).
(This assumption means that the person is underinsured.) Suppose further that in the
time period under consideration there is a probability p = 0.001 that a fire will occur.
Let F denote the random variable which is 1 if a fire occurs and is 0 otherwise. The
size X of the claim to the insurer in this setting is given by

X = F
[
(D − 250)1[250,50000](D) + (50000 − 250)1(50000,∞)(D)

]
.
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This random variable X is neither discrete nor absolutely continuous.

Exercise 7–8. Verify the correctness of the formula for X. Find the distribution
function of the random variable X.

Often only the average value of a random variable and the spread of the
values around this average are all that are needed. The expectation (or mean)
of a discrete random variable X is defined by E[X] =

∑

t

t fX(t), while the ex-

pectation of an absolutely continuous random variable X is defined by E[X] =∫ ∞

−∞
t fX(t) dt. Notice that in both cases the sum (or integral) involves terms of the

form (possible value of X) × (probability X takes on that value). When X is neither
discrete nor absolutely continuous, the expectation is defined by the Riemann–
Stieltjes integral E[X] =

∫ ∞
−∞ t dFX(t), which again has the same form.

Exercise 7–9. Find the mean of a Bernoulli random variable Z with P[Z = 1] = 1/3.

Exercise 7–10. Find the mean of an exponential random variable with parameter
λ = 3.

Exercise 7–11. Find the mean and variance of the random variable in the fire
insurance example given above. (The variance of a random variable X is defined
by Var(X) = E[(X − E[X])2] and is often computed using the alternate formula
Var(X) = E[X2] − (E[X])2.)

The percentiles of a distribution (or random variable) are also sometimes used.
A pth percentile πp of a random variable X is a number for which P[X ≥ πp] ≥ 1 − p
and P[X ≤ πp] ≥ p. When X has an absolutely continuous distribution, these two
conditions can be replaced by the single condition P[X ≤ πp] = p. When p = 1/2, a
pth percentile is called a median of X.

Example 7–4. The median of the uniform distribution on the interval (0, 1) is 1/2.
The median of an exponential distribution with parameter λ is − ln(1/2)/λ . Notice
that this differs from the mean of the exponential distribution.

An important computational fact is that E[X + Y] = E[X] + E[Y] for any random
variables X and Y for which the expectations exist.

Computation of conditional probabilities will play an important role. If A and B
are events, the conditional probability of A given B, denoted P[A |B], is defined by
P[A |B] = P[A ∩ B]/P[B] as long as P[B] ≠ 0. The intuition captured by the formula
is that the conditional probability of A given B is the probability of A recomputed
assuming that B has occured. This intuitive understanding is often the means by
which conditional probabilities are computed. The formal defintion is only used to
derive ways of manipulating these conditional probabilities.
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Example 7–5. Two cards are drawn from a deck of 52 cards without replacement.
Suppose A is the event that the second card drawn is red and B is the event that the
first card drawn is red. The (unconditional) probability of A is 26/52, since half of
the cards are red. The conditional probability P[A |B] = 25/51, since knowing that
the first card is red leaves a deck of 51 cards of which 25 are red.

The events A and B are independent if P[A |B] = P[A]. The intuition underlying
the notion of independent events is that the occurance of one of the events does not
alter the probability that the other event occurs.

Similar definitions can be given in the case of random variables. Intuitively,
the random variables X and Y are independent if knowledge of the value of one of
them does not effect the probabilities of events involving the other. Independence
of random variables is usually assumed based on this intuition. One important fact
is that if X and Y are independent random variables then E[XY] = E[X] E[Y]. A
second important computational fact is that for independent random variables X and
Y , Var(X + Y) = Var(X) + Var(Y).

The conditional expectation of X given Y , denoted E[X |Y], is the random
variable which intuitively represents the expectation of X recomputed assuming the
value of Y is known. For independent random variables E[X |Y] = E[X]. A general
fact, known as the theorem of total expectation, is that for any random variables
X and Y , E[E[X |Y | ]] = E[X]. This fact is often used to simplify the computation
of expectations. A guiding principal in the application of this formula is that if in
attempting to compute E[X] the computation would be easy if the value of another
random variable Y were known, then compute E[X |Y] first and use the theorem of
total expectation.

Example 7–6. One iteration of an experiment is conducted as follows. A single six
sided die is rolled and the number D of spots up is noted. Then D coins are tossed
and the number H of heads observed is noted. In this case, E[H |D] = D/2, and
E[H] = E[D]/2 = 3.5/2. Direct computation would be quite involved.

When two or more random variables are studied at the same time, the prob-
abilistic behavior of all the random variables as a group is usually of interest.
The joint distribution function of the random variables X and Y is defined by
FX,Y(s, t) = P[X ≤ s, Y ≤ t]. A similar definition is made for the joint distribution
function of more than two random variables. The joint distribution is discrete if
FX,Y is constant except for countably many jumps; the joint distribution is absolutely

continuous if FX,Y(s, t) =
∫ s

−∞

∫ t

∞

∂2

∂u ∂v
FX,Y(u, v) du dv for all s and t. If X and Y

are jointly discrete, the joint density of X and Y is fX,Y(s, t) = P[X = s, Y = t];
if X and Y are jointly absolutely continuous the joint density of X and Y is
fX,Y(s, t) = ∂2

∂s ∂ t FX,Y(s, t). If X and Y are independent, fX,Y(s, t) = fX(s)fY(t).
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Problems

Problem 7–1. Suppose X has the uniform distribution on the interval (0, a) where
a > 0 is given. What is the mean and variance of X?

Problem 7–2. The moment generating function of a random variable X, denoted
MX(t), is defined by the formula MX(t) = E[etX]. What is the relationship between
M′X(0) and E[X]? Find a formula for Var(X) in terms of the moment generating
function of X and its derivatives at t = 0.

Problem 7–3. Express the Maclaurin expansion of MX(t) in terms of the moments
E[X], E[X2], E[X3],. . . of X. Hint: What is the Maclaurin expansion of ex?

Problem 7–4. Find the moment generating function of a Bernoulli random variable
Y for which P[Y = 1] = 1/4.

Problem 7–5. A random variable X has the binomial distribution with parameters
n and p if X counts the number of successes in n independent Bernoulli trials

each with success probability p. Use the fact that X =
n∑

j=1

Bj where B1, . . . , Bn are

independent Bernoulli random variables to compute the mean and variance of X.
What is the moment generating function of X?

Problem 7–6. A random variable G has the geometric distribution with parameter
p if G is the trial number of the first success in an infinite sequence of independent
Bernoulli trials each with success probability p. Let B denote the Bernoulli random
variable which is 1 if the first trial is a success and zero otherwise. Argue that
E[G |B] = B + (1 − B)E[1 + G], and use this to compute E[G]. Also find the moment
generating function of G and Var(G)

Problem 7–7. A random variable N has the negative binomial distribution with
parameters r and p if N is the trial number of the first success in an infinite sequence
of independent Bernoulli trials each with success probability p. Find the mean,
variance, and moment generating function of N. Hint: Isn’t N the sum of r
independent geometric random variables?

Problem 7–8. Show that
d
dt

ln MX(t)
∣∣∣∣
t=0

= E[X] and
d2

dt2
ln MX(t)

∣∣∣∣∣
t=0

= Var(X). This

is useful when the moment generating function has a certain form.

Problem 7–9. Find the moment generating function of a random variable Z which
has the exponential distribution with parameter λ . Use the moment generating
function to find the mean and variance of Z.
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Problem 7–10. The probability generating function of a random variable X,
denoted PX(z), is defined by PX(z) = E[zX], for z > 0. Probability generating
functions are often used instead of moment generating functions when the random
variable X is discrete. What is the relationship between the probability generating
function and the moment generating function?

Problem 7–11. A double indemnity life insurance policy has been issued to a
person aged 30. This policy pays $100,000 in the event of non-accidental death
and $200,000 in the event of accidental death. The probability of death during the
next year is 0.002, and if death occurs there is a 70% chance that it was due to an
accident. Write a random variable X which represents the size of the claim filed in
the next year. Find the distribution function, mean, and variance of X.

Problem 7–12. In the preceding problem suppose that if death occurs the day of
the year on which it occurs is uniformly distributed. Assume also that the claim
will be paid immediately at death and the interest rate is 5%. What is the expected
present value of the size of the claim during the next year?

Problem 7–13. Suppose X and Y are independent random variables with X hav-
ing the exponential distribution with parameter λ and Y having the exponen-
tial distribution with parameter µ. Find the distribution of the random variable
X ∧ Y = min{X, Y}. Hint: Compute P[X ∧ Y > t].

Problem 7–14. Property insurance typically only pays the amount by which the
loss exceeds a deductible amount. Suppose the random variable L denotes the size
of the loss and d > 0 is the deductible. The insurance payment would then be
L − d if L > d and zero otherwise. For convenience, the function x+ = x if x > 0
and 0 otherwise. Compute E[(L − d)+] when L has an exponential distribution with
parameter λ .

Problem 7–15. Property insurance typically also has a limit on the maximum
amount that will be paid. If L is the random amount of the loss, and the maximum
paid by the insurance is a > 0, then the amount paid by the insurance company is
L ∧ a. Compute E[L ∧ a] when L has an exponential distribution with parameter λ .

Problem 7–16. True or False: For any number a and any number x, (x−a)++(x∧a) =
x.

Problem 7–17. Show that for a random variable Y which is discrete and takes non–

negative integer values, E[Y] =
∞∑

i=1

P[Y ≥ i]. Find a similar alternate expression for

E[Y2].
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Problem 7–18. Suppose Y is a non-negative, absolutely continuous random vari-

able. Show that E[Y] =
∫ ∞

0
P[Y > t] dt.
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Solutions to Problems
Problem 7–1. E[X] = a/2 and Var(X) = a2/12.

Problem 7–2. M′X(0) = E[X].

Problem 7–3. Since ex =
∞∑

k=0

xk/k!,

MX(t) = E[etX]

= E[
∞∑

k=0

(tX)k/k!]

=
∞∑

k=0

E[Xk]tk/k!.

Thus the coefficient of tk in the Maclaurin expansion of MX(t) is E[Xk]/k!.

Problem 7–4. MY (t) = 3/4 + et/4.

Problem 7–5. Since E[Bj] = p, E[X] = np. Since Var(Bj) = p(1 − p),

Var(X) = np(1 − p). Now MX(t) = E[etX] = E[e
t
∑n

j=1
Bj ] = E[etB1 . . . etBn ] =

E[etB1 ] . . . E[etBn ] = (1 − p + pet)n.

Problem 7–6. If the first trial is a success, then G = 1, while if the first
trial is a failure, the average waiting time until the first success will be 1 plus
E[G], since the trials are independent. The theorem of total expectation gives
E[G] = 1 + (1 − p)E[G], from which E[G] = 1/p. A similar argument shows that
E[etG |B] = etB + (1 − B)MG+1(t), from which MG(t) = pet/ (1 − (1 − p)et). From
this, Var(G) = (1 − p)/p2.

Problem 7–7. Since N is the sum of r independent geometric random variables,
E[N] = r/p, Var(N) = r(1 − p)/p2, and MN(t) = (pet/ (1 − (1 − p)et))r.

Problem 7–9. MZ(t) = λ / (λ − t) for 0 ≤ t < λ .

Problem 7–10. From the definition, PX(z) = MX(ln(z)), or equivalently,
MX(t) = PX(et).

Problem 7–11. Let D be a random variable which is 1 if the insured dies in the
next year and 0 otherwise. Let A be a random variable which is 2 if death is due
to an accident and 1 otherwise. Then X = 100000AD.

Problem 7–12. If U is uniformly distributed on the integers from 1 to 365 then
E[100000ADvU] is the desired expectation. Here v = 1/ (1 + 0.05(365)/365).

Problem 7–13. Since X and Y are independent, P[X ∧ Y > t] = P[X > t] P[Y >
t] = e−(λ+µ)t for t > 0. Thus X ∧ Y is exponential with parameter λ + µ.

Problem 7–14. Here E[(L − d)+] = e−λd/λ .
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Problem 7–15. Here E[L ∧ a] = (1 − e−λa)/λ

Problem 7–16. True. What does this have to do with the preceding two
problems?

Problem 7–17. Hint: In the usual formula for the expectation of Y write
i =
∑i

j=1 1 and then interchange the order of summation.

Problem 7–18. Use a trick like that of the previous problem. Double integrals
anyone?
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Solutions to Exercises
Exercise 7–1. Using the fact that B = A ∪ (B \ A) and property (3) gives
P[B] = P[A] + P[B \ A]. By property (1), P[B \ A] ≥ 0, so the inequality
P[B] ≥ P[A] follows.

Exercise 7–2. The distribution function F(t) takes the value 0 for t < 0, the
value 2/3 for 0 ≤ t < 1 and the value 1 for t ≥ 1.

Exercise 7–3. The distribution function F(t) is 0 if t < 0 and 1 − e−t for t ≥ 0.
The density function is 0 for t < 0 and e−t for t ≥ 0.

Exercise 7–4. The distribution function F(t) takes the value 0 for t < 0, the
value t for 0 ≤ t ≤ 1 and the value 1 for t > 1. The density function takes the
value 1 for 0 < t < 1 and 0 otherwise.

Exercise 7–5. The picture should have a jump and also a smoothly increasing
portion.

Exercise 7–6. This function takes the value 1 for 0 ≤ t < 1 and the value 0
otherwise.

Exercise 7–8. The distribution function F(t) takes the value 0 if t < 0, the value
(1−0.001)+0.001×(250/70000) for t = 0 (because X = 0 if either there is no fire or
the loss caused by a fire is less than 250), the value0.999+0.001×(t+250)/70000
for 0 ≤ t < 50000 − 250 and the value 1 for t ≥ 49750.

Exercise 7–9. E[Z] = 0 × (2/3) + 1 × (1/3) = 1/3.

Exercise 7–10. The expectation is
∫ ∞

0 tf (t) dt =
∫ ∞

0 t3e−3t dt = 1/3 using
integration by parts.

Exercise 7–11. Notice that the loss random variable X is neither discrete
nor absolutely continuous. The distribution function of X has two jumps:
one at t = 0 of size 0.999 + 0.001 × 250/70000 and another at 49750 of size
0.001 − 0.001 × 50000/70000. So E[X] = 0 × (0.999 + 0.001 × 250/70000) +∫ 49750

0 t0.001/70000 dt + 49750 × (0.001 − 0.001 × 50000/70000). The quantity
E[X2] can be computed similarly.
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An insurance policy can embody two different types of risk. For some types
of insurance (such as life insurance) the variability in the claim is only the time at
which the claim is made, since the amount of the claim is specified by the policy.
In other types of insurance (such as auto or casualty) there is variability in both the
time and amount of the claim. The problems associated with life insurance will be
studied first, since this is both an important type of insurance and also relatively
simple in some of its aspects.

The central difficulty in issuing life insurance is that of determining the length
of the future life of the insured. Denote by X the random variable which represents
the future lifetime of a newborn. For mathematical simplicity, assume that the
distribution function of X is absolutely continuous. The survival function of X,
denoted by s(x) is defined by the formula

s(x) = P[X > x] = P[X ≥ x]

where the last equality follows from the continuity assumption. The assumption
that s(0) = 1 will always be made.

Example 8–1. In the past there has been some interest in modelling survival func-
tions in an analytic way. The simplest model is that due to Abraham DeMoivre. He

assumed that s(x) = 1 −
x
ω

for 0 < x < ω where ω is the limiting age by which

all have died. The DeMoivre law is simply the assertion that X has the uniform
distribution on the interval (0, ω).

Life insurance is usually issued on a person who has already attained a certain
age x. For notational convenience denote such a life aged x by (x), and denote the
future lifetime of a life aged x by T(x). What is the survival function for (x)? From
the discussion above, the survival function for (x) is P[T(x) > t]. Some standard
notation is now introduced. Set

tpx = P[T(x) > t]

and

tqx = P[T(x) ≤ t].

When t = 1 the prefix is ommitted and one just writes px and qx respectively.
Generally speaking, having observed (x) some additional information about the
survival of (x) can be inferred. For example, (x) may have just passed a physical
exam given as a requirement for obtaining life insurance. For now this type of
possibility is disregarded. Operating under this assumption

tpx = P[T(x) > t] = P[X > x + t |X > x] =
s(x + t)

s(x)
.
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Exercise 8–1. Write a similar expression for tqx.

Exercise 8–2. Show that for t ≥ s, tpx = t−spx+s spx.

There is one more special symbol. Set

t |uqx = P[t < T(x) ≤ t + u]

which represents the probability that (x) survives at least t and no more than t + u
years. Again, if u = 1 one writes t | qx. The relations t |uqx = t+uqx − tqx = tpx − t+upx

follow immediately from the definition.

Exercise 8–3. Prove these two equalitites. Show that t |uqx = tpx uqx+t.

Exercise 8–4. Compute tpx for the DeMoivre law of mortality. Conclude that under
the DeMoivre law T(x) has the uniform distribution on the interval (0, ω − x).

Under the assumption that X is absolutely continuous the random variable T(x)
will be absolutely continuous as well. Indeed

P[T(x) ≤ t] = P[x ≤ X ≤ x + t |X > x] = 1 −
s(x + t)

s(x)

so the density of T(x) is given by

fT(x)(t) =
−s′(x + t)

s(x)
=

fX(x + t)
1 − FX(x)

.

Intuitively this density represents the rate of death of (x) at time t.

Exercise 8–5. Use integration by parts to show that E[T(x)] =
∫ ∞

0
tpx dt. This

expectation is called the complete expectation of life and is denoted by e̊x. Show

also that E[T(x)2] = 2
∫ ∞

0
t tpx dt.

Exercise 8–6. If X follows DeMoivre’s law, what is e̊x?

The quantity

µx =
fX(x)

1 − FX(x)
= −

s′(x)
s(x)

represents the death rate per unit age per unit survivor for those attaining age x, and is
called the force of mortality. Intuitively the force of mortality is the instantaneous
‘probability’ that someone exactly age x dies at age x. (In component reliability
theory this function is often referred to as the hazard rate.) Integrating both sides
of this equality gives the useful relation

s(x) = exp
{

−
∫ x

0
µt dt

}
.
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Exercise 8–7. Derive this last expression.

Exercise 8–8. Show that tpx = e−
∫ x+t

x
µs ds.

Exercise 8–9. What properties must a force of mortality have?

Exercise 8–10. Show that the density of T(x) can be written fT(x)(t) = tpx µx+t.

If the force of mortality is constant the life random variable X has an expo-
nential distribution. This is directly in accord with the “memoryless” property of
exponential random variables. This memoryless property also has the interpretation
that a used article is as good as a new one. For human lives (and most manufactured
components) this is a fairly poor assumption, at least over the long term. The force
of mortality usually is increasing, although this is not always so.

Exercise 8–11. Find the force of mortality for DeMoivre’s law.

The curtate future lifetime of (x), denoted by K(x), is defined by the relation
K(x) = [T(x)]. Here [t] is the greatest integer function. Note that K(x) is a discrete
random variable with density P[K(x) = k] = P[k ≤ T(x) < k + 1]. The curtate
lifetime, K(x), represents the number of complete future years lived by (x).

Exercise 8–12. Show that P[K(x) = k] = kpx qx+k.

Exercise 8–13. Show that the curtate expectation of life ex = E[K(x)] is given by
the formula ex =

∑∞
i=0 i+1px. Hint: E[Y] =

∑∞
i=1 P[Y ≥ i].



§8: Survival Distributions 50

Problems

Problem 8–1. Suppose µx+t = t for t ≥ 0. Calculate tpx µx+t and e̊x.

Problem 8–2. Calculate
∂

∂x tpx and
d
dx

e̊x.

Problem 8–3. A life aged (40) is subject to an extra risk for the next year only.
Suppose the normal probability of death is 0.004, and that the extra risk may be
expressed by adding the function 0.03(1 − t) to the normal force of mortality for this
year. What is the probability of survival to age 41?

Problem 8–4. Suppose qx is computed using force of mortality µx, and that q′x is
computed using force of mortality 2µx. What is the relationship between qx and q′x?

Problem 8–5. Show that the conditional distribution of K(x) given that K(x) ≥ k is
the same as the unconditional distribution of K(x + k) + k.

Problem 8–6. Show that the conditional distribution of T(x) given that T(x) ≥ t is
the same as the unconditional distribution of T(x + t) + t.

Problem 8–7. The Gompertz law of mortality is defined by the requirement that
µt = Act for some constants A and c. What restrictions are there on A and c for this
to be a force of mortality? Write an expression for tpx under Gompertz’ law.

Problem 8–8. Makeham’s law of mortality is defined by the requirement that
µt = A + Bct for some constants A, B, and c. What restrictions are there on A, B and
c for this to be a force of mortality? Write an expression for tpx under Makeham’s
law.
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Solutions to Problems

Problem 8–1. Here tpx = e−
∫ t

0
µx+s ds = e−t2/2 and e̊x =

∫ ∞

0
tpx dt = √2π /2.

Problem 8–2.
∂

∂x tpx = tpx(µx − µx+t) and
d
dx

e̊x =
∫ ∞

0

∂

∂x tpx dt = µxe̊x − 1.

Problem 8–3. If µt is the usual force of mortality then p40 = e−
∫ 1

0
µ40+s+0.03(1−s) ds.

Problem 8–4. The relation p′x = (px)2 holds, which gives a relation for the
death probability.

Problem 8–5. P[K(x) ≤ k + l |K(x) ≥ k] = P[k ≤ K(x) ≤ k + l]/P[K(x) ≥ k] =
lqx+k = P[K(x + k) + k ≤ l + k].

Problem 8–6. Proceed as in the previous problem.

Problem 8–7. A force of mortality must always be non-negative and have
infinite integral. Thus A > 0 and c ≥ 1 are required here. Direct substitution
gives tpx = exp{−A(cx − cx+t)/ ln c}.

Problem 8–8. If c < 1 then A > 0 is required, while if c ≥ 1 then A + B > 0 is
required. Substitution gives tpx = exp{−At − B(cx − cx+t)/ ln c}.
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Solutions to Exercises
Exercise 8–1. tqx = P[T(x) ≤ t] = P[X ≤ x + t |X > x] = P[x < X ≤ x + t]/P[X >
x] = (s(x) − s(x + t))/s(x).

Exercise 8–2. tpx = s(x + t)/s(x) = s(x + s + (t − s))/s(x) = (s(x + s + (t − s))/s(x +
s))(s(x + s)/s(x)) = t−spx+sspx. What does this mean in words?

Exercise 8–3. For the first one, t |uqx = P[t < T(x) ≤ t + u] = P[x + t < X ≤
t+u+x |X > x] = (s(x+t)−s(t+u+x))/s(x) = (s(x+t)−s(x)+s(x)−s(t+u+x))/s(x) =
t+uqx − tqx. The second identity follows from the fourth term by simplifying
(s(x + t) − s(t + u + x))/s(x) = tpx − t+upx. For the last one, t |uqx = P[t < T(x) ≤
t + u] = P[x + t < X ≤ t + u + x |X > x] = (s(x + t) − s(t + u + x))/s(x) =
(s(x + t)/s(x))(s(t + x) − s(t + u + x))/s(x + t) = tpx uqx+t.

Exercise 8–4. Under the DeMoivre law, s(x) = (ω − x)/ω so that tpx =
(ω − x − t)/ (ω − x) for 0 < t < ω − x. Thus the distribution function of T(x) is
t/ (ω − x) for 0 < t < ω − x, which is the distribution function of a uniformly
distributed random variable.

Exercise 8–5. E[T(x)] =
∫ ∞

0 tfT(x)(t) dt = −
∫ ∞

0 ts′(x + t)/s(x) dt =
∫ ∞

0 s(x +
t)/s(x) dt =

∫ ∞
0 tpx dt. The fact the limt→∞ s(x + t) = 0 is assumed, since everyone

eventually dies. The other expectation is computed similarly.

Exercise 8–6. Under DeMoivre’s law, e̊x = (ω − x)/2, since T(x) is uniform on
the interval (0, ω − x).

Exercise 8–7.
∫ x

0 µt dt =
∫ x

0 −s′(t)/s(t) dt = − ln(s(x)) + ln(s(0)) = − ln(s(x)),
since s(0) = 1. Exponentiating both sides to solve for s(x) gives the result.

Exercise 8–8. From the previous exercise, s(x + t) = e−
∫ x+t

0
µs ds. Using this fact,

the previous exercise, and the fact that tpx = s(x + t)/s(x) gives the formula.

Exercise 8–9. The force of mortality must satisfy µx ≥ 0 for all x, and∫ ∞

0
µx dx = ∞. This last condition is needed to make lim

x→∞
s(x) = 0.

Exercise 8–10. Since fT(x)(t) = −s′(x + t)/s(x) and s′(x + t) = −s(x + t)µx+t by
the previous exercise, the result follows.

Exercise 8–11. From the earlier expression for the survival function under
DeMoivre’s law s(x) = (ω − x)/ω , so that µx = −s′(x)/s(x) = 1/ (ω − x), for
0 < x < ω .

Exercise 8–12. P[K(x) = k] = P[k ≤ T(x) < k+1] = (s(x+k)−s(x+k+1))/s(x) =
((s(x + k) − s(x + k + 1))/s(x + k))(s(x + k)/s(x)) = kpx qx+k.

Exercise 8–13. E[K(x)] =
∑∞

i=1 P[K(x) ≥ i] =
∑∞

i=1 P[T(x) ≥ i] =
∑∞

i=1 ipx =∑∞
j=0 j+1px.
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In practice the survival distribution is estimated by compiling mortality data in
the form of a life table. An example of a life table appears later in these notes.

The conceptual model behind the entries in a life table is this. Imagine that
at time 0 there are l0 newborns. Here l0 is called the radix of the life table and is
usually taken to be some large number such as 10,000,000. These newborns are
observed and lx is the number of the original newborns who are still alive at age x.
Similarly ndx denotes the number of the group of newborns alive at age x who die
before reaching age x + n. As usual, when n = 1 it is supressed in the notation.

Exercise 9–1. Show that ndx = lx − lx+n.

The ratio
lx

l0
is an estimate of s(x) based on the collected data. Assume that in

fact s(x) =
lx

l0
for non-negative integer values of x. Since earlier the assumption was

made that the life random variable X is absolutely continuous, the question arises
as to how the values of the survival function will be computed at non-integer values
of x.

Under the assumption of the uniform distribution of deaths in the year of
death, denoted UDD, the number alive at age x + t, where x is an integer and
0 < t < 1, is given by

lx+t = lx − tdx.

The UDD assumption means that the age at death of those who will die at curtate
age x is uniformly distributed between the ages x and x + 1. In terms of the survival
function the UDD assumption means

s(x + t) = (1 − t)s(x) + ts(x + 1)

where x is an integer and 0 ≤ t ≤ 1. The UDD assumption is the one most commonly
made.

Direct application of the UDD assumption and the earlier definitions shows that
under UDD

tqx = tqx,

tpx = 1 − tqx,

and
µx+t =

qx

1 − tqx

whenever x is an integer and 0 < t < 1.
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The assumption of a constant force of mortality in each year of age means
that µx+t = µx for each integer age x and 0 < t < 1. This is equivalent to the formula

tpx = (px)t and also to s(x + t) = s(x) e−µt where µ = − ln px. The constant force
assumption is less widely used than UDD.

Having observed (x) may mean more than simply having seen a person aged x.
For example, (x) may have just passed a physical exam in preparation for buying
a life insurance policy. One would expect that the survival distribution of such a
person could be different from s(x). If this is believed to be the case the survival
function is actually dependent on two variables: the age at selection (application
for insurance) and the amount of time passed after the time of selection. A life table
which takes this effect into account is called a select table. A family of survival
functions indexed by both the age at selection and time are then required and notation
such as q[x]+i denotes the probability that a person dies between years x+ i and x+ i+1
given that selection ocurred at age x. As one might expect, after a certain period
of time the effect of selection on mortality is negligable. The length of time until
the selection effect becomes negligable is called the select period. The Society of
Actuaries (based in Illinois) uses a 15 year select period in its mortality tables. The
Institute of Actuaries in Britain uses a 2 year select period. The implication of the
select period of 15 years in computations is that for each j ≥ 0, l[x]+15+j = lx+15+j.

A life table in which the survival functions are tabulated for attained ages only
is called an aggregrate table. Generally, a select life table contains a final column
which constitutes an aggregate table. The whole table is then referred to as a select
and ultimate table and the last column is usually called an ultimate table. With
these observations in mind the select life tables can be used in computations.

Exercise 9–2. You are given the following extract from a 3 year select and ultimate
mortality table.

x l[x] l[x]+1 l[x]+2 lx+3 x + 3
70 7600 73
71 7984 74
72 8016 7592 75

Assume that the ultimate table follows DeMoivre’s law and that d[x] = d[x]+1 =
d[x]+2 for all x. Find 1000(2 |2q[71]).
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Problems

Problem 9–1. Use the life table to compute 1/2p20 under each of the assumptions
for fractional years.

Problem 9–2. Show that under the assumption of uniform distribution of deaths in
the year of death that K(x) and T(x) − K(x) are independent and that T(x) − K(x) has
the uniform distribution on the interval (0, 1).

Problem 9–3. Show that under UDD e̊x = ex + 1
2 .
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Solutions to Problems
Problem 9–1. Under UDD, tpx = (1 − t) + tpx so 1/2p20 = 1/2 + 1/2p20 =
1
2 + 1

2
9,607,896
9,617,802 . Under constant force, tpx = (px)t so 1/2p20 = √p20.

Problem 9–2. For 0 ≤ t < 1, P[K(x) = k, T(x) − K(x) ≤ t] = P[k ≤ T(x) ≤
k + t] = kpx tqx+k = kpx(t − tpx+k) = tP[K(x) = k].

Problem 9–3. Use the previous problem to see that e̊x = E[T(x)] = E[K(x) +
(T(x) − K(x))] = ex + E[T(x) − K(x)] = ex + 1/2, since T(x) − K(x) has the uniform
distribution on the unit interval.
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Solutions to Exercises
Exercise 9–1. Since ndx is the number alive at age x who die by age x + n, this
is simply the number alive at age x, which is lx, minus the number alive at age
x + n, which is lx+n.

Exercise 9–2. The objective is to compute 10002 |2q[71] = 1000(2p[71] −4p[71]) =
1000(l[71]+2 − l[71]+4)/ l[71] = 1000(l[71]+2 − l75)/ l[71], where the effect of the selec-
tion period has been used. To find the required entries in the table proceed as
follows. Since 8016−7592 = 424 and using the assumption about the number of
deaths, l[72]+1 = 8016−212 = 7804 and l72+3 = 7592−212 = 7380. Since the ulti-
mate table follows DeMoivre’s Law, l71+3 = (7600 + 7380)/2 = 7490. Again us-
ing the assumption about the number of deaths, l[71]+2 = (7984 + 7490)/2 = 7737
and l[71] = 7984 + 247 = 8231. So 10002 |2q[71] = 1000(7737 − 7380)/8231 =
43.37.
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Solve the following 6 problems in no more than 30 minutes. You should
have the Tables for Exam M available for these problems.

Question 10–1 . You are given s(x) =
1

1 + x
. Determine the median future lifetime

of (y).
A. y + 1

B. y

C. 1

D.
1
y

E.
1

1 + y

Question 10–2 . You are given µx = 0.1 for all ages x > 0. The probability that
(30) and (50) will die within 10 years of each other is p. Calculate p.

A. 0.1e−1

B. 0.5e−1

C. e−1

D. 0.5(1 − e−1)

E. 1 − e−1

Question 10–3 . Given e̊0 = 25, lx = ω −x, 0 ≤ x ≤ ω , and T(x) is the future lifetime
random variable, calculate Var(T(10)).

A. 65

B. 93

C. 133

D. 178

E. 333

Question 10–4 . For a certain mortality table you are given µ(80.5) = 0.0202,
µ(81.5) = 0.0408, µ(82.5) = 0.0619, and that deaths are uniformly distributed
between integral ages. Calculate the probability that a person age 80.5 will die
within two years.

A. 0.0782

B. 0.0785

C. 0.0790

D. 0.0796

E. 0.0800
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Question 10–5 . The future lifetimes of a certain population can be modeled as
follows. Each individual’s future lifetime is exponentially distributed with constant
hazard rate θ . Over the population, θ is uniformly distributed over (1, 11). Calculate
the probability of surviving to time 0.5 for an individual randomly selected at time
0.

A. 0.05

B. 0.06

C. 0.09

D. 0.11

E. 0.12

Question 10–6 . An insurance agent will receive a bonus if his loss ratio is less
than 70%. You are given that his loss ratio is calculated as incurred losses divided
by earned premium on his block of business. The agent will receive a percentage of
earned premium equal to 1/3 of the difference between 70% and his loss ratio. The
agent receives no bonus if his loss ratio is greater than 70%. His earned premium
is 500,000. His incurred losses are distributed according to the Pareto distribution

F(x) = 1 −
( 600, 000

x + 600, 000

)3

, x > 0. Calculate the expected value of his bonus.

A. 16,700

B. 31,500

C. 48,300

D. 50,000

E. 56,600
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Answers to Sample Questions

Question 10–1 . From the information given, P[T(y) > t] = s(y + t)/s(y) = (1 +
y)/ (1 + y + t), and this is equal to 1/2 when t = 1 + y. A.

Question 10–2 . Since the force of mortality is constant, both lives have the same
exponential distribution. Thus p = P[T(30) < T(50) < T(30) + 10] + P[T(50) <
T(30) < T(50) + 10] = 2

∫ ∞

0
(e−µx − e−µ(x+10))µe−µx dx = 1 − e−10µ = 1 − e−1. E.

Question 10–3 . From the form of lx, mortality follows DeMoivre’s law. Thus
ω = 50 since e̊0 = 25. The random variable T(10) is therefore uniformly distributed
on the interval (0, 40) and Var(T(10)) = 133.33. C.

Question 10–4 . Under UDD, µx+t = qx/ (1 − tqx) so that qx = µx+0.5/ (1 + 0.5µx+0.5).
Now 2p80.5 = 0.5p80.5 p81 0.5p82 = p80

1−0.5q80
(1 − q81)(1 − 0.5q82). The expression for

.5p80.5 comes from the fact that p80 = 0.5p80 0.5p80.5. Using the information gives the
survival probability as 0.9218 and the death probability as 0.0781. A.

Question 10–5 . The desired probability is E[e−0.5θ] =
∫ 11

1
e−0.5t dt/10 = 0.120. E.

Question 10–6 . If L is the incurred loss, the expected bonus is (500000/3)E[(.7 −
L/500000)+], using the given information. Now (a−x)+ +(x∧a) = a, so the expected
bonus can be written as (1/3)(350000−E[L∧350000]) = (1/3)(350000−300000(1−
(600000/950000)2)) = 56, 555 using the formula on the supplied tables. E.
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A life insurance policy is sometimes issued which pays a benefit at a time
which depends on the survival characteristics of two or more people. A status is an
artificially constructed life form for which the notion of life and death can be well
defined.

Example 11–1. A common artificial life form is the status which is denoted n . This
is the life form which survives for exactly n time units and then dies.

Example 11–2. Another common status is the joint life status which is constructed
as follows. Given two life forms (x) and (y) the joint life status, denoted x : y, dies
exactly at the time of death of the first to die of (x) and (y).

Exercise 11–1. If (x) and (y) are independent lives, what is the survival function of
the status x : y?

Exercise 11–2. What is survival function of x : n?

Occasionally, even the order in which death occurs is important. The status

x
1 : n is a status which dies at the time of death of (x) if the death of (x) occurs before
time n. Otherwise, this status never dies.

Exercise 11–3. Under what circumstances does x : n
1

die?

A final status that is commonly used is the last survivor status, x : y, which is
alive as long as either (x) or (y) is alive.
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Problems

Problem 11–1. Use the life table to compute p40:50 and p40:50 assuming (40) and
(50) are independent lives.

Problem 11–2. Find a formula for the survival function of x
1 : n in terms of the

survival function of (x).

Problem 11–3. If the UDD assumption is valid for (x), does UDD hold for x
1 : n?

Problem 11–4. Find a formula for the survival function of x : n
1

.

Problem 11–5. If the UDD assumption is valid for (x), does UDD hold for x : n
1

?

Problem 11–6. If the UDD assumption is valid for (x), does UDD hold for x : n?

Problem 11–7. If the UDD assumption is valid for each of (x) and (y) and if (x) and
(y) are independent lives, does UDD hold for x : y?
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Solutions to Problems
Problem 11–1. From independence, p40:50 = p40p50 = 9,287,264

9,313,166
8,897,913
8,950,901 . Also

p40:50 = 1 − q40q50, by independence.

Problem 11–2. P[T(x1 : n ) ≥ t] = tpx for 0 ≤ t < n and P[T(x1 : n ) ≥ t] = npx

for t ≥ n.

Problem 11–3. The UDD assuption holds for x
1 : n if and only if P[T(x1 : n ) ≥

k + t] = (1 − t)P[T(x1 : n ) ≥ k] + tP[T(x1 : n ) ≥ k + 1] for all integers k and all
0 ≤ t ≤ 1. Now use the formula for the survival function found in the previous
problem to see that UDD does hold for the joint status.

Problem 11–4. Here P[T(x : n
1

) ≥ t] = 1 if t < n and is equal to nqx if t ≥ n.

Problem 11–5. Using the previous formula for the survival function shows that
UDD fails to hold on the interval (n − 1, n).

Problem 11–6. The survival function for x : n is S(t) = tpx for t < n and zero
for t ≥ n. So again the UDD condition will fail to hold on the interval (n − 1, n).

Problem 11–7. The survival function for the joint status is S(t) = tpx tpy, and
in general UDD will not hold for the joint status.
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Solutions to Exercises
Exercise 11–1. The joint life status survives t time units if and only if both (x)
and (y) survive t time units. Using the independence gives s(t) = tpx tpy.

Exercise 11–2. Since a constant random variable is independent of any other
random variable, s(t) = tpx tpn = tpx if t ≤ n and 0 if t > n, by using the previous
exercise.

Exercise 11–3. The status x : n
1

dies at time n if (x) is still alive at time n,
otherwise this status never dies.



§12. Valuing Contingent Payments

The central theme of these notes is embodied in the question, “What is the value
today of a random sum of money which will be paid at a random time in the future?”
This question can now be answered. Suppose the random amount A of money is
to be paid at the random time T . The value of this payment today is computed
in two steps. First, the present value of this payment AvT is computed. Then the
expectation of this present value random variable is computed. This expectation,
E[AvT], is the value today of the random future payment. The interpretation of this
amount, E[AvT], is as the average present value of the actual payment. Averages
are reasonable in the insurance context since, from the company’s point of view,
there are many probabilistically similar policies for which the company is obliged
to pay benefits. The average cost (and income) per policy is therefore a reasonable
starting point from which to determine the premium.

The expected present value is usually referred to as the actuarial present value
in the insurance context. In the next few sections the actuarial present value of
certain standard parts of insurance contracts are computed.

Insurance contracts generally consist of two parts: benefit payments and pre-
mium payments. A life insurance policy paying benefit bt if death occurs at time
t has actuarial present value E[bTvT]. In this context the actuarial present value is
also called the net single premium. The net single premium is the average value
of the benefit payments, in todays dollars. The net single premium is the amount
of the single premium payment which would be required on the policy issue date
by an insurer with no expenses (and no profit requirement). The actuarial present
value of the premium payments must be at least equal to the actuarial present value
of the benefit payments, or the company would go bankrupt.

In the next section methods are developed for computing the net single premium
for commonly issued life insurances. The following section develops methods for
computing the actuarial present value of the premium payments. These two sets of
methods are then combined to enable the computation of insurance premiums.

Copyright  2006 Jerry Alan Veeh. All rights reserved.
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In the case of life insurance, the amount that is paid at the time of death is
usually fixed by the policy and is non-random. Assume that the force of interest
is constant and known to be equal to δ . Also simply write T = T(x) whenever
clarity does not demand the full notation. The net single premium for an insurance
which pays 1 at the time of death is then E[vT] by the principle above. The net
single premium would be the idealized amount an insured would pay as a lump sum
(single premium) at the time that the policy is issued. The case of periodic premium
payments will be discussed later.

A catalog of the various standard types of life insurance policies and the standard
notation for the associated net single premium follows. In most cases the benefit
amount is assumed to be $1, and in all cases the benefit is assumed to be paid at the
time of death. Keep in mind that a fixed constant force of interest is also assumed
and that v = 1/ (1 + i) = e−δ .

Insurances Payable at the Time of Death

Type Net Single Premium

n-year pure endowment A
x:n

1 = nEx = E[vn1(n,∞)(T)]

n-year term A
x
1:n

= E[vT1[0,n](T)]

whole life Ax = E[vT]

n-year endowment Ax:n = E[vT∧n]

m-year deferred n-year term m |nAx = E[vT1(m,n+m](T)]

whole life increasing mthly (IA)(m)
x = E[vT[Tm + 1]/m]

n-year term increasing annually (IA)
x
1:n

= E[vT[T + 1]1[0,n)(T)]

n-year term decreasing annually (DA)
x
1:n

= E[vT(n − [T])1[0,n)(T)]

The bar is indicative of an insurance paid at the time of death, while the subscripts
denote the status whose death causes the insurance to be paid. These insurances are
now reviewed on a case-by-case basis.

The first type of insurance is n-year pure endowment insurance which pays
the full benefit amount at the end of the nth year if the insured survives at least n
years. The notation for the net single premium for a benefit amount of 1 is A

x:n
1 (or

occasionally in this context nEx). The net single premium for a pure endowment is
just the actuarial present value of a lump sum payment made at a future date. This
differs from the ordinary present value simply because it also takes into account the
mortality characteristics of the recipient.

Exercise 13–1. Show that nEx = vn
npx.
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The second type of insurance is n-year term insurance. The net single premium
for a benefit of 1 payable at the time of death for an insured (x) is denoted A

x
1:n

. This
type insurance provides for a benefit payment only if the insured dies within n years

of policy inception, that is, at the time of death of the status x
1 : n .

The third type of insurance is whole life in which the full benefit is paid no
matter when the insured dies in the future. The whole life benefit can be obtained
by taking the limit as n → ∞ in the n-year term insurance setting. The notation for
the net single premium for a benefit of 1 is Ax.

Exercise 13–2. Suppose that T(x) has an exponential distribution with mean 50. If
the force of interest is 5%, find the net single premium for a whole life policy for
(x), if the benefit of $1000 is payable at the moment of death.

Exercise 13–3. Show that Ax = A
x
1:n

+ vn
npxAx+n by conditioning on the event

T(x) ≥ n and also by direct reasoning from a time diagram by looking at the
difference of two policies.

The fourth type of insurance, n-year endowment insurance, provides for the
payment of the full benefit at the time of death of the insured if this occurs before
time n and for the payment of the full benefit at time n otherwise. The net single
premium for a benefit of 1 is denoted Ax:n .

Exercise 13–4. Show that Ax:n = A
x
1:n

+ A
x:n

1 .

Exercise 13–5. Use the life table to find the net single premium for a 5 year pure
endowment policy for (30) assuming an interest rate of 6%.

The m-year deferred n-year term insurance policy provides provides the same
benefits as n year term insurance between times m and m + n provided the insured
lives m years.

All of the insurances discussed thus far have a fixed constant benefit. Increasing
whole life insurance provides a benefit which increase linearly in time. Similarly,
increasing and decreasing n-year term insurance provides for linearly increasing
(decreasing) benefit over the term of the insurance.

Direct computation of the net single premium for an insurance payable at
the time of death is impossible using only the life table. For example, Ax =∫ ∞

0
vt

tpxµx+t dt. As will be seen below, under the UDD assumption, all of these net

single premiums can be easily related to the net single premium for an insurance
that is payable at the end of the year of death. The definition and notation for
these net single premiums will now be introduced. The only difference between
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these insurances and those already described is that these insurances depend on the
distribution of the curtate life variable K = K(x) instead of T . The following table
introduces the notation.

Insurances Payable the End of the Year of Death

Type Net Single Premium

n-year term A
x
1:n

= E[vK+11[0,n)(K)]

whole life Ax = E[vK+1]

n-year endowment Ax:n = E[v(K+1)∧n]

m-year deferred n-year term m |nAx = E[vK+11[m,n+m)(K)]

whole life increasing annually (IA)x = E[vK+1(K + 1)]

n-year term increasing annually (IA)
x
1:n

= E[vK+1(K + 1)1[0,n)(K)]

n-year term decreasing annually (DA)
x
1:n

= E[vK+1(n − K)1[0,n)(K)]

These policies have net single premiums which can be easily computed from
the information in the life table. To illustrate the ease of computation when using a
life table observe that from the definition

Ax =
∞∑

k=0

vk+1
kpx qx+k =

∞∑

k=0

vk+1 dx+k

lx
.

In practice, of course, the sum is finite. Similar computational formulas are readily
obtained in the other cases.

Exercise 13–6. Show that A
x:n

1 = A
x:n

1 and interpret the result verbally. How would
you compute A

x:n
1 using the life table?

Under the UDD assumption formulas relating the net single premium for in-
surance payable at the time of death to the corresponding net single premium for
insurance payable at the end of the year of death can be easily found. For example,
in the case of a whole life policy

Ax = E[e−δT(x)]

= E[e−δ (T(x)−K(x)+K(x))]

= E[e−δ (T(x)−K(x))] E[e−δK(x)]

=
1
δ

(1 − e−δ )eδ E[e−δ (K(x)+1)]

=
i
δ

Ax

where the third equality springs from the independence of K(x) and T(x) − K(x)
under UDD, and the fourth equality comes from the fact that under UDD the
random variable T(x) − K(x) has the uniform distribution on the interval (0,1).
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Exercise 13–7. Can similar relationships be established for term and endowment
policies?

Exercise 13–8. Use the life table to find the net single premium for a 5 year
endowment policy for (30), with death benefit paid at the moment of death, assuming
an interest rate of 6%.

Exercise 13–9. An insurance which pays a benefit amount of 1 at the end of the
mth part of the year in which death occurs has net single premium denoted by A(m)

x .
Show that under UDD i(m) A(m)

x = δ Ax.

One consequence of the exercise above is that only the net single premiums for
insurances payable at the end of the year of death need to be tabulated, if the UDD
assumption is made. This leads to a certain amount of computational simplicity.
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Problems

Problem 13–1. Write expressions for all of the net single premiums in terms of
either integrals or sums. Hint: Recall the form of the density of T(x) and K(x).

Problem 13–2. Show that δA
x
1:n

= iA
x
1:n

, but that δAx:n ≠ iAx:n , in general.

Problem 13–3. Use the life table and UDD assumption (if necessary) to compute
A21, A21:5 , and A

21
1

:5
.

Problem 13–4. Show that
dAx

di
= −v(IA)x.

Problem 13–5. Assume that DeMoivre’s law holds with ω = 100 and i = 0.10.
Find A30 and A30. Which is larger? Why?

Problem 13–6. Suppose µx+t = µ and i = 0.10. Compute Ax and A
x
1:n

. Do your
answers depend on x? Why?

Problem 13–7. Suppose Ax = 0.25, Ax+20 = 0.40, and Ax:20 = 0.55. Compute A
x:20

1

and A
x
1:20

.

Problem 13–8. Show that

(IA)x = vqx + v[Ax+1 + (IA)x+1]px.

What assumptions (if any) did you make?

Problem 13–9. What change in Ax results if for some fixed n the quantity qx+n is
replaced with qx+n + c?
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Solutions to Problems
Problem 13–1. The densities required are fT(x)(t) = tpx µx+t and fK(x)(k) =
kpx qx+k respectively.

Problem 13–2. δA
x
1:n

= δ (Ax − e−δn
npxAx+n) = iAx − ivn

npxAx+n = iA
x
1:n

.

Problem 13–3. Use δA21 = iA21, A21:5 = A
21
1

:5
+5E21 and the previous problem.

Problem 13–4. Just differentiate under the expectation in the definition of Ax.

Problem 13–5. Clearly A30 > A30 since the insurance is paid sooner in the
continuous case. Under DeMoivre’s law the UDD assumption is automatic and
A30 = 1

70

∫ 70
0 e−δ t dt.

Problem 13–6. Using the form of µ gives Ax =
∫ ∞

0
e−δ te−µt

µ dt = µ/ (µ + δ ).

Similarly, A
x
1:n

= µ(1 − e−n(µ+δ ))/ (µ + δ ). The answers do not depend on x since
the lifetime is exponential and therefore ageless.

Problem 13–7. The two relations Ax = A
x
1:20

+ v20
npxAx+20 and Ax:20 = A

x
1:20

+
vn

npx along with the fact that A
x:20

1 = vn
npx give two equations in the two sought

after unknowns.

Problem 13–8. Either the person dies in the first year, or doesn’t. If she doesn’t
buy an increasing annually policy for (x + 1) and a whole life policy to make up
for the increasing part the original policy would provide.

Problem 13–9. The new benefit is the old benefit plus a pure endowment
benefit of cv at time n.
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Solutions to Exercises
Exercise 13–1. Since if the benefit is paid, the benefit payment occurs at time
n, nEx = E[vn1[n,∞)(T(x))] = vnP[T(x) ≥ n] = vn

npx.

Exercise 13–2. Under the assumptions given the net single premium is
E[1000vT(x)] =

∫ ∞
0 1000e−0.05t(1/50)e−t/50 dt = 285.71.

Exercise 13–3. For the conditioning argument, break the expectation into two
pieces by writing Ax = E[vT ] = E[vT1[0,n](T)]+E[vT1(n,∞)(T)]. The first expecta-
tion is exactly A

x
1:n

. For the second expectation, using the Theorem of Total Ex-

pectation gives E[vT1(n,∞)(T)] = E[E[vT1(n,∞)(T) |T ≥ n]]. Now the conditional
distribution of T given that T ≥ n is the same as the unconditional distribution of
T(x+n)+n. Using this fact gives the conditional expectation as E[vT1(n,∞)(T) |T ≥
n] = E[vT(x+n)+n1(n,∞)(T(x + n) + n)]1(n,∞)(T) = vnAx+n1(n,∞)(T). Taking expecta-
tions gives the result. To use the time diagram, imagine that instead of buying
a whole life policy now, the insured pledges to buy an n year term policy now,
and if alive after n years, to buy a whole life policy at time n (at age x + n). This
will produce the same result. The premium for the term policy paid now is A

x
1:n

and the premium for the whole life policy at time n is Ax+n. This latter premium
is only paid if the insured survives, so the present value of this premium is the
second term in the solution.

Exercise 13–4. Using the definition and properties of expectation gives Ax:n =
E[vT1[0,n](T) + vn1(n,∞)(T)] = E[vT1[0,n](T)] + E[vn1(n,∞)(T)] = A

x
1:n

+ A
x:n

1 .

Exercise 13–5. The net single premium for the pure endowment policy is
v5

5p30 = 5E30 == 0.74091.

Exercise 13–6. A
x:n

1 = E[vn1[n,∞)(T)] = E[vn1[n,∞)(K)] = A
x:n

1 = vn
npx =

vnlx+n/ lx.

Exercise 13–7. Since term policies can be expressed as a difference of premi-
ums for whole life policies, the answer is yes.

Exercise 13–8. The net single premium for a pure endowment policy is
5E30 = 0.74091. For the endowment policy, the net single premium for a 5
year term policy must be added to this amount. From the relation given earlier,
A

30
1

:5
= A30 − 5E30A35. The relationship between insurances payable at the time

of death and insurances payable at the end of the year of death is used to complete
the calculation. This gives A30:5 = (i/δ )(0.10248) − (i/δ )(0.74091)(0.12872) +
0.74091.

Exercise 13–9. Notice that [mT(x)] is the number of full mths of a year
that (x) lives before dying. (Here [a] is the greatest integer function.) So the
number of mths of a year that pass until the benefit for the insurance is paid
is [mT(x)] + 1, that is, the benefit is paid at time ([mT(x)] + 1)/m. From here
the derivation proceeds as above. A(m)

x = E[v([mT]+1)/m] = E[v([m(T−K+K)]+1)/m] =
E[vK]E[v([m(T−K)]+1)/m]. Now T − K has the uniform distribution on the interval
(0, 1) under UDD, so [m(T − K)] has the uniform distribution over the integers
0,. . . , m − 1. So E[v([m(T−K)]/m] =

∑m−1
j=0 vj/m × (1/m) = (1/m)(1 − v)/ (1 − v1/m)
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from the geometric series formula. Substituting this in the earlier expression
gives A(m)

x = Axv−1v1/m(1/m)(1 − v)/ (1 − v1/m) = Axδ / i(m) since i(m) = m(v−1/m − 1).
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The premium payment part of the insurance contract is examined by developing
techniques for understanding what happens when premiums are paid monthly or
annually instead of just when the insurance is issued. In the non–random setting a
sequence of equal payments made at equal intervals in time was referred to as an
annuity. Here interest centers on annuities in which the payments are made (or
received) only as long as the insured survives.

An annuity in which the payments are made for a non–random period of time
is called an annuity certain. From the earlier discussion, the present value of an
annuity immediate (payments begin one period in the future) with a payment of 1
in each period is

an =
n∑

j=1

vj =
1 − vn

i

while the present value of an annuity due (payments begin immediately) with a
payment of 1 in each period is

än =
n−1∑

j=0

vj =
1 − vn

1 − v
=

1 − vn

d
.

These formulas will now be adapted to the case of contingent annuities in which
payments are made for a random time interval.

Suppose that (x) wishes to buy a life insurance policy. Then (x) will pay a
premium at the beginning of each year until (x) dies. Thus the premium payments
represent a life annuity due for (x). Consider the case in which the payment amount
is 1. Since the premiums are only paid annually the term of this life annuity depends
only on the curtate life of (x). There will be a total of K(x) + 1 payments, so the
actuarial present value of the payments is äx = E[äK(x)+1 ] where the left member is
a notational convention. This formula gives

äx = E[äK(x)+1 ] = E[
1 − vK(x)+1

d
] =

1 − Ax

d

as the relationship between this life annuity due and the net single premium for a
whole life policy. A similar analysis holds for life annuities immediate.

Exercise 14–1. Compute the actuarial present value of a life annuity immediate.
What is the connection with a whole life policy?

Exercise 14–2. A life annuity due in which payments are made m times per year
and each payment is 1/m has actuarial present value denoted by ä(m)

x . Show that
A(m)

x + d(m) ä(m)
x = 1.
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Example 14–1. The Mathematical Association of America offers the following
alternative to members aged 60. You can pay the annual dues and subscription rate
of $90, or you can become a life member for a single fee of $675. Life members
are entitled to all the benefits of ordinary members, including subscriptions. Should
one become a life member? To answer this question, assume that the interest rate is
6% so that the Life Table at the end of the notes can be used. The actuarial present
value of a life annuity due of $90 per year is

90
1 − A60

1 − v
= 90

1 − 0.36913
1 − 1/1.06

= 1003.08.

Thus one should definitely consider becoming a life member.

Exercise 14–3. What is the probability that you will get at least your money’s worth
if you become a life member? What assumptions have you made?

Pension benefits often take the form of a life annuity immediate. Sometimes
one has the option of receiving a higher benefit, but only for a fixed number of years
or until death occurs, whichever comes first. Such an annuity is called a temporary
life annuity.

Example 14–2. Suppose a life annuity immediate pays a benefit of 1 each year
for n years or until (x) dies, whichever comes first. The symbol for the actuarial
present value of such a policy is ax:n . How does one compute the actuarial present
value of such a policy? Remember that for a life annuity immediate, payments are
made at the end of each year, provided the annuitant is alive. So there will be a
total of K(x) ∧ n payments, and ax:n = E[

∑K(x)∧n
j=1 vj]. A similar argument applies

in the case of an n year temporary life annuity due. In this case, payments are
made at the beginning of each of n years, provided the annuitant is alive. In this
case äx:n = E[

∑K(x)∧(n−1)
j=0 vj] = E[ 1−v(K(x)+1)∧n

d ] where the left member of this equality
introduces the notation.

Exercise 14–4. Show that Ax:n = 1 − d äx:n . Find a similar relationship for ax:n .

Especially in the case of pension benefits assuming that the payments are made
monthly is more realistic. Suppose payments are made m times per year. In this
case each payment is 1/m. One could begin from first principles (this makes a good
exercise), but instead the previously established facts for insurances together with
the relationships between insurances and annuities given above will be used. Using
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the obvious notation gives

ä(m)
x =

1 − A(m)
x

d(m)

=
1 − i

i(m) Ax

d(m)

=
1 − i

i(m) (1 − däx)

d(m)

=
id

i(m)d(m)
äx +

i(m) − i
i(m)d(m)

where at the second equality the UDD assumption was used. Since this relationship

is very useful, the actuarial symbols α(m) =
id

i(m)d(m)
and β(m) =

i − i(m)

i(m)d(m)
are

introduced. The value of these functions for selected values of m are included in the
Tables for Exam M. The above relationship is then written as ä(m)

x = α(m)äx − β(m)
using these symbols.

Exercise 14–5. Find a similar relationship for an annuity immediate which pays
1/m m times per year.

Exercise 14–6. An m year deferred n year temporary life annuity due pays 1 at the
beginning of each year for n years starting m years from now, provided (x) is alive
at the time the payment is to be made. Find a formula for m |näx, the present value of
this annuity. (When n = ∞, the present value is denoted m | äx.)

A useful idealization of annuities payable at discrete times is an annuity payable
continuously. Such an annuity does not exist in the ‘real world’, but serves as a
useful connecting bridge between certain types of discrete annuities. Suppose that
the rate at which the benefit is paid is constant and is 1 per unit time. Then during
the time interval (t, t + dt) the amount paid is dt and the present value of this amount
is e−δ t dt. Thus the present value of such a continuously paid annuity over a period
of n years is

an =
∫ n

0
e−δ t dt =

1 − e−δn

δ
.

A life annuity which is payable continuously will thus have actuarial present value

ax = E[aT(x) ] = E[
1 − e−δT(x)

δ
].

Exercise 14–7. Show that Ax = 1 − δax. Find a similar relationship for ax:n .

There is one other idea of importance. In the annuity certain setting one may be
interested in the accumulated value of the annuity at a certain time. For an annuity
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due for a period of n years the accumulated value of the annuity at time n, denoted
by s̈n , is given by s̈n = (1 + i)nän = (1+i)n−1

d . The present value of s̈n is the same as
the present value of the annuity. Thus the cash stream represented by the annuity is
equivalent to the single payment of the amount s̈n at time n. This last notion has an
analog in the case of life annuities. In the life annuity context

nEx s̈x:n = äx:n

where nEx = vn
npx is the actuarial present value (net single premium) of a pure

endowment of $1 payable at time n. Thus s̈x:n represents the amount of pure
endowment payable at time n which is actuarially equivalent to the annuity.
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Problems

Problem 14–1. Show that under UDD

ax < a(2)
x < a(3)

x < ⋅ ⋅ ⋅ < ax < ⋅ ⋅ ⋅ < ä(3)
x < ä(2)

x < äx.

Give an example to show that without the UDD assumption some of the inequalities
may fail.

Problem 14–2. True or false: A
x
1:n

= 1 − d ä
x
1:n

. Hint: When does x
1 : n die?

Problem 14–3. True or false: s̈x:n ≤ s̈n .

Problem 14–4. Use the life table to calculate the actuarial present value of $1000
due in 30 years if (40) survives.

Problem 14–5. Use the life table to compute a21.

Problem 14–6. Find a general formula for m |näx and use it together with the life
table to compute 5 |10ä20.

Problem 14–7. Prove ax:n = 1Ex äx+1:n .

Problem 14–8. Show that δ (Ia)T + TvT = aT .

Problem 14–9. Use the previous problem to show that δ (Ia)x + (IA)x = ax. Here
(Ia)x is the actuarial present value of an annuity in which payments are made at rate
t at time t. Is there a similar formula in discrete time?

Problem 14–10. Show that äx = 1 + ax and that 1
m + a(m)

x:n = ä(m)
x:n + 1

mvn
npx.

Problem 14–11. Show that äx:n = äx − vn
npx äx+n and use this to compute ä21:5 .
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Solutions to Problems
Problem 14–1. Intuitively, as the type of annuity varies from left to right,
the annuitant receives funds sooner and thus the present value is higher. A
direct argument begins with ä(m)

x = (1 − A(m)
x )/d(m). Now d(m) increases with m,

while under UDD A(m)
x = (i/ i(m))Ax also increases with m. So the numerator of the

expression for ä(m)
x decreases with m and the denominator increases with m, so the

value decreases with m. A similar argument works for a(m)
x = (1−(i/d(m))Ax)/ i(m).

If (x) must die 5 months through the year, ä(2)
x = 1/2 < 1/3 + v1/3(1/3) = ä(3)

x , at
least for some values of v.

Problem 14–2. The status dies only if (x) dies before time n. The result is true.

Problem 14–3. False, since s̈x:n = äx:n / nEx = v−n/ npx + v−n+1px/ npx + . . . +
v−1

n−1px/ npx ≥ v−n + v−n+1 + . . . + v−1 = s̈n .

Problem 14–4. The value is 100030E40 = 1000v30 6,616,155
9,313,166 .

Problem 14–5. Here a21 = α(∞)ä21 − β(∞), under UDD.

Problem 14–6. m |näx = mExäx+m − m+nExäx+m+n.

Problem 14–7. The payment made at the end of the first year is only made
if (x) survives the year. From the point of view of the end of the first year, the
annuity immediate looks like an annuity due for (x + 1).

Problem 14–8. Use integration by parts starting with the formula δ (Ia)T =

δ

∫ T

0
t e−δ t dt.

Problem 14–10. The annuity due pays 1 now for sure, and the remaining
payments look like an annuity immediate. For the temporary annuity due, the
payment of 1/m now is certain, and the last payment of the annuity immediate
is only made upon survival. The rest of the payments are the same.

Problem 14–11. To buy a life annuity due, buy an n year temporary annuity
due today, and if you are still alive n years from now buy a life annuity due.
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Solutions to Exercises

Exercise 14–1. In this case, E[aK(x) ] = E[ 1−vK(x)

i ] = 1−v−1Ax
i .

Exercise 14–2. Here there are [mT]+1 payments, so using the geometric series
formula gives ä(m)

x = E[
∑[mT]

j=0 (1/m)vj/m] = E[(1/m)(1 − v([mT]+1)/m)/ (1 − v1/m)].
Now m(1 − v1/m) = d(m), which gives the result.

Exercise 14–3. To get your money’s worth, you must live long enough so that
the present value of the annual dues you would pay if you were not a life member
will exceed $675. This gives a condition that K(60) must satisfy if you are to
get your moneys worth.

Exercise 14–4. For the first one äx:n = E[ 1−v(K+1)∧n

d ] = E[ 1−v(K+1)∧n

d 1[0,n−1](K)] +

E[ 1−v(K+1)∧n

d 1[n,∞)(K)] = E[ 1−v(K+1)

d 1[0,n−1](K)] + E[ 1−vn

d 1[n,∞)(K)] = (1/d)(1 − Ax:n ).
A similar argument shows that ax:n = (1/ i)(A

x
1:n

+ npxvn+1).

Exercise 14–5. The argument proceeds in a similar way, beginning with the

relation a(m)
x = 1−v−1/mA(m)

x
i(m) .

Exercise 14–6. Direct reasoning gives m |näx = äx:n+m − äx:m .

Exercise 14–7. The first relationship follows directly from the given equation
and the fact that Ax = E[e−δT(x)]. Since T(x : n ) = T(x) ∧ n a similar argument
gives ax:n = (1/δ )(1 − Ax:n ).
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Solve the following 6 problems in no more than 30 minutes.

Question 15–1 . You are given q60 = 0.020, q61 = 0.022, and the fact that deaths
are uniformly distributed over each year of age. Calculate e̊60:1.5 .

A. 1.447

B. 1.457

C. 1.467

D. 1.477

E. 1.487

Question 15–2 . Simplify
(IA)x − A

x
1:1

(IA)x+1 + Ax+1
.

A. Ax

B. Ax+1

C. Ax:1

D. A
x
1:1

E. A
x:1

1

Question 15–3 . Z1 is the present value random variable for an n-year continuous
endowment insurance of 1 issued to (x). Z2 is the present value random variable for
an n-year continuous term insurance of 1 issued to (x). Calculate Var(Z1), given that
Var(Z2) = 0.01, vn = 0.30, npx = 0.80, and E[Z2] = 0.04.

A. 0.0036

B. 0.0052

C. 0.0098

D. 0.0144

E. 0.0148

Question 15–4 . You are given δ = 0,
∫ ∞

0
t tpx dt = g, and Var(aT ) = h where T is

the future lifetime random variable for (x). Express e̊x in terms of g and h.
A. h − g

B.
√

h − g

C.
√

g − h

D.
√

2g − h

E.
√

2h − g
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Question 15–5 . An insurance company has agreed to make payments to a worker
age x who was injured at work. The payments are 150,000 per year, paid annually,
starting immediately and continuing for the remainder of the worker’s life. After
the first 500,000 is paid by the insurance company, the remainder will be paid by a
reinsurance company. The interest rate i = 0.05 and tpx = (0.7)t, for 0 ≤ t ≤ 5.5 and

tpx = 0 for t > 5.5. Calculate the actuarial present value of the payments to be made
by the reinsurer.

A. Less than 50,000

B. At least 50,000 but less than
100,000

C. At least 100,000 but less than
150,000

D. At least 150,000 but less than
200,000

E. At least 200,000

Question 15–6 . For a two year term insurance on a randomly chosen member
of a population you are given that 1/3 of the population are smokers and 2/3 are
nonsmokers. The future lifetimes follow a Weibull distribution with τ = 2 and
θ = 1.5 for smokers, and τ = 2 and θ = 2.0 for nonsmokers. The death benefit is
100,000 payable at the end of the year of death, and i = 0.05. Calculate the actuarial
present value of this insurance.

A. 64,100

B. 64,300

C. 64,600

D. 64,900

E. 65,100
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Answers to Sample Questions

Question 15–1 . Here

e̊60:1.5 = E[T(60) ∧ 1.5]

=
∫ 1.5

0
t tp60µ60+t dt + 1.5P[T(60) > 1.5]

= q60/2 + p60q61

∫ 1.5

1
t dt + 1.5p601/2p61

= 1.477.

D.

Question 15–2 . The numerator is the actuarial present value of an insurance which
pays nothing for death in the first year, 2 for death in the second year, and so on.
Thus (IA)x − A

x
1:1

= vpx(Ax+1 + (IA)x+1) and the ratio is vpx = A
x:1

1 . E.

Question 15–3 . Here Z2 = vT(x)1[0,n](T(x)) and Z1 = vn1[n,∞)(T(x)) + Z2. Since the
indicators multiply to zero, E[Z2

1] = v2n
npx + E[Z2

2] = (.30)2(.80) + .01 + (.04)2 =
0.0836, and by additivity of expectation, E[Z1] = vn

npx + E[Z2] = (.30)(.80) + .04 =
.28. Thus Var(Z2) = .0836 − (.28)2 = 0.0052. B.

Question 15–4 . Since δ = 0, aT = T and thus h = Var(T). Also since E[T2] =∫ ∞

0
√tpx dt, 2g = E[T2]. Hence e̊x = E[T] =

√
2g − h. D.

Question 15–5 . The actuarial present value is
∫ 5.5

10/3
150000e−δ t

tpx dt = 55978.85,

approximately. B.

Question 15–6 . The actuarial present value is 100000(1/3(vFS(1) + v2(FS(2) −
FS(1))) + 2/3(vFN(1) + v2(FN(2) − FN(1))) where FS(t) = 1 − e−(t/1.5)2

is the lifetime
distribution for smokers and FN(t) = 1 − e−(t/2)2

is the lifetime distribution for
nonsmokers. Plugging in gives the value as 64,558.99. C.



§16. Net Premiums

The techniques developed for analyzing the value of benefit payments and
premium payments are now combined to compute the size of the premium payment
needed to pay for the benefit.

To develop the ideas consider the case of an insurer who wishes to sell a fully
discrete whole life policy which will be paid for by equal annual premium payments
during the life of the insured. The terminology fully discrete refers to the fact that
the benefit is to be paid at the end of the year of death and the premiums are to
paid on a discrete basis as well. How should the insurer set the premium? A first
approximation yields the net premium, which is found by using the equivalence
principle: the premium should be set so that actuarial present value of the benefits
paid is equal to the actuarial present value of the premiums received. Using the
equivalence principle the net premium P for a fully discrete whole life policy should
satisfy

E[vK(x)+1] = PE[äK(x)+1 ]

or
Ax − Päx = 0.

From here the net premium, which in this case is denoted Px, is easily determined.

Exercise 16–1. Use the life table to find the net premium, P30, for (30) if i = 0.06.

The notation for other net premiums for fully discrete insurances parallel the
notation for the insurance policies themselves. For example, the net annual premium
for an n year term policy with premiums payable monthly is denoted P(12)

x
1:n

.

Exercise 16–2. Use the life table to find P
30
1

:10
. What is P(12)

30
1

:10
?

Exercise 16–3. An h payment whole life policy is one in which the premiums are
paid for h years, beginnning immediately. Find a formula for hPx, the net annual
premium for an h payment whole life policy.

Example 16–1. As a more complicated example consider a recent insurance ad-
vertisement which I received. For a fixed monthly premium payment (which is
constant over time) one may receive a death benefit defined as follows:

100000 1[0,65)(K(x)) + 75000 1[65,75)(K(x))

+ 50000 1[75,80)(K(x)) + 25000 1[80,85)(K(x)).

What is the net premium for such a policy? Assume that the interest rate is 5% so
that the life table can be used for computations. Using the equivalence principle,
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§16: Net Premiums 85

the net annual premium P is the solution of the equation

Pä(12)
x:85−x

= 100000 A
x
1:65−x

+ 75000 65−x |10Ax + 50000 75−x |5Ax + 25000 80−x |5Ax

in terms of certain term and deferred term insurances.

Exercise 16–4. Compute the actual net monthly premium for (21).

The methodology for finding the net premium for other types of insurance is
exactly the same. The notation in the other cases is now briefly discussed. The most
common type of insurance policy is one issued on a semi-continuous basis. Here
the benefit is paid at the time of death, but the premiums are paid on a discrete basis.
The notation for the net annual premium in the case of a whole life policy is P(Ax).
The net annual premium for a semi-continuous term policy with premiums payable
mthly is P(m)(A

x
1:n

). The notation for other semi-continuous policies is similar.

Policies issued on a fully continuous basis pay the benefit amount at the time
of death and collect premiums in the form of a continuous annuity. Obviously, such
policies are of theoretical interest only. The notation here is similar to that of the
semi-continuous case, with a bar placed over the P. Thus P(Ax) is the premium rate
for a fully continuous whole life policy.

The equivalence principle can also be viewed in a slightly different way that is
more useful for a probabilistic analysis of the insurance process. For concreteness
consider the case of a fully discrete whole life policy with benefit 1 and annual
premiums. The prospective loss on such a policy when the annual premium is P
is the loss random variable L = vK(x)+1 − PäK(x)+1 . Notice that L is nothing more
than the present value, at the time the policy is issued, of the difference between
the policy benefit expense and the premium income. The equivalence principle sets
the premium P so that E[L] = 0, that is, the expected loss on the policy is zero. A
more detailed probabilistic analysis of the policy can be made by studying how the
random variable L deviates from its mean. This will be discussed in more detail
later.

Exercise 16–5. For the fully discrete whole life policy with premium P, what is
Var(L)?
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Problems

Problem 16–1. Show that if δ = 0 then P(Ax) = 1/ e̊x.

Problem 16–2. Arrange in increasing order of magnitude: P(2)(A40:25 ), P(A40:25 ),
P(A40:25 ).

Problem 16–3. If 15P45 = 0.038, P45:15 = 0.056 and A60 = 0.625 find P
45
1

:15
.

Problem 16–4. Use the equivalence principle to find the net annual premium for
a fully discrete 10 year term policy with benefit equal to $10,000 plus the return,
with interest, of the premiums paid. Assume that the interest rate earned on the
premiums is the same as the interest rate used in determining the premium. Use the
life table to compute the premium for this policy for (21). How does this premium
compare with 10000P

21
1

:10
?

Problem 16–5. A level premium whole life insurance of 1, payable at the end of
the year of death, is issued to (x). A premium of G is due at the beginning of each
year provided (x) survives. Suppose L denotes the insurer’s loss when G = Px, L∗

denotes the insurer’s loss when G is chosen so that E[L∗] = −0.20, and Var(L) = 0.30.
Compute Var(L∗).

Problem 16–6. A policy issued to (x) has the following features.

(1) Premiums are payable annually.

(2) The first premium is twice the renewal premium.

(3) Term insurance coverage for $100,000 plus the difference between the first
and second premium is provided for 10 years.

(4) An endowment equal to the first year premium is paid at the end of 10 years.

(5) Death claims are paid at the moment of death.

Use the equivalence principle to find an expression for the renewal net annual
premium.

Problem 16–7. A $1000 whole life policy is issued to (50). The premiums are
payable twice a year. The benefit is payable at the moment of death. Calculate the
semi-annual net premium given that A50 = 0.3 and i = 0.06.

Problem 16–8. Polly, aged 25, wishes to provide cash for her son Tad, currently
aged 5, to go to college. Polly buys a policy which will provide a benefit in the
form of a temporary life annuity due (contingent on Tad’s survival) in the amount of
$25,000 per year for 4 years commencing on Tad’s 18th birthday. Polly will make 10
equal annual premium payments beginning today. The 10 premium payments take
the form of a temporary life annuity due (contingent on Polly’s survival). According
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to the equivalence principle, what is the amount of each premium payment? Use
the life table and UDD assumption (if necessary).

Problem 16–9. Snow White, presently aged 21, wishes to provide for the welfare
of the 7 dwarfs in the event of her premature demise. She buys a whole life policy
which will pay $7,000,000 at the moment of her death. The premium payments for
the first 5 years will be $5,000 per year. According to the equivalence principle,
what should her net level annual premium payment be thereafter? Use the life table
and UDD assumption (if necessary).

Problem 16–10. The Ponce de Leon Insurance Company computes premiums for
its policies under the assumptions that i = 0.05 and µx = 0.01 for all x > 0. What
is the net annual premium for a whole life policy for (21) which pays a benefit of
$100,000 at the moment of death and has level premiums payable annually?
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Solutions to Problems

Problem 16–1. If δ = 0, Ax =
∫ ∞

0
tpx µx+t dt = 1 and ax =

∫ ∞

0
tpx dt = e̊x.

Problem 16–2. This is really a question about the present value of annuities,
since the insurance is the same in all cases. The ordering follows from a40:25 <
ä(2)

40:25
< ä40:25 .

Problem 16–3. Use the two equations P45:15 = P
4
1
5:15

+ 15E45/ ä45:15 and

P
45
1

:15
=

A45 − 15E45A60

ä45:15

= 15P45 − 15E45A60/ ä45:15 with the given information.

Problem 16–4. The present value of the benefit is 10000vK+11[0,10)(K) +
pvK+1s̈K+1 1[0,10)(K) where p is the premium. The actuarial present value of the
benefit is 10000A

x
1:10

+ päx:10 − p 10Ex ä10 . The equivalence principle gives the
premium as 10000A

x
1:10

/ ä10 .

Problem 16–5. The loss random variable is (1 + G/d)vK+1 − G/d from which
the mean and variance in the two cases can be computed and compared. In
particular Var(L) = (1 + Px/d)2Var(vK(x)+1) and Var(L∗) = (1 + G/d)2Var(vK(x)+1).
Also (1 + Px/d)E[vK+1] − Px/d = 0, from which 1 + Px/d = −1/ (Ax − 1), while
(1 + G/d)E[vK+1] − G/d = −0.20, from which 1 + G/d = −1.2/ (Ax − 1). This gives
(1 + G/d)/ (1 + Px/d) = 1.2 and Var(L∗) = (1.2)2(0.30).

Problem 16–6. If P is the renewal premium then (100000 + P)Ax:10 + 2P10Ex =
P + Päx:10 .

Problem 16–7. The annual premium p satisfies pä(2)
50 = 1000A50. UDD gives

A50 = (δ / i)A50, from which ä50 is obtained. Finally, ä(2)
50 = α(2)ä50 − β(2), and

the values of α and β can be obtained from the interest rate function table.

Problem 16–8. The premium p satisfies pä25:10 = 2500013 |4ä5. Also ä25:10 =
ä25 − 10E25ä35 and 13 |4ä5 = ä5 − 17E4ä22.

Problem 16–9. The premium p satisfies 7000000A21 = 5000ä21:5 + p5E21ä26.

Problem 16–10. Here 100000A21 = Pä21. Now since the force of mortality is
constant, the future lifetime random variable is exponentially distributed so that

A21 =
∫ ∞

0
e−δ t0.01e−0.01t dt = 0.01/ (δ + 0.01). Under the UDD approximation,

ä21 = (1 − A21)/d = (1 − (δ / i)A21)/d.
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Solutions to Exercises
Exercise 16–1. From the table, P30 = A30/ ä30 = 0.10248/15.8561.

Exercise 16–2. Now P
30
1

:10
= A

30
1

:10
/ ä30:10 . Also A

30
1

:10
= A30 − 10E30A40.

Similarly, ä30:10 = ä30 − 10E30ä400. The other premium differs only in the
denominator, since P(12)

30
1

:10
= A

30
1

:10
/ ä(12)

30:10
. Now ä(12)

30:10
= ä(12)

30 − 10E30ä(12)
40 . Since

ä(12)
30 = α(12)ä30 − β(12) and a similar expression holds for ä(12)

40 , the value of the
annuity can be computed from the life table using the interest rate function table
as well. Note that the UDD assumption has been used here.

Exercise 16–3. hPx = Ax/ äx:h .

Exercise 16–4. The net monthly premium is P/12 where P = (100000A
21
1

:44
+

75000v44
44p21A

65
1

:10
+ 50000v54

54p21A
75
1

:5
+ 25000v59

59p21A
80
1

:5
)/ ä(12)

21:64
. These

values can be computed from the life table using the techniques of an earlier
exercise.

Exercise 16–5. Using än = (1 − vn)/d and a little algebra gives L = (1 +
P/d)vK(x)+1 − P/d, so that Var(L) = (1 + P/d)2Var(vK(x)+1).
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A more realistic view of the insurance business includes provisions for expenses.
The profit for the company can also be included here as an expense.

The common method used for the determination of the expense loaded pre-
mium (or the gross premium) is a modification of the equivalence principle. Ac-
cording to the modified equivalence principle the gross premium G is set so that
on the policy issue date the actuarial present value of the benefit plus expenses is
equal to the actuarial present value of the premium income. The premium is usually
assumed to be constant. Under these assumptions a formula to determine G can be
easily written. Assume that the expenses in policy year k are ek−1 and are paid at
time k − 1, that is, at the beginning of the year. The actuarial present value of the
expenses is then given by

E[
K(x)∑

k=0

vk ek] =
∞∑

k=0

vk ek kpx.

Typically expenses are dependent on the premium. Also the sales commission is
usually dependent on the policy size.

Example 17–1. Suppose that the first year expenses for a $100,000 semi-continuous
whole life policy are 20% of premiums plus a sales commission equal to 0.5% of
the policy amount, and that the expenses for subsequent years are 10% of premium
plus $5. The gross premium G for such a policy satisfies

100000Ax + (0.20G + 500) + (0.10G + 5)ax = Gäx.

An important, and realistic, feature of the above example is the large amount of
first year expense. Expenses are now examined in greater detail.

Example 17–2. Let’s look at the previous example in the case of a policy for a
person aged 21. Assume that the interest rate is 6% and that the life table applies.
Then

G =
100, 000A21 + 495 + 5ä21

0.9ä21 − 0.1
= $516.76.

From this gross premium the company must pay $500 in fixed expenses plus 20%
of the gross premium in expenses ($120.85), plus provide term insurance coverage
for the first year, for which the net single premium is 100, 000A

21
1

:1
= $102.97. Thus

there is a severe expected cash flow strain in the first policy year! The interested
reader may wish to examine the article “Surplus Loophole” in Forbes, September
4, 1989, pages 44-48.
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Expenses typically consist of two parts. The first part of the expenses can be
expressed as a fraction of gross premium. These are expenses which depend on
policy amount, such as sales commission, taxes, licenses, and fees. The other part
of expenses consist of those items which are independent of policy amount such
as data processing fees, printing of actual policy documents, clerical salaries, and
mailing expenses.

Studying the gross premium as a function of the benefit provided can be useful.
Denote by G(b) the gross premium for a policy with benefit amount b. The value
G(0) represents the overhead involved in providing the policy and is called the
policy fee. Typically the policy fee is not zero. The ratio R(b) = G(b)/b is called the
premium rate for a policy of benefit b and reflects (approximately) the premium
change per dollar of benefit change when the benefit amount is b.

Exercise 17–1. In the example above find R(b), the premium rate for a policy of
benefit b.
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Problems

Problem 17–1. The expense loaded annual premium for an 35 year endowment
policy of $10,000 issued to (30) is computed under the assumptions that

(1) sales commission is 40% of the gross premium in the first year

(2) renewal commissions are 5% of the gross premium in year 2 through 10

(3) taxes are 2% of the gross premium each year

(4) per policy expenses are $12.50 per 1000 in the first year and $2.50 per 1000
thereafter

(5) i = 0.06

Find the gross premium using the life table.

Problem 17–2. A semi-continuous whole life policy issued to (21) has the following
expense structure. The first year expense is 0.4% of the policy amount plus $50. The
expenses in years 2 through 10 are 0.2% of the policy amount plus $25. Expenses in
the remaining years are $25, and at the time of death there is an additional expense
of $100. Find a formula for G(b). Compute G(1) and compare it to A21.

Problem 17–3. Your company sells supplemental retirement annuity plans. The
benefit under such a plan takes the form of an annuity immediate, payable monthly,
beginning on the annuitant’s 65th birthday. Let the amount of the monthly benefit
payment be b. The premiums for this annuity are collected via payroll deduction
at the end of each month during the annuitant’s working life. Set up expenses for
such a plan are $100. Subsequent expenses are $5 each month during the premium
collection period, $100 at the time of the first annuity payment, and $5 per month
thereafter. Find G(b) for a person buying the plan at age x. What is R(b)?

Problem 17–4. A single premium life insurance policy with benefits payable at the
end of the year of death is issued to (x). Suppose that

(1) Ax = 0.25

(2) d = 0.05

(3) Sales commission is 18% of gross premium

(4) Taxes are 2% of gross premium

(5) per policy expenses are $40 the first year and $5 per year thereafter

Calculate the policy fee that should be charged.
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Solutions to Problems
Problem 17–1. 10000A30:35 +0.35G+0.05Gä30:10 +(0.02G+25)ä30:35 +100 =
Gä30:35 .

Problem 17–2. bA21 + 0.002b + 25 + 0.002bä21:10 + 25ä21 + 100A21 = G(b)ä21.

Problem 17–3. 12b65−x | a(12)
x +5×12ä(12)

x +95+10065+ 1
12 −xEx = G(b)×12a(12)

x:65−x
.

Problem 17–4. G(b) = bAx + 0.18G(b) + 0.02G(b) + 35 + 5äx.
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Solutions to Exercises
Exercise 17–1. Since the premium is bR(b) when the benefit is b, the modified
equivalence principle gives bAx + (0.20bR(b) + 0.005b) + (0.20bR(b) + 5)äx =
bR(b)äx from which R(b) = (bAx + 0.005b + 5äx)/b(0.9äx − 0.20).
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Solve the following 8 problems in no more than 40 minutes.

Question 18–1 . Simplify
(s̈40:20 − ä40:20 )20E40

(
ä40:20

)2 − d.

A. 0

B. P
40
1

:20

C. A40:20

D. ä40:20 ⋅ A
40:20

1

E.
P40:20

20E40

Question 18–2 . A fully discrete 20 year endowment insurance of 1 is issued to (40).
The insurance also provides for the refund of all net premiums paid accumulated at
interest rate i if death occurs within 10 years of issue. Present values are calculated
at the same interest rate i. Using the equivalence principle, the net annual premium

payable for 20 years for this policy is
A40:20

k
. Determine k.

A. 10p40 ä10

B. ä40:20 − (IA)
40
1

:10

C. ä40:10 + s̈10 10E40

D. ä40:20 − ä40:10 + 10E40 ä10

E. 10E40(ä50:10 + s̈10 )

Question 18–3 . A 20 payment whole life insurance with annual premiums has the
following expenses:

First Years Years
Year 2-10 11 and after

Per Policy 50 20 20
Percent of Premium 110% 10% 5%

You are given äx = 16.25, äx:10 = 8.00, and äx:20 = 12.00. Gross premiums are
equal to the expense loaded premium and are expressed as f g + h where f is the rate
per $1 of face amount, g is the face amount, and h is the policy fee. Calculate h.

A. 27.00

B. 29.58

C. 33.25

D. 35.50

E. 39.44

Copyright  2006 Jerry Alan Veeh. All rights reserved.



§18: Sample Question Set 5 96

Question 18–4 . For a continuous whole life annuity of 1 on (x), T(x), the future
lifetime of (x), follows a constant force of mortality of 0.06. The force of interest is
0.04. Calculate Pr(aT(x) > ax).

A. 0.40

B. 0.44

C. 0.46

D. 0.48

E. 0.50

Question 18–5 . The distribution of Jack’s future lifetime is a two point mixture.
With probability 0.60, Jack’s future lifetime follows the Illustrative Life Table, with
deaths uniformly distributed over each year of age. With probability 0.40, Jack’s
future lifetime follows a constant force of mortality µ = 0.02. A fully continuous
whole life insurance of 1000 is issued on Jack at age 62. Calculate the benefit
premium for this insurance at i = 0.06.

A. 31

B. 32

C. 33

D. 34

E. 35

Question 18–6 . For a whole life annuity due of 1 on (x), payable annually qx = 0.01,
qx+1 = 0.05, i = 0.05, and äx+1 = 6.951. Calculate the change in the actuarial present
value of this annuity due if px+1 is increased by 0.03.

A. 0.16

B. 0.17

C. 0.18

D. 0.19

E. 0.20
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Question 18–7 . Company ABC issued a fully discrete three year term insurance of
1000 on Pat whose stated age at issue was 30. You are given q30 = 0.01, q31 = 0.02,
q32 = 0.03, q33 = 0.04, and i = 0.04. Premiums are determined using the equivalence
principle. During year 3 Company ABC discovers that Pat was really age 31 when
the insurance was issued. Using the equivalence principle, Company ABC adjusts
the death benefit to the level death benefit it should have been at issue, given the
premium charged. Calculate the adjusted death benefit.

A. 646

B. 664

C. 712

D. 750

E. 963

Question 18–8 . The pricing actuary at Company XYZ sets the premium for a fully
continuous whole life insurance of 1000 on (80) using the equivalence principle
and the assumptions that the force of mortality is 0.15 and i = 0.06. The pricing
actuary’s supervisor believes that the Illustrative Life Table with deaths uniformly
distributed over each year of age is a better mortality assumption. Calculate the
insurer’s expected loss at issue if the premium is not changed and the supervisor is
right.

A. −124

B. −26

C. 0

D. 37

E. 220
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Answers to Sample Questions

Question 18–1 . Using 20E40s̈40:20 = ä40:20 and dä40:20 = 1 − A40:20 gives

(s̈40:20 − ä40:20 )20E40
(
ä40:20

)2 − d = (1 − 20E40)/ ä40:20 − d

= (1 − 20E40 − dä40:20 )/ ä40:20

= (A40:20 − 20E40)/ ä40:20

= A
40
1

:20
/ ä40:20

= P
40
1

:20
.

B.

Question 18–2 . The equivalence principle gives

Pä40:20 = A40:20 + E[Ps̈K(40)+1 vK(40)+11[0,9](K(40))].

Now the expectation is equal to P(ä40:10 − ä10 10p40. Thus

k = ä40:20 − ä40:10 + ä10 10p40

= v10
10p40ä50:10 + ä10 10p40

= 10E40(ä50:10 + s̈10 ).

E.

Question 18–3 . The equation for the gross premium P is gAx +3020äx +0.05Päx:20 +
0.05äx:10 +P = Päx:20 , from which h = (30+20äx)/ (äx:20 −1−0.05äx:10 −0.05äx:20 ) =
35.5. D.

Question 18–4 . Here

aT =
∫ T

0
e−0.04t dt = (1 − e−0.04T)/0.04,

and ax =
∫ ∞

0
e−0.04te−0.06t dt = 10. Thus P[aT > 10] = P[T > ln(0.6)/0.04] =

e.06 ln(.6)/ .04 = 0.46. C.

Question 18–5 . Here the premium P satisfies

0.6(1000)(i/δ )A62 + 0.4(1000)
∫ ∞

0
0.02e−δ t−0.02t dt

= P
(

0.6(1 − (i/δ )A62)/δ + 0.4
∫ ∞

0
e−(δ+0.02)t dt

)
,

from which P = 31. A.
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Question 18–6 . Since äx = 1 + vpxäx+1 = 1 + vpx + v2pxpx+1äx+2 and äx+1 = 1 +
vpx+1äx+2, the given information shows äx+2 = 6.577. The original value is äx = 7.553
while the modified value is 7.730. The difference is 0.177. C.

Question 18–7 . Using the information and direct computation gives the original
premium as 18.88. The adjusted benefit is therefore 664, again by direct computa-
tion. B.

Question 18–8 . For the original calculations, a = 1/ (µ + δ ) and A = 1 − δa, so
the premium charged is 150. Using the Illustrative Life Table gives the loss at issue
with this premium as 1000A − 150a = −124. A.



§19. Multiple Lives

The study of the basic aspects of life insurance is now complete. Two different
but similar directions will now be followed in the ensuing sections. On the one
hand, types of insurance in which the benefit is paid contingent on the death or
survival of more than one life will be examined. On the other hand, the effects of
competing risks on the cost of insurance will be studied.

The first area of study will be insurance in which the time of the benefit payment
depends on more than one life. Recall that a status is an artificially constructed
life form for which there is a definition of survival and death (or decrement). The
simplest type of status is the single life status. The single life status (x) dies exactly
when (x) does. Another simple status is the certain status n . This status dies at
the end of n years. The joint life status for the n lives (x1), . . . (xn) is the status
which survives until the first member of the group dies. This status is denoted by
(x1x2 . . . xn). The last survivor status, denoted by (x1x2 . . . xn) is the status which
survives until the last member of the group dies.

When discussing a given status the question naturally arises as to how one would
issue insurance to such a status. If the constituents of the status are assumed to die
independently this problem can be easily solved in terms of what is already known.

Example 19–1. Consider a fully discrete whole life policy issued to the joint status
(xy). The net annual premium to be paid for such a policy is computed as follows.
Using the obvious notation, the premium, P, must satisfy

Axy = Päxy.

Using the definition of the joint life status gives

Axy = E[vK(x)∧K(y)+1]

and

äxy =
1 − Axy

d
which are obtained as previously.

Exercise 19–1. Obtain an expression for Axy in terms that can be computed from
the life table.

Exercise 19–2. Is Axy + Axy = Ax + Ay?

A useful technique for writing computational formulas directly is to ask the
question “Under what conditions is a payment made at time t?” The answer will
usually provide a computational formula.

Copyright  2006 Jerry Alan Veeh. All rights reserved.
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Example 19–2. What is äxy? This annuity makes a payment of 1 at time k if and
only if both (x) and (y) are alive at time k, and the probability of this is kpxy = kpx kpy.

Thus äxy =
∞∑

k=0

vk
kpx kpy.

If one is willing to assume an analytical law of mortality computations involving
joint lives can be simplified. Recall that two of the common analytical laws of
mortality are the Gompertz and Makeham laws. The Gompertz law has force of
mortality µx = Bcx. The joint survival of two independent lives (x) and (y) is
probabilistically identical with the survival of a single life (w) if and only if

µ(xy)+s = µx+s + µy+s = µw+s.

When (x) and (y) have mortality which follows Gompertz’ Law this relation holds if
w satisfies cx + cy = cw. A similar observation applies to Makeham’s law for which
the force of mortality is µx = A + Bcx. In this case, however, mimicing the joint life
(xy) requires the use of a joint life (ww) at equal ages. Here w is the solution of
2cw = cx + cy.

Exercise 19–3. Verify these assertions.

A status can also be determined by the order in which death occurs. The idea

here is similar to that used for term insurance earlier in which the status x
1 : n fails

at the time of death of (x) provided (x) dies first. As a more complicated example

the status (x : y
2) dies at the time of death of (y) provided (y) is the second to die.

Hence this status lives forever if (y) dies before (x). An insurance for such a status
is a simple case of what is known as a contingent insurance. Again, if the lives are
assumed to fail independently the computations can be reduced to those involving
cases already considered.

Exercise 19–4. Show that if X and Y are independent random variables and one
of them is absolutely continuous then P[X = Y] = 0. Hence under the standard
assumptions of this section no two people can die simultaneously.

One model for joint lives which allows for simultaneous death is the common
shock model. The intuition is that the two lives behave almost independently except
for the possibility of death by a common cause. The model is as follows. Let T∗(x),
T∗(y), and Z be independent random variables. Assume that T∗(x) and T∗(y) have
the distribution of the remaining lifetimes of (x) and (y) as given by the life table.
The random variable Z represents the time of occurrence of the common catastrophe
which will kill any survivors. The common shock model is that the true remaining
lifetimes of (x) and (y) are given as T(x) = min{T∗(x), Z} and T(y) = min{T∗(y), Z}
respectively. The key computational fact is that under the common shock model

tpxy = tpx tpy P[Z ≥ t].
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Exercise 19–5. What is the probability that (x) and (y) die simultaneously in this
model?

For the special case in which T∗(x), T∗(y), and Z have exponential distributions
with parameters µx, µy, and µz respectively, computations for the common shock
model are relatively easy, and will be explored in the problems.
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Problems

Problem 19–1. Show

tpxy = tpxy + tpx(1 − tpy) + tpy(1 − tpx).

Problem 19–2. Suppose µx = 1/ (110 − x) for 0 ≤ x < 110. Find 10p20:30, 10p20:30,
and e̊20:30.

Problem 19–3. Find an expression for the actuarial present value of a deferred
annuity of $1 payable at the end of any year as long as either (20) or (25) is living
after age 50.

Problem 19–4. Find the actuarial present value of a 20 year annuity due which
provides annual payments of $50,000 while both (x) and (y) survive, reducing by
25,000 on the death of (x) and by 12,500 on the death of (y).

Problem 19–5. Show that nq
x
1
y

= nq
xy
2 + nqx npy.

Problem 19–6. Show that A
x
1
y

− A
xy
2 = Axy − Ay.

Problem 19–7. If µx = 1/ (100 − x) for 0 ≤ x < 100, calculate 25q
25:50

2 .

Problem 19–8. If the probability that (35) will survive for 10 years is a and the
probability that (35) will die before (45) is b, what is the probability that (35) will
die within 10 years after the death of (45)? Assume the lives are independent.

Problem 19–9. Suppose that in the common shock model T∗(x), T∗(y), and Z have
exponential distributions with parameters µx, µy, and µz respectively. Find the net
single premium for a continuous whole life policy of 1 on the joint life (xy). Assume
the force of interest is δ > 0.

Problem 19–10. Find an expression for the net single premium for a continuous

whole life policy of 1 issued to (x1y), a status which fails when (x) dies if T(x) < T(y).

Problem 19–11. Find an expression for the net single premium for a continuous

whole life policy issued to (xy
2), where the benefit is paid on the death of (y) if

T(x) < T(y).
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Solutions to Problems
Problem 19–1. tpxy = P[[T(x) ≥ t] ∪ [T(y) ≥ t]] = P[T(x) ≥ t, T(y) ≥
t] + P[T(x) ≥ t, T(y) ≤ t] + P[T(x) ≤ t, T(y) ≥ t].

Problem 19–2. From the form of the force of mortality, DeMoivre’s Law holds,
so 10p20:30 = 10p20 10p30 = (80/90)(70/80). Also, 10p20:30 = 1 − 10q20 10q30, and

e̊20:30 =
∫ ∞

0
tp20:30 dt =

∫ 80

0

90 − t
90

80 − t
80

dt.

Problem 19–3. 30 | a20 + 25 | a25 − 30 | a20:25.

Problem 19–4. The annuity pays 12,500 for 20 years no matter what so the
actuarial present value consists of 3 layers giving 25, 000äx:20 + 12, 5000äy:20 +
12, 500ä20 .

Problem 19–5. The event that (x) dies first and within n years occurs if (y)
dies second within n years (so that both die) or (x) dies within n years and (y)
survives n years.

Problem 19–6. If (x) dies before (y), the insurance on the left side pays 1 at the
death of (x) and takes back 1 at the death of (y); the insurance on the right side
does the same. If (y) dies before (x) the insurance on the left side pays nothing,
and neither does the insurance on the right side.

Problem 19–7. DeMoivre’s Law holds and a picture shows that the probability
is the area of a triangle, which is (1/2)252/ (50)(75) = 1/12.

Problem 19–8. P[T(35) > T(45) + 10] =
∫ ∞

0 P[T(35) > t + 10]tp45µ45+t dt =∫ ∞
0 P[T(35) > t+10 |T(35) ≥ 10]P[T(35) ≥ 10]tp45µ45+t dt = a

∫ ∞
0 P[T(45)+10 >

t + 10]tp45µ45+t dt = a
∫ ∞

0 (tp45)2µ45+t dt =
∫ ∞

0 −tp45
d
dt tp45 dt = a/2. Thus the

desired probability is 1 − a/2 − b.

Problem 19–9. In this case T(xy) has an exponential distribution with parameter
µx + µy + µz, so the net single premium is (µx + µy + µz)/ (µx + µy + µz + δ ).

Problem 19–10. The net single premium is
∫ ∞

0
vt

tpxµx+t tpy dt.

Problem 19–11. The premium is
∫ ∞

0
vt

tqxtpyµy+t dt.
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Solutions to Exercises
Exercise 19–1. Using the independence gives tpxy = tpxtpy, so that Axy =
E[vK(xy)+1] =

∑∞
k=0 vk+1(kpxy − k+1pxy) =

∑∞
k=0 vk+1(kpxkpy − k+1pxk+1py).

Exercise 19–2. Intuitively, either (x) dies first or (y) dies first, so the equation
is true. This can be verified by writing the expectations in terms of indicators.

Exercise 19–3. Under Makeham the requirement is that (A+Bcx+s)+(A+Bcy+s) =
(A + Bcw+s) + (A + Bcw+s) for all s, and this holds if cx + cy = 2cw.

Exercise 19–4. If X is absolutely continuous, P[X = Y] =
∫ ∞

−∞
P[Y =

x] fX(x) dx. This probability is zero since P[Y = x] is non zero for at most
countably many values of x.

Exercise 19–5. In the common shock model, (x) and (y) die simultaneously if
T∗(x) > Z and T∗(y) > Z. By conditioning on the value of Z the probability of

simultaneous death is
∫ ∞

−∞
P[T∗(x) > z]P[T∗(y) > z]fZ(z) dz when Z is absolutely

continuous. Here the independence of T∗(x) and T∗(y) was used.
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In contrast to the case in which a status is defined in terms of multiple lives, the
way in which a single life fails can be studied. This point of view is particularly
important in the context of the analysis of pension plans. In such a setting a person
may withdraw from the workforce (a ‘death’) due to accident, death, or retirement.
Different benefits may be payable in each of these cases. A common type of
insurance in which a multiple decrement model is appropriate is in the double
indemnity life policy. Here the benefit is twice the face amount of the policy if
the death is accidental. In actuarial parlance the termination of a status is called a
decrement and multiple decrement models will now be developed. These models
also go by the name of competing risk models in other contexts.

To analyze the new situation, introduce the random variable J = J(x) which is a
discrete random variable denoting the cause of decrement of the status (x). Assume
that J(x) has as possible values the integers 1, . . . , m. All of the information of
interest is contained in the joint distribution of the random variables T(x) and J(x).
Note that this joint distribution is of mixed type since (as always) T(x) is assumed
to be absolutely continuous while J(x) is discrete. The earlier notation is modified
in a fairly obvious way to take into account the new model. For example,

tq
(j)
x = P[0 < T(x) ≤ t, J(x) = j].

and

tp
(j)
x = P[T(x) > t, J(x) = j].

Here ∞q(j)
x gives the marginal density of J(x). To discuss the probability of death due

to all causes the superscript (τ) is used. For example,

tq
(τ)
x = P[T(x) ≤ t] =

m∑

j=1
tq

(j)
x

and a similar expression for the survival probability holds. Although tq(τ)
x + tp(τ)

x = 1
a similar equation for the individual causes of death fails unless m = 1. For the
force of mortality from all causes

µ
(τ)
x+t =

fT(x)(t)
P[T(x) > t]

,

as before, and the force of mortality due to cause j is

µ
(j)
x+t =

fT(x) J(x)(t, j)
P[T(x) > t]

.

The force of mortality due to cause j represents the instantaneous death rate in an
imaginary world in which cause j is the only possible cause of death. For this reason,

and also directly from the defining formula, µ
(τ)
x =

m∑

j=1

µ
(j)
x .
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Care must be exercised in the use of these formulas. In particular, while

tp
(τ)
x = exp{−

∫ t

0
µ

(τ)
x+s ds}

the inequality

tp
(j)
x ≠ exp{−

∫ t

0
µ

(j)
x+s ds}

is generally true. This latter integral does have an important use which is explored
below.

An important practical problem is that of constructing a multiple decrement life
table. To see how such a problem arises consider the case of a double indemnity
whole life policy. Assume that the policy will pay an amount $1 at the end of the
year of death if death occurs due to non-accidental causes and an amount of $2 if
the death is accidental. Denote the type of decrement as 1 and 2 respectively. The
present value of the benefit is then

vK(x)+1 1{1}(J(x)) + 2vK(x)+11{2}(J(x)) = J(x)vK(x)+1
.

To compute the net premium the expectation of this quantity must be computed.
This computation can only be completed if p(j)

x is known. How are these probabilities
calculated?

There are two basic methodologies used. If a large group of people for which
extensive records are maintained is available the actual survival data with the deaths
in each year of age broken down by cause would also be known. The multiple
decrement table can then be easily constructed. This is seldom the case.

Example 20–1. An insurance company has a thriving business issuing life insurance
to coal miners. There are three causes of decrement (death): mining accidents, lung
disease, and other causes. From the company’s vast experience with coal miners a
decrement (life) table for these three causes of decrement is available. The company
now wants to enter the life insurance business for salt miners. Here the two causes of
decrement (death) are mining accidents and other. How can the information about
mining accidents for coal miners be used to get useful information about mining
accidents for salt miners?

A simple-minded answer to the question raised in the example would be to
simply lift the appropriate column from the coal miners life table and use it for the
salt miners. Such an approach fails, because it does not take into account the fact
that there are competing risks, that is, the accident rate for coal miners is affected by
the fact that some miners die from lung disease and thus are denied the opportunity
to die from an accident. The death rate for each cause in the absence of competing
risk is needed.
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To see how to proceed the multiple decrement process is examined in a bit more
detail. As mentioned earlier, µ (j)

x , the instantaneous death rate due to cause j, is the
death rate in an imaginary world in which cause j is the only cause of decrement.
Intuitively, this is because a person can not simultaneously die of 2 causes. Thus on
an instantaneous basis, there is no competing risk. This fact leads to the introduction
of the quantities

tp′(j)
x = exp{−

∫ t

0
µ

(j)
x+s ds}

and

tq′(j)
x = 1 − tp′(j)

x .

The probability tq′(j)
x is called the net probability of decrement (or absolute rate

of decrement). The absolute rate of decrement tq′(j)
x is the probability of decrement

for (x) within t years in the imaginary world in which cause j is the only cause of
decrement.

These probabilities may be used to obtain the desired entries in a multiple
decrement table as follows. First

tp
(τ)
x =

m∏

j=1
tp′(j)

x

since, as remarked earlier, µ
(τ)
x =

m∑

j=1

µ
(j)
x . This shows how one can pass from the

absolute rate of decrement to total survival probabilities. Note that this relationship
implies that the rates are generally larger than the total survival probability.

Connecting the rates of decrement to the entries in the multiple decrement
table can be accomplished under several differnet types of assumptions. As a first
illustration, suppose that the force of mortality for each decrement over each year
of age in the multiple decrement table is constant. This means that µ

(j)
x+t = µ (j)

x for
0 < t < 1 and 1 ≤ j ≤ m. Consequently, µ

(τ)
x+t = µ (τ)

x too. So

q(j)
x =

∫ 1

0
sp

(τ)
x µ

(j)
x+s ds

=
∫ 1

0
sp

(τ)
x µ

(j)
x ds

=
µ (j)

x

µ
(τ)
x

∫ 1

0
sp

(τ)
x µ

(τ)
x ds

=
µ (j)

x

µ
(τ)
x

q(τ)
x

=
ln p′(j)

x

ln p(τ)
x

q(τ)
x
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or briefly,

p′x (j)
=
(
p(τ)

x

)q(j)
x /q(τ)

x
.

From this relation the rates of decrement can be found if the multiple decrement
table is given. Conversely, if all of the rates of decrement are known, the multiple
decrement table can be constructed by using this relation and the fact that 1 − q(τ)

x =

p(τ)
x =

m∏

j=1

p′(j)
x .

This solves the problem of computing the entries in a multiple decrement table
under the stated assumption about the structure of the causes of decrement in that
table.

Exercise 20–1. What happens if p(τ)
x = 1?

Exercise 20–2. Show that the same formula results if one assumes instead that the
time of decrement due to each cause of decrement in the multiple decrement table
has the uniform distribution over the year of decrement. (This assumption means
that tq(j)

x = t ⋅ q(j)
x .)

Exercise 20–3. Assume that two thirds of all deaths at any age are due to accident.
What is the net single premium for (30) for a double indemnity whole life policy?
How does this premium compare with that of a conventional whole life policy?

The previous computations were based on assumptions about the causes of
decrement within the multiple decrement table. In some contexts it is more sensible
to make assumptions about the structure of the individual causes of decrement as
if each were acting independently, that is, to make assumptions about the absolute
rate of decrement in the single decrement tables.

Example 20–2. Suppose we are designing a pension plan and that there are two
causes of decrement: death and retirement. In many contexts (such as teaching)
retirements might be assumed to all occur at the end of a year, while deaths can occur
at any time. How could we construct a multiple decrement table which reflects this
assumption?

The key observation here is that the force of mortality due to cause j can
be computed in two ways: within the multiple decrement table, and within the
imaginary world in which cause j is the only cause of decrement. The results of
these two computations must be equal, since on an instantaneous basis there are no
competing risks. Thus

d
ds sq

(j)
x

sp
(τ)
x

= µ
(j)
x+s =

d
ds sq′x (j)

sp′x (j) .
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This key relationship, together with assumptions about mortality within the single
decrement table, is sufficient to find the connection between the rates of decrement
and the multiple decrement table.

One common assumption about a single decrement is the assumption of uniform
distribution of deaths in the year of death. In the multiple decrement context this
translates into the statement that for 0 ≤ t ≤ 1

tq′(j)
x = t q′(j)

x .

Using this assumption together with the key relationship above permits the following
type of computation. The computations are illustrated for the case of 2 causes of
decrement. In this setting

q(1)
x =

∫ 1

0
sp

(τ)
x µ

(1)
x+s ds

=
∫ 1

0
sp′(1)

x sp′(2)
x µ

(1)
x+s ds

=
∫ 1

0
sp′(1)

x sp′(2)
x

d
ds sq′x (1)

sp′x (1) ds

= q′(1)
x

∫ 1

0
sp′(2)

x ds

= q′(1)
x

∫ 1

0
(1 − sq′(2)

x ) ds

= q′(1)
x (1 −

1
2

q′(2)
x )

with a similar formula for q(2)
x . This procedure could be modified for different

assumptions about the decrement in each single decrement table.

Exercise 20–4. Construct a multiple decrement table in which the first cause of
decrement is uniformly distributed and the second cause has all decrements occur
at the end of the year. The pension plan described in the example above illustrates
the utility of this technique.

Another approximation which is used to connect single and multiple decrement
tables makes use of the life table functions

Lx =
∫ 1

0
lx+t dt

mx =
lx − lx+1

Lx

which are sometimes used in the single decrement case. Intuitively, Lx is the number
of person years lived by those dying with age between x and x + 1. Hence Lx is a
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weighted average of lx and lx+1 with the weights determined by the pattern of death
in that year of age. So mx = dx/Lx is perhaps a more reasonable estimate of qx than
some other measures which have been used. The function mx is called the central
death rate at age x.

In the context of a multiple decrement table the central rate of death is used in
a special technique, called the central rate bridge. This technique is now briefly
described. Define

m(τ)
x =

∫ 1

0
tp

(τ)
x µ

(τ)
x+t dt

∫ 1

0
tp

(τ)
x dt

=
q(τ)

x∫ 1

0
tp

(τ)
x dt

and

m(j)
x =

∫ 1

0
tp

(τ)
x µ

(j)
x+t dt

∫ 1

0
tp

(τ)
x dt

=
q(j)

x∫ 1

0
tp

(τ)
x dt

and

m′(j)
x =

∫ 1

0
tp′(j)

x µ
(j)
x+t dt

∫ 1

0
tp′(j)

x dt
=

q′(j)
x∫ 1

0
tp′(j)

x dt
.

The central rate bridge is based on the following approximation. First, under the
UDD assumption in each single decrement table

m′(j)
x =

q′(j)
x

1 − 1
2q′(j)

x
.

Second, under the UDD assumption in the multiple decrement table

m(j)
x =

q(j)
x

1 − 1
2q(τ)

x
.

Thirdly, under the constant force assumption in the multiple decrement table

m(j)
x = µ

(j)
x = m′(j)

x .

Now assume that all of these equalities are good approximations in any case. This
assumption provides a way of connecting the single and multiple decrement tables.
There is no guarantee of the internal consistency of the quantities computed in this
way, since, in general, the three assumptions made are not consistent with each
other. The advantage of this method is that the computations are usually simpler
than for any of the ‘exact’ methods.

Exercise 20–5. Show that each of the above equalities hold under the stated as-
sumptions.



§20: Multiple Decrement Models 112

Problems

Problem 20–1. Assume that each decrement has a uniform distribution over each
year of age in the multiple decrement table to construct a multiple decrement table
from the following data.

Age q′(1)
x q′(2)

x q′(3)
x

62 0.020 0.030 0.200
63 0.022 0.034 0.100
64 0.028 0.040 0.120

Problem 20–2. Rework the preceding exercise using the central rate bridge. How
different is the multiple decrement table?

Problem 20–3. In a double decrement table where cause 1 is death and cause 2 is
withdrawal it is assumed that deaths are uniformly distributed over each year of age
while withdrawals between ages h and h + 1 occur immediately after attainment of
age h. In this table one sees that l(τ)

50 = 1000, q(2)
50 = 0.24, and d(1)

50 = 0.06d(2)
50 . What

is q′(1)
50 ? How does your answer change if all withdrawals occur at midyear? At the

end of the year?

Problem 20–4. The following data was collected from independent samples at
various stages of the development of the apple maggot.

Number of Deaths by Cause
Development Number 1 (predator) 2 (parasite) 3 (disease) 4 (other)

Stage x Observed
0 (egg) 977 0 0 687 14

1 (early larvae) 963 0 224 126 87
2 (late larvae) 153 65 12 0 0

3 (early pupae) 435 88 143 10 0
4 (late pupae) 351 78 45 19 54

Use the given data to construct a multiple decrement life table using l0 = 10, 000.

Problem 20–5. Refer to the preceding problem and find the absolute rate of decre-
ment for each stage of development and each cause of decrement.

Problem 20–6. Refer to the previous problem and construct the multiple decrement
table that would hold if death by disease were completely eliminated.

Problem 20–7. How would you construct a multiple decrement table if you were
given q′(1)

x , q′(2)
x , and q(3)

x ? What assumptions would you make, and what formulas
would you use? What if you were given q′(1)

x , q(2)
x , and q(3)

x ?
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Solutions to Problems

Problem 20–1. First, p(τ)
62 = (.98)(.97)(.80) and q(τ)

62 = 1 − p(τ)
62 . Also p′(j)

62 =

1−q′(j)
62 . From the relation q(j)

62 =
ln p′(j)

62

ln p(τ)
62

q(τ)
62 the first row of the multiple decrement

table can be found.

Problem 20–3. From the information d(2)
50 = 240 and d(1)

50 = 14. Since with-
drawals occur at the beginning of the year there are 1000 − 240 = 760 people
under observation of whom 14 die. So q′(1)

50 = 14/760. If withdrawals occur at
year end all 1000 had a chance to die so q′(1)

50 = 14/1000.

Problem 20–4. The life table constructed from the given information is as
follows.

x lx dx d(1)
x d(2)

x d(3)
x d(4)

x
0 (egg) 10000.00 7175.03 0.00 0.00 7031.73 143.30

1 (early larvae) 2824.97 1281.95 0.00 657.11 369.62 255.22
2 (late larvae) 1543.03 776.56 655.54 121.02 0.00 0.00

3 (early pupae) 766.47 424.64 155.06 251.97 17.62 0.00
4 (late pupae) 341.83 190.88 75.96 43.82 18.50 52.59

5 (adult) 150.95

This can also be given as follows.

x px qx q(1)
x q(2)

x q(3)
x q(4)

x
0 (egg) 0.2825 0.7175 0.0000 0.0000 0.7032 0.0143

1 (early larvae) 0.5462 0.4538 0.0000 0.2326 0.1308 0.0903
2 (late larvae) 0.4967 0.5033 0.4248 0.0784 0.0000 0.0000

3 (early pupae) 0.4460 0.5540 0.2023 0.3287 0.0230 0.0000
4 (late pupae) 0.4416 0.5584 0.2222 0.1282 0.0541 0.1538

Problem 20–5. Under the UDD assumption in the multiple decrement table,
the absolute rates of decrement are as follows.

x px qx q′(1)
x q′(2)

x q′(3)
x q′(4)

x
0 (egg) 0.2825 0.7175 0.0000 0.0000 0.7103 0.0249

1 (early larvae) 0.5462 0.4538 0.0000 0.2665 0.1600 0.1134
2 (late larvae) 0.4967 0.5033 0.4460 0.1033 0.0000 0.0000

3 (early pupae) 0.4460 0.5540 0.2554 0.3807 0.0330 0.0000
4 (late pupae) 0.4416 0.5584 0.2777 0.1711 0.0762 0.2016

Problem 20–6. Under UDD in the multiple decrement table, after setting the
absolute rate of decrement for disease to zero, the multiple decrement table
would be as follows.

x px qx q(1)
x q(2)

x q(3)
x q(4)

x
0 (egg) 0.9751 0.0249 0.0000 0.0000 0.0000 0.0249

1 (early larvae) 0.6503 0.3497 0.0000 0.2519 0.0000 0.0978
2 (late larvae) 0.4967 0.5033 0.4248 0.0784 0.0000 0.0000

3 (early pupae) 0.4612 0.5388 0.2053 0.3336 0.0000 0.0000
4 (late pupae) 0.4780 0.5220 0.2300 0.1327 0.0000 0.1593

Problem 20–7. The central rate bridge could be used. Is there an exact method
available?
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Solutions to Exercises
Exercise 20–1. What would this mean for µ (τ)

x and the derivation?

Exercise 20–2. The assumption is that tq
(j)
x = tq(j)

x for all j. Hence tp(τ)
x =

1 − tq(τ)
x and µ

(j)
x+s = d

ds sq
(j)
x / sp(τ)

x = q(j)
x / sp(τ)

x . Substitution and integration gives

p′(j)
x = e−

∫ 1

0
µ

(j)
x+s ds = (1 − q(τ)

x )q(j)
x /q(τ)

x . Since p(τ)
x = 1 − q(τ)

x , the result follows by
substitution.

Exercise 20–3. The actuarial present value of the benefit is (1/3) × 1 × Ax +
(2/3) × 2 × Ax = (5/3)Ax, from which the premium is easily calculated.

Exercise 20–4. Since cause 1 obeys UDD, q(1)
x = q′(1)

x

∫ 1
0 sp′(2)

x ds as in the
derivation above. For cause 2, sp′(2)

x = 1 for s < 1, so q(1)
x = q′(1)

x . For cause 2
proceed as in the derivation above to get q(2)

x =
∫ 1

0 sp′(1)
x

d
ds sq′(2)

x ds. Now sq′(2)
x is

0 except for a jump of size q′(2)
x at s = 1. Hence q(2)

x = q′(2)
x p′(1)

x = q′(2)
x (1 − q′(1)

x ).
Notice that the integral has been interpreted as a Stieltjes integral in order to take
the jump into account.

Exercise 20–5. Under UDD in the single decrement table tp′(j)
x = 1 − tq′(j)

x and

tp′(j)
x µ

(j)
x+t = q′(j)

x so m′(j)
x =

∫ 1
0 q′(j)

x dt/
∫ 1

0 (1 − tq′(j)
x ) dt = q′(j)

x / (1 − 1
2 q′(j)

x ). Under

UDD in the multiple decrement table µ
(j)
x+s = q(j)

x / sp(τ)
x so that substitution gives

the result. Under the constant force assumption in the multiple decrement table,
µ

(j)
x+s = µ

(j)
x for all j and m(i)

x = µ
(j)
x = m′(j)

x by substitution.
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Solve the following 9 problems in no more than 45 minutes.

Question 21–1 . A life insurance on John and Paul pays

(1) 1 at the death of John if Paul is alive

(2) 2 at the death of Paul if John is alive

(3) 3 at the death of John if Paul is dead

(4) 4 at the death of Paul if John is dead.

John and Paul are independent risks, both age x. Calculate the actuarial present
value of the insurance provided.

A. 7Ax − 2Axx

B. 7Ax − 4Axx

C. 10Ax − 2Axx

D. 10Ax − 4Axx

E. 10Ax − 5Axx

Question 21–2 . You are given lxy = lxly and dxy = lxy − lx+1:y+1. Which of the
following is equivalent to dxy − dxdy?

A. lx+1ly+1

[
pxqy + qxpy

pxpy

]

B. lx+1ly+1

[
pxqy + qxpy

qxqy

]

C. lxly

[
pxqy + qxpy

pxpy

]

D. lxly

[
pxqy + qxpy

qxqy

]

E. lxly
[
pxqx + qypy

]
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Question 21–3 . In a double decrement table you are given

x q(1)
x q(2)

x l(τ)
x

25 0.01 0.15
26 0.01 0.10 8,400

Calculate the effect on d(1)
26 if q(2)

25 changes from 0.15 to 0.25.
A. decrease by 10

B. decrease by 5

C. increase by 5

D. increase by 10

E. increase by 15

Question 21–4 . Given the following data from a double decrement table, calculate
d(2)

65 .

(1) l(τ)
63 = 500

(2) q(1)
63 = 0.050

(3) q(2)
63 = 0.500

(4) 1 | q
(1)
63 = 0.070

(5) 2 | q
(1)
63 = 0.042

(6) 2q(2)
63 = 0.600

(7) l(τ)
66 = 0

A. 100

B. 105

C. 109

D. 114

E. 119

Question 21–5 . A multiple decrement table has 2 decrements, death (d) and
withdrawal (w). Withdrawals occur once a year three-fourths of the way through
the year of age. Deaths in the associated single decrement table are uniformly
distributed over each year of age. You are given l(τ)

x = 1000, q′(w)
x = 0.2, and

l(τ)
x+1 = 720. Calculate d(d)

x .
A. 80

B. 83

C. 90

D. 93

E. 95
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Question 21–6 . In a triple decrement table, lives are subject to decrements of death
(d), disability (i), and withdrawal (w). The total decrement is uniformly distributed
over each year of age, l(τ)

x = 25, 000, l(τ)
x+1 = 23, 000, m(d)

x = 0.02, and m(w)
x = 0.05.

Calculate q(i)
x , the probability of decrement by disability at age x.

A. 0.0104

B. 0.0112

C. 0.0120

D. 0.0128

E. 0.0136

Question 21–7 . In a double decrement table, l(τ)
30 = 1000, q′(1)

30 = 0.100, q′(2)
30 =

0.300, 1 | q
(1)
30 = 0.075, and l(τ)

32 = 472. Calculate q(2)
31 .

A. 0.11

B. 0.13

C. 0.14

D. 0.15

E. 0.17

Question 21–8 . For a last survivor insurance of 10,000 on independent lives (70)
and (80) you are given that the benefit, payable at the end of the year of death, is
paid only if the second death occurs during year 5. Mortality follows the Illustrative
Life Table, and i = 0.03. Calculate the actuarial present value of this insurance.

A. 235

B. 245

C. 255

D. 265

E. 275

Question 21–9 . For a last survivor whole life insurance of 1000 on (x) and (y)
the death benefit is payable at the moment of the second death. The independent
random variables T∗(x), T∗(y), and Z are the components of a common shock model.
T∗(x) has an exponential distribution with µT∗(x)

x (t) = 0.03 for t > 0. T∗(y) has an
exponential distribution with µT∗(y)

y (t) = 0.05 for t > 0. Z the common shock random
variable, has an exponential distribution with µZ(t) = 0.02 for t > 0. The force of
interest is δ = 0.06. Calculate the actuarial present value of this insurance.

A. 0.216

B. 0.271

C. 0.326

D. 0.368

E. 0.423
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Answers to Sample Questions

Question 21–1 . The present value of benefit random variable is vJ1J<P + 2vP1P<J +
3vJ1P<J +4vP1J<P = 3vJ +4vP −2vJ1J<P −2vP1P<J. The expectation is thus 7Ax −2Axx.
A.

Question 21–2 . From the given information, dxy − dxdy = lxly − lx+1ly+1 − dxdy =
(lx+1 +dx)(ly+1 +dy)−lx+1ly+1 −dxdy = lx+1dy +ly+1dx = lx+1lyqy +ly+1lxqx = lx+1ly+1(qy/py +
qx/px).A.

Question 21–3 . With the current table d(1)
26 = 84, and l(τ)

25 (1 − .01 − .15) = 8400 so
l(τ)
25 = 10000. With the change, l(τ)

26 = 10000(1 − .01 − .25) = 7400 giving the new
value of d(1)

26 = 74. A.

Question 21–4 . The first 3 facts give l(τ)
64 = 500 − 25 − 250 = 225. The fourth

fact gives 0.07 = p(τ)
63 q(1)

64 , so d(1)
64 = 35. The sixth fact gives 0.60 = q(τ)

63 + p(τ)
63 q(2)

64

and using what has been determined, d(2)
64 = 50 so that l65 = 140. The fifth fact

gives 0.042 = q(1)
65 p(τ)

64 p(τ)
63 , from which d(1)

65 = 21, from which the last fact gives
d(2)

65 = 140 − 21 = 119. E.

Question 21–5 . Since p(τ)
x = p′(d)

x p′(w)
x , the information given yields p′(d)

x = .9. Thus
under the UDD assumption, there are 75 deaths in the first three-fourths of the year,
leaving 925 alive of which 20% withdraw. Thus there are 740 left alive after the
withdrawals, of which 20 must die since lx+1 = 720. Thus there were 95 deaths. E.

Question 21–6 . Under the UDD assumption, m(j)
x = q(j)

x / (1 − 0.5q(τ)
x ). Since q(τ)

x =
2000/25000 = 0.08, q(i)

x = q(τ)
x − q(d)

x − q(w)
x = 0.08 − 0.96(0.02) − 0.96(0.05) = 0.0128.

D.

Question 21–7 . From the information, p(τ)
30 = (.9)(.7) = .63 so that l(τ)

31 = 630.
Now 1 | q

(1)
30 = p(τ)

30 q(1)
31 so that q(1)

31 = .075/ .63. Thus d(1)
31 = 75 and d(2)

31 = 83. Hence
q(2)

31 = 83/630 = 0.131. B.

Question 21–8 . The benefit is paid if (70) dies in year 5 and (80) dies in year 4 or
before, or if (80) dies in year 5 and (70) dies in year 5 or before. This probability is

5664051
6616155

47.31
1000

(1 −
2660734
3914365

) +
2660734
3914365

113.69
1000

(1 −
5396001
6616155

) = 0.27223.

Multiplication of the probability by 10, 000v5 gives the value as 234.83. A.

Question 21–9 . The value of a last survivor policy is the sum of the individual
policies minus the value of a joint survivor policy. Now T(x) has an exponential
distribution with parameter .05; T(y) is exponential with parameter 0.07; and the
joint life is exponential with parameter 0.10. The desired value is thus .05/ .11 +
.07/ .13 − .1/ .16 = 0.368. D.



§22. Insurance Company Operations

The discussion thus far has been about individual policies. In the next few
sections the operations of the company as a whole are examined. This examination
begins with an overview of the accounting practices of an insurance company. This
is followed by a study of the behavior of the loss characteristics of groups of similar
policies. This last study leads to another method of setting premiums for a policy.
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A realistic model for both insurance policies and the method and amount of
premium payment is now in hand. The next question is how accounting principles
are applied to the financial operations of insurance companies.

A basic review of accounting principles is given first. There are three broad
categories of items for accounting purposes: assets, liabilities, and equity. Assets
include everything which is owned by the business. Liabilities include everything
which is owed by the business. Equity consists of the difference in the value of the
assets and liabilities. Equity could be negative. In the insurance context liabilities
are referred to as reserve and equity as surplus. When an insurance policy is
issued the insurance company is accepting certain financial obligations in return for
the premium income. The basic question is how this information is reflected in
the accounting statements of the company. Keep in mind that this discussion only
concerns how the insurance company prepares accounting statements reflecting
transactions which have occurred. The method by which gross (or net) premiums
are calculated is not being changed!

Example 23–1. Suppose the following data for an insurance company is given.

Income for Year Ending December 31, 1990
Premiums 341,000
Investment Income 108,000
Expenses 112,000
Claims and Maturities 93,000
Increases in Reserves —
Net Income —

Balance Sheet
December 31, 1989 December 31, 1990

Assets 1,725,000 —
Reserves — 1,433,000
Surplus 500,000 —

The missing entries in the tables can be filled in as follows (amounts in thou-
sands). Total income is 341 + 108 = 449 while total expenses are 112 + 93 = 205,
so net income (before reserve contributions) is 449 − 205 = 244. Now the reserves
at the end of 1989 are 1, 725 − 500 = 1, 225, so the increase in reserves must be
1, 433 − 1, 225 = 208. The net income is 244 − 208 = 36. Hence the 1990 surplus
is 536 and the 1990 assets are 1,969.

The central question in insurance accounting is “How are liabilities measured?”
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The answer to this question has some very important consequences for the operation
of the company, as well as for the financial soundness of the company. The general
equation is

Reserve at time t = Actuarial Present Value at time t of future benefits

− Actuarial Present Value at time t of future premiums.

The only accounting assumption required is one regarding the premium to be used
in this formula. Is it the net premium, gross premium, or ???

The only point of view adopted here is that liabilities are measured as the
net level premium reserves. This is the reserve computed under the accounting
assumption that the premium charged for the policy is the net level premium. To
see that this might be a reasonable approach, recall that the equivalence principle
sets the premium so that the actuarial present value of the benefit is equal to the
actuarial present value of the premiums collected. However, after the policy is
issued the present value of the benefits and of the un-collected premiums will no
longer be equal, but will diverge in time. This is because the present value of the
unpaid benefits will be increasing in time and the present value of the uncollected
premiums will decrease in time. The discrepency between these two amounts at any
time represents an unrealized liability to the company. To avoid a negative surplus
(technical bankruptcy), this liability must be offset in the accounting statements of
the company by a corresponding asset. Assume (for simplicity) that this asset takes
the form of cash on hand of the insurance company at that time. How does one
compute the amount of the reserve at any time t under this accounting assumption?
This computation is illustrated in the context of an example.

Example 23–2. Consider a fully discrete whole life policy issued to (x) in which
the premium is payable annually and is equal to the net premium. What is the
reserve at time k, where k is an integer? To compute the reserve simply note that
if (x) has survived until time k then the (curtate) remaining life of x has the same
distribution as K(x + k). The outstanding benefit has present value vK(x+k)+1 while
the present value of the remaining premium income is äK(x+k)+1 times the annual
premium payment. Denote by kL the random variable which denotes the size of the
future loss at time k. Then

kL = vK(x+k)+1 − PxäK(x+k)+1 .

The reserve, denoted in this case by kVx, is the expectation of this loss variable.
Hence

kVx = E[kL] = Ax+k − Pxäx+k.

This is called the prospective reserve formula, since it is based on a look at the
future performance of the insurance portfolio. The prospective reserve formula is
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the statement that the reserve at the end of policy year k is the expected future loss
on the policy.

A word about notation. In the example above the reserve has been computed for
a discrete whole life policy. The notation for the reserves for other types of policies
parallel the notation for the premiums for the policy. Thus kVx

1:n
is the reserve at

time k for a fully discrete n year term policy. When discussing general principles
the notation kV is used to denote the reserve at time k for a general policy.

Exercise 23–1. What types of policies have reserves tV(A
x
1:n

), kV(A
x
1:n

), and kV(äx)?

Certain timing assumptions regarding disbursements and receipts have been
made in the previous computation. Such assumptions are always necessary, so they
are now made explicit. Assume that a premium payment which is due at time t is
paid at time t+; an endowment benefit due at time t is paid at time t+; a death benefit
payment due at time t is assumed to be paid at time t−, that is, just before time t.
Interest earned for the period is received at time t−. Thus tVx includes any interest
earned and also the effects of any non-endowment benefit payments but excludes
any premium income payable at time t and any endowment payments to be made at
time t. Also assume that the premium charged is the net level premium. Therefore
the full technical description of what has been computed is the net level premium
terminal reserve. One can also compute the net level premium initial reserve
which is the reserve computed right at time t. This initial reserve differs from the
terminal reserve by the amount of premium received at time t and the amount of the
endowment benefit paid at time t. Ordinarily one is interested only in the terminal
reserve.

In the remainder of this section methods of computing the net level premium
terminal reserve are discussed. For succintness, the term ‘reserve’ is always taken
to mean the net level premium terminal reserve unless there is an explicit statement
to the contrary.

Exercise 23–2. Show that kVx = 1 −
äx+k

äx
. From this lim

k→∞
kVx = 1. Why is this

reasonable?

Exercise 23–3. Use the Life Table to compute the reserve for the first five years
after policy issue for a fully discrete whole life policy to (20). Assume the policy
amount is equal to $100,000 and the premium is the net premium.

The reserve can be viewed in a different way. Typically an insurance company
has many identical policies in force. One may benefit by studying the cash flow
associated with this group of policies on the average. Here is an example.

Example 23–3. Let us examine the expected cash flow associated with a whole life
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policy issued to (x). Assume the premium is the net level premium and that the
policy is fully discrete. In policy year k + 1 (that is in the time interval [k, k + 1))
there are the following expected cash flows.

Time Income Cash on Hand
k− (benefits just paid, interest just received) kVx

k Px kVx + Px

k + 1− −qx+k kVx + Px − qx+k

k + 1− i(kVx + Px) (1 + i)(kVx + Px) − qx+k

This final cash on hand at time k+1− must be equal to the reserve for the policies
of the survivors. Thus

px+k k+1Vx = (1 + i)(kVx + Px) − qx+k.

This provides an important formula connecting successive reserves.

Exercise 23–4. Show that 1Ex+k k+1Vx = kVx + Px − vqx+k.

The analysis of the previous example illustrates a general argument connecting
the reserves at successive time points.

kV = Actuarial Present Value at time k of benefits payable in [k, k + 1)

− Actuarial Present Value at time k of premiums payable in [k, k + 1)

+ Actuarial Present Value at time k of the reserves at time k + 1.

Such recursive formulas for reserves are especially useful for computational pur-
poses.

Example 23–4. As a more concrete illustration of the cash flow analysis, consider
a fully discrete 1,000,000 5 year term insurance issued to (21). Using the Illustrative
Life Table, this policy has net annual premium 1069.72. The expected cash flow
analysis is as follows.

Expected Expected Expected Expected Expected Expected
Premium Benefit Reserve Total Interest Net

Year k Income Payments Contributions Reserves Income Cash Flow
1 1069.72 1061.73 72.18 72.18 64.18 0.00
2 1068.59 1095.56 41.48 113.65 68.45 0.00
3 1067.42 1132.51 5.77 119.43 70.86 0.00
4 1066.20 1173.10 -35.75 83.67 71.14 0.00
5 1064.95 1217.54 -83.67 0.00 68.92 0.00

Notice that the reserves build up in the earlier, low mortality years in order to
compensate for the higher mortality rate in the later years.

Example 23–5. In contrast to the previous example, consider the same policy with
expenses of 400 at policy inception, sales commission of 20% of gross premium for
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each of the first 2 years and 10% of the premium for each year thereafter, and an
annual profit of 35% of the premium. The gross premium is 2289.64, and the cash
flow analysis is as follows.

Expected Expected Expected Expected Expected Expected Expected Expected Expected
Premium Benefit Reserve Total Interest Policy Commission Policy Net

Year k Income Payments Contributions Reserves Income Expenses Payments Profits Cash Flow
1 2289.64 1061.73 72.18 72.18 37.82 400.00 457.93 801.37 -465.75
2 2287.21 1095.56 41.48 113.65 38.14 0.00 457.44 800.52 -69.65
3 2284.70 1132.51 5.77 119.43 50.09 0.00 228.47 799.65 168.40
4 2282.11 1173.10 -35.75 83.67 60.46 0.00 228.21 798.74 178.27
5 2279.42 1217.54 -83.67 0.00 68.92 0.00 227.94 797.80 188.73

Because of the expenses, the cash flow in the early years is negative.

Exercise 23–5. What is the expected total cash flow over the life of the policy?

There are other ways to compute the reserve. First the reserve may be viewed as
maintaining the balance between income and expenses. Since at time 0 the reserve is
0 (because of the equivalence principle) the reserve can also be viewed as balancing
past income and expenses. This leads to the retrospective reserve formula for a
fully discrete whole life policy as

kEx kVx = Pxäx:k − A
x
1:k

.

This formula is derived as follows. Recall that

Ax = A
x
1:k

+ vk
kpx Ax+k

and
äx = äx:k + vk

kpx äx+k.

Since the reserve at time 0 is zero,

0 = Ax − Pxäx =
(
A

x
1:k

+ vk
kpx Ax+k

)
− Px

(
äx:k + vk

kpx äx+k

)

where k is an arbitrary positive integer. Rearranging terms and using the prospective
formula for the reserve given above produces the retrospective reserve formula.

Exercise 23–6. Sometimes the retrospective reserve formula is written as

hVx = Pxäx:h / hEx − hkx = Px s̈x:h − hkx

where hkx is called the accumulated cost of insurance. Find an expression for hkx.
How would tkx be computed?

Example 23–6. The retrospective formula can also be written entirely in terms of
premiums. In the case of the whole life policy, kVx = (Px − P

x
1:k

)/P
x:k

1 .
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Exercise 23–7. Verify the formula given in the example.

A retrospective reserve formula can be written for any type of policy.

Obtaining expressions for the reserve for any of the many possible types of
insurance policy is now relatively straightforward. Doing this is left as an exercise
for the reader. One should keep in mind that the important point here is to be able
to (ultimately) write a formula for the reserve which one can compute with the data
available in the life table. Hence continuous and/or mthly payment schemes need
to be reduced to their equivalent annual forms. Recursive formulas are also often
used.
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Problems

Problem 23–1. True or False: For 0 ≤ k < n, kVx:n = 1 −
äx+k:n−k

äx:n
. What happens at

k = n?

Problem 23–2. Find a formula for the reserve at the end of 5 years for a 10 year
term policy with benefit $1 issued to (30) on a net single premium basis.

Problem 23–3. Show that for 0 ≤ t ≤ n

tV(Ax:n ) =
(
P(Ax+t:n−t ) − P(Ax:n )

)
ax+t:n−t .

This is called the premium difference formula for reserves. Find similar formulas
for the other types of insurance.

Problem 23–4. Show that for 0 ≤ t ≤ n

tV(Ax:n ) =

(

1 −
P(Ax:n )

P(Ax+t:n−t )

)

Ax+t:n−t .

This is called the paid up insurance formula for reserves. Find similar formulas
for the other types of insurance.

Problem 23–5. Find P
x
1:n

if nVx = 0.080, Px = 0.024 and P
x:n

1 = 0.2.

Problem 23–6. Given that 10V35 = 0.150 and that 20V35 = 0.354 find 10V45.

Problem 23–7. Write prospective and retrospective formulas for 40
20V(A20), the re-

serve at time 20 for a semi-continuous 40 payment whole life policy issued to
(20).

Problem 23–8. For a general fully discrete insurance let us suppose that the benefit
payable if death occurs in the time interval (h − 1, h] is bh and that this benefit is
paid at time h, that is, at the end of the year of death. Suppose also that the premium
paid for this policy at time h is πh. Show that for 0 ≤ t ≤ 1

tpx+k k+tV + v1−t
tqx+k bk+1 = (1 + i)t(kV + πk).

This gives a correct way to interpolate reserves at fractional years.

Problem 23–9. In the notation of the preceding problem show that for 0 ≤ t ≤ 1

k+tV = v1−t (1−tqx+k+t bk+1 + 1−tpx+k+t k+1V) .

Problem 23–10. Show that under UDD, h
kV(Ax:n ) = (i/δ )h

kV
x
1:n

+ h
kV

x:n
1 .
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Problem 23–11. Show that under UDD, h
kV (m)

x:n = h
kVx:n + β(m)hP(m)

x:n kVx
1:n

. This gives
the reserves for a policy with mthly premium payments in terms of the reserves for
a policy with annual premium payments.

Problem 23–12. Show that h
kV (m)(Ax:n ) = h

kV(Ax:n ) + β(m)hP(m)(Ax:n )kVx
1:n

under
UDD.

Problem 23–13. The amount at risk in year k for a discrete insurance is the
difference between the benefit payment payable at the end of year k and kV . Find
the mean and variance of the amount at risk in year 3 of a 5 year term policy issued
to (30) which pays a benefit of 1 at the end of the year of death and has net level
premiums.

Problem 23–14. Suppose that 1000 tV(Ax) = 100, 1000P(Ax) = 10.50, and δ =
0.03. Find ax+t.

Problem 23–15. Calculate 20V45 given that P45 = 0.014, P
45:20

1 = 0.022, and P45:20 =

0.030.

Problem 23–16. A fully discrete life insurance issued to (35) has a death benefit of
$2500 in year 10. Reserves are calculated at i = 0.10 and the net annual premium
P. Calculate q44 given that 9V + P = 10V = 500.
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Solutions to Problems
Problem 23–1. Use the prospective formula and Ax:n + däx:n = 1 to see the
formula is true. When k = n the reserve is 1 by the timing assumptions.

Problem 23–2. Prospectively the reserve is A
3
1
5:5

.

Problem 23–3. Use the prospective formula and the premium definitions.

Problem 23–5. From the retrospective formula nExnVx = Pxäx:n − A
x
1:n

. Now
divide by äx:n .

Problem 23–6. Use the prospective formula and the relation Ax + däx = 1 to
obtain kVx = 1 − äx+k/ äx.

Problem 23–7. The prospective and retrospective formulas are 40
20V(A20) =

A40 − Pä40:20 and 40
20V(A20) = (Pä20:20 − A

20
1

:20
)/ 20E20.

Problem 23–8. The value of the reserve, given survival, plus the present value
of the benefit, given death, must equal the accumulated value of the prior reserve
and premium.

Problem 23–13. The amount at risk random variable is 1{2}(K(30)) − 3V
30
1

:5
.

Problem 23–14. Use the prospective reserve formula and the relationship
Ax + δax = 1.

Problem 23–15. Use the retrospective formula.

Problem 23–16. By the general recursion formula 1E4410V = 9V +P−2500vq44.



§23: Net Premium Reserves 129

Solutions to Exercises
Exercise 23–1. tV(A

x
1:n

) is the reserve at time t for a fully continuous n year

term insurance policy, kV(A
x
1:n

) is the reserve at time k for a semi-continuous n
year term policy, and kV(äx) is the reserve at time k for a life annuity.

Exercise 23–2. Since Ax + däx = 1, kVx = Ax+k − (Ax/ äx)äx+k = 1 − däx+k − (1 −
däx)äx+k/ äx = 1 − äx+k/ äx.

Exercise 23–3. The reserve amounts are easily computed using the previous ex-
ercise as 1000001V20 = 100000(1 − 16.4611/16.5133) = 316.11, 1000002V20 =
649.17, 1000003V20 = 985.59, 1000004V20 = 1365.57, and 1000005V20 =
1750.71.

Exercise 23–4. Just multiply the previous equation by v = (1 + i)−1.

Exercise 23–5. The expected total cash flow over the life of the policy is zero,
since that is the requirement used in determining the gross premium.

Exercise 23–6. hkx = A
x
1:k

/ kEx, which can be easily computed from the life
table using previous identities.

Exercise 23–7. Divide the retrospective formula by kEx to isolate the reserve
term. Then use the fact that kEx/ äx:k = P

x:k
1 .
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An alternate methodology used to study an insurance portfolio is to examine the
progress of the asset share, or contribution to the company assets, associated with
a given group of identical policies. Formally, the asset share for a group of policies
at time k is the ratio of total company assets generated by these policies at time k to
the number of such policies in force at time k.

Asset share computations can be most easily visualized in a situation in which
the company sold, at time 0, l0 policies of the given type issued to a group of insureds
aged x and to assume that the results in each period will be the probabilistically
expected amounts. Let kAS denote the asset share at time k (on a terminal basis),
l(τ)
x+k denote the number of original policy holders surviving to age x + k, G denote

the gross premium, ck denote the fraction of the gross premium paid at time k for
expenses, ek denote the per policy expenses at time k, d(1)

x+k denote the number of
policy holders dying at age (x + k), bk+1 denote the benefit paid at time k + 1 for a
death at age x + k, and d(2)

x+k the number of policy holders withdrawing at age (x + k).
Standard cash flow analysis gives the fundamental relationship

k+1AS l(τ)
x+k+1 = (kAS + G − ckG − ek) (1 + i)l(τ)

x+k − bk+1d(1)
x+k − k+1CV d(2)

x+k

where k+1CV is the cash value, or withdrawal benefit, paid to those insureds who
cancel their policy at age x + k. Typically, k+1CV = k+1V , the reserve for the policy
at time k + 1. The insurance is assumed to be on a fully discrete basis and the
cash value is paid at the end of the year of withdrawal. Dividing both sides of this
equation by l(τ)

x+k produces a second useful recursion formula connecting successive
asset shares

k+1AS p(τ)
x+k = (kAS + G(1 − ck) − ek) (1 + i) − bk+1q(1)

x+k − k+1CV q(2)
x+k.

Some of the uses of this idea are now illustrated.

One natural use of the idea of asset shares is to determine the gross premium
G required in order to achieve a certain asset goal at a future time. To do this, note
that multiplying the first equation above by vk+1 gives

k+1AS vk+1 l(τ)
x+k+1 − kAS vk l(τ)

x+k = (G(1 − ck) − ek) vk l(τ)
x+k

− (bk+1d(1)
x+k + k+1CV d(2)

x+k)v
k+1

.
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Using the fact that 0AS = 0 and summing this telescoping series gives

nAS vn l(τ)
x+n =

n−1∑

k=0

(
k+1AS vk+1 l(τ)

x+k+1 − kAS vk l(τ)
x+k

)

= G
n−1∑

k=0

(1 − ck)v
k l(τ)

x+k

−
n−1∑

k=0

ekv
k l(τ)

x+k

−
n−1∑

k=0

(
bk+1d(1)

x+k + k+1CV d(2)
x+k

)
vk+1

.

One can now easily solve for the gross premium G.

A technique similar to the asset share computation can be used for a different
purpose. Suppose the asset requirement for the kth year of policy life, kF, is set so
that with this amount on hand there is a high probability of meeting all expenses.
Then as before

k+1F p(τ)
x+k = (kF + G − ckG − ek) (1 + i) − bk+1q(1)

x+k − k+1CV q(2)
x+k.

If these computations were done under conservative assumptions the company may
wish to return part of the excess to the insured in the form of dividends. Let kD
denote the amount available for dividends at the end of the kth period. Also denote
with a hat the values of the respective quantities which were observed in practice.
Then

(k+1F + k+1D) p̂(τ)
x+k = (kF + G − ĉkG − êk) (1 + î) − bk+1q̂(1)

x+k − k+1CV q̂(2)
x+k.

Subtracting the first equation from the second gives

k+1D p̂(τ)
x+k =(kF + G)(î − i)

+ [(Gck + ek)(1 + i) − (Gĉk + êk)(1 + î)]

+ (1 − k+1F)bk+1(q(1)
x+k − q̂(1)

x+k)

+ (k+1CV − k+1F)(q(2)
x+k − q̂(2)

x+k).

Exercise 24–1. Write a formula for k+1D under the additional assumptions that

k+1CV = k+1F and that dividends are paid to insureds who die or withdraw.

Computations similar to the above can be used to compare the predicted asset
share with that obtained in experience.
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Problems

Problem 24–1. If 10AS1 is the asset share at the end of 10 years based on premium
G1 and 10AS2 is the asset share at the end of 10 years based on premium G2, find a
formula for 10AS1 − 10AS2.

Problem 24–2. A policy providing death benefit of $1000 at the end of the year
of death has a gross premium of $25. Suppose we are given i = 0.05, 10AS = 160,
c10 = 0.1, e10 = 2.50, q(1)

x+10 = 0.003 (decrement 1 is death), q(2)
x+10 = 0.1 (decrement 2

is withdrawal), and 11CV = 170. What is 11AS?
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Solutions to Problems

Problem 24–1. 10AS1 − 10AS2 = (G1 − G2)
∑9

k=0(1 − ck)vk−9 l(τ)
x+k/ l(τ)

x+10.

Problem 24–2. Use the relation k+1AS p(τ)
x+k = (kAS + G(1 − ck) − ek) (1 + i) −

bk+1q(1)
x+k + k+1CV q(2)

x+k.
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Solve the following 8 problems in no more than 40 minutes.

Question 25–1 . You are given the following values calculated at δ = 0.08 for two
fully continuous whole life policies issued to (x):

Death Variance
Benefit Premium of Loss

Policy #1 4 0.18 3.25
Policy #2 6 0.22

Calculate the variance of the loss for policy #2.
A. 4.33

B. 5.62

C. 6.37

D. 6.83

E. 9.74

Question 25–2 . Which of the following are correct expressions for h
t V(Ax:n ) for

t ≤ h?
I.
[

hP(Ax+t:n−t ) − hP(Ax:n )
]

ax+t:h−t

II.

[

1 − hP(Ax:n )

hP(Ax+t:n−t )

]

Ax+t:n−t

III. hP(Ax:n )sx:t − tkx

A. I and II

B. I and III

C. II and III

D. All

E. None of A, B, C, or D

Copyright  2006 Jerry Alan Veeh. All rights reserved.
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Question 25–3 . A fully discrete whole life insurance provides for payment of its
net level reserve in addition to the face amount of 1. tṼx is the reserve for this
insurance, and ω−xṼx = 0. Which of the following are expressions for the net annual
premium?

I.
∑

ω−x−1
t=0 vt+1qx+t

äω−x
II. 2Px

III.
∑

ω−x−1
t=0 vt+1

t | qx(1 + t+1Ṽx)
äx

A. I and II

B. I and III

C. II and III

D. All

E. None of A, B, C, or D

Question 25–4 . A fully discrete whole life insurance is issued to (x). You are given
that Px = 4

11 , tVx = 0.5, and äx+t = 1.1. Calculate i.
A. 0

B. 0.04

C. 0.05

D. 0.10

E. 0.25

Question 25–5 . For a fully discrete two year term insurance of 400 on (x), i = 0.1,
400P

x
1:2

= 74.33, 4001V
x
1:2

= 16.58, and the contract premium equals the benefit
premium. Calculate the variance of loss at issue.

A. 21,615

B. 23,125

C. 27,450

D. 31,175

E. 34,150
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Question 25–6 . For a 10 year deferred whole life annuity of 1 on (35) payable
continuously mortality follows DeMoivre’s law with ω = 85. The interest rate i = 0
and level benefit premiums are payable continuously for 10 years. Calculate the
benefit reserve at the end of five years.

A. 9.38

B. 9.67

C. 10.00

D. 10.36

E. 10.54

Question 25–7 . For a fully discrete whole life insurance with non-level benefits
on (70) the level benefit premium for this insurance is equal to P50. Also, q70+k =
q50+k + 0.01 for k = 0, 1, . . . , 19, q60 = 0.01368, kV = kV50 for k = 0, 1, . . . , 19, and

11V50 = 0.16637. Calculate b11, the death benefit in year 11.
A. 0.482

B. 0.624

C. 0.636

D. 0.648

E. 0.834

Question 25–8 . For a fully discrete 3 year endowment insurance of 1000 on (x),
qx = qx+1 = 0.20, i = 0.06, and 1000Px:3 = 373.63. Calculate 1000(2Vx:3 − 1Vx:3 ).

A. 320

B. 325

C. 330

D. 335

E. 340



§25: Sample Question Set 7 137

Answers to Sample Questions

Question 25–1 . If L1 is the loss for Policy #1 then L1 = 4vT − 0.18aT = (4 +
.18/ .08)vT − 0.18/ .08 and similarly L2 = (6 + 0.22/0.08)vT − .22/ .08. Thus Var(L2) =
(8.75)2Var(vT) = (8.75/6.25)2Var(L1) = 6.37. C.

Question 25–2 . The prospective formula would give I except that the first term
should be for an h − t payment premium. So I is incorrect. Similarly in II the
denominator factor should have a left subscript of h − t. Only III is correct. E.

Question 25–3 . Direct application of the equivalence principle shows that III is
correct. The general reserve formula gives kṼ = vqx+k(1 + k+1Ṽ) − P + vpx+kk+1Ṽ .
Multiply this by vk and sum to see that P =

∑
ω−x−1
k=0 vk+1qx+k/ ä10−x , and I holds.

Considering the special case in which x = ω − 1 shows that II fails. B.

Question 25–4 . Here 0.5 = tVx = Ax+t − Pxäx+t = 1 − (d + Px)äx+t, from which
d = 1/11 and i = 1/10. D.

Question 25–5 . The information about the reserve and premium give qx+1 = 0.25.
Using this and the premium information gives qx = 0.17. The loss at issue random
variable L = (400v − P)1{0}(K(x)) + (400v2 − Pv − P)1{1}(K(x)) − (Pv + P)1[2,∞)(K(x)),
and these terms are disjoint. Since E[L] = 0, Var(L) = E[L2] = (400v − P)2qx +
(400v2 − Pv − P)2pxqx+1 + (Pv + P)2

2px = 34150.56. E.

Question 25–6 . Here tp35 = 1 − t/50 for 0 < t < 50. The premium P satisfies∫ 50

10
tp35 dt = P

∫ 10

0
tp35 dt giving P = 16/9. The reserve at time 5 is then

∫ 45

5
tp40 dt−

P
∫ 5

0
tp40 dt = 9.38. A.

Question 25–7 . Using the formula connecting successive reserves gives p6011V50 =
(10V50+P50)(1+i)−q60 and also p8011V = (10V+P50)(1+i)−q80b11, since the premiums
are the same. The first term on the right side of each equation is the same, so using
the first equation the value of this common term is q60 + p6011V50 = 0.1777. Using
this in the second equation gives b11 = 0.6479. D.

Question 25–8 . Since this is an endowment, (10002V + 1000P)(1 + i) = 1000,
from which 10002V = 569.76. Using the retrospective reserve formula, px10001V =
1000P(1 + i) − 1000qx, giving 10001V = 245.06. Thus 1000(2V − 1V) = 324.70. B.
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An insurance company has a large number of policies in force at any given
time. This creates a financial risk for the company. There are two aspects to the
problem of analyzing this risk. First, one must be able to estimate the amount of
risk. Secondly, one must be able to model the times at which claims will occur in
order to avoid cash flow difficulties. The problem of modeling the amount of risk
will be studied first.

In the individual risk model the insurers total risk S is assumed to be expressable
in the form S = X1 + . . . + Xn where X1, . . . , Xn are independent random variables
with Xi representing the loss to the insurer on insured unit i. Here Xi may be quite
different than the actual damages suffered by insured unit i. In the closed model
the number of insured units n is assumed to be known and fixed. A model in which
migration in and out of the insurance system is allowed is called an open model.
The individual risk model is appropriate when the analysis does not require the
effect of time to be taken into account.

The first difficulty is to find at least a reasonable approximation to the proba-
bilistic properties of the loss random variables Xi. This can often be done using data
from the past experience of the company.

Example 26–1. For short term disability insurance the amount paid by the insurance
company can often be modeled as X = cY where c is a constant representing the
daily rate of disability payments and Y is the number of days a person is disabled.
One then is simply interested in modelling the random variable Y . Historical data
can be used to estimate P[Y > y]. In this context P[Y > y], which was previously
called the survival function, is referred to as the continuance function. The same
notion can be used for the daily costs of a hospitalization policy.

The second difficulty is to uncover the probabilistic properties of the random
variable S. In theoretical discussions the idea of conditioning can be used to find
an explicit formula for the distribution function of a sum of independent random
varibles.

Example 26–2. Suppose X and Y are independent random variables each having
the exponential distribution with parameter 1. By conditioning

P[X + Y ≤ t] =
∫ ∞

−∞
P[X + Y ≤ t |Y = y] fY(y) dy

=
∫ t

0
P[X ≤ t − y] fY(y) dy

=
∫ t

0

(
1 − e−(t−y)

)
fY(y) dy

= 1 − e−t − te−t
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for t ≥ 0.

This argument has actually shown that if X and Y are independent and absolutely
continuous then

FX+Y(t) =
∫ ∞

−∞
FX(t − y) fY(y) dy.

This last integral is called the convolution of the two distribution functions and is
often denoted FX ∗ FY .

Exercise 26–1. If X and Y are absolutely continuous random variables show that
X + Y is also absolutely continuous and find a formula for the density function of
X + Y .

Exercise 26–2. Find a similar formula if X and Y are both discrete. Use this formula
to find the density of X + Y if X and Y are independent Bernoulli random variables
with the same success probability.

An approach which requires less detailed computation is to appeal to the Central
Limit Theorem.

Central Limit Theorem. If X1, . . . , Xn are independent random variables then the

distribution of
n∑

i=1

Xi is approximately the normal distribution with mean
n∑

i=1

E[Xi]

and variance
n∑

i=1

Var(Xi).

The importance of this theorem lies in the fact that the approximating normal
distribution does not depend on the detailed nature of the original distribution but
only on the first two moments.

Example 26–3. You are a claims adjuster for the Good Driver Insurance Company
of Auburn. Based on past experience the chance of one of your 1000 insureds being
involved in an accident on any given day is 0.001. Your typical claim is $500. What
is the probability that there are no claims made today? If you have $1000 cash
on hand with which to pay claims, what is the probability you will be able to pay
all of todays claims? How much cash should you have on hand in order to have a
99% chance of being able to pay all of todays claims? What assumptions have you
made? How reasonable are they? What does this say about the solvency of your
company?

Using the Central Limit Theorem, if an insurance company sold insurance at
the pure premium not only would the company only break even (in the long run)
but due to random fluctuations of the amount of claims the company would likely
go bankrupt. Thus insurance companies charge an amount greater than the pure
premium. A common methodology is for the company to charge (1 + θ) times
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the pure premium. When this scheme is followed θ is called the relative security
loading and the amount θ × (pure premium) is called the security loading. This
is a reasonable procedure since the insureds with larger expected claims pay a
proportionate share of the loading. The relative loading θ is usually adjusted to
achieve a certain measure of protection for the company.

Example 26–4. Suppose that a company is going to issue 1,000 fire insurance
policies each having a $250 deductible, and a policy limit of $50,000. Denote by
Fi the Bernoulli random variable which is 1 if the ith insured suffers a loss, and
by Di the amount of damage to the ith insureds property. Suppose Fi has success
probability 0.001 and that the actual damage Di is uniformly distributed on the
interval (0,70000)). What is the relative loading so that the premium income will be
95% certain to cover the claims made? Using the obvious notation, the total amount
of claims made is given by the formula

S =
1000∑

i=1

Fi
[
(Di − 250)1[250,50000](Di) + 500001(50000,∞)(Di)

]

where the F’s and the D’s are independent (why?) and for each i the conditional
distribution of Di given Fi = 1 is uniform on the interval (0,70000). The relative
security loading is determined so that

P[S ≤ (1 + θ) E[S]] = 0.95.

This is easily accomplished by using the Central Limit Theorem.

Exercise 26–3. Compute E[S] and Var(S) and then use the Central Limit Theorem
to find θ . What is the probability of bankruptcy when θ = 0?

Another illustration is in connection with reinsurance. Good practice dictates
that an insurance company should not have all of its policy holders homogeneous,
such as all located in one geographical area, or all of the same physical type. A
moments reflection on the effect of a hurricane on an insurance company with all
of its property insurance business located in one geographic area makes this point
clear. An insurance company may diversify its portfolio of policies (or just protect
itself from such a concentration of business) by buying or selling reinsurance. The
company seeking reinsurance (the ceding company) buys an insurance policy from
the reinsurer which will reimburse the company for claims above the retention
limit. For stop loss reinsurance, the retention limit applies on a policy-by-policy
basis to those policies covered by the reinsurance. The retention limit plays the
same role here as a deductible limit in a stop loss policy. Usually there is one
reinsurance policy which covers an entire package of original policies. For excess
of loss reinsurance, the retention limit is applied to the total amount of claims for the
package of policies covered by the insurance, not the claims of individual policies.
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Example 26–5. You operate a life insurance company which has insured 2,000 30
year olds. These policies are issued in varying amounts: 1,000 people with $100,000
policies, 500 people with $500,000 policies, and 500 people with $1,000,000 poli-
cies. The probability that any one of the policy holders will die in the next year is
0.001. Stop loss reinsurance may be purchased at the rate of 0.0015 per dollar of
coverage. How should the retention limit be set in order to minimize the probabil-
ity that the total expenses (claims plus reinsurance expense) exceed $1,000,000 is
minimized? Let X, Y , and Z denote the number of policy holders in the 3 catagories
dying in the next year. Then X has the binomial distribution based on 1000 trials
each with success probability 0.001, Y has the binomial distribution based on 500
trials each with success probability 0.001, and Z has the binomial distribution based
on 500 trials each with success probability 0.001. If the retention limit is set at r
then the cost C of claims and reinsurance is given by

C = (100000 ∧ r)X + (500000 ∧ r)Y + (1000000 ∧ r)Z

+ 0.0015
[
1000(100000 − r)+ + 500(500000 − r)+ + 500(1000000 − r)+]

.

Straightforward, computations using the central limit theorem provides an estimate
of P[C ≥ 1, 000, 000].

Exercise 26–4. Verify the validity of the above formula. Use the central limit
theorem to estimate P[C ≥ 1, 000, 000] as a function of r. Find the value(s) of r
which minimize this probability.
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Problems

Problem 26–1. The probability of an automobile accident in a given time period is
0.001. If an accident occurs the amount of damage is uniformly distibuted on the
interval (0,15000). Find the expectation and variance of the amount of damage.

Problem 26–2. Find the distribution and density for the sum of three independent
random variables each uniformly distributed on the interval (0,1). Compare the
exact value of the distribution function at a few selected points (say 0.25, 1, 2.25)
with the approximation obtained from the central limit theorem.

Problem 26–3. Repeat the previous problem for 3 independent exponential random
variables each having mean 1. It may help to recall the gamma distribution here.

Problem 26–4. A company insures 1000 essentially identical cars. The probability
that any one car is in an accident in any given year is 0.001. The damage to a car
that is involved in an accident is uniformly distributed on the interval (0,15000).
What relative security loading θ should be used if the company wishes to be 99%
sure that it does not lose money?
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Solutions to Problems
Problem 26–1. The amount of damage is BU where B is a Bernoulli variable
with success probability 0.001 and U has the uniform distribution.

Problem 26–4. The loss random variable is of the form
1000∑

i=1

BiUi.
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Solutions to Exercises
Exercise 26–1. Differentiation of the general distribution function formula
above gives fX+Y (t) =

∫ ∞
−∞ fX(t − y)fY (y) dy.

Exercise 26–2. In the discrete case the same line of reasoning gives fX+Y (t) =∑
y fX(t−y)fY (y). Applying this in the Bernoulli case, fX+Y (t) =

∑m
y=0

( n
t−y

)
pt−y(1−

p)n−t+y
(m

y

)
py(1 − p)m−y = pt(1 − p)n+m−t

∑m
y=0

( n
t−y

)(m
y

)
=
(n+m

t

)
pt(1 − p)m+n−t.

Exercise 26–3. The loading θ is chosen so that θE[S]/ √Var(S) = 1.645, from
the normal table. When θ = 0 the bankruptcy probability is about 1/2.

Exercise 26–4. Direct computation using properties of the binomial distribution
gives E[C] = (100000 ∧ r) × 1 + (500000 ∧ r) × (1/2) + (1000000 ∧ r) × (1/2) +
0.0015

[
1000(100000 − r)+ + 500(500000 − r)+ + 500(1000000 − r)+

]
and also

Var(C) = (100000∧r)2×0.999+(500000∧r)2×0.999/2+(1000000∧r)2×0.999/2.
The probability can now be investigated numerically using the Central Limit
Theorem approximation.



§27. The Collective Risk Model and Ruin Probabilities

Some of the consequences of the collective risk model will now be examined.
In the collective risk model the time at which claims are made is taken to account.
Here the aggregate claims up to time t is assumed to be given by

∑N(t)
k=1 Xk where

X1, X2, . . . are independent identically distributed random variables representing the
sizes of the respective claims, N(t) is a stochastic process representing the number
of claims up to time t, and N and the X’s are independent. The object of interest is
the insurer’s surplus at time t, denoted by U(t), which is assumed to be of the form

U(t) = u + ct −
N(t)∑

k=1

Xk

where u is the surplus at time t = 0, and c represents the rate of premium income.
Special attention will be given to the problem of estimating the probability that the
insurance company has negative surplus at some time t since this would mean that
the company is ruined.

To gain familiarity with some of the ideas involved, the simpler classical gam-
bler’s ruin problem will be studied first.
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§28. Stopping Times and Martingales

A discrete time version of the collective risk model will be studied and some
important new concepts will be introduced.

Suppose that a gambler enters a casino with z dollars and plays a game of chance
in which the gambler wins $1 with probability p and loses $1 with probability
q = 1 − p. Suppose also that the gambler will quit playing if his fortune ever reaches
a > z and will be forced to quit by being ruined if his fortune reaches 0. The main
interest is in finding the probability that the gambler is ultimately ruined and the
expected number of the plays in the game.

In order to keep details to a minimum, the case in which p = q = 1/2 will
be examined first. Denote by Xj the amount won or lost on the jth play of the
game. These random variables are all independent and have the same underlying
distribution function. Absent any restrictions about having to quit the game, the
fortune of the gambler after k plays of the game is

z +
k∑

j=1

Xj.

Now in the actual game being played the gambler either reaches his goal or is ruined.
Introduce a random variable, T , which marks the play of the game on which this
occurs. Technically

T = inf{k : z +
∑k

j=1 Xj = 0 or a}.

Such a random variable is called a random time. Observe that for this specific
random variable the event [T ≤ k] depends only on the random variables X1, . . . , Xk.
That is, in order to decide at time k whether or not the game has ended it is not
necessary to look into the future. Such special random times are called stopping
times. The precise definition is as follows. If X1, X2, . . . are random variables and
T is a nonnegative integer valued random variable with the property that for each
integer k the event [T ≤ k] depends only on X1, . . . , Xk then T is said to be a stopping
time (relative to the sequence X1, X2, . . .).

The random variable z +
∑T

j=1 Xj is the gambler’s fortune when he leaves the
casino, which is either a or 0. Denote by ψ(z) the probability that the gambler
leaves the casino with 0. Then by direct computation E[z +

∑T
j=1 Xj] = a(1 − ψ(z)).

A formula for the ruin probability ψ(z) will be obtained by computing this same
expectation in a second way.

Each of the random variables Xj takes values 1 and −1 with equal probability,
so E[Xj] = 0. Hence for any integer k, E[

∑k
j=1 Xj] = 0 too. So it is at least plausible

that E[
∑T

j=1 Xj] = 0 as well. Using this fact, E[z +
∑T

j=1 Xj] = z, and equating this
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§28: Stopping Times and Martingales 147

with the expression above gives z = a(1 − ψ(z)). Thus ψ(z) = 1 − z/a for 0 ≤ z ≤ a
are the ruin probabilities.

There are two important technical ingredients behind this computation. The first
is the fact that T is a stopping time. The second is the fact that the gambling game
with p = q = 1/2 is a fair game. The notion of a fair game motivates the definition
of a martingale. Suppose M0, M1, M2, . . . are random variables. The sequence is a
martingale if E[Mk |Mk−1, . . . , M0] = Mk−1 for all k ≥ 1. In the gambling context, if
Mk is the gambler’s fortune after k plays of a fair game then given Mk−1 the expected
fortune after one more play is still Mk−1.

Exercise 28–1. Show that Mk = z +
∑k

j=1 Xj (with M0 = z) is a martingale.

Example 28–1. The sequence M0 = z2 and Mk =
(
z +

∑k
j=1 Xj

)2
− k for k ≥ 1 is also

a martingale. This follows from the fact that knowing M0, . . . , Mk−1 is the same as
knowing X1, . . . , Xk−1 and the fact that the X’s are independent.

Exercise 28–2. Fill in the details behind this example.

The important computational fact is the Optional Stopping Theorem which
states that if {Mk} is a martingale and T is a stopping time then E[MT] = E[M0]. In
the gambling context this says that no gambling strategy T can make a fair game
biased.

Example 28–2. Using the martingale M0 = z2 and Mk =
(
z +

∑k
j=1 Xj

)2
− k for

k ≥ 1 along with the same stopping time T as before can provide information
about the duration of the gambler’s stay in the casino. The random variable MT =(
z +

∑T
j=1 Xj

)2
−T has an expectation which is easily computed directly to be E[MT] =

a2(1 − ψ(z)) − E[T]. By the optional stopping theorem, E[MT] = E[M0] = z2.
Comparing these two expressions gives E[T] = a2(1 − ψ(z)) − z2 = az − z2 as the
expected duration of the game.

The preceding example illustrates the general method. To analyze a particular
problem identify a martingale Mk and stopping time T . Then compute E[MT] in two
ways, directly from the definition and by using the optional stopping theorem. The
resulting equation will often reveal useful information.

Uncovering the appropriate martingale is often the most difficult part of the
process. One standard method is the following. If X1, X2, . . . are independent and
identically distributed random variables define

Wk =
et
∑k

j=1 Xj

E[et
∑k

j=1 Xj]
.
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Notice that the denominator is nothing more than the moment generating function
of the sum evaluated at t. For each fixed t the sequence Wk is a martingale (here
W0 = 1). This follows easily from the fact that if X and Y are independent then
E[et(X+Y)] = E[etX] E[etY]. This martingale is called Wald’s martingale (or the
exponential martingale) for the X sequence.

Exercise 28–3. Show that {Wk : k ≥ 0} is a martingale no matter what the fixed
value of t is.

In many important cases a non-zero value of t can be found so that the denom-
inator part of the Wald martingale is 1. Using this particular value of t then makes
application of the optional stopping theorem neat and easy.

To illustrate the technique consider the following situation which is closer to
that of the collective risk model. Suppose the insurer has initial reserve z and
that premium income is collected at the rate of c per unit time. Also, Xk denotes
the claims that are payable at time k, and the X’s are independent and identically
distributed random variables. The insurers reserve at time k is then z + ck −

∑k
j=1 Xj =

z +
∑k

j=1(c − Xj). Denote by T the time of ruin, so that

T = min{k : z + ck −
k∑

j=1

Xj ≤ 0}.

The objective is to study the probability ψ(z) that ruin occurs in this setting.

As a first step, notice that if E[c − Xj] ≤ 0, ruin is guaranteed since premium
income in each period is not adequate to balance the average amount of claims in
the period. So to continue, assume that E[c − Xj] > 0.

Under this assumption, suppose there is a number τ so that E[eτ(c−Xj)] = 1.
This choice of τ in Wald’s martingale makes the denominator 1, and shows that

Mk = eτ(z+ck−
∑k

j=1 Xj) is a martingale. Computing the expectation of MT using the
Optional Stopping Theorem gives E[MT] = E[M0] = eτz. Computing directly gives

E[MT] = E[eτ(z+cT−
∑T

j=1 Xj) |T < ∞] ψ(z). Hence

ψ(z) = eτz/E[eτ(z+cT−
∑T

j=1 Xj) |T < ∞].

A problem below will show that τ < 0, so the denominator of this fraction is larger
than 1. Hence ψ(z) ≤ eτz. The ruin probability decays exponentially as the initial
reserve increases.

The usual terminology defines the adjustment coefficient R = −τ. Thus
ψ(z) ≤ e−Rz. A large adjustment coefficient implies that the ruin probability declines
rapidly as the initial reserve increases.
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Problems

Problem 28–1. By conditioning on the outcome of the first play of the game show
that in the gambler’s ruin problem ψ(z) = pψ(z + 1) + qψ(z − 1). Show that if p = q
there is a solution of this equation of the form ψ(z) = C1 + C2z and find C1 and C2

by using the natural definitions ψ(0) = 1 and ψ(a) = 0. Show that if p ≠ q there is a
solution of the form ψ(z) = C1 + C2(q/p)z and find the two constants. This provides
a solution to the gambler’s ruin problem by using difference equations instead of
probabilistic reasoning.

Problem 28–2. In the gambler’s ruin problem, show that if p ≠ q the choice t =
ln(q/p) makes the denominator of Wald’s martingale 1. Use this choice of t and the
optional stopping theorem to find the ruin probability in this case.

Problem 28–3. Suppose p ≠ q in the gambler’s ruin problem. Define M0 = z and
Mk = z +

∑k
j=1 Xj − k(p − q) for k ≥ 1. Show that the sequence Mk is a martingale and

use it to compute E[T] in this case.

Problem 28–4. Suppose that c > 0 is a number and X is a random variable which
takes on only non-negative values. Suppose also that E[c − X] > 0. Show that if
c − X takes on positive and negative values then there is a number τ < 0 so that
E[eτ(c−X)] = 1.
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Solutions to Problems

Problem 28–2. ψ(z) = (q/p)a−(q/p)z

(q/p)a−1 .

Problem 28–3. E[T] = z
q−p − a

q−p
1−(q/p)z

1−(q/p)a .

Problem 28–4. Define a function f (v) = E[ev(c−X)]. Then f ′(v) = E[(c −
X)ev(c−X)] and f ′′(v) = E[(c − X)2ev(c−X)] > 0. Thus f is a convex function and
the graph of f is concave up. Now f (0) = 1 and f ′(0) = E[(c − X)] > 0. Thus
the graph of f is above 1 to the right of 0, and below 1 (initially) to the left of
0. Since c − X takes on negative values, limv→−∞ f (v) = ∞, so there is a negative
value of v at which f (v) = 1, by continuity.
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Solutions to Exercises
Exercise 28–1. Knowing M0, . . . , Mk−1 is the same as knowing X1, . . . , Xk−1. So
E[Mk |M0, . . . , Mk−1] = E[Mk |X0, . . . , Xk−1] = z +

∑k−1
j=1 Xj + E[Xk |X0, . . . , Xk−1] =

Mk−1 since the last expectation is 0 by independence.

Exercise 28–2. First write Mk =
(

z +
∑k−1

j=1 Xj + Xk

)2
− k =

(
z +
∑k−1

j=1 Xj

)2
+

2Xk(z +
∑k−1

j=1 Xj) + X2
k − k. Take conditional expectations using the fact that Xk is

independent of the other X’s and E[Xk] = 0 and E[X2
k ] = 1 to obtain the result.

Exercise 28–3. Independence gives E[e
t
∑k

j=1
Xj ] = E[e

t
∑k−1

j=1
Xj ]×E[etXk ]. Direct

computation of the conditional expectation gives the result.
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The ideas developed in connection with the gambler’s ruin problem will now
be used to compute the ruin probability in the collective risk model. Since the
processes are now operating in continuous time the details are more complicated
and not every step of the arguments will be fully justified.

In this setting the claims process is
∑N(t)

k=1 Xk where X1, X2, . . . are independent
identically distributed random variables representing the sizes of the respective
claims, N(t) is a stochastic process representing the number of claims up to time t,
and N and the X’s are assumed to be independent. The insurer’s surplus is given by
U(t) = u + ct −

∑N(t)
k=1 Xk, where u > 0 is the surplus at time t = 0 and c > 0 is the rate

at which premium income arrives per unit time. The probability of ruin with initial
surplus u will be denoted by ψ(u).

As in the discrete time setting, the Wald martingale will be used together with the
Optional Stopping Theorem in order to obtain information about the ruin probability.
Here the denominator of the Wald martingale is E[eνU(t)], and the first step is to find

a ν ≠ 0 so that E[eν(ct−
∑N(t)

k=1 Xk)] = 1 no matter the value of t.

The new element in this analysis is the random sum
∑N(t)

k=1 Xk. Now for each
fixed t, N(t) is a random variable which is independent of the X’s. The moment
generating function of this sum can be easily computed by conditioning on the value
of the discrete random variable N(t).

E[eν
∑N(t)

k=1 Xk] = E[E[eν
∑N(t)

k=1 Xk |N(t)]]

=
∞∑

j=0

E[eν
∑N(t)

k=1 Xk |N(t) = j] P[N(t) = j]

=
∞∑

j=0

E[eν
∑j

k=1 Xk] P[N(t) = j]

=
∞∑

j=0

(
E[eνX]

)j
P[N(t) = j]

=
∞∑

j=0

ej ln(E[eνX]) P[N(t) = j]

= MN(t)(ln(MX(ν))).

Hence there is a ν≠0 so that E[eν(ct−
∑N(t)

k=1 Xk)] = 1 if and only if eνct MN(t)(ln(MX(−ν))) =
1 for all t. Suppose for now that there is a number R > 0 so that

e−Rct MN(t)(ln(MX(R))) = 1

for all t. This number R is called the adjustment coefficient. The existence of an
adjustment coefficient will be investigated a bit later. Using −R as the value of ν in
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Wald’s martingale shows that

Wt = e−R(u+ct−
∑N(t)

k=1 Xk)

is a martingale.

Define a stopping time Ta by Ta = inf{s : u + cs −
∑N(s)

k=1 Xk ≤ 0 or ≥ a} where
a is an arbitrary but fixed positive number. Intuitively, Ta is a stopping time in an
appropriate sense in the new continuous time setting. Now by the Optional Stopping
Theorem, E[WTa] = e−Ru. Direct computation gives

E[WTa] = E[e−R(u+cTa−
∑N(Ta)

k=1 Xk) |u + cTa −
N(Ta)∑

k=1

Xk ≤ 0] P[u + cTa −
N(Ta)∑

k=1

Xk ≤ 0]

+ E[e−R(u+ct−
∑N(t)

k=1 Xk) |u + cTa −
N(Ta)∑

k=1

Xk ≥ a] P[u + cTa −
N(Ta)∑

k=1

Xk ≥ a].

Since this equation is valid for any fixed positive a, and since R > 0, limits can be
taken as a → ∞. Since lima→∞ P[u+cTa−

∑N(Ta)
k=1 Xk) ≤ 0] = ψ(u) and lima→∞ e−Ra = 0

the following result is obtained.

Theorem. Suppose that in the collective risk model the adjustment coefficient R > 0
satisfies e−Rct MN(t)(ln(MX(R))) = 1 for all t. Let T = inf{s : u + cs −

∑N(s)
k=1 Xk ≤ 0}

be the random time at which ruin occurs. Then

ψ(u) =
e−Ru

E[e−R(u+cT−
∑N(T)

k=1 Xk) |T < ∞]
≤ e−Ru

.

Exercise 29–1. Why is the last inequality true?

As in the discrete time model, the existence of an adjustment coefficient guar-
antees that the ruin probability decreases exponentially as the initial surplus u
increases.

In general there is no guarantee that an adjustment coefficient will exist. For
certain particular types of models the adjustment coefficient can explicitly be found.
Moreover, a more detailed analysis of the claims process can be made in these
special cases.

The more restrictive discussion begins by examining the nature of the process
N(t), the total number of claims up to time t. A common assumption is that this
process is a Poisson process with constant intensity λ > 0. What this assumption
means is the following. Suppose W1, W2, . . . are independent identically distributed
exponential random variables with mean 1/λ and common density λe−λx1(0,∞)(x).
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The W’s are the waiting times between claims. The Poisson process can then
be viewed as the number of claims that arrive up to time t. This means that
N(t) = inf{k :

∑k+1
j=1 Wj > t}. It can be shown that for any fixed t the random variable

N(t) has the Poisson distribution with parameter λ t and that the stochastic process
{N(t) : t ≥ 0} has independent increments, that is, whenever t1 < t2 < . . . < tn are
fixed real numbers then the random variables N(t2) − N(t1), . . . , N(tn) − N(tn−1) are
independent. Using this, direct computation gives

E[eνN(t)] =
∞∑

j=0

eνjP[N(t) = j]

=
∞∑

j=0

eνje−λ t(λ t)j/ j!

= e−λ t
∞∑

j=0

(eν
λ t)j/ j!

= eλ t(eν−1)
.

This simple formula for the moment generating function of N(t) leads to a simple
formula for the adjustment coefficient in this case. The general equation for the
adjustment coefficient was earlier found to be e−Rct MN(t)(ln(MX(R))) = 1. Taking
logarithms and using the form of the moment generating function of N(t) shows that
the adjustment coefficient is the positive solution of the equation

λ + cR = λMX(R).

An argument similar to that given in the discrete time case can be used to show that
there is a unique adjustment coefficient in this setting.

Exercise 29–2. Verify that the adjustment coefficient, if it exists, must satisfy this
equation.

Example 29–1. Suppose all claims are for a unit amount. Then MX(ν) = eν so the
adjustment coefficient is the positive solution of λ + cR = λeR. Note that there is
no solution if c ≤ λ . But in this case the ruin probability is clearly 1.

Exercise 29–3. Show that if c ≤ λE[X] the ruin probability is 1. Show that if
c > λE[X] the adjustment coefficient always exists and hence the ruin probability
is less than 1.

The previous exercises suggest that only the case in which c > λE[X] is of
interest. Henceforth write c = (1 + θ)λE[X] for some θ > 0. Here θ is the relative
security loading.

Even more detailed information can be obtained when N(t) is a Poisson process.
To do this define a stopping time Tu = inf{s : U(s) < u} to be the first time that
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the surplus falls below its initial level and denote by L1 = u − U(Tu) the amount by
which the surplus falls below its initial level. Then

P[Tu < ∞, L1 ≥ y] =
1

(1 + θ)E[X]

∫ ∞

y
(1 − FX(x)) dx.

The proof of this fact is rather technical.

proof : Let h > 0 be small. Then P[N(h) = 0] = e−λh ≈ 1, P[N(h) = 1] = λhe−λh ≈ λh and
P[N(h) ≥ 2] ≈ 0. Denote by R(u, y) the probability that with an initial surplus of u the first
time the surplus drops below 0, the surplus actually drops below −y. Conditioning on the
value of N(h) gives

R(u, y) ≈ (1 − λh)R(u + ch, y) + λh

(∫ u

0
R(u − x, y)fX(x) dx +

∫ ∞

u+ch+y
fX(x) dx

)
.

Re-arranging gives

R(u, y) − R(u + ch, y)
ch

= −
λ

c
R(u + ch, y) +

λ

c

∫ u

0
R(u − x, y)fX(x) dx +

λ

c

∫ ∞

u+ch+y
fX(x) dx.

Now take limits as h → 0 to obtain

−R′(u, y) = −
λ

c
R(u, y) +

λ

c

∫ u

0
R(u − x, y)fX(x) dx +

λ

c

∫ ∞

u+y
fX(x) dx.

Since R(u, y) ≤ ψ(u) ≤ e−Ru, both sides can be integrated with respect to u from 0 to ∞.
Doing this gives

R(0, y) = −
λ

c

∫ ∞

0
R(u, y) du +

λ

c

∫ ∞

0

∫ u

0
R(u − x, y)fX(x) dx du +

λ

c

∫ ∞

0

∫ ∞

u+y
fX(x) dx du.

Interchanging the order of integration in the double integrals shows that the first double

integral is equal to
∫ ∞

0
R(u, y) du, while the second double integral is equal to

∫ ∞

y

∫ x−y

0
fX(x) du dx =

∫ ∞

y
(x − y)fX(x) dx

=
∫ ∞

y
xfX(x) dx − yP[X ≥ y]

=
∫ ∞

y
(1 − FX(x)) dx

after integration by parts. Substitution now completes the proof after using c = (1+θ)λE[X].

This formula has two useful consequences. First, by taking y = 0, the proba-
bility that the surplus ever drops below its initial level is 1/ (1 + θ). Second, an
explicit formula for the size of the drop below the initial level is obtained as

P[L1 ≤ y |Tu < ∞] =
1

E[X]

∫ y

0
(1 − FX(x)) dx.
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This expression can be evaluated in certain cases.

Exercise 29–4. Derive this expression for P[L1 ≤ y |Tu < ∞].

Exercise 29–5. What is the conditional distribution of L1 given Tu < ∞ if the claim
size has an exponential distribution with mean 1/δ?

Exercise 29–6. Show that the conditional moment generating function of L1 given
Tu < ∞ is (MX(t) − 1)/ (tE[X]).

This information can also be used to study the random variable L which repre-
sents the maximum aggregrate loss and is defined by L = maxt≥0{

∑N(t)
k=1 Xk − ct}.

Note that P[L ≤ u] = 1 − ψ(u) from which the distribution of L has a disconti-
nuity at the origin of size 1 − ψ(0) = θ/ (1 + θ), and is continuous otherwise. In
fact a reasonably explicit formula for the moment generating function of L can be
obtained.

Theorem. If N(t) is a Poisson process and L = maxt≥0{
∑N(t)

k=1 Xk − ct} then

ML(ν) =
θE[X]ν

1 + (1 + θ)E[X]ν − MX(ν)
.

proof : Note from above that the size of each new deficit does not depend on the initial starting
point of the surplus process. Thus

L =
D∑

j=1

Aj

where A1, A2, . . . are independent identically distributed random variables each having the
same distribution as the conditional distribution of L1 given Tu < ∞, and D is a random
variable independent of the A’s which counts the number of times a new deficit level is
reached. From here the moment generating function of L can be computed using the
same methodology as earlier to obtain ML(t) = MD(ln MA(t)). Since D is geometric with
success probability 1/ (1 + θ) and A has the same distribution as L1, the computations can
be completed by substitution and simplification.

Exercise 29–7. Complete the details of the proof.

This formula for the moment generating function of L can sometimes be used
to find an explicit formula for the distribution function of L, and hence ψ(u) =
1 − P[L ≤ u].

Example 29–2. Suppose X is exponential with mean 1 and that θ = 1. Then
substitution gives ML(t) = 1

2 + 1
2

1
1−2t , after using long division (or partial fractions).

The second term is half of the moment generating function of an exponential random
variable with mean 1/2, while the first term is half the moment generating function
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of a random variable that is degenerate at zero. The ruin probability is therefore
ψ(u) = P[L > u] = e−2u/2 for u > 0. Notice that ψ(0) = 1/2.

The analysis of random sums of the form
N∑

j=1

Xj in which the X’s are inde-

pendent and identically distributed has played a key role in the preceding anal-
ysis. The distribution of such a sum is called a compound distribution, with
N as the compounding variable and X as the compounded variable. The condi-
tioning method used earlier shows that the moment generating function of such

a sum is MN(ln MX(t)). The first two moments are E[
N∑

j=1

Xj] = E[N]E[X] and

Var(
∑N

j=1 Xj) = E[N] Var(X) + (E[X])2 Var(N). These formulas are very useful com-
putationally.

The case in which the compounding variable is Poisson is especially interest-
ing. A random variable S has the compound Poisson distribution with Poisson
parameter λ and mixing distribution F(x), denoted CP(λ , F), if S has the same dis-
tribution as

∑N
j=1 Xj where X1, X2, . . . are independent identically distributed random

variables with common distribution function F and N is a random variable which is
independent of the X’s and has a Poisson distribution with parameter λ .

Example 29–3. For each fixed t, the aggregate claims process CP(λ t, FX).

Example 29–4. If S has the CP(λ , F) distribution then the moment generating
function of S is

MS(ν) = exp{λ

∫ ∞

−∞
(euν − 1) dF(u)}.

This follows from the earlier general derivation of the moment generating function
of a random sum.

Exercise 29–8. Suppose that S has the CP(λ , F) distribution and T has the CP(δ, G)
distribution and that S and T are independent. Show that S + T has the CP(λ +
δ,

λ

λ+δ
F + δ

λ+δ
G) distribution.

This last property is very useful in the insurance context. Because of this
property the results of the analysis of different policy types can be easily combined
into one grand analysis of the company’s prospects as a whole. A compound Poisson
distribution can also be decomposed.

Example 29–5. Suppose each claim is either for $1 or $2, each event having
probability 0.5. If the number of claims is Poisson with parameter λ then the
amount of total claims, S, is compound Poisson distributed with moment generating
function

MS(ν) = exp{0.5λ (eν − 1) + 0.5λ (e2ν − 1)}.
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Hence S has the same distribution as Y1 + 2Y2 where Y1 and Y2 are independent
Poisson random variables with mean λ /2. Thus the number of claims of each size
are independent!

Example 29–6. The collective risk model can be used as an approximation to
the individual risk model. In the individual risk model the claim amount is often
represented by a product BjXj in which B is a Bernoulli random variable which
represents whether a claim is paid or not and X is the amount of the claim. Then

BX =
B∑

j=1

X′j ≈
N∑

j=1

X′j

where N has a Poisson distribution with parameter P[B = 1] and X′1 , X′2 , . . . are
independent random variables each having the same distribution as X. Thus the
distribution of BX may be approximated by the CP(P[B = 1], FX) distribution.

The analysis of the aggregate loss random variable L introduced the idea of
mixing. A mixture of distributions often arises when the outcome of an experiment
is the result of a two step process.

Example 29–7. A student is selected at random from the student population and
given an examination. The score S of the student could be modeled as the result of a
two stage process. The selection of the student from the student population could be
considered as the selection of an observation from a normal population with mean 70
and variance 100. This is a statement about the distribution of student abilities. Such
a model is stating that the average student score is 70. Let the random variable M
denote the result of this selection. The selected student then takes a particular exam,
and the score on the exam depends on the ability M and the variability caused by the
examination itself. So the final score might have the normal distribution with mean
M and variance 16. Conditioning on M shows that the moment generating function
of the score S on the examination is MS(t) = E[E[etS |M]] = E[etM+8t2] = e70t+58t2 ,
making use of the form of the moment generating function of the normal distribution.
So the score S is normally distributed with mean 70 and variance 116.

Example 29–8. In an earlier example the distribution of L was computed. The
distribution could be interpreted as the result of a two stage experiment. In the first
stage, the surplus either drops below its initial level or it doesn’t. In the second
stage, the amount by which the surplus drops below the initial level is determined.
In the particluar case consider, with θ = 1, there is a 50% chance the surplus doesn’t
drop below its initial level. So L = 0 with probability 1/2. If the surplus does drop
below its initial level, the size of the drop has an exponential distribution with mean
1/2.

Some additional examples of mixing are given in the problems.
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Problems

Problem 29–1. If N has a Poisson distribution with parameter λ express P[N = k]
in terms of P[N = k − 1]. This gives a recursive method of computing Poisson
probabilities.

Problem 29–2. Show that if X takes positive integer values and S has the CP(λ , FX)
distribution then x P[S = x] =

∑∞
k=1 λkP[X = k]P[S = x − k] for x > 0. This

is called Panjer’s recursion formula. Hint: First show, using symmetry, that
E[Xj |S = x, N = n] = x/n for 1 ≤ j ≤ n and then write out what this means.

Problem 29–3. Suppose in the previous problem that λ = 3 and that X takes on the
values 1, 2, 3, and 4 with probabilities 0.3, 0.2, 0.1, and 0.4 respectively. Calculate
P[S = k] for 0 ≤ k ≤ 40.

Problem 29–4. Suppose S1 has a compound Poisson distribution with λ = 2 and
that the compounded variable takes on the values 1, 2, or 3 with probabilities 0.2,
0.6, and 0.2 respectively. Suppose S2 has a compound Poisson distribution with
parameter λ = 6 and the compounded variable takes on the values 3 or 4 with
probabilities 1/2 each. If S1 and S2 are independent, what is the distribution of
S1 + S2?

Problem 29–5. The compound Poisson distribution is not symmetric about its
mean, as the normal distribution is. One might therefore consider approximation of
the compound Poisson distribution by some other skewed distribution. A random
variable G is said to have the Gamma distribution with parameters α and β if G has
density function

fG(x) =
βα

Γ(α)
xα−1e−βx1(0,∞)(x).

It is useful to recall the definition and basic properties of the Gamma function in this
connection. One easily computes the moments of such a random variable. In fact
the moment generating function is MG(ν) = (β /β − ν)α . The case in which β = 1/2
and 2α is a positive integer corresponds to the chi–square distribution with 2α

degrees of freedom. Also the distribution of the sum of n independent exponential
random variables with mean 1/β is a gamma distribution with parameters n and β .
For approximation purposes the shifted gamma distribution is used to approximate
the compound Poisson distribution. This means that an α, β , and x is found so that
x + G has approximately the same distribution as the compound Poisson variate.
The quantities x, α, and β are found by using the method of moments. The first
three central moments of both random variables are equated, and the equations are
then solved. Show that when approximating the distribution of a compound Poisson
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random variable S the method of moments leads to

α =
4[Var(S)]3

[E[(S − E[S])3]]2
=

4λ

(
E[X2]

)3

(
E[X3]

)2

β =
2Var(S)

E[(S − E[S])3]
=

2E[X2]
E[X3]

x = E[S] −
2[Var(S)]2

E[(S − E[S])3]
= λE[X] −

2λ

(
E[X2]

)2

E[X3]
.

Problem 29–6. A random variable X is a mixture of exponential random variables
if the value of X is determined in the following way. Fix a number 0 < p < 1.
Perform a two stage experiment. In the first stage, select a number U at random in
the interval (0, 1). For the second stage, proceed as follows. If U < p select the
value of X to be the value of an exponential random variable with parameter λ1. If
U > p select the value of X to be the value of an exponential random variable with
parameter λ2. Show that the density of X is fX(x) = pλ1e−λ1x + (1 − p)λ2e−λ2x for
x ≥ 0. Show that the moment generating function of X is E[etX] = p

λ1−t + 1−p
λ2−t .

Problem 29–7. What is the density of a random variable X with moment generating
function E[etX] = (30 − 9t)/2(5 − t)(3 − t) for 0 < t < 3?

Problem 29–8. In the continuous time model, if the individual claims X have
density fX(x) = (3e−3x + 7e−7x)/2 for x > 0 and θ = 1, find the adjustment coefficient
and ψ(u).

Problem 29–9. In the continuous time model, if the individual claims X are discrete
with possible values 1 or 2 with probabilities 1/4 and 3/4 respectively, and if the
adjustment coefficient is ln(2), find the relative security loading.

Problem 29–10. Use integration by parts to show that the adjustment coefficient in

the continuous time model is the solution of the equation
∫ ∞

0
erx(1−FX(x)) dx = c/λ .

Problem 29–11. In the continuous time model, use integration by parts to find
ML1(t). Find expressions for E[L1], E[L2

1] and Var(L1). Here L1 is the random
variable which is the amount by which the surplus first falls below its initial level,
given that this occurs.

Problem 29–12. Find the moment generating function of the maximum aggregate
loss random variable in the case in which all claims are of size 5. What is E[L]?
Hint: Use the Maclaurin expansion of MX(t) to find the Maclaurin expansion of
ML(t).
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Problem 29–13. If ψ(u) = 0.3e−2u + 0.2e−4u + 0.1e−7u, what is the relative security
loading?

Problem 29–14. If L is the maximum aggregate loss random variable, find expres-
sions for E[L], E[L2], and Var(L) in terms of moments of X.

Problem 29–15. In the compound Poisson continous time model suppose that
λ = 3, c = 1, and X has density fX(x) = (e−3x + 16e−6x)/3 for x > 0. Find the relative
security loading, the adjustment coefficient, and an explicit formula for the ruin
probability.

Problem 29–16. In the compound Poisson continous time model suppose that

λ = 3, c = 1, and X has density fX(x) =
9x
25

e−3x/5 for x > 0. Find the relative security

loading, the adjustment coefficient, and an explicit formula for the ruin probability.
What happens if c = 20?

Problem 29–17. The claim number random variable is sometimes assumed to have
the negative binomial distribution. A random variable N is said to have the n

¯
egative

binomial distribution with parameters p and r if N counts the number of failures
before the rth success in a sequence of independent Bernoulli trials, each having
success probability p. Find the density and moment generating function of a random
variable N with the negative binomial distribution. Define the compound negative
binomial distribution and find the moment generating function, mean, and variance
of a random variable with the compound negative binomial distribution.

Problem 29–18. In the case of fire insurance the amount of damage may be quite
large. Three common assumptions are made about the nature of the loss variables in
this case. One is that X has a lognormal distribution. This means that X = eZ where
Z is N(µ, σ2). A second possible assumption is that X has a Pareto distribution.
This means that X has a density of the form αx0/xα+11[x0,∞)(x) for some α > 0. Note
that a Pareto distribution has very heavy tails, and the mean and/or variance may
not exist. A final assumption which is sometimes made is that the density of X is a
mixture of exponentials, that is,

fX(t) = (0.7)λ1e−λ1t + (0.3)λ2e−λ2t

for example. After an assumption is made about the nature of the underlying
distribution one may use actual data to estimate the unknown parameters. For each
of the three models find the maximum likelihood estimators and the method of
moments estimators of the unknown parameters.

Problem 29–19. For automobile physical damage a gamma distribution is often
postulated. Find the maximum likelihood and method of moments estimators of the
unknown parameters in this case.
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Problem 29–20. One may also examine the benefits, in terms of risk reduction,
of using reinsurance. Begin by noting the possible types of reinsurance available.
First there is proportional reinsurance. Here the reinsurer agrees to pay a fraction
α, 0 ≤ α ≤ 1, of each individual claim amount. Secondly, there is stop–loss
reinsurance, in which the reinsurer pays the amount of the individual claim in
excess of the deductible amount. Finally, there is excess of loss reinsurance in
which the reinsurer pays the amount by which the claims of a portfolio of policies
exceeds the deductible amount. As an example, the effect of stop–loss reinsurance
with deductible d on an insurer’s risk will be analyzed. The amount of insurer’s
risk will be measured by the ruin probability. In fact, since the ruin probability is
so difficult to compute, the effect of reinsurance on the adjustment coefficient will
be measured. Recall that the larger the adjustment coefficient, the smaller the ruin
probability. Initially (before the purchase of reinsurance) the insurer’s surplus at
time t is

U(t) = u + ct −
N(t)∑

j=1

Xj

where c = (1 + θ)λE[X] and N(t) is a Poisson process with intensity λ . The
adjustment coefficient before the purchase of reinsurance is the positive solution of

λ + cr = λMX(r).

After the purchase of stop loss reinsurance with deductible d the insurer’s surplus is

U′(t) = u + c′t −
N(t)∑

j=1

(Xj ∧ d)

where c′ = c − reinsurance premium. Note that this process has the same structure
as the original one. The new adjustment coefficient is therefore the solution of

λ + c′r = λMX∧d(r).

By examining the reinsurance procedure from the reinsurer’s standpoint the rein-
surer’s premium is given by

(1 + θ′)λE[(X − d)1[d,∞)(X)]

where θ′ is the reinsurer’s relative security loading. With this information the new
adjustment coefficient can be computed. Carry out these computations when λ = 2,
θ = 0.50, θ′ = 0.25, d = 750, and X has a exponential distribution with mean 500.

Problem 29–21. Repeat the previous problem for the case of proportional reinsur-
ance.

Problem 29–22. The case of excess of loss reinsurance leads to a discrete time
model, since the reinsurance is applied to a portfolio of policies and the reinsurance
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is paid annually (say). The details here a similar to those in the discussion of the
discrete time gamblers ruin problem. Analyze the situation described in the previous
problem if the deductible for an excess of loss policy is 1500 and the rest of the
assumptions are the same. Which type of reinsurance is better?

Problem 29–23. In the discrete time model, suppose the X’s have the N(10, 4)
distribution and the relative security loading is 25%. A reinsurer will reinsure a
fraction f of the total portfolio on a proportional basis for a premium which is 140%
of the expected claim amount. Find the insurers adjustment coefficient as a function
of f . What value of f maximizes the security of the ceding company?
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Solutions to Problems
Problem 29–2. By symmetry, E[X1 |S = x, N = n] = x/n while direct com-
putation gives E[X1 |S = x, N = n] =

∑∞
k=1 k P[X1 = k |S = x, N = n]. Now

P[X1 = k, S = x, N = n] = P[X1 = k,
∑n

j=1 Xj = x, N = n] = P[X1 =
k] P[

∑n
j=2 Xj = x − k] P[N = n] = P[X1 = k] P[

∑n
j=2 Xj = x − k] P[N = n −

1]λ /n = P[X1 = k] P[S = x − k, N = n − 1]λ /n. Making this substitution gives
xP[S = x, N = n] =

∑∞
k=1 λkP[X1 = k] P[S = x − k, N = n − 1]. Summing both

sides on n from 0 to ∞ gives the result.

Problem 29–4. The sum has a compound Poisson distribution with λ = 8.

Problem 29–6. Compute the distribution function of X by conditioning on
U to obtain FX(x) = P[X1 ≤ x] p + P[X2 ≤ x] (1 − p) for x ≥ 0 where X1 and
X2 are exponentially distributed random variables with parameters λ1 and λ2

respectively.

Problem 29–7. Use partial fractions and the previous problem to see that X
is a mixture of two exponentially distributed random variables with parameters
λ1 = 3 and λ2 = 5 and p = 1/4.

Problem 29–8. Here MX(t) = (5t − 21)/ (t − 3)(t − 7) and E[X] = 5/21. This
leads to R = 1.69. Also ML(t) = 1/2 − 0.769/ (t − 1.69) − 0.280/ (t − 6.20) using
partial fractions. Hence the density of L is fL(t) = 0.769e−1.69t + 0.280e−6.20t

together with a jump of size 1/2 at t = 0. (Recall that L has both a discrete and
absolutely continuous part.) Thus ψ(u) = 0.454e−1.69u + 0.045e−6.20u.

Problem 29–9. Here θ = 10/7 ln(2) − 1 = 1.0609.

Problem 29–11. The density of L1 is fL1 (t) = (1 − FX(t))/E[X] for t ≥ 0.
Integration by parts then gives ML1 (t) = (MX(t) − 1)/ tE[X]. Using the Maclaurin

expansion of MX(t) = 1+ tE[X]+ t2E[X2]/2+ . . . then gives ML1 (t) = 1+
E[X2]
2E[X]

t+

E[X3]
6E[X]

t2 + . . ., from which the first two moments of L1 can be read off.

Problem 29–12. ML(t) = 5θt/ (1 + 5(1 + θ)t − e5t) = 1 + t E[X2]
2θE[X] + . . ..

Problem 29–13. Here θ = 2/3 since ψ(0) = 1/ (1 + θ).

Problem 29–14. Substitute the Maclaurin expansion of MX(t) into the expres-
sion for moment generating function of L in order to get the Macluarin expansion
of ML(t).

Problem 29–15. Here θ = 4/5 and R = 2. Also ML(t) = 4/9+(8/9) 1
2−t +(4/9) 1

4−t
so that ψ(u) = (4/9)e−2u + (1/9)e−4u.

Problem 29–16. Here MX(t) = 9
25 (3/5− t)−2 so that E[X] = 10/3 and θ = −9/10

when c = 1. Since θ < 0, there is no adjustment coefficient and the ruin

probability is 1. When c = 20, θ = 1 and R = 0.215. Also ML(t) =
1
2

−0.119/ (t −
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0.215) + 0.044/ (t − 0.834) by partial fractions. The density of the absolutely
continuous part of L is fL(t) = 0.119e−.0.215t − 0.044e−0.834t, and the distribution
of L has a jump of size 1/2 at the origin. So ψ(u) = 0.553e−0.215u − 0.053e−0.834u.

Problem 29–17. The compound negative binomial distribution is the distribu-

tion of the random sum
N∑

i=1

Xi where N and the X’s are independent, N has the

negative binomial distribution, and the X’s all have the same distribution. Now
P[N = k] =

(k+r−1
r−1

)
pr(1 − p)k for k ≥ 0 and MN(t) = pr(1 − (1 − p)et)−r. Now use

the general result about the moment generating function of a random sum.

Problem 29–20. Here MX(t) = (1 − 500t)−1 for t < 1/500. The adjustment
coefficient before reinsurance is then R = 1/1500. The reinsurance premium is
(1 + 0.25)2E[(X − 750)1(750,∞)(X)] = 278.91 and the insurer’s new adjustment
coefficient is the solution of 2 + (1500 − 278.91)R = MX∧750(R) which gives
R = 0.00143.

Problem 29–21. As in the preceding problem, R = 1/1500 before reinsurance.
Suppose the insurer retains 100(1−α)% of the liability. The reinsurance premium
is then (1 + θ′)λαE[X] = 1250α. The adjustment coefficient after reinsurance
is then the solution of 2 + (1500 − 1250α)R = 2M(1−α)X(R) = 2MX((1 − α)R). So
R = (2−α)/500(5α2 −11α +6) which is always at least 1/1500. Notice that since
θ′ < θ here, the insurer should pass off all of the risk to the reinsurer. By using
α = 1 the insurer collects the difference between the original and reinsurance
premiums, and has no risk of paying a claim.

Problem 29–22. The computational details here are quite complicated. In
a time interval of unit length the total claims are C =

∑N
j=1 Xj where N is a

Poisson random variable with parameter λ . Now recall that in the discrete time
setting the adjustment coefficient is the solution of the equation E[eR(c−C)] = 1.
As before c = 1500. Also MC(t) = eλ (MX (t)−1). So the adjustment coefficient
before reinsurance is 1/1500. The reinsurance premium with deductible 1500
is λ (1 + θ′)E[(C − 1500)1(1500,∞)(C)] = 568.12. This is obtained numerically
by conditioning on the value of N and using the fact that conditional on N = k,
C has a gamma distribution with parameters α = k and β = 1/500. The new
adjustment coefficient solves E[eR(1500−568.12−C∧1500)] = 1.

Problem 29–23. Here MX(t) = e10t+2t2
, the premium income is 12.5 for each

time period, and the adjustment coefficient is the solution of e−12.5tMX(t) = 1
which gives R = 1.25. The reinsurance premium is 14f so that after reinsurance
the adjustment coefficient satisfies e−(12.5−14f )tMX((1 − f )t) = 1, which gives
R = (5 − 8f )/4(1 − 2f + f 2). The value f = 1/4 produces the maximum value of
R, namely 4/3.



§29: The Collective Risk Model Revisited 166

Solutions to Exercises

Exercise 29–1. Since R > 0 and u + cT −
∑N(T)

k=1 Xk ≤ 0 when T < ∞ the
denominator expectation is at least 1.

Exercise 29–2. MU(t)−u(−R) = 1 holds if and only if −ctR − λ t(MX(R) − 1) = 0,
which translates into the given condition.

Exercise 29–3. If c ≤ λE[X] premium income is less than or equal to the
average rate of the claim process. So eventually the company will be ruined
by a run of above average size claims. By Maclaurin expansion, MX(R) =
1 + E[X]R + E[X2]R2/2 + . . . and all of the coefficients are positive since X is a
positive random variable. So λ + cR − λMX(R) = (c − λE[X])R − E[X2]R2/2 − . . .

is a function which is positive for R near 0 and negative for large values of R.
Thus there is some positive value of R for which this function is zero.

Exercise 29–4. From the definition of conditional probability, P[L1 ≤ y |Tu <
∞] = P[L1 ≤ y, Tu < ∞]/P[Tu < ∞] and the result follows from the previous
formula and the fact that P[Tu < ∞] = 1/ (1 + θ).

Exercise 29–5. Since in this case FX(t) = 1 − e−δ t for t > 0, direct substitution
gives P[L1 ≤ y |Tu < ∞] = 1 − e−δy for y > 0.

Exercise 29–6. Given Tu < ∞ the density of L1 is (1−FX(y))/E[X] for y > 0. Us-
ing integration by parts then gives the conditional moment generating function of
L1 as

∫ ∞
0 ety(1−FX(y))/E[X] dy = ety(1 − FX(y))/ tE[X]

∣∣∞
0 +
∫ ∞

0 etyfX(y)/ tE[X] dy =
(MX(t) − 1)/ tE[X]. Notice that the unconditional distribution of L1 has a jump of
size θ/ (1 + θ) at the origin. The unconditional moment generating function of
L1 is θ/ (1 + θ) + (MX(t) − 1)/ (1 + θ)tE[X].

Exercise 29–7. Since P[D = k] = (θ/ (1 + θ))(1/ (1 + θ))k for k = 0, 1, 2, . . .,

conditioning gives ML(t) = E[e
t
∑D

j=1
Aj ] = E[MA(t)D] =

∑∞
k=0 MA(t)k(θ/ (1 +

θ))(1/ (1 + θ))k = (θ/ (1 + θ))/ (1 − MA(t)/ (1 + θ)) = θ/ (1 + θ − MA(t)) and this
simplifies to the desired result using the formula of the previous exercise.

Exercise 29–8. Using the independence, MS+T (ν) = MS(ν)MT (ν) and the result
follows by substituion and algebraic rearrangement.



§30. Sample Question Set 8

Solve the following 13 problems in no more than 65 minutes.

Question 30–1 . Lucky Tom finds coins on his way to work at a Poisson rate of 0.5
coins/minute. The denominations are randomly distributed with 60% of the coins
worth 1, 20% of the coins worth 5, and 20% of the coins worth 10. Calculate the
conditional expected value of the coins Tom found during his one-hour walk today,
given that among the coins he found exactly ten were worth 5 each.

A. 108

B. 115

C. 128

D. 165

E. 180

Question 30–2 . You are given that the claim count N has a Poisson distribution
with mean Λ, and that Λ has a gamma distribution with mean 1 and variance 2.
Calculate the probability that N = 1.

A. 0.19

B. 0.24

C. 0.31

D. 0.34

E. 0.37

Question 30–3 . A special purpose insurance company is set up to insure one single
life. The risk consists of a single possible claim. The claim is 100 with probability
0.60, and 200 with probability 0.40. The probability that the claim does not occur
by time t is 1/ (1 + t). The insurer’s surplus at time t is U(t) = 60 + 20t − S(t), where
S(t) is the aggregate claim amount paid by time t. The claim is payable immediately.
Calculate the probability of ruin.

A. 4/7

B. 3/5

C. 2/3

D. 3/4

E. 7/8

Copyright  2006 Jerry Alan Veeh. All rights reserved.
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Question 30–4 . Taxicabs leave a hotel with a group of passengers at a Poisson rate
of λ = 10 per hour. The number of people in each group taking a cab is independent
and is 1 with probability 0.60, 2 with probability 0.30, and 3 with probability 0.10.
Using the normal approximation, calculate the probability that at least 1050 people
leave the hotel in a cab during a 72 hour period.

A. 0.60

B. 0.65

C. 0.70

D. 0.75

E. 0.80

Question 30–5 . A company provides insurance to a concert hall for losses due
to power failure. You are given that the number of power failures in a year has a
Poisson distribution with mean 1, the ground up loss due to a single power failure
is 10 with probability 0.3, 20 with probability 0.3, and 50 with probability 0.4.
The number of power failures and the amounts of losses are independent. There is
an annual deductible of 30. Calculate the expected amount of claims paid by the
insurer in one year.

A. 5

B. 8

C. 10

D. 12

E. 14

Question 30–6 . An investment fund is established to provide benefits on 400
independent lives age x. On January 1, 2001, each life is issued a 10 year deferred
whole life insurance of 1000 payable at the moment of death. Each life is subject
to a constant force of mortality of 0.05. The force of interest is 0.07. Calculate the
amount needed in the investment fund on January 1, 2001, so that the probability,
as determined by the normal approximation, is 0.95 that the fund will be sufficient
to provide these benefits.

A. 55,300

B. 56,400

C. 58,500

D. 59,300

E. 60,100
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Question 30–7 . You are given that the number of claims has mean 8 and standard
deviation 3, while the individual losses have a mean of 10,000 and a standard
deviation of 3,937. Using the normal approximation, determine the probability that
the aggregate loss will exceed 150% of the expected loss.

A. Φ(1.25)

B. Φ(1.5)

C. 1 − Φ(1.25)

D. 1 − Φ(1.5)

E. 1.5Φ(1)

Question 30–8 . An insurance company sold 300 fire insurance policies. One
hundred of the policies had a policy maximum of 400 and probability of claim per
policy of 0.05. Two hundred of the policies had a policy maximum of 300 and a
probability of claim per policy of 0.06. You are given that the claim amount for each
policy is uniformly distributed between 0 and the policy maximum, the probability
of more than one claim per policy is 0, and that claim occurrences are independent.
Calculate the variance of the aggregate claims.

A. 150,000

B. 300,000

C. 450,000

D. 600,000

E. 750,000

Question 30–9 . A risky investment with a constant rate of default will pay principal
and accumulated interest at 16% compounded annually at the end of 20 years if it
does not default, and zero if it defaults. A risk free investment will pay principal
and accumulated interest at 10% compounded annually at the end of 20 years. The
principal amounts of the two investments are equal. The actuarial present values of
the two investments are equal at time zero. Calculate the median time until default
or maturity of the risky investment.

A. 9

B. 10

C. 11

D. 12

E. 13
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Question 30–10 . For an insurer with initial surplus of 2 the annual aggregate claim
amount is 0 with probability 0.6, 3 with probability 0.3, and 8 with probability 0.1.
Claims are paid at the end of the year. A total premium of 2 is collected at the
beginning of each year. The interest rate is i = 0.08. Calculate the probability that
the insurer is surviving at the end of year 3.

A. 0.74

B. 0.77

C. 0.80

D. 0.85

E. 0.86

Question 30–11 . X is a random variable for a loss. Losses in the year 2000 have
a distribution such that E[X ∧ d] = −0.025d2 + 1.475d − 2.25 for d = 10, 11, . . . , 26.
Losses are uniformly 10% higher in 2001. An insurance policy reimburses 100% of
losses subject ot a deductible of 11 up to a maximum reimbursement of 11. Calculate
the ratio of expected reimbursements in 2001 over expected reimbursements in the
year 2000.

A. 110.0%

B. 110.5%

C. 111.0%

D. 111.5%

E. 112.0%

Question 30–12 . Insurance for a city’s snow removal costs covers four winter
months. There is a deductible of 10,000 per month. The insurer assumes that the
city’s monthly costs are independent and normally distributed with mean 15,000
and standard deviation 2,000. To simulate four months of claim costs, the insurer
uses the Inverse Transform Method where small random numbers correspond to low
costs. The four numbers drawn from the uniform distribution on [0, 1] are 0.5398,
0.1151, 0.0013, and 0.7881. Calculate the insurer’s simulated claim cost.

A. 13,400

B. 14,400

C. 17,800

D. 20,000

E. 26,600
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Question 30–13 . A new insurance salesperson has 10 friends, each of whom is
considering buying a policy. Each policy is a whole life insurance of 1000 payable
at the end of the year of death. The friends are all age 22 and make their purchase
decisions independently. Each friend has a probability of 0.10 of buying a policy.
The 10 future lifetimes are independent. S is the random variable for the present
value at issue of the total payments to those who purchase the insurance. Mortality
follows the Illustrative Life Table and i = 0.06. Calculate the variance of S.

A. 9,200

B. 10,800

C. 12,300

D. 13,800

E. 15,400
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Answers to Sample Questions

Question 30–1 . If A, B, and C are the number of coins of the respective denomina-
tions found by Tom, then A, B, and C are independent Poisson random variables with
parameters 18, 6, and 6 (per hour). Thus E[A + 5B + 10C |B] = 18 + 50 + 60 = 128.
C.

Question 30–2 . Here P[N = 1 |Λ] = Λe−Λ, so P[N = 1] = E[Λe−Λ]. Since
MΛ(t) = E[etΛ] = (0.5/0.5−t)0.5 from the given information, the desired probability is
the derivative of the moment generating function at t = −1. Thus P[N = 1] = 0.1924.
A.

Question 30–3 . The company is ruined if there is a claim of 100 before time 2
or a claim of 200 before time 7. So ruin occurs if there is any claim before time
2, or a claim of 200 between times 2 and 7. The ruin probability is therefore
2/3 + (7/8 − 2/3)(0.40) = 3/4. D.

Question 30–4 . The number N of cabs leaving the hotel in a 72 hour period
is Poisson with parameter 720. If A, B, and C are the number of 1, 2, and 3
person cabs then these random variables are independent Poisson random variables
with parameters 432, 216, and 72. The mean number of people leaving is then
432 + 2(216) + 3(72) = 1080 and the variance is 432 + 4(216) + 9(72) = 1944, and
the approximate probability is P[Z >= (1050 − 1080)/ √1944] = P[Z >= −0.680] =
0.751.D.

Question 30–5 . The expected amount is E[(L − 30)+] = E[L − 30] − E[(L −
30)1[0,30)(L)], where L is the loss due to power failure. Now P[L = 0] = e−1,
P[L = 10] = 0.3e−1 and P[L = 20] = 0.3e−1 + (0.3)2e−1/2. So the last expecta-
tion is −30e−1 − (20)0.3e−1 − 10(0.3e−1 + (0.3)2e−1/2) = −14.51. Using this gives
E[(L − 30)+] = 29 − 30 + 14.51 = 13.51. E.

Question 30–6 . The loss random variable for the ith policy is

Li = 1000e−δTi1[10,∞)(Ti),

where Ti is the future lifetime of the ith policy holder. Thus

E[Li] = 1000
∫ ∞

10
e−δ t

.05e−.05t dt = 125.49

and

E[L2
i ] = 10002

∫ ∞

10
e−2δ t

.05e−.05t dt = 39, 300,

from which Var(Li) = 23, 610. For the total loss S, E[S] = 50, 199 and Var(S) =
9440000. The amount required is 50199 + 1.645√9440000 = 55, 253. A.
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Question 30–7 . The total loss T has E[T] = 8(10, 000) = 80, 000 and Var(T) =
8(3937)2 + 32(10, 000)2 = 1023999752. Thus

P[T ≥ 120000] ≈ P[Z ≥ 40000/
√

Var(T)] = P[Z ≥ 1.25].

C.

Question 30–8 . Each of the one hundred policies has expected loss 200(0.05) = 10
and mean square loss (400)2(.05)/3, giving the per policy variance as 2566.66. For
each of the two hundred policies the mean loss is 150(0.06) = 9 and the mean square
loss is (300)2(0.06)/3, giving the per policy variance as 1719. The total variance is
therefore 100(2566.66) + 200(1719) = 600, 466. D.

Question 30–9 . The time T until default has an exponential distribution with
parameter µ. Hence (1.16)20e−20µ = (1.10)20 and µ = 0.0531. The median of the
distribution of T is − ln(1/2)/µ = 13.05. (If this had turned out to be larger than 20,
the median of T ∧ 20, which is what is sought, would be 20.)E.

Question 30–10 . Making a tree diagram with i = 0 shows that the survival prob-
ability is 0.738. This follows because the initial cash on hand is 2 + 2 = 4, so the
possible cash at the end of the first year is either 4, 1, or −4. The first two of these
cases lead to cash at the end of year 2 of 6, 3, or −2, or 3, 0, and −5. From here, the
probability of ruin in year 3 is easily determined. The only change using i = 0.08 is
to make the reserve strictly positive at a node where the reserve is 0 using i = 0. A.

Question 30–11 . First note that (x−a)+∧a = x∧(2a)−x∧a. For 2000, the expectation
is E[(X − 11)+ ∧ 11] = E[X ∧ 22] − E[X ∧ 11] = 7.15. For 2001 the expectation is
E[(1.1X − 11)+ ∧ 11] = 1.1E[(X − 10)+ ∧ 10] = 1.1(E[X ∧ 20] − E[X ∧ 10]) = 7.975.
The ratio is 7.975/7.15 = 1.115. D.

Question 30–12 . The corresponding z values are 0.10, −1.2, −3.0, and 0.80, from
the normal table. The corresponding costs are 15200, 12600, 9000, and 16600, and
the costs after the deductible are 5200, 2600, 0, and 6600, giving a total cost of
14,400. B.

Question 30–13 . The mean of each policy is 0.1(1000)A22 and the second moment
is 0.1(1000)22A22 from which the variance of each policy is 1584.30, using the
values from the table. The variance for all of the policies is therefore 15843. E.



§31. Related Probability Models

In the next section a probability model is discussed which can be used for
transactions other than life insurance.

Discrete time Markov chains are often used as models for a sequence of random
variables which are dependent. One application of such stochastic processes is as a
model for the length of stay of a patient in a nursing home.
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In many situations the random variables which serve naturally as a model are
not independent. The simplest kind of dependence allows future behavior to depend
on the present situation.

Example 32–1. Patients in a nursing home fall into 3 categories, and each category
of patient has a differing expense level. Patients who can care for themselves with
minimal assistance are in the lowest expense category. Other patients require some
skilled nursing assistance on a regular basis and are in the next higher expense
category. Finally, some patients require continuous skilled nursing assistance and
are in the highest expense category. One way of modeling the level of care a
particular patient requires on a given day is as follows. Denote by Xi the level of
care this patient requires on day i. Here the value of Xi would be either 1, 2, or
3 depending on which of the 3 expense categories is appropriate for day i. The
random variables {Xi} are not independent.

Possibly the simplest type of dependence structure for a sequence of random
variables is that in which the future probabilistic behavior of the sequence depends
only on the present value of the sequence and not on the entire history of the
sequence. A sequence of random variables {Xn : n = 0, 1, . . .} is a Markov chain if

(1) P[Xn ∈ {0, 1, 2, 3, . . .}] = 1 for all n and

(2) for any real numbers a < b and any finite sequence of non-negative integers
t1 < t2 < ⋅ ⋅ ⋅ < tn < tn+1,

P[a < Xtn+1 ≤ b |Xt1 , . . . , Xtn] = P[a < Xtn+1 ≤ b |Xtn].

The second requirement is referred to as the Markov property. Intuitively, the
Markov property means that the future behavior of the chain depends only on the
present and not on the more distant past.

The possible values of the chain are called states.

Exercise 32–1. Show that any sequence of independent discrete random variables
is a Markov chain.

Because of the simple dependence structure a vital role is played by the tran-
sition probabilities P[Xn+1 = j |Xn = i]. In principle, this probability depends not
only on the two states i and j, but also on n. A Markov chain is said to have
stationary transition probabilities if the transition probabilities P[Xn+1 = j |Xn = i]
do not depend on n. In the examples here, the transition probabilities will always
be assumed to be stationary, and the notation Pi,j = P[Xn+1 = j |Xn = i] will be used.

Copyright  2006 Jerry Alan Veeh. All rights reserved.
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If the chain has non-stationary transition probabilities the notation P(i,j)
n would be

needed.

The transition probabilities are collected into the transition matrix of the chain.
When the transition probabilities are stationary, the transition matrix is P = [Pi,j].
When the transition probabilities are not stationary the matrix Pn = [P(i,j)

n ] holds the
transition probabilities from the state occupied at time n.

Exercise 32–2. Show that if P is a transition matrix then
∑

j Pi,j = 1 for each i.

The transition probabilities together with the distribution of X0 determine com-
pletely the probabilistic behavior of the Markov chain.

Example 32–2. In the previous nursing home example, suppose the transition

matrix is P =




0.9 0.05 0.05
0.1 0.8 0.1
0 0.05 0.95



. The probability that a patient who enters at

time 0 in state 1 is in state 1 at time 1 and state 2 at time 2 is then 0.9 × 0.05, using
the first two entries in the first row of the transition matrix.

Example 32–3. In many cases, costs are associated with each state. In the nursing
home example, suppose the cost of being in state i for one day is i, and that this
expense must be paid at the end of the day. The expected present value of the costs
for the first two days of care for a patient entering in state 1 at time 0 would be
1v + (0.9 × 1 + 0.05 × 2 + 0.05 × 3)v2. Here v is based on the daily interest rate. This
computation again uses the first row of the transition matrix.

Example 32–4. In more complicated models, costs may be associated with the
transitions between states. The typical convention is that the transitions occur
at the end of each time period and the transition costs are incurred at that time
point. The transition costs are typically collected into a matrix, with the (i, j) entry
of the matrix nC being the cost of a transition from state i to state j at time n.

Suppose in the nursing home example the transition costs are nC =




0 1 1
1 0 1
1 1 0





for n ≥ 1. Such a matrix indicates a cost of 1 for any day the patient changes care
level. Suppose the costs of being in a particular state are as before. The actuarial
present value of the expenses for the first 2 days for a patient entering in state 1 is
(1+0.1×1)v+(0.90×1+0.05×2+0.05×3+0.90×0.1×1+0.05×0.2×1+0.05×0.05×1)v2.
The last terms in each case represent the expenses for state transitions at the end of
the day.

Example 32–5. The gambler’s ruin problem illustrates many of the features of a
Markov chain. A gambler enters a casino with $z available for wagering and sits
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down at her favorite game. On each play of the game, the gambler wins $1 with
probability p and loses $1 with probability q = 1 − p. She will happily leave the
casino if her fortune reaches $a > 0, and will definitely leave, rather unhappily,
if her fortune reaches $0. Denote by Xn the gambler’s fortune after the nth play.
Clearly {Xn} is a Markov chain with P[X0 = z] = 1. The natural state space here is
{0, 1, . . . , a}.

Exercise 32–3. Find the (a + 1) × (a + 1) transition matrix.

Even with the simplifying assumption of stationary transition probabilities the
formula for the joint distribution of the values of the chain is unwieldy, especially
since in most cases the long term behavior of the chain is the item of interest. For-
tunately, relatively simple answers can be given to the following central questions.

(1) If {Xn} is a Markov chain with stationary transition probabilities, what is the
limiting distribution of Xn?

(2) If s is a state of a Markov chain with stationary transition probabilities how
often is the process in state s?

As a warm up exercise for studying these questions the n step transition
probabilities defined by Pn

i,j = P[Xn+m = j |Xm = i] and the corresponding n step
transition probability matrix P(n) will now be computed.

Exercise 32–4. Show that P[Xn+m = j |Xm = i] does not depend on m.

Theorem. The n step transition probability matrix is given by P(n) = Pn where P is
the transition probability matrix.

proof : The case n = 1 being clear, the induction step is supplied.

Pn
i,j = P[Xn+m = j |Xm = i]

= P[[Xn+m = j] ∩

(
∞⋃

k=0

[Xn+m−1 = k]

)

] |Xm = i]

=
∞∑

k=0

P[[Xn+m = j, Xn+m−1 = k] |Xm = i]

=
∞∑

k=0

P[Xn+m = j |Xn+m−1 = k, Xm = i] P[Xn+m−1 = k |Xm = i]

=
∞∑

k=0

P[Xn+m = j |Xn+m−1 = k] P[Xn+m−1 = k |Xm = i]

=
∞∑

k=0

Pk,jP
(n−1)
i,k .

The induction hypothesis together with the formula for the multiplication of matrices
conclude the proof.
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When the transition probabilities are not stationary the matrix of probabilities

kP(i,j)
n = P[Xn+k = j |Xn = i] is obtained by kPn = [kP(i,j)

n ] = PnPn+1 . . . Pn+k−1.

Using this lemma gives the following formula for the density of Xn in terms of
the density of X0.

( P[Xn = 0] P[Xn = 1] . . . ) = ( P[X0 = 0] P[X0 = 1] . . . )Pn
.

If the transition probabilites are not stationary, the matrix Pn must be replaced by
matrix product P0P1 . . . Pn−1.

Exercise 32–5. Verify that this formula is correct.

Consequently, if Xn converges in distribution to Y as n → ∞ then

( P[Y = 0] P[Y = 1] . . . ) = lim
n→∞

( P[Xn = 0] P[Xn = 1] . . . )

= lim
n→∞

( P[X0 = 0] P[X0 = 1] . . . )Pn

= lim
n→∞

( P[X0 = 0] P[X0 = 1] . . . )Pn+1

= ( P[Y = 0] P[Y = 1] . . . )P

which gives a necessary condition for Y to be a distributional limit for the chain,
namely, the density of Y must be a left eigenvector of P corresponding to the
eigenvalue 1.

Example 32–6. For the nursing home chain given earlier there is a unique left
eigenvector of P corresponding to the eigenvalue 1, after normalizing so that the
sum of the coordinates is 1. That eigenvector is (0.1202, 0.1202, 0.7595). Thus a
patient will, in the long run, spend about 12% of the time in each of categories 1
and 2 and about 76% of the time in category 3.

Exercise 32–6. Find the left eigenvectors corresponding to the eigenvalue 1 of the
transition matrix for the gambler’s ruin chain.

Example 32–7. Consider the Markov chain with transition matrix P =
(

0 1
1 0

)
.

This chain will be called the oscillating chain. The left eigenvector of P corre-
sponding to the eigenvalue 1 is ( 1/2 1/2 ). If the chain starts in one of the states
there is clearly no limiting distribution.

Exercise 32–7. Show that this last chain does not have a limiting distribution.

The oscillating chain example shows that a Markov chain need not have a
limiting distribution. Even so, this chain does spend half the time in each state,
so the entries in the left eigenvector do have an intuitive interpretation as long run
fraction of the time the chain spends in each state.
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The nursing home chain is an example in which the limiting behavior of the
chain does not depend on initial state of the chain. For the gambler’s ruin chain,
the limiting behavior does depend on the initial state of the chain, as is intuitively
reasonable. The distinction between these two types of behavior can be understood
with a bit of effort.

For each state i define the random variable Ni to be the total number of visits
of the Markov chain to the state i. Possibly, Ni = ∞. A state i for which P[Ni =
∞|X0 = i] = 1 is a state which is sure to be revisited infinitely many times. Such
a state is said to be recurrent. A non-recurrent state, that is, a state i for which
P[Ni = ∞|X0 = i] < 1 is said to be transient. Amazingly, for a transient state i,
P[Ni = ∞|X0 = i] = 0. Thus for each state i the random variable Ni is either always
infinite or never infinite.

Exercise 32–8. Show that if i is a transient state then Ni is a geometric random
variable, given that the chain starts at i.

Checking each state to see whether that state is transient or recurrent is clearly
a difficult task with only the tools available now. Another useful notion can greatly
simplify the job. The state j is accessible from the state i if there is a positive
probability that the chain can start in state i and reach state j. Two states i and j are
said to communicate, denoted i↔j, if each is accessible from the other.

Example 32–8. Consider the coin tossing Markov chain X in which Xn denotes the
outcome of the nth toss of a fair coin in which 1 corresponds to a head and 0 to a
tail. Clearly 0↔1.

Example 32–9. In the gambler’s ruin problem intuition suggests that the states 0
and a are accessible from any other state but do not communicate with any state
except themselves. Such states are absorbing. The other states all communicate
with each other.

Exercise 32–9. Prove that the intuition of the preceding example is correct.

Example 32–10. In the nursing home example, all states communicate with each
other.

Importantly, if i↔j then i is recurrent if and only if j is recurrent.

Exercise 32–10. For the coin tossing chain, is the state 1 recurrent?

Exercise 32–11. What are the recurrent states for the gambler’s ruin chain?

The existence of transient states in the gambler’s ruin chain forced the limiting
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distribution to depend on the initial state. The fact that all states of the nursing home
chain communicate caused the limiting behavior to not depend on the initial state.

In order to described completely the behavior of the limiting relative frequency
of the occupation time of a given state, some additional notation is required. Denote
by fi,j the probability that the chain ever enters state j given that the chain is currently
in state i. Denote by µi,i the expected number of time steps between visits to state
i. (For a transient state, µi,i = ∞ and it is possible for µi,i = ∞ even for a recurrent
state.) The central result in the theory of Markov chains says that for any two states
i and j, given that the chain begins at time zero in state i,

lim
n→∞

total number of visits to state j by time n
n

=
fi,j

µj,j
.

This is the result that was anticipated based on previous examples. For the gambler’s
ruin chain, the expectations µj,j ≠ ∞ only when j is one of the absorbing states, and
the limiting relative frequencies always depend on the initial state i. For the nursing
home and oscillating chains the probabilities fi,j = 1 for all i and j since all states
communicate and are recurrent. The limiting relative frequency does not depend on
the initial state in such cases.

The distinction between the existence of this limiting relative frequency and a
limiting distribution depends on the notion of the period of a state, and will not be
explored here.
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Problems

Problem 32–1. Suppose the chain has only finitely many states all of which com-
municate with each other. Are any of the states transient?

Problem 32–2. Suppose Ni,j is the total number of visits of the chain to state j given

that the chain begins in state i. Show that for i ≠ j, E[Ni,j] =
∞∑

k=0

E[Nk,j] Pi,k. What

happens if i = j?

Problem 32–3. Suppose the chain has both transient and recurrent states. Relabel
the states so that the transient states are listed first. Partition the transition matrix in

to blocks P =
(

PT Q
0 PR

)
. Explain why the lower left block is a zero matrix. Show

that the T × T matrix of expectations E[Ni,j] as i and j range over the transient states
is (I − PT)−1.

Problem 32–4. In addition to the 3 categories of expenses in the nursing home ex-
ample, consider also the possibilities of withdrawal from the home and death. Sup-

pose the corresponding transition matrix is P =





0.8 0.05 0.01 0.09 0.05
0.5 0.45 0.04 0.0 0.01

0.05 0.15 0.70 0.0 0.10
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0





where the states are the 3 expense categories in order followed by withdrawal and
death. Find the limiting distribution(s) of the chain. Which states communicate,
which states are transient, and what are the absorption probabilities given the initial
state?

Problem 32–5. An auto insurance company classifies insureds in 2 classes: (1)
preferred, and (2) standard. Preferred customers have an expected loss of $400 in
any one year, while standard customers have an expected loss of $900 in any one
year. A driver who is classified as preferred this year has an 85% chance of being
classified as preferred next year; a driver classified as standard this year has a 40%
chance of being classified as standard next year. Losses are paid at the end of each
year and i = 5%. What is the net single premium for a 3 year term policy for an
entering standard driver?
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Solutions to Problems
Problem 32–1. No. Since all states communicate, either all are transient or
all are recurrent. Since there are only finitely many states they can not all be
transient. Hence all states are recurrent.

Problem 32–2. The formula follows by conditioning on the first step leaving

state i. When i = j the formula is E[Ni,i] = 1 +
∞∑

k=0

E[Nk,i] Pi,k, by the same

argument.

Problem 32–3. Going from a recurrent state to a transient state is not possible.
Express the equations of the previous problem in matrix form and solve.

Problem 32–4. The 3 expense category states communicate with each other and
are transient. The other 2 states are recurrent and absorbing. The probabilities
fi,j satisfy f0,4 = 0.8f0,4 + 0.05f1,4 + 0.05f2,4 + 0.09 and 2 other similar equations,
from which f0,4 = 0.382, f1,4 = 0.409, and f2,4 = 0.601.

Problem 32–5. From the given information the transition matrix is P =(
.85 .15
.6 .4

)
. The two year transition probabilities for an entering standard

driver are found from the second row of P2 to be ( .75 .25 ). The premium is
900v + (.6 × 400 + .4 × 900)v2 + (.75 × 400 + .25 × 900)v3 = 1854.90.
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Solutions to Exercises
Exercise 32–1. Because of the independence both of the conditional probabil-
ities in the definition are equal to the unconditional probability P[a < Xtn+1 < b].

Exercise 32–2.
∑

j Pi,j =
∑

j P[X1 = j |X0 = i] = P[X1 ∈ R |X0 = i] = 1.

Exercise 32–3.





1 0 0 0 0 . . . 0
q 0 p 0 0 . . . 0
0 q 0 p 0 . . . 0
0 0 q 0 p . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1




.

Exercise 32–4. Use induction on n. The case n = 1 is true from the definition
of stationarity. For the induction step assume the result holds when n = k. Then
P[Xk+1+m = j |Xm = i] =

∑
b P[Xk+1+m = j, Xk+m = b |Xm = i] =

∑
b P[Xk+1+m =

j |Xk+m = b]P[Xk+m = b |Xm = i] =
∑

b P[Xk+1 = j |Xk = b]P[Xk = b |X0 = i] =
P[Xk+1 = j |X0 = i], as desired.

Exercise 32–5. P[Xn = k] =
∑

i P[Xn = k |X0 = i]P[X0 = i] =
∑

i Pn
i,kP[X0 = i]

which agrees with the matrix multiplication.

Exercise 32–6. Matrix multiplication shows that the left eigenvector condition
implies that the left eigenvector x = (x0, . . . , xa) has coordinates that satisfy
x0 + qx1 = x0, qx2 = x1, pxk−1 + qxk+1 = xk for 2 ≤ k ≤ a − 2, pxa−2 = xa−1 and
pxa−1 + xa = xa. From these equations, only x0 and xa can be non-zero, and these
two values can be arbitrary. Hence all left eigenvectors corresponding to the
eigenvalue 1 are of the form (c, 0, 0, . . . , 0, 1 − c) for some 0 ≤ c ≤ 1.

Exercise 32–7. P[Xn = 1] is 0 or 1 depending on whether n is odd or even, so
this probability has no limit.

Exercise 32–8. Let p be the probability that the chain ever returns to state
i given that the chain starts in state i. Since i is transient, p < 1. Then
P[Ni = k |X0 = i] = pk(1 − p) for k = 0, 1, . . ., since once that chain returns to i it
forgets it ever left.

Exercise 32–9. If the current fortune is i, and i is not 0 or a, then the fortune j
can be obtained in | j − i | plays of the game by having | j − i | wins (or losses) in
a row.

Exercise 32–10. Yes, 1 is recurrent since state 1 is sure to be visited infinitely
often.

Exercise 32–11. The only recurrent states are 0 and a.



§33. Sample Question Set 9

Solve the following 3 problems in no more than 15 minutes.

Question 33–1 . In the state of Elbonia all adults are drivers. It is illegal to drive
drunk. If you are caught, your driver’s license is suspended for the following year.
Driver’s licenses are suspended only for drunk driving. If you are caught driving
with a suspended license, your license is revoked and you are imprisoned for one
year. Licenses are reinstated upon release from prison. Every year, 5% of adults
with an active license have their license suspended for drunk driving. Every year,
40% of drivers with suspended licenses are caught driving. Assume that all changes
in driving status take place on January 1, all drivers act independently, and the adult
population does not change. Calculate the limiting probability of an Elbonian adult
having a suspended license.

A. 0.019

B. 0.020

C. 0.028

D. 0.036

E. 0.047

Question 33–2 . For the Shoestring Swim Club, with three possible financial states
at the end of each year, State 0 means cash of 1500. If in state 0, aggregate member
charges for the next year are set equal to operating expenses. State 1 means cash
of 500. If in state 1, aggregate member charges for the next year are set equal to
operating expenses plus 1000, hoping to return the club to state 0. State 2 means
cash less than 0. If in state 2, the club is bankrupt and remains in state 2. The club
is subject to four risks each year. These risks are independent. Each of the four
risks occurs at most once per year, but may recur in a subsequent year. Three of the
four risks each have a cost of 1000 and a probability of occurrence 0.25 per year.
The fourth risk has a cost of 2000 and a probability of occurrence 0.10 per year.
Aggregate member charges are received at the beginning of the year, and i = 0.
Calculate the probability that the club is in state 2 at the end of three years, given
that it is in state 0 at time 0.

A. 0.24

B. 0.27

C. 0.30

D. 0.37

E. 0.56

Copyright  2006 Jerry Alan Veeh. All rights reserved.



§33: Sample Question Set 9 185

Question 33–3 . Rain is modeled as a Markov process with two states. If it rains
today, the probability that it rains tomorrow is 0.50. If it does not rain today, the
probability that it rains tomorrow is 0.30. Calculate the limiting probability that it
rains on two consecutive days.

A. 0.12

B. 0.14

C. 0.16

D. 0.19

E. 0.22
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Answers to Sample Questions

Question 33–1 . If the states are D(riving), S(uspended), and J(ailed) the transition

matrix is




.95 .05 0
.6 0 .4
1 0 0



. The last column shows that 0.4πS = πJ while the

second column shows that 0.05πD = πS. Combining these with the requirement that
πD + πS + πJ = 1 gives πS = 1/21.4 = 0.0467. E.

Question 33–2 . The transition probabilities are P00 = 0.9(0.75)3 = 0.3796, P01 =

0.9

(
3
1

)

(0.25)(0.75)3 = 0.3796, P02 = 0.2406, P10 = P00, P11 = P01, and P12 = P02.

The desired probability is P02 +P00P02 +P00P00P02 +P00P01P12 +P01P12 +P01P11P12 +
P01P10P02 = 0.562. E.

Question 33–3 . Using the four states RR, RS, SR, and SS for the occurrence of

R(ain) or S(un) on pairs of days gives the transition matrix





0.5 0.5 0 0
0 0 0.3 0.7

0.5 0.5 0 0
0 0 0.3 0.7



.

The first two stationary equations show that πRR = πRS = πSR while the last two
equations show that 0.7πSR = 0.3πSS. Thus πRR = 3/16 = 0.1875. D.



§34. Life Table at 6% Interest

x lx 1000qx äx 1000Ax 10002Ax 10005Ex 100010Ex 100020Ex

0 10,000,000 20.42 16.8010 49.00 25.92 728.54 541.95 299.89
5 9,749,503 0.98 17.0379 35.59 8.45 743.89 553.48 305.90

10 9,705,588 0.85 16.9119 42.72 9.37 744.04 553.34 305.24
15 9,663,731 0.91 16.7384 52.55 11.33 743.71 552.69 303.96
20 9,617,802 1.03 16.5133 65.28 14.30 743.16 551.64 301.93
21 9,607,896 1.06 16.4611 68.24 15.06 743.01 551.36 301.40
22 9,597,695 1.10 16.4061 71.35 15.87 742.86 551.06 300.82
23 9,587,169 1.13 16.3484 74.62 16.76 742.68 550.73 300.19
24 9,576,288 1.18 16.2878 78.05 17.71 742.49 550.36 299.49
25 9,565,017 1.22 16.2242 81.65 18.75 742.29 549.97 298.73
26 9,553,319 1.27 16.1574 85.43 19.87 742.06 549.53 297.90
27 9,541,153 1.33 16.0873 89.40 21.07 741.81 549.05 297.00
28 9,528,475 1.39 16.0139 93.56 22.38 741.54 548.53 296.01
29 9,515,235 1.46 15.9368 97.92 23.79 741.24 547.96 294.92
30 9,501,381 1.53 15.8561 102.48 25.31 740.91 547.33 293.74
31 9,486,854 1.61 15.7716 107.27 26.95 740.55 546.65 292.45
32 9,471,591 1.70 15.6831 112.28 28.72 740.16 545.90 291.04
33 9,455,522 1.79 15.5906 117.51 30.63 739.72 545.07 289.50
34 9,438,571 1.90 15.4938 122.99 32.68 739.25 544.17 287.82
35 9,420,657 2.01 15.3926 128.72 34.88 738.73 543.18 286.00
36 9,401,688 2.14 15.2870 134.70 37.26 738.16 542.11 284.00
37 9,381,566 2.28 15.1767 140.94 39.81 737.54 540.92 281.84
38 9,360,184 2.43 15.0616 147.46 42.55 736.86 539.63 279.48
39 9,337,427 2.60 14.9416 154.25 45.48 736.11 538.22 276.92
40 9,313,166 2.78 14.8166 161.32 48.63 735.29 536.67 274.14
41 9,287,264 2.98 14.6864 168.69 52.01 734.40 534.99 271.12
42 9,259,571 3.20 14.5510 176.36 55.62 733.42 533.14 267.85
43 9,229,925 3.44 14.4102 184.33 59.48 732.34 531.12 264.31
44 9,198,149 3.71 14.2639 192.61 63.61 731.17 528.92 260.48
45 9,164,051 4.00 14.1121 201.20 68.02 729.88 526.52 256.34
46 9,127,426 4.31 13.9546 210.12 72.72 728.47 523.89 251.88
47 9,088,049 4.66 13.7914 219.36 77.73 726.93 521.03 247.08
48 9,045,679 5.04 13.6224 228.92 83.06 725.24 517.91 241.93
49 9,000,057 5.46 13.4475 238.82 88.73 723.39 514.51 236.39
50 8,950,901 5.92 13.2668 249.05 94.76 721.37 510.81 230.47
51 8,897,913 6.42 13.0803 259.61 101.15 719.17 506.78 224.15
52 8,840,770 6.97 12.8879 270.50 107.92 716.76 502.40 217.42
53 8,779,128 7.58 12.6896 281.72 115.09 714.12 497.64 210.27
54 8,712,621 8.24 12.4856 293.27 122.67 711.24 492.47 202.70
55 8,640,861 8.96 12.2758 305.14 130.67 708.10 486.86 194.72
56 8,563,435 9.75 12.0604 317.33 139.11 704.67 480.79 186.32
57 8,479,908 10.62 11.8395 329.84 147.99 700.93 474.22 177.53
58 8,389,826 11.58 11.6133 342.65 157.33 696.85 467.12 168.37
59 8,292,713 12.62 11.3818 355.75 167.13 692.41 459.46 158.87
60 8,188,074 13.76 11.1454 369.13 177.41 687.56 451.20 149.06
61 8,075,403 15.01 10.9041 382.79 188.17 682.29 442.31 139.00
62 7,954,179 16.38 10.6584 396.70 199.41 676.56 432.77 128.75
63 7,823,879 17.88 10.4084 410.85 211.13 670.33 422.54 118.38
64 7,683,979 19.52 10.1544 425.22 223.34 663.56 411.61 107.97
65 7,533,964 21.32 9.8969 439.80 236.03 656.23 399.94 97.60
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x lx 1000qx äx 1000Ax 10002Ax 10005Ex 100010Ex 100020Ex

66 7,373,338 23.29 9.6362 454.56 249.20 648.27 387.53 87.37
67 7,201,635 25.44 9.3726 469.47 262.83 639.66 374.36 77.38
68 7,018,432 27.79 9.1066 484.53 276.92 630.35 360.44 67.74
69 6,823,367 30.37 8.8387 499.70 291.46 620.30 345.77 58.54
70 6,616,155 33.18 8.5693 514.95 306.42 609.46 330.37 49.88
71 6,396,609 36.26 8.2988 530.26 321.78 597.79 314.27 41.86
72 6,164,663 39.62 8.0278 545.60 337.54 585.25 297.51 34.53
73 5,920,394 43.30 7.7568 560.93 353.64 571.81 280.17 27.96
74 5,664,051 47.31 7.4864 576.24 370.08 557.43 262.31 22.19
75 5,396,081 51.69 7.2170 591.49 386.81 542.07 244.03 17.22
76 5,117,152 56.47 6.9493 606.65 403.80 525.71 225.46 13.04
77 4,828,182 61.68 6.6836 621.68 421.02 508.35 206.71 9.61
78 4,530,360 67.37 6.4207 636.56 438.42 489.97 187.94 6.88
79 4,225,163 73.56 6.1610 651.26 455.95 470.57 169.31 4.77
80 3,914,365 80.30 5.9050 665.75 473.59 450.19 151.00 3.19
81 3,600,038 87.64 5.6533 680.00 491.27 428.86 133.19 2.05
82 3,284,542 95.61 5.4063 693.98 508.96 406.62 116.06 1.27
83 2,970,496 104.28 5.1645 707.67 526.60 383.57 99.81 0.75
84 2,660,734 113.69 4.9282 721.04 544.15 359.79 84.59 0.42
85 2,358,246 123.89 4.6980 734.07 561.57 335.40 70.56 0.22
86 2,066,090 134.94 4.4742 746.74 578.80 310.56 57.83 0.11
87 1,787,299 146.89 4.2571 759.03 595.79 285.44 46.50 0.05
88 1,524,758 159.81 4.0470 770.92 612.51 260.21 36.61 0.02
89 1,281,083 173.75 3.8442 782.41 628.92 235.11 28.17 0.01
90 1,058,491 188.77 3.6488 793.46 644.96 210.36 21.13 0.00
91 858,676 204.93 3.4611 804.09 660.61 186.21 15.42 0.00
92 682,707 222.27 3.2812 814.27 675.83 162.90 10.91 0.00
93 530,959 240.86 3.1091 824.01 690.59 140.69 7.47 0.00
94 403,072 260.73 2.9450 833.30 704.86 119.79 4.93 0.00
95 297,981 281.91 2.7888 842.14 718.61 100.43 3.13 0.00
96 213,977 304.45 2.6406 850.53 731.83 82.78 1.90 0.00
97 148,832 328.34 2.5002 858.48 744.50 66.97 1.10 0.00
98 99,965 353.60 2.3676 865.99 756.61 53.08 0.60 0.00
99 64,617 380.21 2.2427 873.06 768.13 41.15 0.31 0.00

100 40,049 408.10 2.1253 879.70 779.08 31.12 0.15 0.00
101 23,705 437.29 2.0152 885.94 789.44 22.92 0.07 0.00
102 13,339 467.65 1.9123 891.77 799.21 16.36 0.03 0.00
103 7,101 498.94 1.8166 897.19 808.39 11.37 0.01 0.00
104 3,558 531.20 1.7275 902.26 817.00 7.56 0.00 0.00
105 1,668 564.15 1.6450 906.98 825.03 4.93 0.00 0.00
106 727 598.35 1.5686 911.43 832.53 2.99 0.00 0.00
107 292 630.14 1.5005 915.64 839.25 1.76 0.00 0.00
108 108 666.67 1.4343 920.47 845.83 0.98 0.00 0.00
109 36 694.44 1.3812 927.08 851.12 0.52 0.00 0.00
110 11 731.87 1.3223 943.40 857.04 0.26 0.00 0.00
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x äxx 1000Axx 10002Axx äx:x+10 1000Ax:x+10 10002Ax:x+10

0 16.1345 86.73 50.89 16.2844 78.24 34.71
5 16.6432 57.93 16.51 16.4093 71.17 19.17

10 16.4660 67.96 18.13 16.1541 85.62 22.70
15 16.2187 81.96 21.67 15.8187 104.60 28.49
20 15.9005 99.97 27.00 15.3934 128.67 37.00
21 15.8272 104.12 28.33 15.2962 134.18 39.11
22 15.7502 108.48 29.77 15.1945 139.94 41.39
23 15.6696 113.04 31.33 15.0883 145.95 43.83
24 15.5851 117.82 33.01 14.9774 152.22 46.46
25 15.4967 122.83 34.82 14.8617 158.77 49.28
26 15.4041 128.07 36.77 14.7411 165.60 52.31
27 15.3073 133.55 38.87 14.6154 172.71 55.56
28 15.2062 139.27 41.12 14.4845 180.12 59.03
29 15.1005 145.26 43.55 14.3484 187.83 62.75
30 14.9901 151.50 46.16 14.2068 195.84 66.72
31 14.8750 158.02 48.96 14.0598 204.16 70.97
32 14.7549 164.82 51.96 13.9071 212.80 75.50
33 14.6298 171.90 55.18 13.7488 221.76 80.34
34 14.4995 179.27 58.63 13.5848 231.05 85.48
35 14.3640 186.94 62.32 13.4150 240.66 90.96
36 14.2230 194.92 66.26 13.2393 250.60 96.78
37 14.0766 203.21 70.48 13.0579 260.88 102.96
38 13.9246 211.81 74.98 12.8705 271.48 109.52
39 13.7670 220.74 79.77 12.6774 282.41 116.46
40 13.6036 229.99 84.89 12.4784 293.68 123.80
41 13.4344 239.56 90.32 12.2737 305.26 131.56
42 13.2594 249.47 96.11 12.0633 317.17 139.75
43 13.0786 259.70 102.25 11.8474 329.39 148.38
44 12.8919 270.27 108.76 11.6260 341.92 157.46
45 12.6994 281.16 115.65 11.3994 354.75 166.99
46 12.5011 292.39 122.95 11.1677 367.87 177.00
47 12.2971 303.94 130.67 10.9311 381.26 187.48
48 12.0873 315.81 138.80 10.6898 394.92 198.44
49 11.8720 328.00 147.38 10.4441 408.82 209.88
50 11.6513 340.49 156.41 10.1944 422.96 221.81
51 11.4252 353.29 165.90 9.9409 437.31 234.22
52 11.1941 366.37 175.85 9.6840 451.85 247.10
53 10.9580 379.74 186.28 9.4240 466.57 260.46
54 10.7172 393.37 197.18 9.1614 481.43 274.27
55 10.4720 407.24 208.57 8.8966 496.42 288.54
56 10.2227 421.35 220.44 8.6301 511.50 303.24
57 9.9696 435.68 232.79 8.3623 526.66 318.35
58 9.7131 450.20 245.62 8.0938 541.86 333.85
59 9.4535 464.90 258.93 7.8249 557.08 349.73
60 9.1911 479.75 272.69 7.5563 572.28 365.94
61 8.9266 494.72 286.91 7.2885 587.44 382.46
62 8.6602 509.80 301.56 7.0221 602.53 399.26
63 8.3926 524.95 316.62 6.7574 617.50 416.30
64 8.1241 540.15 332.09 6.4952 632.34 433.53
65 7.8552 555.36 347.92 6.2360 647.02 450.93
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x äxx 1000Axx 10002Axx äx:x+10 1000Ax:x+10 10002Ax:x+10

66 7.5866 570.57 364.09 5.9802 661.50 468.44
67 7.3187 585.74 380.58 5.7283 675.76 486.02
68 7.0520 600.83 397.35 5.4809 689.76 503.62
69 6.7872 615.82 414.36 5.2385 703.48 521.21
70 6.5247 630.68 431.58 5.0014 716.90 538.72
71 6.2650 645.37 448.96 4.7701 730.00 556.11
72 6.0088 659.88 466.46 4.5450 742.74 573.34
73 5.7565 674.16 484.03 4.3263 755.11 590.36
74 5.5086 688.19 501.64 4.1146 767.10 607.12
75 5.2655 701.95 519.23 3.9099 778.69 623.59
76 5.0278 715.41 536.75 3.7125 789.86 639.71
77 4.7959 728.54 554.16 3.5227 800.60 655.46
78 4.5700 741.32 571.41 3.3406 810.91 670.79
79 4.3507 753.74 588.45 3.1663 820.78 685.67
80 4.1381 765.77 605.25 2.9998 830.20 700.08
81 3.9326 777.40 621.75 2.8412 839.18 713.99
82 3.7344 788.62 637.91 2.6905 847.71 727.37
83 3.5438 799.41 653.70 2.5476 855.80 740.21
84 3.3607 809.77 669.08 2.4125 863.44 752.49
85 3.1855 819.69 684.02 2.2851 870.66 764.20
86 3.0181 829.16 698.48 2.1652 877.44 775.34
87 2.8587 838.19 712.45 2.0527 883.81 785.89
88 2.7071 846.77 725.89 1.9475 889.77 795.86
89 2.5633 854.91 738.79 1.8493 895.33 805.25
90 2.4274 862.60 751.14 1.7579 900.50 814.05
91 2.2991 869.86 762.91 1.6731 905.30 822.29
92 2.1784 876.70 774.11 1.5947 909.73 829.96
93 2.0651 883.11 784.73 1.5226 913.81 837.06
94 1.9590 889.11 794.77 1.4564 917.56 843.63
95 1.8600 894.72 804.22 1.3958 920.99 849.67
96 1.7678 899.93 813.09 1.3405 924.12 855.21
97 1.6823 904.77 821.39 1.2920 926.87 860.10
98 1.6032 909.25 829.12 1.2458 929.48 864.78
99 1.5304 913.38 836.29 1.2091 931.56 868.49

100 1.4635 917.16 842.92 1.1706 933.74 872.43
101 1.4022 920.63 849.02 1.1395 935.50 875.61
102 1.3466 923.78 854.60 1.1124 937.03 878.39
103 1.2963 926.63 859.66 1.0892 938.35 880.78
104 1.2510 929.19 864.25 1.0695 939.46 882.81
105 1.2104 931.49 868.37 1.0531 940.39 884.50
106 1.1741 933.54 872.07 1.0397 941.15 885.89
107 1.1439 935.25 875.16 1.0289 941.76 887.00
108 1.1147 936.90 878.15 1.0205 942.24 887.87
109 1.0944 938.05 880.24 1.0141 942.60 888.54
110 1.0715 939.35 882.60 1.0093 942.87 889.03



§35. Interest Rate Functions at 6%

m i(m) d(m) i/ i(m) d/d(m) α(m) β(m)
1 0.06000 0.05660 1.00000 1.00000 1.00000 0.00000
2 0.05913 0.05743 1.01478 0.98564 1.00021 0.25739
4 0.05870 0.05785 1.02223 0.97852 1.00027 0.38424

12 0.05841 0.05813 1.02721 0.97378 1.00028 0.46812
∞ 0.05827 0.05827 1.02971 0.97142 1.00028 0.50985
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§36. Practice Examinations

The remaining sections contain practice examinations. These were constructed
from old Course 150 examinations of the Society of Actuaries and also some of the
relevant parts of Course 3 examinations. Each practice examination consists of 8
questions and should be completed in no more than 40 minutes.
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§37. Practice Examination 1

1. For an insurance company you are given

(1) Surplus at time t − 1 is 1,220,000

(2) Reserves at time t are 4,805,000

(3) Premiums for year t are 850,000

(4) Expenses for year t are 350,000

(5) Investment Income for year t is 512,000

(6) Claims for year t are 335,000

(7) Net Income for year t is 552,000

Premiums and expenses are paid at the beginning of the year. Claims and investment
income are paid at the end of the year. Calculate the interest rate earned on assets
for year t.

A. 0.07

B. 0.08

C. 0.09

D. 0.10

E. 0.11
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2. Upon payment of a death benefit a beneficiary age 40 is given the following
options:

(1) a lump sum payment of 10,000
or

(2) an annual payment of K at the beginning of each year guaranteed for 10
years and continuing as long as the beneficiary is alive.

The two options are actuarially equivalent. You are given i = 0.04, A40 = 0.30,
A50 = 0.35, and A

40
1

:10
= 0.09. Calculate the value of K.

A. 538

B. 543

C. 545

D. 548

E. 549

3. A continuous whole life insurance is issued to (50). Z is the present value random
variable for this insurance. You are given

(1) Mortality follows DeMoivre’s Law with ω = 100

(2) Simple interest with i = 0.01

(3) bt = 1000 − 0.1t2

Calculate E[Z]

A. 250

B. 375

C. 500

D. 625

E. 750
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4. A 25 year mortgage of 100,000 issued to (40) is to be repaid with equal annual
payments at the end of each year. A 25 year term insurance has a death benefit which
will pay off the mortgage at the end of the year of death including the payment then
due. You are given i = 0.05, ä40:25 = 14, and 25q40 = 0.2. Calculate the net annual
premium for this term insurance.

A. 405

B. 414

C. 435

D. 528

E. 694

5. Which of the following are true?
I. t+uqx ≥ uqx+t for t ≥ 0 and u ≥ 0
II. uqx+t ≥ t |uqx for t ≥ 0 and u ≥ 0
III. If mortality follows DeMoivre’s Law, the median future lifetime of (x) equals
the mean future lifetime of (x).

A. I and II

B. I and III

C. II and III

D. All

E. None of A, B, C, or D
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6. A fully continuous insurance policy is issued to (x) and (y). A death benefit of
10,000 is payable upon the second death. The premium is payable continuously
until the last death. The rate of annual premium is K while (x) is alive and reduces
to 0.5K upon the death of (x) if (x) dies before (y). Calculate K given that δ = 0.05,
ax = 12, ay = 15, and axy = 10.

A. 79.61

B. 86.19

C. 88.24

D. 93.75

E. 103.45

7. You are given

(1) v2 = 0.75

(2) qx+t = 0.2

(3) Ax+t+1 = 0.5

(4) 2Ax+t+1 = 0.3

(5) kL is the random variable representing the prospective loss at the end of k
years for a fully discrete whole life insurance issued to (x)

Calculate
Var(tL)

Var(t+1L)
.

A. 0.9

B. 1.0

C. 1.1

D. 1.2

E. 1.3
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8. You are given that mortality follows DeMoivre’s Law with ω = 100 and that
x and y are independent lives both aged 90. Calculate the probability that the last
survivor of x and y will die between ages 95 and 96.

A. 0.05

B. 0.06

C. 0.10

D. 0.11

E. 0.20
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Solutions to Practice Examination 1

1. Since Net Income is Premiums plus Investment Income minus Expenses, Claims,
and change in Reserves, the change in reserves is 125,000. So the reserves at time
t − 1 are 4,680,000. Thus the assets at time t − 1 are 5,900,000. The return on assets
is 512/ (5900 + 850 − 350) = 0.08. B.

2. The equation of value is 10000 = K(ä10 + v10
10p40ä50). Since A50 = 1 − dä50,

ä50 = 16.9. Since A40 = A
40
1

:10
+ v10

10p40A50, v10
10p40 = 0.60. Finally, ä10 = 8.433.

Using these values gives K = 538.3484. A.

3. The discount factor for an amount paid at time t under simple interest is 1/ (1+ it).

Thus E[Z] = (1/50)
∫ 50

0
(100 − 0.1t)/ (1 + 0.01t) dt = (1/50)

∫ 50

0
1000 − 10t dt = 750.

E.

4. The present value of the benefit is Pa25−K(40) v−1vK(40)+11[0,25)(K(40)), where
P = 100000/a25 0.05 = 7095.25 is the annual mortgage payment. The expected
value of this benefit is (P/d)(A

40
1

:25
− v26

25q40). Now A
40
1

:25
= A40:25 − v25

25p40 =

1 − dä40:25 − v25
25p40 = 0.0971. Plugging in and dividing the expected value of the

benefit by ä40:25 gives the annual premium as 434.68. C.

5. I is true since t+uqx = tqx + tpxuqx+t ≥ tqxuqx+t + tpxuqx+t = uqx+t. II is true since

t |uqx = tpxuqx+t. III is true since under DeMoivre’s law, T(x) is uniformly distributed.
D.

6. Here Axy = Ax + Ay − Axy = 1 − δax + 1 − δay − (1 − δaxy) = 0.15. The annuity
for the premium has present value (K/2)axy + (K/2)ax. Thus 10000(0.15) = (29/2)K
and K = 103.448. E.

7. Here tL = vK(x+t)+1 − P((1 − vK(x+t)+1)/d) = (1 + P/d)vK(x+t)+1 − P/d. Similarly,

t+1L = (1 + P/d)vK(x+t+1)+1 − P/d. The ratio of the variances is therefore (2Ax+t −
A2

x+t)/ (2Ax+t+1 − A2
x+t+1). Now Ax+t = qx+tv + px+tvAx+t+1 = 0.5196, and 2Ax+t = qx+tv2 +

px+tv22Ax+t+1 = 0.33. Hence the variance ratio is 1.2. D.

8. The joint distribution of T(x) and T(y) is uniform over a square of side length 10.
The event in question only occurs if the pair (T(x), T(y)) lies in an L shaped strip
with vertices at (0, 5), (5, 5), (5, 0), (6, 0), (6, 6), and (0, 6). Since the area of this
strip is 11, the probability is 11/100. D.



§38. Practice Examination 2

1. From a life table with a one year select period you are given

x l[x] d[x] e̊[x]

85 1000 100 5.556
86 850 100

Assume that deaths are uniformly distributed over each year of age. Calculate
e̊[86].

A. 5.04

B. 5.13

C. 5.22

D. 5.30

E. 5.39

2. L is the loss random variable for a fully continuous whole life insurance of 1
issued to (x). You are given that the premium has been determined by the equivalence
principle, that Var(vT) = 0.0344, and that E[vT] = 0.166. Calculate Var(L).

A. 0.0239

B. 0.0495

C. 0.4896

D. 0.8020

E. 1.2470
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3. For a double decrement table you are given

(1) Each decrement is uniformly distributed within each year of age in the
associated single decrement table.

(2) l(τ)
60 = 1000

(3) q′(2)
60 = 0.20

(4) d(1)
60 = 81

Calculate µ
(1)
60.5.

A. 0.082

B. 0.086

C. 0.090

D. 0.094

E. 0.098

4. For a continuous whole life insurance (Z = vT , T ≥ 0), we have E[Z] = 0.25.
Assume the forces of mortality and interest are each constant. Calculate Var(Z).

A. 0.04

B. 0.08

C. 0.11

D. 0.12

E. 0.19
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5. For a fully continuous whole life insurance of 1 issued to (x) the expense aug-
mented loss variable is given as

Le = L + X

where

(1) L = vT − P(Ax)aT

(2) X = I + (g − e)aT

(3) I is the initial expenses

(4) g is the annual rate of continuous maintenance expense

(5) e is the annual expense loading in the premium

(6) δ = 0.05

(7) ax = 12

(8) Var(vT) = 0.1

(9) g = 0.0010

(10) e = 0.0033

Net and expense loaded premiums are calculated according to the equivalence
principle. Calculate Var(Le).

A. 0.252

B. 0.263

C. 0.278

D. 0.293

E. 0.300
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6. An insurance company decides to waive all future premiums on a fully continuous
whole life insurance policy of 1000 issued to (x). The variance of the loss random
variable after the change is 81% of the variance of the loss random variable before
the change. The force of interest is 0.03. Calculate 1000P(Ax).

A. 3.00

B. 3.33

C. 3.67

D. 3.90

E. 4.20

7. (In a)x is equal to E[Y] where

Y =

{
(Ia)T if 0 ≤ T < n
(Ia)n + n(n | aT−n ) if T ≥ n.

You are given that µx = 0.04 for all x and that δ = 0.06. Calculate
d

dn
(In a)x.

A. ne−0.1n

B. 10e−0.1n

C. −e−0.1n

D. e−0.1n

E. 10

8. Calculate 15V45:20 given that P45:20 = 0.03, A
45
1

:15
= 0.06, d = 0.054, and

15k45 = 0.15.

A. 0.55

B. 0.60

C. 0.65

D. 0.70

E. 0.75
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Solutions to Practice Examination 2

1. From the given table, l86 = 900 and l87 = 750. Also, e̊[85] = (1/2) + e[85] =
(1/2)+p[85](1+e86), e̊[86] = (1/2)+e[86] = (1/2)+p[86](1+e87) and e86 = p86(1+e87). The
first equation gives e86 = 4.6178, using this value in the third gives (1+e87) = 5.5413,
and using this in the second gives e̊[86] = 5.3894. E.

2. Here L = (1 + P/δ )vT − P/δ . Since E[L] = 0 by the equivalence principle,
P/δ = E[vT]/ (1 − E[vT]) = 0.1990. So Var(L) = (1 + P/δ )2Var(vT) = 0.0495. B.

3. From the UDD assumption in the single decrement table, q(1) = q′(1)(1−0.5q′(2)),
so q′(1) = 0.09 from the given information. Again by UDD, µ

(1)
x+t = q′(1)

x / (1 − tq′(1)
x )

giving µ
(1)
60.5 = 0.0942. D.

4. Using the given information, E[Z] =
∫ ∞

0
e−δ t

µe−µt dt = µ/ (µ + δ ) = 1/4. Thus

3µ = δ . Also E[Z2] =
∫ ∞

0
e−2δ t

µe−µt dt = µ/ (µ + 2δ ) = 1/7. So Var(Z) =

1/7 − 1/16 = 9/112 = 0.0804. B.

5. Here Le = vT − P(Ax)aT + I + (g − e)aT = vT(1 + P(Ax)/δ + (e − g)/δ ) + constants.
So Var(Le) = Var(vT)(1 + P(Ax)/δ + (e − g)/δ )2 = 0.2933. D.

6. Here writing P for 1000P(Ax), Loriginal = (1000+P/δ )vT −P/δ and Laf ter = 1000vT .
So the ratio of the variances is 10002/ (1000 + P/δ )2 = 0.81. Thus P = 3.33. B.

7. The random variable Y is the expected present value of a cash stream which is
t if t ≤ n and n if t ≥ n. Computing directly using the given information yields

E[Y] =
∫ n

0
te−0.1t dt + n

∫ ∞

n
e−0.1t dt = 100 − 100e−0.1n. The derivative is therefore

10e−0.1n. B.

8. Here 15k45 = A
45
1

:15
/ 15E45, so 15E45 = 0.40 and A45:15 = 0.46. Thus ä45:15 = 10.

The retrospective method gives 15V45:20 = (P45:20 ä45:15 − A
45
1

:15
)/ 15E45 = 0.60. B.



§39. Practice Examination 3

1. You are given that

(1) dx = k for x = 0, 1, 2, . . . ω − 1

(2) e̊20:20 = 18

(3) Deaths are uniformly distributed over each year of age.

Calculate 30 |10q30.

A. 0.111

B. 0.125

C. 0.143

D. 0.167

E. 0.200

2. A whole life insurance pays a death benefit of 1 upon the second death of (x)
and (y). In addition, if (x) dies first a payment of 0.5 is payable at the time of his
death. Mortality follows Gompertz law. Calculate the net single premium for this
insurance.

A. Aw(1 + cx

2cw ) where cw = cx+y

B. 2(Ax + Ay) − Aw(2 + cx

2cw ) where cw = cx+y

C. Aw(1 + cx

2cw ) where cw = cx + cy

D. 2(Ax + Ay) − Aw(2 + cx

2cw ) where cw = cx + cy

E. Ax + Ay − Aw(1 − cx

2cw ) where cw = cx + cy
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3. PA
x is the net annual premium for a fully discrete whole life insurance of 1

calculated using mortality table A and interest rate i. PB
x is the net annual premium

for a fully discrete whole life insurance of 1 calculated using mortality table B and
interest rate i. For all ages the probability of survival from age x to age x + 1 has the
relationship pA

x = (1 + c)pB
x , where the superscript identifies the table. Determine an

expression for PA
x − PB

x in terms of functions based on table B.

A. Ax (at interest rate i) −Ax (at interest rate i−c
1+c )

B. Ax (at interest rate i−c
1+c ) −Ax (at interest rate i)

C.
1
äx

(at interest rate i) −
1
äx

(at interest rate i−c
1+c )

D.
1
äx

(at interest rate i−c
1+c ) −

1
äx

(at interest rate i)

E. Px (at interest rate i) −Px (at interest rate i−c
1+c )

4. For a multiple decrement table with 3 decrements you are given that each decre-
ment is uniformly distributed within each year of age in the associated single decre-

ment table. Also you are given q′(1)
x =

1
20

, q′(2)
x =

1
10

, and q′(3)
x =

1
19

. Calculate

q(2)
x .

A. 0.081

B. 0.091

C. 0.093

D. 0.095

E. 0.100
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5. A whole life insurance has annual premiums payable at the beginning of the year
and death benefits payable at the moment of death. The following expenses are
allocated to this policy at the beginning of each year:

% of Premium Per 1000 of Insurance Per Policy
First Year 30% 3.00 150
Renewal 10% 0.00 50

You are given that Ax = 0.247 and that äx = 13. A level policy fee is used to
recognize per policy expenses in the expense loaded premium formula. Calculate
the minimum face amount such that the policy fee does not exceed 50% of the
expense loaded premium.

A. 2,650

B. 3,000

C. 3,450

D. 5,300

E. 6,000

6. For a select and ultimate mortality table with a one year select period q[x] = 0.5qx.
Determine Ax − A[x].

A. 2A
[x]
1

:1
(1 − A[x])

B. A
[x]
1

:1
(1 − Ax+1)

C. A
[x]
1

:1
(1 − A[x+1])

D. 0.5 A
[x]
1

:1
(1 − Ax+1)

E. 0.5 A
[x]
1

:1
(1 − Ax)
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7. A multiple decrement table has two causes of decrement: (1) accident; (2) other
than accident. You are given

(1) µ (1)
y = A for some A > 0

(2) µ (2)
y = Bcy for some B > 0, c > 1

What is the probability that (x) dies due to accident?

A.
A
e̊x

B.
e̊x

A

C. Ae̊x

D.
1

Ae̊x

E. 1 −
A
e̊x

8. You are given that 10E30 = 0.35, a30:9 = 5.6, and i = 0.10. Calculate A
30
1

:10
.

A. 0.05

B. 0.10

C. 0.15

D. 0.20

E. 0.25
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Solutions to Practice Examination 3

1. The first and third assumptions imply that lifetimes obey DeMoivre’s law. Since

30 |10q30 = P[30 ≤ T(30) ≤ 40], evidently ω > 60 since none of the answers are zero.
Now FT(20:20 )(t) = tq20:20 = t/ (ω − 20) for 0 ≤ t < 20 and is 1 for larger t. Thus the

distribution has a jump at t = 20, so that 18 = e̊20:20 = (1/ (ω − 20))
∫ 20

0
t dt + 20(1 −

20/ (ω − 20)) = 20 − 200/ (ω − 20). Thus ω = 120 and the desired probability is
10/ (ω − 30) = 1/9 = 0.111. A.

2. Choose w so that cw = cx + cy. Then tpxy = tpw under Gompertz law, and

A
x
1
y

=
∫ ∞

0
e−δ t

tpxyµx+t dt = Aw(cx/cw). The premium is Axy + (1/2)A
x
1
y

= Ax + Ay −
Axy + (1/2)Aw(cx/cw) = Ax + Ay − Aw + (1/2)Aw(cx/cw) = Ax + Ay − Aw(1 − cx/cw). E.

3. Here PA −PB = (1−däA
x )/ äA

x −
(
(1 − däB

x )/ äB
x

)
= 1/ äA

x −1/ äB
x . Now äA

x =
∞∑

k=0

vk
kp

A
x =

∞∑

k=0

vk(1 + c)k
kp

B
x = äB

x at interest rate i′ where 1/ (1 + i′) = (1 + c)/ (1 + i), that is

i′ = (i − c)/ (1 + c). D.

4. Here q(2) =
∫ 1

0
tp

(τ)
µ

(2)
x+t dt =

∫ 1

0
tp′(1)

tp′(3)
tp′(2)

µ
(2)
x+t dt = q′(2)

∫ 1

0
(1 − t/20)(1 −

t/19) dt = 0.09478, upon computing the integral by multiplying out the integrand.
D.

5. B.

6. Here Ax = vqx + vpxAx+1 and A[x] = vq[x] + vp[x]Ax+1 since the select period is 1
year. Thus Ax − A[x] = (1/2)vqx(1 − Ax+1) = vq[x](1 − Ax+1) = A

[x]
1

:1
(1 − Ax+1). B.

7. The probability is
∫ ∞

0
tp

(τ)
x+tµ

(1)
x+t dt = Ae̊x. C.

8. Here ä30:10 = 1+a30:9 = 6.6. So A
30
1

:10
= A30:10 −10E30 = 1−dä30:10 −0.35 = 0.05.

A.



§40. Practice Examination 4

1. You are given the following extract from a 3 year select and ultimate mortality
table:

x l[x] l[x]+1 l[x]+2 lx+3 x + 3
70 7600 73
71 7984 74
72 8016 7592 75

Assume that the ultimate table follows DeMoivre’s Law and that d[x] = d[x]+1 =
d[x]+2 for x = 70, 71, 72. Calculate 1000(2 |2q[71]).

A. 26.73

B. 32.43

C. 43.37

D. 47.83

E. 48.99

2. You are given 20P25 = 0.046, P25:20 = 0.064, and A45 = 0.640. Calculate P
25
1

:20
.

A. 0.008

B. 0.014

C. 0.023

D. 0.033

E. 0.039
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3. You are given that L is the loss random variable for a fully continuous whole life
insurance issued to (25), and that Var(L) = 0.2, A45 = 0.7, and 2A25 = 0.3. Calculate

20V(A25).

A. 0.3

B. 0.4

C. 0.5

D. 0.6

E. 0.7

4. (x) and (y) purchase a joint-and-survivor annuity due with an initial monthly
benefit amount equal to 500. You are given

(1) If (x) predeceases (y) the benefit amount changes to 300 per month

(2) If (y) predeceases (x) the benefit changes to B per month

(3) The annuity is actuarially equivalent to a single life annuity due on (x) with
a monthly benefit amount equal to B

(4) ä(12)
x = 10

(5) ä(12)
y = 14

(6) ä(12)
xy = 8

Calculate B

A. 520

B. 680

C. 725

D. 800

E. 1025
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5. You are given the following for a double decrement table: µ
(1)
x+0.5 = 2

199 , q(2)
x = 0.01,

and each decrement is uniformly distributed over each year of age in its associated
single decrement table. Calculate 1000q(1)

x .

A. 9.95

B. 10.00

C. 10.05

D. 10.10

E. 10.15

6. For a single premium, continuous whole life insurance issued to (x) with face
amount f you are given

(1) Ax = 0.2

(2) Percent of premium expenses are 8% of the expense loaded premium

(3) Per policy expenses are 75 at the beginning of the first year and 25 at the
beginning of each subsequent year

(4) Claim expenses are 15 at the moment of death

(5) i = 5%

(6) Deaths are uniformly distributed over each year of age

(7) The expense loaded premium is expressed as gf + h

Calculate h.

A. 505

B. 508

C. 511

D. 514

E. 517
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7. An individual age 30 purchases a fully continuous 50,000 20 year endowment
policy. At the end of 10 years she surrenders the policy in return for reduced
paid up insurance. You are given A40:10 = 0.538, a45:5 = 4.18, P(A30:20 ) = 0.027,
δ = 0.06, and cash values are equal to the net level premium reserves. Calculate
the reserve on this reduced amount of insurance five years after the origianal policy
was surrendered.

A. 17,600

B. 19,500

C. 23,000

D. 24,100

E. 26,200

8. You are given that mortality follows DeMoivre’s Law and that Var(T(50)) = 192.
Calculate ω .

A. 98

B. 100

C. 107

D. 110

E. 114
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Solutions to Practice Examination 4

1. The given facts imply in order l75 = 7380, l74 = 7490, l[71]+2 = 7737, and
l[71] = 8231. The desired probability is (l[71]+2 − l75)/ l[71] = 43.37/1000. C.

2. Here A25 = 20P25ä25:20 and A25:20 = P25:20 ä25:20 . Also A25 = A
25
1

:20
+ 20E25A45.

Equating this to the first expression for A25 gives 20P25 = P
25
1

:20
+ 20E25A45/ ä25:20 .

Since A25:20 = A
25
1

:20
+20E25, P25:20 = P

25
1

:20
+20E25/ ä25:20 . Using these two equations

involving P
25
1

:20
to eliminate the term involving E gives P

25
1

:20
= 0.0140. B.

3. Here L = (1 + P/δ )vT − P/δ , so Var(L) = (1 + P/δ )2Var(vT). From E[L] = 0,
A25 = (P/δ )/ (1 + P/δ ). Using these two facts gives a quadratic equation in P/δ ,
from which P/δ = 1. Finally, 20V(A25) = A45 − (P/δ )(1 − A45) = 2A45 − 1 = 0.40. B.

4. The equation of value is 12Bä(12)
x = 3600ä(12)

y + 12Bä(12)
x + (2400 − 12B)ä(12)

xy , from
which the given information yields B = 725. C.

5. Here µ
(1)
x+0.5 = q′(1)

x / (1 − 0.5q′(1)
x ), from which q′(1)

x = 0.01. Also q(2) = q′(2)(1 −
0.5q′(1)) from which q′(2) = 2/199 and q(1) = q′(1)(1 − 0.5q′(2)) = 198/ (199)(100) =
9.949/1000.A.

6. The equation of value is f Ax + 0.08P + 50 + 25äx + 15Ax = P, from which
h = (50 + 25äx + 15Ax)/0.92. Since 1 − däx = Ax = (δ / i)Ax, computation gives
h = 516.89. E.

7. C.

8. Since T(50) is uniform on the interval (0, ω − 50), Var(T(50)) = (ω − 50)2/12,
Thus ω = 98. A.



§41. Practice Examination 5

1. Y is the present value random variable for a 30 year temporary life annuity of 1
payable at the beginning of each year while (x) survives. You are given i = 0.05,

30px = 0.7, 2A
x
1:30

= 0.0694, and A
x
1:30

= 0.1443. Calculate E[Y2].

A. 35.6

B. 47.1

C. 206.4

D. 218

E. 233.6

2. You are given 10V25 = 0.1 and 10V35 = 0.2. Calculate 20V25.

A. 0.22

B. 0.24

C. 0.26

D. 0.28

E. 0.30

3. A multiple decrement table has two causes of decrement: (1) death by accident
and (2) death other than by accident. You are given that a fully continuous whole
life insurance issued to (x) pays 1 on a non-accidental death and 2 if death results by
accident and that µ

(1)
x+t = δ , the force of interest. Calculate the net single premium

for this insurance.

A. (1 + δ )Ax

B. (2 + δ )Ax

C. Ax + 1

D. 2 − Ax

E. 1
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4. The expense loaded premium, G, for a fully discrete 3 year endowment insurance
of 1000 issued to (x) is calculated using the equivalence principle. Expenses are
paid at the beginning of each year. You are given

(1) 1000Px:3 = 323.12

(2) G = 402.32

(3) qx = 1
8

(4) qx+1 = 1
7

(5) i = 0.10

(6)
Expenses Percentage of Premium Per Policy
First Year 30% 8
Renewal 10% 4

Calculate the expense reserve at the end of the first year.

A. −40

B. −54

C. −62

D. −65

E. −71

5. You are given that A
x
1:n

= 0.4275, δ = 0.055, and µx+t = 0.045 for all t. Calculate
Ax:n .

A. 0.4600

B. 0.4775

C. 0.4950

D. 0.5245

E. 0.5725
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6. L is the loss random variable for a fully discrete 2 year term insurance of 1 issued
to (x). The net level annual premium is calculated using the equivalence principle.
You are given qx = 0.1, qx+1 = 0.2, and v = 0.9. Calculate Var(L).

A. 0.119

B. 0.143

C. 0.160

D. 0.187

E. 0.202

7. You are given that male mortality is based on a constant force of mortality
with µ = 0.04, and that female mortality follows DeMoivre’s Law with ω = 100.
Calculate the probability that a male age 50 dies after a female age 50.

A. 0.5(1 − 3e−2)

B. 0.5(1 − e−2)

C. 0.5

D. 0.5(1 + e−2)

E. 0.5(1 + 3e−2)
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8. For a fully discrete participating whole life insurance of 1000 issued to (35) you
are given

(1) The fund share is equal to the cash value

(2) Dividends are paid at the end of each year, up to and including the year of
death or withdrawal

(3) The cash value at the end of 20 years is 304

(4) i = 0.04

(5) q(d)
54 = 0.010; q̂(d)

54 = 0.005

(6) e19 = 4.00; ê19 = 3.00

(7) G = 15.00

(8) 20D = 15.02

Calculate î.

A. 7.5%

B. 7.7%

C. 7.9%

D. 8.1%

E. 8.3%
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Solutions to Practice Examination 5

1. Here Y = (1/d)(1 − vK+11[0,30)(K) − v301[30,∞)(K)), so that d2E[Y2] = 1 − 2(A
x
1:30

+
v30

30px) + 2A
x
1:30

+ v60
30px, which gives E[Y2] = 218.00. D.

2. Notice that P25 = A25/ ä25 = (1 − dä25)/ ä25, so that P25 + d = 1/ ä25. Thus

10V25 = A35 − P25ä25 = 1 − (P25 + d)ä25 = 1 − ä35/ ä25. Similarly, 10V35 = 1 − ä45/ ä35

and 20V25 = 1 − ä45/ ä25. Hence 20V25 = 1 − ä45/ ä25 = 1 − (1 − 10V35)(1 − 10V25) =
1 − (.9)(.8) = .28. D.

3. The net single premium is Ax +
∫ ∞

0
e−δ t

tp
(τ)
x µ

(1)
x+t dt = Ax + δax = 1. E.

4. C.

5. On one hand Ax:n = A
x
1:n

+ vn
npx = A

x
1:n

+ e−0.1n. Also A
x
1:n

=
∫ n

0
e−δ te−µt(µ) dt =

(µ/µ + δ )(1 − e−0.1n). Solving this last equation gives e−0.1n = 0.05, and using this in
the first equation gives Ax:n = 0.4775. B.

6. Here L = v1{0}(K) + v21{1}(K) − P − Pv1[1,∞)(K). Since E[L] = 0, P = 0.1303.
Then squaring gives Var(L) = E[L2] = v2qx + v4pxqx+1 + P2 + P2v2px − 2PVqx −
2Pv3pxqx+1 + 2P2vpx = 0.1603. C.

7. Conditioning on the time of death of the female gives
∫ 50

0
(1/50)e−0.4t dt = (1 −

e−2)/2. B.

8. A.



§42. Practice Examination 6

1. Assume mortality follows DeMoivre’s Law for 0 ≤ x < ω . Which of the follow-
ing expression equal µx?

I.
mx

1 + 0.5mx
, for x ≤ ω − 1

II. n | qx for 0 ≤ n ≤ ω − x − 1

III.
1
e̊x

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. None of A, B, C, or D

2. For a double decrement table where cause 1 is death and cause 2 is withdrawal
you are given

(1) Deaths are uniformly distributed over each year of age in the associated
single decrement table

(2) Withdrawals occur at the beginning of each year

(3) l(τ)
20 = 1000

(4) q(2)
20 = 0.25

(5) d(1)
20 = 0.04 d(2)

20

Calculate q′(1)
20 .

A. 0.0089

B. 0.0100

C. 0.0114

D. 0.0133

E. 0.0157
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3. Z is the present value random variable for a special continuous whole life insur-
ance issued to (x). You are given for all t that µx+t = 0.01, δt = 0.06, and bt = e0.05t.
Calculate Var(Z).

A. 0.033

B. 0.037

C. 0.057

D. 0.065

E. 0.083

4. An insurance benefit pays 1 at the later of n years or the failure of the status xy.
Which of the following correctly express the net single premium for this benefit?
I. vn

nqxy + vn
npxyAx+n:y+n

II. Axy − Axy:n

III. vn
(

npxAx+n + npyAy+n − npxyAx+n:y+n + nqxy

)

A. None

B. I only

C. II only

D. III only

E. None of A, B, C, or D

5. You are given 5p50 = 0.9, 5p60 = 0.8, q55 = 0.03, and q65 = 0.05. Calculate

5 | q50:60.

A. 0.0011

B. 0.0094

C. 0.0105

D. 0.0565

E. 0.0769
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6. A whole life insurance issued to (25) provides the following benefits.

(1) the death benefit, payable at the end of the year of death, is equal to 20,000
up to age 65 and 10,000 thereafter

(2) the net single premium is refunded at age 65 if the insured is still alive

You are given

(1) A25 = 0.1

(2) A65 = 0.2

(3) 40p25 = 0.8

(4) v40 = 0.2

Calculate the net single premium for this insurance.

A. 2,000

B. 2,400

C. 3,000

D. 4,000

E. 4,800

7. L is the loss–at–issue random variable for a fully continuous whole life insurance
of 1 with premiums based on the equivalence principle. You are given

(1) E[v2T] = 0.34

(2) E[vT] = 0.40.

Calculate Var(L).

A. 0.080

B. 0.300

C. 0.475

D. 0.500

E. 1.125
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8. You are given

(1) Z is the present value random variable for an insurance on the lives of (x)
and (y) where

Z =

{
vT(y) T(x) ≤ T(y)
0 T(x) > T(y)

(2) (x) is subject to a constant force of mortality 0.07

(3) (y) is subject to a constant force of mortality 0.09

(4) (x) and (y) are independent lives

(5) δ = 0.06.

Calculate E[Z].

A. 0.191

B. 0.318

C. 0.409

D. 0.600

E. 0.727
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Solutions to Practice Examination 6

1. Since mx = qx/
∫ 1

0
tpx dt = 2qx/ (2 − qx), mx/ (1 + 0.5mx) = qx = µx under UDD,

and I is ok. Also, n | qx = 1/ (ω −x) = qx = µx, so II holds. III fails since e̊x = (ω −x)/2
under DeMoivre. A.

2. Here tp′(2)
20 = 750/1000 for t > 0 since withdrawals occur at the beginning of each

year and q(2)
20 = 0.25. Using this gives q(1)

20 =
∫ 1

0
tp

(τ)
20 µ

(1)
20+t dt =

∫ 1

0
tp′(1)

µ
(1)
20+ttp′(2)

20 dt =

0.75q′(1)
20 . Since d(2)

20 = 250, d(1)
20 = 10 and q(1)

20 = 0.01. Using this gives q′(1)
20 =

0.01/0.75 = 0.0133. D.

3. Using the given information E[Z] =
∫ ∞

0
e−0.07t+0.05t0.01 dt = 1/2 and E[Z2] =

∫ ∞

0
e0.1t−0.13t0.01 dt = 1/3, so that Var(Z) = 1/12 = 0.0833. E.

4. I fails because npxy should be npxy. II fails since the formula does not account for
the case in which xy dies before n. III holds since it is equivalent to the corrected
form of I. D.

5. Direct reasoning gives P[5 ≤ T(50 : 60) ≤ 6] = P[T(50) ≤ 5]P[5 ≤ T(60) ≤
6] + P[T(60) ≤ 5]P[5 ≤ T(50) ≤ 6] + P[5 ≤ T(50) ≤ 6]P[5 ≤ T(60) ≤ 6] =
(0.1)(0.8)(0.05) + (0.2)(0.9)(0.03) + (0.9)(0.03)(0.8)(0.05) = 0.01048. C.

6. The equation for the premium P is P = 20000A25 − 10000v40
40p25A65 + Pv40

40p25,
from which P = 2000 using the given information. A.

7. Here L = vT − PaT = (1 + P/δ )vT − P/δ . Since E[L] = 0, P/δ = A/ (1 − A) = 2/3.
Thus Var(L) = (1 + P/δ )2Var(vT) = (1 + 2/3)2(0.34 − (0.40)2) = 0.50. D.

8. The given information and definition of Z gives

E[Z] =
∫ ∞

0

∫ ∞

x
e−0.06y(0.07)e−0.07x(0.09)e−0.09y dy dx

= (0.07)(0.09)/ (0.15)(0.22)

= 0.1909.

A.



§43. Practice Examination 7

1. Which of the following functions can serve as a force of mortality?

(1) Bcx where B > 0, 0 < c < 1, x ≥ 0

(2) B(x + 1)−0.5 where B > 0, x ≥ 0

(3) k(x + 1)n where k > 0, n > 0, x ≥ 0

A. 1 and 2 only

B. 1 and 3 only

C. 2 and 3 only

D. 1, 2, and 3

E. The correct answer is not given by A, B, C, or D.

2. Z is the present value random variable for an n–year endowment insurance of 1
issued to (x). The death benefit is payable at the end of the year of death. Y is the
present value random variable for a special n–year temporary life annuity issued to
(x). A payment of 1 is made at the end of each year for n years if (x) is alive at the
beginning of that year. You are given

(1) Var(Z) = 0.02

(2) i = 0.05

Calculate Var(Y).

A. 8.0

B. 8.4

C. 8.8

D. 9.2

E. 9.6
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3. You are given

(1) Px = 0.01212

(2) 20Px = 0.01508

(3) P
x:10

1 = 0.06942

(4) 10Vx = 0.11430

Calculate 20
10Vx.

A. 0.04264

B. 0.11430

C. 0.15694

D. 0.20548

E. 0.31978

4. For a double decrement table you are given

x q(1)
x q(2)

x q(τ)
x l(τ)

x d(1)
x d(2)

x

30 0.075 130
31 0.020 0.050 1850
32 54

Calculate 3q(1)
30 .

A. 0.0555

B. 0.0577

C. 0.0614

D. 0.0656

E. 0.0692
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5. You are given

(1) 1000(IA)50 = 4996.75

(2) 1000A
50
1

:1
= 5.58

(3) 1000A51 = 249.05

(4) i = 0.06

Calculate 1000(IA)51.

A. 5,042

B. 5,073

C. 5,270

D. 5,540

E. 5,571

6. A fully discrete whole life insurance of 1 with a level annual premium is issued
to (x). You are given

(1) L is the loss at issue random variable if the premium is determined in
accordance with the equivalence principle.

(2) Var(L) = 0.75

(3) L∗ is the loss at issue random variable if the premium is determined such
that E[L∗] = −0.5.

Calculate Var(L∗).

A. 0.3333

B. 0.5625

C. 0.7500

D. 1.1250

E. 1.6875
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7. You are given

(1) Mortality follows Makeham’s law.

(2) (ww) is the equivalent equal age status for the joint life status (xy).

(3) (x) and (y) are independent lives and x ≠ y.

Which of the following are true?

(1) tpw = (tpx)(tpy)

(2) tpx + tpy ≤ 2tpw

(3) axy ≥ aww

A. None

B. 1 only

C. 2 only

D. 3 only

E. The correct answer is not given by A, B, C, or D.

8. You are given FX(x) = 1 −
1

x + 1
for x ≥ 0. Which of the following are true?

(1) xp0 =
1

x + 1
(2) µ49 = 0.02

(3) 10p39 = 0.80

A. 1 and 2 only

B. 1 and 3 only

C. 2 and 3 only

D. 1,2, and 3

E. The correct answer is not given by A, B, C, or D
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Solutions to Practice Examination 7

1. Since 0 < c < 1,
∫ ∞

0
Bcx dx < ∞, so (1) does not work. (2) and (3) both give

non-negative functions with infinite integral, and so both work. C.

2. Here
Z = vK+11[0,n)(K) + vn1[n,∞)(K)

and Y = aK+1 1[0,n)(K) + an 1[n,∞)(K) = (1/ i) − (vK+1/ i)1[0,n)(K) − (vn/ i)1[n,∞)(K) =
(1 − Z)/ i. Thus Var(Y) = Var(Z)/ i2 = 8. A.

3. Now 20
10Vx = Ax+10 − 20Pxäx+10:10 and 10Vx = Ax+10 − Pxäx+10. Also, Ax = Pxäx

and Ax = 20Pxäx:20 , and equating these gives Pxäx = 20Pxäx:10 . Using the relations
äx = äx:10 + v10

10pxäx+10 and äx:20 = äx:10 + v10
10pxäx+10:10 together with the fact

that P
x:10

1 = v10
10px/ äx:10 allows the previous equality to be rewritten as Pxäx+10 =

20Pxäx+10:10 + (20Px − Px)/P
x:10

1 . Using this in the expression for 10Vx gives 10Vx =
20
10Vx − (20Px − Px)/P

x:10
1 from which 20

10Vx = 0.156939. C.

4. Direct computation using the given table entries gives l(τ)
30 = 2000, d(1)

30 = 20 and
q(1)

30 = 0.01. Also q(τ)
31 = 0.07 so that l(τ)

32 = 1720.5. Thus 3q(1)
30 = q(1)

30 + p(τ)
30 q(1)

31 +
p(τ)

30 p(τ)
31 q(1)

32 = 0.01 + (0.925)(0.02) + (0.925)(0.93)(54/1720.5) = 0.0555. A.

5. Now (IA)50 = A50 + vp50(IA)51 and A50 = A
50
1

:1
+ vp50A51 = 0.23914. Since

vq50 = 5.58/1000, vp50 = (1.06)(0.9941). Plugging in gives (IA)51 = 5072.99. B.

6. Here L = (1 + P/d)vK+1 − P/d and L∗ = (1 + P∗/d)vK+1 − P∗/d. The equivalence
principle gives E[L] = 0, from which P/d = Ax/ (1 − Ax) and 1 + P/d = 1/ (1 − Ax).
Since E[L∗] = −1/2, (1 + P∗/d) = (3/2)/ (1 − Ax). So Var(L∗)/Var(L) = 9/4, giving
Var(L∗) = 27/16 = 1.6875. E.

7. Here (tpw)2 = tpx tpy, so (1) is false. Using the fact that tpw = √tpx tpy and squaring
the proposed inequality (2) shows that (2) holds if and only if (tpx − tpy)2 ≤ 0. So
(2) is false. Using the fact that axy = ax + ay − axy, and a similar fact for aww shows
that (3) holds if and only if ax + ay ≥ 2aw, and this holds since tpx + tpy ≥ 2tpw, as
was shown in disproving (2). D.

8. (1) is true since xp0 = s(x) = 1 − FX(x). (2) is true since µ49 = −s′(49)/s(49) =
(1/ (x + 1)2)/ (1/ (x + 1))

∣∣∣
x=49

= 1/50. (3) holds since 10p39 = s(49)/s(39) = 0.80. D.
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1. For a fully discrete whole life insurance of 10,000 issued to (x) the asset share
goal at the end of 20 years is K. A trial gross premium, H, results in an asset share
at the end of 20 years equal to 20AS1. You are given

(1) H = 100

(2) K − 20AS1 = 500

(3) ck = 0.5 for k = 0 and ck = 0.1 for 1 ≤ k ≤ 19 where ck denotes the fraction
of the gross premium paid at time k for expenses.

(4) i = 0.05

(5) 20p(τ)
x = 0.5

(6)
∑19

k=0 vk
kp(τ)

x = 9.

G is the gross premium that produces an asset share at the end of 20 years equal to
K. Calculate G.

A. 110.96

B. 112.24

C. 124.47

D. 130.86

E. 132.47

2. You are given

(1) Ax and ax are based on force of interest δ and force of mortality µx+t.

(2) A′x and a′x are based on force of interest k + δ and force of mortality µx+t.

(3) A′′x is based on force of interest δ and force of mortality k + µx+t.

Determine A′′x − Ax.

A. kax

B. A′x − Ax

C. A′x + ka′x
D. (k − δ )a′x + δax

E. δ (ax − a′x)
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3. For a fully continuous continuously decreasing 25 year term insurance issued to
(40) you are given

(1) bt = 1000a25−t for 0 ≤ t ≤ 25

(2) Fully continuous net annual premium is 200

(3) A50:15 = 0.6

(4) i = 0.05 and δ = 0.04879

Calculate the net premium reserve at the end of 10 years for this insurance.

A. 600

B. 650

C. 700

D. 750

E. 800

4. For a triple decrement table you are given

(1) q(1)
50 = q(3)

50

(2) q(2)
50 = 2q(1)

50

(3) µ
(1)
50+t = log 2, 0 < t < 1

Assume a constant force of decrement for each decrement over each year of age.
Calculate 1000q′(2)

50 .

A. 531

B. 630

C. 750

D. 766

E. 794
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5. You are given

(1) Mortality follows DeMoivre’s Law.

(2) ∞q
80:98

1 = 0.8

(3) (80) and (98) are independent lives.

Calculate ω .

A. 100

B. 102

C. 105

D. 107

E. 110

6. A 10 year deferred fully discrete whole life insurance is issued to (x). The death
benefit during the deferral period is the return of the net level annual premiums
accumulated with interest at the rate used to calculate the premium. The death
benefit after the deferral period is 10,000. Premiums are payable only during the
deferral period. You are given

(1) i = 0.03

(2) 10px = 0.88

(3) äx+10 = 12.60

(4) äx = 16.70.

Calculate the net level annual premium.

A. 350

B. 433

C. 522

D. 536

E. 633
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7. You are given

(1) Ax = 0.25

(2) Ax+20 = 0.40

(3) Ax:20 = 0.55

(4) i = 0.03 and δ = 0.02956.

Assume deaths are uniformly distributed over each year of age. Calculate 1000Ax:20 .

A. 550

B. 551

C. 552

D. 553

E. 554

8. For a fully discrete whole life insurance you are given

(1) Gross annual premium is 10.0

(2) Net annual premium is 9.0

(3) Expenses, incurred at the beginning of each year, are 0.5 in the first year and
increase at a compound rate of 10% each year.

(4) px = 0.9 for all x

(5) i = 0.06.

Calculate the expected surplus at the end of year 3 for each initial insured.

A. 0.4

B. 0.7

C. 1.0

D. 1.4

E. 1.9
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Solutions to Practice Examination 8

1. B.

2. Here A′′x =
∫ ∞

0
e−δ t(µx+t +k)e−

∫ t

0
k+µx+s ds dt = A′x +ka′x = 1−(δ +k)a′x +ka′x = 1−δa′x.

Thus A′′x − Ax = 1 − δa′x − (1 − δax) = δ (ax − a′x). E.

3. The prospective formula gives 10V =
∫ 25

10
btv

t−10
t−10p50µ50+t−10 dt − 200a50:15 .

Writing bt = 1000(1 − v25−t)/δ and breaking the integral as the sum of two terms
shows that 10V = (1000/δ )A

50
1

:15
− (1000/δ )v15

15q50 − 200a50:15 = (1000/δ )(A50:15 −
v15) − 200a50:15 = 798.99. E.

4. Generally q(j) = ln(p′(j))q(τ)/ ln p(τ). This and (2) gives 2 ln(p′(1)) = ln(p′(2)). Now
(3) gives p′(1) = 1/2. Thus p′(2) = 1/4 and q′(2) = 3/4. C.

5. The joint distribution of T(80) and T(98) is uniform over a rectangle with side
lengths ω − 80 and ω − 98. The region in which (98) dies first consists of a
triangle with both legs of length ω − 98 and a rectangle with sides of length ω − 98
and ω − 80 − (ω − 98) = 18. The probability that (98) dies first is therefore(
(1/2)(ω − 98)2 + 18(ω − 98)

)
/ (ω − 98)(ω − 80) = (ω/2 − 31)/ (ω − 80). Setting

this equal to 0.8 and solving gives ω = 110. E.

6. The equation of value is Päx:10 = 10000v10
10pxAx+10 + E[Ps̈K+1 vK+11[0,10)(K)] =

10000v10
10pxAx+10 + Päx:10 − Pä10 10px. Rearranging and solving gives P = 536.09.

D.

7. Ax:20 = Ax − v20
20px(Ax+20 − 1), which gives v20

20px = 1/2. Similarly, Ax:20 =
Ax − v20

20px(Ax+20 − 1) = 550.74/1000, using the usual relationship between Ax and
Ax. B.

8. The net premium can not contribute to the surplus nor cover expenses. So the
extra 1 in gross premium over net premium must cover expenses and contribute to
the surplus. The accumulated expected surplus is therefore (1− .5)(1.06)3 +(0.9)(1−
.5(1.1))(1.06)2 + (0.9)2(1 − .5(1.1)2)(1.06) = 1.389. D.



§45. Practice Examination 9

1. For a double decrement table you are given

(1) q(1)
71 = 0.02

(2) q(2)
71 = 0.06

(3) Each decrement is uniformly distributed over each year of age in the double
decrement table.

Calculate 1000q′(1)
71 .

A. 20.57

B. 20.59

C. 20.61

D. 20.63

E. 20.65

2. For a fully continuous 20 year deferred life annuity of 1 issued to (35) you are
given

(1) Mortality follows DeMoivre’s law with ω = 75

(2) i = 0

(3) Premiums are payable continously for 20 years.

Calculate the net premium reserve at the end of 10 years for this annuity.

A. 1.667

B. 3.889

C. 6.333

D. 6.667

E. 7.222
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3. You are given

(1) 10 | äx = 4.0

(2) äx = 10.0

(3) s̈x:10 = 15.0

(4) v = 0.94.

Calculate A
x
1:10

.

A. 0.24

B. 0.34

C. 0.44

D. 0.54

E. 0.64

4. Z is the present value random variable for an n year term insurance payable at
the moment of death of (x) with bt = (1 + i)t. Determine Var(Z).

A. 0

B. nqx

C. Ax − nqx

D. nqx npx

E. 2Ax − (nqx)2
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5. You are given

(1) (70) and (75) are independent lives.

(2) Mortality follows DeMoivre’s law with ω = 100.

(3) a75 = 8.655.

Calculate A
70
1

:75
.

A. 0.2473

B. 0.2885

C. 0.3462

D. 0.4167

E. 0.6606

6. Assume mortality follows DeMoivre’s law for 0 ≤ x < ω . The median future
lifetime of (x) is denoted by m(x). Which of the following are equal to µx for
1 ≤ x ≤ ω − 1?
I.

qx−1

px−1

II.
1

2m(x)
III.

mx

1 + 0.5mx

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D.
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7. A special fully discrete 2 year endowment insurance with a maturity value of
1000 is issued to (x). The death benefit in each year is 1000 plus the net premium
reserve at the end of that year. You are given

(1) i = 0.10

(2) qx+k = (0.1)(1.1)k, for k = 0, 1.

Calculate the net level annual premium.

A. 508

B. 528

C. 548

D. 568

E. 588

8. A fully discrete three year endowment insurance of 1000 issued to (x) has a level
expense loaded premium, G, equal to the net level premium plus an expense loading
e. You are given

(1) Expenses incurred at the beginning of the year are 18% of G plus 13 in the
first year and 7% of G plus 5 in the renewal years.

(2) The expense reserve two years after issue equals −16.10.

(3) G = 342.86.

Calculate 1000Px:3 .

A. 252.05

B. 275.90

C. 297.76

D. 305.14

E. 329.96
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Solutions to Practice Examination 9

1. Here q(1) = q(τ) ln(p′(1))/ ln p(τ), and q(τ) = 0.08 from the given information. So

p′(1) =
(
p(τ)
)0.02/0.08

= 0.97937, which gives 1000q′(1) = 20.63. D.

2. Here tp35:20 = 1 − t/40 for 0 ≤ t ≤ 20 and is zero otherwise. Using i = 0 then

gives a35:20 =
∫ 20

0
1 − t/40 dt = 15. Similarly, a55 = 10, and from the equation

Pa35:20 = v20
20p35a55, P = 1/3. Using the retrospective reserve method, the reserve

after 10 years is (1/3)a35:10 / 10p35 = 3.8889. B.

3. Since äx = äx:10 + v10
10pxäx+10 and 10 | äx = v10

10pxäx, äx:10 = 6. Now 15 = s̈x:10 =
äx:10 /v10

10px, so v10
10px = 6/15. Finally, A

x
1:10

= Ax:10 − v10
10px = 1 − däx:10 − 6/15 =

0.24. A.

4. Here Z is Bernoulli, with success corresponding to death before time n. Thus
Var(Z) = nqxnpx. D.

5. Here A
70
1

:75
=
∫ ∞

0
vt

tp70tp75µ70+t dt = (1/30)
∫ ∞

0
vt

tp75 dt = a75/30 = 0.2885. B.

6. Here qx−1 = 1/ (ω − x + 1), so qx−1/px−1 = 1/ (ω − x), and I holds. II holds since
m(x) = (ω − x)/2. III holds since mx = 2qx/ (2 − qx). D.

7. The equation of value for the premium P is 1000v2pxpx+1 + (1000 + 2V)v2pxqx+1 +
(1000 + 1V)vqx = P(1 + pxv). Now 2V = 1000, and the general formula connecting
successive reserves gives px+12V = (1 + i)(1V + P) − qx+1(1000 + 2V). Using these
gives 1009 = 1V + P. Using these two facts and the given values in the equation of
value gives P = 528.01. B.

8. C.



§46. Practice Examination 10

1. You are given

(1) 15P30 = 0.030

(2) P30:15 = 0.046

(3) P
30
1

:15
= 0.006

Calculate A45.

A. 0.462

B. 0.600

C. 0.692

D. 0.785

E. 0.900

2. Z is the present value random variable for a special increasing whole life insurance
with benefits payable at the moment of death of (50). You are given

(1) bt = 1 + 0.1t

(2) vt = (1 + 0.1t)−2

(3) tp50 µ50+t = 0.02 for 0 ≤ t < 50

(4) log 2 = 0.7, log 3 = 1.1

Calculate Var(Z).

A. 0.01

B. 0.02

C. 0.03

D. 0.04

E. 0.05
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3. For a double decrement table you are given

(1) q′(2)
x = 2q′(1)

x

(2) q′(1)
x + q′(2)

x = q(τ)
x + 0.18

Calculate q′(2)
x .

A. 0.2

B. 0.3

C. 0.4

D. 0.6

E. 0.7

4. You are given

(1) Deaths are uniformly distributed over each year of age

(2) i = 0.04 and δ = 0.0392

(3) nEx = 0.600

(4) Ax:n = 0.804

Calculate 1000P(Ax:n ).

A. 153

B. 155

C. 157

D. 159

E. 161
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5. You are given

(1) Deaths are uniformly distributed over each year of age

(2)
x lx

35 100
36 99
37 96
38 92
39 87

Which of the following are true?
I. 1 |2q36 = 0.091
II. m37 = 0.043
III. 0.33q38.5 = 0.021

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D

6. You are given

(1) tkx = 0.30

(2) tEx = 0.45

(3) Ax+t = 0.52

Calculate tV(Ax).

A. 0.22

B. 0.24

C. 0.30

D. 0.39

E. 0.49
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7. In the SOA Company’s rate manual, the expense loaded annual premium for a
fully discrete whole life insurance issued to (x) has a premium rate per 1000 of
insurance equal to 12. You are given

(1) Expenses incurred at the beginning of the year are 70% of the expense loaded
premium plus a per policy expense of 17 in the first year, 10% of the expense
loaded premium plus a per policy expense of 8 in the renewal years.

(2) Ax = 0.125

(3) d = 0.05

S is the assumed average policy size used by the SOA Company to derive the expense
loaded premium. Calculate S.

A. 410

B. 1791

C. 2287

D. 2355

E. 2623

8. You are given

(1) Var(aT ) =
100
9

(2) µx+t = k for all t

(3) δ = 4k

Calculate k.

A. 0.005

B. 0.010

C. 0.015

D. 0.020

E. 0.025
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Solutions to Practice Examination 10

1. Since A30 = A
30
1

:15
+ 15E30A45, 15P30 = P

30
1

:15
+ A45(15E30/ ä30:15 ). Similarly,

P30:15 = P
30
1

:15
+ 15E30/ ä30:15 . Combining gives A45 = (15P30 − P

30
1

:15
)/ (P30:15 −

P
30
1

:15
) = 0.60. B.

2. Direct computation gives E[Z] =
∫ ∞

0

1
1 + 0.1t

(0.02) dt = 0.2 ln 6. Also E[Z2] =
∫ ∞

0

1
(1 + 0.1t)2

(0.02) dt = 0.2(5/6). Thus Var(Z) = 0.0371. D.

3. Now q(τ) = 1 − p(τ) = 1 − (1 − q′(1))(1 − q′(2)) = q′(1) + q′(2) − q′(1)q′(2). Substituting
this expression in (2) and using (1) gives q′(2) = 0.06. D.

4. Now 1000P(Ax:n ) = 804/ äx:n . Since A
x
1:n

= 0.804 − 0.600 = 0.204, A
x
1:n

=
(δ / i)(0.204), giving äx:n = 5.2021. Thus the premium is 154.55. B.

5. Since 1 |2q36 = (96 − 87)/99 = 0.0909, I holds. Since m37 = q37/ (1 − q37/2) =
4/ (96 − 2) = 0.0426, II holds. Since 0.33q38.5 = 5(0.33)/ (92 − 2.5) = 0.0186, III fails.
A.

6. Here P = Ax/ax = 1/ax−δ , so P/δ = 1/ (1−Ax) = 0.5848, since Ax = A
x
1:t

+tExAx+t =

tEx(tkx + Ax+t) = 0.369. Hence the reserve is Ax+t − Pax+t = (1 + P/δ )Ax+t − (P/δ ) =
0.2393. B.

7. The given data yield äx = 17.5. The equation of value is SAx + 8äx + 9 + 0.1Gäx +
0.6G = Gäx, where G is the gross premium. Now G = (S/1000)12 from the rate
table information. Using this and solving for S gives S = (8äx + 9)((0.012)(0.9äx −
0.6) − Ax) = 2623.23. E.

8. Since aT = (1 − vT)/δ , Var(aT ) = Var(vT)/δ 2. Now E[vT] =
∫ ∞

0
e−δ t

tpxµx+t dt =
∫ ∞

0
e−δ te−ktk dt = k/ (δ + k) = 1/5. Similarly, E[(vT)2] = k/ (2δ + k) = 1/9. So

Var(vT) = 1/9 − 1/25 = 0.0711. Thus from the first equation here, k = 0.20. D.



§47. Practice Examination 11

1. Y is the present value random variable for an annual life annuity due of 1 issued
on the lives of (x) and (y). For the first 15 years a payment is made if at least one of
(x) and (y) is alive. Thereafter, a payment is made only if exactly one of (x) and (y)
is alive. You are given

(1) äxy = 7.6

(2) äx = 9.8

(3) äy = 11.6

(4) 15 | äxy = 3.7

Calculate E[Y].

A. 9.7

B. 9.9

C. 10.1

D. 10.3

E. 10.5

2. For a double decrement table you are given

(1) l(1)
x = 105vx

(2) l(2)
x = 105 − x

Calculate µ (2)
x for x = 1.

A.
1

104

B.
1

105

C.
1

106

D.
1

104ä2 − 1

E.
1

105ä2 − 1
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3. You are given

(1) 1000Ax:n = 563

(2) 1000Ax = 129

(3) d = 0.057

(4) 1000nEx = 543

Calculate n | ax.

A. 7.07

B. 7.34

C. 7.61

D. 7.78

E. 7.94

4. You are given

(1) Deaths are uniformly distributed over each year of age

(2) µ45.5 = 0.5

Calculate e̊45:1 .

A. 0.4

B. 0.5

C. 0.6

D. 0.7

E. 0.8
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5. For a double decrement table you are given

x l(τ)
x d(1)

x d(2)
x

35 1000 39 41
36 — — 69
37 828 — —

Assume each decrement is uniformly distributed over each year of age in the double
decrement table. Calculate the absolute rate of decrement due to cause 1 for age 36.

A. 0.026

B. 0.050

C. 0.064

D. 0.080

E. 0.100

6. You are given

(1) Ax+1 − Ax = 0.015

(2) i = 0.06

(3) qx = 0.05

Calculate Ax + Ax+1.

A. 0.60

B. 0.86

C. 1.18

D. 1.30

E. 1.56
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7. You are given

(1) Fully continuous whole life insurances of 1 are issued to both Matthew and
Zachary.

(2) Fully continuous net level annual premiums for each insurance are deter-
mined in accordance with the equivalence principle.

(3) Matthew is subject to a constant force of mortality µ1.

(4) Because of his hang gliding hobby, Zachery is subject to a constant force of
mortality µ1 + µ2.

(5) The force of interest is δ for both insurances.

Determine the excess of Zachary’s premium over Matthew’s premium.

A. µ1

B. µ2

C. µ1 − µ2

D.
δµ2

(µ1 + µ2 + δ )(µ1 + δ )

E.
µ1µ2 + µ2

2 − δµ1

(µ1 + µ2)(µ1 + µ2 + δ )

8. Z is the present value random variable for a discrete whole life insurance of 1
issued to (x) and (y) which pays 1 at the first death and 1 at the second death. You
are given

(1) ax = 9

(2) ay = 13

(3) i = 0.04

Calculate E[Z].

A. 0.08

B. 0.28

C. 0.69

D. 1.08

E. 1.15
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Solutions to Practice Examination 11

1. Here E[Y] = äxy − 15 | äxy = äx + äy − äxy − 15 | äxy = 10.1. C.

2. Here µ (2)
x = − d

dx l(2)
x / l(τ)

x = 1/ (l(1)
x + l(2)

x ). Now l(1)
1 + l(2)

1 = 105v + 104 = 105ä2 − 1,
which gives the value of µ

(2)
1 = 1/ (105ä2 − 1). E.

3. First note that n | ax = nExax+n. Since Ax = A
x
1:n

+ nExAx+n and Ax:n = A
x
1:n

+ nEx,
the given information yields Ax+n = 109/543. Thus 1 + ax+n = äx+n = (1 − Ax+n)/d =
14.022, and using this in the first equation gives n | ax = 7.071. A.

4. By UDD, 1/2 = µ45.5 = q45/ (1 − 0.5q45), from which q45 = 0.40. Thus e̊45:1 =∫ 1

0
tp45 dt =

∫ 1

0
1 − t(0.40) dt = 0.80. E.

5. Using the table gives l(τ)
36 = 920 and d(1)

36 = 23. Since q(1) = ln(p′(1))q(τ)/ ln(p(τ)),
p′(1) = (p(τ))q(1)/q(τ)

= (828/920)23/92 = 0.9740, from which q′(1) = 0.0260. A.

6. Since Ax = vqx + vpxAx+1, the given information yields Ax = 0.5841, giving
Ax + Ax+1 = 1.1832. C.

7. For Matthew, a =
∫ ∞

0
e−δ te−µ1t dt = 1/ (δ + µ1), from which the premium is

A/a = (1 − δa)/a = 1/a − δ = µ1. Similarly, the premium for Zachery is µ1 + µ2,
giving the difference as µ2. B.

8. Here E[Z] = Ax + Ay = 1 − däx + 1 − däy = 2 − d(2 + ax + ay) = 1.0769. D.



§48. Practice Examination 12

1. You are given

k äk k−1 | qx

1 1.00 0.33
2 1.93 0.24
3 2.80 0.16
4 3.62 0.11

Calculate äx:4 .

A. 1.6

B. 1.8

C. 2.0

D. 2.2

E. 2.4

2. You are given

(1) Mortality follows de Moivre’s law

(2) Var(T(15)) = 675

Calculate e̊25.

A. 37.5

B. 40.0

C. 42.5

D. 45.0

E. 47.5
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3. L1 is the loss at issue random variable for a fully continuous whole life insurance
of 1 on the life of (x) with a net level annual premium determined by the equivalence
principle. You are given

(1) ax = 5.0

(2) δ = 0.080

(3) Var(L1) = 0.5625

L2 is the loss at issue random variable for this insurance with a premium which is
4/3 times the net level annual premium. Calculate the sum of the expected value of
L2 and the standard deviation of L2.

A. 0.3

B. 0.4

C. 0.6

D. 0.7

E. 0.9

4. A fully discrete last survivor insurance of 1 is issued on two independent lives
each age x. Net annual premiums are reduced by 25% after the first death. You are
given

(1) Ax = 0.4

(2) Axx = 0.55

(3) äx = 10.0

Calculate the initial net annual premium.

A. 0.019

B. 0.020

C. 0.022

D. 0.024

E. 0.025
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5. G is the expense loaded level annual premium for a fully discrete 20 payment
whole life insurance of 1000 on the life of (x). You are given

(1) G = 21

(2) 1000Ax = 202

(3) äx:20 = 11.6

(4) d = 0.06

(5) Expenses are incurred at the beginning of the year

(6) Percent of premium expenses are 12% in the first year and 3% thereafter

(7) Per policy expenses are k in the first year and 2 in each year thereafter

Calculate k.

A. 5.8

B. 6.8

C. 7.8

D. 8.9

E. 11.2

6. For a multiple decrement table you are given

(1) tp(τ)
x = 1 − 0.03t, 0 ≤ t ≤ 1

(2) µ
(1)
x+t = 0.02t, 0 ≤ t ≤ 1

Calculate m(1)
x .

A. 0.00970

B. 0.00985

C. 0.00995

D. 0.01000

E. 0.01015
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7. An increasing whole life insurance pays k + 1 at the end of year k + 1 if (80) dies
in year k + 1, k = 0, 1, 2, . . .. You are given

(1) v = 0.925

(2) The net single premium for this insurance is 4 if q80 = 0.1.

P is the net single premium for this insurance if q80 = 0.2 and qx is unchanged for
all other ages. Calculate P.

A. 3.40

B. 3.66

C. 3.75

D. 3.87

E. 3.94

8. You are given

(1) k < 0.5n, where k and n are integers

(2) kVx:n = 0.2

(3) äx:n + äx+2k:n−2k = 2äx+k:n−k

Calculate kVx+k:n−k .

A. 0.20

B. 0.25

C. 0.30

D. 0.35

E. 0.40
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Solutions to Practice Examination 12

1. Direct computation gives äx:4 = 1(0.33) + 1.93(0.24) + 2.80(0.16) + 3.62(0.11) +
3.62(1 − 0.33 − 0.24 − 0.16 − 0.11) = 2.218. D.

2. From the variance information (ω − 15)2/12 = 675, so ω = 105. Thus T(25) is
uniform on (0, 80) and e̊25 = 40. B.

3. Here P1 = A/a = (1 − δa)/a = 0.12. Since Var(L1) = (1 + P1/δ )2Var(vT),
Var(vT) = 0.090. Now E[L2] = −(P1/3)a = −0.20 by using the premium information.
Also, Var(L2) = (1+P2/δ )2Var(vT) = 0.81. The required sum is √0.81−0.20 = 0.70.
D.

4. The equation of value is Axx = P((1/4)äxx +(3/4)äxx). Now Axx = 2Ax −Axx = 0.25.
Also äxx = 2äx − äxx. From (1) and (3), d = 0.06, and from (2), äxx = 7.5. Plugging
in gives P = 0.0222. C.

5. The equation of value is 1000Ax + 0.03Gäx:20 + 0.09G + 2äx + k − 2 = Gäx:20 . The
given information yields äx = 13.3, and plugging in then gives k = 7.802. C.

6. Here m(1)
x =

∫ 1

0
tp

(τ)
x µ

(1)
x+t dt/

∫ 1

0
tp

(τ)
x dt = 0.009949. C.

7. For the original mortality, 4 = vq80 + vp80S = v(0.1) + v(0.9)S, from which
S = 4.6937. Now P = v(0.2) + v(.8)S = 3.6583. B.

8. Here kVx:n = Ax+k:n−k − Px:n äx+k:n−k = 1 − äx+k:n−k / äx:n since Px:n = Ax:n / äx:n =
1/ äx:n − d. Similarly, kVx+k:n−k = 1 − äx+2k:n−2k / äx+k:n−k . From this and (3), (1 −
kVx:n )−1 = äx:n / äx+k:n−k = 2 − (1 − kVx+k:n−k ), and solving gives kVx+k:n−k = 1/4. B.



§49. Practice Examination 13

1. You are given

(1) (x) and (y) are independent lives

(2) (ww) is the equivalent joint equal age status for (xy) assuming Makehams’s
law with c = 2

(3) (z) is the equivalent single life status for (xy) assuming Gompertz’s law with
c = 2

Calculate z − w.

A. −2

B. −1

C. 0

D. 1

E. 2

2. T is the random variable for the future lifetime of (x). Determine Cov(aT , vT).

A. (A2
x − 2Ax)/δ

B. (A2
x − 2Ax)

C. 0

D. (2Ax − A2
x)

E. (2Ax − A2
x)/δ
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3. You are given

n A
65
1

:n
(IA)

65
1

:n
4 0.106 0.250
5 0.133 0.385
6 0.164 0.571

Calculate (DA)
65
1

:5
.

A. 0.227

B. 0.369

C. 0.394

D. 0.413

E. 0.580

4. For a special fully discrete whole life insurance of 1000 issued on the life of (75)
increasing premiums πk are payable at time k for k = 0, 1, 2, . . .. You are given

(1) πk = π0(1 + i)k

(2) Mortality follows de Moivre’s law with ω = 105

(3) i = 0.05

(4) Premiums are calculated in accordance with the equivalence principle.

Calculate π0.

A. 33.1

B. 39.7

C. 44.3

D. 51.2

E. 56.4
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5. For a fully discrete whole life insurance with level annual premiums on the life
of (x) you are given

(1) i = 0.05

(2) qx+h−1 = 0.004

(3) The initial reserve for policy year h is 200

(4) The net amount at risk for policy year h is 1,295

(5) äx = 16.2

Calculate the terminal reserve for policy year h − 1.

A. 179

B. 188

C. 192

D. 200

E. 205

6. For a double decrement table where cause 1 is death and cause 2 is disability you
assume

(1) Disabilities occur at the beginning of each year

(2) Deaths occur at the end of each year

(3) q′(1)
64 = 0.010

(4) i = 0.04

H is the net single premium for a one year term insurance issued to (64) which
refunds the net single premium at the moment of disability and pays 1000 at the
moment of death if disability has not occurred. Calculate H.

A. 9.52

B. 9.62

C. 9.78

D. 10.00

E. 10.24
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7. You are given

(1) q70 = 0.040

(2) q71 = 0.044

(3) Deaths are uniformly distributed over each year of age.

Calculate e̊70:1.5 .

A. 1.435

B. 1.445

C. 1.455

D. 1.465

E. 1.475

8. Z is the present value random variable for an insurance on the lives of Bill and
John. This insurance provides the following benefits.

(1) 500 at the moment of Bill’s death if John is alive at that time, and

(2) 1000 at the moment of John’s death if Bill is dead at that time.

You are given

(1) Bill’s survival function follows de Moivre’s law with ω = 85

(2) John’s survival function follows de Moivre’s law with ω = 84

(3) Bill and John are both age 80

(4) Bill and John are independent lives

(5) i = 0

Calculate E[Z].

A. 600

B. 650

C. 700

D. 750

E. 800
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Solutions to Practice Examination 13

1. From the given information 2x + 2y = 2 × 2w and 2x + 2y = 2z, so that 2z−w = 2
from which z − w = 1. D.

2. Since aT = (1 − vT)/δ , E[aT vT] = (A − 2A)/δ . Thus Cov(aT , vT) = E[aT vT] −
E[aT ] E[vT] = (A − 2A)/δ − A(1 − A)/δ = (A2 − 2A)/δ . A.

3. Here (DA)
65
1

:5
= 6A

65
1

:5
− (IA)

65
1

:5
= 0.413. D.

4. Since T(75) is uniform on (0, 30), A75 =
29∑

k=0

vk+1/30 = a30 /30 = 0.5124. The

actuarial present value of the premiums is
29∑

k=0

πkkp75vk = π0

29∑

k=0

(30−k)/30 = π0(30−

14.5). Thus π0 = 1000A75/ (30 − 14.5) = 33.05. A.

5. From (3), 200 = h−1V + π and from (4), 1295 = b − hV . The general reserve
relation phV = (1+i)(h−1V +π )−bq then gives hV = 204.82, from which b = 1499.82.
Since bAx = π äx, using the value of b and (5) gives π = 21.16, which from (3) gives

h−1V = 178.84. A.

6. Here H = 1000q′(1)v = 9.615. B.

7. Here e̊70:1.5 =
∫ 1.5

0
tp70 dt =

∫ 1

0
1 − tq70 dt + p70

∫ 0.5

0
1 − tq71 dt = 1.4547. C.

8. Here E[Z] = 500P[Bill dies before John] + 1000P[John dies after Bill]. Now the
joint distribution of John and Bill’s remaining lives is uniform over a rectangle of
area 20. The part of this region in which John dies after Bill is a triangle of area
(0.5)(4)(4) = 8, giving the probabilities as 0.4. Thus E[Z] = 1500(0.4) = 600. A.
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1. For a special decreasing term insurance on the life of (x) you are given

(1) Z is the present value random variable and

Z =





vK+1 −

äK+1

s̈5

0 ≤ K < 5

0 K ≥ 5

(2) i = 0.05

(3) Px:5 = 0.19

Calculate the net level annual premium for this insurance.

A. 0.010

B. 0.012

C. 0.014

D. 0.016

E. 0.018
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2. Z1 is the present value random variable for an n year term insurance of 1 on
the life of (x). Z2 is the present value random variable for an n year endowment
insurance of 1 on the life of (x). You are given

(1) vn = 0.20

(2) npx = 0.50

(3) E[Z1] = 0.23

(4) Var(Z1) = 0.08

(5) Death benefits are payable at the moment of death

Calculate Var(Z2).

A. 0.034

B. 0.044

C. 0.054

D. 0.064

E. 0.074

3. For a fully discrete life insurance on the life of (x) you are given

(1) 1AS = 39

(2) 1CV = 0

(3) The probability of decrement by death, q(1)
x , equals 0

(4) The probability of decrement by withdrawal, q(2)
x , equals 0.1

(5) q̂(2)
x = 0.2; all other experience factors equal the assumptions

Calculate 1ÂS.

A. 34.7

B. 35.1

C. 39.0

D. 42.9

E. 43.9
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4. You are given sx:n = ax:n / nEx. Which of the following are true?
I. n | Ax − n+1 | Ax = v qx+n nEx

II. Ax:n − Ax:n+1 = d nEx

III. s̈x:n+1 − sx:n =
1

n+1Ex

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D

5. You are given

(1) qx = 0.25

(2) ln(4/3) = 0.2877

Based on the constant force of mortality assumption, the force of mortality is µA
x+s,

0 < s < 1. Based on the uniform distribution of deaths assumption the force of
mortality is µB

x+s, 0 < s < 1. Calculate the smallest s such that µB
x+s ≥ µA

x+s.

A. 0.4523

B. 0.4758

C. 0.5001

D. 0.5242

E. 0.5477
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6. Y is the present value random variable for a benefit based on (x) such that

Y =
{

an 0 ≤ T(x) ≤ n
aT T(x) > n

Determine E[Y].

A. ax:n

B. ax:n + n | ax

C. an + n | ax

D. an + vn ax+n

E. nqx an + n | ax

7. You are given that qy = 0.25, q
x
2
y

= 0.12, and qxy = 0.14. Calculate q
xy
1.

A. 0.02

B. 0.04

C. 0.11

D. 0.16

E. 0.23

8. You are given that Ax:n = 0.20 and d = 0.08. Calculate n−1Vx:n .

A. 0.90

B. 0.92

C. 0.94

D. 0.96

E. 0.98
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Solutions to Practice Examination 14

1. Simplification gives Z = (vK+1 − v5)/ (1 − v5) for K < 5. Thus E[Z] = (A
x
1:5

−
v5

5qx)/ (1 − v5) = (Ax:5 − v5)/ (1 − v5). From (3), äx:5 = 1/ (Px:5 + d) = 4.2084. The
desired premium solves E[Z] = Päx:5 , and plugging in gives P = 0.0176. E.

2. Here Z2 = Z1 +vn1[n,∞)(T) and Z2
2 = Z2

1 +v2n1[n,∞)(T). Using the given information
produces E[Z2] = 0.23 + (.2)(.5) = 0.33, and E[Z2

2] = 0.08 + (0.23)2 + (0.2)2(0.5) =
.1529, giving Var(Z2) = 0.0440. B.

3. E.

4. I is true since n | Ax − n+1 | Ax = nExAx+n − n+1ExAx+n+1 = nEx(Ax+n − vpx+nAx+n+1) =

nExvqx+n. II is true since Ax:n+1 = A
x
1:n

+nExAx+n:1 = Ax:n = A
x
1:n

+nExv = Ax:n +nEx(v−
1). III fails since s̈x:n+1 − sx:n = äx:n+1 / n+1Ex − ax:n / nEx = (1 + ax:n )/ n+1Ex − ax:n / nEx =
1/ n+1Ex + ax:n (1/ n+1Ex − 1/ nEx), and this last term is not zero. A.

5. Here µA
x+s = − ln(.75) = ln(4/3) while µB

x+s = 0.25/ (1 − 0.25s) = 1/ (4 − s). Thus
µB

x+s ≥ µA
x+s if and only if 1/ (4 − s) ≥ ln(4/3) or s ≥ 4 − 1/ ln(4/3) = 0.5242. D.

6. Here Y = an 1[0,n)(T) + aT 1[n,∞)(T) = an 1[0,n)(T) + (1 − vT)1[n,∞)(T)/δ . Thus E[Y] =
an nqx + (1/δ )npx − (1/δ )n | Ax. Now n | Ax = nExAx+n = nEx(1 − δax+n) = nEx − δ n | ax.
Making this substitution and simplifying gives E[Y] = an + n | ax. C.

7. The desired probability is the probability that (y) dies during the next year while
(x) is still alive. This can occur if (y) dies and (x) doesn’t, or if both die with (x)
dying after (y). The associated probabilities are qy − qxy = 0.11 and q

x
2
y

= 0.12,
giving the total probability as 0.23. E.

8. Here nVx:n = 1 because of the endowment part. So the standard recursion gives
p = (1 + i)(n−1Vx:n + π ) − q so that n−1Vx:n = v − π . The premium π = Ax:n / äx:n =
dAx:n / (1 − Ax:n ) = 0.02. Using this gives the reserve as 0.90.A.
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1. Z is the present value random variable for a whole life insurance of 1 payable at
the moment of death of (x). You are given µx+t = 0.05 for t ≥ 0 and that δ = 0.10.
Which of the following are true?

I.
d
dx

Ax = 0

II. E[Z] = 1
3

III. Var(Z) = 1
5

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D
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2. For a 30 year deferred, annual life annuity due of 1 on (35) you are given that
R is the net single premium for this annuity if the net single premium is refunded
at the end of the year of death for death during the deferral period, and N is the net
single premium for this annuity if the net single premium is not refunded. Which
of the following correctly expresses R − N?.

I.
A35:30 30 | ä35

1 − A
35
1

:30

II.
A

35
1

:30
(A35:30 − A35)

d(1 − A
35
1

:30
)

III.
(1 − dä35:30 ) 30 | ä35

dä35:30

A. None

B. I only

C. II only

D. III only

E. The correct answer is not given by A, B, C, or D

3. Which of the following are true?
I. t+rpx ≥ rpx+t for t ≥ 0 and r ≥ 0
II. rqx+t ≥ t |rqx for t ≥ 0 and r ≥ 0
III. If s(x) follows DeMoivre’s Law, the median future lifetime of (x) equals the
mean future lifetime of (x)

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D
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4. An insurance company issues a fully discrete whole life insurance on (x). You
are given

(1) The level expense loading, c, is 5

(2) Expenses ek−1 incurred at the beginning of policy year k are
Policy Year k ek−1

1 10
2 8
3 6

(3) i = 0.05

(4) kpx = (1.08)−k for k = 1, 2, . . .

(5) Net premium reserves are recognized as the measure of liabilities

For this policy, the company plans to establish initial surplus, u(0), such that expected
assets equal expected liabilities at the end of 3 years. Calculate u(0).

A. 5.79

B. 8.42

C. 9.36

D. 9.75

E. 12.28
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5. You are given that T(x) and T(y) are independent, that the survival function for
(x) follows DeMoivre’s Law with ω = 95, and that the survival function for (y) is
based on a constant force of mortality µy+t = µ for t ≥ 0. Assume that n < 95 − x.
Determine the probability that (x) dies within n years and predeceases (y).

A.
e−µn

95 − x

B.
ne−µn

95 − x

C.
1 − e−µn

µ(95 − x)

D.
1 − e−µn

95 − x

E. 1 − e−µn +
e−µn

95 − x

6. You are given µx = A + ex for x ≥ 0, and that 0.5p0 = 0.50. Calculate A.

A. −0.26

B. −0.09

C. 0.00

D. 0.09

E. 0.26
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7. You are given

(1) X is the present value random variable for a 25 year term insurance of 7 on
(35)

(2) Y is the present value random variable for a 25 year deferred, 10 year term
insurance of 4 on the same life

(3) E[X] = 2.80, E[Y] = 0.12

(4) Var(X) = 5.76, Var(Y) = 0.10

Calculate Var(X + Y).

A. 4.75

B. 5.19

C. 5.51

D. 5.86

E. 6.14

8. For a double decrement table you are given q′(2)
x = 1

8 , 1 | q(1)
x = 1

4 , and q(1)
x+1 = 1

3 .
Calculate q′(1)

x .

A. 1/4

B. 1/5

C. 1/6

D. 1/7

E. 1/8
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Solutions to Practice Examination 15

1. Because of the constant force of mortality, Ax does not depend on x and I

holds. Now E[Z] =
∫ ∞

0
e−0.1te−0.05t0.05 dt = 0.05/0.15 = 1/3, and similarly E[Z2] =

0.05/0.25 = 1/5. Thus II holds and III fails. A.

2. First 30 | ä35 + RA
35
1

:30
= R, so R = 30 | ä35/ (1 − A

35
1

:30
). Also N = 30 | ä35, so

R − N = A
35
1

:30
30 | ä35/ (1 − A

35
1

:30
), and I fails. Now A35 = A

35
1

:30
+ 30E35A65 and

30E35A65 = 30E35(1 − dä65) = 30E35 − d30 | ä35. Making this substitution shows that II
holds. III fails since III has endowment insurances where the correct formula has
term insurances. C.

3. I fails since t+rpx = tpxrpx+t. II holds since t |rqx = tpxtqx+r. III holds since T(x) has
a uniform distribution. C.

4. B.

5. Conditioning on the time of death of (x) gives
∫ n

0

1
95 − x

e−µx dx = (1−e−µn)/µ(95−
x). C.

6. Here 0.5 = 1/2p0 = e
∫ 0.5

0
A+ex dx = e−A/2−(e0.5−1). Solving gives A = 0.0889. D.

7. Here XY = 0 since their dependence on T is supported in disjoint intervals. Thus
E[(X + Y)2] = E[X2] + E[Y2] = Var(X) + (E[X])2 + Var(Y) + (E[Y])2. The given
information and this formula gives Var(X + Y) = 5.188. B.

8. Since 1 | q(1)
x = p(τ)

x q(1)
x+1, the given information yields p(τ)

x = 3/4. Since (1−q′(1))(1−
q′(2)) = p(τ), the given information gives q′(1) = 1/7. D.
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1. Which of the following are true?

I.
∂

∂x nEx = nEx(µx − µx+n)

II.
∂

∂n nEx = nEx(µx+n + δ )

III. tEx

nEx
=

1

t−nEx+n
for t ≥ n

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D

2. For a 10 year term insurance of 10,000 with death benefits payable at the end of
the year of death of (30) you are given

(1) A
30
1

:10
= 0.015

(2) ä30:10 = 8

(3) 10E30 = 0.604

(4) i = 0.05

(5) Deaths are uniformly distributed over each year of age

(6) Level true fractional premiums are determined in accordance with the equiv-
alence principle

Calculate the additional annual premium for this insurance if premiums are paid in
monthly rather than semi-annual installments.

A. 0.05

B. 0.10

C. 0.15

D. 0.20

E. 0.25
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3. For a 2 year select and ultimate mortality table you are given

(1) Ultimate mortality follows the Illustrative Life Table:
x lx dx

93 530,974 127,890
94 403,084 105,096
95 297,988 84,006
96 213,982 74,894
97 139,088 66,067
98 73,021 49,289
99 23,732 23,732

(2) q[x] = 0.5qx for all x

(3) q[x]+1 = 0.5qx+1 for all x

(4) l[96] = 10, 000

Calculate l[97].

A. 4047

B. 4076

C. 4094

D. 4136

E. 4158
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4. You are given

(1) Mortality follows Gompertz’ law for both (35) and (40)

(2) c10 = 4

(3) A35:40 = 0.6

(4) T(35) and T(40) are independent

Calculate A
35
1

:40
.

A. 0.20

B. 0.24

C. 0.28

D. 0.30

E. 0.32

5. A whole life insurance of 10,000 payable at the moment of death of (x) includes
a double indemnity provision. This provision pays an additional death benefit of
10,000 during the first 20 years if death is by accidental means. You are given
δ = 0.05, µ

(τ)
x+t = 0.005 for t ≥ 0, and µ

(1)
x+t = 0.001 for t ≥ 0, where µ

(1)
x+t is the force

of decrement due to death by accidental means. Calculate the net single premium
for this insurance.

A. 910

B. 970

C. 1030

D. 1090

E. 1150
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6. A 10 year deferred life annuity due on (x) includes a refund feature during the
deferral period providing for return of the net single premium with interest at the
end of the year of death. Interest is credited at rate i. You are given i = 0.05 and
the terminal reserve at the end of 9 years equals 15.238. Calculate the net single
premium for this annuity.

A. 9.355

B. 9.823

C. 14.512

D. 15.238

E. 16.000

7. You are given that mortality follows the Illustrative Life Table:

x lx 1000qx 1000Ax 1000(2Ax)
54 8,712,711 8.24 349.09 157.36
55 8,640,918 8.96 361.29 166.63
56 8,563,495 9.75 373.74 176.33
...

...
...

...
64 7,684,067 19.52 481.32 269.94
65 7,534,074 21.32 495.53 283.63
66 7,373,448 23.29 509.86 297.73

and that i = 0.05. Calculate 2A55:10 .

A. 0.329

B. 0.402

C. 0.476

D. 0.550

E. 0.631
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8. G is the gross annual premium for a fully discrete whole life insurance. You are
given

(1) No deaths or withdrawals are expected during the first two policy years

(2) i = 0.1

(3) Expenses are incurred at the beginning of each policy year

(4) Percent of premium expenses are 7% of G each year

(5) Per policy expenses are 10 for year 1 and 2 for year 2

(6) The expected asset share at the end of year 2, 2AS, equals 12.66

Calculate G.

A. 12.25

B. 12.35

C. 12.45

D. 12.55

E. 12.65
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Solutions to Practice Examination 16

1. Note that nEx = e−δne−
∫ x+n

x
µs ds. The Fundamental Theorem of Calculus then gives

∂

∂x nEx = nEx(µx − µx+n) and I holds. Similarly,
∂

∂nnEx = −nEx(µx+n + δ ) and II fails.

The ratio in III simplifies to t−nEx+n and III fails. E.

2. The equations for the two annual premium rates are 10000A
30
1

:10
= P(2)ä(2)

30:10

and 10000A
30
1

:10
= P(12)ä(12)

30:10 . Now ä(m)
x = α(m)äx − β(m), so from ä(m)

30 =

ä(m)
30:10 + 10E30ä(m)

40 , making this substitution and solving gives ä(m)
30:10 = α(m)ä30:10 −

β(m)(10E30 − 1). Now α(2) = 1.000, β(2) = 0.2561, α(12) = 1.000 and β(12) =
0.4665. Making these substitutions gives P(2) = 18.9879 and P(12) = 19.1893 for a
difference of 0.2013. D.

3. Since the ultimate table is given, l[96] = l98/p[96]p[96]+1 = 116079 using the
given information. Similarly, l[97] = l99/p[97]p[97]+1 = 46979. Since by (4) l[96] is
renormalized to 10000, the renormalized value of is l[97] = 10000(46979/116079) =
4047.2. A.

4. Because of Gompertz’ law, µ(35 : 40)t = µ35+t + µ40+t = Bc35+t(1 + c5) = 3µ35+t

by (2). Thus A35:40 = 3A
35
1

:40
, and A

35
1

:40
= 0.60/3 = 0.20. A.

5. Here Ax =
∫ ∞

0
e−0.05te−0.005t0.005 dt = 0.005/0.055 = 1/11, and also A

x
1:20

=
∫ 20

0
e0.05te−0.005t0.001 dt = (1 − e−0.055(20))/55 = 0.0121. The sum of these two times

10,000 gives the premium as 1030.88. C.

6. The retrospective method gives 9Ex 9V = P − P E[v−(K+1)vK+11[0,9)(K)] since the
premium P is refunded with interest if death occurs in the deferral period. The
expectation is 9qx, and making this substitution gives v9

9V = P = 9.822, using the
given information. B.

7. Here 2A55 = 2A55:10 − 10
2E55 + 10

2E55
2A65, where 10

2E55 = v20l65/ l55. Rearranging
and using the table gives 2A55:10 = 0.4020. B.

8. D.
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1. A fully discrete whole life insurance with annual premiums payable for 10 years
is issued on (30). You are given the death benefit is equal to 1000 plus the refund
of the net level annual premiums paid without interest, and that premiums are
calculated in accordance with the equivalence principle. Determine the net annual
premium for this insurance.

A.
1000A30

ä30:10 + 10 10 | A30

B.
1000A30

ä30:10 − 10 10 | A30

C.
1000A30

ä30:10 − (IA)
30
1

:10

D.
1000A30

ä30:10 − (IA)
30
1

:10
+ 10 10 | A30

E.
1000A30

ä30:10 − (IA)
30
1

:10
− 10 10 | A30

2. A multiple decrement table has two causes of decrement: (1) accident and
(2) other than accident. You are given µ (1)

y = 0.0010 and µ (2)
y = 0.0005(100.05)y.

Determine the probability of death by accident for (x) in terms of e̊x.

A. 0.0005 e̊x

B. 0.0010 e̊x

C. 0.0050 e̊x

D. 0.0100ve̊x

E. 0.0500 e̊x
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3. You are given that deaths are uniformly distributed over each year of age, i = 0.05,
q35 = 0.01, and that A36 = 0.185. Calculate A35.

A. 0.1797

B. 0.1815

C. 0.1840

D. 0.1864

E. 0.1883

4. For a special fully discrete whole life insurance on (55) you are given

(1) Initial net annual premiums are level for 10 years. Thereafter, net annual
premiums equal one-half of initial net annual premiums.

(2) Death benefits equal 1000 during the first 10 years, and 500 thereafter

(3) A55 = 0.36129, A65 = 0.49553, ä55 = 13.413, ä65 = 10.594, l55 = 8, 640, 918,
l65 = 7, 534, 074

(4) i = 0.05, v10 = 0.613913

Calculate the initial net premium.

A. 8.54

B. 10.81

C. 17.08

D. 21.62

E. 34.16
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5. Which of the following are correct expressions for tV(Ax)?

I.
Ax+t − Ax

1 − Ax+t

II. P(Ax)sx:t −
P(A

x
1:t

) ax:t

tEx

III.
[
P(Ax+t) − P(Ax)

]
ax

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D

6. You are given qx = 0.04, µx+t = 0.04 + 0.001644t for 0 ≤ t ≤ 1, and µy+t =
0.08 + 0.003288t for 0 ≤ t ≤ 1. Calculate qy.

A. 0.0784

B. 0.0792

C. 0.0800

D. 0.0808

E. 0.0816
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7. A whole life insurance of 1 with benefits payable at the moment of death of
(x) includes a double indemnity provision. This provision pays an additional death
benefit of 1 for death by accidental means. S is the net single premium for this
insurance. A second whole life insurance of 1 with benefits payable at the moment
of death of (x) includes a triple indemnity provision. This provision pays an
additional death benefit of 2 for death by accidental means. T is the net single
premium for this insurance. You are given

(1) The force of decrement for death by accidental means is constant and equal
to µ

(2) The force of decrement for death by other means is constant and equal to 5µ

(3) There are no other decrements

Determine T − S.

A.
S
12

B.
S
8

C.
S
7

D.
S
4

E.
S
2

8. For (x) you are given µx+t =
−0.024
ln(0.4)

for t ≥ 0, and δ = 0.03. Calculate the

probability that aT(x) will exceed 20.

A. 0.45

B. 0.55

C. 0.67

D. 0.74

E. 0.82
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Solutions to Practice Examination 17

1. Here 1000A30 + PE[vK+1(K + 1)1[0,10)(K)] + 10PE[vK+11[10,∞)(K)] = Pä30:10 , from
which P = 1000A30/ (ä30:10 − (IA)

30
1

:10
− 1010 | A30). E.

2. Here ∞q(1)
x =

∫ ∞

0
tp

(τ)
x µ

(1)
x+t dt = 0.001 e̊x. B.

3. Here A35 = A
35
1

:1
+vp35A36 = (iv/δ )q35 +vp35A36 = 0.1842. Now A35 = (δ / i)A35 =

0.1797. A.

4. Here 1000A55 − 50010E55A65 = P(ä55 − (1/2)10E55ä65). The given information
yields 10E55 = v10l65/ l55 = 0.5353, and using this and the other given values yields
P = 21.618. D.

5. The prospective formula gives tV(Ax) = Ax+t − P(Ax)ax+t = Ax+t − (Ax/ax)ax+t =
(Ax+t − Ax)/ (1 − Ax) using ax = (1 − Ax)/δ . This shows that I fails. The retrospective
formula gives II directly. III rearranges to be equal to I after inserting the definitions
of the premiums, so III fails too. E.

6. Since µy+t = 2µx+t, py = (px)2, from which qy = 1 − (1 − qx)2 = 0.0784. A.

7. Now µ (τ)
x = 6µ so that S =

∫ ∞

0
vt

tp
(τ)
x µ

(τ)
x+t dt +

∫ ∞

0
vt

tp
(τ)
x µ dt = 6µ/ (δ + 6µ) +

µ/ (δ + 6µ) = 7µ/ (δ + 6µ). Similarly, direct computation gives T = 8µ/ (δ + 6µ).
So T − S = µ/ (δ + 6µ) = S/7. C.

8. Here P[aT > 20] = P[(1 − vT)/δ > 20] = P[T > ln(1 − 20δ )/ ln(v)] =
exp(−µ ln(1 − 20δ )/ ln(v)) = 0.4493. A.



§54. Practice Examination 18

1. A company issues fully discrete level premium whole life insurances of 1000 on
each of 1000 independent lives age 90. You are given

(1) Premiums are determined by the equivalence principle

(2) There are no expenses or taxes

(3)
x lx äx 1000Ax

90 1,058,511 3.630 827.13
91 858,696 3.404 837.89
92 682,723 3.175 848.80
93 530,974 2.936 860.15

(4) i = 0.05

(5) Death is the only decrement

Calculate the expected total fund the company will have at the end of 3 years.

A. 95,800

B. 107,500

C. 113,300

D. 121,400

E. 135,200

Copyright  2006 Jerry Alan Veeh. All rights reserved.



§54: Practice Examination 18 282

2. L is the loss at issue random variable for a fully discrete whole life insurance of
1 on (x). The annual premium charged for this insurance is 0.044. You are given
Ax = 0.40, äx = 10, and Var(L) = 0.12. An insurer has a portfolio of 100 such
insurances on 100 independent lives. Eighty of these insurances have death benefits
of 4 and 20 have death benefits of 1. Assume that the total loss for this portfolio is
distributed normally. Calculate the probability that the present value of the gain for
this portfolio is greater than 22.

A. 0.01

B. 0.07

C. 0.10

D. 0.16

E. 0.25

3. Two independent lives, both age x, are subject to the same mortality table.
Calculate the maximum possible value of tpxx − tpx.

A. 1
16

B. 1
8

C. 1
4

D. 1
2

E. 1
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4. For a two year select and ultimate mortality table you are given
[x] l[x] l[x]+1 lx+2 x + 2
30 1000 998 995 32
31 996 994 988 33
32 994 990 982 34
33 987 983 970 35

Which of the following are true?
I. 2p[31] > 2p[30]+1

II. 1 | q[31] > 1 | q[30]+1

III. 2q[33] > 2q[31]+2

A. None

B. I only

C. II only

D. III only

E. The correct answer is not given by A, B, C, or D

5. You are given that 1000q60 = 13.76, A60 = 0.34487, and A61 = 0.35846. Calculate
i.

A. 0.050

B. 0.055

C. 0.060

D. 0.065

E. 0.070
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6. For a triple decrement table you are given

(1) Each decrement has a constant force of decrement over each year of age

(2) The following table of values
j µ (j)

x

1 0.2
2 0.4
3 0.6

Calculate q(2)
x .

A. 0.20

B. 0.23

C. 0.26

D. 0.30

E. 0.33

7. Z is the present value random variable for an insurance on (x) defined by

Z =
{

(6 − K)vK+1 K = 0, 1, 2, 3, 4, 5
0 K ≥ 6

where vK+1 is calculated at force of interest δ . Which of the following are true?
I. Z is the present value random variable for a 5 year decreasing term insurance
payable at the end of the year of death of (x).
II. E[Z] =

∑5
k=0(6 − k) k | Ax

1:1
III. E[Z2] calculated at force of interest δ equals E[Z] calculated at force of interest
2δ

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D
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8. L is the loss at issue random variable for a fully continuous whole life insurance
of 2 on (x). This insurance has a total level annual premium rate of 0.09. You are
given µx+t = 0.04 for t ≥ 0 and δ = 0.06. Calculate Var(L).

A. 0.02

B. 0.09

C. 0.32

D. 0.56

E. 1.10
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Solutions to Practice Examination 18

1. Direct computation gives 3V = 1000A93−Pä93 = 191.15, since P = 1000A90/ ä90 =
227.86. Now the reserve only exists for the survivors, so the amount the company
will have, on average, is 1000(l93/ l90)191.15 = 95, 885. A.

2. Now E[L] = Ax − 0.044äx = −0.04, and for the total portfolio the loss, T ,
has E[T] = 80(4)(−0.04) + 20(−0.04) = −12.8 and Var(T) = (80)(16)Var(L) +
20Var(L) = 156. Using the normal approximation gives P[T < −22] = P[Z <
(−22 − (−12.8))/ √156] = P[Z < −0.7376] = 1 − 0.77 = 0.23. E.

3. Since tpxx = 1 − (1 − tpx)2, the maximum value of the difference is the same as the
maximum value of the quadratic x − x2 on the interval 0 ≤ x ≤ 1, which is 1/4. C.

4. Direct computation gives 2p[31] = 988/996 = 0.9920 and 2p[30]+1 = 988/998 =
0.9900 so I holds. Also 1 | q[31] = (994/996)(994 − 988)/994 = 0.0060 and 1 | q[30]+1 =
(995/998)(995 − 988)/995 = 0.0070, so II fails. Finally, 2q[33] = 17/987 = 0.0172
while 2q[31]+2 = 18/988 = 0.0182 and III fails. B.

5. Since A60 = vq60 + vp60A61, 1 + i = (q60 + p60A61)/A60 = 1.065. D.

6. Here p(τ) = e−1.2 and p′(2) = e−0.4, so that q(2)
x = q(τ) ln(q′(2))/ ln(p(τ)) = 0.4(1 −

e−1.2)/1.2 = 0.2329. B.

7. I fails since the factor given is (6 − K) and not (5 − K). II holds by direct
computation, and III fails due to the presence of the (6 − K) term. E.

8. Since L = 2vT −0.09aT = (2+0.09/δ )vT −0.09/δ , Var(L) = (2+0.09/δ )2Var(vT).

Now E[vT] =
∫ ∞

0
e−δ te−µt

µ dt = µ/ (µ + δ ) and E[v2T] = µ/ (µ + 2δ ) by similar

computations. So Var(vT) = 0.09 and Var(L) = 1.102. E.



§55. Practice Examination 19

1. S is the actuarial present value of a continuous annuity of 1 per annum payable
while at least one of (30) and (45) is living, but not if (30) is alive and under age 40.
Which of the following is equal to S?
I. a45 + a30 − a30:45:10

II. a45 + 10 | a30 − a30:45

III. a45 + 10 | a30 − 10 | a30:45

IV. a45 + 10 | a30 − a30:45:10

A. None

B. I only

C. II only

D. III only

E. IV only

2. Assume mortality follows DeMoivre’s Law for 0 ≤ x ≤ ω . Which of the follow-
ing expressions equal µx?

I.
1

2e̊x
II. n | qx, 0 ≤ n ≤ ω − x − 1

III.
mx

1 + 0.5mx
, x ≤ ω − 1

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D
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3. You are given

(1) A35 = 0.17092,A40 = 0.20799

(2) ä35 = 17.410616, ä40 = 16.632258

(3) i = 0.05

(4) Deaths are uniformly distributed over each year of age

(5) α(4) = 1.00019, β(4) = 0.38272

(6) 10005V35 = 44.71

(7) ä(4)
35 = 17.031204

Calculate 1000(5V (4)
35 − 5V35).

A. 0.17

B. 0.45

C. 1.00

D. 3.72

E. 3.81



§55: Practice Examination 19 289

4. For a fully discrete level benefit whole life insurance you are given

(1) Expenses, incurred at the beginning of each year, are
Type of Expense Expense

Fraction of premium 0.25
Per 1000 of Insurance 2.00

Per Policy 30.00

(2) The assumed average policy size is 20,000

(3) S is the expense loaded level annual premium for an insurance of 25,000 if
the approximate premium rate method is used for per policy expenses

(4) T is the expense loaded level annual premium for an insurance of 25,000 if
the policy fee method is used for per policy expenses

Calculate S − T .

A. 0.00

B. 2.50

C. 5.00

D. 7.50

E. 10.00

5. Which of the following can serve as survival functions for x ≥ 0?
I. s(x) = exp(x − 0.7(2x − 1))

II. s(x) =
1

(1 + x)2

III. s(x) = exp(−x2)

A. I and II only

B. I and III only

C. II and III only

D. I, II, and III

E. The correct answer is not given by A, B, C, or D
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6. Z is the present value random variable for a special whole life insurance with
death benefits payable at the moment of death of (x). You are given (for t ≥ 0)
bt = e0.05t, δt = 0.06, and µx+t = 0.01. Calculate Var(Z).

A. 0.037

B. 0.057

C. 0.063

D. 0.083

E. 0.097

7. You are given qx = 0.5, qx+1 = 0.5, qx+2 = 1.0, and
d
di

äx = (−3.5)2Ex. Calculate i.

A. 1
4

B. 1
3

C. 1
2

D. 2
3

E. 3
4

8. For a triple decrement table you are given

(1) Each decrement is uniformly distributed over each year of age in its associ-
ated single decrement table

(2) q′(1)
x = 0.1000

(3) q′(2)
x = 0.0400

(4) q′(3)
x = 0.0625

Calculate 1000q(1)
x .

A. 94.00

B. 94.55

C. 94.96

D. 95.00

E. 100.50
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Solutions to Practice Examination 19

1. Direct reasoning gives the value of the annuity as a30:45 − a30:10 = a30 + a45 −
a30:45 − a30:10 = 10 | a30 + a45 − a30:45, and II holds. III and IV fails since the last term
in each expression is not equal to a30:45. I fails since the difference of I and II is
easily seen to be non-zero. C.

2. Since µx = 1/ (ω − x) and e̊x = (ω − x)/2, I holds. II also holds since n | qx =
((ω − x − n)/ (ω − x)) (1/ (ω − n − x)) = µx. III also holds by algebraic manipulation

from mx = qx/
∫ 1

0
(1 − tqx) dt) = 2qx/ (2 − qx). D.

3. Since ä(4)
35 = α(4)ä35 − β(4) = 17.0312 and similarly ä(4)

40 = 16.2527, 1000P(4)
35 =

1000A35/ ä(4)
35 = 10.0357. Thus the reserve is 10005V (4)

35 = 1000A40 − 1000P(4)
35 ä(4)

40 =
44.8828. Subtracting the given value for 10005V35 gives the difference as 0.1728.
A.

4. E.

5. A survival function must have s(0) = 1 and be non-increasing. I fails since
s′(x) = s(x)(1 − 0.7(2x ln 2)) > 0 for x near 0. II and III both work. C.

6. Direct computation gives E[Z] =
∫ ∞

0
e0.05te−0.06te−0.01t0.01 dt = 1/2 while E[Z2] =

1/3 by similar direct computation. So Var(Z) = 1/3 − 1/4 = 1/12 = 0.0833. D.

7. Since qx+2 = 1, äx = 1 + vpx + v2
2px = 1 + v/2 + v2/4 since px = 1/2 and 2px = 1/4.

Since
d
di

v =
d
di

(1 + i)−1 = −v2, the given information becomes −v2/2 − v3/2 =

−3.5v2/4, from which v = 2(3.5/4 − 1/2) = 3/4 and i = 1/3.B.

8. From the given information q(1) =
∫ 1

0
tp

(τ)
x µ

(1)
x+t dt =

∫ 1

0
q′(1)

(1 − tq′(2)
)(1 −

tq′(2)
) dt = 0.09496. C.



§56. Practice Examination 20

1. You are given

(1) (x) is subject to a uniform distribution of deaths over each year of age

(2) (y) is subject to a constant force of mortality of 0.3

(3) q
x
1
y

= 0.045

(4) T(x) and T(y) are independent

Calculate qx.

A. 0.052

B. 0.065

C. 0.104

D. 0.214

E. 0.266

2. For a fully discrete 3-year endowment insurance of 1000 on (x) you are given

(1) kL is the prospective loss random variable at time k

(2) i = 0.10

(3) äx:3 = 2.70182

(4) Premiums are determined by the equivalence principle.

Calculate 1L given that (x) dies in the second year from issue.

A. 540

B. 630

C. 655

D. 720

E. 910

Copyright  2006 Jerry Alan Veeh. All rights reserved.



§56: Practice Examination 20 293

3. For a double decrement model

(1) tp′(1)
40 = 1 − t/60, for 0 ≤ t ≤ 60

(2) tp′(2)
40 = 1 − t/40, for 0 ≤ t ≤ 40

Calculate µ
(τ)
40 (20).

A. 0.025

B. 0.038

C. 0.050

D. 0.063

E. 0.075

4. For independent lives (35) and (45)

(1) 5p35 = 0.90

(2) 5p45 = 0.80

(3) q40 = 0.03

(4) q50 = 0.05

Calculate the probablity that the last death of (35) and (45) occurs in the 6th year.

A. 0.0095

B. 0.0105

C. 0.0115

D. 0.0125

E. 0.0135
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5. For a fully discrete whole life insurance of 100,000 on (35) you are given

(1) Percent of premium expenses are 10% per year

(2) Per policy expenses are 25 per year

(3) Per thousand expenses are 2.50 per year

(4) All expenses are paid at the beginning of the year

(5) 1000P35 = 8.36

Calculate the level annual expense loaded premium using the equivalence principle.

A. 930

B. 1041

C. 1142

D. 1234

E. 1352

6. Kings of Fredonia drink glasses of wine at a Poisson rate of 2 glasses per day.
Assassins attempt to poison the king’s wine glasses. There is a 0.01 probability that
any given glass is poisoned. Drinking poisoned wine is always fatal instantly and
is the only cause of death. The occurences of poison in the glasses and the number
of glasses drunk are independent events. Calculate the probability that the current
king survives at least 30 days.

A. 0.40

B. 0.45

C. 0.50

D. 0.55

E. 0.60
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7. Insurance losses are a compound Poisson process where

(1) The approvals of insurance applications arise in accordance with a Poisson
process at a rate of 1000 per day.

(2) Each approved application has a 20% chance of being from a smoker and an
80% chance of being from a non-smoker.

(3) The insurances are priced so that the expected loss on each approval is −100.

(4) The variance of the loss amount is 5000 for a smoker and is 8000 for a
non-smoker.

Calculate the variance for the total losses on one day’s approvals.

A. 13,000,000

B. 14,100,000

C. 15,200,000

D. 16,300,000

E. 17,400,000

8. Z is the present value random variable for a whole life insurance of b payable at
the moment of death of (x). You are given

(1) δ = 0.04

(2) µx(t) = 0.02 for t ≥ 0

(3) The single benefit premium for this insurance is equal to Var(Z).

Calculate b.

A. 2.75

B. 3.00

C. 3.25

D. 3.50

E. 3.75
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Solutions to Practice Examination 20

1. Direct computation gives q
x
1
y

=
∫ 1

0
tpxµx+ttpy dy = qx

∫ 1

0
tpy dt = qx

∫ 1

0
e−0.3t dt =

qx(1 − e−0.3)/0.3, from which qx = 0.0521. A.

2. The premium is 1000Ax:3 / äx:3 = 1000(1 − däx:3 )/ äx:3 = 279.21. The loss is
1000v − 279.21 = 629.88. B.

3. Since µ
(j)
40(t) = −

d
dt tp′(j)

40/ tp′(j)
40 the given information yields µ

(τ)
40 (20) = µ

(1)
40 (20) +

µ
(2)
40 (20) = 1/40 + 1/20 = 0.0750. E.

4. Direct reasoning gives the probability as (0.90)(0.03)(1 − 0.80) + (0.80)(0.05)(1 −
0.90) + (0.90)(0.80)(0.03)(0.05) = 0.0105. B.

5. The gross premium G satisfies 100, 000A35 + 0.10Gä35 + 25ä35 + 250ä35 = Gä35,
from which G = (100, 000P35 + 275)/0.90 = 1234.44. D.

6. Poisoned glasses appear at a Poisson rate of 0.02 per day or 0.60 per 30 days. So
the probability of survival is e−0.60 = 0.5488. D.

7. The smokers and non-smokers arrive according to independent Poisson processes
with rates of 200 and 800 per day respectively. The total variance is thus 200Var(S)+
(E[S])2200 + 800Var(N) + (E[N])2800 where S and N are the loss variables for an
individual smoker and non-smoker. Substitution gives this value as 17, 400, 000. E.

8. Here E[Z] =
∫ ∞

0
be−δ te−0.02t0.02 dt = b/3, and similarly E[Z2] = b2/5. Since the

premium is equal to the variance, b/3 = b2/5 − b2/9 from which b = 3.75. E.
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1. For a special 3 year term insurance on (30) you are given

(1) Premiums are payable semiannually.

(2) Premiums are payable only in the first year.

(3) Benefits, payable at the end of the year of death, are

k bk+1

0 1000
1 500
2 250

(4) Mortality follows the Illustrative Life Table.

(5) Deaths are uniformly distributed within each year of age.

(6) i = 0.06.

Calculate the amount of each semiannual benefit premium for this insurance.

A. 1.3

B. 1.4

C. 1.5

D. 1.6

E. 1.7

2. A loss X follows a 2-parameter Pareto distribution with α = 2 and unspecified

parameter θ . You are given E[X − 100 |X > 100] =
5
3

E[X − 50 |X > 50]. Calculate

E[X − 150 |X > 150].

A. 150

B. 175

C. 200

D. 225

E. 250
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3. The scores on the final exam in Ms. B’s Latin class have a normal distribution
with mean θ and standard deviation equal to 8. θ is a random variable with a
normal distribution with mean equal to 75 and standard deviation equal to 6. Each
year Ms. B chooses a student at random and pays the student 1 times the student’s
score. However, if the student fails the exam (score ≤ 65) then there is no payment.
Calculate the conditional probability that the payment is less than 90 given that there
is a payment.

A. 0.77

B. 0.85

C. 0.88

D. 0.92

E. 1.00

4. For a Markov model with three states, Healthy (0), Disabled (1), and Dead (2)

(1) The annual transition matrix is given by




0.70 0.20 0.10
0.10 0.65 0.25

0 0 1



 with the

states listed vertically and horizontally in the order 0, 1, 2.

(2) There are 100 lives at the start, all Healthy. Their future states are indepen-
dent.

Calculate the variance of the number of the original 100 lives who die within the
first two years.

A. 11

B. 14

C. 17

D. 20

E. 23
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5. An insurance company issues a special 3 year insurance to a high risk individual.
You are given the following homogeneous Markov chain model.

(1)

State 1 active
State 2 disabled
State 3 withdrawn
State 4 dead

The transition probability matrix is





0.4 0.2 0.3 0.1
0.2 0.5 0 0.3
0 0 1 0
0 0 0 1



with the states listed

vertically and horizontally in the order 1, 2, 3, 4.

(2) Changes in state occur at the end of the year.

(3) The death benefit is 1000, payable at the end of the year of death.

(4) i = 0.05

(5) The insured is disabled at the end of year 1.

Calculate the actuarial present value of the prospective death benefits at the beginning
of year 2.

A. 440

B. 528

C. 634

D. 712

E. 803
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6. For a fully discrete whole life insurance of b on (x) you are given

(1) qx+9 = 0.02904

(2) i = 0.03

(3) The initial benefit reserve for policy year 10 is 343.

(4) The net amount at risk for policy year 10 is 872.

(5) äx = 14.65976.

Calculate the terminal benefit reserve for policy year 9.

A. 280

B. 288

C. 296

D. 304

E. 312

7. For a special fully discrete 2 year endowment insurance of 1000 on (x) you are
given

(1) The first year benefit premium is 668.

(2) The second year benefit premium is 258.

(3) d = 0.06.

Calculate the level annual premium using the equivalence principle.

A. 469

B. 479

C. 489

D. 499

E. 509



§57: Practice Examination 21 301

8. For an increasing 10 year term insurance you are given

(1) bk+1 = 100, 000(1 + k) for k = 0, 1, . . . , 9

(2) Benefits are payable at the end of the year of death.

(3) Mortality follows the Illustrative Life Table.

(4) i = 0.06

(5) The single benefit premium for this insurance on (41) is 16,736.

Calculate the single benefit premium for this insurance on (40).

A. 12,700

B. 13,600

C. 14,500

D. 15,500

E. 16,300
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Solutions to Practice Examination 21

1. The semiannual premium P satisfies the equation 1000vq30 + 500v2p30q31 +
250v3

2p30q32 = P + Pv1/2
1/2p30. The life table gives P = 1.276. A.

2. Since X = (X−x)+ +X∧x, E[X−x |X > x]P[X > x] = E[(X−x)+] = E[X]−E[X∧x].
Using the formulas for the Pareto distribution found in the tables for exam M shows
that E[X − x |X > x] = x + θ . The given information implies 100 + θ = (5/3)(50 + θ),
from which θ = 25 and E[X − 150 |X > 150] = 150 + 25 = 175. B.

3. Since E[etS] = E[E[etS |θ]] = E[etθ+64t2/2] = e75t+100t2/2, the student score S has
a normal distribution with mean 75 and variance 100. The desired probability is
P[S < 90 |S > 65] = P[−1 < N(0, 1) < 1.5]/P[N(0, 1) > −1] = 0.9206. D.

4. The probability that a single individual goes from healthy to dead in 2 years or
less is 0.1 + (0.7)(0.10) + (0.2)(0.25) = 0.22. So the number dying within 2 years
is binomial with parameters 100 and 0.22, giving the variance as 100(0.22)(0.78) =
17.16. C.

5. To collect, the insured must die in either 1 or 2 years, giving the value as
1000(0.30v + v2((0.2)(0.1) + (0.5)(0.3))) = 439.90. A.

6. The premium P = bAx/ äx = b(1 − däx)/ äx = 0.0391b. Also 343 = 9V + P,
872 = b − 10V , and (9V + P)(1.03) = bqx+9 + px+910V = qx+9(b − 10V) + 10V . Using the
earlier information in the last equation gives 10V = 327.97, from which b = 1199.97,
P = 46.92 and 9V = 296.08. C.

7. On the one hand 1000Ax:2 = 668 + 258vpx, while also 1000Ax:2 = 1000vqx +
1000v2px, since this is endowment insurance. Equating these two expressions gives
px = 0.91 and Ax:2 = 0.888 from which the premium is 1000dAx:2 / (1 − Ax:2 ) =
479.05.B.

8. Here 100, 000(IA)
41
1

:10
= 16, 736. Now by reasoning from the time line diagram,

100, 000(IA)
40
1

:10
= 100, 000A

40
1

:10
+100, 000vp40

(
(IA)

41
1

:10
− 10v10

9p41q50

)
. Using

the relation A
40
1

:10
= A40 − 10E40A50 and the life table gives the value as 15, 513. D.



§58. Practice Examination 22

1. For a fully discrete whole life insurance of 1000 on (x)

(1) Death is the only decrement.

(2) The annual benefit premium is 80.

(3) The annual contract premium is 100.

(4) Expenses in year 1, payable at the start of the year, are 40% of contract
premiums.

(5) i = 0.10

(6) 10001Vx = 40

Calculate the asset share at the end of the first year.

A. 17

B. 18

C. 19

D. 20

E. 21
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2. For a collective risk model the number of losses, N, has a Poisson distribution
with λ = 20. The common distribution of the individual losses has the following
characteristics.

(1) E[X] = 70

(2) E[X ∧ 30] = 25

(3) P[X > 30] = 0.75

(4) E[X2 |X > 30] = 9000

An insurance covers aggregate losses subject to an ordinary deductible of 30 per
loss. Calculate the variance of the aggregate payments of the insurance.

A. 54,000

B. 67,500

C. 81,000

D. 94,500

E. 108,000

3. For a collective risk model

(1) The number of losses has a Poisson distribution with λ = 2.

(2) The common distribution of the individual losses is

x fX(x)
1 0.6
2 0.4

An insurance covers aggregate losses subject to a deductible of 3. Calculate the
expected aggregate payments of the insurance.

A. 0.74

B. 0.79

C. 0.84

D. 0.89

E. 0.94
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4. A discrete probability distribution has the following properties:

(1) pk = c(1 + 1
k )pk−1 for k = 1, 2, . . .

(2) p0 = 0.5

Calculate c.

A. 0.06

B. 0.13

C. 0.29

D. 0.35

E. 0.40

5. A fully discrete 3 year term insurance of 10,000 on (40) is based on a double
decrement model, death and withdrawal:

(1) Decrement 1 is death.

(2) µ
(1)
40 (t) = 0.02, t ≥ 0

(3) Decrement 2 is withdrawal, which occurs at the end of the year.

(4) q′(2)
40+k = 0.04, k = 0, 1, 2

(5) v = 0.95

Calculate the actuarial present value of the death benefits for this insurance.

A. 487

B. 497

C. 507

D. 517

E. 527
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6. You are given

(1) e̊30:40 = 27.692

(2) s(x) = 1 −
x
ω

, 0 ≤ x ≤ ω

(3) T(x) is the future lifetime random variable for (x).

Calculate Var(T(30)).

A. 332

B. 352

C. 372

D. 392

E. 412

7. For a fully discrete 5 payment 10 year decreasing term insurance on (60) you are
given

(1) bk+1 = 1000(10 − k) for k = 0, 1, . . . , 9

(2) Level benefit premiums are payable for five years and equal 218.15 each.

(3) q60+k = 0.02 + 0.001k, k = 0, 1, . . . , 9.

(4) i = 0.06

Calculate 2V , the benefit reserve at the end of year 2.

A. 70

B. 72

C. 74

D. 76

E. 78
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8. You are given

(1) T(x) and T(y) are not independent.

(2) qx+k = qy+k = 0.05, k = 0, 1, 2, . . .

(3) kpxy = 1.02kpx kpy, k = 1, 2, . . .

Into which of the following ranges does ex:y, the curtate expectation of life of the
last survivor status, fall?

A. ex:y ≤ 25.7

B. 25.7 < ex:y ≤ 26.7

C. 26.7 < ex:y ≤ 27.7

D. 27.7 < ex:y ≤ 28.7

E. 28.7 < ex:y
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Solutions to Practice Examination 22

1. In terms of the gross premium G, 1AS px = (G − expenses)(1 + i) − 1000qx. Using
(6), px 1Vx = 80(1 + i) − 1000qx, from which qx = 48/960, and thus 1AS = 16.8. A.

2. The problem is to compute Var(
∑N

j=1(Xj − 30)+). By the usual conditioning
argument, this variance is E[N]Var((X − 30)+) + (E[(X − 30)+])2 Var(N). Using the
relation X = (X ∧ 30) + (X − 30)+ together with (1) and (2) gives E[(X − 30)+] =
70 − 25 = 45. Now E[(X − 30)2

+] = E[(X − 30)2 |X > 30] P[X > 30]. Squaring
out and using (3) and (4) gives this value as 3,375. Thus the variance sought is
20(1, 350) + (2, 025)(20) = 67, 500. B.

3. The objective is to compute E[(
∑N

j=1 Xj − 3)+]. The relation W = W ∧ 3 + (W − 3)+

allows the computation of E[
(∑N

j=1 Xj

)
∧ 3] to be made instead. A table of values

yields this last expectation as 2.0636, and the original expectation as 2(1.4)−2.0636 =
0.7364.A.

4. This is an (a, b, 0) distribution, from which the probabilities are negative binomial
probabilities. C.

5. Since withdrawal is always at the end of the year, p(τ)
x = e−0.02(0.96) = 0.9410

for all x. The actuarial present value is 10, 000(v(1 − e−0.02) + v2p(τ)
x (1 − e−0.02) +

v3(p(τ)
x )2(1 − e−0.02) = 506.60. C.

6. Here T(30) is uniform on the interval (0, ω − 30), so e̊30:40 =
∫ 40

0
tp30 dt =

∫ 40

0
1 − t/ (ω − 30) dt = 40 − 800/ (ω − 30). Equating this to the given value yields

ω = 95, and Var(T(30)) = (65)2/12 = 352.08. B.

7. Since 0V = 0 the recursive reserve formula gives (0V +218.15)(1+i)−10, 000qx =
px 1V , from which 1V = 31.8765. Using the recursion again gives (1V + 218.15)(1 +
i) − 9, 000qx+1 = px+1 2V , from which 2V = 77.659. E.

8. Since exy = ex + ey − exy, and ex = ey =
∞∑

k=1
kpx =

∞∑

k=1

(0.95)k = 19, and exy =

∞∑

k=1

(1.02)(0.95)2k = (1.02)(0.95)2/ (1 − (0.95)2) = 9.4415, exy = 28.5585. D.



§59. Practice Examination 23

1. Subway trains arrive at your station at a Poisson rate of 20 per hour. 25% of the
trains are express and 75% are local. The types and number of trains arriving are
independent. An express gets you to work in 16 minutes and a local gets you there
in 28 minutes. You always take the first train to arrive. Your co-worker always takes
the first express. You are both waiting at the same station. Calculate the conditional
probability that you arrive at work before your co-worker, given that a local arrives
first.

A. 37%

B. 40%

C. 43%

D. 46%

E. 49%

2. Beginning with the first full moon in October deer are hit by cars at a Poisson
rate of 20 per day. The time between when a deer is hit and when it is discovered by
highway maintenance has an exponential distribution with a mean of 7 days. The
number hit and the times until they are discovered are independent. Calculate the
expected number of deer that will be discovered in the first 10 days following the
first full moon in October.

A. 78

B. 82

C. 86

D. 90

E. 94
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3. You are given

(1) µx(t) = 0.03, t ≥ 0

(2) δ = 0.05

(3) T(x) is the future lifetime random variable.

(4) g is the standard deviation of aT(x) .

Calculate P[aT(x) > ax − g].

A. 0.53

B. 0.56

C. 0.63

D. 0.68

E. 0.79

4. (50) is an employee of XYZ Corporation. Future employment with XYZ follows
a double decrement model.

(1) Decrement 1 is retirement.

(2) µ
(1)
50 (t) = 0 for 0 ≤ t < 5 and µ

(1)
50 (t) = 0.02 for t ≥ 5.

(3) Decrement 2 is leaving employment with XYZ for all other causes.

(4) µ
(2)
50 (t) = 0.05 for 0 ≤ t < 5 and µ

(2)
50 (t) = 0.03 for t ≥ 5.

(5) If (50) leaves employment with XYZ he will never rejoin XYZ.

Calculate the probability that (50) will retire from XYZ before age 60.

A. 0.069

B. 0.074

C. 0.079

D. 0.084

E. 0.089
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5. For a life table with a one year select period, you are given

(1)

x l[x] d[x] lx+1 e̊[x]

80 1000 90 8.5
81 920 90

(2) Deaths are uniformly distributed over each year of age.

Calculate e̊[81].

A. 8.0

B. 8.1

C. 8.2

D. 8.3

E. 8.4

6. For a fully discrete 3 year endowment insurance of 1000 on (x), i = 0.05 and
px = px+1 = 0.7. Calculate the second year terminal benefit reserve.

A. 526

B. 632

C. 739

D. 845

E. 952
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7. For a fully discrete whole life insurance of 1000 on (50) you are given

(1) The annual per policy expense is 1.

(2) There is an additional first year expense of 15.

(3) The claim settlement expense of 50 is payable when the claim is paid.

(4) All expenses, except the claim settlement expense, are paid at the beginning
of the year.

(5) Mortality follows DeMoivre’s law with ω = 100.

(6) i = 0.05

Calculate the level expense loaded premium using the equivalence principle.

A. 27

B. 28

C. 29

D. 30

E. 31

8. The repair costs for boats in a marina have the following characteristics.

Boat Type Number Repair Probability Mean Repair Cost Repair Cost Variance
Power boat 100 0.3 300 10,000

Sailboat 300 0.1 1000 400,000
Luxury yachts 50 0.6 5000 2,000,000

At most one repair is required per boat each year. The marina budgets an
amount Y equal to the aggregate mean repair costs plus the standard deviaton of the
aggregate repair costs. Calculate Y .

A. 200,000

B. 210,000

C. 220,000

D. 230,000

E. 240,000
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Solutions to Practice Examination 23

1. If an express arrives within 28 − 16 = 12 minutes, the co-worker will arrive
first. Since 12 minutes is 1/5 hour, and since the times between express trains is
exponential with mean 1/5, the probability the co-worker does not arrive first is
e−5(1/5) = 0.3679. A.

2. The probability that a deer hit at time t is discovered by time 10 is 1 − e−(10−t)/7.
Given the number of deer hit, the times at which they were hit are each uniform on
the interval from 0 to 10. So the probability that a deer that is hit in the first 10 days

is discovered in the first 10 days is (1/10)
∫ 10

0
1 − e−(10−t)/7 dt = 0.4677. Since there

are 200 hits on the average in 10 days and each hit is discovered with probability
0.4677, the expected number of discoveries is 200(0.4677) = 93.55. E.

3. Under the exponential life model, Ax = µ/ (µ + δ ) = 3/8 and 2Ax = µ/ (µ + 2δ ) =
3/13, by direct computation. Thus ax = (1 − Ax)/δ = 12.5. Also, since aT(x) =
(1 − vT(x))/δ , Var(aT(x) ) = (2Ax − A2

x)/δ 2, so g = 6.0048. The desired probability is
P[aT(x) > 6.5] = P[vT < 0.6752] = P[T > 7.8537] = e−7.8537×0.03 = 0.7901. E.

4. In order to retire at age 50+ t the employee must survive all causes to this age and

then instantly retire. So the probability is
∫ 10

0
tp

(τ)
50 µ

(1)
50+t dt =

∫ 10

5
tp′(1)

50 tp′(2)
50 µ

(1)
50+t dt =

∫ 10

5
e0.1−0.02te−0.1−0.03t(0.02) dt =

2
5

(e−0.25 − e−0.50) = 0.0689. A.

5. Direct computation from the table gives p[80] = 910/1000, p[81] = 830/920,
and p81 = 830/910. By UDD, e̊[80] = 1/2 + e[80] = 1/2 + p[80](1 + e81) = 1/2 +
p[80](1 + p81(1 + e82)), from which 1 + e82 = 8.5421. Similarly, e̊[81] = 1/2 + e[82] =
1/2 + p[81](1 + e82) = 8.2065. C.

6. Using the given information yields äx:3 = 1+vpx +v2pxpx+1 = 2.111. So using the
prospective method, 10002V = 1000(Ax+2:1 −Px:3 äx+2:1 ) = 1000(v−(1−däx:3 )/ äx:3 ) =
526.31. A.

7. The equivalence principle gives 1000A50 + 1ä50 + 15 + 50A50 = Gä50. Using
DeMoivre, A50 =

∑49
k=0 kpxqx+kvk+1 =

∑49
k=0

50−k
50

1
50−k vk+1 = a50 /50 = 0.3651. Then

ä50 = 13.3325 and G = 30.8799. E.

8. The repair cost for each category is of the form
B∑

j=1

Xj where B is a binomial

random variable counting the number of boats of that type which need repair
and Xj is the repair cost for the jth boat. The expected cost is thus 30(300) +
30(1000) + 30(5000) = 189, 000, and the variance is

(
(300)2(21) + 30(10, 000)

)
+

(
10002(27) + 30(400, 000)

)
+
(
50002(12) + 30(2, 000, 000)

)
= 401, 190, 000. Thus
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Y = 189, 000 + 20, 029 = 209, 029. B.



§60. Practice Examination 24

1. For an insurance

(1) Losses can be 100, 200, or 300 with respective probabilities 0.2, 0.2, and
0.6.

(2) The insurance has an ordinary deductible of 150 per loss.

(3) YP is the claim payment per payment random variable.

Calculate Var(YP).

A. 1500

B. 1875

C. 2250

D. 2625

E. 3000

2. You are given µx = 0.05 for 50 ≤ x < 60 and µx = 0.04 for 60 ≤ x < 70. Calculate

4 |14q50.

A. 0.38

B. 0.39

C. 0.41

D. 0.43

E. 0.44
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3. The distribution of a loss X is a two point mixture. With probability 0.8, X has
a two parameter Pareto distribution with α = 2 and θ = 100. With probability 0.2,
X has a two parameter Pareto distribution with α = 4 and θ = 3000. Calculate
P[X ≤ 200].

A. 0.76

B. 0.79

C. 0.82

D. 0.85

E. 0.88

4. For a special fully discrete 5 year deferred whole life insurance of 100,000 on
(40) you are given

(1) The death benefit during the 5 year deferral period is return of benefit
premiums paid without interest.

(2) Annual benefit premiums are payable only during the deferral period.

(3) Mortality follows the Illustrative Life Table.

(4) i = 0.06

(5) (IA)
40
1

:5
= 0.04042

Calculate the annual benefit premiums.

A. 3300

B. 3320

C. 3340

D. 3360

E. 3380
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5. You are pricing a special 3 year annuity due on two idependent lives, both age
80. The annuity pays 30,000 if both persons are alive and 20,000 if only one person
is alive. You are given

k kp80

1 0.91
2 0.82
3 0.72

and that i = 0.05. Calculate the actuarial present value of this annuity.

A. 78,300

B. 80,400

C. 82,500

D. 84,700

E. 86,800

6. Company ABC sets the contract premium for a continuous life annuity of 1
per year on (x) equal to the single benefit premium calculated using δ = 0.03 and
µx(t) = 0.02, for t ≥ 0. However, a revised mortality assumption reflects future
mortality improvement and is given by µx(t) = 0.02 for t ≤ 10 but µx(t) = 0.01 for
t > 10. Calculate the expected loss at issue for ABC (using the revised mortality
assumption) as a percentage of contract premium.

A. 2%

B. 8%

C. 15%

D. 20%

E. 23%



§60: Practice Examination 24 318

7. A group of 1000 lives each age 30 sets up a fund to pay 1000 at the end of the
first year for each member who dies in the first year, and 500 at the end of the second
year for each member who dies in the second year. Each member pays into the fund
an amount equal to the single benefit premium for a special 2 year term insurance
with

(1) Benefits b1 = 1000 and b2 = 500

(2) Mortality follows the Illustrative Life Table.

(3) i = 0.06

The actual experience of the fund is as follows.

k Interest Rate Earned Number of Deaths
0 0.070 1
1 0.069 1

Calculate the difference, at the end of the second year, between the expected
size of the fund as projected at time 0 and the actual fund.

A. 840

B. 870

C. 900

D. 930

E. 960
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8. In a certain town the number of common colds an individual will get in a year
follows a Poisson distribution that depends on the individual’s age and smoking
status. The distribution of population and the mean number of colds are as follows.

Proportion of Population Mean number of colds
Children 0.30 3

Adult non-smokers 0.60 1
Adult smokers 0.10 4

Calculate the conditional probability that a person with exactly 3 common colds
in a year is an adult smoker.

A. 0.12

B. 0.16

C. 0.20

D. 0.24

E. 0.28
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Solutions to Practice Examination 24

1. The definition of YP means that it is the conditional distribution of the claim
size given that a claim is made. Since the deductible is 150, a loss of 100 will not
generate a claim. So the values of YP are 50 with probability 0.2/0.8 = 0.25 and
150 with probability 0.6/0.8. The variance is directly computed to be 1875. B.

2. Using the given information gives 4p50 = e−(0.05)(4) and 14p54 = e−(0.05)6−(0.04)8 =
e−0.62. So 4 |14q50 = 4p50(1 − 14p50) = e−0.20(1 − e−0.62) = 0.3783. A.

3. Using the information in table A.2.4.1 of the tables for exam M gives the proba-
bility as 0.8(1 − (100/300)2) + 0.2(1 − (3000/3200)4) = 0.7566. A.

4. The premium G satisfies 100, 0005E40A45 + G(IA)
40
1

:5
= Gä40:5 . Since ä40:5 =

ä40 − 5E40ä45, direct use of the tables gives G = 3362.51. D.

5. The probability that exactly one of the two is alive at time k is the complement
of the probability that either both are alive or both are dead, that is, 1 − (kp80)2 − (1 −
kp80)2. Using this and direct reasoning gives the value as 30, 000 + 30, 000v(0.91)2 +
20, 000v(1 − (0.91)2 − (1 − 0.91)2) + 30, 000v2(0.82)2 + 20, 000v2(1 − (0.82)2 − (1 −
0.82)2) = 80431.70. B.

6. Originally, ax =
∫ ∞

0
e−0.03te−0.02t dt = 20. The revised value is

∫ 10

0
e−0.03te−0.02t dt+

∫ ∞

10
e−0.03te−0.2−0.01(t−10) dt = (1 − e−0.5)/0.05 + e−0.5/0.04 = 23.032. The loss is thus 3,

or 300/20 = 15% of the original premium. C.

7. The expected balance is 0, since the premium is the net premium. The net
premium is 1000vq30 + 500v2p30q31 = 2.1587. The fund starts with 2, 158.70, earns
interest at the given rates and pays one claim at the end of each year, leaving 900 at
the end of 2 years. C.

8. The probability of exactly 3 colds for a single person of each group is e−3e3/3! =
0.2240, e−113/3! = 0.0613, and e−443/3! = 0.1954 respectively. Baye’s theorem
(or direct reasoning) gives the desired probability as 0.1(0.1954)/ ((0.1)(0.1954) +
(0.6)(0.0613) + (0.3)(0.2240)) = 0.1582. B.


	0. Introduction
	1. Overview
	2. Elements of the Theory of Interest
	3. Cash Flow Valuation
	4. Sample Question Set 1
	5. Annuities, Amortization, and Sinking Funds
	6. Sample Question Set 2
	7. Brief Review of Probability Theory
	8. Survival Distributions
	9. Life Tables
	10. Sample Question Set 3
	11. Status
	12. Valuing Contingent Payments
	13. Life Insurance
	14. Life Annuities
	15. Sample Question Set 4
	16. Net Premiums
	17. Insurance Models Including Expenses
	18. Sample Question Set 5
	19. Multiple Lives
	20. Multiple Decrement Models
	21. Sample Question Set 6
	22. Insurance Company Operations
	23. Net Premium Reserves
	24. Asset Shares
	25. Sample Question Set 7
	26. The Individual Risk Model
	27. The Collective Risk Model and Ruin Probabilities
	28. Stopping Times and Martingales
	29. The Collective Risk Model Revisited
	30. Sample Question Set 8
	31. Related Probability Models
	32. Discrete Time Markov Chains
	33. Sample Question Set 9
	34. Life Table at 6% Interest
	35. Interest Rate Functions at 6%
	36. Practice Examinations
	37. Practice Examination 1
	38. Practice Examination 2
	39. Practice Examination 3
	40. Practice Examination 4
	41. Practice Examination 5
	42. Practice Examination 6
	43. Practice Examination 7
	44. Practice Examination 8
	45. Practice Examination 9
	46. Practice Examination 10
	47. Practice Examination 11
	48. Practice Examination 12
	49. Practice Examination 13
	50. Practice Examination 14
	51. Practice Examination 15
	52. Practice Examination 16
	53. Practice Examination 17
	54. Practice Examination 18
	55. Practice Examination 19
	56. Practice Examination 20
	57. Practice Examination 21
	58. Practice Examination 22
	59. Practice Examination 23
	60. Practice Examination 24

