SOILS AND FOUNDATIONS Lesson 09 Chapter 9 – Deep Foundations #### Lesson Plan - Topic 1 (Section 9.0 to 9.8) - Driven piles - Static capacity - Topic 2 (Section 9.9) - Driven Piles Construction Monitoring and QA - Topic 3 (Section 9.9.10) - Driven Piles Load Tests - Topic 4 (Section 9.10) - Drilled shafts - Static capacity - Construction ### Deep Foundations Lesson 09 - Topic 1 Driven Piles and Static Capacity Section 9.0 to 9.8 #### Learning Outcomes - At the end of this session, the participant will be able to: - Describe types of driven piles and applications for use - Compute static capacity for driven piles in granular and cohesive soils - Identify 2 of the design steps in pile groups - Discuss negative skin friction ### Stresses Imposed by Structures Deep foundations may be used at pier and abutment locations # Establishment of need for deep foundations ### Structural Foundation Topics - Shallow Foundations (Spread Footings) - Bearing Capacity - Settlement - Deep Foundations - Load Capacity - Settlement - Negative Skin Friction ### Situations Where a Deep Foundation is Needed The foundation designer must define at what depth suitable soil layers begin in the soil profile ### Situations Where a Deep Foundation is Needed Figure 9-1 ### Situations Where a Deep Foundation is Needed # Deep Foundation Classification System Figure 9-2 ### Design and Construction Geotechnical Terminology - Specific terminology for deep foundations - Static pile capacity - Ultimate pile capacity - Driving capacity - Restrike capacity - Shaft resistance in piles - Side resistance in drilled shafts - Toe resistance for piles - Tip or base resistance for shafts - And more..... ### Structural Terminology - Allowable load - Design load - Equal to or less than allowable load - Ultimate (Nominal) load - Table 9-10 for maximum structural design stress and maximum structural driving stress ### Types of Piling ### Typical Pile Information **Table 9-1** | Type of Pile | Typical Axial Design Loads | Typical Lengths | | |--|--|------------------------------------|--| | Timber | 20-110 kips (100 – 500 kN) | 15-120 ft (5-37 m)* | | | Precast / Prestressed | 90-225 kips (400-1000 kN) for reinforced | 30-50 ft (10-15m) for reinforced | | | Reinforced Concrete | 90-1000 kips (400-4500 kN) for prestressed | 50-130 ft (15-40m) for prestressed | | | Steel H | 130-560 kips (600-2500 kN) | 15-130 ft (5-40 m) | | | Steel Pipe (without concrete core) | 180-560 kips (800-2500 kN) | 15-130 ft (5-40 m) | | | Steel Pipe (with concrete core) 560-3400 kips (2500-15000 kN) | | 15-130 ft (5-40 m) | | | | | | | ^{* 15-75} ft (5-23 m) for Southern Pine; 15-120 ft (5-37 m) for Douglas Fir ## Effect of Subsurface and Hydraulic Conditions on Piles **Table 9-2** | Typical Problem | Recommendations | |------------------------------------|--| | Boulders overlying bearing stratum | Use heavy nondisplacement pile with a reinforced tip or manu-factured point and include con-tingent predrilling item in contract. | | Loose cohesionless soil | Use tapered pile to develop maximum skin friction. | | Negative skin friction | Use smooth steel pile to minimize drag adhesion, and avoid battered piles. Minimize the magnitude of drag force when possible. | | Deep soft clay | Use rough concrete pile to increase adhesion and rate of pore water dissipation. | | Artesian Pressure | Do not use mandrel driven thin-wall shells as generated hydrostatic pressure may cause shell collapse; pile heave common to closed-end pipe. | | Scour | Do not use tapered piles unless large part of taper extends well below scour depth. Design permanent pile capacity to mobi-lize soil resistance below scour depth. | | Coarse Gravel Deposits | Use precast concrete piles where hard driving expected in coarse soils. DO NOT use H-piles or open end pipes as nondisplacement piles will penetrate at low blow count and cause unnecessary overruns. | ### Pile Shape Effects Table 9-3 | Shape Characteristics | Pile Types | Placement Effects | |-----------------------|--|---| | Displacement | Steel Pipe
(Closed end),
Precast
Concrete | Increase lateral ground stress Densify cohesionless soils, remolds and weakens cohesive soils temporarily Set-up time may be 6 months in clays for pile groups | | Nondisplacement | Steel H, Steel
Pipe (Open
end) | Minimal disturbance to soil Not suited for friction piles in coarse granular soils. Piles often have low driving resistances in these deposits making field capacity verification difficult thereby often resulting in excessive pile lengths. | | Tapered | Timber, Monotube, Tapertube, Thin-wall shell | •Increased densification of soils with less disturbance, high capacity for short length in granular soils | #### Other issues - Noise and vibrations during installation - Remote areas may restrict driving equipment size - Local availability of certain materials - Waterborne operations may dictate some handling limitations (e.g., shorter pile sections) - Steep terrain may make use of certain pile equipment costly or impossible ## Cost Evaluation of Alternate Deep Foundation Types - Often several deep foundation types meet project requirements - Final choice must be made on cost analysis - In cost analysis include ALL costs related to a given pile type - Uncertainties in execution, time delays, cost of load testing, cost of pile caps, noise and vibrations, etc # Cost Evaluation of Alternate Pile Types - Three major categories of cost for driven piles - Pile support cost - Pile cap support cost - Construction control method support cost - For most piles, the pile cost is usually linear with depth based on unit price - May not be true for very long concrete or long, large section steel piles - Special handling, splicing, etc. ## Cost Evaluation of Alternate Pile Types Express costs in terms of \$/ton capacity for each alternative as discussed in Chapter 8 For cost savings recommendations, see Table 9-4 ### Computation of Pile Capacity - Ultimate pile capacity, Q_u - Shaft resistance, R_s - Toe resistance, R_t $Q_u = R_s + R_t$ ### Computation of Pile Capacity Shaft resistance, R_s=f_sA_s f_s is unit shaft resistance A_s is shaft surface area \blacksquare Toe resistance, $R_t = q_t A_t$ q_t is unit toe resistance A_t is pile toe area $Q_u = R_s + R_t = f_s A_s + q_t A_t$ ## Allowable Geotechnical Pile Load The allowable geotechnical pile load, Q_a is defined as follows in terms of Q_u and factor of safety, FS $$Q_{a} = \frac{Q_{u}}{Factor of Safety}$$ ### Factor of Safety - FS depends on the following: - Level of confidence in input parameters - Variability of soil and rock - Method of static analysis - Proposed pile installation method - Level of construction monitoring - The FS used in static analysis should be based upon the construction control method specified ### Factor of Safety (Table 9-5) | Construction Control Method | Factor of Safety | |--|------------------| | Static load test (ASTM D-1143) with wave equation analysis | 2.00 | | Dynamic testing (ASTM D-4945) with wave equation analysis | 2.25 | | Indicator piles with wave equation analysis | 2.50 | | Wave equation analysis | 2.75 | | Gates dynamic formula | 3.50 | #### FS as a function of Soil Resistance $$Q_u = R_{s1} + R_{s2} + R_{s3} + R_t$$ #### Assume static load test #### For design $$Q_a = (R_{s3} + R_t) / (FS=2)$$ $$Q_a = (Q_u - R_{s1} - R_{s2}) / (FS=2)$$ #### For plans and specs $$Q_u = R_{s1} + R_{s2} + (Q_a)(FS=2)$$ ### Soil Driving Resistance (SRD) In SRD, FS is not used $$SRD = R_{s1} + R_{s2} + R_{s3} + R_t$$ ## Soil Setup and Relaxation are considered in SRD Assume soft clay layer has sensitivity of 2 $$SRD = R_{s1} + R_{s2}/2 + R_{s3} + R_{t}$$ SRD should also include resistance to penetrate hard or dense layers ### Example 9-1 Compute ultimate capacity and driving capacity | Pile | e e e e e e e e e e e e e e e e e e e | | |------|---------------------------------------|---| | | Sand | $R_{s1} = 20 \text{ tons}$ | | | Soft Clay | $R_{s2} = 20 \text{ tons}$
Sensitivity = 4 | | | Gravel | $\begin{aligned} R_{s3} &= 60 \text{ tons} \\ R_t &= 40 \text{ tons} \end{aligned}$ | # Design of Single Piles - Cohesionless Soils - Cohesive Soils - Rocks # Static Pile Capacity # Single Piles in Cohesionless Soils # Nordlund's Method $$Q_{u} = \sum_{d=0}^{d=D} K_{\delta} C_{F} p_{d} \frac{\sin (\delta + \omega)}{\cos \omega} C_{d} \Delta d + \alpha_{t} N'_{q} A_{t} p_{t}$$ # Nordlund Method For a pile of uniform cross section (ω =0) and embedded length D, driven in soil layers of the same effective unit weight and friction angle, the Nordlund equation becomes: $$Q_u = (K_{\delta} C_F p_d \sin \delta C_d D) + (\alpha_t N'_q A_t p_t)$$ R_{S} R_{T} # Nordlund Shaft Resistance $$R_s = K_\delta C_F p_d \sin_\delta C_d D$$ K_{δ} = coefficient of lateral earth pressure Figures 9.7 - 9.10 C_F = correction factor for K_δ when $\delta \neq \phi$ Figure 9.11 δ = friction angle between pile and soil Figure 9.9 C_d = pile perimeter D = embedded pile length ## Nordlund Toe Resistance Lesser of $$R_t = \alpha_t N'_q p_t A_t$$ $$R_t = q_L A_t$$ α_{t} = dimensionless factor Figure 9.12a Ş N'_q = bearing capacity factor Figure 9.12b p_t = effective overburden pressure at pile toe ≤ 3 ksf q_L = limiting unit toe resistance Figure 9.17 # Arching at Pile Tip ### Nordlund Method $$Q_u = R_S + R_T$$ and $$Q_a = Q_U / FS$$ FS based on construction control method as in Table 9-5 Steps 1 through 6 are for computing shaft resistance and steps 7 through 9 are for computing the pile toe resistance - STEP 1 Delineate the soil profile into layers and determine the ϕ angle for each layer - a. Construct p_o diagram using procedure described in Chapter 2. - b. Correct SPT field N values for overburden pressure using Figure 3-23 from Chapter 3 and obtain corrected N1₆₀ values. Delineate soil profile into layers based on corrected N1₆₀ values. - c. Determine φ angle for each layer from laboratory tests or in-situ data. - d. In the absence of laboratory or in-situ test data, determine the average corrected N1₆₀ value, N', for each soil layer and estimate φ angle from Table 8-3 in Chapter 8. STEP 2 Determine δ , the friction angle between the pile and soil based on the displaced soil volume, V, and the soil friction angle, ϕ . - a. Compute volume of soil displaced per unit length of pile, V. - b. Enter Figure 9-6 with V and determine δ/ϕ ratio for pile type. - c. Calculate δ from δ/ϕ ratio. - STEP 3 Determine the coefficient of lateral earth pressure K_{δ} for each soil friction angle, ϕ . - a. Determine K_{δ} for each ϕ angle based on displaced volume V, and pile taper angle, ω , using appropriate procedure in steps 3b, 3c, 3d, or 3e. - b. If displaced volume is 0.1, 1.0, 10 ft³/ft and the friction angle is 25, 30, 35, or 40, use Figures 9-7 to 9-10. - c. If displaced volume is given but ϕ angle is not. Linear interpolation is required to determine K_{δ} for ϕ angle. # K_{δ} versus ω $\phi = 25^{\circ}$ - STEP 3 Determine the coefficient of lateral earth pressure K_{δ} for each soil friction angle, ϕ . - d. If displaced volume is not given but ϕ angle is given, log linear interpolation is required to determine K_{δ} for displaced volume V. - e. If neither the displaced volume or ϕ angle are given, first use linear interpolation to determine K_{δ} for ϕ angle and then use log linear interpolation to determine K_{δ} for the displaced volume, V. See Table 9-6 for K_{δ} as function of ϕ angle and displaced volume V # Table 9-6(a) Design Table for Evaluating K_{δ} for Piles when $\omega = 0^{\circ}$ and V = 0.10 to 1.00 ft³/ft | φ | Displaced Volume -V, ft ³ /ft | | | | | | | | | | |----|--|------|------|------|------|------|------|------|------|------| | | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 | | 25 | 0.70 | 0.75 | 0.77 | 0.79 | 0.80 | 0.82 | 0.83 | 0.84 | 0.84 | 0.85 | | 26 | 0.73 | 0.78 | 0.82 | 0.84 | 0.86 | 0.87 | 0.88 | 0.89 | 0.90 | 0.91 | | 27 | 0.76 | 0.82 | 0.86 | 0.89 | 0.91 | 0.92 | 0.94 | 0.95 | 0.96 | 0.97 | | 28 | 0.79 | 0.86 | 0.90 | 0.93 | 0.96 | 0.98 | 0.99 | 1.01 | 1.02 | 1.03 | | 29 | 0.82 | 0.90 | 0.95 | 0.98 | 1.01 | 1.03 | 1.05 | 1.06 | 1.08 | 1.09 | | 30 | 0.85 | 0.94 | 0.99 | 1.03 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | 1.15 | | 31 | 0.91 | 1.02 | 1.08 | 1.13 | 1.16 | 1.19 | 1.21 | 1.24 | 1.25 | 1.27 | | 32 | 0.97 | 1.10 | 1.17 | 1.22 | 1.26 | 1.30 | 1.32 | 1.35 | 1.37 | 1.39 | | 33 | 1.03 | 1.17 | 1.26 | 1.32 | 1.37 | 1.40 | 1.44 | 1.46 | 1.49 | 1.51 | | 34 | 1.09 | 1.25 | 1.35 | 1.42 | 1.47 | 1.51 | 1.55 | 1.58 | 1.61 | 1.63 | | 35 | 1.15 | 1.33 | 1.44 | 1.51 | 1.57 | 1.62 | 1.66 | 1.69 | 1.72 | 1.75 | | 36 | 1.26 | 1.48 | 1.61 | 1.71 | 1.78 | 1.84 | 1.89 | 1.93 | 1.97 | 2.00 | | 37 | 1.37 | 1.63 | 1.79 | 1.90 | 1.99 | 2.05 | 2.11 | 2.16 | 2.21 | 2.25 | | 38 | 1.48 | 1.79 | 1.97 | 2.09 | 2.19 | 2.27 | 2.34 | 2.40 | 2.45 | 2.50 | | 39 | 1.59 | 1.94 | 2.14 | 2.29 | 2.40 | 2.49 | 2.57 | 2.64 | 2.70 | 2.75 | | 40 | 1.70 | 2.09 | 2.32 | 2.48 | 2.61 | 2.71 | 2.80 | 2.87 | 2.94 | 3.0 | STEP 4 Determine the correction factor C_F to be applied to K_δ if $\delta \neq \phi$. Use Figure 9-11 to determine the correction factor for each K_{δ} . Enter figure with ϕ angle and δ/ϕ ratio to determine C_{F} . # Correction Factor for K_{δ} when $\delta \neq \phi$ STEP 5 Compute the average effective overburden pressure at the midpoint of each soil layer. STEP 6 Compute the shaft resistance in each soil layer. Sum the shaft from each layer to obtain the ultimate shaft resistance, R_S. $R_s = K_\delta C_F p_d \sin_\delta C_d D$ - STEP 7 Determine the α_t coefficient and the bearing capacity factor, N'_q, from the ϕ angle near the pile toe. - a. Enter Figure 9-12(a) with ϕ angle near pile toe to determine α_t coefficient based on pile length to diameter ratio. - b. Enter Figure 9-12(b) with φ angle near pile toe to determine, N'_q. - c. If ϕ angle is estimated from SPT data, compute the average corrected SPT N1₆₀ value over the zone from the pile toe to 3 diameters below the pile toe. Use this average corrected SPT N1₆₀ value to estimate ϕ angle near pile toe from Table 8-3. STEP 8 Compute the effective overburden pressure at the pile toe. NOTE: The limiting value of p_t is 3 ksf (150 kPa) STEP 9 Compute the ultimate toe resistance, R_t. Use lesser of: $$R_t = \alpha_t N'_q p_t A_t$$ Figure 9-12a and 9-12b $$R_t = q_L A_t$$ Figure 9-13 # α_t Coefficient versus φ # Limiting Unit Toe Resistance Limiting Unit Toe Resistance, q_L (ksf)