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1. Introduction. The following paper is a study of abstract algebras qua
abstract algebras. As no vocabulary suitable for this purpose is current, I have
been forced to use a number of new terms, and extend the meaning of some
accepted ones.

An outline of the material will perhaps tell the reader what to expect. In
§§ 2-7, the notion of abstract algebra is defined, and relations between abstract
algebras of two kinds (groups and “lattices’’) derived from a fixed abstract
algebra are indicated.

In §8, abstract algebras are divided by a very simple scheme into self-
contained “speccies’. Within each species, a perfect duality is found between
families of formal laws and the families of algebras satisfying them; this occupies
§§ Y-10. After a digression in § 11, some illustrations are discussed in §§ 12-15.

In §§16-18, the “lattice” E (C) of the equivalence relations between the
objects of u fixed aggregate C is defined; in §§ 20-21 such lattices are shown to be
interchangeable with lattices of Boolean subalgebras and lattices of subgroups.
Other miscellaneous facts are proved in § 19, § 22, and § 23. In § 24, the interesting
truth is established that, if C is an algebra, then the equivalence relations which
are homomorphic are a “sublattice” of E (C}.

In § 25 an open question is settled, and the paper concludes in §§ 26-31 with
some observatiors on topology. Many incidental results have of course not been
mentioned.

The reader will find it easier to follow the exposition if he remembers that
operations are considered as fundamental throughout, while algebras and to an
even greater extent elements within the same algebra are juggled freely.

2. Abstract algebras defined. By an ‘“abstract algebra’ is meant, loosely
speaking, any system of elements and operations such as 2 ring, a field, a group,
or a Boolean aigehra. A tentative formal definition is the following.

Let € be any class of “elements”, and let F be a class of “operators” f,, fa,
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J3» -... Further, let there be assigned to each f; of F a set D; of sequencest of
elements of €, to be called the ‘ proper domain” of f;. And, finally, let each f; be
a single-valued function of its proper domain to €—in other words, let f; assign to
each sequence o of D, a unique “f,-value” f;(c) in €.

Then the couple (€, F) will be called an ““ abstract algebra™ A4, or for brevity
in this paper, an ‘‘algebra’’. The number of different elements of € will be called
the “order” of 4.

3. The group of automorphisms of an algebra. It would be pointless to prove
in detail what is already known, that every algebra has a group. It is enough to
restate in explicit language the outlines of the usual doctrine.

By an “automorphism "’ of an algebra (€, F) is meant a (1, 1) transformation
o of € into itself such that

‘(@) 0D, implies « (o) €D, and conversely.

(8) fi(a(e)) = (f; (o)) for any oeD;.

And by a *“group” is' meant any algebra (U, G) satisfying

G 1: To each element « of ¥ corresponds a unique “‘inverse” a~=g, () in %.

G 2: To each sequence (x, B8) of two elements of A there corresponds a unique
“product” af=g,(«,B) in A.

G 3: (xa~')B=pB and B(xa—1)=pB for any « and B in ¥«.

G4: (af)y=a(By) for any «, 8, and y in .

TaEOREM 1}: The automorphisms of any algebra form a group, and any group
can be realized as the group of the automorphisms of a suitable algebra.

4. The lattice of subalgebras of an algebra. Only recently the object of special
- research has been what I consider to be a dual notion, that of the ‘“lattice’” of
‘the subalgebras of an algebra.

Let & be any subclass of € (in the notation of § 2) with the property that if o
liesin D, and its elements in &, then f; (o) also is in &. Then the couple (&, F) will
be called a ‘‘subalgebra’ of the algebra (&, F).

By a “lattice” is meant any system ot double composition satisfying the com-
mutative, associative and absorption laws. That is, in the notation of §2; a
lattice is an algebra (8, H) satisfying

L1: Anytwo elements 4 and B of & have a unique “meet” 4~ B=h,(A, B)
and a unique “join” 4w B=h,(4,B) in L.

L2: AnB=BnrA4 and AvB=Bv 4 for any A and B of &.

L3: A~n(B~C)=(4~B)~C and Av(BvC)=(Av B)uvC for any A4, B,
-and C of &. _

L4: A~n(AvB)=A4Av(A~B)=A forany A and B of L.

1 By a “sequence” we mean a “well-ordered set”. We can use the locutions *finite

sequence’’ and *“ enumerated sequence  to express that the ordinal number of the set is finite,
or that of the ordered positive integers.

1 The first statement is known; the second will be proved in §15.
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THEOREM 2t: The subalgebras of any algebra form a lattice, and any lattice can
be realized as the lattice of the subalgebras of a suitable algebra.

5. Some general isomorphisms. Let 4 be any abstract algebra. We shall adopt
the notation @ (4) for the group of the automorphisms of 4, L(A4) for the
lattice of the subalgebras of A. Expressions such as G (L (4)) and L (L (G (4)))
are then self-explanatory.

We shall also adopt the usual definitionst of isomorphism and homomorphism.
We shall supplement these by saying that a (1, 1) correspondence between a
lattice L and a lattice L is ““ dually jsomorphic”’ if and only if it inverts the opera-
tions of meet and join—i.e. if and only if the hypothesis that « and b of L corre-
spond respectively to @ and b of L implies that a ~b and a b correspond respec-
tively to @v b and @~ b.

We shall now state some perfectly general operation-preserving correspond-
ences which occur repeatedly in algebra.

(1) Every automorphism « of 4 induces an automorphism on G(4), L (4),
G(G(4)), L(G(4)), and so on down the line. Moreover, products and inverses
are preserved under this correspondence. Therefore a homomorphic correspond-
ence exists between G (4) and a subgroup of any G*=G (... (4)...).

The special case G* = G (G (4)) gives the important homomorphism between
G (4) and the group of the ‘“‘inner” automorphisms of G (4); this defines an
isomorphism between G (A4) and G (G (4)) if and only if G (4) is complete.

Again, if A is a lattice, and G*= G (L (4)), the homomorphism is an iso-
morphism, since each element of 4 is a sublattice.

(2) An automorphism « of 4 is said to “centralize”” a complex C of elements
of A if and only if it leaves every element of C fixed—i.e. carries it into itself.

This assigns to every subalgebra S of A the subgroup & (S) of G (4) centraliz-
ing it, and to every subgroup & of G'(4) the subalgebra S (&) of elements of 4
centralized by &. And since §> 7 implies & (S) ¢ & (7). while &> T implies
§ (&) ¢ §(T), the correspondence inverts inclusion relations§.

In any case S(&(8))> 8 and &(S(8))>&. If for any S (or ©) the corre-
spondence is reciprocal—that is, 8 (& (S))=S8 (or & (8 (€))=E&)—we shall say
that 8 or (&) is “replete”’. Since inclusion is inverted, we can assert

THEOREM 3: If the replete elements of L(A) and L(G (A4)) are sublattices L, of
L(A4) and L, of L(G(A)) respectively, then L, and L, are dually isomorphic.

t These facts were proved by the author in “ On the combination of subalgebras”, Proc.
Cambridge Phil. Soc. 29 (1933), 441-64: A ~ B is the set of elements common to the sub-
algebras 4 and B, A v B is the meet of the subalgebras containing both 4 and B. In later
citations, the above paper will be referred to for short as  Subalgebras”.

1 Cf. B. L. van der Waerden’s Moderne Algebra, 1 (Berlin, 1930-1), 28-32.

§ The notion of inclusion in an abstract lattice is naturally defined by writing a ¢ b if
and only if a v b=5.

29-2
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It is by proving the hypotheses of Theorem 3,in the case where 4 is the field of
algebraic numbers, that it has beent shown that the lattice of finite extensions of
the rational domain is dually isomorphic with the lattice of the subgroups of
finite index in the group G (4) (relative to the four rational operations).

A similar correspondence exists} between any discrete Abelian group and the
group of its characters; consequently

(6-1) If @ is any enumerable Abelian group, and X is the group of the
characters of G, then L (&) and L (X) are dually isomorphic. Hence if @ is any
finite Abelian group, then L (@) is dually isomorphic with itself.

(3) We can easily combine the above relations. By (1) each automorphism of
A induces an automorphism on 4, = L(4), A,= G (4), ete. Taking the snbgroups
of G (A) centralizing the various subalgebras of the 4;, and proceeding as in (2),
one obtains blurred dual isomorphisms between L (G (4)) and the L (4,).

The special case of 4, yields an interesting blurred dual isomorphism of
L (G (4)) with itself.

6. Lattice graphs. I.Jattices lend themselves to graphical representation much
more readily than groups. In fact we have

THEOREM 4: Any finite lattice can be represented by one or more graphs in space,
but not every graph represents a lattice.

In constructing representations, we shall need the notion of “covering”. An
element a of a lattice L is said to “cover’’ an element b of L if and only if @ > b
(i.e.avb=a),a+b, and a > ¢ > b implies either c=a or c=b.

Now we can associate with any finite lattice L a graph I' (L) composed
of (i) small circles in (1, 1) correspondence with the elements of L, and (ii) non-
horizontal line segments drawn between circle-pairs if and only if the element
of L which corresponds to the upper circle ‘‘covers’ the element corresponding
to the lower one.

Such a diagram§ represents inclusion relations, and hence the operations of
taking joins and meets. The best way to make this plain is probably to give
examples. Accordingly, the reader will find graphed in Fig. 1, (1a) the lattice of
the Boolean algebra of eight elements, (1b) the lattice of its Boolean subalgebras
(isomorphic with the lattice of the subgroups of the four-group), (1c) the lattice
of the subrings of the ring of integers modulo p?, and (1d) the symmetncal equi-
valence lattice of degree four (cf. § 1.8).

t E. Steinitz, Algebraische Theorie der Kérper (Berlin, 1930), p. 143.

1 L. Pontrjagin, “Theory of topological commutative groups”, Ann. of Math. 35 (1934),
361-88, Theorems 2 and 4. If X is continuous, we admit only closed subgroups. (5:1) was
added in revision; the surprising thing is that it has not been explicitly stated before.

§ This representation dates back at least to H. Vogt, Résolution algébrique des équations
(Paris, 1895), p. 91.
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Incidentally, by the ‘“ class of conjugate elements’’ including any element a of
an algebra A4 is meant the set of ¢ and its images under the group G'(4) of the
automorphisms of 4. Two different classes of conjugate elements are evidently
disjoint.

THEOREM 5: Any finite lattice L specifies and 13 specified by a ‘‘ geometrico-
tactical configuration” Ta (L) in the sense of K. H. Mooret. The “rank” of Ta (L)
18 equal to the number of different classes of conjugate elements of L.

We shall merely give the construction, and leave the proof, which has many
details but is not difficult, to the reader.

The elements of T'a (L) are to be the elements of L; the “sets” of T'a (L) are
to be the classes of conjugate elements of L; aeL is to be called “incident” with
beLif and only if a + b and either a > bora ¢ b; the ““sets” are to be ordered in such
a way that if the set of a comes before the set of b, and a is incident with b, then
ach.

7. Algebraic synthesis. In this section we shall define three simple ways of
building up algebras synthetically from smaller algebras having the same.
operators.

Let 4,, ..., 4, be any well-ordered set of algebras having the same operators
fi. By the “direct product™ A4, x.... x 4, is meant} the algebra A (1) whose
elements are the different ennuples a={a,, ...,a,] of elements a,e4,, ..., a,e4,,
(2) whose operators are the f;, (3) in which the proper domain D, of f; consists of

t E. H. Moore, ‘“Tactical memoranda I-II1", Am. Jour. Math. 18 (1896), 264. The
definition is too long to repeat.

1 This definition includes the standard definitions of direct products of groups and topo-
logical manifolds, and of the direct sum of linear algebras (of hypercomplex numbers).
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those and only those sequences o of elements o’ =[af,...,a!] of 4(j=1,...,7)

each of whose “component” sequences g; of elements a;, ..., o} is in'the proper
domain of f, in 4,, and (4) whose f,-values over ®, are given by

Je(@)=[fr(01), -0, fi (o). (7-1)
In the special case 4,=... =4, = B, we write 4 = B".

It is important to observe that A, x...x 4, is determined to within iso-

morphism by the aggregate of the A,, and thatt
(A, %...xA4,)x(Byx...xB)~4;x...x4,xB;x...xB,. (7-2)
It is a corollary that the commutative and associative laws hold.

It 18 often useful to represent an algebra as a subalgebra or a homomorphic
image of a direct product. We shall see in § 11 that one can usually put such repre-
sentations into ‘“canonical” forms having additional properties, which we shall
state next. ) »

A subalgebra S of 4 x B is called a ‘““meromorphic”’’ product} of 4 and B (in
symbols, S=A4:- B) if and only if (1) to each aecA4 corresponds a beB such that
[a, b] €8, (2) to some aed correspond distinct elements b, and b, of B such that
[a, b,] €S and [a, b,] €8, and (3) the counterparts of (1)~(2) under the inversion
A =B also hold.

Similarly the image H of A x B under a homomorphism ¢'is called a ““central ”’
product of 4 and B (in symbols, H =4 :. B) if and only if (1) to any two distinct
elements e, and @, of A corresponds an element be B such that [a,, b] and [a,, b},
+ have distinct images under 6, and (2) the counterpart of (1) under the inversion
A= B also holds. .

The reader should be cautioned that 4 :- Band 4 :. B (unlike 4 x B) are not
determined to within isomorphism by 4 and B. With this in mind, we can assert

(7-3) S=A:- Bimplies S=B:- 4 and H=A:. Bimplies H=B:. 4.

(7:4) S=(4: B):' Cimplies S=4.:-(B:- C). ButH=(4:. B):.C need not§
imply H=4:.(B:.C). :

(7-56) Any A4 :- B is homomorphic to 4 and to B.
The proofs, which are uninteresting, are omitted.

A CLASSIFICATION OF UNIFORM ALGEBRAS

8. Uniform operators and species of algebras. General classifications of abstract
systems are usually characterized by a wealth of terminology and illustration,
and a scarcity of consequential deduction. Whatever value is in the following plan

t+ By A~ B (4 and B any algebras), we denote ‘‘ 4 and B are isomorphic™.

1 This definition generalizes a usage in group theory started by R. Remak, Journal fiir
Math. 163 (1930), 6.

§ For a counter-example, cf. 6 of the author’s paper * Group synthesis”’, now in the hands
of the editors of the Trans. Amer. Math. Soc.
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therefore is derived from Theorems 810, their corollaries, and the perspective
it gives to the results stated in §§ 12-13. But first we shall need several definitions.

Let A be any algebra, k; any ordinal number, and f; any operator of A. The
operator f; is called ‘“k;-ary”, or a ‘““uniform” operator of “index” k,, if and
only if (using the terminology of §2) the proper domain of f; is the set of all
sequences of length k;. That is, if and only if f; assigns to each sequence (z,, ..., ;)
of elements of 4, a single value y=f; (2, ..., z;) in 4.

In the remainder of the paper, every operator will be understood to be uniform.

DeriniTiOoN 1: Let p be any aggregate of ordinal numbers k,, ..., ky. An
algebra A will be called “ of species X, if and only if its operators f,, ..., f, are of
indices ky, ..., k.

Thus groups are (uniform) algebras of species (2, 1), lattices of species (2, 2),
and Boolean algebras of species (2, 2, 1).

9. Functions and laws within a species. The explicit nature of several im-
plicitly accepted fundamental processes of abstract algebra becomes clear when
we take as their proper domain a particular species of (uniform ) algebra. The main
difficulties are with regard to definition. Therefore we state

DerFINITION 2: By a “function of rank 0 associated with the species T, 18
meant a primitive symbol (which 18 usually a Latin letter with or without subscripts).
By a “ function of rank n”’ is meant any symbolic formula

fildrs-erbrs) (9-1)
in which the ¢; are functions of ranks < n, and n is the least ordinal exceeding the
ranks of all the ¢;. ’

Thus in a Boolean algebra, the expressions a, a+ b, and a + bc are functions -
of rank 0, 1, and 2 respectively, on the primitive symbols a, b, and c.

By simple induction on rank, we can show that any substitution £ of one
element of an algebra AeZ, for all occurrences of each primitive symbol of a
function ¢ of %, determines a *“value” ¢ (¢) e4 which results when the operations
are performed in order of rank.

DEeriNiTION 3: By a “law” of an algebra 4 is meant any equation between
two functions ¢ and ¢’ of the species of A such that & ($)=£(¢') no matter what
substitution ¢ of elements of A for the primitive symbols (which will usually be the
same for ¢ as for ¢') is made.

Thus equations G 2-G 4 of § 3 are laws of groups, and equations L 2-L 4 of §4
are laws of lattices.

By a “law” of a set of algebras (of a given species) is meant of course a law of
every algebra of the set. We can assert, as a direct consequence of the definitions,
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THEOREM 6: If alaw is true of a set Wof algebras, then it is true of any subalgebra
or homomorphic image of any one, and of any direct product of any number of
the algebras of .

CoroLrARY 1: If A and B both satisfy a given set of laws, then so do any
A:*Band A:.B.

CoROLLARY 2: The set of laws of any aggregate of algebras A, is the same as
that of the direct product A* of all the A,.

For by Theorem 6 all the laws of the set hold for 4*, and by studying separate
components we obtain the converse.

THEOREM 7: Let A be any algebra. (1) If, for k=1, ..., k;, ¢p=¢}, 13 alaw of 4,
and f; 18 any operator of A of index k;, then f; (¢, ..., b)) =Ffi (b1, ..., dx,) 18 a law
of A. (2) If p =¢' 18 a law of A, then any substitution v of one function 7 (x;) for all
occurrences of each primitive symbol x; in ¢ =’ yields a law 7 () =7 ($’) of 4.

Conclusion (1) is true since f; is single-valued. That  (¢) and 5 (¢') are functions
of the species of A follows by induction on type; 5 (¢)=n7(¢’) then follows a
JSortior: since each 7 (x;) e4.

In Theorem 7, 4 can obviously be replaced by any set of algebras of the same
species.

10. Families of algebras and the dual families of laws. Theorems 6 and 7
suggest the following definitions:

DEFINITION 4: Let B be any set of algebras of a species . Then the set F (B)
of all algebras whick can be constructed from algebras of B by the taking of sub-
algebras, homomorphic images, and direct products is called the * family”’ of algebras
generated by B. Reciprocally B is called a “basis’ of § (B).

DEFINITION 5: Let B be any set of equations between functions of a species X.
Then the set @ (B) of all equations between functions of T which can be inferred from
Bby rules (1) and (2) of Theorem 7 is called the “ family”’ of equations generated by B,
and B is called a “‘basis” of ® (B). ,

It is evident that § (F (B))=F (B), and @ (P (B)) = (B); therefore a family
of algebras (or equations between functions) of a species X is a set which generates
itself. From this we see that the set of algebras (or equations between functions)
common to any two families of algebras (or equations between functions) of
is itself a family of algebras (or equations between functions). So that if we dupli-
cate the definitions of “join”’ and “meet”’ of the footnote of § 4, we get

TeEOREM 8: The families of algebras of a species T are a lattice L(Z), and the
Sfamilies of equations between functions of T are a second lattice L* (Z).

Let B be any set of equations between functions of a species £. Form the
“free”{ algebras F (B, m), whose elements are the .classes of functions on m
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primitive symbols equated under @ (B). By rule (1) of Definition 5, F (B, m)
is an algebra of X, a,nd\by (2), F (B, m) satisfies all the laws of B. Moreover, by
Theorem 7 every algebra of species = generated by m elements ard of which B
is a set of laws is a homomorphic image of F (B, m). Conversely, every law of
F (B, m) involving m primitive symbols is by definition an equation of D (B).
Hence if we define § (B) as the family of algebras generated by the F (B, m), we sec

THEOREM 9: To every set B of equations between functions of a species X corre-
sponds a family § (B) of algebras such that ® (B) 13 the set of laws of §F (B). F(B)
18 the family of the homomorphic images of the *“ free’’ algebras F (B, m).

Reciprocally, let 9 be any set of algebras 4,, ..., 4, of orders a,, ..., a, of a
species X. Let z,, ..., x, be any set of » primitive symbols, and let ¢; ; denote any
of the a? single-valued transformations of the z; into 4;. The transforms will
generate in A; a subalgebra S, ;. Form the direct product 8* of all such 8, ,,
and associate with each z, that element of S* each of whose (2, j)th components
is the transform of ;, under ¢; ;. These elements will generate a subalgebra of S*,
which will be denoted by F (U, n). By Definition 4, F (U, n)F (A), and so by
Theorem 6 every law of U is a law of F (%, n).

But if @ (A) denotes the family of equations between functions of species X
true of %, then by Definition 3 the equations in F (,n) between the values of
functions of the elements corresponding to the x, constitute precisely the subset
of @ () involving n primitive symbols. That is,

F (¥, n)~F (D (A),n). ' (10-1)

It is a corollary that & (@ (A)) is contained in § (A). But by Theorem 6,
% (A) is contained in F (@ (A)), proving

THEOREM 10: The correspondence of each family & of algebras of a species X to
the family ® (F) of equations between functions of X which are laws of %, and of each
Jamily © of equations between functions of % to the family F (®) of algebras of Z
Jor which the equations of ® are laws, is reciprocal—that is, § (P (F))=F and
® (F (@) = 0. '

This theorem shows that the laws of formal inference and of algebraic
synthesis are both logically complete.

Since this (1, 1) correspondence inverts inclusion, we have

CorOLLARY 1: In Theorem 8, L(Z) and L* (Z) are dually isomorphic.

CoroLLARY 2: Let U be any set of algebras A, ..., A, of orders a,, ..., a,. The
order of any algebra generated by m elements and obeying the laws of U 18 at most

8
Haf.
1

t In case B is the set of equations G 2-G 4 of § 3 on algebras of species (2, 1), we have the
so-called *‘free”” groups. Another connection with standard usage is made by calling F (B, m)
the “caleulus® on m symbols defined by the laws of B.
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THEOREM 11: Let U be any finite set of algebras of finite order of a species =
containing a finite number of operators of finite index. Then the laws of U involving
a finite number m or fewer primitive symbols have a finite basis.

Each function on m primitive symbols determines an element of
F*=F(® (%), m),

and since the order of F* is finite (by Corollary 2 above), there exists a finite
number M such that each element of F* isdetermined by a single ““ representative ”’
function of rank not greater than M. But the (finite) set of equations equating
each function on m primitive symbols of rank not greater than M + 1 to the
representative of the corresponding element of F* defines F*, and is conse-
quently the basis desired.

11. Meromorphic and central products. In § 7 it was stated that meromorphic
products and central products were canonical representations of subalgebras and
of homomorphic images of direct products, respectively. To this effect we prove

THEOREM 12: Let A and B be any algebras (of the same species). If 8 is a sub-
algebra of A x B, then we can find subalgebras Ag of A and Bg of B, such that either
S~As, S~Bg,or 8§ ~Ag: Bg.

Let A be the range of the A-components, and B, that of the B-components
of the elements of S. Ag and B, are clearly subalgebras. Moreover S ¢ 45 x By,
while (1) and its inverse are satisfied. Hence either S=A4g:- B, or (2) is not
satisfied and 8 ~ Ay, or the inverse of (2) is not satisfied and S ~ By.

THEOREM 13: If C i3 a homomorphic image of A x B, and to every element x of
A or B corresponds an operation having x for its value, then we can find homomorphic
images A of A and B of B such that either C~A, C~B,or C=A4:.B.

The construction consists in identifying elements a and a’ of 4 if and only if
[a, b] and [a', b] have the same homomorphic image for every be B—and doing the
same thing for B. The details are uninteresting.

12. The family of modular lattices. Lattices by definition constitute a family
within the species of algebras * of double composition’—i.e. of type (2, 2). We
have already seen that they are of very general occurrence.

In this section we shall consider the subfamily of “modular’’ lattices—that is,
of the lattices satisfying the following “modular’’ identity discovered by Dede-
kindft,

L5:(A~B)v(CAn(AvB))=(A~B)vC)n~ (Av B), which is to say, Ac B
implies 4 v (C~ B)=(4 v C)n~ B irrespective of C.

1 Gesammelte Werke, 1, p. 121. Cf. also a paper by O. Ore on modular lattices, for which
he prefers the term Dedekind structures, Annals of Math. 36 (1935), 406-37.
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The normal subgroups of any groupt, the ideals of any ringt, subspaces in
abstract vector spacet, and linear sets in projective geometries} constitute
modular lattices. Further, so do the modules of any ring, and Galois extensions§
of the rational domain. Whether all modular lattices can be realized in these ways
is an open question.

Closely allied with lattices are those algebras (of species (2, 2, 1)) which satisfy,
besides L 1-L 4,

L7:Toany 4 corresponds a “complement” A4 satisfying A ~nA~AB=AnA
and Av Av B=Au 4 irrespective of B. ;

(12-1)f The algebras A of finite order in the family of algebra,s satisfying
L 1-L5 and L7 have the Boolean algebra of order two and the finite projective
geometries for a basis, and any such A is the direct product of algebras of the
basis.

THEOREM 14: The free modular lattice generated by three elements is a mero-
morphic product of modular lattices of orders two and five.

. To prove Theorem 14, we must refer to Tables I-III of “Subalgebras’’. The
28-lattice described there has (in the notation of Table I) the following homo-
morphic images:

X>G, XDOF, X?B
l l N,CXCM, N2C7'(CM2 N,cXCM,
XCH, XCG, Xc4

Moreover, its elements have unique expressions, no two alike, as 7-vectors
with components in these images.- Hence the 28-lattice is isomorphic with a sub-
lattice of their direct product. Theorem 12 completes the proof.

Since the only homomorphic image of the 5-lattice graphed above is the
trivial 1-lattice satisfying, with 2-lattices,

L6: A~ (BuC)=(4~B)v(A~0),
we obtain the

CoROLLARY: Any lattice equation on three primitive symbols is either a conse-
quence of L 5, or else, taken with L 5, it gives L 6.

t ‘“Subalgebras™, Theorems 26-1, 27-1, and (essentially) §28. On the other hand, the
closed (normal) subgroups of the translations of the line do not satisfy L 5. To show this, let
r and s be any two incommensurables, and take the subgroups generated by the translations
z>x+r,z>2+8 and z >z +2r.

1 G. Birkhoff, “Combinatorial relations in projective geometries’’, Annals of Math. 36
(1935), 743-8.

§ ‘““Hausdorff groupoids’’, Annals of Math. 35 (1934), 360.
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As a matter of practical curiosity, the author studied the 5-lattice graphed
above. Bya difficult argument which was submitted to the referee, he proved that
the algebras of finite order in the family of algebras satisfying

L51: AU(XAB)U(YAB))Br\(AuX)n(AU Y)A(XU Y)
L52: Av(XnB)o (Y nB)o(XnY)> Ba(doX)n(AuY)

coincided with the set of the meromorphlc products of the 5-lattice and its sub-
algebras.

13. The fam:ly of distributive lattices. At present the most satisfactory illus-
stration of the theory of §§8-10 is furnished by the family of ‘“distributive’
lattices—that is, the subfamily of modular lattices for which L6 is a law. But
first let us repeat some simple definitions.

By a “ring”’ of point-sets is meantt any system of point-sets containing the
sum and the product of any two of its members. By a ““o-ring” is meant one
which contains the sum and the product of any enumerable collection of its
members. A ring (o-ring) is called a “field” (‘““o-field”’) if and only if it COntams
the complement of any one of its members.

(13-1)} Any ring of point-sets is a distributive lattice, and any distributive
lattice can be realized as a ring of point-sets.

(13-2)§ Any field of point-sets is a Boolean algebra, and any Boolean algebra
can be realized as a field of point-sets.

(13-3) L.2-L 4 and L 6 are a basis for the laws of the lattice of two elements,
and L 2-L 4 and L 6-L 7 are a basis for the laws of the Boolean algebra of two
elements.

Thus we see that the algebras defined by rings (or fields) of point-sets are
Sfamilies of algebras. Now any subalgebra or direct product of o-rings (or o-fields)
is itself a o-ring (o-field), as can be shown by easy constructions. But

THEOREM 15||: The o-rings of point-sets are not a family of algebras, and neither
are the o-fields.

t+ F. Hausdorff, Mengenlehre (Berlin, 1927), Chapter v.

+ “Subalgebras”, Theorem 25-2. Other instances of distributive lattices are listed in
F. Klein’s “ Einige distributive Systeme in Mathematik und Logik”, Jahr. d. D.M.V. 38
(1929), 35-40.

§ Proved by M. H. Stone, “Boolean algebras and their application to topology ”, Proc.
U.S.A. Acad. 20 (1934), 197-202. The family of Boolean algebras is hence generated by any
Boolean algebra containing more than one element. It is a corollary that any family of
equations between functions of species (2, 2, 1) which contains an equation not derivable
from L 2-L 7 contains the equation z=y. Cf. J. Lukasiewicz, “ Ein Vollstindigkeitsbeweis
des zweiwertigen Aussagenkalkuls’’, Comptes Rendus de Varsovie, 24 (1932), 153.

|| Added in revision.



On the structure of abstract algebras 445

For we can exhibit homomorphic images of a o-ring and a o-field not themselves
o-rings (o-fields). Take all Borel-measurable sets on the line interval [0, 1]; they
define a o-field, and hence a o-ring. But the hemomorphic image M* formed by
neglecting sets of measure zero is not realizable even as a o-ring, let alune a
o-field, of point-sets.

For this was shown in Theorem 25-3 of ‘‘Subalgebras” for the o-subring of
intervals [0, z].

Considering the algebra of intervals {0, 2] and [0, z) alone, we see that there
exists an algebra of point-sets containing the sum and the product of any sequence
of its elements, having a homomorphic image—obtained by setting [0, ] =[0, )
—not realizabie as a similar ring of point-sets.

On the other hand, A. Tarskif has recently shown that the algebras of
point-sets containing the complement of any one, and the sum and product of
any sequence of its elements, do constitute a family of algebras.

14. Application to hypercentral groups. Much of the value of the definition
of lattices lies in the theorems which it permits us to state. We shall illustrate
by this restating two known facts about ‘“hypercentral’’ groups—that is, groups
all of whose factor-groups have a proper central }.

(14-1) If H is a hypercentral group of finite order, and L, (H) denotes the
subset of L (H) formed by the subgroups of H whose orders are powers of the

prime p, then L(H)=Ly(H) x Ly (H) x Ly (H) ...

(14-2) The subgroups.of any hypercentral group satisfy the condition (1) if ¢
covers 4 and B, and 4 + B, then 4 and B cover 4~ B (cf. §6, §2).

There are innumerable other ways in which groups illustrate the above theory.

15. Any adstract group s a group of automorphisms. We shall now prove the
result announced in § 3, namely

THEOREM 1: Let 8 be any abstract group. Then there exisis an algcbro 4,,, the
group of whose automorphisms is isomorphic with S.

Let the elements of 4, be’identified with the single elements ¢ and the
couples (a, b) of elements a and b of S. And let the operators of 4, be unary oper-
ators f, associated with the elements c of S, plus one binary operator g, defined by

fc (@)=c, fc (@,0)=a, g [(a. b) (¢, b’)] =bb’,
gla, (@, b')1=g[(a,b),b']=g[a,a’]=1.
Now let « be any automorphism of 4. Since «(f,) =f, for each aeS, clearly

t Fund. Math. 24 (1935), 177-98. '
t Or equivalently satisfying one of the chain of equations between functions of species
(2, 1): ab=ba, (a-lblab)c=c(n1b-'ab),....

(14-1) is & consequence of a result in Burnside's Theory of groups of finite order, 2nd ed.
(Cambridge, 1911), p. 163; (14-2) follows from Speiser’s Gruppentheorie, 2nd ed., Theorem 89.
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« (a)=a for each aeAd; hence « (a,b) = (a, b’) for each (a,b) eA,. But if we denote
a (1, 1) by (1,c), (ceS), then
b=o(b)=a(g[(a,b),(1,1)])=g[x(a,b),a(1,1)]
=g[(a,b),(1,c)]=bc,
whence o (@, b) =« (a, bc) for any (a,b) e4,.

But for fixed ¢, each transformation « (a,b) = (@, bc) and « (a)=a is an auto-
morphism of 4. Since the group of such transformations is isomorphic with S,
the theorem is proved.

A more complicated construction was found by the author which permitted
A, to be a distributive lattice.

EQUIVALENCE LATTICES

16. Equivalence relations defined. Let C be any class of objects, which for
convenience we shall suppose to be letters of the alphabet. The number of objects

in C will be noted by = (C).

DEerINITION 6: By an “equivalence relation” on C is meant any reflexive and
“circular’ relation—that is, any rule x assigning to each pair (a, b) of objects of C
one of the two expressions axb or azb, in such a way that (1) axa for any object a of C,
while (2) axb and bxc imply cxa for any objects a, b, and ¢ of C.

The expression axb is read “a is equivalent to b under 2, and aZb is read “a is
not equivalent to b under z”’.

The reader should encounter no difficulty in proving that any reflexive and
circular relation is reflexive, symmetric, and transitive—and conversely. That is,
Definition 6 amounts in effect to the more conventional one of Hasset.

A well-known argument now yields

THEOREM 16: There is a (1, 1) correspondence between equivalence relations x
on C and partitions of the objects of -C into non-overlapping * x-categories’’, under
which axb if and only if a and b are in the same z-category.

The number H* (n + 1) of different equivalence relations on n + 1 objects can

easily be calculated.
For by the usual theory of permutations and combinations, to any fixed object

‘@ and any number 4 (0<% < n) correspond just (Z) choices of a category S, of &

+ Hasse, Hohere Algebra, 1 (1927), 17. What Hasse (and I) call an ‘“‘equivalence rela-
tion”’, Carnap calls an “ equality relation”’, and P. A. Macmahon would call a ““distribution
of n(C) objects of type (1™C)) into classes of type (m)”.

1 ‘““Abstraction class” according to Carnap (Logische Aufbau der Welt (Berlin, 1928),

p. 102).
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objects besides @ and equivalent to a. And the remaining » —% objects can be
divided into categories in just H* (n — %) ways. Therefore, by Theorem 16
n
H*(n+1)= z,("’)H*(n_h). (16-1)
r=0 \h
This recurrence relation has been studied t.

17. Symbols for equivalence relations. The handling of equivalence relations
is greatly simplified by assigning to each equivalence relation  on C a “special
symbol”’ and a ‘‘generic symbol .

To obtain the special symbol for z, first imagine the objects of C written in a
certain order, and for this purpose identify them with the numbers 1, 2, 3, ..., n (C).

Then arrange the objects of each z-category in order, suppress the x-categories
containing just one object, and arrange the others in the order of their first objects.
The symbol is completed by inserting commas between the different z-categories,
and enclosing the entire expression in parentheses.

Thus the special symbols involving the first four integers are (), (12), (13), (14),
(23), (24), (34), (12, 34), (13, 24), (14, 23), (123), (124), (134), (234), and (1234).

To obtain the generic symbol for z, count the number of objects in each cate-
gory, arrange the resulting integers in order of decreasing magnitude, separate
them by plus signs, and enclose the whole in parentheses.

Thus the generic symbols for equivalence relations involving four objects are
(Q+14+14+1),(2+1+41), (2+2), (3+1), (4).

The following proposition is obvious,

TuEOREM 17: The number of generic symbols for equivalence relations on C
18 equal to the number of partitions of the integer n (C).

18. The lattice K (C). In this section we shall show how one is naturally led
to consider the equivalence relations on a class C as the elements of a lattice £ (C).

DeriniTION 7: Let C be any class of objects, and let x and y be equivalence
relations on C. By the “meet’”’ x~y of x and y i3 meant the relation v on C defined by
the rulel (1) aub if and only if axb and ayb; by the* join’ x v y of x and yis meantthe
meet v of all equivalence relations z on C such that (2) azxb or ayb implies azb.

It is easy to show that x~y is an equivalence relation (i.e. reflexive and

circular), and that therefore so is xvy. It is also easy to verify L2-L4 of §4,
whence we have

TaroreM 18: Under Definition 7, the equivalence relations on C are the elements
of a lattice E (C).

t A. C. Aitken, Edin. Math. Notes, 28 (1933), xviii-xxiii.

1 x ~y is merely the conventional “logical product’ of the relations x and y. The opera-
tion of join is, however, new.
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F (C) is evidently determined to within isomorphism by = (C); the corre-
sponding abstract lattice may therefore be called “‘ the symmetrical equivalence
Iattice of degree » (C)”’, and any sublattice of £ (') au “equivalence lattice”.

The symmetrical equivalence lattices are the analogues in lattice theory of
the symmetrical perniutation groups.

12. Covering and rank conditions. It is clear that an equivalence relation z
contains an equivalence relation y—i.e. that x ~y =y—if and only if the z-cate-
gories are unions of suitable entire y-categories. Consequently (recurring to the
definition of covering made in §6)  covers y if and only if une z-category is the
union of two y-categories, and the other z-categories are the-same as the other
y-categories. This makes it easy to deduce '

THEOREM 19: If x and y cover z,and x+y, then x vy covers x and y. Again, x
covers y if and only if x ¢ y of type (2+ 1+ 1+4... 4 1) exists, satisfying x=yv 2.

Hence if we define (1) a “chain” connecting ye E (C) with z > y as any sequence
of elements zy=1y, ..., z, = cf E (C)such that =, covers z;_, for k=1, ..., n, and
(2) the “rank” p () of zeE (C) as the excess of n (C) over the number of z-cate-
gories. we obtain '

TrHEOREM 20: x covers y if and only of x > y while p (x)=p (y) + 1. Consequently
any two chains connecting the same two elements have the same length. Moreover any
element of rank m can (by induction and Theorem 19) be represented as the join of m,
but not of m — 1, elements of rank ove. Finallyt

ple-y)Sp@)+py)=p@vy)+p(@ry). (19-1)

20. Egquivalence lattices and Booleun algebras. 1t is well known that any finite
Boolean algebra B, cf order 2" can be identified with the field of all sets of » points.

Let S be any subalgebra of B, ; §is finite and contains the empty set. There-
fore the elements of B, corresponding to the “ points’ of § will be disjeint subsets
whose sum is the complement of the empty set. Conversely, any such choice of
disjoint sets of points of B determines a reciprocal subalgebra S of B. And finally
this (1, 1, corresnondence inverts inclusion, so that we have

THEOREM 21: If n(C) i finite, then E (C) is dually isomorphic with the lattice
of the swbalgebras of the Boolean algetra of order 2™,

21. FEquivalence lattices and groups. Let G be any group, and § any subgroup
uof G. If @ and b are any elements of @, we shall write aS8b if ab—1eS§; aSb unless
ad-1e8. This is known] to define an equivalence relation on the elements of G.

t The first inequality is a consequence of the previous statement; the second requires
Theoreras 19 and 9-2 of ““Subalgebras ™.
1 1. Hasse, op. cit. p. v0; the proof is, from the standpoint of group theory, elementary.
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Let T be any second subgroup of G. To say that ab~1is in S~ T is to say that
ab—lis in § and in T’; hence the ordering of equivalence relations to subgroups
preserves meets.

Suppose that ab—1is in Sv T'. Then a =s,t, ...8,t,b, where the s, are in § and
the ¢; are in 7'. So that if U is any equivalence relation including § and T', then
bU (t,b),(¢,0) U (8,t,b), ..., (t,8;...b) Ua,
whence aUb, and U includes the equivalence relation ordered to Sv T'. But the
equivalence relation ordered to S v T clearly includes those ordered to S and to T';

hence by Definition 7 the ordering preserves joins.

It follows that everysubgroup lattice is isomorphic with a suitable equivalence
lattice. But conversely, if we order to each equivalence relation z on = letters the
group G, of all permutations intransitive on the z-categories, then clearly
G,~G,=GQ,.,, while it can be shown* that G, G, =G, ,, whence we have

THEOREM 22: Every subgroup lailice is isomorphic with an equivalence lattice,
and conversely.

CoroLLARY: Every lattice of subgroups of a finite group s dually tsomorphic
with a lattice of subalgebras of a finite Boolean algebra, and conversely. :

22. Automorphisms of E(C). We now prove a not altogether surprising but
by no means trivial result.

THEOREM 23: The automorphisms of E (C) are induced by the permutations of
the objects of C. If n=n (C) > 2, they constitute the symmetric group of degree n(C).

For 'if n> 2, then each element of rank »—2 having the generic symbol
([n—k]+ k) covers exactly 2814 2n~%-1_2 elements, (k< }n). Therefore (since
rank and covering are invariant under automorphisms) the totality of elements
having the generic symbol ([z — 1]+ 1) is invariant under any automorphism of
" E(C). Further, any element of rank one is specified by the elements of genus
([»— 1]+ 1) which contain it, and any element at all is specified by the elements
of rank one which it contains. Hence any automorphism is completely specified
by the permutation it performs on the elements of genus ([n— 1]+ 1)—corre-
sponding to a permutation of the objects of C. Inspection shows that this is still
true if n<2. .

If n > 2, the permutations of the objects of C induce precisely the symmetric
group on the n elements of E (C) of genus ([n — 1]+ 1), completing the proof.

CoroLLARY: Two elements x and y of E (C) are conjugate under the group of the
automorphisms of E (C) if and only if they have the same generic symbol. Hence

* The technique consists in passing from @, to G,_, through a finite or transfinite se-
quencs of such intransitive groups, and showing that G, G, cannot fail to contain any first
one of them.

PSP XXXI, 4 30
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under the definition .of Theorem 5, the geometr.co-tactical configuration corresponding
to E (C) has a “rank’ equal to the number of pa-titions of the integer n (C).

For the generic symbols describe precisely the conditions under which the
x-categories can be transformed into the y-categori>s by a suitable permutution
of the objects of C.

23. Homomorphic equivalence relationst. Coisider the equivalence relations
on the elements of an algebra 4. Nf especial :mportance are naturally those
which are preserved under the operati-ms of A. These are characterized by

DEerFiNITION 8: An equivalence relation x on an algebra A s called “ homo-
morphic” if and only of the x-category of the value of any sequence o 78 a single-
valued function of the x-categories of the elements of o—taat s, if ard only if a;xb;
(a;ed; j=1, ..., k;; bjed) vmplies

Fi(@g, ees @) s by ey b). (25-1)

It is obvious that the xz-categories of any homomorphic cquivalenne relation

on A4 are the elements of a homomorphic image of 4. '

THEOREM 24: Let A be any algebra whose operaters are of finite index. Then tne.
homomorphic equivalence relations on A are a sublattice H (1) of the symmetrical
lattice E (A) of all equivalence relations or. 4.

That is, the meet » and the join v (under Definition 7) of any two homomorphic
equivalence relations # and y are homomorphic equivalence relatioans.

Ifa;ub;(j=1, ..., k;), then a;xb; and a,yb;; whence, denoting f; (a,, ..., a;,;) by
e and f; (b,, ..., b,.) by b, by hypothesis a b and ayb, and consequently aub.

Similarly, if a;vb; (i=1, ..., k;), then we can form chains} ¢]=u;, ..., ¢}, 4+, =1y
such that ¢f,_,zc}, and ~},yc},.,. Hence, writing ¢, =f;(c}, ..., c&¥), we obtain
Cop_1%Cop and C43,YCop,,, and consequently c,vc.,,,, which is to say avb. This
completes the proof.

The following special results are known:

(23-2) The lattice of the homomorphic equiv alence relations on any gioup or
ring is a modular lattice§.

(23:3) The lattice of the homomorphic cquivalence relations ca any finite
modular lattice is a Boolean algebral.

t+ This section was added in revision.

+ We need k; to be finite to ensure that »n should be ninite.

§ ‘‘Subalgebras”, Theorems 26-1 and 27-1, and Speiser, op. cit. Thzorem 23. By an
abstracticn of the same metlod, we cun show that 'f an algeora A is such that to any homn-
morphic equivalence a(z - y)b corresponds an element ¢ such that axc and cyb, then the
lattice of the homomorphisms of 4 is a modular lattice. It is the lattice H (4) which describes -
the “structure” of 4; hence we may call it the “structure lattice” of 4. -

(I This result was implicitly announced by Ore in a lecture at Harvard Un-versity, and
will presumably appear in his paper already cited.
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24. Simple algebras. Any algebra 4 has two homomorphic images—itself
and the trivial algebra of one element. These correspond respectively to the
equivalence relation o under which aob if and only if a=b, and the equivalence
relation p under which apb for any @ and b of 4.

If the lattice of the homomorphic equivalence relations on A4 contains only
these two elements, then 4 is called ‘simple”t; otherwise 4 is called “com-
posite .

Lemma 1: The 5-lattice (1b) graphed in § 6 is simple.
The proof is left to the reader.
THEOREM 25: Any finite symmetrical equivalence lattice E (C) s simple.

Let « be any homomorphic equivalence relation on E (C) other than o, so
that azb (a+9). Then cek (C) with the special symbol (#4) exists such that
cnlavb)=c, but ¢~ (an~b) =0, is the element of E (C) with the special symbol ().
Naturally czog.

If deE (C) has the special symbol (kj), or (jL), (k+7), then eeE (C) with the
special sym.bol (kj), or (j¥), generates with ¢ and d a sublattice satisfying Lemma
1; whence o, 21. Tiepeating this process, we can show that dxf for fe £ (C) with
the special symbol (kk), irrespective of 4. Hence ozzf for any f with generic
symbol (24 1+ 14...+ 1)}—and so, by Theorera 20, ozxz for any zeE (£) what-
ever, proving z = p. This complet;es the proof.

A “projective geometry "’ is a system P of elements called points, hnes planes,
etc., having incidence relations of a certain type. Every pair of elements a and b
of P intersect in a ‘““meet’’ eleinent a ~ b, and generate a least containing element
or “join”’ avh. From the known facts (1) every element is the join of those points
wkich it contains, (2) the join of any two distinct points is a line, (3) every line
contains at least three points, and (4) L 2-L 4 are satisfied, it can be proved that

THEOREM 26: Any projective geometry is simple.

Let x be any homomorphism of P other than o, so that axb for a+b; whence
(avb)z(anb). By (1), P contains a point g such that gn~(avb)=g, but
gn(anb)=o0p, the empty set. If ris any other point, by (2} and (3) the line gur
contains a third point s. But o, g, 7, s, and ¢ r are a sublattice of P satisfying
the hypotheses of Lemma 1, and so ogzr.

That is, oz zr for any point 7, and so by (1) ogxt for any element ¢ of P, and
z =p, proving the theorem. '

25. The free lattice generated by three elements. An open question} of some
interest is settled by

THEOREM 27: The free lattice generated by three elements is of infinite order.

T This is the accepted usage for both groups and linear algebras.
} F.XKlein, ‘“ Beitrage zur Theorie der Verbénde’’, Math. Zeitschrift, 39 (1934), 227-239.

30-2
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It is sufficient to exhibit an equivalence lattice of infinite order generated by
three elements. But let C be the class of the points of 3-space with integral
coordinates (m, 1, m), (1, m+ 1, m), and (m, m, 1). And let ¢; be the equivalence
relation such that ae;b (a, beC; 1=1, 2, 3) if and only if @ and b have the same
z;~coordinate.

The e, generate a sequence &, eE (C), in which

ti=e1, tgnia=toni1V > lgnia=lent2" s> Yontsa=lgnt+3“ €1 lgnts =lenta"Ca>
toins) =lenis~ €3> 8Nd  Lgninyyr =lemsn -

Those points which are in the same ¢,-category as the point (1, 1, 1) are listed
in the following table:

lon: b (k, 1, k)
k=1
bosr: 2 (LE+LE)+E (kLK) +56,0,1)
k=1 k=1 i=1
fonge: (LL 1)+ 2 (LE+1E)
k=1
n n+1 -]
t6n+3: Z (ls k+ I)k)+ Z (k: kr 1)+ z (7‘: l”l:)
k=1 k=1 i=1
n+1
tontia: . = (K, K, 1)
k=1

n+1 Con+1 @
tonss: > (k,k, 1)+ 2 (K, 1,k)+ 32 (1,i41,5).
k=1 k=1 =1

Hence the ¢, are all different, proving the theorem.

CoROLLARY: Any finite lattice salisfies a law on functions of three symbols
which cannot be inferred from L 2-L 4.

TOPOLOGICAL LATTICES
26. Topological algebras. By a ““topological algebra’ is meant any algebra
which contains a ‘‘convergence’ operator f; operating only on enumerated
sequences, and such that if (1) f, ({zL}) = z; for a sequence of n sequences {z}}, and
(2) f; (3, -.., x}) =y, for fixed ¢ and every positive integer &, then

(3) fL ({yk}) =ft (@15 o5 Tp)-
This includes van Dantzig’st definitions of topological groups and topological
rings, and automatically defines the notion of “topological lattice .

27. Transfinite joins and meets. Let A be any algebra, and o any well-ordered
set of subalgebras of 4. By %, (o) denote the set of elements in every subalgebra
of o, and by k, (o) the meet of the subalgebras which contain every subalgebra

t+ “ Zur topologische Algebra. I. Komplettierungstheorie’, Math. Annalen, 107 (1933),
587-626.
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of 0. Ttis easily seent that &, (o) and &, (o) are themselves subalgebras of 4. Hence
the subalgebras of 4 constitute a “complete” lattice L (4 ) satisfying certain laws
resembling L 2-L 4 which have been specified elsewheref, and whose study takes
us out of algebra into analysis.

28. Upper and lower limits. A convergence operator can be defined in L(4)
by the analogue of an elementary device of real function theory.

Let a,, a,, a,, ... be any enumerable sequence of elements of L(A), and
denote by «, the subsequence a;, a;,,, @3, -... Then we can define

Inf{a,}=h, [hy (@), bz (o), B2 (23), -],

Sup {ay} = by [k (@), By (a), 2y (25), ... ).
Regardless of j and k, &, (%) ¢ @, C hy (x;); hence we have

TrEOREM 28: Inf{a,}'c Sup{a,} identically.
DEerinITION 9: f; ({04}) =@ if and only if Inf{a,}=a and Sup {a,}=a.

29. Topology. Consider the topology of the abstract convergence space
defined by the operator f, defined in Definition 9. If ¢, = ¢ for every k, then clearly
fr(er)) =c.

Again, f; ({ei})=c and f; ({c)})=¢’ imply c=Inf{g;}=c". And if f; ({e}) =¢
and k (2) - o0, then

¢ ¢ Inf{c;} ¢ Inf{c)p} ¢ Sup {cxn} ¢ Sup{ci}ce,

and so f, ({exa}) =c.

Finally, iff; ({c;}) =c, then no matter what c, is given, the augmented sequence
Cgs €1, Cq, ... has certainly the same upper and lower limits as before, and hence
converges to ¢. That is, we have

THEOREM 29: The space defined by the convergence operator f, is a Kneser§
“ Konvergenzraum” for any complete lattice.

On the other hand, it need not define the lattice to be a topological lattice.
It must in the important case that the lattice is a complete lattice of point-sets.
But if the lattice is the complete lattice of closed sets on a line, examples can be
given showing that this is no longer the case.

30. A metric group. Consider the Boolean algebra B (Z) of the measurable
sets in a space ¥ having a mass-function|| in the sense of Carathéodory. Let §
and 7 be any two measurable sets of Z; we shall use the notation S+ T for the

1 As in “Subalgebras”, §2.

1 Stated in “Subalgebras”, §3.

§ “Die Deformationssitze der einfach zusammenhangenden Fliachen’’, Math. Zeits. 25
(1926), 362.

ii C. Carathéodory, Vorlesungen iiber reelle Funktionen (Berlin, 1927), 2nd ed. p. 238.
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sum of S and 7, ST for their common part, S for the complement of S, and u (S)
tor its measure..

Make a homomorphic image of B(3) by putting §=T if and only if
p (8T +87T)=0. Define the “distance” p (S, T') from Sto 7 as the smaller of 1and
p (ST +8T). And finally, define the “product” §.7 of S and T as ST + 37T

It is easy to show that the equivalence relation is homomorphic, and that
p (8, T) is metric and makes the image algebra topological in the sense of §26.
Moreover, it is knownt that the definition of 8.7 makes B(X) into an Abelian
group. Since finally

p(A.C,B.C)=p(C.4,C.B)=p(4,B)
irrespective of 4, B, and O, we have

THEOREM 30: The homomorphic image of the Boolean algebra of the measurable
sets in any space having a regular mass-function, formed by disregarding sets of
measure zero, 18 @ metric groupt under a distance-function which makes the algebra
topological.

31. Unsolved problems. The preceding material suggests severa,l interesting
questions whose answer is unknown.

Some questions concern equivalence lattices. Is any lattice realizable as a
lattice of equivalence relations? Is the dual of any equivalence lattice an equi-
valence lattice? In particular, is the dual of the symmetrical equivalence lattice
of degree four (graphed in § 6) an equivalence lattice? More generally, are equi-
valence lattices a family in the species of algebras of double composition.

Again, it is known that the free distributive lattice generated by n elements
is of finite order D (n), but nothing is known about the function D (n) except its
first four terms§.

Finally, is any finite modular lattice a sublattice of a direct product of finite
projective geometries and Boolean algebras of order two?

1t Proved by P. J. Daniell, ““The modular difference of classes”, Bull. Amer. Math. Soc.
23 (1916), 446-50.

1 In the sense of van Dantzig, op. cit.

§ R. Dedekind, Ges. Werke, 2, 147, states that D(1)=1, D(2)=4, D(3)=18, D(4)=166.



