
NYOTRON ATTACK RESPONSE CENTER

OilRig is Back with Next-Generation
Tools and Techniques
March 2018

Table of Contents

Introduction . 3

Executive Summary and Major Findings . 3

Major Advancements . 4

 Google Drive C&C . 4

 SmartFile C&C . 4

 IIS ISAPI filter-based C&C . 5

Attribution . 7

Tactics, Techniques and Procedures (TTPs) . 9

Mitigation . 10

About Nyotron . 11

Additional Resources . 12

Technical Details . 13

Bypass Perimeter Defenses . 14

Establish Foothold . 14

Accessing Tools . 14

Establishing Persistence . 15

 Service .exe 0/64 VT Detection (Google Drive RAT) . 15

 SmartFile .exe 1/68 VT Detection . 19

 Autoit3 .exe 1/68 VT Detection . 20

Web Shells . 24

 Myrtille .Services .exe 0/62 VT Detection . 26

 rpc .exe 37/68 VT Detection . 27

Escalate Privileges . 28

 mnl .exe 18/66 VT Detection . 28

 Wsc .exe 22/68 VT Detection . 29

Internal Reconnaissance . 30

 PS .exe 0/59 VT Detection . 30

 share .exe 4/67 VT Detection . 31

 ch .exe 18/67 VT Detections . 32

Lateral Movement . 34

 EternalBlue Exploits . 34

 psexec_coresecurity .exe 4/57 VT Detection . 35

Attacker’s Infrastructure . 36

Example of the Attack Flow . 39

Indicators of Compromise (IOCs) . 41

2

Introduction

Remember the OilRig malware campaign? Since 2015, it has compromised

critical infrastructure, banks, airlines, and government entities in countries

such as Saudi Arabia, Qatar, United Arab Emirates, Turkey, Kuwait, Israel,

Lebanon and the United States. Based on Nyotron’s findings, the notorious

Iran-linked APT group that launched OilRig shows no signs of slowing down .

Since November 2017, our research team has discovered active OilRig attacks

on a number of organizations across the Middle East. The OilRig group has

significantly evolved its tactics, techniques and procedures (TTPs), introduced

next-generation malware tools and new data exfiltration methods.

Executive Summary and Major Findings

The attackers used about 20 different tools throughout its latest malware

campaign. Some were off-the-shelf, dual-purpose utilities, while others

were previously unseen malware using Google Drive and SmartFile as

well as the Internet Server Application Programming Interface (ISAPI)

filter for compromising IIS servers. These demonstrate ongoing capability

advancements of the OilRig group . Techniques exploiting legitimate services

are bypassing most network-level security products such as firewalls,

intrusion detection and prevention systems and URL Filters that rely solely on

blacklisting techniques.

A number of malware pieces that dealt with data exfiltration and command

and control communication (C&C) included hardcoded API keys . These

allowed Nyotron to not only study the attacker’s actions, but to also detect

additional victims of the OilRig attack located throughout the Middle East .

Nyotron has notified affected companies. However, it must be noted that the

use of hardcoded API keys opens the door to both security professionals as

well as additional malicious actors and potentially allows access to sensitive

data stolen from a variety of organizations.

3

https://www.forbes.com/sites/thomasbrewster/2017/02/15/oilrig-iran-hackers-cyberespionage-us-turkey-saudi-arabia/#3e50547b468a

Major Advancements

How did OilRig evolve? Latest OilRig attacks have introduced new C&C and

data exfiltration capabilities:

1. Google Drive C&C

Of course, threat actors have abused Google’s G-Suite for C&C purposes

before. There are also examples of malware taking advantage of public sites

and APIs such as Twitter, Pastebin and other services. We have compared

OilRig’s latest version with a well-known POC Implementation as well as the

Backdoor .Makadocs and have found the following significant differences:

• The POC Implementation is written in Python while the OilRig malware

is written in C#. Moreover, OilRig has more robust functionality than the

POC (e.g., OilRig uses configuration files, adds signature to uploaded files,

registers as a service, etc .) .

• Backdoor.Makadocs uses compiled code (C/C++/Other assembly

compiled languages). Additionally, there is a major difference in

functionality - Backdoor .Makadocs uses Google Docs to redirect to

another server . While in OilRig, the Google Drive acts as the C&C (i .e . the

malware fetches commands from the Drive) .

Based on these differences and the fact that OilRig’s implementation

generated 0 out of 64 VirusTotal detections at the time of the research, we

have concluded that this is a fairly unique C&C implementation . Read full

details in the Technical Details section of this report .

4

https://safeandsavvy.f-secure.com/2015/12/04/how-cyber-criminals-use-twitter-to-run-their-attacks/
https://github.com/lukebaggett/google_socks
https://www.symantec.com/security_response/writeup.jsp?docid=2012-111609-4148-99

2. SmartFile C&C

Another tool the attackers used to send commands and perform actions on

infected machines leveraged the SmartFile file sharing and transfer service.

Based on the file inspection of SmartFile.exe’s metadata, it seems that the

attackers took the basic functionality of the tool from this GitHub repository

and then expanded the code to operate as a C&C (e .g . down, up, execute) .

At the time of the research, SmartFile .exe generated 1 out of 68 VirusTotal

detections. See full information about this malware in the Technical Details

section of this report .

5

https://www.smartfile.com/
https://github.com/smartfile/client-csharp

3. IIS ISAPI filter-based C&C

The attackers used ISAPI filters to extend the functionality of Microsoft

Internet Information Services (IIS) servers. An ISAPI filter provides a more

covert way to execute commands on a previously compromised machine

versus using a web page. When using a web page, the attacker would need

to access a specific page on a compromised machine (e.g., http://infected-

machine/upload.aspx). However, when using an ISAPI filter, the attacker can

execute commands by accessing any path on the server. Listening to all

requests made from the server for a particular ‘keyword’ triggers the ISAPI

filter into action (execute command, upload file, etc.).

Although researchers have discussed malicious usage of ISAPI filters

(examples here and here), this method is very uncommon and the OilRig

group has not used it before (based on publicly available OilRig research

to date). This unique approach avoids detection by most, if not all, security

products on the market .

6

http://esec-lab.sogeti.com/posts/2011/02/02/iis-backdoor.html
https://www.trustwave.com/Resources/SpiderLabs-Blog/The-Curious-Case-of-the-Malicious-IIS-Module/

Attribution

Why did we attribute this new wave of attacks to the OilRig group? Here is the

high-level summary:

• Targeted countries as well as types of organizations attacked match the

original ones identified in OilRig-related research between 2015 and the

middle of 2017 .

• One way attackers gain persistence is through a scheduled task that runs

PowerShell scripts using AutoIt. AutoIt is installed in the “%UserProfile%\

AppData\Local\Microsoft\Taskbar\” path. This path bears great

resemblance to paths previously used by this threat actor, for example,

“%UserProfile%\AppData\Local\Microsoft\Media\” (as described in

previous OilRig research) .

• Moreover, the PowerShell code executed by AutoIt is almost identical to

the code found in a previous OilRig attack:

dntx.ps1 snippet found by Nyotron on some of the compromised machines

7

https://www.autoitscript.com/site/autoit/
https://logrhythm.com/pdfs/threat-research/logrhythm-labs-oilrig-campaign-analysis.pdf

Snippet from dn.ps1 described in the 2016 OilRig investigation

Previously, this threat actor used a .vbs script to perform the functionality of

the AutoIt a3u script . It seems that the attacker has evolved and changed

methods since the previous attack mechanism is now relatively well known .

• Third-party vendors have identified a number of tools used in the attack

(e.g., PS.exe) as Iranian related:

• The URL path format (e.g., http://107.191.62[.]45:7023/update.php?req=)

used in the malware code matches the URL found in multiple previous

attacks by this threat group (see examples here) .

• Additional attribution evidence tying these latest attacks to the original

OilRig group is withheld to help protect identities of affected organizations.

8

https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/
https://logrhythm.com/pdfs/threat-research/logrhythm-labs-oilrig-campaign-analysis.pdf

Tactics, Techniques and Procedures (TTPs)

We are providing technical details of the attack, TTPs used and the timeline to

help security professionals deal with the same threat actor in the future (our

example is from one of the investigated organizations).

Bypass perimeter defenses – Initial compromise was likely performed

through one of the customer’s supplier’s accounts that had access to the

internal network of the organization

Establish foothold – Planted a wide variety of both crafted Remote Access

Trojans (RAT) and known tools to establish a foothold in the organization and

maintain persistence

Escalate privileges – Used Mimikatz and EternalBlue exploits to gain

privileged user access

Conduct internal reconnaissance – Enumerated ports and vulnerable hosts

using crafted tools and commonly used utilities

Move laterally – Logged on to different hosts using stolen credentials and the

EternalBlue exploit to gain access to additional machines

Complete mission – Performed data exfiltration from critical servers and end-

user devices. Ultimate goals remain unclear.

9

Mitigation

See the full list of Indicators of Compromise (IOCs) at the end of this report

and use your Endpoint Detection and Response (EDR) tool or osquery to

examine your environment for indicators related to this attack .

Fully up-to-date antivirus (AV) or next-generation antivirus (NGAV) products

do not provide 100% coverage against sophisticated attacks like the ones by

the OilRig group . For adequate protection, you need a layered approach to

your endpoint security. Ideally, these layers should combine solutions based

on the Negative Security model (e .g ., AV, NGAV, DLP) as well as the Positive

Security model (e .g ., whitelisting, application control) .

Customers with Nyotron’s PARANOID, an endpoint security solution based

on the OS-Centric Positive Security approach are protected against damage

caused by the latest evolution of the OilRig attack. Since OS-Centric Positive

Security focuses on the final stage of the attack kill chain - intended damage -

it provides protection no matter what attack vector or method is used .

In the OilRig example, PARANOID protects customers from damage and

blocks the following damaging activities (subset). PARANOID prevents:

• An abnormal network connection to malicious C&C servers (by SmartFile.

exe, Service.exe (Google Drive C&C) and AutoIt3.exe (DNS query-based

C&C))

• Illegal Web Shells spawned on Microsoft IIS servers

• Malicious communication by Meterpreter (rpc.exe)

• Malicious processes from obtaining credentials using Mimikatz (Wsc.exe)

• Malicious scanning of the network, both internal and external, using Port

Scanner (PS .exe)

• The enumeration of network shares by NBTScan (share.exe)

• Network communication (by ch.exe) that is used by attackers to test for the

EternalBlue vulnerability

• psexec_coresecurity .exe’s malicious network communication

10

https://osquery.io/

About Nyotron

Nyotron provides the industry’s first OS-Centric Positive Security to strengthen

desktop, laptop and server protection . By mapping legitimate operating

system behavior, Nyotron’s PARANOID understands all the normative ways

that may lead to damage, such as file deletion, data exfiltration, encryption,

and more. Focusing on these finite “good” actions allows PARANOID to be

completely agnostic to threats and attack vectors . PARANOID seamlessly

coexists with antivirus and next-generation antivirus solutions based on the

negative security model and provides the last line of defense from modern

state-level attacks . Nyotron is headquartered in Santa Clara, CA with an R&D

office in Israel.

11

https://nyotron.com/

Additional Resources

About Nyotron’s PARANOID

Theory Behind OS-Centric Positive Security Model

The Nyotron Advantage

Operation Copperfield

Attack Response Center: BadRabbit Malware Report

Attack Response Center: “Petya-like” Ransomware Analysis

Attack Response Center: CryptoMix Arena Malware Report

Attack Response Center: WannaCry Ransomware Report

12

https://nyotron.com/wp-content/uploads/2017/01/Nyotron-Technical-Overview_1-11-18.pdf
https://nyotron.com/wp-content/uploads/2017/01/Nyotron-Positive-White-Paper_1-10-2018.pdf
https://nyotron.com/wp-content/uploads/2017/12/Nyotron-PARANOID-Advantage-DS-12-5-2017.pdf
https://nyotron.com/wp-content/uploads/2017/12/Nyotron-Copperfield-Report-12-19-2017.pdf
Attack Response Center: BadRabbit Malware Report
https://nyotron.com/wp-content/uploads/2017/06/NARC-Report-Petya-like-062017-for-Web.pdf
https://nyotron.com/wp-content/uploads/2017/11/Nyotron-CryptoMix-Report_FINAL.pdf
https://nyotron.com/wannacry-report-download/

Technical Details

Since November 2017, our research team has discovered active OilRig attacks

on a number of organizations across the Middle East. The OilRig group has

significantly evolved its tactics, techniques and procedures (TTPs), introduced

next-generation malware tools and new data exfiltration methods. We are

providing technical details of the attack, TTPs used and the timeline to help

security professionals dealing with the same threat actor in the future .

Bypass perimeter defenses – Was probably through one of the customer’s

supplier’s accounts that had access to the internal network of the organization.

Establish foothold – Plant wide variety of both crafted Remote Access Trojan

(RAT) tools, and known tools to establish a foothold in the organization and

maintain persistence

Escalate privileges – Used Mimikatz and EternalBlue exploits to gain

privileged user access in the organization

Conduct internal reconnaissance – Enumerated ports and vulnerable hosts

using crafted tools and commonly used tools

Move laterally – Logged on to different hosts using stolen credentials and the

EternalBlue exploit to gain access to additional machines

Complete mission – Heavy activity around critical servers in the organization.

Although no concrete damage is observed, it’s possible that the attackers

have managed to exfiltrate sensitive data.

13

Bypass Perimeter Defenses

Supply chain attacks are a common tactic of getting into high-value, and

hence more “hardened”, organizations. We have seen this path used by

the OilRig group on a numerous occasions. One client was first alerted of

suspicious activity after Nyotron’s PARANOID endpoint protection product

detected an attempt to perform malicious replication. After backtracking

from there, we located the first compromised server. This server was used

by suppliers to access the network via a terminal server. The first malicious

actions observed in the customer’s environment were performed using one of

its supplier’s credentials. It is likely that the credentials were obtained through

a phishing email, which is another common tactic for this threat actor .

Establish Foothold

The threat actor invested a significant amount of effort to establish a foothold

within the attacked organizations. We divide this phase into 2 sub-phases:

getting tools into the attacked environment and establishing persistence.

Accessing Tools

To obtain tools, the attackers used public file sharing services such as:

• Dropbox

• Degoo

• Files .fm

• File .ac

Additionally, the attacker tried downloading files from an attacker-controlled

server:

• 37.61.220[.]69

The attacker also used Windows shares to transfer tools to additional

endpoints that did not have an Internet connection, or where downloads were

blocked by firewalls.

On some of the compromised servers, the attacker used web shells. These

crafted web pages allow the attacker to upload files to compromised hosts

and execute them . This was also used as a method for getting tools onto an

endpoint .

14

Establishing Persistence

We have seen a large number of tools used to gain persistence on

compromised machines. These include both specifically crafted malware

that communicate through two different public file upload services and

DNS queries, and more commonly used ways to gain persistence such as

adding guest accounts to computers on the network and giving them local

administrator permissions .

The following is a description of each persistence method:

Service.exe 0/64 VT Detection (Google Drive RAT)

Some of the compromised servers contained an innovative Google Drive-

based RAT under the name Service.exe. The attacker moved Service.exe to C:\

Windows\system32 along with a large set of files. These files included DLLs

related to the Google API used for communication and more .

The Service.exe executable has two possible command line arguments:

• “i” - Installs a service with a name found in a configuration file

• “u” - Uninstalls the service

The configuration file for OilRig named “srv.dat” is found in the same directory

as the executable. Upon initial inspection, the configuration file appears to be

encrypted:

After decrypting the configuration file, we obtained the following data:

15

The configuration contains the following parameters:

• client_secret.json obtained from the Google Drive API that is used to

communicate with the attacker’s account

• Service name used to register the service

• Service description

• Password used for encrypting and decrypting files sent to and from the

Google Drive, and to generate an agent hash (<AgentHash>)

• Compromised organization sub-folder in the Google Drive (<SystemID>)

• Google Drive inspection interval

• Timeout value for terminating launched processes

Service .exe is used as a RAT, which is controlled through the Google Drive .

The main loop of the service contains the following logic:

• Each X time (configured in the srv.dat):

• Upload all files found in <CWD>\<RandomOutputFolder>

to the relevant agent folder in the Google Drive under

<SystemID>\<AgentHash>\out\ with the name “x” + CurrentTime +

“1.tmp”. Delete the local file after uploading.

• Download all files found in <SystemID>\<AgentHash>\inp to the local

directory <CWD>\<RandomInputFolder>. Delete the remote file after

downloading .

• Each 5 seconds:

• Decrypt all files in the <CWD>\<RandomOutputFolder> that end in

* .tmp . Parse and execute the commands . Save execution result to

<CWD>\<RandomOutputFolder>

• Each minute:

• Upload a file called “LTM” to the <SystemID>\<AgentHash>\out folder

which contains the current date and time .

16

The main execution flow of the RAT.

The RAT uses encryption (Triple-DES) when uploading files to the server and

adds “TRES” as a signature to the file.

Files are decrypted when received from the server:

17

Encryption keys are produced from the account:

The attacker left the Google Drive’s OAuth credentials behind for the use by

Service .exe .

Account details and session tokens are located in the client_secrets .json

found in C:\Windows\System32 and in Google.Apis.Auth.OAuth2.Responses.

TokenResponse-user found in C:\Windows\System32\drive-dotnet-

quickstart .json .

By using the Google Drive API, we were able to gain access to the Google

Drive account of the attacker . Looking at the folder structure, we found the

similarity to the pattern that the Service.exe malware expects:

-RETRACTED- // <SystemID> <NameOfLargeCompany>-Google-01

• <AgentHash>

• out

• inp

-RETRACTED- // <SystemID> : <Customer name>-Google-01

• <AgentHash>

• out

• LTM

• inp

Getting Started .pdf

18

“Getting started.pdf” is a default Google Drive document. It’s creation date of

12-Aug-15 indicates that this account was registered a long time ago, but only

used recently .

The attacker’s data reveals that multiple organizations were compromised

using this specific malware, even though not all of them successfully

upload files to this Google Drive account. The metadata of the files provides

additional insight. The first organization’s folder was created on 09-Dec-2017

07:56. The client_secret.json and the srv.dat files found with the executable

were last modified on 09-Dec-2017 7:54, suggesting that both the files and the

folder were created by a single actor.

The attacker created folders for another organization on 27-Dec-17 11:39. The

email account used to upload the files was abbey.joe[.]1999[at]gmail.com and

the display name for this user was “Abbey joe”.

SmartFile.exe 1/68 VT Detection

The attacker also used SmartFile .exe to send commands and perform actions

on infected machines. From inspecting the file’s metadata, it seems that the

basic functionality of the tool was taken from this GitHub repository .

The attacker has expanded the functionality of the original code to operate as

a C&C. The functionality includes the following operations:

• “down” - Downloads a file from SmartFile API

• “up” - Uploads a file to SmartFile

• “execute” - Runs a given command in “cmd”

19

https://github.com/smartfile/client-csharp

The SmartFile.exe binary comes with hardcoded credentials used to login

to the SmartFile.com file sharing service. When malware executes, it tries to

download a file named <MachineName>_cmd.txt from the service. According

to the response, the process downloads additional files from the repository,

uploads files to the repository or executes commands.

After performing the requested operation (Download/Upload/Execute), a file

containing the output of the operation is uploaded to the SmartFile service

under the name:

<MachineName>_result.txt_<CurrentDate>.txt

The attacker has used a scheduled task to automatically run SmartFile each

minute .

PARANOID prevents the abnormal network connection by SmartFile.

Autoit3.exe 1/68 VT Detection

MD5: b06e67f9767e5023892d9698703ad098

SHA-1: acc07666f4c1d4461d3e1c263cf6a194a8dd1544

SHA-256:498900e57a490404e7ec4d8159bee29aed5852ae88bd484141780eaadb727bb

Another way the attacker gained persistence was through a scheduled task

running PowerShell scripts using AutoIt . AutoIt “is a freeware BASIC-like

scripting language designed for automating the Windows GUI and general

scripting”.

20

AutoIt is installed in:

“C:\Users\<UserName>\AppData\Local\Microsoft\Taskbar\”

This path bears great resemblance to previous paths that this threat actor has

used; for example:

“%UserProfile%\AppData\Local\Microsoft\Media\

was used in another attack by the same threat actor.

The scheduled task that executes AutoIt is

schta”&”sks /create /F”&” /sc minute /mo 1 /tn “”SC Scheduled Scan”” /tr

“”%userprofile%\appdata\local\microsoft\Taskbar\autoit3.exe

The string is obfuscated and split on purpose to prevent detection engines

that rely on signatures from detecting the script’s behavior (such as installing a

scheduled task) .

The PowerShell code executed by AutoIt is almost identical to the code found

in a similar OilRig attack back in 2016:

dntx.ps1 snippet found on one of the client’s compromised machines.

21

https://logrhythm.com/pdfs/threat-research/logrhythm-labs-oilrig-campaign-analysis.pdf

Snippet from dn.ps1 found previously by Palo Alto Networks.

AutoIt executes the main script, “App.a3u”, which checks for two registry paths:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\UT

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\UMe

UT holds the last time the script was executed.

UMe holds which ‘Method’ to run.

There are 3 possible methods:

• Method 0: Executes dnip.ps1 - Communicates with the C&C using DNS

queries

• Method 1: Executes dntx.ps1 - Communicates with the C&C using DNS TXT

queries (using “nslookup.exe -q=TXT”)

• Method 2: Downloads and executes a new script

The script creates two folders for uploading and downloading files to the

server named:

• “dn” - for download

• “up” - for upload.

22

https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/

The attacker has used a .vbs script to perform the functionality of the AutoIt

a3u script in previous attacks . It seems that the attacker has evolved and

changed methods since previous attack mechanisms are well known by now

(Example 1, Example 2, Example 3) .

AutoIt and the scripts associated with it were installed using “wins.exe”.

PARANOID prevented communication with the C&C on systems where it was

installed:

This request was sent when running the CheckDNSTXT Function from App .

au3, which tests if communication through DNS TXT queries is possible:

23

https://www.content.shi.com/SHIcom/ContentAttachmentImages/SharedResources/PDFs/lr-041017-oilrig-report2.pdf
https://researchcenter.paloaltonetworks.com/2016/05/the-oilrig-campaign-attacks-on-saudi-arabian-organizations-deliver-helminth-backdoor/
https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/

Web Shells

The attacker used two main .aspx files to gain persistence on servers with

Microsoft’s IIS. One of the files had functionality allowing the attacker to

upload new files to the compromised machine. The attack modified the file

specifically for each machine to fit its folder’s paths. Additionally, the attacker

used a web shell to execute an arbitrary command on the infected machine

(using cmd.exe). The malicious .aspx files were usually named ‘login.aspx’ and

‘main.aspx’, though these could be easily changed.

PARANOID detects illegal shells spawned by this method.

Malicious ISAPI filter: test3-32.dll (isAPI.dll) 0/68 VT Detection

MD5: 6a711e56f54656cc3e679dded8e1df8f

SHA-1: 6250644178728f15eca8a7894932c3220e749f9e

SHA-256: dac69caad8891c5e1b8eabe598c869674dee30af448ce4e801a90eb79973c66

This is an IIS ISAPI filter. ISAPI filters are used to extend the functionality of

Microsoft’s IIS servers. An attacker can use ISAPI filters as a covert way to

execute commands on a previously compromised machine . When using a

malicious web page, the attacker will need to access a specific page in the

compromised machine (e.g. http://infected-machine/upload.aspx). However,

when using malicious ISAPI filters, the attacker can execute commands by

accessing any path on the server. This is done by the ISAPI filter listening to all

requests made from the server; a ‘keyword’ is usually used to trigger the filter

into action (execute command, upload file, etc.).

The DLL binary found exports two functions that are required to register the

ISAPI filter:

24

A quick overview of the file’s metadata shows that no effort was made to hide

this filter’s ‘intentions’:

It’s likely the filter gets its execution parameters from a “cmd2cmd=” value,

possibly in the header of the request:

It then seems to execute “cmd.exe /c <params>”

25

The malicious plugin was usually added under:

C:\Windows\Microsoft.Net\Framework64\v4.0.30319\

path, using names such as “aspnet.dll” and “isAPI.dll”

The name of the filter added was:

• ASP .NET_4 .0

• ASP .NET_4 .0_x86_64

Myrtille.Services.exe 0/62 VT Detection

MD5: a417d3641b4bf1a086b1ca1d173dd799

SHA-1: a88ffb4d0e2b9d909d3eaec7011a7de5a3628f25

SHA-256: 67945f2e65a4a53e2339bd361652c6663fe25060888f18e681418e313d1292ca

From the Myrtille GitHub page: “Myrtille provides a simple and fast access to

remote desktops and applications through a web browser, without any plugin,

extension or configuration”. This allows attackers to access Remote Desktop

Protocol (RDP) sessions on previously infected machines using a web browser.

The attacker has obtained this tool on some machines, but we have not seen

indications of its usage . The attacker might use this tool in future attacks .

26

https://github.com/cedrozor/myrtille

rpc.exe 37/68 VT Detection

MD5: 86c2ca43ba1f231ce169f13bfdfa464c

SHA-1: a0db03590ea2bc006b90866f14ebbd907f7cb3ac

SHA-256: 3e4bf8f4578dbb422e41251a3d29953f76b95b57033fb4622f745664c469defd

rpc.exe seems to be a Meterpreter payload. According to Metasploit

documentation: “Meterpreter, short for The Meta-Interpreter, is an advanced

payload that is included in the Metasploit Framework . Its purpose is to

provide complex and advanced features that would otherwise be tedious to

implement purely in assembly”. In this case, Meterpreter allowed the attacker

to execute a binary on a compromised machine, allowing connectivity with

the C&C. This provides the operator with the ability to execute a wide range

of commands and send additional post-exploitation modules to the machine,

such as keyloggers, screen-grabbers and more.

The attacker has tried to use Meterpreter to establish communication with

attacker- controlled servers. Using Meterpreter in this stage of the attack can

allow better throughput when extracting data from the network and easier

communication with the infected machine .

PARANOID prevented this malicious communication .

27

Escalate Privileges

The attacker has mainly used variations of Mimikatz to obtain higher privileges

in the attacked networks. The attacker has also set the registry value of:

HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest\

UseLogonCredential to 1 on some of the machines. This allowed the attacker

to obtain cleartext passwords (using Mimikatz) after users log on. Additionally,

the attacker has tried to use ProcDump to dump lsass .exe process memory .

This is sometimes used as an additional method to directly obtain lsass.exe

process memory in cases when Mimikatz fails.

mnl.exe 18/66 VT Detection

MD5: 1cb8a29c2963cfbb7a0a7968c4235575

SHA-1: c4e9d74a48e9d3792175e3668bb30efb699a6626

SHA-256: 9709afeb76532566ee3029ecffc76df970a60813bcac863080cc952ad512b023

Mimikatz version 0.1 with additional modules.

28

https://github.com/gentilkiwi/mimikatz
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

Wsc.exe 22/68 VT Detection

MD5: 3cfbccbf310988e2dd56d20c4f416336

SHA-1: 7dfb43a1a4c1f74dfcf49d919f257c5b99038780

SHA-256: 5f2c3b5a08bda50cca6385ba7d84875973843885efebaff6a482a38b3cb23a7c

UPX packed Mimikatz.

In multiple instances, the attacker managed to get a large set of passwords

using two different versions of Mimikatz, which allowed them to move freely

across the networks using stolen credentials .

PARANOID can prevent malicious processes from obtaining user credentials

on the system:

29

Internal Reconnaissance

The attacker has used both ‘legitimate’ tools for internal reconnaissance in the

target network, along with specifically crafted tools. The following is the list of

tools used and their purpose:

PS.exe 0/59 VT Detection

MD5: a0fb3b8d64c40e78b7502b0f8d7ada00

SHA-1: a502ac896ae56b8dab96e464ed4d3b63609b1791

SHA-256: 88274a68a6e07bdc53171641e7349d6d0c71670bd347f11dcc83306fe06656e9

Port Scanner (PS) is a simple tool that scans for open ports of a target address

or a range of addresses:

The attacker has tried to use PS to scan segments of the network, specifically

for servers listening to port 80 (web servers). This could be due to the fact that

many of the persistence mechanisms used in this attack have used IIS web

servers. PARANOID prevented PS from scanning the network:

30

Moreover, we’ve seen the attacker use PS to scan external address (controlled

by the attacker). We assume this was done in order to find a ‘hole’ in the

firewall that would allow direct communication with the controller (instead of

several pivots inside the organization). PARANOID also prevented this activity.

Third-party vendors later identified this tool as Iranian related:

share.exe 4/67 VT Detection

MD5: f01a9a2d1e31332ed36c1a4d2839f412

SHA-1: 90da10004c8f6fafdaa2cf18922670a745564f45

SHA-256: c9d5dc956841e000bfd8762e2f0b48b66c79b79500e894b4efa7fb9ba17e4e9e

Share .exe is a tool named NBTScan . This is “a command-line tool that scans

for open NETBIOS Name Servers on a local or remote TCP/IP network, and

this is a first step in finding of open shares.”

31

http://www.unixwiz.net/tools/nbtscan.html

The attacker has used NBTScan to enumerate hosts in the network that

have accessible shares. Since the attacker has mainly used the EternalBlue

exploit to target Windows shares, this was the first reconnaissance step before

scanning for the vulnerability and actually exploiting it.

PARANOID prevented the enumeration of the network shares:

ch.exe 18/67 VT Detections

SHA-256: 42d57d7f0f65e78f3e4e5fb63828703d083395500c3b0aa0c603c221782c7af0

MD5: 3bdca22193eb676df24f333922575524

SHA-1: edafb505f7c5a532f11a6a35ce5422d1f5d22a79

ch.exe is a tool used to test hosts for the EternalBlue exploitability. It was taken

from this GitHub repository and converted to an executable using PyInstaller.

From artifacts found on one of the compromised hosts, we have learned that

the attacker scanned all detected hosts found with the “share.exe” tool for

the EternalBlue vulnerable systems. EternalBlue is an exploit developed by

the U.S. National Security Agency (NSA) and leaked by the Shadow Brokers

hacker group on April 14, 2017. It’s used by a wide range of malware and cyber

campaigns (e.g. WannaCry, NotPetya) due to its effectiveness and reliability. It

leverages the Server Message Block (SMB) protocol .

32

https://github.com/gh0std4ncer/MS17-011/blob/master/checker.py

PARANOID prevented ch .exe network communication .

33

Lateral Movement

For lateral movement, the attacker has mainly used the EternalBlue exploit to

execute commands on remote machines .

EternalBlue Exploits

zzz_exploit-v2.exe 16/66 VT Detection

 MD5: 61bd178c694a719f78605f892b374ba9

 SHA-1: 12b35396caa20f1aebfa9dd81b49d48c12ee0c68

 SHA-256:

b79ac92faec950a4783a1dfc47909b919e1a41cd8fc3ae85cc1aa66e5f72a02c

ms17_102-v2 .exe 14/68 VT Detection

 MD5: 0fd171676885b747402b15bc8e9b6892

 SHA-1: 040db783fbecfda5b2bf63a72c2d9f3d03f53098

 SHA-256:

c532f7471e3ea441e1cdd1ec568f347906c5055c71515865c1e6283500c92fa9

zzz_exploit-v3.exe 14/68 VT Detection

 MD5: cfdef4d525ea7b054f9531de64876e4d

 SHA-1: 7fe3630e76f9dce4ff53038aa3c9de2e0742b788

 SHA-256:

add5dd9b7d148c921a95364b652211b848951bc35d14b7a676006823ea147f5d

All exploits are likely taken from this GitHub repository . The attacker

transformed Python files into executables using PyInstaller . It is quite common

for attackers to use already built exploits and tools. After finding a vulnerable

server, the attacker usually executes a command to enable a Guest account:

“net user Guest <password> /active”

And then the attacker adds this user to the local administrators group

“net localgroup administrators Guest /add”

After adding the guest user to the compromised machine, the attacker can

login into that machine using RDP and continue the attack (obtain more

credentials, locate sensitive data and more) .

34

https://github.com/gh0std4ncer/MS17-011
http://www.pyinstaller.org/

psexec_coresecurity.exe 4/57 VT Detection

MD5: 527405a2a56961e69d201288a31301b2

SHA-1: 052861715234a13d6d3613a96aa0feb86e727ba8

SHA-56: cc8f8745c69031a911a39b7f54e4841c3226ddf3fa175a97bfad2bc789a6051c

Core Security is a company that provides, among other things, penetration

testing tools . It has an open source project named Impacket that implements

various network protocol packets:

https://github.com/CoreSecurity/impacket

psexec_coresecurity.exe was largely taken from this GitHub repository.

Attackers can use psexec to launch arbitrary commands on remote hosts in

the network .

PARANOID can prevent psexec_coresecurity.exe’s damage, but was not

installed on compromised hosts when they were attacked .

35

https://www.coresecurity.com/
https://github.com/CoreSecurity/impacket

Attacker’s Infrastructure

The main IP used in this attack was 37.61.220[.]69. The attacker tried

connecting to it using Meterpreter and downloading files stored on an IIS

instance running on that server .

When looking up this address at Shodan.io, we obtained the following

information:

As for the last update, it has 4 open ports:

• 53 - SSH

• 80 - IIS

• 81 - RAT (XtremeRAT)

• 443 - RAT (JSRat-Py)

Port 53 is used as a SSH server (WinSSHD)

Port 80 is used as an IIS server

36

Shodan identifies Port 81 as XtremeRAT:

Attackers have used RAT in the past to target companies in the Middle East .

Port 443 seems to also run a RAT; the content returned:

We have discovered code that gets commands from a server and executes

them . A quick search returns the complete source code for this RAT . This

JavaScript-based RAT communicates with a Python backend. The operator

can send a broad range of commands to the target, such as download,

upload, execute and more .

Given the wide variety of malicious applications running on the server, we

assume that the attacker controls this server (legitimately or not) and uses it

for its operations .

37

https://www.fireeye.com/blog/threat-research/2014/02/xtremerat-nuisance-or-threat.html
https://krebsonsecurity.com/tag/xtreme-rat/
https://github.com/Hood3dRob1n/JSRat-Py/blob/master/JSRat.py

The attacker used the dnmails[.]gq domain as C&C in the DNS-based RAT. We

found no traces of the domain during investigation . After some delay, it seems that

the attacker expanded its infrastructure and used an additional IP and domain:

wowcap[.]net which resolved to 185.191.204[.]66 at the time of the attack. The

attacker tried to connect to this address using Meterpreter .

After going through the files left on compromised machines, we were able to

obtain addresses of additional servers probably used by the same threat group:

App .a3u contained the hardcoded address to the C&C server used in the

attack (dnmails[.]gq)

Inspecting the code reveals another IP that might have been forgotten:

107.191.62[.]45:

The complete URL path: http://107.191.62[.]45:7023/update.php?req= is similar

to the URL found in many similar attacks by this threat group (Example1,

Example2) .

Searching for this IP on VirusTotal reveals a file referring to it named “VBS

MALWARE (28)”. After going through the vbs file, we identified the same URL:

38

https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/
https://logrhythm.com/pdfs/threat-intelligence-reports/logrhythm-labs-annual-threat-intelligence-report-2017.pdf

Looking further in “VBS MALWARE (28)”, we identified additional IPs related to

this threat actor:

Example of the Attack Flow

39

40

Indicators of Compromise (IOCs)

Infrastructure

37.61.220[.]69 Attacker IP

107.191.62[.]45 Attacker IP

169.254.87[.]165 Attacker IP

dnmails[.]gq Attacker Domain

wowcap[.]net Attacker Domain

abbey.joe[.]1999[at]gmail.com Attacker Email

hmrb@grr[.]la Attacker Email

http://37.61.220[.]69/update.php RAT update URL

http://107.191.62[.]45:7023/update.php RAT update URL

http://169.254.87[.]165:7023/update.php RAT update URL

Paths and Registry Keys

HKEY_CURRENT_USER\SOFTWARE\Microsoft\

Windows\CurrentVersion\UT
PowerShell C&C key

HKEY_CURRENT_USER\SOFTWARE\Microsoft\

Windows\CurrentVersion\UMe
PowerShell C&C key

%USERPROFILE%\AppData\Local\Microsoft\

Taskbar\

PowerShell/AutoIt

installation directory

%USERPROFILE%\AppData\Local\smApp\DB Used to obtain tools

“SC Scheduled Scan”
Scheduled task name

(For AutoIt)

“UpdatMachine”
Scheduled task name

(For SmartFile)

41

Files

Withheld for customer security
Service .exe

(Google Drive RAT)

MD5: 46a761099f523a01ab4edddfe9110ae2

SHA1: f463b783c780ce51b313087c15607aefb291c8fa

SHA256: 8c29a26f9c55317b4a7a722bf084036e93a-

41ba4466cbb61ea23d21289cfa

dnip .ps1 (PowerShell script

which communicates with

DNS CNC)

MD5: 55cdb9f0e6a8c8b5d6354393fb98f1d8

SHA1: 01cc85fe9e4e702e7e46554a69d691fe70843f55

SHA256: d4dcbfbab036132eb6c40c56a44c0d-

3b4b681b19841b81fc4f8e1d62ea5b211d

dntx .ps1 (PowerShell script

which communicates with

DNS CNC using DNS TXT

records)

MD5: dd06cb0235e20eceeda6ad7518e41713

SHA1: 73fd5828a4590debb6555ebed427c5d-

35ce4470a

SHA256: 162f143dd3b42ee5b33d9dad0f43dceeeaf6e-

3c3557ee5694ea51e0eb8620487

App .au3 (Orchestrating

which PowerShell script to

execute)

Withheld for customer privacy AutoIt installer

Withheld for customer privacy
SmartFile .exe (SmartFile

platform RAT)

MD5: 6a711e56f54656cc3e679dded8e1df8f

SHA-1: 6250644178728f15eca8a7894932c3220e-

749f9e

SHA-256: cdac69caad8891c5e1b8eab-

e598c869674dee30af448ce4e801a90eb79973c66

test3-32.dll (ISAPI filter DLL)

MD5: 86c2ca43ba1f231ce169f13bfdfa464c

SHA-1: a0db03590ea2bc006b-

90866f14ebbd907f7cb3ac

SHA-256: 3e4bf8f4578dbb422e-

41251a3d29953f76b95b57033fb-

4622f745664c469defd

rpc .exe (Meterpreter)

42

MD5: 1cb8a29c2963cfbb7a0a7968c4235575

SHA-1: c4e9d74a48e9d3792175e3668bb30ef-

b699a6626

SHA-256: 9709afeb76532566ee3029ecffc76d-

f970a60813bcac863080cc952ad512b023

Mnl .exe (Credential har-

vester)

MD5: 3cfbccbf310988e2dd56d20c4f416336

SHA-1: 7dfb43a1a4c1f74dfcf49d919f-

257c5b99038780

SHA-256: 5f2c3b5a08bda50c-

ca6385ba7d84875973843885efebaff6a482a38b-

3cb23a7c

Wsc .exe (Credential har-

vester)

MD5: a1fbcd3ce8226bd0793360b2f886a245

SHA1: 74ae20ff636d882f61583510fd-

14fac934b97075

SHA256: 874fb6b02f8e617d-

3f2794537eb9b308f1b7fa180aeeb7fa-

30d24365082219a4

Login.aspx (Web Shell)

MD5: a0fb3b8d64c40e78b7502b0f8d7ada00

SHA-1: a502ac896ae56b8dab96e464ed4d-

3b63609b1791

SHA-256: 88274a68a6e07bdc53171641e7349d-

6d0c71670bd347f11dcc83306fe06656e9

PS .exe (Port scanner)

MD5: f01a9a2d1e31332ed36c1a4d2839f412

SHA-1: 90da10004c8f6fafdaa2c-

f18922670a745564f45

SHA-256: c9d-

5dc956841e000bfd8762e2f0b48b66c-

79b79500e894b4efa7fb9ba17e4e9e

share .exe (Shares enu-

merator)

SHA-256: 42d57d7f0f65e78f3e4e5fb-

3828703d083395500c3b0aa0c603c221782c7af0

MD5: 3bdca22193eb676df24f333922575524

SHA-1: edafb505f7c5a532f11a6a35ce5422d1f-

5d22a79

ch .exe (EternalBlue vul-

nerability scanner)

43

MD5: 61bd178c694a719f78605f892b374ba9

SHA-1: 12b35396caa20f1aebfa9dd81b-

49d48c12ee0c68

SHA-256: b79ac92faec950a4783a1dfc-

47909b919e1a41cd8fc3ae85cc1aa66e5f72a02c

zzz_exploit-v2.exe (Ex-

ploit)

MD5: 0fd171676885b747402b15bc8e9b6892

SHA-1: 040db783fbecfd-

a5b2bf63a72c2d9f3d03f53098

SHA-256: c532f7471e3ea441e1cdd1ec568f-

347906c5055c71515865c1e6283500c92fa9

ms17_102-v2 .exe (Exploit)

MD5: cfdef4d525ea7b054f9531de64876e4d

SHA-1: 7fe3630e76f9dce4f-

f53038aa3c9de2e0742b788

SHA-256: add5dd9b7d148c921a95364b652211b8

48951bc35d14b7a676006823ea147f5d

zzz_exploit-v3.exe (Ex-

ploit)

MD5: 527405a2a56961e69d201288a31301b2

SHA-1: 052861715234a13d6d3613a96aa0feb86e-

727ba8

SHA-56: cc8f8745c69031a911a39b7f-

54e4841c3226ddf3fa175a97bfad2bc789a6051c

psexec_coresecurity .exe

(Lateral movement tool)

44

2880 Lakeside Drive Suite 237

Santa Clara, CA 95054

+1 (408) 780-0750

www.nyotron.com

