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Abstract—Relevant to visual attention mechanism, visual
saliency are concerns of detecting the salient regions in image
and video. Saliency detection is a critical pre-process in many
computer vision applications, which requires high-level visual
recognition and scene understanding as well as low-level photo
and video processing. In this paper, We propose a new bi-
subspace bottom-up saliency detection model. Inspired by visu-
ally intuitions and bi-subspace priors, we formulate the problem
as subspace analysis depicting the background aside from the
saliency object in the image. In the meanwhile, another subspace
representation via a group-sparse constraint is proposed to depict
the structure of the object in our model. Numerical experiment
results show that our method is more stable and accurate than
other methods.

I. INTRODUCTION

A human’s brain process mass of visual information in
visible surrounding environment everyday. The various pro-
cessions conducted in visual system are the concentration
of many research fields such as biology [1], neuroscience
[2], cognitive science [3] and psychology [4]. Among all the
study of those processions, visual attention research which
is a determining component concerns about the mechanism
of people’s eye-movement to visible objects. Born to deal
with this problem from the perspective of computer vision
and different from the specified purpose of object recognition
to detect human face or car, saliency detection aims to detect
the most informative and important region of a scene. In the
last few years, saliency detection has numerous applications
in vision problems including object recognition [5], [6] and
video compression [7], [8] as preprocessing steps to focus on
the area of interest [9], [10].

Visual saliency detection approaches can be viewed from
two main categories - top-down [11] and bottom-up - in
general. Bottom-up saliency method considers mainly about
pixel-level visual response. Though regardless of any high-
level prior knowledge, bottom-up oriented approaches simulate
the pattern which people’s visual stimulation mainly prefers
under good visible environmental condition [3].

In this paper our purpose is to establish a bottom-up
saliency detection method through casting this problem into
bi-subspace analysis inspired by previous works based on
low-rank matrix completion[12]. First of all, we start from
elemental results with our common intuitions:

1. The salient object and the un-salient background seem-
ingly belong to “two completely different worlds”, namely two
subspaces.

2. Different parts in the image belong to “different worlds
(subspaces)” as well.

According to the result above, We re-frame group-sparse
Robust Principal Component Analysis (R-PCA) [13] recovery
model with a simple geometry structural prior to our detec-
tion method in this literature. Comparing to former low-rank
approaches, the main contribution of our bi-subspace model is
that our method captures the information from two subspaces.
Moreover, the proposed approach better depicts the structure
of the sparsity of saliency map in the image. In the following,
we will do a shortly review about some existing mainstream
approaches of saliency detection in Section 2 followed by
introducing our approach.

II. RELATED WORK

Biological-based works first emerged before the other tech-
niques of saliency detection. According to Koch and Ullman
[14], [15], [16], bio-inspired model was first proposed to
detect saliency object by Itti et.al. [15]. They proposed a
model inspired by biology together with feature integration
and the this approach utilized a linear filter on the input
image decomposition and constructed Gaussian image pyramid
of the brightness map, the color map and the direction map
respectively. While in multi-scale space, based on the center-
surrounded difference principle, the method also constructed
feature maps of brightness, color and direction. This method
provides a framework that can quickly detect significant visual
points. Ma and Zhang [17] adopt the simulation of visual
perception to provide a saliency map. Hael, et.al. [18] modified
Itti’s model based on the graph structure, which regards all
cells (pixels, for example) of the image as nodes in one graph
and consequently extracts feature vector for each node, and all
these nodes intend to constitute a Markov chain. Besides the
biological-based approach, many other kinds of work burst
in these years. Zhai and Shah [19] defined saliency of a
pixel comparing with the rest of the pixels and proposed a
statistical method on frequency histogram. Another influential
global contrast based saliency detection algorithm proposed
by Hou and Zhang [20] who model the global contrast in
frequency domain. In addition, many block-based saliency
detection approaches includes Achanta [21], who proposed a
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Fig. 1. Color Contrast. The ”distance” has an significant effect on humans’
eyes to differ the foreground from background.

frequency-tuned approach relying on DoG band pass filters.
Cheng et.al. [10] divide the input image by using image
segmentation into a plurality of regions and build histogram
of colors in each area. As deep learning has recently been
brought to computer vision, DL-related methods [22], [23],
[24] shed a light upon a new perspective to saliency de-
tection. In contrast to the engineering-handcrafted features
for image processing, features extracted via CNN preserve
high-level semantic information. However, all the CNNs need
heavy parameter-tuning workloads and the parameters in the
networks must be typically pre-trained on datasets for visual
recognition tasks, which is impossible in some situations. An
unignorable example is for medical image datasets, the number
of patients is too limited to be well-trained in the network. In
this case, deep learning could fail to be constructed due to its
high complexity. Furthermore, all DL-related works are time
consuming since the problem is non-convex and its gradient-
descent-based method can’t guarantee its convergence. This
drawback limits its application to any fields that couldn’t
afford to days of model-training and high-end computational
devices. For example, training a CNN model for saliency
detection takes over 2 GPU days and requires hundreds of
gigabytes of storage for the 5000 images in the MSRA-B
dataset.

Alternatively, There are also some non-DL approaches
trying to consider the problem from other aspects. Shen
et.al. brought up a approach based on Unified Low Rank to
combine low-level features with high-level priors [12]. Lang
et.al. [25] provided a Multi-Task Sparsity Pursuit (MTSP)
method to incorporate multi-types of features. Li et.al. [26]
build tensor analysis model to search for the most suitable
local features and their combinational coefficients. Different
from these approaches, we model the problem motivated by
more reasonable priors and conduct the structure of saliency
map by describing its geometric feature of sparsity.

III. FOUR VISUAL INTUITIONS BASED ON BI-SUBSPACE
PRIORS

In this section, we detail the elemental results mentioned in
section I and add two more priors for better description about
visual saliency.

1. While an image in a specified high-dimensional feature
space, its background(the stuff which is not salient) can
be located in one low-dimensional subspace. Namely, the
background can be represented as “low-rank”; furthermore,

Fig. 2. Convex set supported by interesting points. The points marked are
generated by [27], [28]

the salient object is considerably far away from the subspace.
As shown in Fig. 1, humans tend to trust their eyes and believe
the left circle is more “salient” than the middle one with the
same size due to the different distance between the salient
object and the background can shift the feeling of our visual
system by its biologic mechanism.

2. While an image in a specified high-dimensional feature
space, every cell of this image can be linearly approximated
by other cells; in particular, each cell is located in one small
subspace, i.e., pieces contained in any part of the object
somehow look alike and therefore we can just represent every
piece with other pieces within the same part.

3. The salient spots in an image must be sparse; Meanwhile,
it could inlay in a convex set in the image as shown in Fig.2.

4. Each part constituting in the object has substantially the
same saliency value. That implies whenever we need to find
saliency object, we ought to segment the scenery into parts
and then consider it belongs to the salient object or not.

IV. PROPOSED METHOD

A. Subspace A: Low-rank subspace of the background

Firstly we over-segment the image into N super-pixels (or
cells) by mean-shift method; we notate each super-pixel as
bi ∈ RD. Combining all vectors into the matrix we get B =
[b1, b2, ..., bN ] ∈ RD×N . As we have already shown as Prior
1, B can be decomposed as a information-redundant matrix L
and sparse matrix S as follows,

min
L,S
‖L‖∗ +

n∑
i=1

ωi‖Spi‖2,1 s.t. B = L + S (1)



Note that
∑n
i=1 ωi‖Spi‖2,1 is a sparse-induced term, ωi is

the weight for each group and Spi is the ith sub-matrix of S.
Correspondingly in our low-rank model L is the representa-

tion of background regions with significant redundancy added
by S which suggests the salient object outside of the subspace
including the background. To measure the saliency of each
segments, our approach prefer l2,1-norm in S because in our
expectation S should be a column-sparse matrix, since such
a constraint condition suitably annotates our assumed priors
that the salient segments in the image is sparse.

To solve the convex problem, extending the Augment La-
grange Multipliers (ALM)[29] algorithm offers a framework
for optimizing it. Therefore we transform Eq. (1) into the
Lagrangian function:

L(L,S,G, µ) = ‖L‖∗ + λ

n∑
i=1

ωi‖Spi‖2,1+

< G,B− L− S > +
µ

2
‖B− L− S‖2F

(2)

Eq. (2) introduces a Lagrange multiplier G, and µ > 0 is
a penalty parameter. To minimize the Lagrange function L in
Eq. (2), we alternatively optimize L, S, and G by iteration.
Next we focus on the optimization for the three variables
respectively.

Computing L: Firstly let us fix S and G to optimize Lk+1

at the (k + 1)th iteration. Then Eq. (2) is equivalent to the
minimization below:

Lk+1 = arg min
L
L(L,Sk,Gk, µk)

= arg min
L
‖L‖∗+ < Gk,B− L− Sk > +

µk

2
‖B− L− Sk‖

= arg min
L
σ‖L‖∗ +

1

2
‖L−VL‖2F ,

(3)
in which σ = 1

µk is a trade-off parameter between the nuclear
norm and the l2 norm. Here VL = B− Sk + 1

µkG
k.

It is easy to check that the solution to Eq. (3) could be given
by

Lk+1 = UΓσ(Σ)VT ,

where(U,Σ,VT ) = SV D(VL)
(4)

A closed form solution has been proven existing in [] Where Σ
is the singular value matrix of VL. The operator Γσ[·] in Eq (4)
is a Singular Value Thresholding (SVT) operator [30], which is
defined by element-wise σ threshold of Σ, i.e., diag(Γσ[Σ]) =
[tσ[δ1], tσ[δ2], ..., tσ[δm]] and m = rank(Σ). Each tσ[δ] is
computed as

tσ[δ] =


δ − σ, ifδ > σ,

δ + σ, ifδ < −σ,
0, otherwise.

(5)

Fig. 3. Precision-recall curves for fixed thresholding of saliency maps.

Computing S: Sk+1 is the optimal solution of the following
problem.

Sk+1 = arg min
S
L(Lk+1,S,Gk, µk)

= arg min
S
λ

n∑
i=1

ωi‖Spi‖2,1

+ < Gk,B− Lk+1 − S > +
µk

2
‖B− Lk+1 − S‖2F

= arg min
S
ε

n∑
i=1

ωi‖Spi‖2,1 +
1

2
‖S− LS‖2F .

(6)

in which ε = λ
µk and LS = B−Lk+1 + 1

µkG
k. According

to [31] the closed-form solution of Eq. (6) is

S:,i = sign(LS:,i)(|LS:,i| − εωi)+ (7)

In Eq. (7) (A)+ is defined as A+ = 0.5(‖Aij‖+ Aij).

Algorithm 1 Framework of ALM algorithm to solve the Bi-
Subspace Model.
Input:

Image Feature Matrix, B, parameter β and ωi.
Output:

L,S;
1: Intialize L0,S0,G0, µ0 = 0.3, µmax = 107,and β = 6;

repeat;
2: Lk+1 = arg min

L
L(L,Sk+1,Gk, µk)

3: Sk+1 = arg min
S
L(Lk+1,S,Gk, µk)

4: Gk+1 = Gk + µk(B− Lk+1 − Sk+1)
5: µk+1 = min(βµk, µmax)
6: k = k + 1

until converge;
7: return L,S;



Fig. 4. Examples of saliency maps compared to LR [12] method.

B. Subspace B: Parts in the Image

Although the proposed algorithm in the previous subsection
is proper to analysis and model the background subspace,
its weakness still exists in practice. In fact, extending the
subspace analysis to any part in the image would give benefit
more to significant improvement of accuracy of our saliency
map prediction. Given a feature data B = [b1, b2, ..., bN ],
based on prior knowledge that the pieces in the same part
could represent the others within, bi can be a sparsely linear
representation in the redundant dictionary Bi− (Bi− is the
matrix B with ith column removed). In another word, bi
is contained in a somehow small-sized subspace of Bi− .
Consequently we have

min ‖ci‖1 + α‖Bi−ci − bi‖2 s.t. cTi 1 = 1. (8)

min ‖Bi−ci − bi‖2 + θ‖ci‖1 s.t. cTi 1 = 1 (9)

where ci ∈ RN−1 and θ is a small parameter. Notably in Eq.
(8) our second term is an intention to consider the noise in
the representation[32].

Consider the dictionary is over-completed, as the case
occurs when two data point is very close, then their coefficients
of the dictionary ci may be extremely different. Aim to
facilitate our cluster procedure to the data and encode the
pieces in the same part in the same small-sized subspace, we
approach the method as Zhao et.al. [33] proposed. Our work
introduces a Laplacian regularization to intend to enforce the
similarity of the sparse coefficients between the similar data



points.

min ‖Bi−ci − bi‖2 + θ‖ci‖1 +
γ

2

∑
i,j

‖ci − cj‖2Wij

= min ‖Bi−ci − bi‖2 + θ‖ci‖1 + γtr(CLCT )

s.t. cTi 1 = 1.
(10)

in which L = H−W, L is a Laplacian matrix, H =
diag{Hii}n, and the diagonal entries are respectively com-
puted as Hii =

∑
jWij .

Taking into account of the computational complexity, we
specifically select only some most important features to de-
scribe each pixel. B is the average feature values of the pixels
in the same super-pixel. As we bring on covariance-matrix
between pixels in the same super-pixel, we are capable of
describing the relationships between each super-pixel. The
covariance matrix R can be written as

R =

 r11 · · · r1m
...

. . .
...

rm1 · · · rmm

 (11)

rij =
1

K − 1

K∑
k=1

(fki − bi)(fkj − bj) (12)

where in the same super-pixel fki is the ith feature of the kth
pixel(K pixels of one super-pixel in all) and bi is the mean of
the ith feature. Note that we have used this quantity to depict
the the super-pixel.

Here, we choose

d(R1,R2) =

√√√√ m∑
i=1

ln2 λi(R1,R2) (13)

where ln2 λi(R1,R2) We propose to employ this distance []
is to compute each element of the matrix W, which shows
the difference between two super-pixels by:

W(R1,R2) = exp(−ξd(R1,R2)) (14)

in which ξ is a small parameter we select.
After computing the constraint matrix W we can directly

obtain the Laplacian matrix L from with the feature matrix B
to optimize Eq. (10). The approach is similar to the method
in [34]. We obtain a matrix of sparse-coding coefficients
C = [c1, c2, ..., cN ] ∈ RN×N . Next we construct a symmetric
similarity matrix CL = |C + CT |. Suppose CL is the adja-
cency matrix of a graph G. The Laplacian matrix P of the
graph G can be written as

P = Q−CL

Qii =
∑
j

CL
ij .

(15)

Finally, we obtain the parts of an image after applying the
K-means algorithm to cluster the eigenvector of the Laplacian
matrix P.

Fig. 5. precision, recall and F-measure with adaptive thresholding on the
1000-image database. Our method performance best on precision, recall and
F-measure.

C. Advanced Group Sparsity about Visual Saliency

As our priors show before, The salient object in an image
must be sparse [12] and it could inlay in a convex set in
the image. Now we prefer to seek for a convex set contain
the salient region, we use both the method Weijer et.al.
[28] proposed and the color boosted Harris point operator
[27] to detect contour points or corners of salient sections.
In practice we conduct the equivalent number of interesting
points respectively by the first and the second method. The
convex set is immediately formed by finding the minimal
convex set whose verticals are parts of the interesting point. As
we show in Fig. 2, due to the convex region surrounding every
interesting point with highly likelihood to be salient, we can
always find a bigger convex set to contain all of these regions.
Therefore, if any part in the image belong to the convex set
partly, it tends to be believed as the sparse salient group of
super-pixels and shares the same saliency within the group.

D. The main algorithm

A. Feature Extraction. At the first place we abstract the
image features including Gabor filter [35], RGB color, CIELab
color, first and second order derivatives and steerable pyramids
[36] to construct a 60-dimensional feature space. Then, we
approach the mean-shift clustering [37] in the feature space
to fast over-segment the image into N super-pixels bi, i =
1, 2, ..., N . Then we piece all the feature vector together into
a matrix B = [b1; b2; ...; bN ] ∈ RD×N (D = 60).

B. Salient Parts Estimation. Following the previous sec-
tion, this step is firstly to construct a convex set J coarsely
containing a majority of salient region, then let

ωi = 1− ‖Ei ∩ J‖0
‖Ei‖0

(16)

in Eq. (16) Ei is the ith cluster, and we roughly define the
operator ‖·‖0 as the number of pixels in the set. Note that if Ei
does not overlap with J , we just let ωi = 0. It is mentionable
that because of faster computing during searching the parts
in the image our extraction from super-pixels confines to be



Fig. 6. Visual comparison of saliency maps. We compare our method (Ours) to several state-of-the-art methods.

low-dimensional. This paper selects 7 features (e.g. CIELab,
derivatives in each direction) to save the cost of computation.

C. RPCA Recovery. This procedure builds on Eq. (4) to
recover L and S from B by solving an ALM and group-sparse
problem. At the end of the recovery, we compute saliency
value for each super-pixel spi in a simple way like:

Sal(spi) = ‖Si‖ (17)

After normalization and Gaussian filtering on pixel-level as
Map(x, y), where (x, y) is the coordinate of a pixel.

V. RESULTS

In this section, we validate the Bi-Subspace model in Eq.
(4) by comparing to the other state-of-the-art models in two
evaluation measures. All tests were conducted in Matlab and
experiments were performed on an Intel Core i5 2.5GHz and
4GB RAM computer. In the following we will estimate our
approach on the database named as MSRA 1000 which is a
image sub-database provided by Achanta et.al. [21] together
with accurate human-marked labels as ground truth. Numerical
comparisons of our method to the classic Low-Rank method
and 6 efficient algorithms will be demonstrated as detailed.

Our comparison measures are similar with Achanta et.al.
[21] to evaluate the accuracy of saliency detection. The first
evaluation fixes the threshold T from 0 to 255 to the saliency
values that aims at segmenting an image. The pixels whose
saliency values are lower than T are background stuff and the
rest of the pixels belong to the salient foreground. Differenti-
ating T from 0 to 255 results with the precision-recall pairs,
and a precision-recall figure is shown in Fig. 3. Note that the
curve is generated by averaging the results of 1000 test images.

The other evaluation is to give an adaptive threshold to the
test image in segmentation operation. Above all, calculate the
average saliency for each super-pixel and the average saliency
over the entire image. Then whenever the saliency of a super-
pixel is larger than twice of the mean saliency value, the super-
pixel can be viewed as salient. At the final step we compute
the precision and recall values and F-measure. where

Fφ =
(1 + φ2)P ×R
φ2P ×R

(P = Precision,R = Recall) (18)

In Eq.(18) φ2 = 0.32 is set in the experiment which is the
same as in [11], [30].

We make a comparison among our method and other state-
of-the-art algorithms besides IT [5], GB [18], AC [21], RA
[38], and GC [10] and LR [12]. Softwares or results provided
from their paper are utilized for our comparison. As presented
in Fig. 3, while shifting the threshold from 0 to 255, the
precision-recall curves of all the measures are formed along
with ours are presented in Fig. 3, and adopting the adaptive
threshold we plot the precision, recall and F-measure which
are shown in Fig. 4.

Obviously we could observe that the precision-recall curve
of our approach are better than any other approaches and
achieves the state-of-the-art. Likewise, adopting the adaptive
threshold gives the best performance in Fig. 4. The develop-
ment of our performance could be visually comprehended in
Fig. 5. While the Low-rank approach blinds itself when the
structure in the scenery is beyond the rough presumption such
like the color assumption or the center assumption proposed in
[12], our method grasp the parts of the salient object without



mixing the background interference. The relevant results are
shown in Fig. 6.

VI. CONCLUSION

In this paper, We propose A novel bi-subspace data-driven
saliency detection model. Motivated from relatively visually
intuitional and bi-subspace assumptions, we consider the prob-
lem from subspace analysis to characterize the background and
foreground. In the meanwhile, we also utilize the subspace
description by group-sparsity for the structure of the object
in our model. Just like [12], our model can be equipped with
more high-level prior knowledge (e.g. face and car recognition
etc.). Numerical experiment results show that our method is
more stable and accurate to other methods. For future work,
we plan to extend our work from classical RPCA framework
to tensor RPCA, by which we may find a more explicit and
essential properties of visual saliency detection work.
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