

JOURNAL OF ENGINEERING RESEARCH AND TECHNOLOGY, VOLUME 2, ISSUE 4, DECEMBER 2015

209

An Efficient Approach for Supporting

Multi-Tenancy Schema Inheritance in RDBMS for SaaS

Tawfiq S. Barhoom

1 ,
Samir A. Hillis

2

1
Islamic University of Gaza , tbarhoom@iugaza.edu.ps
2
Islamic University of Gaza, samir.hillis@gmail.com

Abstract— Multi-tenancy refers to a principle in software architecture where a single instance of the software
runs on a server, serving multiple client organizations (tenants). Common practice is to map multiple single-
tenant logical schemas in the application to one multi-tenant physical schema in the database. Such mappings are
challenging to create. This is due to the flexibility of base scheme to be extended by enterprise application
tenants which provides different dynamically modified versions of the application. The fundamental limitation
on scalability of this approach is the number of tables of database can handle. Shared Tables Shared Instances
(STSI) is a state-of-the-art approach to design the schema. However, they suffer from poor performance and
high space overhead. In this paper, we propose an efficient approach for supporting multi-tenancy schema
inheritance. We trade-off STSI and our approach. Experimental results show that our method achieves good
scalability and high performance with low space requirement, and outperforms STSI methods at different rates
depending on DML operations.

Index Terms— cloud computing, Database as a Service (DBaaS),Multi-Tenant database , schema-mapping
technique.

I INTRODUCTION

It is a clear trend that cloud data outsourcing is becoming a

pervasive service. Along with the widespread enthusiasm on

cloud computing, In addition to cloud infrastructure and plat-

form providers, such as Amazon, Google, IBM, Microsoft and

SalseForce, more and more cloud application providers are

emerging which are dedicated to offering more accessible and

user friendly data storage services to cloud customers. Cloud

computing becomes a natural and ideal choice for organiza-

tions and customers. It provides IT-related services over the

network on-demand anytime. Usually the objectives and

characteristics of a cloud are to be highly available, scalable,

flexible, secure, and efficient. The most important characteris-

tic is scalability. This means applications would scale to meet

the demands of the workload automatically. It’s important to

note that the cloud should not just scale up, but also decreased

in times where the demands are lower. Availability is another

critical characteristic of a cloud. An application deployed in a

cloud is up and running on 24/7/365 basis.

Reliable of the cloud refer to an applications cannot fail or

lose data when the system down, and users should not notice

any degradation in service.

Now the software industry is adopting the Software-as-a-

Service (SaaS) deployment model in many application do-

mains. A special kind of SaaS offering is a multi-tenant soft-

ware application [16]. It serves multiple tenants (e.g., compa-

nies or non-profit groups) from a single application instance. A

special kind of SaaS offering is a multi-tenant software appli-

cation [2,6] which runs from the same code base, and can thus

be maintained centrally [6] .

Database as a service (DaaS) attempts to move the operational

burden of provisioning, access control, configuration, scaling,

performance tuning, backup, and privacy away from database

users to the service provider. DaaS is so appealing because it

promises to offer scalability as well as being an economical

solution. It will allow for users to take advantage of the lack of

correlation between workloads of different applications, the

service can also be run using fewer machines than if each

workload was individually provisioned for its peak [18].

Cloud Storage is a new business model for delivering virtual-

ized storage to customers on demand. The formal term pro-

posed by the Storage Networking Industry Association (SNIA)

for cloud storage is Data Storage as a Service (DaaS) – as

“Delivery over a network of appropriately configured virtual

storage and related data services, based on a request for a

given service level." [1]

Cloud Service Providers (CSP) provide many services such as

storage, platform and applications. The main benefit of multi-

tenancy is to reduce the operating costs of running software

from the provider’s perspective. Multi-tenancy is the main

property of SaaS [7], it allows vendors to provide multiple

requests and configurations through a single instance of the

application. In the same way, a single database is shared

amongst customers to store all tenants’ data: this is known as

"multi-tenant database".

mailto:samir.hillis@gmail.com

Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

210

Multi-tenancy is a reference to the mode of operation of soft-

ware where multiple independent instances of one or multiple

applications operate in a shared environment. The tenants

(application instances) can be representations of organizations

that obtained access to the multitenant. The tenants may also

be multiple applications competing for shared underlying

resources. All this is achieved without changes of the applica-

tion code to support each customer’s individual needs. In

order to achieve this, individual meta data for each client has

to be stored and has to have impact on the way the system

behaves.

Multi-tenant databases is a feature that allows a single in-

stance of an application to handle several end-users at the

same time , this idea has been explored previously without any

explicit connection with multi-tenancy [12] .

II Multi-Tenant Data Storage Systems

The concept multi-tenancy is not supported on the traditional

DBMS, It is appeared after the spread of cloud computing.

however, despite the importance of multi-tenancy, it brings

about several issues on security, implementation challenges,

customization, configurability, scalability, and extensibility

which can be seen only upon the deployment on a data center

[14]. A well-designed SaaS application should be optimized

to support multi-tenancy, scalability and configurability [15].

This leads to the implementation and adoption of an additional

layer for the real data management. Application developers

experience additional problems with multi-tenant database

architectures. not knowing the semantics and the relationships

between data. Thus, they can no longer be used for optimiza-

tion and consistency management. Scalability here refers to

the ability of an application to support an increasing number

of users without noticing a significant performance overhead

[5]. Customization is concerned with the support of specific

features of users or meeting service level agreement by the

means of configurations. Due to the distributed and shared

nature of multi-tenant applications appropriate security poli-

cies should be devised to prevent unauthorized users from

accessing other users’ private data. there are three Approaches

to Managing Multi-Tenant databases as shown in Figure 1:

shared machine, shared process and shared table processes [7];

these techniques also called Separate Databases, Shared Data-

base - Separate Schemas and Shared Database- Shared . The

most interesting technique is the last one which aims at creat-

ing only once the application schema and mapping all tenants

directly to this schema by making use of one of the available

schema mapping techniques.

We review existing multi-tenant database schema design

methods

(a) Separate Database: In this approach, a separate database

is assigned to each tenant for data storage. Each database

contains some metadata used to redirect each tenant to the

correct database. This approach is considered expensive

in both implementation and maintenance.

(b) Independent Tables and Shared Instances: In this ap-

proach all tenants share the same physical database, how-

ever, the schema different for each tenant. This approach

is relatively simple to implement.

(c) Shared Tables and Shared Instances (STSI): In this

approach all tenants will share both the physical database

and the schema. Tables are shared by all tenants. Custom-

ers’ information is separated using primary keys which

are specified in the database design. This approach is rela-

tively economic because it supports a large number of

tenants per database server. Selecting the appropriate ap-

proach depends on different criteria. For example, the

separate database approach is the appropriate solution for

large organizations tenants who need to store large

amounts of data. The same approach is also suitable if se-

curity and legal requirements are of high concern. On the

other hand, the shared database – shared schema is the

appropriate solution for individual tenants who have low

amounts of data to store. Also, the same approach is the

optimum solution in case of frequent changed applica-

tions. [15].

Figure 1: Types of Multi-Tenant data storage systems [22]

III Schema Requirements for Multi-Tenant Da-

tabases
Standard relational DBMSs have only very limited support for

online schema evolution. For complex application updates

there has to be a significant service downtime and even small

schema changes, like the ones individual tenants initiate, have

a severe performance impact, as stated in [9]. In turn a multi-

tenant DBMS needs to provide Schema Evolution capabilities.

On the one hand, tenants need the ability to tailor the SaaS

application to their needs without affecting other tenants. This

may require schema modifications of already existing rela-

tions. On the other hand, SaaS applications are evolving con-

stantly, as service providers are forced to integrate new fea-

tures. These new features may require changes to the database

schema. Consider, for example, a situation where the service

provider needs to deploy a new feature of the base application

which requires changes to the schema of existing relations.

These changes could be performed online, as long as they do

not require changes in the application code, e.g., adding at-

tributes or enlarging the value range of an attribute. Scalabil-

ity, namely the ability to serve an increasing number of tenants

without too much query performance degradation. One way to

achieve high scalability is to offer a single instance of the

 Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

211

software which serves multiple clients/organizations Multi-

Tenancy. By consolidating multiple customers onto the same

infrastructure, resources can be economized and used more

efficiently [7,13] .

Costs for third-party software licenses are, therefore, drastical-

ly reduced, allowing the saved money to be invested in bigger

capacities of the existing infrastructure (e.g. more disk space,

memory, etc…). Moreover, management processes can be

enhanced while providing a uniform framework for system

administration. In a multi-tenant situation we cannot assume

that the number of tenant will remain the same or that the

tenant does not require more than one application and data-

base server . The scalability implies that resources can be

scaled-up or scaled-down dynamically without causing any

interruption in the service [20].

IV Related Works

Recently, cloud computing became a dominant field in the

information technology world. It prevails over both academia

and industry. many studies have been done by companies and

researchers to supporting outsourcing database as a service,

and extending relational DBMS. Cloud Service Providers

(CSP) provide many services such as storage, platform and

applications.

Companies like force.com does its own mapping from logical

tenant schemas to one universal physical database schema

(Weissman & Bobrowski) to overcome the limitations of tradi-

tional DBMSs. However, this approach complicates develop-

ment of the application because of many DBMS features such

as query optimization. Instead, a next-generation multi-tenant

DBMS should provide explicit support for extensibility [6].

BigTable [2] is developed and deployed by Google as a struc-

tured data storage infrastructure for different Google’s prod-

ucts. To scale up the system to thousands of machines and

serve as many projects as possible, BigTable employs a simple

data model that presents data as a sorted map in which each

value is an uninterpreted string. We see that although Google's

BigTable is a high performance, distributed and proprietary

storage system designed to easily manage structured data that

scales across thousands of commodity servers, BigTable is

currently not used nor distributed outside Google, although it

can be accessed from Google App Engine. Since its release

several open source implementations have been reported in the

literature namely HBase and Hypertable.

Bezemer, et al.[17] gives a very clear introduction to multi-

tenancy, it defines the term and shows its main characteristics.

In order to do research on multi-tenancy, the authors aim to

introduce the term multi-tenancy and compare it against multi-

user and multi-instance.

Curino et al. and Moon et al. shows that schema evolution is

still an important topic, especially in scenarios where infor-

mation systems must be upgraded with no or less human in-

tervention . In their view, multi-tenancy is efficient when

giving a set of databases and workloads, it can be determined

what the best way is to serve them from a given set of ma-

chines. Relational Cloud stores the data belonging to different

tenants within the same database server, but does not mix data

of two different tenants into a common database or table.

[11,3,6].

S. Aulbach et al. [4], presented a Chunk Folding approach that

is a schema-mapping technique . The approach works by ver-

tically partitioning logical tables into chunks that in turns are

folded together into several physical multitenant tables and

joined as needed.

Franclin S. Foping et al. [10] have been contributed a new

approach focuses on devising a mechanism to handle data

between the real physical tables and the tenant tables includ-

ing options for tenant schema extension but can be imple-

mented in open source relational database products .

In [7] Jacobs et al. discusses the trend towards multi-tenancy

for hosted applications and some main requirements, while

comparing some implementations and showed the different

possibilities in implementing multi-tenant databases on stand-

ard relational databases. They identified three approaches are:

shared machine, shared process, and shared table. In the

shared machine approach each tenants get their own database.

in [9] Stefan Aulbach et al. introduce features like native

schema flexibility which is handled by prototype data model

called FlexScheme which is optimized for a multi-tenant

workload they describe a method for graceful on-line schema

evolution without service outages.

In[19] Schiller, et al. proposes the concept of a tenant context

to isolate a tenant from other tenants. They present a schema

inheritance concept that allows sharing a core application

schema among tenants while enabling schema extensions per

tenant. They introduce a tenant context concept to determines

the tenant’s view of the database, and a tenant-aware schema

inheritance for sharing of the application’s core schema that is

invariant among tenants while allowing extensions schema for

tenants according to their individual needs.

Jiacai Ni, et al. [22] build the physical tables from the attribute

level instead of the tenant level by extract the highly important

attributes from the tenants and build several base tables using

such important attributes and propose an adaptive method to

build base tables and supplementary tables based on database

schemas of different tenants and query workloads.

V Contributions

We used TPC-H schema [21]. The schema comprises 8 tables.

database generator will be used it use to populate the database

with data.

 We propose a new Virtual Schema that inherit both shared

data and metadata from Shared Schema. Thereby, it al-

lows extending tables and creating objects according to

parent schema of a multi-tenant database system based on

the standard RDBMS.

 We enhance TPC-H benchmark to suit cloud computing,

we called it SaTbencHCloud.

 We contribute a tenant data dictionary that allows integra-

tion with multi-tenant relational database.

Middleware for Table/ Metadata Sharing

schema inheritance concept: Schema inheritance allows

Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

212

deriving a schema from another schema. Thereby, a derived

schema inherits the objects that are defined in the parent

schema. it allows extending and creating objects according to

a defined set of rules. Therefore, it defines three different

schema types: shared schema, virtual schema and tenant

schema.

Shared Schema: Multi-tenant applications use tables to store

data that is specific to the application and invariant between

tenants. In such a case, the tenants only read the table while

the provider or an appropriate application maintains its con-

tents.

Virtual Schema: The hierarchically schema describes a virtu-

al schemas where a core application may be customized based

on Individual tenants needs. because a virtual schema is with-

out table instances. Consequently, it is impossible to store data

using a virtual schema.

Tenant Schema relates to a specific tenant. Each tenant pos-

sesses an associated tenant schema that represents a part of its

context. A tenant schema must inherit from a virtual schema. A

tenant schema includes table instances and a tenant schema is

final with respect to inheritance. Another schema cannot in-

herit from a tenant schema.

Tenant Context is associated with a specific tenant and keeps

all information that allows determining the tenant’s virtual

database. In other words, the concept of a tenant context de-

termines the tenant’s view of the database by isolate a tenant

from other tenants.

VI Experimental

This section describes the information needed to empirically

evaluate the efficiency and scalability of the SaTbencHCloud.

Scalability is defined as the system ability to handle growing

amounts of work in a graceful manner [20]. In our experi-

ments, we consider the scalability of SaTbencHCloud by

measuring system throughput as data scale increases. Two sets

of experiments are evaluated in terms of different dimensions

of data scale: tenant amounts and number of columns in the

shared table. We using the original shared table as the baseline

in the experiments The Multi-Tenant Databases Benchmark.

Benchmarking a database is the process of performing well

defined tests on that particular database for the purpose of

evaluating its performance. In order to provide standards, the

Transaction Processing Performance Council (TPC) defines

transaction processing and database benchmarks that are wide-

ly used in industry and academia to measure performance

characteristics of database systems [21]. Today the most im-

portant of these benchmarks is TPC-H. In order to enhance the

benchmark to suits with our work, we introduced simple mod-

ifications but important on some other related work such as

that offered by salesforce.com, but they do not consider the

extensibility issue of the shared table, which is the heart of our

work.

Setting up the SaTbencHCloud

Our version of benchmark called SaTbencHCloud , it focus on

a cloud environments with multi-tenancy support. SaTbencH-

Cloud comprises four modules as shown in Figure 2 a shows

configurable database base schema, a private schema genera-

tor, a data generator, a query workload generator, and a driver.

SaTbencHCloud can be used with any generic relational da-

tabase schema and SQL queries.

Figure 2: Complete process for running the SaTbencHCloud

SchemaGEN

TPC-H provide a Schema, it should work with most database

using only minor modifications. We add a Tenant_id column is

added to every table . Consequently, the primary key has to be

a combination of the Tenant_id and the entity specific id field.

We use Oracle Database 12c, it is complete with innovative

Multitenant architecture and designed for the cloud. We use

the schema generator called SchemaGEN to produce the

schema for each tenant.

CloudDBGEN

CloudDBGEN is use to populate the database with data, it has

a scaling factor that influences the amount of data.

QGEN

QGEN is a utility provided by the TPC to generate executable

query text. The only difference is that the query optimizer add

the clause RESTRICT ON TENANT statement in the query to

indicate which tenant does the tuples belong to.

Third Party Driver

The mechanism used to submit queries and refresh functions

to the system under test (SUT) and reports the execution time

and throughput of the system, and measure their execution

time is called a driver.

Metadata-Driven Architectures

This section proposes Metadata-Driven Architectures to build

a multi-tenant database schema. This database schema inte-

grates multi-tenant relational tables and virtual relational ta-

bles and makes them operate virtually as a single database

schema for each tenant and make it a suitable for multitenant

database environment that can execute any business domain

database. Figure 3 shows the details of metadata-driven archi-

tectures that is very significant for multi-tenant applications.

 Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

213

Table 5.1 brief description about metadata-driven fields.

Figure 3: Metadata-driven Database Design

Integrated TPC-H Schema and multi-tenant relational

database

We assumes that the service provider has three tenants. The

first tenant was interested to use the original database schema.

For simplicity we will use the orders table only as shown in

Figure (4-1).

The second tenant found that he needs to use the columns

predefined in the order table add new fields to fulfill his busi-

ness requirements. It including 'Ship Country' and 'Required

Date'. Figure (4-2) represents this case. The third tenant found

that he needs to add extra table. Thus, this tenant created vir-

tual database relationship between the already existing physi-

cal tables and his add extra table as shown in Figure (4-3).

 Experimental Settings and Results

In this section we will present the experimental settings and

results to supporting Multi-Tenancy schema inheritance in

RDBMS for SaaS and make a comparison with other tech-

niques. In general there are two types of tests: the load test and

the performance test, shown in figure 2. The load test in-

volves loading the database with data and running the queries.

The latter involves measuring the system’s performance

against a specific workload. We will customize the tests and

discuss the exact steps that need to be taken and the values to

be measured. We first present settings for benchmark data-

bases generation. Then, we present hardware and software

settings. Two sets of experiments are examined to evaluate the

scalability of the multi-tenant system, we considering the

throughput and response time in relation to the amount of

tenants and the effect of column amounts. First, by running

SchemaGEN to generate 3 groups of schemas for 100, 500,

1,000 tenants. These schemas are then used for evaluating the

scalability of storage and query processing under different

schema variability.

Figure 4: Integrated TPC-H Schema and multi-tenant relational

database

Next, we running CloudDBGEN to generate data for three

different databases named SaT_10GB, SaT_100GB and

SaT_300GB were respectively generated with the TPC-H

workloads of scale factor 10, 100, and 300. As required by the

TPC-H specification, the three different scale factors were

selected in order to observe significant differences in query

response between these three different scale factors.

Effect of Tenants
In this section, we present and evaluate the experimental re-

sults of SaTbencHCloud and STSI under different tenant

amounts. SaTbencHCloud implement schema inheritance that

allows deriving a schema from another schema. Thereby, a

derived schema inherits the objects that are defined in the

parent schema. it allows extending and creating objects ac-

cording to a defined set of rules. Therefore, it defines three

different schema types: shared schema, virtual schema and

tenant schema.

Storage Capability

We compare the disk space usage of shared table and SaT-

bencHCloud under different tenant amounts as shown in fig-

ure 5. It can be clearly seen that SaTbencHCloud outperforms

STSI in terms of storage requirement in all the experiments to

store the same number of tuples. Our interpretation of this that

shared table consumes large disk space to store null values. On

the other hand, SaTbencHCloud extract a data dictionary as-

sociated with a tenant from the overall data dictionary and

exploitation some situations of data needs to be shared be-

tween tenants, rather than migrating data from tenant to anoth-

er that requires storage consuming and may cause data dupli-

cation.

Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

214

Figure 5: Disk space usage with different number of tenants

Throughput Test

A throughput test is using to measure the ability of the system

to process the most queries in the least amount of time. We

now investigate the performance of SaTbencHCloud and STSI

on concurrent operations. The throughput test must be execut-

ed under the same conditions for both approaches. The driver

runs all queries and the multi-tenant database system in a

―client/server‖ configuration to simulate a real multi-tenant

environment. all the processes are executed in parallel against

indexed attributes. To ensure the accuracy of the results, we

execute TPC-H queries workload with its default settings and

compare it with SaTbencHCloud result. We discuss the usabil-

ity of our approach.

Data manipulation language (DML) Performance

Based on our proposal we divide DML operations into three

categories, The first is the DML from original database sche-

ma. The second is DML when the tenant add new columns .

The third is the DML when the tenant add new tables. For

each workload we repeat the experiments five times and ob-

tain the average time. As shown in figure 4 we compare the

operation costs among STSI and SaTbencHCloud according to

the example which was explained above. The experiment will

perform on the three databases with workloads of scale factor

10, 100 , and 300 Gigabytes. we call the selection operations

sel1, sel2 and sel3 and call the insert operations ins1, ins2 and

ins3 respectively for short . Similarly with the deletion and

update. When SF = 10 , we assume that the number of tenants

= 100, compared with STSI we see that sel1 and sel2 have

much better performance than STSI. Show figure 6. For sel3

performance will decline but it remains the best of the STSI

since the costly join operation that required create virtual

database relationship between physical tables and virtual table

. The same thing applies to additions, deletions and updates.

When SF = 100 as shown in figure 7 and SF = 300 as shown

in figure 8, we can see that the performance of SaTbencH-

Cloud is remains slower than SF = 10, but it is outperforming

STSI in terms of system throughput. We can conclude that

SaTbencHCloud is not affected by increasing the number of

tenants. Our interpretation of the efficiency of SaTbencH-

Cloud uses fewer disk I/Os to fetch the records of DML opera-

tions to memory than STSI because it displays the data for the

one tenant only at a moment. On the other hand, Index pivot

table associated with a specific tenant improve and speed up

the query execution time when retrieve data , The index is

built on the tenant's identity column. In contrast, STSI use a

big indexes records from all tenants. The lookup becomes

inefficient with large number of tenants.

Figure 6: DML Performance when scale factor = 10

Figure 7: DML Performance when scale factor = 100

Figure 8: DML Performance when scale factor = 300

Effect of Columns

Database as a service is designed to support a large number of

tenants and each of them have different requirements, but a

few of columns are common, for this reason we need to handle

the situation that the base schema is very sparse and contains a

large amount of configurable columns owned by different

 Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

215

tenants. One of the big challenges in the shared table model is

decide the number of custom fields (columns in table) for

tenants , providing less number of columns might restrict the

ability tenants who wish to use a multi-tenant database sys-

tems and flexibility of extend the table. We investigate the

scalability of SaTbencHCloud vs STSI with an increasing

number of columns and the impact on the efficiency of the

system performance and the use of suitable storage space.

Storage Capability

In this experiment, we will examine storage capability for

each of SaTbencHCloud and STSI with the increasing number

of columns. We assume that the number of columns in the

shared table varies from 10 , 100 and 300 in our three different

databases respectively. Figure 9 illustrates the disk space

usage of SaTbencHCloud and STSI. The figure shows that

SaTbencHCloud requires less storage space compared with

STSI. Our interpretation that SaTbencHCloud operates ac-

cording to the idea of tenant context , this means that there is a

degree of integration between multi-tenant relational tables

and virtual relational tables mean that storage data is associat-

ed with a particular tenant according to the columns defined

by this user without leading to store any values of other ten-

ants which shows a good scalability in respect to the system

storage . This concept already applied in the column-oriented

databases. Also, any schema modifications of one tenant will

not affect the logical schema of other tenants.

Throughput Test

Our objective now is to evaluate the effect of Increase col-

umns on the system throughputs. We will test the three data-

bases under different workloads. We will use QGEN to gener-

ate executable query, then we will execute the same

Figure 9: Disk space usage with different number of columns

queries against these databases After the extension of the table

by adding new columns and the response of the two approach-

es with the process. Figure 10 displays the system throughput

and response time for SaTbencHCloud and STSI. As is clear,

there is a decline in the performance of two approaches when

increasing the number of columns, but it does not affect the

scalability. It is clear that SaTbencHCloud offers the best

performance because it has the ability to selectively I/O in

columns to improve the performance. The rate of improve-

ment of 30%.

Figure 10: Throughput Test

VIII CONCLUSION AND FUTURE WORK

In this paper we have proposed SaTbencHCloud , that it is an

efficient approach for supporting multi-tenancy schema inher-

itance in RDBMS for SaaS tailored to multi-tenancy. We of-

fers different schema types for different situations. we focused

on meta data management to overcome the null values, and

bring the data by the tenant's identity, as well as building ten-

ant indexes. Our experiments results show that our approach

decreases main memory consumption and lookup times of the

data dictionary compared to STSI.

In our future work, we intend to complete and efficient sup-

port for multi-tenancy, and to facilitate the migration of appli-

cations feature between cloud database services providers

according to security requirements.

References

[1] "The NIST Definition of Cloud Computing" . National

Institute of Standards and Technology. September 2011.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: ―A distributed storage system for structured data‖. In

OSDI, 2006.

[3] Hyun Jin Moon, Carlo Curino, and Carlo Zaniolo. ―Scala-

ble Architecture and Query Optimization for Transaction-Time

DBs with Evolving Schemas‖. In Elmagarmid and Agrawal

(2010), pages 207–218. ISBN 978-1-4503-0032-2.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rit-

tinger. ―Multi-tenant databases for software as a service:

schema mapping techniques‖. In SIGMOD ’08: Proceedings

of the 2008 ACM SIGMOD international conference on Man-

agement of data, pages 1195–1206, New York, NY, USA,

2008. ACM.

[5] Mei Hui, Dawei Jiang, Guoliang Li, Yuan Zhou, ―Support-

ing Database Applications As A Service‖. IEEE International

Conference on Data Engineering, 2009.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Tawfiq S. Barhoom , Samir A. Hillis/ An Efficient Approach for Supporting Multi-Tenancy Schema Inheritance in RDBMS for SaaS (2015)

216

[6] Craig D. Weissman and Steve Bobrowski. the Design of

the force.com ―Multitenant Internet Application Development

Platform‖ . In Cetintemel et al. (2009), pages 889–896. ISBN

978-1-60558-551-2.

[7] D. Jacobs and S. Aulbach. ―Ruminations on multi-tenant

databases‖. In A. Kemper, H. Schoning, T. Rose, M. Jarke, T.

Seidl, C. Quix, and C. Brochhaus, editors, BTW, volume 103

of LNI, pages 514–521. GI, 2007.

[8] Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Mad-

den, S., Balakrishnan, H.,Zeldovich, N. 2011. ―Relational

Cloud: A Database Service for the Cloud‖ . In CIDR, pages

235–240.

[9] Stefan Aulbach, Michael Seibold, Dean Jacobs, and Alfons

Kemper. ―Extensibility and Data Sharing in Evolving Multi-

Tenant Databases‖. In Proceedings of the 27th IEEE Interna-

tional Conference on Data Engineering (ICDE), pages 99–110,

2011.

[10] Franclin S. Foping, Ioannis M. Dokas, John Feehan and

Syed Imran ―A New Hybrid Schema-Sharing Technique for

Multitenant Applications‖ , IEEE – Digital Information Man-

agement 2019, Cork Constraint Computation Centre Universi-

ty College Cork Ireland 1-4 Nov. 2009

[11] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. ―Au-

tomating Database Schema Evolution in Information System

Upgrades‖. In Tudor Dumitras, Iulian Neamtiu, and EliTile-

vich, editors, HotSWUp. ACM, 2009. ISBN 978-1-60558-

723-3.

[12] D. Jacobs. ―Enterprise software as service‖. ACM Queue,

6(3):36–42 .

[13] Z. H.Wang, C. J. Guo, B. Gao,W. Sun, Z. Zhang, and W.

H. An. ―A study and performance evaluation of the multi-

tenant data tier design patterns for service oriented compu-

ting‖.In e-Business Engineering, 2008. ICEBE ’08. IEEE

International Conference on, pages 94–101, Oct. 2008.

[14] R. Elmasri and S. B. Navathe. ―Fundamentals of Data-

base Systems‖, 5th Edition. Addison-Wesley, 2007.

[15] Mateljan, V., Cisic, D., Ogrizovic, D.: ―Cloud Database-

as-a-Service (DaaS) ― ROI. In MIPRO, Proceedings of the

33rd International Convention, 1185—1188 (2010).

[16] F. Chong and G. Carraro, ―Architecture Strategies for

Catching the Long Tail,‖ Microsoft Corporation,

http://msdn.microsoft.com/en-us/library/aa479069.aspx, Tech.

Rep., April 2006, (last visited 09-05-2014).

[17] Bezemer, C., Zaidman, A., Platzbeecker, B., & Hart, A.

(2010). ―Enabling Multi-Tenancy : An Industrial Experience

Report‖. Innovation, 1-8. IEEE. doi:10.1109/ICSM.

2010.5609735.

[18] Carlo Curino , Evan P. C. Jones, Raluca Ada Popa,

Nirmesh Malviya "Relational Cloud: A Database-as-a-Service

for the Cloud." 5th Biennial Conference on Innovative Data

Systems Research, CIDR 2011, January 9-12, 2011 Asilomar,

California.

[19] Oliver Schiller, Benjamin Schiller, Andreas Brodt: ―Na-

tive Support of Multi- tenancy in RDBMS for Software as a

Service‖ Proceedings of the 14th International Conference on

Extending Database ACM New York, NY, USA ,2011.

[20]. Burgess G, What is the TPC Good For? Or, the Top Rea-

sons in Favour of TPC Benchmarks,

http://www.tpc.org/information/other/articles/TopTen.asp, (last

visited 17-03-2015) .

[21] TPC: Transaction Processing Performance Council ,

http://www.tpc.org/ (last visited 23-03-2015).

[22] Chang Jie Guo, Wei Sun, Ying Huang, Zhi Hu Wang, and

Bo Gao.‖ A Framework for Native Multi-Tenancy Application

Development and Management‖.

[22] Ni, Jiacai, et al. "Adaptive Database Schema Design for Multi-

Tenant Data Management." Knowledge and Data Engineering, IEEE

Transactions on 26.9 (2014): 2079-2093.

Authors Profile

Dr. Tawfiq S. Barhoom

received his Ph.D degree from

ShangHai Jiao Tong University (SJTU), in 2004. This author

is the Dean of IT, Islamic University-Gaza. His current interest

research include , Secure Software, Modeling, XMLs security,

Web service and its Applications and Information retrieving.

Samir A. Hillis received his BSc in IT from AL-Quds open

University at 2000. He works at Palestine Technical College

since 2000 as lecturer and now he is the head of registration

department. Currently he is MSc candidate in Islamic Univer-

sity of Gaza , his interest in cloud computing, Database man-

agement systems, Data Mining and Mobile Applications.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5351158
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5351158
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://www.acm.org/publications

