On kinematics and differential geometry of Euclidean submanifolds

Yılmaz Tunçer, Yusuf Yaylı, M. Kemal Sağel

Abstract

In this study, we derive the equations of a motion model of two smooth homothetic along pole curves submanifolds M and N; the curves are trajectories of instantaneous rotation centers at the contact points of these submanifolds. We comment on the homothetic motions, which assume sliding and rolling.

M.S.C. 2000: 53A17, 53A05, 53A04.

Key words: Homothetic motion, Darboux frame, Darboux vector.

§1. Preliminaries

In ([7]), R.Müller has generalized 1-parameter motions in n-dimensional Euclidean space given the equation of the form $Y=A X+C$, and has investigated the socalled axoid surfaces. Further, K. Nomizu has defined ([8]) the 1-parameter motion model along the pole curves on the tangent plane of the sphere, by using parallel vector fields, and has obtained results in the particular cases of sliding and rolling. Then, H.H.Hacisalihoğlu has the investigated 1-parameter homothetic motion in the n-dimensional Euclidean space ([4]), and B. Karakaş has adapted K. Nomizu's kinematic model to homothetic motion, defining as well parallel vector fields along curves ([5]).

In this study, we define the kinematic model of smooth submanifolds M and N using arbitrary orthonormal frames along the pole curves and obtain the equations of this homothetic motion which assume both rolling and sliding of M upon N along these curves. Further, we obtain the equations of homothetic motion of M on N for two given arbitrary curves on M and N respectively, assuming that these curves are pole curves.

§2. Introduction

We shall use hereafter the definitions and notations from ([5]). The homothetic motion of smooth submanifolds M onto N in Euclidean 3-space is generated by the transformation

$$
\begin{align*}
& F: M \rightarrow \\
& \tag{2.1}\\
& X(t) \rightarrow Y(t)=h A X(t)+C
\end{align*}
$$

where A is a proper orthogonal $3 x 3$ matrix, X and C are 3×1 vectors and $h \neq 0$ is homothetic scale. The entries of A, C and h are continuously differentiable functions of the time t, the entries of X are the coordinates of a point on M in Euclidean coordinates $\left(x_{1}, x_{2}, x_{3}\right)$, and Y is a trajectory of X. We take B as $h A$, and by differentiating (2.1), we obtain

$$
\begin{equation*}
\frac{d Y}{d t}=B \frac{d X}{d t}+\frac{d B}{d t} X+\frac{d C}{d t} \tag{2.2}
\end{equation*}
$$

where

$$
\frac{d B}{d t} X+\frac{d C}{d t}, \quad B \frac{d X}{d t}, \quad \frac{d Y}{d t}
$$

are respectively called sliding velocity, relative velocity and absolute velocity of the point X. As well, we call X center of instantaneous rotation if its sliding velocity vanishes. If X is the center of an instantaneous rotation, then X is a pole point at the time t of the motion F given in (2.1). Since $\operatorname{det}\left(\frac{d B}{d t}\right) \neq 0$, then every homothetic motion in E^{3} is a regular motion. Consider a regular curve $X(t)$ on M, which is defined on a closed interval $I \subset \mathbb{R}$, such that all its points are pole points. In this case, we call the curves

$$
X(t)=-\left(\frac{d B}{d t}\right)^{-1}\left(\frac{d C}{d t}\right)
$$

and

$$
Y(t)=-B\left(\frac{d B}{d t}\right)^{-1}\left(\frac{d C}{d t}\right)+C
$$

moving and fixed pole curves, respectively, where the matrix $B\left(\frac{d B}{d t}\right)^{-1}$ is described by

$$
-B\left(\frac{d B}{d t}\right)^{-1}=\left(\frac{d h}{d t} A+h \frac{d A}{d t}\right) h^{-1} A^{-1}=\underbrace{\frac{d h}{d t} \cdot h^{-1} I_{3}}_{\varphi}+\underbrace{\frac{d A}{d t} \cdot A^{-1}}_{S}
$$

We call φ and S the sliding part and the rolling part of the motion F, respectively. Every homothetic motion in E^{3} consists of both sliding and rolling. For $S \neq 0$, there is a uniquely determined vector $W(t)$ such that $S(U)$ equal to the cross product $W(t) \wedge U$ for every vector $U \in I R^{3}$. The vector $W(t)$ is called the angular velocity of the point $X(t)$ at the moment $t([8])$.

§3. Sliding and rolling of M onto N

We consider further two smooth manifolds M and N which are tangent (inside or outside) each other and the curves $X(t)$ on M and $Y(t)$ on N as moving and fixed regular pole curves. Let Σ be the common tangent plane of M and N (tangent to $X(t)$ and to $Y(t))$ at the contact point p). We consider a Cartesian coordinate system in E^{3} and let $\left\{e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\right\}$ be the canonic unit basis. We denote by $\xi=\xi(t)$ and $\eta=\eta(t)$ the normal vector fields of M and N along the curves $X(t)$ and $Y(t)$, respectively. In addition, we denote by $\{T, N, B\}$ and by $\{\bar{T}, \bar{N}, \bar{B}\}$
the Frenet vector fields of the curves $X(t)$ and $Y(t)$, respectively, (tangent, principal normal and binormal vector fields). Since the homothetic motion $F: M \rightarrow N$ consists of rolling, then $W(t)$ lies in the tangent plane of both $X(t)$ of M and $Y(t)$ of N at each contact point ([5]), where we have $B \xi=\epsilon h \eta$. Here by ϵ we denoted the sign function such that if $\epsilon=+1$ then M moves inside of N along pole curves, and if $\epsilon=-1$ then M moves outside of N along pole curves.

Assume that $\left\{b_{1}, b_{2}\right\}$ and $\left\{a_{1}, a_{2}\right\}$ are orthonormal systems along the regular pole curves $X(t)$ and $Y(t)$, and let b_{1}, b_{2} and a_{1}, a_{2} transforms into each another via $b_{1}=h B^{-1} a_{1}$ and $b_{2}=h B^{-1} a_{2}$, respectively. Thus we call $\left\{b_{1}, b_{2}, \xi\right\}$ and $\left\{a_{1}, a_{2}, \eta\right\}$ moving and fixed orthonormal systems along the curves $(X)=X(t)$ and $(Y)=Y(t)$, respectively. Since (X) is the pole curve, we can write the equation $\frac{d Y}{d t}=B \frac{d X}{d t}$ by using (2.2). If t is the arc-length parameter for the curve (X), then we can write $\frac{d Y}{d t}=h A T$ and we have the following equations

$$
h=\left\|\frac{d Y}{d t}\right\|, \quad \bar{T}=\frac{1}{h} \frac{d Y}{d t}
$$

Since $\xi \in S p\{N, B\}$, then we can write

$$
\begin{equation*}
\xi(t)=\cos \psi(t) N+\sin \psi(t) B \tag{3.3}
\end{equation*}
$$

and we need to construct the frames $\left\{b_{1}, b_{2}, X\right\}$ and $\left\{a_{1}, a_{2}, e_{3}\right\}$ in order to determine the orthogonal matrix A and to set up the kinematic model. During this process, we make use of the frames $\{T, \xi \wedge T, \xi\}$ and $\{\bar{T}, \eta \wedge \bar{T}, \eta\}$, which are called Darboux frames along (X) and (Y) on M and N, respectively. We can find an orthogonal matrix Q by using (3.3) and

$$
\left(\begin{array}{c}
T \tag{3.4}\\
\xi \wedge T \\
\xi
\end{array}\right)=(Q)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)
$$

It is well known that if the system $\{T, N, B\}$ rotates relative to $\left\{e_{1}, e_{2}, e_{3}\right\}$, then we can write for $P \in S O(3)$ the relations

$$
\left(\begin{array}{l}
T \tag{3.5}\\
N \\
B
\end{array}\right)=(P)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

The tangent spaces $S p\left\{b_{1}, b_{2}\right\}$ and $S p\{T, \xi \wedge T\}$ coincide with Σ, and hence we have

$$
\left(\begin{array}{c}
b_{1} \tag{3.6}\\
b_{2} \\
\xi
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)}_{R}\left(\begin{array}{c}
T \\
\xi \wedge T \\
\xi
\end{array}\right)
$$

where $\theta=\theta(t)$ is the angle between b_{1} and $T\left(b_{2}\right.$ and $\left.\xi \wedge T\right)$. We obtain the orthogonal matrix $A_{1}=(P)^{T}[Q]^{T}[R]^{T}$ by using (3.4)-(3.6). The matrix A_{1} transforms b_{1} to e_{1}, b_{2} to e_{2} and ξ to e_{3}, respectively. On the other hand, we denote the skew symmetric matrix $\frac{d A_{1}^{T}}{d t} A_{1}$ as w_{1}, so that w_{1} will be given by

$$
w_{1}=\left(\begin{array}{ccc}
0 & \theta^{\prime}+k_{1} \sin \psi & m_{1} \tag{3.7}\\
-\theta^{\prime}-k_{1} \sin \psi & 0 & m_{2} \\
-m_{1} & -m_{2} & 0
\end{array}\right)
$$

where $k_{1}=k_{1}(t)$ and $k_{2}=k_{2}(t)$ are the curvature and torsion of the pole curve (X) respectively, and

$$
m_{1}=\epsilon k_{1} \cos \theta \cos \psi+\left(k_{2}+\psi^{\prime}\right) \sin \theta, \quad m_{2}=-\epsilon k_{1} \sin \theta \cos \psi-\left(k_{2}+\psi^{\prime}\right) \cos \theta
$$

Thus we have the following
Proposition 1. The vector fields b_{1} and b_{2} are parallel according to the connection of M along the curve (X) if and only if $\theta^{\prime}+k_{1} \sin \psi=0$ is satisfied.

Proof. Let $\bar{\nabla}$ be the Levi Civita connection and S_{M} be the shape operator of M. We obtain b_{1} by using (3.4) and (3.5),

$$
b_{1}=\cos \theta T+\sin \theta \sin \psi N-\sin \theta \cos \psi B
$$

and from the Gauss equation, we have

$$
\bar{\nabla}_{T} b_{1}=\nabla_{T} b_{1}+\left\langle S_{M}(T), b_{1}\right\rangle \xi
$$

and after routine calculations, we obtain

$$
\bar{\nabla}_{T} b_{1}=-\left(\theta^{\prime}+k_{1} \sin \psi\right) \cdot(\sin \theta T-\sin \psi \cos \theta N+\cos \psi \cos \theta B)
$$

It is easy to see that $\bar{\nabla}_{T} b_{1}=0$ if and only if $\theta^{\prime}+k_{1} \sin \psi=0$. Hence, b_{1} is a parallel vector field relative to the connection of M along the curve (X) if and only if $\theta^{\prime}+k_{1} \sin \psi=0$ is satisfied. Similarly, we can easily prove that b_{2} is a parallel vector field relative to the connection of M along the curve (X) if and only if $\theta^{\prime}+k_{1} \sin \psi=0$ is satisfied, as well.

On the other hand, since $\eta \in S p\{\bar{N}, \bar{B}\}$ then we have

$$
\begin{equation*}
\eta(t)=\cos \bar{\psi}(t) \bar{N}+\sin \bar{\psi}(t) \bar{B} \tag{3.8}
\end{equation*}
$$

thus we can find an orthogonal matrix \bar{Q} by using (3.8) such that

$$
\left(\begin{array}{c}
\bar{T} \tag{3.9}\\
\eta \wedge \bar{T} \\
\eta
\end{array}\right)=(\bar{Q})\left(\begin{array}{c}
\bar{T} \\
\bar{N} \\
\bar{B}
\end{array}\right)
$$

Since $\{\bar{T}, \bar{N}, \bar{B}\}$ rotates according to the orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, we obtain \bar{P} $\in S O(3)$ as follows

$$
\left(\begin{array}{c}
\bar{T} \tag{3.10}\\
\bar{N} \\
\bar{B}
\end{array}\right)=[\bar{P}]\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

and since $S p\left\{a_{1}, a_{2}\right\}$ and $S p\{\bar{T}, \eta \wedge \bar{T}\}$ coincide with Σ, we infer

$$
\left(\begin{array}{c}
a_{1} \tag{3.11}\\
a_{2} \\
\eta
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\cos \bar{\theta} & \sin \bar{\theta} & 0 \\
-\sin \bar{\theta} & \cos \bar{\theta} & 0 \\
0 & 0 & 1
\end{array}\right)}_{\bar{R}}\left(\begin{array}{c}
\bar{T} \\
\eta \wedge \bar{T} \\
\eta
\end{array}\right)
$$

where $\bar{\theta}=\bar{\theta}(t)$ is the angle between a_{1} and $\bar{T},\left(a_{2}\right.$ and $\left.\eta \wedge T\right)$. Thus we obtain another orthogonal matrix $A_{2}=(\bar{P})^{T}(\bar{Q})^{T}(\bar{R})^{T}$ by using (3.9)-(3.11) such that the matrix A_{2} transforms a_{1}, a_{2}, η into e_{1}, e_{2}, e_{3}, respectively. We denote the skew symmetric matrix $\frac{d A_{2}^{T}}{d t} A_{2}$ as w_{2}, which has the form

$$
w_{2}=\left(\begin{array}{cc}
0 & \bar{\theta}^{\prime}+\bar{k}_{1} \sin \bar{\psi} \tag{3.12}\\
0 & \left\{\begin{array}{c}
\bar{k}_{1} \cos \bar{\theta} \cos \bar{\psi}+ \\
\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \sin \bar{\theta}
\end{array}\right\} \\
-\left\{\begin{array}{c}
\bar{k}_{1} \cos \bar{\theta} \cos \bar{\psi}+ \\
\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \sin \bar{\theta}
\end{array}\right\} & -\left\{\begin{array}{l}
\bar{k}_{1} \sin \bar{\theta} \cos \bar{\psi}- \\
\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \cos \bar{\theta}
\end{array}\right\} \\
\left(\begin{array}{c}
\bar{k}_{1} \sin \bar{\theta} \cos \bar{\psi}- \\
\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \cos \bar{\theta}
\end{array}\right\} & 0
\end{array}\right)
$$

where $\bar{k}_{1}=\bar{k}_{1}(t)$ and $\bar{k}_{2}=\bar{k}_{2}(t)$ are curvature and torsion of the pole curve (Y). Thus we have the following

Proposition 2. The vector fields $a_{1}(t)$ and $a_{2}(t)$ are parallel according to the connection of N along curve (Y) if and only if $\overline{\theta^{\prime}}+\bar{k}_{1} \sin \bar{\psi}=0$ is satisfies.

Proof. It is easy to proof similarly remark 1.
Therefore, we can find the main matrix A of the motion (2.1) by using A_{1} and A_{2} as $A=A_{2} A_{1}^{T}$ so that A transforms b_{1} to a_{1}, b_{2} to a_{2} and ξ to $\epsilon \eta$, respectively. The skew-symmetric matrix $S=\frac{d A}{d t} A^{T}$ is instantaneous rotation matrix and S represents a linear isomorphism as $S: T_{Y(t)} N \longrightarrow S p\{\eta\}$. We obtain the matrix S by using (3.7) and (3.12) as $S=A_{2}\left(-w_{2}+w_{1}\right) A_{2}^{T}$. Consequently, the matrix S determines an unique vector $w_{p} \in S p\left\{a_{1}, a_{2}, \eta\right\}$ as follows.

$$
\begin{align*}
w_{p}= & \left.\left\{\begin{array}{c}
-\bar{k}_{1} \cos \bar{\psi} \sin \bar{\theta}+\left(\bar{\psi}^{\prime}+\bar{k}_{2}\right) \cos \bar{\theta}+ \\
\epsilon k_{1} \cos \psi \sin \theta-\epsilon\left(\psi^{\prime}+k_{2}\right) \cos \theta \\
-\bar{k}_{1} \cos \bar{\psi} \cos \bar{\theta}-\left(\bar{\psi}^{\prime}+\bar{k}_{2}\right) \sin \bar{\theta}+ \\
\epsilon k_{1} \cos \psi \cos \theta+\epsilon\left(\psi^{\prime}+k_{2}\right) \sin \theta
\end{array}\right\} a_{1}\right|_{p} \tag{3.13}\\
& -\left.\left\{\begin{array}{c}
\overline{\theta^{\prime}}+\left.\bar{k}_{1} \sin \bar{\psi}\right|_{p} \\
-\theta^{\prime}-k_{1} \sin \psi
\end{array}\right\} \eta\right|_{p}
\end{align*}
$$

Thus, we obtained an important condition for the rolling part of the homothetic motion of smooth submanifolds in E^{3}, along regular pole curves. Hence we have proved the following

Theorem 1. The transformation F is a rolling motion defined as $B b_{1}=h a_{1}, B b_{2}=$ $h a_{2}$ and $B \xi=\epsilon h \eta$ at the centers of instantaneous rotation if and only if $\overline{\theta^{\prime}}+\bar{k}_{1} \sin \bar{\psi}-$ $\theta^{\prime}-k_{1} \sin \psi=0$ is satisfied.

Furthermore, we can specify this result to special cases:
Corollary 1. a) If M is a manifold in E^{3} and N is a plane, then the angular velocity vector at the contact points will be

$$
w_{p}=\left.\left\{\begin{array}{c}
\epsilon k_{1} \cos \psi \sin \theta- \\
\epsilon\left(\psi^{\prime}+k_{2}\right) \cos \theta
\end{array}\right\} a_{1}\right|_{p}+\left.\left\{\begin{array}{c}
\epsilon k_{1} \cos \psi \cos \theta+ \\
\epsilon\left(\psi^{\prime}+k_{2}\right) \sin \theta
\end{array}\right\} a_{2}\right|_{p}-\left.\left\{\begin{array}{c}
\overline{\theta^{\prime}}+\bar{k}_{1}- \\
\theta^{\prime}-k_{1} \sin \psi
\end{array}\right\} \eta\right|_{p}
$$

In this case, F is a rolling motion if and only if $\overline{\theta^{\prime}}+\bar{k}_{1}-\theta^{\prime}-k_{1} \sin \psi=0$ is satisfied.
b) If M is unit sphere and N is a plane then angular velocity vector at the contact points will be as follows,

$$
w_{p}=\epsilon k_{1} \cos \psi \sin \theta a_{1 p}+\epsilon k_{1} \cos \psi \cos \theta a_{2 p}-\left\{\bar{\theta}^{\prime}+\bar{k}_{1}-\theta^{\prime}-k_{1} \sin \psi\right\} \eta_{p}
$$

In this case, F is a rolling motion if and only if $\overline{\theta^{\prime}}+\bar{k}_{1}-\theta^{\prime}-k_{1} \sin \psi=0$ is satisfied.
Corollary 2. a) In case that $b_{1}(t), b_{2}(t)$ and $a_{1}(t), a_{2}(t)$ are parallel vector fields along the pole curves, then we obtain all of the results in [5].
b) In case that $b_{1}(t), b_{2}(t)$ and $a_{1}(t), a_{2}(t)$ are parallel vector fields along the pole curves and $h=1$ then we obtain all of the results in [8].
c) If (X) and (Y) are geodesics of M and N, respectively, then M rolling on (or in) N along the pole curves.

As well, we can state the following
Proposition 3. Let (X) and (Y) be geodesics on M and N with the same curvatures and same torsions. Then M both slides and rolls on N or M slides without rolls inside of N along the pole curves.

Proof. Since (X) and (Y) are geodesics on M and N with same curvatures and torsions, then we take $\theta=\bar{\theta}=\psi=\bar{\psi}=0, \bar{k}_{1}=k_{1}=\lambda$ and $\bar{k}_{2}=k_{2}=\mu$. Substituting in (3.13), we obtain

$$
w_{p}=(1-\epsilon)\left\{\mu \bar{T}_{p}-\lambda(\eta \wedge \bar{T})_{p}\right\}
$$

In the case $\epsilon=-1$, the vectors ξ and η are opposite at the contact point p, and thus $w_{p} \neq 0$ and w_{p} is tangent to both (X) and (Y). This means that M slides and rolls outside of N along the pole-geodesic curves. In the case $\epsilon=1$, the vectors ξ and η have the same orientation at the contact points p, we infer $w_{p}=0$, which means that M slides without rolling inside N along the pole-geodesic curves.

Theorem 2. Let M and N be two submanifolds and $X(t)$ and $Y(t)$ be smooth pole curves on M and N respectively, which satisfy the conditions of Theorem 1, and which are tangent to each other at the contact points. Then we can find a unique homothetic motion F of M upon N along pole curves.

Theorem 3. Let S_{M} and S_{N} be the shape operators of M and N along the curves (X) and (Y), respectively. If

$$
h^{-1} S_{M}\left(\frac{d X}{d t}\right)=S_{N}\left(\frac{d Y}{d t}\right)
$$

then F is a sliding motion without rolling.

Proof. We can write the following equations along the curves (X) and (Y), respectively.

$$
S_{M}\left(\frac{d X}{d t}\right)=\frac{d \xi}{d t} \quad \text { and } \quad S_{N}\left(\frac{d Y}{d t}\right)=\frac{d \eta}{d t}
$$

Differentiating (3.3) and using (3.6) we yield

$$
\frac{d \epsilon \xi}{d t}=-\epsilon\left\{\begin{array}{l}
k_{1} \cos \theta \cos \psi \\
+\left(k_{2}+\psi^{\prime}\right) \sin \theta
\end{array}\right\} b_{1}+\epsilon\left\{\begin{array}{l}
k_{1} \sin \theta \cos \psi \\
-\left(k_{2}+\psi^{\prime}\right) \cos \theta
\end{array}\right\} b_{2}
$$

and since $b_{1}=h B^{-1} a_{1}, b_{2}=h B^{-1} a_{2}$ and $\xi=\epsilon h B^{-1} \eta$,

$$
h^{-1} B\left(\frac{d \epsilon \xi}{d t}\right)=-\epsilon\left\{\begin{array}{c}
k_{1} \cos \theta \cos \psi+ \\
\left(k_{2}+\psi^{\prime}\right) \sin \theta
\end{array}\right\} a_{1}+\epsilon\left\{\begin{array}{c}
k_{1} \sin \theta \cos \psi- \\
\left(k_{2}+\psi^{\prime}\right) \cos \theta
\end{array}\right\} a_{2}
$$

we obtain by differentiating (3.8) and using (3.11),

$$
\frac{d \eta}{d t}=-\left\{\begin{array}{c}
\bar{k}_{1} \cos \bar{\theta} \cos \bar{\psi}+ \\
\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \sin \bar{\theta}
\end{array}\right\} a_{1}+\left\{\begin{array}{c}
-\bar{k}_{1} \sin \bar{\theta} \cos \bar{\psi}+ \\
\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \cos \bar{\theta}
\end{array}\right\} a_{2}
$$

Since $h^{-1} B\left(\frac{d \xi}{d t}\right)=\frac{d \eta}{d t}$, we obtain

$$
\begin{aligned}
& \epsilon\left\{k_{1} \sin \theta \cos \psi-\left(k_{2}+\psi^{\prime}\right) \cos \theta\right\}=\left\{-\bar{k}_{1} \sin \bar{\theta} \cos \bar{\psi}+\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \cos \bar{\theta}\right\} \\
& \epsilon\left\{k_{1} \cos \theta \cos \psi+\left(k_{2}+\psi^{\prime}\right) \sin \theta\right\}=\left\{\bar{k}_{1} \cos \bar{\theta} \cos \bar{\psi}+\left(\bar{k}_{2}+\bar{\psi}^{\prime}\right) \sin \bar{\theta}\right\}
\end{aligned}
$$

Substituting these equations into (3.13), we obtain $w_{p}=0$. Hence F is a sliding motion without rolling.

Proposition 4. If F is a sliding and rolling motion then the shape operators of M and N satisfy following inequality

$$
h^{-1} S_{M}\left(\frac{d X}{d t}\right) \neq S_{N}\left(\frac{d Y}{d t}\right) .
$$

Example 1. Assume $\epsilon=-1$. Let $X(t)=(\sin t, 0, \cos t), t \in[0, \pi]$ be a unit speed curve on the unit sphere $\phi(u, v)=(\sin v \sin u, \sin v \cos u, \cos v)$ and $Y(t)=$ $(\sin t,-t, \cos t-2)$ be a helix on the cylinder $x^{2}+(z+2)^{2}=1$. We obtain the unit normal vector fields of M and $N, \psi, \bar{\psi}, \theta, \bar{\theta}$ and the Frenet vector fields and curvatures of the curves $X(t)$ and $Y(t)$ as follows

$$
\begin{gathered}
T=(\sin t, 0,-\cos t), \quad N=(-\sin t, 0,-\cos t), \quad B=(0,1,0) \\
k_{1}=1, \quad k_{2}=0, \quad \psi=\pi, \quad \xi(t)=(\sin t, 0, \cos t)
\end{gathered}
$$

and

$$
\begin{aligned}
\bar{T} & =\left(\frac{\sqrt{2}}{2} \cos t,-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \sin t\right), \bar{N}=(-\sin t, 0,-\cos t) \\
\bar{B} & =\left(\frac{\sqrt{2}}{2} \cos t, \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \sin t\right), \eta(t)=-(\sin t, 0, \cos t)
\end{aligned}
$$

$$
\bar{k}_{1}=\frac{\sqrt{2}}{2}, \quad \bar{k}_{2}=-\frac{\sqrt{2}}{2}, \quad \bar{\psi}=\pi
$$

Since $\|d Y / d t\|=h$, we find $h=\sqrt{2}$ and we obtain $\bar{\theta}(t)=\theta(t)=0$ by using $\frac{d Y}{d t}=$ $B \frac{d X}{d t}$. Hence the motion will be described by
(3.14) $\mathrm{Y}(\mathrm{t})=\left(\begin{array}{ccc}\cos ^{2} t-\sqrt{2} \sin ^{2} t & \cos t & (1+\sqrt{2}) \cos t \sin t \\ -\cos t & 1 & \sin t \\ -(1+\sqrt{2}) \cos t \sin t & -\sin t & \sin ^{2} t-\sqrt{2} \cos ^{2} t\end{array}\right) \mathrm{X}(\mathrm{t})$

$$
+\left(\begin{array}{c}
(1+\sqrt{2}) \sin t \\
-t \\
(1+\sqrt{2}) \cos t-2
\end{array}\right)
$$

The matrix S and the vector w_{p} are

$$
S=\left(\begin{array}{ccc}
0 & \frac{\sqrt{2}}{2} \sin t & 1+\frac{\sqrt{2}}{2} \tag{3.15}\\
\frac{-\sqrt{2}}{2} \sin t & 0 & \frac{-\sqrt{2}}{2} \cos t \\
-1-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \cos t & 0
\end{array}\right), w_{p}=\left(\frac{\sqrt{2}}{2} \cos t, 1+\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \sin t\right)
$$

Both (X) and (Y) satisfy (2.2), and these curves are the moving and the fixed pole curves of the motion (3.14), and the vector fields given in (3.7), (3.12) and (3.15) lie in the common tangent spaces $T_{X(t)}(M)$ and $T_{Y(t)}(N)$ at the contact points. In addition, since the vector w_{p} satisfies the condition given in Theorem 1, the motion (3.14) is a rolling motion. Since $\epsilon=-1$, then the unit sphere is rolling on the cylinder.

Figure 1: Unit sphere rolling on the cylinder along the curves (X) and (Y)
Example 2. Assume $\epsilon=1$. Let $X(t)=(\sin t, 0, \cos t-1), t \in[0, \pi]$ be a unit speed curve on the unit sphere $\phi(u, v)=(\sin v \sin u, \sin v \cos u, \cos v-1)$ and let $Y(t)=(2 \sin t,-t, 2 \cos t-2)$ be a helix on the cylinder $x^{2}+(z+2)^{2}=4$. We obtain the unit normal vector fields of M and $N, \psi, \bar{\psi}, \theta, \bar{\theta}$ and the Frenet vector fields and curvatures of the curves $X(t)$ and $Y(t)$ as follows

$$
T=(\sin t, 0,-\cos t), \quad N=(-\sin t, 0,-\cos t), \quad B=(0,1,0)
$$

$$
k_{1}=1, \quad k_{2}=0, \quad \psi=\pi, \quad \xi(t)=(\sin t, 0, \cos t)
$$

and

$$
\begin{gathered}
\bar{T}=\left(\frac{2 \sqrt{5}}{5} \cos t, \frac{-\sqrt{5}}{5}, \frac{-2 \sqrt{5}}{5} \sin t\right), \quad \bar{N}=(-\sin t, 0,-\cos t) \\
\bar{B}=\left(\frac{\sqrt{5}}{5} \cos t, \frac{2 \sqrt{5}}{5}, \frac{-\sqrt{5}}{5} \sin t\right), \quad \eta(t)=(\sin t, 0, \cos t) \\
\bar{k}_{1}=\frac{2 \sqrt{5}}{5}, \quad \bar{k}_{2}=-\frac{\sqrt{5}}{5}, \bar{\psi}=\pi
\end{gathered}
$$

Since $\|d Y / d t\|=h$, we find $h=\sqrt{2}$ and we obtain $\bar{\theta}(t)=\theta(t)=0$ by using $\frac{d Y}{d t}=$ $B \frac{d X}{d t}$. Hence the motion will be described by

$$
\mathrm{Y}(\mathrm{t})=\left(\begin{array}{ccc}
2 \cos ^{2} t+\sqrt{5} \sin ^{2} t & \cos t & (\sqrt{5}-2) \cos t \sin t \\
-\cos t & 2 & \sin t \\
(\sqrt{5}-2) \cos t \sin t & -\sin t & 2 \sin ^{2} t+\sqrt{5} \cos ^{2} t
\end{array}\right) \mathrm{X}(\mathrm{t})
$$

$$
+\left(\begin{array}{c}
\left\{\begin{array}{c}
\left(\frac{\sqrt{5}-2}{2}\right) \sin 2 t+ \\
(2-\sqrt{5}) \sin t
\end{array}\right\} \tag{3.16}\\
(\sin t-t)
\end{array}\right\}
$$

The matrix S and the vector w_{p} be as follows.

$$
S=\left(\begin{array}{ccc}
0 & -\frac{\sqrt{5}}{5} \sin t & 1-\frac{2 \sqrt{5}}{5} \tag{3.17}\\
\frac{\sqrt{5}}{5} \sin t & 0 & \frac{\sqrt{5}}{5} \cos t \\
-1+\frac{2 \sqrt{5}}{5} & \frac{-\sqrt{5}}{5} \cos t & 0
\end{array}\right), w_{p}=\left(\frac{-\sqrt{5}}{5} \cos t, 1-\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5} \sin t\right)
$$

Both (X) and (Y) satisfy (2.2). Then these curves are the moving and the fixed pole curves of the motion (3.16) respectively, and the vector fields given in (3.7), (3.12) and (3.17) lie in the common tangent spaces $T_{X(t)}(M)$ and $T_{Y(t)}(N)$ at the contact points. Moreover, the vector w_{p} satisfies the condition given in Theorem 1, and thus the motion (3.16) is a rolling motion. Since $\epsilon=1$, then the unit sphere is rolling in the cylinder.

Figure 2: Unit sphere rolling in the cylinder along the curves (X) and (Y)

References

[1] P. Appell, Traite de Mecanique Rationnelle, Tome I, Gauthiers-Villars, Paris, 1919.
[2] M. G. Cheng, Hypersurfaces in Euclidean spaces, Proc. Fifth Pacific Rim Geom. Conference, Tohoku University, Sensai, Japan, Tohoku Math. Publ. 20 (2001), 33-42.
[3] W. Clifford, W. and J.J. McMahon, The rolling of one curve or manifold upon another, Am. Math. Mon. 68-23A 2134 (1961), 338-341.
[4] H.H. Hacısalihoğlu, On rolling of one curve or manifold upon another, Proc. Of The Royal Irish Academy Dublin, 71, Sec. A, 2 (1971), 13-17.
[5] B. Karakaş, On Differential Geometry and Kinematics of Submanifolds, Ph.D. Thesis, Atatürk University, Ankara, Turkey, 1982.
[6] A. Karger and J. Novak, Space Kinematics And Lie Grups, Gordon and Breach Science Publishers, Prague, Czechoslovakia, 1978.
[7] H.R. Müller, Zur bewegunssgeometrie in raumen höherer dimension, Mh. Math. 70, 1 (1966), 47-57.
[8] K. Nomizu, Kinematics and Differential Geometry of submanifolds, Tohoku Math. Jour. 30 (1978), 623-637.
[9] Y. Yayl, Hamilton Motions and Lie Grups, Ph.D. Thesis, Gazi University Science Institute, Ankara, Turkey, 1988.

Authors' addresses:
Yılmaz Tunçer
Dep. of Mathematics, University of USAK,
1-Eylul Campus, 64100 Usak, Turkey.
E-mail addresses: yilmaz.tuncer@usak.edu.tr, ytunceraku@hotmail.com

