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 This paper presents a numerical study using two-fluid model in order to compare the effect of 
hydrodynamic and hydrostatic models for pressure correction term in two-fluid model in modeling gas-
liquid two-phase flows to provide a more accurate model. Two-fluid model is solved by Godunov 
Approximate Riemann Solver. The two-fluid model is applied using both hydrodynamic pressure 
correction term and hydrostatic pressure correction term for four sample examples including Water 
Faucet Case, Water-Air Separation Case, Toumi’s Shock Tube Case, and Large Relative Velocity 
Shock Tube Case. Hydrostatic pressure correction term is neglected for vertical geometry, therefore, in 
this geometry; two-fluid model cannot be hyperbolic. Thus, hydrostatic pressure correction term is not a 
stabilizing term. Also, in horizontal pipe and for atmospheric conditions, hydrostatic pressure correction 
term presents better results than hydrodynamic pressure correction term. But, in non-atmospheric 
conditions, hydrodynamic pressure correction term presents better results. Therefore, in order to select a 
suitable pressure correction term for two-fluid model, we consider geometry (vertical or horizontal) and 
flow conditions (atmospheric or under-pressure). Also, hydrodynamic pressure correction term in two-
fluid equations system is hyperbolic in a broader range than hydrostatic pressure correction term. 
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Table 1 Discretization of vectors of two-fluid model by considering 
hydrostatic pressure correction term 
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Table  2 Discretization of vectors of two-fluid model by considering 
hydrostatic pressure correction term 
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Fig. 2 Schematic of the water faucet case  
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Fig. 3 Water faucet case,  independent results of computational cells of 
gas volume fraction profiles for hydrostatic pressure correction term  
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Fig. 4 Water faucet case, comparison of the effect of the pressure 
correction term for pressure profile 
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comparison of the effect of the pressure  Water faucet case, Fig. 5

profile gas  volume fractioncorrection term for   
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Fig. 6 Water faucet case, comparison of the effect of the pressure 
correction term for gas  velocity profile 
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Fig. 7 Water faucet case, comparison of the effect of the pressure 
correction term for liquid  velocity profile 
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Fig. 8 Schematic of water and air separation case 
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Fig. 9 Water and air separation case, comparison of the effect of the 
pressure correction term for pressure profile 
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comparison of the effect of the  Water and air separation case, Fig. 10

profile as  volume fractiongpressure correction term for   
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Fig. 11 Water and air separation case, comparison of the effect of the 
pressure correction term for liquid  velocity profile 
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Table 3 initial conditions of the left and right of diaphragm in large 
relative velocity of shock tube case 

    
  0.29  0.3  

  1(m/s)  1(m/s)  
  65(m/s)   50(m/s)  

  265(kpa)  265(kpa)  
  1000(kg/m3)  1000(kg/m3) 
  2.65(kg/m3)  2.65(kg/m3) 

 

  
Fig. 12 Large relative velocity of shock tube case, independent results 
of computational cells of gas velocity profiles for hydrostatic pressure 
correction term  
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Fig. 13 Large relative velocity of shock tube case, comparison of the 
effect of the pressure correction term for pressure profile 
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Fig. 14 Large relative velocity of shock tube case, comparison of the 
effect of the pressure correction term for gas velocity profile 
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Table 4 initial conditions of the left and right of diaphragm in Toumi’s 
shock tube case 

    
  0.25  0.1  

  0  0  
  0  0  

  20(mpa)  10(mpa)  
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  200(kg/m3)  100(kg/m3) 
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Fig. 15 Toumi’s shock tube case, independent results of computational 
cells of gas velocity profiles for hydrostatic pressure correction term 
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Fig. 16 Toumi’s shock tube case, comparison of the effect of the 
pressure correction term for pressure profile 
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Fig. 17 Toumi’s shock tube case, comparison of the effect of the 
pressure correction term for liquid  velocity profile 
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Fig. 18 Toumi’s shock tube case, comparison of the effect of the 
pressure correction term for gas  volume fraction profile 
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