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Abstract

Unmanned aircraft invokes different feelings in people. Some see ruthless killing ma-
chines, other see a potential for fast and cheap distribution of goods, yet other see
flexible and convenient emergency rescue drones. Regardless, advances and miniatur-
ization in motors, sensors, and computer processing power have taken the unmanned
aircraft from being a military application to the commercial sector and even into the
hands of hobbyists.

Still, the enthusiastic interest in the new technology and its prospective advantages
overshadows the fact that it mainly sees application where the aircraft are mostly under
human command, just like remote controlled planes have been for years. Actually the
revolution of the drones is not so much a revolution of the unmanned aircraft as it is
a digital control revolution. Only a few years ago, hopeful remote-control pilots had to
invest countless hours of training in mastering the planes, the controls were complex and
originated from the stick-and-throttle controls of real fighter airplanes. Now, inherently
unstable quad-copters can be controlled with touch screen, where a sliding motion to the
right on the screen moves the aircraft to the right. Exactly such underlying automatic
control methods has played a big role in popularizing the quad-copter as a toy, which
in turn has awakened people’s imagination and enthusiasm.

The next step of the unmanned aircraft is to become fully autonomous. Expert
operators use unmanned aircraft to perform aerial surveys of nature conservation areas,
construction sites, and the like. Although it flies autonomously, the operator need to
understand the tool that the aircraft is to him. He must set the coordinates and altitude
of each waypoint that the aircraft must visit, and he must decide on the sequence by
which the waypoints must be visited. Surely, computer programs assist the operator in
the planning process, but actually, the end product of the survey is not the flight plan
of the aircraft or the aerial images that it takes, rather, it is the results of the analysis
of the images; the politician or the entrepreneur who ordered the analysis probably did
not care how the data was collected. Just like the control algorithms in the autopilot
relieved the operator of the piloting burden, the next step will relieve him of the planning
burden. The analyst simply defines which analysis she wants to perform and a plan is
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automatically created for the aircraft, which collects the needed data in the best possible
fashion. All she has to do is release the aircraft and collect it again when it lands.

In this dissertation we study the automatic mission planning for unmanned aircraft.
The basis for the research is the case of agriculture automation where unmanned aircraft
are used for aerial surveying of the crops. The farmer takes the role of the analyst above,
who does not necessarily have any specific interest in remote controlled aircraft but needs
the outcome of the survey. The recurring method in the study is the genetic algorithm;
a flexible optimization framework that is used to perfect the flight plans.

Focus is given to planning under the kinematic constraints of the aircraft to obtain
smooth trajectories that are much closer to a real flyable trajectory than the point-to-
point waypoint trajectory. This focus results in the development of a method which
models the aircraft as a Dubins vehicle and produces a plan that automatically decides
on the headings and target speeds of a set of waypoints.

Another point of study is the constraint given by fuel limits. An aircraft can only
visit so many waypoints before it must refuel. A method is developed, which plans
for refueling stops in the sequence of waypoints, so that the unmanned aircraft can
continuously survey a given area. This area is an important direction for research into
long-term autonomy, where robots work for hours or days without human intervention.

Two more technical contributions are made in the area of the genetic algorithms.
One is a method to decide on the right time to stop the computation of the plan, when
the right balance is stricken between using the time planning and using the time flying.
The other contribution is a characterization of the evolutionary operators used in the
genetic algorithm. The result is a measure based on entropy to evaluate and control
the diversity of the population of the genetic algorithm, which is an important factor
its effectiveness.



Synopsis

Ubemandede fly påberåber sig forskellige følelser i folk. Nogle ser hensynsløse dræber-
maskiner, nogle ser et potentiale for hurtig og billig distribution af varer, mens andre
ser fleksible og bekvemme nødhjælpsdroner. Uanset hvad, har fremskridt og miniaturis-
ering i motorer, sensorer og coputerkraft bragt ubemandede fly, fra at være en platform
for militæret, til den kommercielle sektor og endda i hænderne på hobbyfolk.

Den entusiastiske interesse for den nye teknologi og dens potentielle fordele over-
skygger dog det faktum at den først og fremmest ser anvendelse i sammenhænge hvor
flyet for det meste er under menneskelig kommando, ligesom fjernstyrede fly har været
i årevis. Faktisk er der ikke sket et kvantespring i ubemandede fly, men nærmere et
kvantespring i den digitale regulering teknik. For kun et par år siden måtte håbefulde
fjernstyringspilotaspiranter investere utallige timers træning i at mestre flyene, kon-
trollerne var komplicerede og stammede fra de rigtige flys joystick og gashåndtag. Nu
kan ustabile systemer som quad-copters styres med en touchscreen, hvor en glidende
bevægelse til højre på skærmen bevæger flyet til højre. Præcis sådanne underliggende
automatiske reguleringsmetoder har spillet en stor rolle i udbredelse af quad-coptere
som legetøj, som igen har vakt folks fantasi og entusiasme.

Det næste trin for ubemandede fly er fuldstændig autonomi. Rådgivningsfirmaer
bruger ubemandede fly til at udføre kortlægninger af naturbeskyttelsesområder, bygge-
pladser og lignende. Men selv om det flyver autonomt, er operatøren nødt til at forstå
det værktøj at flyet er. Han skal sætte koordinaterne og højde for hvert waypoint som
flyet skal besøge, og han skal beslutte sig for den rækkefølge de skal besøges i. Oper-
atøen har naturligvis computerprogrammer til at hjælpe i planlægningsprocessen, men
faktisk er slutproduktet af undersøgelsen ikke flyets flyveplanen eller de luftfotos det
tager, det er snarere resultatet af analysen af billederne. Politikeren eller entreprenøren
der har bestilt analysen er sandsynligvis ligeglad med hvordan de pågældende data er
indsamlet. Ligesom reguleringsalgoritmer i autopiloten har lettet operatøren for pilotar-
bejdet, vil det næste teknologiske skridt aflaste ham for planlægningen. En analytiker
skal simpelthen kunne definere hvilken analyse hun ønsker at udføre, hvorefter en plan
for flyet automatisk genereres, således at de nødvendige data bliver indsamlet på den
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bedst mulige måde. Alt hvad hun skal gøre er at sende flyet afsted og samle det op igen
når den lander.

I denne afhandling undersøger vi automatisk planlægning af missioner for ubemand-
ede fly. Grundlaget for denne forskning er autmatisering af landbrugetet, hvor ube-
mandede fly anvendes til kortlægning af afgrøderne. Landmanden har som analytikeren
ikke nødvendigvis har nogen særlig interesse i fjernstyrede fly men har brug for resul-
taterne fra analysen af billederne det tager. Den gennemgående metode i undersøgelsen
er den genetiske algoritme, et fleksibelt optimeringsframework, som her bruges til at
lægge flyveplanerne.

Et af fokuspunkterne er planlægning under flyets kinematiske begrænsninger for at
opnå bløde baner der er meget tættere på reelle flyvebaner end punkt-til-punkt way-
pointbanerne. Denne fokus resulterer i en metode som modellerer fly som en Dubins-
fartøj og lægger en plan hvor retningerne og hastighederne waypointene er automatisk
bestemt.

Et andet punkt i undersøgelsen er den begrænsning som den medbragt brænd-
stofmængde giver. Et fly kan kun besøge et vist antal waypoints før det skal tanke
op. Det har resulteret i en metode som planlægger brændstofpåfyldning som en del af
sekvensen af waypoints således at det ubemandede fly kan opretholde et konstant pa-
truljemønster. Dette område er et vigtigt retning for forskning i langsigtede autonomi,
hvor robotter arbejder i timer eller dage uden menneskelig indgriben.

To mere tekniske bidrag bringes indenfor genetiske algoritmer. Den ene er en metode
til at træffe beslutning om det rigtige tidspunkt at stoppe beregningen af planen, hvor
den rette balance er ramt mellem at bruge tid på planlægning og bruge tid på flyvning.
Det andet bidrag er en karakteristik af de evolutionære operatører, der anvendes i den
genetiske algoritme. Resultatet er en målemetode baseret på entropi til at evaluere
og kontrollere mangfoldigheden af befolkningen i den genetiske algoritme, hvilket er en
vigtig faktor for dens effektivitet.
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Introduction

Every good report starts out with a compelling case. This report starts out with a story
about a farmer.

The farmer is often made out to be the an evil, money hungry capitalist who depletes
the earth of all its nutrient and poisons the environment, all for profit and personal gain.
Most farmers would disagree with at least some of that description. In fact farmers tend
to be pleasant people, not at all evil. It is important to observe that agriculture is indeed
a business, and even though it may invoke feelings of being one with the nature or the
like, farmers must make money. So money hungry may be an exaggeration, but without
making money, any farmer would quickly be out of business. Because the farmer must
plan to be in business for several years to come, there is no incentive for him to deplete
all the nutrients of his fields one year to maximize the crop yield because he only has
the same fields next year. On the other hand, the farmer must help his crops to keep his
business profitable. One way is to fertilize the crops, to make sure that they have all the
nutrients that they need to grow, another is to control pests such as weeds and insects,
usually by means of spraying pesticides. This spraying is definitely one of the main
reasons for the farmers’ tarnished reputation. The fact is, however, that the money
spent on pesticides is offset by the greater output of the crops. Actually, research show
that weeds left uncontrolled may lead to a reduced crop output of 50 % or more [1].

Agriculture is a highly important old business, thus a lot of effort has gone into
streamlining the workflow and development of machinery, pesticides, and fertilizers.
These developments have enabled the farmer to singlehandedly run a farm with fields
of more than 100 hectares. In Denmark, 62 % (2,639,905 hectares) of the country’s land
is used for agricultural purposes. This area is divided among about 40,000 holdings
employing a total of about 40,000 full time farmers and about the same number of
part-time employees [2]. About half of the holdings specialize in field crops, most of
the other half specialize in animal production. In 2010, 3891 metric tonnes of pesticides
were distributed in Denmark, 86 % of which was against weeds, the rest against fungi
and insects. This equates to a total expenditure of 1.66 billion DKK annually. For the
average crop producing farmer, the bill is 172.000 DKK.
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The conventional way of distributing pesticides is via spraying booms mounted on
tractors. This distribution is very elaborate, much more than one might think. To
achieve an effectiveness of the pesticides, they must be applied to the leaves of the
plants rather than the ground. This has lead to several technical innovations: The
spraying nozzles have been perfected to produce vortexes that distribute the pesticides
mostly onto the leaves. The booms have been lowered to hover just above the crops to
avoid the wind carrying the aerosols away. This has lead to the development of boom
stabilizing equipment, so that the height of the boom is maintained when the tractor
hits a rock, a hole, or the like. These developments work to increase the effectiveness of
the pesticides, while another category of developments aims to relieve the manual work
of the farmer. This category seems build on the premise that bigger is better. One
development is larger booms to spray larger areas, reducing the time that the farmer
uses in the field. Another is larger tanks to carry more pesticides which reduces overhead
when refilling the tanks. This requires larger tractors to pull the larger tanks. In the
end, all this is to reduce the manual labor spent per hectare, because the economic
result of the farm is usually only just enough to keep up one or two full time jobs.

Fig. 1: Preemergence spraying on rapeseed. This boom is 40 meters tip-to-tip. CC-BY-2.0 Chafer Machinery

Unfortunately, the bigger-is-better philosophy has some drawbacks. One of which
is the compaction of the soil due to the heavy machines. This compaction inhibits the
growth of the roots, making for a smaller yield. In turn, the compaction turns out to
play a large, although hidden, factor in the fuel consumption of agriculture, because the
farmer needs to till the soil to loosen it up. Tillage is a very fuel consuming operation.
To put it into perspective, it roughly equates to dropping an anchor into the ground
and pulling it around. The compaction further contributes to the fuel usage as the soil
becomes harder to till.

In the longer run, compaction may significantly deteriorate the soil. The topsoil is
loosened by the tilling but the subsoil is not, and thus the compaction is cumulative.
The compacted subsoil acts as a sealing, reducing water, gases, and nutrient flux in the
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field, leading to less biodiversity. Research deems compaction one of the key threats to
the sustainability of soil in the European Union [3], with a potential high impact on
production.

Fig. 2: Farmer tilling his field. CC-BY-2.0 Alfonso Benayas

Automation through autonomy may hold the solution to both reducing the pesticide
usage and avoiding soil compaction. The fundamental premise for both these prob-
lems; minimizing the time of manual labor per hectare, is still in focus. However, the
constraint that the farmer must use his time in the cockpit of his tractor is removed.
Autonomous tractors may roam the fields while the farmer tends to other more ad-
vanced tasks. When the farmer is removed from the equation, it is not necessary either,
to think of the tractor in the conventional way. Maybe instead of one big tractor, tens
or hundreds of smaller, lighter, and more agile vehicles can be used, each carrying a
smaller implements.

The small autonomous fleet also holds the promise of precision farming, the solution
to over-usage of pesticides and over-fertilization. The small vehicles may autonomously
measure the state of every small patch of the field, and treat it according to the in-
dividual needs. Traditionally, the treatment of the fields is quite open looped without
much feedback. Farmers make general observations of their fields and treats them ac-
cording to those observations, along with recommendations from models, and actual
experience. Naturally, the farmer does not spray unnecessarily as the chemicals consti-
tute a large item in his financial accounts, but loosing his crops due to pests is even
worse. So the spraying tend to be performed in a better-safe-than-sorry fashion. The
small autonomous vehicles can help in this case. Instead of general observations, the
vehicles can be equipped with a comprehensive sensor suite, enabling them to measure
the soil and the plants and differentiate the treatment for the different parts of the field.
This leads to a vision of a system of autonomous vehicles roaming the fields, gathering
site-specific information about small patches of soil or even individual plants while col-
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laborating with other vehicles, treating the field according to that specific information
while saving the farmer money by reducing his manual workload and usage of pesticides
and fertilizers.

The ASETA project envisions such a system, using not only ground-based vehicles
but also aerial vehicles. These unmanned aircraft will provide quick overviews of the
fields to target the information collection to sites that look problematic, so that the
ground-based vehicles will not blindly collect information for the entire field but quickly
go to areas of high interest.

This thesis will continue to describe the proposed ASETA system, then delve into the
specifics of planning the flight of the unmanned aircraft in that system. The recurring
theme will be the use of genetic algorithms for this planning.

1 The ASETA System
Adaptive Surveying and Early Treatment of crops with a Team of Autonomous ve-
hicles (ASETA) is a collaborative project between Aalborg University, University of
Copenhagen, and Nordic Beet Research to construct a prototype system of autonomous
systems for the agriculture composed of both unmanned aircraft and ground vehicles.
The future commercial off-the-shelf system that the research in the ASETA project
will contribute to is an expert system that autonomously collects information about a
farmer’s fields, generates treatment plans, and executes these if the farmer approves of
them. Consequently, the farmer is relieved of much trivial work, while still being in
charge of the production on his holding.

Database
Mission Planning

Image Analysis

Robots

ImagesMap Updates

Maps Paths

Fig. 3: Concept of the ASETA system. Hotspots are identified from images captured by the robots
and stored in a database. If the database contains unsurveyed areas, the mission planner dispatches
the robots to collect images. The process continues until all of the field is satisfactorily surveyed and
all hotspots identified.
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The strategy is a multi-level approach, which employs the unmanned aircraft to
perform an initial survey of the field from high altitude, then improve the survey from
lower altitude, and finally perform close-to-crop measurements with the ground vehicle.
First, the unmanned aircraft identifies hotspots, which are areas that are identified to
be off par with the expected state of the field. As the aerial images are taken at a
very high altitude, the resolution may not be sufficiently good to draw satisfactorily
conclusions, so the areas deemed to look problematic are scheduled for a fly-by at a
lower altitude to obtain clearer images. When the better-resolution images have been
analyzed, the ground vehicles are dispatched to obtain samples from within the hotspots.
As the system sift through the field and sufficient information have been collected an
appropriate treatment is planned.

Because the autonomous vehicles are not subject to the same time constraints as the
human farmer, more time can be used per hectare, wherefore more attention can be given
to the individual plants. The long term vision is for the autonomous vehicles to treat
each plant individually; enabling selective pesticide application so that only weed plants
are sprayed. The savings from individual spraying are hard to estimate, but have been
estimated to potentially reduce the pesticide usage to a figure between 50 % and 95 %.
But the individual weed control is not limited to only pesticide application, mechanical
weeding may also be an option just as research has been done in laser treatment [4].

Fig. 4: The autonomous helicopter from the ASETA project.

The aircraft used in the ASETA project is an autonomous helicopter based on a
Maxi Joker 3 remote controlled electric helicopter. The helicopter is equipped with a
guidance, navigation, and control system developed at the UAS laboratory at Aalborg
University. The ground vehicle is based on a four-wheeled skid steered RobuROC4 from
Robosoft. Both vehicles are equipped with high-precision RTK GPS sensors and inertial
measurement systems. The vehicles are fitted with different camera equipment. The
helicopter carries a multi-spectral camera that captures images in six narrow bands from
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near-infrared through the visible spectrum to blue, that enables image analysis on the
aerial images to differentiate between weeds and crops. The ground vehicle carries a
combination of a standard industrial RGB-camera aligned with a time-of-flight (TOF)
camera, which, instead of measuring colors, measures distances enabling the analysis
to detect outlines of leaves quite easily; a task that is quite hard to accomplish with
regular color images.

Fig. 5: The RobuROC4 autonomous ground vehicle from the ASETA project.

ASETA works with a case of mapping and removing thistles from sugar beet fields.
This case was chosen at the beginning of the project because of it being relatively
approachable. The leaves of thistles and sugar beets are fairly different with regards to
shape and color, so it was expected that it would be possible to develop methods for
automatic identification of the different species, which was indeed the case.

The aerial image analysis is based on the color difference between the plants. The six
light bands of the multi-spectral camera were selected in the ranges where the differences
in colors were most pronounced. At high altitudes however, each plant is not uniquely
identified as each pixel catches light from more than a single leaf. These images provides
the basis for a hotspot analysis; the more an area seems to be influenced by the thistle
color notes, the higher the weed-to-crop ratio is. This analysis does not provide us with
an absolute measure of the weed density, but rather a relative measure. Because of this,
closer inspections of the hotspots are needed. As the first measurements are relative,
only few close inspections are needed to calibrate the values; providing information of
other hotspots with the same relative values.

Aerial images taken at lower altitudes will permit discrimination between individual
plants, and while color analysis is still valid, other methods also become possible. One
such method is to take advantage of the fact that sugar beets are planted in structured
rows with rather fixed intervals. Thus any plant in between the rows is not wanted
and may be flagged as removable. In the same manner, the average density of the rows



1. The ASETA System 9

may be characterized and any deviation from this recorded, so that higher density may
indicate a weed plant located in the row and lower density may indicate problems with
nutrition or the like.

Fig. 6: The test field used for the ASETA project at the university farms of University of Copenhagen’s
Faculty of Life Sciences.

Just as the lower altitude aerial images, the ground vehicle can also provide an
absolute measure of the weed density. The same general methodology may be applied;
finding weeds in between the rows and detecting row infiltrations. Additionally, the
ground vehicle has the advantage of being so close to the crops that it can log the
absolute location of the plant with very high precision; something that the helicopter
has trouble with due to wind gust, camera misalignments, and so on. Further the ground
vehicle can identify the type and growth stage of the plants by means of leaf size, shape
and count.

Paper A presents a further explanation about the equipment and vehicles used in
the ASETA project, and Paper B presents a more in-depth treatment of the ASETA
task management system.

The conceptual flow of data is shown in figure 3, and the process of turning images
into maps have been outlined above. The last step in completing the circle is the
automatic mission planning. In this step, missions are constructed for the robots, so that
they collect the most relevant information for the system and treat the fields accordingly,
all done in the shortest time and with the least waste of resources. Such planning requires
the use of algorithms from the areas of operations research and artificial intelligence
to determine the division of tasks between the individual robots. This system may
incorporate extensive models for the fields, include weather forecasts, and historical
data to plan missions that results in sensible treatments, yielding outputs that are
optimized for the long run, not just the current season, all while conforming to national
and international regulations.
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The mission planner must work on different level with very different timespans.
Planning the treatment of the fields is a slow process, where large amounts of data
needs to be collected and processed before a conclusion can be drawn. In the other end
of the scale is the path planning for the robots to make sure that the robots go where
they are needed. This process works in the seconds and minutes range; deciding on
which robot should go where, and how and when it should happen.

The rest of this thesis will investigate aspects of the path planning for the ASETA
system, with a focus on planning for the helicopters.

2 Robotic Path Planning
Path planning is the process of constructing a path that takes a mobile robot from one
position to another. This is a large area of research as there are many levels of planning
and many approaches.

Starting at the very basic level is point-to-point planning; how a robot located at a
point in space is guided to a given goal-point. A control law to guide the robot towards
the goal may be a simple proportional controller that drives the heading and speed of
the robot towards the point. If the robot is located in a obstacle-free and completely
homogeneous environment, there may not be much more involved in the point-to-point
planning. In the presence of obstacles however, things become more tricky. Navigating
around these obstacles is one of the planner’s finest tasks. A popular method to overcome
this challenge is to partition the environment into a costmap; a 2D (or 3D) discretization
of the environment, with each bin holding a value corresponding to how close it is to an
obstacle. The costmap can be translated into a graph with the nodes corresponding to
the coordinates of the bins, where the nodes are connected if the bins are adjacent. The
task is then to find the sequence of steps between adjacent bins that joins the initial and
goal point which minimizes the cumulated cost. Several methods have been developed
to find the minimal cost path through such a graph, one is the A* algorithm by Hart et
al. [5],which extends the well-known Dijkstra’s algorithm with a heuristic to guide the
search towards the goal. Finding the lowest cost sequence ensures that the robot does
not come into conflict with the obstacles and keeps a sufficient distance. The found
sequence can now be used with the original point-to-point control law by feeding the
robot with a new point whenever the robot comes close enough to the current target.

Another concern of the planner is to produce paths that is in fact feasible for the
robot to follow. The robot has a set of kinematic constraints that limits its movements.
For example, a car-like Ackermann-steered vehicle has a turning radius corresponding
to the maximal steering angle of the front wheels. Such constraints may significantly
increase the cumulated cost of the above mentioned plan as the robot will deviate from
the course. In the worst case, the path may be infeasible, and the robot is not even
be able to negotiate the turns to avoid the obstacles. One of the chief reasons for
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Fig. 7: Costmap with a path from the starting position (solid circle) to the goal position (dotted
circle).

planning with the kinematics is to obtain robust behavior that does not require human
supervision.

Another set of constraints that may interfere with the quality of the executed plan
is the dynamics of the robot, i.e. the constraints set by the motion rather than the
structure of the robot. Examples of dynamic constraints may be the breaking distance
of the previously mentioned car, which is longer for higher speeds, or tire slippage, which
results in wider turns at higher speeds.

When planning under dynamic constraints, the result is often not only a path in
space but also in time, such that every point in the path has both a physical coordinate,
a target time and potentially a velocity vector, acceleration vector, etc. Such a path is
usually called a trajectory.

2.1 Case: Kinematics of the Helicopter
The helicopter is an interesting aircraft. One of its most prominent capabilities is its
ability to perform vertical liftoff and landing, another is to hover. With miniaturiza-
tion, the usefulness of small scale helicopters has greatly evolved. Recently, it has seen
enormous use as camera platforms in both professional and hobby film production as
well as surveying drones in civil and military applications.

Much work is being done in the so called D3 areas (Dull, Dirty and Dangerous)
to aid and replace human operators in harmful situations such as firefighting, disaster
management and rescue operations. The small-scale helicopter may traverse terrain
that wheeled or tracked robots are unable to, it may enter holes in walls, and because
of its low cost it can be dispatched into dangerous areas from where it may not return.

In conventional air travel the prevalent helicopter type has one main vertical rotor
and one horizontal tail rotor. In small scale helicopters, the types are much more diverse.
A popular category is the multi-rotors, which are usually fitted with fixed pitch rotor
blades mounted directly on the rotor shaft of electric motors mounted symmetrically
around the center where the battery and electronics are mounted. Of these types,
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the quad-copter (with four rotors) is extremely popular with hobbyists and in research
in swarm and indoor flight. Other types include the usual main-rotor and tail-rotor
configuration, the tandem main rotor configuration, where the rotors spin in opposite
directions, and the ducted fan configuration, which has a single main rotor and down
facing control vanes. The kinematics of all the helicopters types are largely alike, here
we will have a look at the traditional main-rotor tail-rotor configuration.
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Fig. 8: Left: Conceptual drawing of a swashplate linkage, which controls the pitch of the rotor blades.
Right: Free body diagram of a helicopter in forward flight.

The main rotor blades are individually hinged and coupled via a swashplate to the
control actuators. This allows control over the pitch of the blades, so that thrust may
be varied both collectively to force the helicopter upwards or downwards and cyclically
to pitch the nose up or down and roll right or left.

The free body diagram of the helicopter in figure 8 shows how the main rotor can
provide forward trust when the body is pitched down, likewise the body may be rolled
to the side to move laterally. This analysis shows how a helicopter moving forward at a
constant speed will exhibit a turning radius as a maximum banking maneuver can only
provide a finite centripetal force, leading to a circular movement. Indeed, this is the
same case for fixed wing aircraft.

Path planning with a comprehensive model for the helicopter is quite computation-
ally intensive and quite possibly not necessary, since inherent inaccuracies in sensors and
actuators as well as in-flight disturbances from wind means that the helicopter cannot
track a trajectory completely accurately anyway. Instead the model can be reduced to
a suiting simple model that provides enough likeness with an actual helicopter, at least
in the normal operating conditions like forward flight and hovering. Instead of planning
with the reduced model, another approach is a two-step process of first finding a plan
with an even simpler cost function, such as the Euclidean distance so the plan can be
found with e.g. the A* algorithm as described before. Next, the model is used to smooth
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the path so that it is traversable by the reduced model. This usually includes rounding
the sharp corners introduced by the A* that the kinematics of the model cannot accom-
modate. The cost of the smoothed plan can then computed from the costmap to make
sure that the path does not collide with objects.

How the solutions should be smoothed, depends on the controller of the robot. The
Pure Pursuit control strategy [6] is derived from fighter plane dog-fighting tactics, where
the nose of the fighter plane is pointed towards the plane that it is tracking. This control
strategy uses the straight lines between the points of the A* solution, projects the robots
position onto this line, and sets a goal point for the robot on the line offset a measure
towards the actual goal; the endpoint of the line. This way the robot is guided along
the straight line segments, like a pull cart, converging to the line. The downside of this
approach is that there is no guarantees that the robot will avoid the obstacles in its
path. Therefore a simple model may be propagated through the solution with a Pure
Pursuit controller to get some degree of assurance that the plan is feasible.

One model reduction of the helicopter is the Dubins vehicle. By connecting straight
line segments and circle segments any two configurations consisting of a two-dimensional
coordinate and a heading may be connected, see figure 9. L.E. Dubins showed that a
combination of three circle segments (CCC), two circle and a straight line segment
(CSC), or a subset thereof is sufficient to connect any two configurations and that this
path is the shortest attainable [7] given the curvature constraint that defines the circle.
The Dubins curves are often used in robotic path planning because they accurately
match the kinematics of Ackermann-vehicles, although they ignore the dynamics of the
vehicle originating from its inertia and the turning time of the wheels. Shkel and Lumel-
sky formulates convenient formulas for the Dubins curves [8] along with a classification
scheme to determine which of the six configurations is the shorter. Otherwise, an often
used method is to simply compute and compare all the six curves.

Fig. 9: Examples of Dubins curves. Left, a Right-Straight-Right combined with a Left-Straight-Right
curve and right, a Left-Right-Left curve.

An example of a smoothing method of the Euclidean solution with the Dubins vehicle
is the Alternating Algorithm (AA) by Savla, Frazzoli, and Bullo [9]. This algorithm pairs
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every odd numbered node with the following node and sets the headings of those nodes
to point in the same direction, the first towards the other and the other away from
the first. This way the shortest Dubins path is the straight line. Each of the straight
segments are then joined with a fitting Dubins path. Figure 10 shows an example of a
Euclidean solution to a TSP smoothed with the Alternating Algorithm.

A Dubins path adds the constraint that the joined segments are co-directional, thus
the path has C1 continuity but a non-continuous second derivative because the curvature
exhibits a step where the sections are connected. In reality, it is not possible to follow
such a path in a vehicle moving at constant forward speed as the angular acceleration
is infinite. This path inaccuracy may be a problem in some applications, and a C2

continuous path is needed. In that case, the clothoid or Pythagorean hodograph may
be solutions. Both of these along with Dubins paths are described in [10] along with
other interesting path planning concepts.

In Paper F the traditional Dubins path is extended to include both variable radii
and variable forward speed.

2.2 The Traveling Salesman Problem
Until now we have mainly focused on the point-to-point planning, where the objective is
to move from an initial configuration to some goal configuration. On top of this we can
add another layer of planning; mission planning. In the ASETA project, the helicopter
is tasked to photograph the field from a set of waypoints. The database system has no
preference as to when the different pictures are taken or in which order. So the mission
planner for the helicopter is free to choose the sequence by which the waypoints are
visited.

The general formulation of such a problem is called the traveling salesman problem
(TSP). It stems from the problem a traveling salesman is faced with when deciding on
the shortest route between a number of destination cities, where the route must end in
his own home town where he set out from. This problem is surprisingly difficult. The
number of possible solutions is

Ns = (Nc − 1)!
2

where Nc is the number of cities to visit. Because the direction of travel is unimportant,
the solution space is halved, but even so, for just moderate sized problems, the solution
space is enormous.

The problem seems related to the shortest path problem described in the point-
to-point planning in costmaps, although here the problem is to visit all the points in
the graph, whereas only the subset needed to produce the shortest path was needed
before. This fact changes the problem from moderately hard to very hard. In fact,
the problem was characterized in the classical paper by R.M. Karp on 21 combinatorial
problems [11]. Karp showed that these problems were NP-complete, which means that
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Fig. 10: Euclidean solution to a 52-city problem in its Euclidean form (left) and smoothed by the
Alternating Algorithm (right).

the worst-case running time of a solving algorithm will grow super-polynomially with
the problem size. Among Karp’s 21 problems is the Hamiltonian cycle problem, that
is the problem of finding a path in a graph which visits each vertice exactly once. The
TSP is a specialization of the Hamiltonian cycle problem with the constraint that the
edges of the graph are weighted, representing the distance between the cities, and the
solution must be the Hamiltonian cycle with the least cumulated cost. This implies the
NP-completeness of the TSP.

Since its first mathematical treatment in the 1930s by K. Menger [12], several re-
searchers have turned their attention to this problem. A notable approach is that of
Dantzig, Fulkerson, and Johnson [13], who formulate the problem as an integer pro-
gramming problem and solves it with a cutting-plane method. This algorithm has later
been used by Applegate et al. in the software package Concorde [14], which has been
used to solve problems of size in the tens of thousands.

Another approach is the heuristic approach of Lin and Kernighan, they build upon
a local search method called n-opt. This method takes n nodes in the TSP graph,
evaluates all the possible permutations, and chooses the one with the lowest cost, this
procedure is repeated for all combinations of n nodes. The heuristics 2- and 3-opt are
popular for obtaining fast and fairly good solutions to TSPs. Lin and Kernighan devel-
oped a method which uses opt moves of variable degree [15]. This algorithm has been
implemented by K. Helsgaun in the LKH package [16], which competes with Concorde
to solve the largest TSP instances.

In the lines of the Lin-Kernighan heuristic approach, meta-heuristics have also been
used to solve the TSP problem. The name meta-heuristic refers to the fact that they are
not readily implementable to solve specific problems like the Lin-Kernighan is, rather
they provide a general structure of algorithms that have been shown to work well in a
number of optimization domains. Of these meta-heuristics, a notable couple of methods
are hill-climbing, simulated annealing, ant colony optimization, and genetic algorithms.
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The different types of meta-heuristics differs slightly in requirements, but for them to
work, they usually need an implementation of a problem specific neighborhood function
like the n-opt move, which transforms one possible solution into a neighboring solution.
Furthermore, they usually need a termination criterion, that stops the computation
when the algorithm seems to have found the best solution.

Most of the meta-heuristics are based on processes that seem to optimize some aspect
in the real world. It is the hope that the optimization in that domain may be applicable
in other domains. This feature also serves as effective mnemonics for remembering the
structure of the algorithms.

The hill-climbing procedure simply chooses the newly generated solution from the
neighborhood function if it is better than the current solution, analogously to always
climbing upwards. This usually leads to the algorithm getting caught in local optima,
thus the initial guess on a solution must be sufficiently close to the optimal in order to
obtain that solution.

The simulated annealing algorithm by Kirkpatrick et al. [17] solves this problem of
getting caught in local optima by allowing a measure of random behavior when choosing
the next solution. This way the algorithm may escape the local optima. The method
derives from the controlled cooling of heated metal to improve its homogeneity. This
happens because of thermal fluctuations in the metal, which are determined by the
Boltzmann distribution. At higher temperatures, the atoms in the metal fluctuates
wildly, but as the temperature is lowered, they settle down into ordered structures.
In simulated annealing, the hill-climbing is controlled by a cooling plan. Initially, the
algorithm is allowed to accept solutions that moves the algorithm far down the hill;
corresponding to thermal fluctuations, but as the temperature approaches zero, the
fluctuations cease and the pure hill-climbing behavior remains.

A rather different approach is the ant colony optimization proposed by M. Dorigo
[18]. This method is based on the behavior of scouting ants, who lay out pheromones
when searching for food for the colony. The worker ants may then follow these pheromones
to the depots of food. This method is intuitive for graph search applications, as
pheromones are laid out on the edges in the graph when being a part of a solution.
After several runs of the algorithm, more and more pheromones are laid out, and the
edges with most pheromones will define the best tour.

Another approach again is the genetic algorithm, which is based on the process of
Darwinian evolution. It maintains a population of prospective solutions and via a sur-
vival of the fittest selection, the solutions are mutated via the neighborhood function.
Furthermore, the chosen solutions may be combined in a crossover function. The selec-
tion process is based on probability in a roulette-wheel fashion, such that the most fit
solution has the highest probability of being chosen while the least fit also has a slight
chance. The randomness and diversity of the population serves the same purpose as
the thermal fluctuations in simulated annealing to escape from local optima. The idea
of Darwinian evolution is to randomly mutate the genomes of the most fit solutions in
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order to breed even more fit solutions as generations pass. This does not mean that less
fit offspring is not produced however, but that the evolutionary pressure of selection
works to reduce their reproduction. A very basic genetic algorithm is shown in algo-
rithm 1. This algorithm can be used with different crossover and mutation operators
and extended with extra features, some of which will be described later.

Algorithm 1 A basic genetic algorithm.
Require: Np

procedure Genetic Algorithm
Initialize population← Np random genomes
doTerminate← False
while not doTerminate do

newPopulation← empty population
Make rouletteWheel selector from population
for i← 1, Np do

parent1 ← rouletteWheel
parent2 ← rouletteWheel
child← crossover(parent1, parent2)
child← mutate(child)
Add child to newPopulation

end for
population← newPopulation
doTerminate← evaluate termination criterion

end while
end procedure

One of the interesting features of these methods is that they usually exhibit what
is called anytime behavior; that the algorithm may be stopped at any time during
computation, and it will be able to present a feasible, although not necessarily optimal
solution. This is an interesting feature in applications with deadlines.

For a comprehensive introduction to meta-heuristics, a good reference is the Springer
Handbook of Meta-Heuristics [19]. Other excellent textbooks in the area of robotic
planning include Planning Algorithms by S. M. LaValle [20], Probabilistic Robotics by
S. Thrun [21], and Principles of Robot Motion by H. Choset et al. [22].
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3 Genetic Algorithms for Traveling Salesman Prob-
lems

Genetic algorithms have received a great deal of attention in the context of TSPs. We
will have a look at the general structure of this meta-heuristic and continue to look at
the specific implementations needed to use it for solving TSPs.

The definition of the genetic algorithm is usually attributed to J. H. Holland [23] for
his description of the algorithm with parallels to the mechanics of Darwinian evolution.
In the genetic algorithms, each possible solution to the problem at hand is defined by its
genome. Just as the genomes in humans is not a direct representation of the human but
rather an encoded blueprint, the genomes of the genetic algorithm need not represent
the solutions in any obvious way. Rather, it may be transformed into its final form by
a transformation function. The encoded form of the solution is called its genotype and
the final form is called its phenotype. When the solutions are mutated in the algorithm,
it is the genotype that is transformed rather than the phenotype.

One reason for the division between geno- and phenotype is the possibility to rep-
resent the phenotypes compactly, such that the mutations transforms the solutions
orthogonally. Holland formalized this using a schema analysis. He defined the genomes
as binary strings so that a possible schemata may be {0 1 * * 1 *} which represents fixed
values in first, second, and fifth position and ∗s represent wildcards. Such a schemata
should then represent a cutting plane in the solution space. By finding the optimal solu-
tion within this schemata, the global optimal solution should conceptually exist in the
schemata based on that local optimum with wildcards in three formerly fixed positions.
This orthogonal property is not necessarily attainable as we shall see later.

Another approach to evolution is based on the ideas of Jean-Babtiste Lamarck, who
in the early 19th century preceded Darwin with a possible explanation of evolution.
Lamarck believed that individuals adapt to their environment by acquiring new traits
and knowledge, and that these are passed on to the offspring, whereby the new gener-
ation attains a higher degree of fitness to the environment. The advances in molecular
biology with the discovery of DNA seem to confirm that the Darwinian model is in-
deed the model at play in nature. That fact, however, does not limit the application
of Lamarckian evolution in genetic algorithms. Such a scheme may be implemented
alongside the Darwinian evolution to form a hybrid evolution by performing a local op-
timization on each solution in the population at every generation. The changes from the
local optimization are then written back into the genome and the algorithm proceeds
to perform selection in this optimized population.

The applicability of the genetic algorithm somewhat depends on the structure of the
solution space that it is supposed to search. The space can be conceptually thought
of as a landscape where the top of the hills are good solutions and valleys are bad
solutions. See figure 11. The genetic algorithm is based on a population of candidate
solutions. This feature is particular useful in the case of hilly search spaces in that the
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different candidates need not explore the same hill for the optimal solution but may be
divided between the individual hills. This feature has some resemblance to the mechanics
of branch-and-bound algorithms as the individuals exploring the smaller hills tend to
die out when other individuals find taller hills; increasing their fitness and chances of
reproducing. If the space has too many hills compared to the size of the population, the
algorithm may not have the time to explore all the hills before the individuals on the
tallest hill takes over the population. This situation is called premature convergence,
and is a primary cause of suboptimal solutions form genetic algorithms.

Fig. 11: Difference between solution spaces. Left, a landscape with several local maxima where it is
difficult to find the tallest hill, and right, a landscape with local maxima but a clear global maximum.
Left: CC-BY-2.0 Ed Ledford, Right: CC-BY-2.0 Glenn.

The genetic algorithm excels if the search space is of such a structure that the
combination of two locally optimal solutions in a crossover operation produces an even
better offspring. Indeed, the traveling salesman problem has this property. Imagine two
possible solutions to the same TSP, one is neatly arranged in the left half of the plane
but a mess in the right half, the other is oppositely messed up in the left part and neat
in the right. If a crossover operation were to cut the left half from the first solution and
glue it together with the right half of the other a better solution would result.

3.1 Representations
The discussion of how hilly the search space is naturally depends on the optimization
problem itself, but it also dependent on the genetic representation of the problem com-
bined with the available crossover and mutation operators of the algorithm. We will
have a look at some possible representations and operators for the TSP, and then discuss
the form of the possible spaces.

The traditional genetic representation used by Holland is the binary representation,
which is simply a binary string of zeros and ones. Holland also proposed two very easily
understandable operators. The mutation operator will, for every bit in the genome,
evaluate a stochastic process and if it is true, toggle the corresponding bit. His crossover
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operator is given two parent genomes, it then chooses a random index in the string and
the offspring is composed of the bits left of the index from one parent and the bits right
of the index from the other. The mutation operator has the very nice feature that it
may potentially transform any possible solution into the optimal in one shot by choosing
all the wrong bits and flipping them. Thus the entire search space is fully connected
and there is in fact no disjoint hills for the algorithm to get caught on. However, no
obvious translation from the binary representation to TSP solutions is known. One
naïve interpretation is to simply translate the sequences of waypoint indices to a binary
form like

{1 2 3 4 5} ∼ {001 010 011 100 101} .

However, neither of the two classical operators produce meaningful results. As put by
Whitey et al. [24]

Unfortunately, there is no practical way to encode a TSP as a binary string
that does not have ordering dependencies or to which operators can be ap-
plied in a meaningful fashion. Simply crossing strings of cities produces
duplicates and omissions. Thus, to solve this problem some variation on
standard genetic crossover must be used. The ideal recombination opera-
tor should recombine critical information from the parent structures in a
non-destructive, meaningful manner.

One of the most often used solutions to this problem is to not translate the list of
indices into binary form but rather work on a list of integers. This is called the path
representation. With this representation, the classical mutation operator is rendered
unusable as there is no notion of flipping an integer. However, the obvious conversion
to simply choose a random integer instead of flipping the bit yields the same problems
as for the binary representation that it would produce infeasible solutions. The classical
crossover does not produce feasible output either, but a good many variations of the
mutation and crossover operators have been developed for the path representation, which
makes this representation one of the most used today.

One mutation which is guaranteed to produce valid solutions is the inversion mu-
tation, which Holland actually proposed himself albeit in the context of the binary
representation. The mutation chooses two cut-points in the genome and inverts the
sequence in between them. Intuitively, this is easy to understand in the path repre-
sentation, as the direction of travel in the subsection is simply reversed while the rest
of the solution is traversed as before. The inversion mutation is illustrated along with
three other mutations in figure 12. The discussion about the hilly search space becomes
relevant now, as the inversion mutation cannot, in one operation, move from any solu-
tion to the optimal. Instead, the mutation needs several steps to climb down the hill
and cross the valley before ascending the optimal hill. Although the stochastic nature
of the genetic algorithm permits this, the case becomes increasingly improbable the
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further down the hill the solution has to move. Given enough repetitions however, the
inversion mutation may mutate any arbitrary solution into the optimal. The proof for
this is given in Paper C along with the same proof for the exchange and displacement
mutation operators, which we will look at next.

The exchange mutation proposed by W. Banzhaf chooses two entries in the genome
and exchanges them [25]. This mutation also guarantees feasible output and further it
has the feature that all entries but the two affected are conserved in the same position
in the genome. For the traditional TSP, however, this is not a very useful feature as
the solution is a tour with no starting or ending point. Thus any path representation
may be cyclically rotated without any change to the solution. On the other hand, this
feature may be very convenient in scheduling problems. The exchange operator has
the same property as the inversion operator that it may convert any solution into the
optimal given enough iterations. But where the inversion had an intuitive physical
representation the exchange is no so obvious; if one entry is out of place, why should
we choose another (maybe perfectly placed) entry to exchange it with? This feature
hinders the exchange mutation in perfecting almost optimal solutions, i.e. it is creating
hills with many local optima.

Example 1 (Exchange Mutation Creating Local Maxima)
Given the TSP:

0 1 2 3

4

5678

9

The solution {0 1 6 2 3 4 5 7 8 9} is very close to optimal, only the entry ‘6’ is out
of place. However, no exchange of two entries will reduce the length of the tour. A
possible sequence of exchanges to achieve the optimal is:

exchange 4 and 6: {0 1 4 2 3 6 5 7 8 9}
exchange 2 and 4: {0 1 2 4 3 6 5 7 8 9}
exchange 5 and 6: {0 1 2 4 3 5 6 7 8 9}
exchange 3 and 4: {0 1 2 3 4 5 6 7 8 9}

This way, the solution steps one step down the hill and three steps up to the optimal
solution. Other sequences exist, but all include the solution stepping down the hill.

The example shows how the exchange algorithm creates local optima around the
very top of the hill.
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A solution to this local optimum problem is to simply move only one entry. This
method is known as the insertion mutation, proposed by D. Fogel [26]. In this mutation,
the entry chosen is removed from its original position and inserted in any random
position. The idea of the insertion mutation is generalized in the displacement mutation,
described by Z. Michaelevicz [27], where a subsection of the genome is chosen and moved
to a new location. The displacement mutation has the intuitive function that a section
of the solution might be well-formed but located among otherwise unrelated entries can
be moved to a more appropriate location in the genome.

1

2 3

4

56

Inversion

1 2 3 4 5 6

1 5 4 3 2 6

Exchange

1 2 3 4 5 6

1 5 3 4 2 6

Insertion

1 2 3 4 5 6

1 4 2 3 5 6

Displacement

1 2 3 4 5 6

1 3 4 5 2 6

Fig. 12: Illustration of some mutation operations on a 6-city problem.

Even though the different mutations does not seem as superior as the classical mu-
tation, that is able to potentially transform any solution into the optimal. However,
such ability is not necessarily an advantage. Actually, the classical mutation may be re-
garded as a random search biased towards the parenting genome. The possible genomes
resulting from a mutation is sometimes called the neighborhood of the genome. If the
neighborhood of the genome is the entire search space, the evolutionary pressure of selec-
tion is somewhat reduced. The smaller the neighborhood, the better the algorithm is at
hill-climbing but worse at exploring the different hills. The ability of hill-climbing, also
called exploitation, is an attractive feature of the algorithm, but so is the exploration
feature, so some trade off must be found when implementing the algorithm.

In Paper C the neighborhood size of the inversion, exchange, and displacement
operators are evaluated using an entropy perspective. The entropy rate of a stochastic
process is a measure of how much it transforms a sequence in terms to information.

Several crossover operators have also been developed specifically for the path rep-
resentation. Also here, is it important to note how much change the operator brings
into the offspring. It may however be a bit more difficult to measure. Conceptually, the
least invasive operator should cut some information bearing from one parent and the
rest from the other and not introduce any randomness. However, this may be impossible
as the different parts of the parents must be glued together, which usually leads to using
new edges between the nodes.
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One of the crossover operators is the order crossover by Lawrence Davis [28], who
first applied the mutation in a bin packing problem. The problem of bin packing is
a matter of packing as many of a set of differently sized rectangles as possible into
another rectangle. The bin packing problem and the TSP share the property of being
epistatic domains, i.e. changes in one gene may affect how another gene is expressed.
An example is the gene that codes for baldness in humans takes precedence over the
gene that determines the color of the hair. In the bin packing problem, the rectangles
packed first influences how and if the following rectangles can be packed, put another
way, the order of the entries matter. The same is true for the path representation, the
order of the entries is actually more important than the absolute position in the genome,
which as noted before actually has no relevance. The order crossover starts by copying
a subsection of one of the parent genomes to the offspring. The rest of the offspring
is filled by copying the entries of the other parent while omitting the entries already
in the copied subsection. To minimize new edges, the copying process from the second
parent starts from the point which is equal to the last point in the subsection. Thus the
resulting offspring maintains a high degree of the ordering in its parents.

Example 2 (Order Crossover)
The two parent genomes

{1 2 3 4 5 6 7 8 9} and {6 3 1 7 8 9 2 5 4}

are combined, choosing the subsection {4 5 6} from the first parent, which produces
the offspring

{8 9 2 4 5 6 3 1 7} .

These operators may be implemented directly or modified to degrees suiting the
programmer; sometimes a change in the structure of the operator causes a significant
speed-up in the runtime of the algorithm. This way more evaluations can be executed
in the same time, which may be more interesting than maintaining a specific structure.

Grefenstette et al. developed the ordinal representation in an attempt to allow the
classical crossover operator [29]. The ordinal representation is constructed by subtract-
ing the entries from a standard list while noting the indices from the resulting list in
the genome.



24

Example 3 (Ordinal Representaion)
Given the standard list (1 2 3 4 5); the tour {4 1 3 5 2} would be constructed as

{} (1 2 3 4 5)
{4} (1 2 3 5)
{4 1} (2 3 5)
{4 1 2} (2 5)
{4 1 2 2} (2)
{4 1 2 2 1} () .

However, the Grefenstette et al. themselves refuted the usefulness of the represen-
tation, as the path after the first cut point did not bear much resemblance with its
parents.

A subset of all the different operators and representations have been described here.
In [30], Larrañaga et al. provides a fine overview of several of the operators and repre-
sentations for use in genetic algorithms solving traveling salesman problems.

3.2 Fitness Functions
The fitness function evaluates the genomes of the genetic algorithm to figure out how
fit their phenotypes are with regard to the problem. The fitness is not necessarily the
same as the cost of the objective function. Naturally, the fitness of a solution to a TSP
should be higher for a lesser cost, so the fitness function could simply be multiplication
with -1 or the reciprocal of the cost. These two approaches has a problem though.
When the population converges to a solution, the costs of the individual solutions are
rather much alike and the selection pressure is disabled leading to a random search.
One thing to note about the behavior of the genetic algorithm is that the individuals
are not evolving to achieve the global optimum but rather competing with the other
individuals to dominate the population. This leads to a possible function that normalize
the fitness according to the worst individual in the population such that the fitness of
the ith individual is

fi = cworst − ci , (1)

where cworst is the objective cost of the worst individual in the population and ci the
cost of individual i.

The fitness function can also be used in an effort to control the composition of the
population by using non-linear scaling. To increase exploration of the search space,
the fitness function can be constructed so that the fitness of the lower and higher cost
individuals are leveled out. This way, the worse individuals are selected more often, and



3. Genetic Algorithms for Traveling Salesman Problems 25

the population will be likely to diversify. Conversely, the best solutions may be given a
higher weight to intensify the exploitation of that specific area of the search space.

3.3 Managing Populations
In order to avoid premature convergence, operators with a large neighborhood can be
used to enhance exploration, which on the other hand limits exploitation. Another ap-
proach is to actively manage the population diversity. This approach follows the old
advice of not putting all one’s eggs in one basket. This way, the algorithm routinely
checks the diversity of the population and if all the individuals are too alike they are
probably exploring the same hill and the algorithm takes steps to diversify the popula-
tion.

The question is how to measure the diversity of the population. Tsujimura and Gen
proposed a method derived from entropy measures from information theory [31]. The
entropy measure of a given information source is computed as a summation over all
states i

H =
∑
i

−pi log pi (2)

where pi is the probability of the source emitting the state i. If the source only emits a
single state, the entropy H is 0, and the higher the randomness the higher the entropy.
Tsujimura and Gen proposed to count the appearances of the individual waypoints in
the different positions of the genome, so that pwi would represent the probability of
waypoint w in location i yielding the entropy

H =
∑
i∈I

∑
w∈W

−pwi log pwi (3)

where W is the set of all waypoints and I is the set of locations in the genome, and the
individual probabilities are

pwi = cwi/Np (4)

where cwi is the count of waypoint w in location i, and Np is the size of the population.
Unfortunately this diversity measure is based on the absolute position of waypoints

in the genome, but as noted earlier, the path representation is order based, so absolute
positions are not ideal. Indeed, the two solutions

{1 2 3 4} and {3 4 1 2}

are the same and should produce a 100 % likeness measure. One way to achieve this,
is to evaluate the adjacency matrix of the solution rather than the genome itself. The
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solutions above produces the same adjacency matrix
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

By adding all the adjacency matrices of the population and multiplying the result by
the reciprocal of the population size, the entropy diversity of the population can be
computed.

Example 4 (Entropy of Adjacency Matrix)
The two above mentioned solutions should produce an entropy of 0. This is checked
by producing the probability adjacency matrix

M = 1
2




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

+


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 =


0 1

2 0 1
21

2 0 1
2 0

0 1
2 0 1

21
2 0 1

2 0

 .

We get the entropy by iterating over the indices mklof the matrix M

H =
∑
k

∑
l

−mkl logmkl = 0 .

A similar approach can be applied to the mutation operators to get a measure for
the size of its neighborhood. Such an analysis is carried out in Paper C. When a
stochastic process modifies an information sequence, the amount of random information
that is added to the sequence is called the entropy rate. By applying the above outlined
calculation to the input and output genome given to and received from a mutation, its
entropy rate is obtained. By this measure, if a mutation has a large neighborhood it
also has a high entropy rate. This knowledge can be used to diversify a population of
high similarity by applying mutations with high entropy rate to increase the exploration,
conversely, it may apply less disruptive mutations in the final phases of the run to exploit
the found hills. The results from Paper C is summarized in figure 13.

Elitism

Elitism is somewhat the opposite of diversifying the population. It is a method to
constrain the exploration of the algorithm. It works by transferring the best individuals
from a parenting generation to the following generation. This ensures that the best found
solution is exploited. Even though the selection of the fittest individuals probabilistically
guarantees that the best solution is exploited, the mutated best individual may not move
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Fig. 13: Entropy rates of the three mutations described, compared to the totally random mutation.
Note that these figures are for a directed TSP.

up the hill. In the case this happens and no improvement happens to the best solution,
the elitism approach inserts the best known individual into the new generation.

There are several approaches to elitism, one is to transfer the best individual if no
new individual is more fit. Another approach proposed by Deb et al. in their NSEA-II
algorithm is to keep a record of the M best known individuals, and let these participate
in the selection process, so that the basis for the selection is among N +M individuals
where N is the population size [32]. An also used variant, which combines the two, is
to replace the worst M individuals in the new generation with the archived elite.

3.4 Terminating the Algorithm
If nothing stops the genetic algorithm, there is no reason why it cannot keep generating
new generations forever. The usual way of stopping the algorithm is to evaluate the
population against a termination criterion and terminate the computation if the criterion
evaluates to true.

The basic termination criterion is the max generations criterion, which simply sets a
maximum number of generations to be evaluated. This criterion is usually incorporated
as a failsafe to ensure that the algorithm does stop within some time frame.

More intelligent are the the two traditional stall criteria stall-generations and stall-
time. As the name implies, these criteria monitors if the algorithm is stalling, that is if
the improvement of the individuals are stagnating. If the stall-generations does not see
an improvement in the fitness of more than a given threshold within a given number
of generations, it will stop the algorithm. the same is true for the time-stall criterion,
but instead of a number of generations, the criterion evaluates over a given time frame.
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These termination criteria are easily understood, however some insight into the genetic
algorithm is needed to set sensible values. Specifically, it is important to know about
how much improvement can be expected per generation, otherwise the generation or
time frame may be set too short so that the algorithm terminates while it is actually
making viable progress. Conversely, if the frame is set too long, computational time is
wasted.

In Paper D an adaptive parameter free termination criterion is presented. This
criterion takes advantage of the fact that the genetic algorithm is solving a TSP with
the objective of bringing down the execution time of the resulting solution. It basically
stops the algorithm is it predicts that it will take more time to find a better solution
than to actually fly the sub-optimal solution.

The prediction is based on the observation that the fitness of the best individual in
solving a TSP usually follows the same pattern. This pattern was observed by D. B.
Fogel to be “generally logarithmic” [26]. However, the curve seems to fit better with a
polynomial, which lead to development of the model described in Paper D.

3.5 Infeasible Solutions
When the problems that the genetic algorithm solves involves constraints, the mutations
sometimes produce infeasible solutions. This was the case in the afore mentioned case
of binary representation and classical operators.

Example 5 (Producing infeasible solutions.)
The two solutions

{1 2 3 4 5} ∼ {001 010 011 100 101}
{2 4 5 1 3} ∼ {010 100 101 001 011}

crossed so that bits [3, 8] is taken from the first solution and the rest from the second
produces.

{011 010 011 001 011} ∼ {3 2 3 1 3}

which is not a feasible solution.

One approach to remedy these malformed genomes is to perform a reparation proce-
dure on all infeasible offspring, which ensures that all individuals keep within the bounds
of the constraints. A simple reparation for the problem in example 5 is to traverse the
genome, remove any duplicates, and append any missing nodes at the end. Care must
be taken that the reparation does not introduce too much randomization, mutating the
genome and spoiling the likeness between the parents and the offspring, thus working
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against the purpose of the crossover operator. Indeed, the reparation function just
outlined is a very poor candidate.

The character of the infeasibility above stems from the inappropriate representation.
Other constraint violations are more fittingly handled by reparation procedures. An
example may be if the algorithm is optimizing the speed profile of a helicopter in a
turn. Then any mutation to the target speed which exceeds the maximum speed of the
helicopter may simply be capped at that maximum speed. Such a reparation conserves
quite some likeness between the infeasible and the repaired solution.

In [33], Ray et al. note that

Real life optimization problems often involve one or more constraints and in
most cases, the optimal solutions to such problems lie on constraint bound-
aries.

Indeed, this is the case in linear programming. The simplex algorithm is often used to
solve linear programs, and it works by evaluating the vertices that is generated by the
intersections of the hyperplanes that the constraints produce in the solution space. This
does not necessarily apply for non-linear problems. However, it may seem intuitive that
in the case of speed profiling a turn, the fastest turn lies on the boundary defined by the
maximum speed of the helicopter. This spawned the development of the infeasibility
driven evolutionary algorithm (IDEA) of Ray et al. [33], which allows some degree of
infeasibility, so that the neighborhood of the optimal solution extends into the infeasible
region as well as into the feasible region. This way, there are more possible trajectories
for the solutions to enter into region around the optimum.

The use of infeasible genomes have been explored in Paper E, where the fuel usage
of the helicopter is constrained to its fuel capacity. The job of the genetic algorithm
is to optimize the sequence of waypoints as usual, but also to insert refueling stops at
the appropriate times, so that the helicopter does not run dry. The approach here is to
allow some over-fueling in such a way that the distances between the refueling stops may
break the constraint. The idea is to exploit the symmetry that exists when inserting
a refueling stop into a sequence: If the sequence is feasible, some fuel may be left in
the tank and a displacement mutation may be able to put in another waypoint into the
sequence. Conversely, if the sequence is infeasible, the displacement mutation simply
needs to remove the waypoint. This way, the algorithm is more free to move around in
the search space, and may converge to the optimum faster.

3.6 Multi-Variable and Multi-Objective Optimization
The concepts of multi-variable and multi-objective optimization sounds alike but repre-
sents two rather different topics. Multi-variable optimization is when several variables
are tuned to optimize the objective. This is what happens in Paper F, where we are
both optimizing the sequence of the waypoints, the heading of each waypoint, and their
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individual speed. This is done to construct a trajectory composed of Dubins curves
which are augmented to incorporate different turning radii as a function of the target
speed of the waypoints. As more variables are added, the dimensionality of the search
space increases, usually leading to longer search times.

Multi-objective optimization is a matter of optimizing several objectives no matter
the number of variables. The solution to such problems is not necessarily a single
solution as for the single-objective case, but rather a set of Pareto optimal solutions. In
the case of the problem in Paper F, the optimization objective was to minimize time
usage. When the target speeds of the waypoints are increased, the total runtime tends
to decrease, but because of the following larger turning radii, the total path length
increases. If the problem was made to be multi-objective by including the path length
as a parameter as well, the solution would be the Pareto front defined on the time versus
length plane.

The NSEA-II algorithm by Deb et al. [32] is developed to solve multi-objective
optimization problems. The complexity of this algorithm is O

(
MN2) where M is the

number of objectives and N the population size. The reason for this is that it has to
evaluate all new individuals in the new population against the set of Pareto optimal
solutions. (In the section on elitism, it was mentioned that NSEA-II includes all the
best known solutions in the selection process, these best known solutions are in fact the
candidate Pareto optimal solutions.)

3.7 Using Genetic Algorithms for TSP
But why at all use the genetic algorithm for solving the TSP when the Dantzig-
Fulkerson-Johnson and Lin-Kernighan algorithms solve problems with thousands of
cities? Well, several of the reasons have been outlined. The genetic algorithm has
features that is not possible to incorporate in the other algorithms.

The genetic algorithm is an anytime algorithm; at any time it can present a feasible
solution. This enables the ASETA system to receive a set of waypoints for the unmanned
aircraft to visit, quickly perform an initial planning and dispatch the aircraft to the first
waypoint in the plan, and while the aircraft is flying perfect the plan for when it needs
the next point.

When the aircraft collects information and automatically generates new waypoints,
they are easily appended to the problem formulation, and mutation operators like the
displacement operator can move the waypoint into a good position in an otherwise quite
good sequence.

The genetic algorithm is not limited to only optimize the sequence of the TSP. It
can incorporate more advanced models of the aircraft through the objective function
and also optimize speeds and headings of the waypoints.

The genetic algorithm can plan in problems with limited resources like fuel capacity.
This leads to solutions of varying lengths with several possible refueling stops; an area



References 31

that genetic algorithms actually handles very gracefully as the genomes simply has
different lengths, which is handled by most operators without much modification.

Being population based, the genetic algorithm provides a possibility to sample the
Paretto front of a multi-objective optimization problem, so that several factors may be
optimized simultaneously, such as time and fuel consumption.

Basically, the genetic algorithm provides a very extensible basis for building a plan-
ner that takes many factors and models into account and is quite robust to changing
conditions.
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Abstract
The ASETA project (acronym for Adaptive Surveying and Early treatment of crops with
a Team of Autonomous vehicles) is a multi-disciplinary project combining cooperating
airborne and ground-based vehicles with advanced sensors and automated analysis to
implement a smart treatment of weeds in agricultural fields. The purpose is to control
and reduce the amount of herbicides, consumed energy and vehicle emissions in the weed
detection and treatment process, thus reducing the environmental impact. The project
addresses this issue through a closed loop cooperation among a team of unmanned air-
craft system (UAS) and unmanned ground vehicles (UGV) with advanced vision sensors
for 3D and multispectral imaging. This paper presents the scientific and technological
challenges in the project, which include multivehicle estimation and guidance, hetero-
geneous multi-agent systems, task generation and allocation, remote sensing and 3D
computer vision.

1 Introduction
Weeds have always remained a major concern to farmers because they compete with
crops for sunlight, water and nutrients. If not controlled, they can cause a potential loss
to the monetary production value exceeding a global average of 34% [1].

Classical methods for weed removal are manual or mechanical which are time con-
suming and expensive. Over the last few decades, herbicide application has been a
dominant practice. Indiscriminate use of chemicals, on the other hand, is also detri-
mental to both environment and the crop itself.

Reduction in the use of pesticides in farming to an economically and ecologically
acceptable level is one of the major challenges of not just developed countries but also
the developing countries of the world. Introducing an upper threshold to the amount
of pesticides used does not necessarily serve the purpose. It must be accompanied with
the knowledge of when and where to apply them. This is known as Site-Specific Weed
Management (SSWM). For SSWM, the concept of precision farming scales down to
field spots or patches [2] or even to plant scale [3]. This requires real-time intelligence
on crop parameters which significantly increases the complexity of modern production
systems and therefore imply the use of automation through information technologies,
smart sensors and decision support systems.

Over the last five decades, the concept of agricultural automation has evolved from
mechanization of manual labor into intelligent sensor based fully autonomous precision
farming systems. It started with automation of ground vehicles [4] and over time, air
vehicles also found their way in. Furthermore, advanced perception technologies such as
machine vision have become an important part of agricultural automation and 2D/3D
image analysis and multispectral imaging have been very well researched in agriculture.
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Today, with advanced sensor technologies and both air and ground, manned and
unmanned vehicles available in the market, each one with its own pros and cons, the
choice has become broad. The technology is at par with most of the industrial demands
but the need is of an optimal subset of technical attributes since the practice, particularly
in agriculture, has usually been limited to the use of one type of vehicle with a limited
sensor suite. The drawback of this scheme is that one type of vehicle is unable to satisfy
all operational requirements. For example an unmanned aircraft (UA) to detect and
apply spray to the aquatic weeds compromises on spray volume, precision and duration
of flight due to weight-size constraints [5], while a ground vehicle alone can significantly
slow down the operation along with producing substantial soil impact [6], not to mention
the problem of emissions.

These constraints imply the use of a team of both air and ground vehicles for a holistic
solution. Unmanned (ground) vehicles being considerably smaller in size than manned
vehicles have lesser soil impact and fuel consumption (thus have reduced emissions)
and may also be battery operated. Therefore, for economy of time and energy and
for higher precision, a network of unmanned air and ground vehicles is inevitable and
is destined to outperform conventional systems. Research has also been conducted in
cooperative unmanned mixed robotic systems both for civil and military purposes, for
example, [7] proposes hierarchial framework for a mixed team of UAS and UGV for
wildfire fighting and GRASP laboratory [8] used such systems in urban environments
as a part of MARS2020 project. But apparently, no such strategy has been adopted in
agriculture. To the best of authors’ knowledge, ASETA is the first project of its kind
to use a team of both UAS and UGV in agriculture which has opened a new chapter in
precision farming and researchers especially in the European Union are taking increased
interest in such approaches (for example, RHEA project [9]).

This paper describes the scope of ASETA’s scientific research, its heterogeneous
robotic fleet and sensor suite for SSWM. The paper is organized as follows: the project
is described in section 2, followed by equipment summary in section 3. Main research
areas of this project in the context of the related work are presented in section 4. Section
5 concludes the paper.

2 ASETA
ASETA (Adaptive Surveying and Early treatment of crops with a Team of Autonomous
vehicles) is funded through a grant of 2 million EUR by the Danish Council of Strategic
Research. It aims at developing new methods for automating the process of acquiring
and using information about weed infestation for an early and targeted treatment. The
project is based on the following four hypotheses:

1. Localized detection and treatment for weeds will significantly decrease the need
for herbicides and fuel and thereby reduce environmental impact.
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2. Such early detection can be accomplished by multi-scale sensing of the crop fields
by having UAS surveying the field and then performing closer inspection of de-
tected anomalies.

3. A team of UAS and UGV can be guided to make close-to-crop measurements and
to apply targeted treatment on infested areas.

4. A team of relatively few vehicles can be made to perform high level tasks through
close cooperation and thereby achieve what no one vehicle can accomplish alone.

Fig. A.1: ASETA Strategy

The strategy adopted in ASETA (Fig. A.1) is to survey crop fields using UAS in order
to obtain and localize hotspots (infested areas) through multispectral imaging followed
by cooperative team action among a team of air and ground vehicles for a closer 3D
visual inspection, leading to the treatment. Survey may be iterated depending on the
team size and field dimensions.

Obviously, ASETA’s industrial gains come at the cost of certain technical and sci-
entific challenges. A heterogeneous team of several unmanned vehicles is chosen to
distribute heavy payloads on ground vehicles (sensing, perception and treatment) and
relatively lighter payload (sensing and perception only) on the air vehicles which po-
tentially is a well balanced approach but puts high demands on team cooperation and
task management keeping in view the constraints of each team member. A further com-
plexity to the proposed system arises from the fact that although computer vision is
very popular and successful in plant inspection, however, changing weather and sunlight
conditions has so far limited in-field agricultural vision systems [10]. These challenges
must be addressed in order to produce an optimal combination of more than one type of
unmanned vehicles to outperform the conventional systems in the scope. Therefore, in
order to achieve its goals, ASETA will carry forward scientific research in four directions,
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namely, multispectral imaging, 3D computer vision, task management and multivehicle
cooperation.

The project started in January 2010. Major research work will be carried out from
2011 to 2013. Scientific research is being conducted by four post graduates and several
faculty staff involved at two Danish universities, University of Copenhagen and Aalborg
University. This collaborative work is a mixture of theory, simulations, and actual
fields tests. The latter is done in cooperation with the university farms at University of
Copenhagen, which will maintain a field of sugar beets throughout the growth seasons in
2011 to 2014. Since sugar beet is the crop-of-choice for the demonstrative part, Nordic
Beet Research is also involved in the project.

3 Equipment
Some of the specialized equipment used in this project is described below:

3.1 Robotic Platforms
ASETA has three unmanned mobile robots available for the project. They are briefly
described below:

UAS

The UAS is comprised of two rotary wing aircraft. The first UA is a modified Vario
XLC helicopter with a JetCat SPTH-5 turbine engine (Fig. A.2). The helicopter weighs
26 kg when fully equipped for autonomous flight and can fly for 30 minutes with 6
kg of fuel and 7 kg of payload. For autonomous flight, a NAV440 Inertial Navigation
System (INS) from Crossbow is used together with altitude sonar. Onboard computer
is a Mini-ITX with dual-core 1.6 GHz Intel Atom processor and runs a Debian Linux
operating system. The flight time in this configuration is approximately 30 minutes.

Fig. A.2: Autonomous vehicles in ASETA, (from left): Vario XLC, Maxi Joker-3 and robuROC-4

The second UA is a modified Maxi Joker-3 helicopter from MiniCopter. It is electri-
cally powered and weighs 11 kg when equipped for autonomous flight (Fig. A.2). The
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helicopter can fly for 15 minutes with a payload of 3 kg. It has a Xsens MTiG INS and
sonar altimeters for autonomous flight and Nano-ITX size 1.3 GHz onboard computer
with Debian Linux operating system.

Each UA can be configured to carry the multispectral camera (see Section 3.2) or
a color camera. The sensors are mounted in a modified OTUS L205 gimbal from DST
Control. The low level guidance, navigation, and control (GNC) system for the UAS
is the baseline GNC software from Aalborg University’s UAV lab1. It features gain
scheduled optimal controller, unscented Kalman filter for navigation and an advanced
trajectory generator.

UGV

The ground vehicle is a robuROC-4 from Robosoft (Fig. A.2). Running on electric power
this vehicle is designed for in-field use and will carry the TOF (see Section 3.2) and color
cameras for close-to-crop inspection. The total weight is 140 kg (without vision system)
and it is controlled by a standard laptop residing under the top lid running the cross-
platform robot device interface Player/Stage. This vehicle is equipped with RTK GPS
to allow it to traverse the crop rows with sufficient accuracy.

3.2 Vision Systems
As described in section 2, two different imaging systems will be used: one for remote
sensing and another for the ground based close-to-crop imaging. For remote sensing, a
multispectral camera will be employed and for ground based imaging a fusion of Time-
of-Flight and color images will be explored.

Multispectral Camera

The multispectral camera used in the project is a Mini MCA from Tetracam2 (Fig. A.3).
This specific sensor weighs 695 g and consists of six digital cameras arranged in an array.
Each of the cameras is equipped with a 1.3 megapixel CMOS sensor with individual band
pass filters. The spectrometer filters used in this project are 488, 550, 610, 675, 780 and
940 nm (bandwidths of 10 nm). The camera is controlled from the on-board computer
through an RS232 connection and images are retrieved through a USB interface. Video
output is also possible using the output video signal in the control connector.

Time-of-Flight Camera

A time-of-flight (TOF) camera system has the advantage that depth information in
a complete scene is captured with a single shot, thus taking care of correspondence

1www.uavlab.org
2www.tetracam.com
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Fig. A.3: Mini MCA multispectral camera.

Fig. A.4: SwissRanger SR4000 TOF Camera

problem of stereo matching. In this project, Mesa Imaging’s SwissRangerTMSR4000
3 USB camera will be used which is an industrial grade TOF camera allowing high
quality measurements in demanding environments. It operates in the Near-InfraRed
(NIR) band (illumination wavelength 850 nm) hence a stable measurement accuracy
and repeatability can be achieved even under variations in object reflectivity and color
characteristics. SR4000 can deliver a maximum frame rate of 50 frames/sec. As usually
is the case with TOF cameras, the resolution is fairly low (176 x 144 pixels) which will
be augmented by fusion with high resolution color images.

4 Research Areas
The main scientific contributions will be generated by four research positions associated
with the ASETA loop (Fig. A.1). Two PhD studies in analysis and interpretation of
images detection and treatment of weeds and one PhD study and one Post Doc in task
allocation and vehicle cooperation. They are briefly described below in the context of
the state-of-the-art.

3www.mesa-imaging.ch
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4.1 Multispectral Aerial Imaging for Weed Detection
As already discussed in section 1, SSWM involves spraying weed patches according to
weed species and densities in order to minimize herbicide use. However, a common
approach in SSWM is weed mapping in crops which is still one of the major challenges.
Remote sensing supplemented by targeted ground-based measurements have been widely
used for mapping soil and crop conditions [11, 12]. Multispectral imaging at low and
high spatial resolution (such as satellite and airborne) provide data for field survey and
weed patch allocation but depending on the system used, it varies in accuracy [13].

A higher level of spectral difference between plant and soil makes their separation
relatively easy in a multispectral image. But the spectral ambiguity among plant species
makes plant classification a difficult task. Thus, the spatial resolution of the sensor be-
comes an essential criterion for a reliable vegetation discrimination in order to detect
the spectral reflectance in least altered form to avoid spectral mixing at pixel level [14].
Therefore, the major requirements for robust aerial remote sensing for weed identifica-
tion are a high spectral resolution with narrow spectral bands and the highest possible
spatial resolution (normally limited by sensor technology) [15].

The high usability of multispectral satellite imagery from QuickBird (2.4 to 2.8 meter
spatial resolution) in a sugar beet field for Cirsium arvense L. hotspot detection for a
site-specific weed control having spot diameters higher than 0.7 m was demonstrated
by [16]. The relatively low spatial resolution along with the inability to image ground
during cloudy conditions make such systems less suitable for analyzing in-field spatial
variability. On the other hand, high resolution images (up to 0.707 mm/pixel) were
acquired in a rice crop for yield estimation using a UA flying at 20 m [12].

Keeping this fact in view, in this project, the choice of camera equipped unmanned
helicopters is made because they can be guided at lower altitudes above the crop canopy
in contrast to the satellite and manned airborne systems, increasing image resolution
and reducing atmospheric effects on thermal images [17, 18]. Images obtained from low
altitudes will support accurate decision making for precision weed and pest management
of arable, tree and row crops.

The goal of aerial imaging in ASETA is to explore the potential of multispectral
imaging involving multistage sampling for target detection meanwhile employing spatial
sampling techniques (stereology) for real-time density estimation. Stereology will be
used for target sampling at various scales, using information from lower resolution images
(high altitude-helicopter) to plant measurements at higher resolutions (low altitude-
helicopter) to maximize information from sparse samples in real-time while obeying rules
of probability sampling [19]. The maps of the field provide the basis for optimal designs
of sampling locations over several spatial scales using variance reduction techniques [19].
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4.2 3D Computer Vision for Weed Detection
Multispectral aerial imaging will be able to detect hotspot locations and volumes, but
on a macro level. It cannot resolve individual plants at intra-row level. A ground based
imaging system will thus be employed for close-to-crop inspection in this project.

In agricultural automation, the expected outputs of a weed detection system are
weed plant detection, classification and stem center localization. Ground based imaging
is not new but research has mainly focused on weeds at very early growth stages. There
are two main reasons for this; an early detection will lead to an early treatment and the
fact that plant imaging and recognition is one of the most demanding tests of computer
vision due to complicated plant structures and the occlusion of crop and weed plants at
later stages of growth prevents the proper visual separation of individual plants. While
some efforts have shown promise under conditioned environments such as green houses,
lack of robust resolution of occlusions remains a major challenge for in-field systems [20].
By utilizing 3D visual information it becomes possible to detect occlusions and make a
better visual separation. Keeping this fact in view, the major objective in this project
in ground based imaging is to utilize 3D computer vision techniques in weed detection.

There has been a significant amount of research work done towards 3D analysis
of plants as well, but again this has mainly been aimed at navigation in the field,
in estimating overall canopy properties through stereovision or creating very detailed
models of plants [10]. 3D modeling is computationally expensive and is potentially
hampered by thin structures, surface discontinuities and lack of distinct object points
such as corners ending up in the correspondence problem [21]. These limitations pose a
major challenge for in-field real-time 3D analysis of plants.

In order to address these problems, active sensing system based on Time-of-Flight
(TOF) technology will be used which has been very scantily tested in agricultural ap-
plications mainly due to a very high sensor cost. TOF has a drawback of low resolution
and sensitivity to ambient light, but these problems have been recently addressed and
having TOF depth map fused with high resolution color image has shown very encour-
aging results especially with parallelized computations which significantly reduces the
runtime [22]. The idea, therefore, is to use TOF data integrated with high resolu-
tion color images to perform in-field plant analysis. TOF technology has only recently
found its way towards industrial applications and in agricultural automation its utility
assessment is quite fresh [23–25].

While 3D analysis is required for resolving occlusions and localization of plant body,
discrimination of weeds from crops is still another challenge. Pattern and Object Recog-
nition techniques have been widely used in weed discrimination [26]. But most of the
techniques use color or size of the leaves (Leaf Area Index-LAI) as prime feature. The
size of the leaves or the exposed area of the leaves vary due to orientation, growth stage
and weather conditions. Furthermore, variations in the soil conditions and the amount
of sunlight can result in color variations. Instead, vision systems based on shape are less
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sensitive to variation in target object color [10]. In this project, a shape based approach
in distinguishing sugar beet crop plants from weeds will be used, for example [27].

In general, ASETA will contribute a new approach in weed identification by com-
bining TOF technology with pattern recognition techniques bringing the lab research
to the field.

4.3 Task Management
The idea of Future Farms is that the farm manager should be able to–more or less–just
press a button, and then leave it until the process is finished. This demands that the
system is capable of identifying the subtasks contained in this high-level command and
ensure their execution. These two processes are commonly known as Task Decomposition
and Task Allocation.

The task decomposition process is going to break down the overall task to small
manageable chunks, that the individual members (robots) of the system are able to
execute. The decomposition depends on the combined set of capabilities of the members.
For example, if a member has the capability to take very high resolution images, the
initial images might be taken from high altitude and only a few overview images may
be sufficient for mapping the the entire field. Whereas, if only low resolution cameras
are available, several overview images may be required.

When the overall task has been decomposed into suitable subtasks, they must be
distributed to each of the members in the system. This is known as Task Allocation.
Several different approaches to this have been investigated. Two broad categories can
be identified as centralized and distributed allocation. The centralized approach is
essentially a matter of solving a multiple travelling salesman problem (m-TSP). The
distributed approach will divide the task of solving the TSP between each member.
In this case the members must communicate with each other to make sure that two
members are not planning to visit the same point (see section 4.4).

The TSP solution has historically received a great deal of attention and has shown
to be NP-hard [28], thus simple brute-force algorithms will not be practically usable in
the system. The Lin-Kernighan heuristic [29] of 1971 is still one of the most preferred
algorithms for solving TSPs, and maintains the world record of solving the largest
TSP [30]. A strategy to solve the TSP with timing constraints (TCTSP) is devised
in [31]. Helicopters conducting a closer examination of the weed infestations in the
ASETA scheme will experience a TCTSP as the high altitude images will be taken over
time and thus the close-up tasks are time constrained. Walshaw proposed a multi-level
approach for solving the TSP [32]. This is relevant as the high altitude-helicopter process
coarsens the TSP for the low altitude-helicopter, and thus gives a coarse representation
of the low-level TSP free of charge.

The decentralized approach relies on the members to distribute the tasks among
themselves, without intervention of a governing system. The MURDOCH allocation
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system uses an auctioning approach where each robot bids on the different tasks de-
pending on their own perceived fitness for the task at hand [33]. The fitness assessment
of the ALLIANCE architecture [34] is based on a impatience behavioral pattern. These
approaches will not guarantee the optimal solution, but provide some robustness that
might be missing in the centralized approach.

The aim of the ASETA task management is to utilize existing TSP solving methods
such as Lin-Kernighan or Walshaw approach and adapt them to the situation at hand,
with the members gradually revealing more and more information as they move closer
to the crops, from the high altitude- over to the low altitude-helicopter down to the
ground vehicle.

4.4 Multivehicle Cooperation
The close cooperation among team members (robots) is an important part of ASETA
in order to ensure a safe and efficient execution of the tasks provided by the Task
Management. The cooperation layer will determine which robot will tackle which task
and to some extent in what order. In a situation where a team of heterogeneous robots
must cooperate in order to complete a task in an open-ended environment, it is crucial
that each member has a clear understanding of its own as well as the other members’
capabilities because they are not equally qualified to handle a given task. In this project,
The helicopters are equipped with several different types of sensors including cameras
(as described in section 3) well suited for observation only and the ground vehicle has
an altogether different sensor suite and is meant for closer inspection and treatment.
This information is to be used by every member to decide which part of the overall task
it should handle and how to do it.

To ensure a timely and efficient execution of the tasks it is equally important for a
robot to know what its team members are doing – i.e. their behavior – and thereby en-
suring that two members do not unnecessarily work on the same subtask. However, it is
not always trivial to acquire such knowledge. The distances involved in field operations
can potentially become very large and thus can only allow limited communication. Fur-
thermore, when reducing necessary communication among members, backwards com-
patibility is made easier and this is preferable in a industrial product. Therefore, the
members must be able to deduce this knowledge from very limited information such as
the state (position, orientation, and velocity) of the other members. This will put lesser
constraints on the robots that are allowed to participate in the cooperation. In fact
even robots without any cooperative capabilities can be a part of the system, as long as
they can share their state with the rest of the team.

Current research in cooperative control of multivehicle systems focuses mainly on the
control element such as formation control or distributed optimization. A comprehensive
review of recent research in cooperative control can be found in [35]. Only few projects



48 Paper A.

have taken the limited communication between robots into account (for example: [36]
or [37]).

In this project, the actual cooperation layer is created as a decentralized two-level
approach:

Level 1: Acquiring team behavioral information

The challenges of this level are seen primarily as a model based estimation problem
which will be solved using particle filtering. This is done through the formulation of a
behavioral modeling framework which in turn describes the different possible behaviors
of the members. When used in a particle filter, it is capable of determining the maximum
likelihood hypothesis, i.e. best fitting behavior of the observed team members.

Level 2: Task execution

Each member is assumed to be containing a low level navigation and control system as
well as simple trajectory planning. As a high level control, a receding horizon is used
in the form of a decentralized Model Predictive Controller (MPC). The MPC on each
member will attempt to find an optimal behavioral action to take, given information
about the current behavior of the rest of the team.

In short, the ASETA cooperation scheme will use particle filtering and model pre-
dictive control to implement cooperation between loosely coupled robots.

5 Conclusion
ASETA will not only produce high quality research in multispectral imaging, computer
vision and multivehicle systems, but it also aims at developing an actual demonstrator.
Working within the price range of other farming machinery and the use of off-the-
shelf hardware throughout enhances the likelihood of tools developed in this project
being adopted by the industry. The long term objective of ASETA is a commercially
available autonomous multi-scale surveying system for site specific weed management
to reduce the cost and environmental impact of farming chemicals, fuel consumption
and emissions. It therefore holds the potential for significant impact on the future of
precision farming worldwide.

Given the rising levels of atmospheric CO2 and temperatures under climate change,
weed species are expected to show a higher growth pattern than crops due to their
greater genetic diversity [38]. On the other hand, governments mandate considerable
reductions on the use of pesticides. This fact has added more importance and promise
to such projects.

Although dealing with a system of heterogeneous vehicles increases the complexity
of the system, however, it also serves as a flexibility on the user end in the choice of
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vehicles and sensors from a wide range, producing a more customized solution to the
application at hand. ASETA, therefore, has future beyond agriculture towards several
other applications such as fire fighting, search & rescue and geological surveying, in the
long run.
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Abstract
The ASETA project develops theory and methods for robotic agricultural systems. In
ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the
task of identifying and treating weeds in sugar beet fields. The framework for a working
automatic robotic weeding system is presented along with the implemented computer
vision systems.

1 Introduction
The use of pesticides is detrimental to the environment. However, farmers must treat
their fields against weed infestations to keep their business profitable. The current
practice is to spray the entire field even if the weed distribution is heterogeneous. This
herbicide discharge can be greatly reduced if the application is targeted only at actual
infestations instead. However, it is required that the infestations are discovered and
identified before they begin to compete with the crops. Practically, this is not possible
if the weeds have to be surveyed by humans; this is simply too costly.

The ASETA project [1] is developing a system for autonomously mapping weeds
in fields by means of robots, airborne and ground-based, fitted with advanced camera
equipment. The airborne robots are based on small-scale helicopters that provide the
system with multi-spectral aerial images. Using data from the helicopters, the system
identifies infestations in a field and then dispatches autonomous ground vehicles to the
infestations to exactly identify and localize the weeds.

In this paper, the framework and key technologies for integrating this system are
described.

1.1 The ASETA Case
In their review of the current state of the art of robotic weed control systems, Slaughter
et al. [2] report more than 50% yield loss if weeds are not controlled in row crops.
They further note the problem that the weeds closest to the crops are the most harmful
and that these are also the most difficult weeds to control. The consequence is that
some fields must be hand-hoed, which is costly and inefficient. The aim of the ASETA
project is to address this problem, and provide a solution for inexpensive, consistent,
and reliable robotic weeding.

ASETA is working with a system of ground based and aerial vehicles. Both are
unmanned and autonomous. Through a series of steps, the robots will identify and
localize any weed infestations in a given field. The ASETA project works with a case of
thistle (Cirsium arvense) infestations in sugar beet fields [3].

The topic of site-specific weed control is surveyed by Christensen et al. [4], where
they classify the treatment of the fields in four levels:
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1. Individual plant treatment

2. Treatment of grids (several plants)

3. Subfield treatment

4. Whole-field treatment

The ASETA project works in the first two levels, focusing on single plants and smaller
patches.

A theoretical infrastructure of an agricultural decision support system for robotic
site-specific weed management was proposed in [5]. That work takes a holistic approach
and encompass everything needed to make such a system operational. In their termi-
nology, the ASETA project focuses on the subsystem called the “current year decision
system”. This is concerned with the current state of a field and which treatment to
apply to maximize the immediate yield.

1.2 Related Projects
Precision agriculture, the area of research on targeted treatment, has received much
attention with the maturity of mobile robotics research and especially with the advent
of cheap high-precision sensors such as GPS.

The RHEA project [6] was launched in 2010 with a mission much like ASETA’s to
reduce pesticide usage in agriculture. In RHEA, work is done in many area, but as
shown in [5], they take a holistic approach and consider the entire precision agricultural
system.

Projects like ASETA and RHEA rely on the incremental knowledge gained over the
years in the fields of robotics, agriculture, and computer vision. In the intersection
between agriculture and robotics, agricultural field robots, wheeled robots capable of
carrying varying types of implements, have been researched and developed by several
groups. Approaches range from fully-automated tractors [7] to dedicated platforms like
the API [8], the HortiBot [9], and the BoniRob [10].

Much research has concerned the implements for autonomous robots. Usually such
implements are combinations of vision systems and intelligent sprayers or hoeing tools.
Examples of such developments are: Lettuce hoeing [11], date tree spraying [12], sugar
beet hoeing [13]. Christensen et al. [4] and Slaughter et al. [2] provide good overviews
of the technology.
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2 Methods

2.1 Multiscale Imaging
The core idea in ASETA is to use a multiscale imaging approach. This entails taking
aerial images at high altitudes, and then gradually lowering the altitude, to obtain
images with higher resolution. At some point the ground vehicles will take over and
perform imaging of individual plants.

A simplified process with a single unmanned aircraft system (UAS) and a single
unmanned ground vehicle (UGV) looks like this:

• An operator defines the bounding polygon of a field.

• The UAS takes images of the field from high altitudes.

• The images are processed, indicating areas of interest for closer inspection.

• The UAS flies to the indicated ares and obtains higher resolution images (lower
altitude), which are processed for indications of weed infestations.

• The UGV is dispatched to the areas that need attention.

• The UGV identifies the exact shape and position of each piece of weed and reports
it to the system.

• The process continues until all weeds in the field have been mapped.

This multiscale imaging approach saves time because it quickly directs the UGVs to
actual infestations. It also has the advantage of acquiring overview images of the entire
field in the process. These images can be used for weed estimates, in the locations,
where the UGVs do not go. However, aerial images are not as precise as ground-based
images. Chistensen et al. [4] deems aerial based sensing fitting for the two coarsest
classifications of site-specific treatment (sub-field and whole-field). They, however, did
not have UASs in mind, but rather piloted aircraft and satellites; UAS imaging provides
even higher resolutions. By using ground-based sensing to correct and calibrate the
aerial measurements, the aerial images may be used at the next levels (several plants
and single-plant).

2.2 System Architecture
The conceptual structure of a system with one UGV and one UAS is shown in Fig. B.1.
It consists of a task manager that automatically decomposes the task of the entire system
(i.e. to survey a given field) into tasks for the individual subsystems. The supervisors
interpret the tasks and command the vehicles to move to the indicated positions, while
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they keep track of the execution. The data from the vehicles are processed to update the
map of the field in the database. When such updates occur, the task manager factors
the new information into the plans and changes the tasks of the vehicles accordingly.

Image
Processing

Task
Manager

Map
Database

Vehicle
Supervisor

Helicopter
Supervisor

HelicopterVehicle

Tasks

Waypoints

Images

Map
Updates

Maps

Fig. B.1: The conceptual system of ASETA. The task manager creates tasks for the vehicles. The
tasks are handled by the supervisors, which monitor and provide the vehicles with waypoints in the
correct sequence. The data obtained by the vehicles are processed to provide updates to the maps in
the database.

The description of the simplified process above (Sec. 2.1) is static, in the sense that
information only travels from the UAS to the UGV. The system proposed here follows
the same general idea but is more dynamic because it allows the vehicles to work in
parallel and cooperate.

A short description of the components is given below.

Task Manager

The job of the task manager is to decompose the overall task in such a way that the
UGVs and the UASs perform the execution in the fastest and least resource demanding
fashion.

In essence, what the task manager has to do is solve a job shop scheduling problem.
Because the abilities of different vehicles are overlapping. E.g. the UAS can quickly
photograph the entire field, albeit at a low resolution. This is also possible for the UGV;
it will take a long time, but provide a high resolution. So the job is to figure out which
vehicles to use to acquire which images.

Further, the images must be taken at different locations, so the execution time of
a task is not only dependent on the time it takes to take the photograph, but also
the travel time between the locations. This alludes to a case of the traveling salesman
problem.
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So, the task manager is tasked with two cases of combinatorial optimization. The
approach of the ASETA project is to solve these using genetic algorithms (see section
2.3).

Supervisors

The supervisor interprets the tasks given by the task manager and provides the vehicles
with lower-level commands such as waypoints, reference trajectories or when to take an
image. The primary task of the supervisors is to ensure that the tasks that are passed
on to the vehicles are executable, but they also function as a standardized interface
between the task manager and the vehicle. This way, the task manager can ignore the
dynamics of the vehicles when planning.

Vehicle and Helicopter

In the ASETA case, the UAS is based on a small-scale helicopter (Fig. B.2) and the
UGV is based on a four wheeled robotic platform (Fig. B.3). But, the general system
allows for several, possibly different vehicles. In this way, the system can be suitable for
a range of different scenarios.

Fig. B.2: The UAS, based on a Maxi Joker 3 RC-helicopter, equipped with a multi spectral camera
mounted in a gimbal device (front), a mini-ITX computer (underside), and IMU and GPS (on tail).

Image Processing

The automatic processing of the image data provided by the vehicles is essential to the
system. The ASETA project does work in both ground-based and aerial imaging. The
aerial image processing focus on determining weed patches and and the ground-based
image processing works with the identification of single plants. These two topics are
described in sections 2.5 and 2.6.
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Fig. B.3: The UGV is based on a the RobuROC4 platform from Robusoft. It is a skid-steered,
four-wheel driven vehicle with custom onboard computer, sensor suite, and camera setup.

Map Database

The end product of the entire automation exercise is to build a map of the field, indi-
cating spots of weeds. Initially, the database will hold only the outline of the field, and
as the vehicles provide more information, the maps will be populated.

The ASETA project focus on mapping thistles in sugar beet fields, but having several
other image processing algorithms and sensors on the vehicles could enable the system to
produce several different maps in the same run. These maps could include soil nutrition
levels, plant growth stages, pest infestations as well as the weed map.

2.3 Automatic Planning
The goal of the system is to have a complete survey of a given field. The automatic
planner decomposes this goal into several states, each composed of a location and an
action that the vehicle must take in that location. The vehicles must visit these locations
in a sequence. So in order to save fuel and time, the planner must find the shortest path
between the coordinates; this is a case of the traveling salesman’s problem.

The planning is done with a genetic algorithm (GA). The GA used for the planing
is based on the path-representation described in [14], and uses the four mutations:
Displacement, exchange, inversion, and insertion [15–17].This GA does not guarantee
to find the optimal solution nor to converge to it, however it will often converge on good
candidate solutions. The difference between the candidate and the optimal solutions
is tolerated, because the environment and vehicle dynamics incur so much uncertainty
that it is unknown whether the optimal solution in terms of distance is in fact the best.
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Although the GA might not converge to the optimal solution, it must be given some
computation time to arrive at whatever near-optimal solution it is converging to. It is
usually up to the designer of the algorithm to decide on how much time the algorithm is
given, which is not always easy at design time as the runtime increases with problem size
and is dependent on the quality of the initial guess. A contribution from the ASETA
project is an adaptive stopping criterion for GAs, that indicates when the algorithm has
reached an acceptably good solution [18].

The distance that the robots travel depends on the plan that the GA constructs. A
simple measure of the solution quality is the euclidean distance between the points. This
is easily computable but introduces sharp turns that are not realizable by the vehicles
because of kinematic and dynamic constraints.

Currently, an alternative to the Euclidean distance measure is being studied under
the ASETA project. It bases the distance measure on Dubins curves, which are com-
posed of line and arc segments. These curves are differentiable and match the vehicle
dynamics better, but they also introduce more computations as well as a continuous
variable in the heading of each waypoint. These two problems are addressed by using
the Euclidean measure first, and later in the process when the solutions are converging
substitute the distance measures with Dubins measures for the relevant arcs (i.e. the
candidate arcs for the final solution). This work is based on the alternating algorithm
of Savla et al. [19] with the considerations of headings introduced by Ny et al. [20]. The
notations and results of [21] are used to achieve efficient computations of the Dubins
curves.

The algorithm is relying on the simple cost function of distance traveled by the
robots. A further step could be to use a cost function like energy usage, which could
improve the system performance as the vehicles are battery-powered.

The algorithm is currently static, in the sense that if a new goal is set, then the
algorithm must be restarted. Work is being done to dynamically inject new goals into
the running algorithm as well as deleting fulfilled goals.

2.4 Path Planning
The path planning for the UGV is done in 2D assuming the field to be a flat surface.
The grid layout of the field is assumed to be known, without knowing the exact position
of every plant. The planner uses Dubins’ curves to smooth the transitions between
the edges of the field. Recall that the UGV is skid-steered and able to turn on the
spot, however doing so will churn up the soil and possibly destroy crops. Using Dubins’
curves is a compromise between churning up the soil and diverging from the desired
path. Figure B.4 shows an example of a UGV visiting a number of goals in a field.

Currently, no emphasis is given to unknown obstacles in the field, such as rocks,
other vehicles, or humans. Static obstacles can be programmed into the field layout,
but otherwise it is up to the operators to intervene if emergency situations occur. As
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North

Fig. B.4: Trajectory of a UGV visiting hotspots in a field (57.0144 N, 9.993 E). Plusses (+) indicate
goals, greeen lines indicate paths in the field, and the blue line indicates the planned path of the UGV.
The straight segments are joined with Dubins curves.

this is an experimental system and emphasis is on the overall functionality of the system,
such robustness is not top priority.

2.5 Aerial Image Processing
The aerial image processing is based on color analysis. The fact that different plant
species show different colors is used to discriminate between them. Physiological in-
ternal processes determine the important features for discrimination (i.e. chlorophyll
absorption bands, red edge inflection point) and can be detected by narrow band multi-
spectral imaging with a sufficient spatial resolution. Hence, it is possible to distinguish
different plants by identifying the spectral features where they show the maximum dif-
ference [22, 23]. In the ASETA project an extensive survey of the spectra of thistles
and sugar beet leaves has been conducted under real life conditions, Fig. B.5 shows the
average spectra of the two species.

One of the first objectives of the ASETA was to investigate the possibility of discrim-
inating sugar beets and thistles based on their spectra under field conditions. Principal
component analysis was used to assess the separability of sugar beets and thistles, and
determine the most prominent features (wavebands) that show higher variability. First
results show a great separation when using uncorrelated variables and indicated wave-
bands centered at 550, 680, 750 and 940 nm as the most significative when classifying
those two species (see Fig. B.6).

The aerial vision system used in this research is based on a multispectral narrow-band
filter camera (seen in Fig. B.2). The MiniMCA-6 (Tetracam Inc., USA) weighs 695 g
and consists of six individual digital cameras arranged in a 3 by 2 array and synchronized
so they can be triggered at the same time. Each of the cameras is equipped with a 1.3
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Fig. B.5: Spectral signature of sugar beet (red) and Cirsium Arvense L./thistle (blue) in the visual-
NIR range. Significant difference is seen around 550, 680, and 940 nm.

megapixel CMOS sensor. Interchangeable narrow bandpass filters are placed in front of
the optics to block the unwanted frequencies. The configuration of filters (see Table B.1)
is selected to coincide with the wavebands where the main physiological phenomena are
reflected as well as to allow the calculation of the most important vegetation indices.
For technical reasons, the filters does not match the frequencies identified in Fig. B.5
exactly, but are close enough for identification purposes.

Table B.1: The filters mounted on the Mini MCA camera

Mini MCA Filters
Wavelength* 488 550 610 675 780 950
Bandwidth* 10 10 10 10 10 40

* nanometers

The multiscale imaging process decribed in section 2.1 is used for quickly gathering
information with a low resolution (approximately 50 mm/pixel), flying at high altitudes,
and for a finer detection at plant level using higher resolution images (10–20 mm/pixel)
taken at low altitudes.

First, a coarse vegetation map is generated from lower resolution images using the
excess green index (ExG) which is highly effective in masking out the green objects
from the bare soil background [24]. A close relation exists between the mean ExG for a
certain area and its vegetation density, and comparisons can be made within the same
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Fig. B.6: Principal Component Score plot of dataset composed by 80 samples of sugar beet (red) and
80 samples of thistle (blue) plants. PC1 and PC2 accounting for the 71.5 % of the variability.

image. Regions with high biomass are ranked by importance (size and density) and
geo-positioned. The traditional ExG is computed using the red, green, and blue (RGB)
channels of an ordinary digital color camera. In this multispectral approach, the three
channels best corresponding to RGB are used (675, 550, and 488 nm).

The information is sent to the task manager (see section 2.2) to proceed to a closer
inspection for crop-weed discrimination. At low altitudes the spatial resolution increases,
and the spectral mixing decreases yielding a high amount of pure pixels per plant. The
crop rows are clearly seen and detected, and plants in between the rows are classified as
thistles due to their position . Once classified, a library can be made with the spectral
endmembers collected from the purest inter-row thistle pixels. The intra-row plants
are matched with the now known endmembers and labeled as sugar beets or thistles to
produce an aerial 2D weed map.

A continuous feedback is established with the UGV, which is making a more detailed
characterization and estimation of weed density. This allows an online update of the
relationship of mean ExG value versus plant density for the coarse aerial imaging and a
supervisory update of the classification at the finer stage, which will improve the weed
map even after the aerial images were taken.

2.6 Ground vision
The analysis of aerial imagery prompts the ground vehicle for a closer inspection. In
the ground based image processing, the green color of vegetation is again a first step
since greenness of the plants’ leaves distinguishes them well against the background soil.
However, the ability to resolve overlapping leaves is limited with 2D vision. Fig. B.8
shows two segments of an image. In (a), an overlapping thistle leaf has occluded the
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sugar beet leaf. This hides some of the shape features of the sugar beet leaf and the
leaf should therefore be marked as unfit for species classification. In the (b) segment,
the leaf is not occluded and it is better suited for species classification.

To detect occlusions 3D imaging is crucial. Using the depth information, detecting
occlusions becomes trivial. Once a leaf has been qualified for classification, either 2D
or 3D imaging can be used for the further processing.

(a) Sugar Beet Leaf (b) Thistle Leaf

Fig. B.7: Comparison of leaf shapes and color of target species.

For 3D imaging, stereovision is a commonly used technique, but it suffers from
correspondence and efficiency problems for close range leaf imaging. For this reason,
stereovision imaging is largely limited to indoor well-lit conditions, or to an overall plant
canopy measurement in outdoor conditions [25].

To overcome these limitations, we are using Time of Flight (ToF) cameras along
with a color camera (Fig. B.9) to achieve a closer depth analysis inside plant canopies.
ToF cameras are active sensors working in the Near Infrared (NIR) region. They emit
infrared light and measure distances to the objects in the view based on the time it
takes for the light to return.

Because the ToF cameras use NIR light, the reflectance-transmittance characteristics
of the leaf surface in this spectrum must be taken into account. Any incident light
is partly reflected from the leaf surface, partly absorbed and the rest is transmitted
through the leaf, but only the reflected portion is interesting in ToF imaging. This
topic has received a great deal of research. Jacquemoud and Baret [26] proposed a
Reflectance-Transmittance model for green leaves which show about 51% reflectance,
45% transmittance and 4% absorption for green soyabean leaves in the NIR region.
Indeed, the model shows that the NIR region provides highest possible reflectance (just
under 50 %) of the frequencies in the visible-NIR spectrum in the frequency band
between 700 nm and 1300 nm. This fits with our observations of sugar beet and thistles
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a
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Fig. B.8: Complex overlapping scenario. Thistle occluding sugar beet (a) and sugar beet without
occlusion (b).

shown in Fig B.5. ToF cameras operating at 850 nm are hence quite suitable for plant
imaging. Further, they produce depth data at more than 30 fps, while not having the
correspondence or efficiency problems of stereovision.

However, ToF cameras have their own shortcomings. Other than their low resolution
sensors (200x200 max), one major problem is their saturation under sunlight. In ToF
cameras, integration time (IT) controls the duration for which the incoming signal is
integrated onto the imaging sensor. IT must be high enough to allow sufficient depth
estimation but less than the saturation threshold. The gap between these two boundaries
of operation depend on the ambient light and it becomes very narrow under sunlight.
It is one of the research points of the ASETA project to look into the usefulness of ToF
under these conditions.

Fig. B.10 shows depth data of a single leaf under room and sunlight conditions.
The graphs show the variation of depth data of two individual pixels averaged across
several frames, as well as the average of their 20x20 pixel neighborhood. The pixels
were located on the surface of the leaf. The point where the depth data of the pixels
and the average of the neighborhood starts getting out of sync; the data is no longer
reliable. This fact can render ToF cameras useless unless a shade is used to cast shadow
on the view. Kazmi et al. [27] presents a detailed analysis about leaf imaging with ToF
cameras under sunlight, shadow and room conditions.
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Fig. B.9: Cameras mounted on Ground Vehicle. Swissranger SR4000 time-of-flight camera (top), PMD
CamBoard time-of-flight camera (bottom left), and Point Grey Flea RGB camera (bottom right).

In order to classify a plant as either thistle or sugar beet, the approach is to use
shape-features of the leaves (see Figs: B.7a, B.7b) along with their relative greenness.
To extract shape boundaries, an algorithm using triangular decomposition of the image
similar to [28] is being developed. It is a generic algorithm which estimates salient
regions from the edges of an object. The color channel from the color camera is mapped
onto the ToF data using stereo-calibration of the two cameras. When a plant is classified,
a feedback will be generated to update the weed map from aerial imagery.

2.7 Cooperation
In terms of solving the basic tasks for a crop and weed management system, the auto-
matic planning is capable of producing the necessary waypoints for this task. However,
the ASETA project attempts to push the intelligence of such a system further than basic
automation and a large part of that is the cooperation between robots. One of the things
being researched is how robots can cooperate with very limited communication between
them. An example where this could be relevant is a farmer that has purchased a simple
UAS to do mapping of his fields. After some time he purchases a newer more advanced
UAS and would like them to help each other mapping the fields. The simple UAS is
unable to do cooperation, but the newer UAS is capable of assisting with the mapping,
simply by estimating the intentions of the older UAS from, say, ADS-B beacon data.

Currently the research focuses on how to provide a quantitative estimate of the
intentions from simple beacon information. This is done using model based baysian
filtering with a short and a long term prediction. As system model, a probability field
mapping is used to assign probabilities to the individual waypoints depending on where
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Fig. B.10: Comparison of leaf imaging with PMD CamBoard ToF camera under Room and Sunlight.
Two sample images at IT 800 ms illustrate the difference.
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Fig. B.11: Waypoint probability estimator.

they are located in relation to the motion of the helicopter. It is constructed as a
dynamic function of two parts; a part called probability field map, which increases the
probability for waypoints near the expected future positions of the helicopter, and a part
called a dissipation function that gradually reduces the probability of all waypoints such
that the waypoints need to stay within the future path of the helicopter to maintain a
high probability.

The measurement model takes the information of which waypoints the agent previ-
ously have visited and from this attempts to predict the probability for each waypoint.
This probability is then used as the measurement for the kalman filter which results
in the measurement model matrix being the identity matrix. This prediction is done
through a set of behavioral models, each modeled mathematically based on a set of
assumptions. Examples of such behavioral models could be different flight patterns like
a “lawnmover” pattern, a spiral pattern or a nearest neighbor pattern.
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3 Discussion
While aerial imaging has been used for several years in production farming, the new
platforms, brings about a range of new possibilities. Traditional aerial imaging is done
using piloted planes, and the images are orthorectified, which is a rather time-consuming
and expensive process that must be planned well ahead and is dependent on good
weather conditions. The aerial robotic platforms provides the images whenever the
farmer needs them with less dependence on weather conditions and external planning.

The ASETA project shows that it is plausible to use mobile robotics in future weed
mapping and targeted weed control. At the time of writing, 8 large-scale test campaigns
has been conducted in order to obtain real life images and measurements, and test the
robotic platforms outside of lab-conditions. We have found that the data obtained so
far in the campaigns is usable in the agricultural analyses.

Presently, several steps towards a functional system have been taken, although there
is still limitations:

The UAS is a product of several years of work in the UAV lab Aalborg University.
It is capable of autonomous flight between waypoints given by the user. It performs
well even in the presence of strong wind and changing GPS-conditions and has proven
to be a reliable platform for aerial imaging.

The planning algorithm is capable of solving traveling salesman problems (TSP) for
a single UAS and a single UGV individually, it is still an open problem to solve the
multiagent heterogeneous TSP of the two or possibly more robots.

The aerial image analysis is currently able to identify areas of high bio-mass density,
thus indicating areas with weed infestations. Next step is to identify weeds based on
spectral analysis.

The work on the ground vision has focused on the identification of leaf shapes and the
usability of ToF cameras in outdoor conditions. Presently, the analysis will characterize
the leaf edges in a well conditioned RGB image, e.g. low background noise. Next step
will be to apply the analysis to 3D images and observe the differences and advantages
compared to 2D imaging.

The ASETA project will continue to integrate the fields of agricultural image analysis
and robotics, and will demonstrate a working system in 2013.
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Abstract
When using local search algorithms like genetic algorithms it is desirable to have both an
fast and diverse search such as to increase the probability of a good result in a relatively
short time. However, these properties are typically opposite and a good trade off can be
difficult to find. In this work we examine three specific neighborhood functions for genetic
algorithms to determine the entropy rate of each, these are the exchange, displace, and
inversion mutations. The analysis is done in the context of solving asymmetric traveling
salesman’s problems using a path representation. The result allows for a balanced use
of mutation operators such as to control population diversity during search.

1 Introduction
The traveling salesman’s problem is an NP-hard combinatorial problem. Meta-heuristic
algorithms can be used to obtain “good” solutions for the problem. Meta-heuristics
like steepest ascend, simulated annealing and genetic algorithms rely on neighborhood
functions to generate “neighboring” solutions from existing solutions, i.e. functions
that modify existing solutions slightly. This is used by the meta-heuristic algorithm to
explore the regions around known solutions for better solutions. There is no hard and
fast rule as to how big the neighborhood can be. That is, the existing solution may
be modified ever so slightly, brutally or anything in between. What is most desirable
depends on the problem at hand and the ideas of the designer. In the following we will
be characterizing a set of neighboring functions in the context of solving the traveling
salesman’s problem using genetic algorithms.

Genetic algorithms are modeled on Darwin’s evolution theories. The algorithm keeps
a population of solutions to the problem to be solved, the best of these solutions, the
ones with the lowest cost, have a higher chance of producing offspring by being subjected
to the neighborhood functions. As the generations pass, better and better solutions are
found, until the algorithm is terminated.

In the genetic algorithm, the neighborhood functions are called mutations as a ref-
erence to the genetic makeup of the parents being mutated. Another flavor of neigh-
borhood function where the genes of two parents are combined are called crossover
functions. In the following, only mutations are considered.

When solving traveling salesman’s problems (TSPs) with genetic algorithms, the
path representation is a common and intuitive genome representation. The problem
consists of a numbered list of coordinates, the genome is represented as a list of indices,
each index referring to a set of coordinates in the problem. Thus, the genome

(1, 3, 4, 2, 5)
will direct the traveling salesman to travel from the first city (or set of coordinates) to
the third, next to the fourth, over the second and to the fifth.
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This representation has the property that any permutation of the trivial solution,

(1, 2, · · · , n)

is feasible because every city has been visited exactly once. So, as long as the mutation
operators working on the genome is only permuting it, every operation will result in
feasible solutions.

Several mutation operators for the path representation has been developed. See [1]
for a nice review of mutation and crossover operators for TSPs. In this paper, we will be
looking specifically at three common mutation operators; the exchange, displace, and
inversion mutations. These three mutations are easy to understand and their effects on
the TSP are intuitive, further Larrañaga et al. note that these mutations are among the
best performing mutations for the path representation [1].

Genetic algorithms are based on a population of genomes that are constantly mutated
and bred. To explore the entire search space, it is desirable to have a diverse population.
Conversely, if the desire is to exploit a smaller region of the search space, a more
homogeneous population is needed. Maekawa et al. [2] and Tsujimura and Gen [3] have
proposed entropy based methods to evaluate the diversity of the population. Tsujimura
and Gen presents a locus measure, where the positions of the alleles in the genome
is prioritized. Maekawa et al., on the other hand, prioritizes the adjacencies between
the genomes. In this work, we make use of the adjacency method, as the “sequence
of indices” formulation for the TSP problem may encode similar tours for different
permutations of the genomes, specifically rotations:

(1, 2, 3, 4, 5) = (3, 4, 5, 1, 2)

1.1 Mutation Algorithms
The exchange mutation randomly chooses two entries to swap. See Algorithm 1.

Algorithm 1 The exchange mutation algorithm swaps two of the entries in a genome.
Require: original genome go

procedure Exchange Mutation(go)
n← Length(go)
i1 ← RandomInteger(1, n)
i2 ← RandomInteger(1, n) 6= i1
gm ← go
gm [i1]← go [i2]
gm [i2]← go [i1]
return mutated genome gm

end procedure
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The inversion mutation works mostly like the exchange mutation. However, the
entries between the selected indices are also swapped, this equates to reversing the
direction of travel for that section of the TSP. See Algorithm 2.

Algorithm 2 The inversion mutation algorithm reverses the direction of travel in a
subsection of a genome.
Require: original genome go

procedure Exchange Mutation(go)
n← Length(go)
i1 ← RandomInteger(1, n)
i2 ← RandomInteger(1, n) 6= i1
gm[i1 : i2]← go[i2 : i1]
return mutated genome gm

end procedure

The displacement mutation selects a section two indices and “slides” that section.
See Alg. 3. Another way of looking at it is that two sections are selected and swapped.

Algorithm 3 The displacement mutation algorithm moves a subsection of a genome
from one position to a new.
Require: original genome go

procedure Exchange Mutation(go)
n← Length(go)
i1 ← RandomInteger(1, n)
i2 ← RandomInteger(1, n) > i1
i3 ← RandomInteger(1, n) ≥ i2
gm ← go
p← i3 − i2
gm[i1 : (i1 + p)] = go[i2 : i3]
q ← i2 − i1
gm[(i1 + p+ 1) : (i1 + p+ q)] = go[i1 : (i2 − 1)]
return mutated genome gm

end procedure

1.2 Proofs of effectiveness
If one mutation is to be used in a genetic algorithm, it is necessary that it can transform
any genome into any other genome in a finite number of iterations. Otherwise, the
algorithm will be unable to evaluate the entire search space. This may be acceptable
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in algorithms using crossover operators or several mutation operators, but not for an
algorithm relying only on a single mutation operator. Here we will prove that the three
investigated mutations can in fact explore the entire search space.

We will use the same approach for all the proofs. We will start out with a random
permutation of the trivial sequence; then, through a series of steps, transform this
genome into the trivial sequence. If this is possible then the inverse series of operations
are also possible, thus any random sequence must be transformable to any other random
sequence.

Using the exchange mutation, we can simply start from the first entry in the genome,
g[1], then find the entry that has the value 1, g[n], then do the same for g[2] and so on
until we reach g[n− 1], see Algorithm 4. Note that this notation receives the mutation
parameters as inputs rather than via the RandomInteger operators in Algorithms 1, 2,
and 3.

Algorithm 4 Transforming any random genome into the trivial sequence.
Require: genome g
n← Length(g)
for i← 1, n− 1 do

j
index←−−− Find(i)

Mutation(g, i, j)
end for

The same approach works for the inversion mutation, as the modification of the
entries between the selected indices are irrelevant because the sequence between 1 and i
is untouched. And, finally, by choosing the i3 equal to i2 in the displacement mutation
the approach in Algorithm 4 works as expected, by “sliding” a single index sequentially
into place.

The ability to explore the search space is only a guarantee that no possible solution
is left unevaluated if the genetic algorithm is given infinite computation time. The
operators should have the ability to both explore the search space as well as exploit
promising search regions. The exploitation is made possible by the selection process
of the genetic algorithm as it selects the most fit individuals as the basis for the next
generation. If the mutation, however, completely mangles the genome so that it is no
longer in the search region of the parent, no exploitation is achieved. The question is
then how apt the mutation operators are to either explore or exploit.

In the following, we will present a method to test the exploration/exploitation ratio
of the mutations using an entropy-based measure. Lastly we will present the results of
this test for the three mutations applied to a set of standard TSP problems.
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2 Methods
A measure of how exploratory/exploitive the mutation operators are may be defined in
the amount of information that is being preserved between the original and the mutated
individual. The more information that is preserved the less the individual has changed,
and the less exploration is achieved. Using this definition, entropy rate can be used as a
measure of the exploratory/exploitive nature of the operators. We will call this measure
the exploration degree of the mutation.

2.1 Entropy Rate
The entropy rate H of a stochastic process X is defined as

H(X) = −
∑
i

pi(X) log pi(X) , (C.1)

where pi is the probability for the ith outcome of the process.
If we regard the genome g as the stochastic process, we could analyze it by evaluating

its transition matrix. However, if g has N entries, there are N ! permutations and the
transition matrix will hold (N !)2 entries, which is unmanageably big for even moderate
sized genomes, and rules out numerical evaluations. Instead we use the adjacency matrix
to characterize the process.

The adjacency matrix A defines which vertices of the problem are connected with
an edge. For an edge going from vertex i to vertex j, the entry Aij is 1, if there is no
connection the entry is 0. E.g., the genome for an asymmetric tour:

(1, 3, 4, 2, 5)

has the corresponding adjacency matrix:
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0


The adjacency matrix has the nice property of being invariant to rotations of the

entries in the genome. So the matrix above is the same for both the genome above and
the genome:

(4, 2, 5, 1, 3)

This is useful in tour problems where there is no specified start and end positions and
the tour is closed by connecting the last vertex to the first.
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By regarding each of the entries in the adjacency matrix as individual Bernoulli
trials, the random shuffling process Xrand can be characterized by the matrix:

Mrand =


0 1

N−1 · · · 1
N−1

1
N−1 0 · · · 1

N−1
...

... . . . ...
1

N−1
1

N−1 · · · 0

 , (C.2)

where N is the length of the genome and the entries denoting the probability of the
adjacency matrix A noting a connection at the corresponding position.

The entropy rate of this process is:

Hrand = H(Mrand) =
∑
i

∑
j

Mij logMij (C.3)

and with (C.2) inserted this yields

Hrand = (N2 −N)
(
− 1
N − 1 log

(
1

N − 1

))
= N(N − 1)

(
1

N − 1 log (N − 1)
)

= N log (N − 1) .

(C.4)

This is the entropy rate of a process producing completely random tours, we can call
this totally exploratory as no information is preserved. Conversely, a process that does
not change the state should be on the other end of the exploration degree scale. The
matrix M for that process would consist of only zeros and ones and the entropy would
be zero. Thus, the exploration degree is an absolute scale.

The unit of information depends on the logarithmic base. When using the base 2
logarithm, the units are the well known “bits”. This will be the case in the following
examples and results, even though the equations will show a log operator with no base
number specified.

We will view the mutation operators as random processes and evaluate the entropy
rate of them to characterize them on the exploration degree scale.

2.2 Exchange Mutation
The exchange mutation operator is the simpler of the three operators from an analysis
point of view, as only two vertices are permuted per operation.

As an example, regard the canonical genome of length 4

(1, 2, 3, 4)
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with the adjacency matrix 
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

It has the possible permutations (with the exchange mutation)

(2, 1, 3, 4), (3, 2, 1, 4), (4, 2, 3, 1),
(1, 3, 2, 4), (1, 4, 3, 2), (1, 2, 4, 3)

with the corresponding adjacency matrices
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 ,


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


This results in the M matrix 

0 1/6 1/3 1/2
1/2 0 1/6 1/3
1/3 1/2 0 1/6
1/6 1/3 1/2 0


Using (C.3) we obtain an entropy rate of 5,84 bit/generation compared to 6,34 for the
completely randomized process.

This result can be generalized by noting that each row contains the same set of
probabilities. Each row i represent the isolated view of a single edge going from the
ith vertex. To compute the probabilities, the permutations are categorized into three
categories:

• The vertex is permuted; connecting the edge to a new vertex.

• The vertex that the edge was going to is permuted; also connecting the edge to a
new vertex.

• Neither the source or destination vertex are permuted; no new connections are
made.
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Note that for the exchange mutation, the amount of possible permutations are given by
the binomial coefficient

(
N
2
)
, whereN is the length of the genome. Note also that the first

two categories are equivalent, because either the current vertex are moved to a position
“in front of” a new vertex or that vertex is moved to a position “after” the current
one. Each of these N − 2 events results in a probability of 2/

(
N
2

)
, with the exception of

the vertex that was in front the current vertex as this results in a probability of 3/
(

N
2

)
.

The rest of the permutations leaves the edge intact, resulting in a single entry with the
probability of

(
N−2

2

)
/
(

N
2

)
each. As these probabilities are per row, the result must be

multiplied by the number of rows. Thus, the formula for computing the entropy rate
for the exchange mutation process of a genome with length N becomes:

H1 = − 3(
N
2
) log

(
3(
N
2
))

H2 = −(N − 3) 2(
N
2
) log

(
2(
N
2
))

H3 = −
(
N−2

2
)(

N
2
) log

((
N−2

2
)(

N
2
) )

Hexchange = N (H1 +H2 +H3)

(C.5)

2.3 Inversion Mutation
The exchange and the inversion share some of the same mechanics. Two distinct in-
dices are chosen at random and the contents of the genome at the selected indices are
exchanged. However, the inversion mutation also exchanges all content between the
indices. This introduces a probability of exactly 0.5 that a given entry in the adja-
cency matrix will be changed to the index that previously pointed to that entry, which
essentially is a transposition of the affected part of the adjacency matrix.

Where the exchange mutation had
(
N
2
)
possible combinations, the inversion mutation

has N2 −N possible combination. This leads to the entropy rate

H1 = −N
2 − 5N + 8

2(N2 −N) log
(
N2 − 5N + 8
2(N2 −N)

)
H2 = −(N − 2) 2

N2 −N
log
(

2
N2 −N

)
H3 = −1

2 log
(

1
2

)
Hinversion = N (H1 +H2 +H3)

(C.6)
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2.4 Displacement Mutation
The displacement mutation is different from the two other mutations in that it internally
uses three random processes; one deciding the start of the subsection to move, one
deciding the length of the subsection, and one deciding how far to displace it. There
are three ways that an entry in the adjacency matrix may change: Either

• a subsection is moved “in front” of the corresponding index, or

• a subsection starting at the index “in front” of the corresponding index is moved
to another place in the genome, or

• the corresponding index is the last index in a subsection being moved.

A visualization of these three cases are shown in Fig. C.1.

1 2 3 4 5543

1⋅5

2⋅4

3⋅3

3⋅3

2⋅4

1⋅5

3⋅3

2⋅4

1⋅5

Fig. C.1: The displacement mutation working on a five-entry sequence. The possible mutations
changing the adjacency matrix for row 1 is shown. An arrow indicates that a subsection will be
inserted here. Next to the subsections, black numbers indicate the new column index that will be set to
1 in the adjacency matrix row 1, and the gray number indicated the number of instances. Some of the
sequence is copied to the front of the sequence in order to visualize the mutation “wrapping” around
the sequence.

This leads to each probability being a multiple of three over the total possible per-
mutations C. Note that the longer the subsection is, the fewer are the possibilities
to insert it back into the genome, thus indices “further away” from an index has less
likelihood of becoming the next adjacent index. The total combinations that changes
an adjacency entry is K, thus the likelihood of a mutation not changing the entry for
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an index is 1− K/C. The total entropy rate may be calculated by:

C = 1/2N3 − 3/2N2 −N
K = 3/2N2 − 9/2N + 3

H1 = −
N−2∑
n=1

3n
C

log
(

3n
C

)
H2 = − (1− K/C) log (1− K/C)

Hdisplace = N (H1 +H2)

(C.7)

2.5 Monte Carlo Simulations
A Monte Carlo simulation is performed to verify the formulas. This is done by applying
the mutation operator to an initial genome ginit several times and adding the resulting
adjacency matrices. By dividing the cumulation matrix by the number of trials, an
approximation of the adjacency probability matrix M in (C.2) is achieved, which then
can be used to compute the entropy rate. See Algorithm 5.

Algorithm 5 Monte Carlo simulation to determine the entropy rate of mutation oper-
ators.
Require: Genome and number of iterations: ginit, n
M ← ZeroMatrix
for i← 0, n do

g ← Mutate(ginit)
A← AdjacencyMatrix(g)
M ←M +A

end for
M ← M

n
H ← Entropy(M)
return Entropy rate: H

3 Results
A comparison of the entropy rates of the random process in (C.4), the exchange mutation
process in (C.5), the inversion mutation process in (C.6), and the displacement mutation
process in (C.7) is shown in Figure C.2. The Monte Carlo simulations produce the same
results as shown Fig. C.2.
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Fig. C.2: Entropy rate of the random, exchange, inversion, and displacement mutation processes as a
function of genome length for 4–100. The linear tendency continues for larger lengths of genomes.

4 Discussion
As expected, the random process has the highest entropy rate. Nothing has a higher
entropy rate than a completely random process.

The exchange and the displacement operators exhibit the same general behavior in
Figure C.2, the exchange mutation having a slightly higher entropy rate. This is not
surprising as the exchange mutation “breaks” 4 links when exchanging two entries, i.e.
the two entries that are being moved and the two entries that the receives them, where
the displacement mutation breaks only 3 links, namely the one where the section is
moved from, the one where it is move to, and the last entry of the section.

The inversion mutation has a rather high entropy rate. This is because of the fact
that this analysis is based on the asymmetric case, i.e. (1, 2, 3) is not the same as (3,
2, 1), which is the case in the symmetric case. So the inversion mutation breaks all
the links in the section being inversed, hence the high entropy rate. This explains the
difference in shape from the exchange and displacement mutations in Figure C.2 as the
number of entries being affected by the inversion mutation scales with the number of
entries in the genome, whereas the other two has a constant number of affected entries.

The result of this analysis may be used to control the diversity of the population
in a genetic algorithm like described in [3]. Now, by knowing the entropy rate of the
mutations, a control law can be constructed, which determines the needed mutation
rate to to control the diversity given a specific mutation.
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The three mutations described is not only usable in genetic algorithms, they may be
used in any meta-heuristic algorithm using neighborhood functions. Thus, the entropy
rates determined here are also usable in those algorithms.
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Abstract
An adaptive termination criterion for genetic algorithms is presented. This termination
criterion is specifically designed for algorithms solving travelling salesman’s problems in
robotic path planning. This criterion helps roboticists without expert knowledge of genetic
algorithms by hiding implementation specific parameters of genetic algorithms; instead
it uses a model of the computation time of the algorithm and automatically terminates
the computation when a suitable solution has been found. Like traditional termination
criteria, this criterion observes the scores of solutions as the algorithm is running. It
then fits a decaying function model to the history of the scores and determines the optimal
stopping time. The model for the development of this score over time is developed and
the criterion is evaluated in the context of path planning for an autonomous helicopter
and shows promising behavior.

1 Introduction
This work attends the problem of stopping genetic algorithms at the right time; the
stopping criterion. The resulting criterion implicitly takes variables like problem size,
processing power, and algorithm implementation into account; things that are difficult
for a non-expert to evaluate. All it needs from the user is a cost function on the
computation time, which is more intuitive to compute for non-experts.

As the focus is on the stopping criterion, not much regard is given to the specific
implementation or performance of the genetic algorithm per se. As a matter of fact,
the stopping criterion implicitly takes the performance of the genetic algorithm into
account, so even a mediocre implementation of the algorithm will benefit from it.

1.1 Background
The ASETA project [1, 2] will try to accomplish a reduction in pesticide usage in agri-
culture. The approach is to use unmanned aircrafts (UAs) for surveying the fields and
pinpointing weed infestations using image analysis. Unmanned ground vehicles (UGVs)
will then go to these spots and cut or spray the individual plants. The rationale for this
approach is to reduce the search space for the UGVs to areas with high probability for
finding weed infestations so that they will not have to analyze parts of the field without
weed infestations. It is in the context of this project that this research has been carried
out.

1.2 Traveling Salesman’s Problem
A part of the ASETA project is the path planning for the robots. The route for the
UAs are composed of waypoints that they visit in sequence. The route for the robot
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must be short in order to, not just save time, but also conserve energy. This problem is
called the traveling salesman’s problem (TSP).

If a traveling salesman is going to visit a collection of cities. He is interested in
finding the shortest possible route between them, this will save him time traveling and
give him more time to sell his products.

The TSP is easy to understand but hard to solve. In 1972, Richard M. Karp proved
21 combinatorial problems to be NP-complete [3]. Among these problems was the
Hamiltonian Cycle, a special case of the TSP. This implies that the TSP belongs to a
class that is at least as hard as NP-complete; this class is called NP-hard. This property
means that the problem becomes impractical to solve optimally when the number of
waypoints increases.

For robotic path planning, the TSP arises in many forms where the robot has sev-
eral objectives that it must travel between. Some examples are the watchman route
problem [4], the shortest safari route problem [5], and the zookeeper route problem [6].
Along with many others, they have the property that the solution to the problem is a
traversable route for an agent e.g. a mobile robot.

1.3 Genetic Algorithms
Genetic algorithms can be used to find good solutions to the TSP [7, 8]. These solutions
are often not optimal but close to it. Genetic algorithms belong to the family of local
search algorithms. They work by starting out with a feasible solution, which is not
necessarily very good, and iteratively improve on this solution, often ending up close to
the optimal.

Genetic algorithms are based on the concept of Darwinian evolution. While iterating
though generations of a pool of solutions, called the genomes, the algorithm selects
the most fit solutions and breeds them to produce better solutions. J. H. Holland
is often attributed with the definition of the genetic algorithm [9], although current
implementations of genetic algorithms do not always strictly follow his approach. The
general genetic algorithm has three parts: First, a breeding part; then, a mutation part;
and lastly, a survival-of-the-fittest part. These parts will continuously improve on the
pool of solutions much like we know it from biology.

Larrañaga et al. [10] describes various operators and representations of genetic al-
gorithms for solving TSPs. A popular representation is the path representation where
each genome is simply represented as the sequence of waypoints that must be visited.
A number of convenient mutations have been developed for this representation, among
these; the displacement, exchange, and inversion mutations [11–13]. These will be the
workhorses in the example shown later.

The genetic algorithm is an anytime-algorithm; we can stop it at any time and
still get a feasible solution. Usually, the algorithm is stopped when the solution is not
improving much per generation. This stopping criterion is set by the designer. If, for
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some reason, the system needs a solution before the criterion is reached, it can just stop
the algorithm, and because of the anytime behavior it will receive a feasible solution.
On the other hand, if we let the genetic algorithm run, it will never stop and in the end
it will revisit the solutions it has previously looked at.

The stopping criterion of the genetic algorithm should be tuned to the specific prob-
lem. If we let it run for too long, it will waste time and computational power. However,
if we stop it too soon, the solution will be bad and the traveling salesman will use
too much time traveling. The traditional stopping criteria are the stall-time and stall-
generations criteria. These criteria evaluate the development of the solution in either
a given time frame or over a given number of generations. When the rate of change in
the solution quality falls below a set limit; the algorithm terminates.

The parameters for the stopping criterion should be tuned so that they match the
type and size of the problem, the implementation of the genetic algorithm, and also
the processing power of the computer. If the problem is large, i.e. the flight time of
the resulting TSP solution is long, the computation time might be insignificant and
the termination limits on the stall-time or –generation criteria can be set fairly large,
conversely for smaller problems. If the mutations of the genetic algorithm are very
effective, a good solution is quickly obtained, and the stall-time can be set short. If the
processor is slow the stall-time must be set long, as the algorithm needs more time to
converge.

1.4 An adaptive stopping criterion
Having expert-knowledge, it should be possible to set the stall-time or –generations
parameters satisfactory for a fixed problem type with a fixed type of computer. If the
problems presented to the algorithm differs in size and composition, it is difficult to
set one specific termination limit at design time; rather, we will let the algorithm itself
figure out when it starts to waste time and resources, and terminate automatically.

The stopping criterion presented here seeks to optimize the total time consumption
of a system that both computes the path of the traveling salesman and executes it. If
a system must both find a solution and execute that solution in the least amount of
time, the stopping criterion must not only be conditioned on the quality of the solution
alone, but also on the time it takes to come up with that solution. It might be best to
stop the algorithm sooner, in order to give the execution part more time to complete
a slightly worse solution. The approach described here anticipates how the solution
quality improves as the algorithm is running. It then evaluates when it is best to stop
computing and start executing. The anticipation process is continuously refined with
each generation, and fits easily into any general genetic algorithm.

This termination criterion has the further advantage of hiding implementation spe-
cific details from the user of the genetic algorithm. A roboticist who wants to use a
genetic algorithm might not have the insight into the inner workings of it. She will then
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have a hard time figuring out which parameters to tune in order to have an effective
stopping criterion. The presented stopping criterion uses cost functions to describe the
computational time and the traveling time, so that no tuning is necessary.

The system that uses this genetic algorithm and stopping criterion consists of one
single UA and a base station presented with a collection of waypoints, which the UA
must visit. The setup is such that the plan must be calculated first, before the UA
launches.

The density of the waypoints must be relatively high. If the waypoints are very
far apart or the UA flies very slowly, the time it takes to compute the solution will be
insignificant next to the time it takes to execute the resulting plan, and we will gain very
little by optimizing the termination. With the current amount of work being done with
indoor flights, for example by Vijay Kumar et al. at University of Pennsylvania [14],
the high density problem becomes more interesting.

2 Methods
The stopping criterion is designed for genetic algorithms solving TSPs. The genetic
algorithm used in this work is using a path representation, the three mutations described
above, and Order Crossover. Although there is no proof, we assume that the algorithm
converges to a near-optimal solution. Note, that the actual implementation of the
genetic algorithm is not under scrutiny here, thus this very simple model is used.

In this section, a model for the evolution of the genetic algorithm is presented. The
model is used to predict how the algorithm will perform as it is running. The parameters
for this model are estimated along the way using nonlinear regression. The value of the
objective function of the genetic algorithm is compared to a simple cost function of the
computation time. In the end of this section, two additional possible cost functions are
presented.

When an agent is presented with a TSP, the total time consumption for that agent
consists of the time spent by the genetic algorithm solving the TSP and the time spent
executing the computed solution. This is expressed as

Ttot = TGA + Texe. (D.1)

As time goes and more generations are bred, the quality of the solutions found by
a genetic algorithm solving a TSP approaches that of the optimal solution. Here the
quality is expressed in time. Later, the quality will be length, as we are looking for the
shortest path, however, this will be corrected by dividing with the speed of the vehicle.

Each generation takes a specific time to compute. Consequently, the number of
generations computed is linear with time t:

TGA = εk = t (D.2)
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where ε is the time it takes the computer to evaluate one generation, and k is the number
of computed generations.

Next step is to evaluate the execution time Texe as a function of computed gener-
ations. When genetic algorithms solve TSPs, the quality gradually get better. Fig.
D.1 shows the result of 1000 genetic algorithms solving the Berlin 52 problem from the
TSPLIB package [15], this shows a rapid convergence in the beginning slowing down
towards the end. To model this behavior, we will look at the solution space of the TSP.

20000

Solution
Length

7500

0 Generations 10000
Fig. D.1: Solution quality in length vs. generations for 1000 genetic algorithms solving the Berlin 52
problem from the TSPLIB package [15]. Maximum, minimum, and average values for each generation
is shown.

2.1 Model
genetic algorithms can be used to solve many different optimization problems, some of
which can have very “hostile” solution spaces where a single mutation of a genome may
improve the solution quality significantly. Think of a flat landscape with a number of
holes in it, one needs to be very (un-)lucky to fall into one of the holes. Luckily the TSP
generally seems to have a nice curvy landscape that may guide the genetic algorithms
along a gradient. In Fig. D.2 a histogram of the solution quality for all the solutions
to a 10-city problem are shown. Naturally this is a generalization, as the problem is
10-dimensional and the histogram is 1-dimensional. However, it may give an intuition
about the type of landscape the problem presents.
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Fig. D.2: Histogram of the complete enumeration of all solutions to a 10 city TSP sorted according
to quality. The cities were uniformly randomly distributed over a 100 x 100 area and the quality values
are the Euclidean distances of the complete tour.

Let’s brutally model this histogram as a straight line segment starting at (0, s∗)
ending in (N, s∗ + αN), where s∗ is the length of the shortest solution 0, and α is the
slope that makes s∗ + αN the length of the longest solution N . Then for any solution,
a number of possible mutation operators can be applied. These will either shorten of
lengthen the solution length. The mutations used will define an interval on the x axis,
as they will have a maximum to the increase or decrease they are able to perform on the
given solution. This interval is called the neighborhood of the current solution. Different
mutations will create different neighborhoods. A uniform distribution is assumed within
the neighborhood, which gives rise to the model seen in Fig. D.3.

Region 1 of the model is the most interesting of the three, as this is the area where
the genetic algorithm converges to the optimal solution. A zoom-in on regon 1 is shown
in Fig. D.4. Here the current solution nk of the kth generation has the length sk and the
expected value of nk+1 can be evaluated to the grayed out area divided by the number
of solutions spanning that area, Nm. ∆m is the difference between the longest and
the shortest mutation. The genetic algorithm will favor better solutions, so the model
rejects any solutions that are longer than the current. So the gray area can be evaluated
as a rectangle less a triangle.

E [sk+1] =
Nmsk − nkα

2 nk

Nm
= sk −

αn2
k

2Nm
(D.3)

αnk = sk − s∗ (D.4)

∆m = αNm (D.5)
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Fig. D.3: Model of the histogram seen in Fig. D.2. Mutations may move a solution in its neighborhood.
Three regions are defined, region 1, where the solution cannot get better than s∗, region 2 where there
is a constant improvement, and region 3, which is the reciprocal of region 1.

Equations (D.3), (D.4), and (D.5) yield,

E [sk+1] = sk −
(sk − s∗)2

2∆m
(D.6)

which is transformed to the difference equation,

∆ E [s]
∆k = − (sk − s∗)2

2∆m
(D.7)

Now, let’s consider a differential equation,

ds

dk
= f (k) g (s) (D.8)

where:

f (k) = − 1
2∆m

,

g (s) = (s− s∗)
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Fig. D.4: Model of the lower part of the sorted solutions, where a mutation may move a given solution
at generation k, nk, to a solution in the interval [0;Nm]. A resulting solution that is worse is rejected,
thus capping the possible quality value at sk.

The solution to this equation is obtained by,∫ 1
g (s)ds =

∫
f (k) dk∫ 1

(s− s∗)2 ds =
∫
− 1

2∆m
dk∫ 1

(s− s∗)2 d (s− s∗) = − k

2∆m
+ Ck

− 1
(s− s∗) + Cs = − k

2∆m
+ Ck

s = 2∆m

k − 2∆m (Ck + Cs)
+ s∗ (D.9)

The length of the solutions to the TSPs, s, are represented in distance. The solution
is divided by the speed of the vehicle to get the execution time:

Texe = s

v
(D.10)

Minimizing the total time consumption yields the optimal stopping generation kstop
for the genetic algorithm. The combination of (D.1), (D.2), and (D.9) with (D.10)
yields:

Ttot = 2∆m

v (k − 2∆m (Ck + Cs))
+ s∗

v
+ εk, (D.11)
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which has a strictly monotonic increasing derivative,

d

dk
Ttot = − 2∆m

v (k − 2∆m (Ck + Cs))2 + ε, (D.12)

Solving for 0 yields:

kstop =
√

2∆m

vε
+ 2∆m (Ck + Cs) (D.13)

Now, by finding ∆m, v, ε, Ck, and Cs it is possible to calculate the best kstop. The
values are estimated by fitting the expression in (D.9) to the solution quality reported
by the genetic algorithm as it is running. Doing so will result in increasingly better
estimates of the values and, by using (D.13), the stopping generation will converge to
the actual kstop. It is important to note, however, that the actual evolution of the
solution quality only approximately follows (D.9), any mismatch between the actual
solution and the model will give an erroneous kstop.

The parameters v and ε are constants whereas ∆m, Ck, and Cs are estimated. As
Ck and Cs are integration constants they can be lumped together as C. This yields an
expression for kstop as a function of the current generation, in other words a prediction
of the stopping time,

kstop (k) =
√

2∆m (k)
vε

+ 2∆m (k)C (k) (D.14)

This is visualized for one of the instances from Fig. D.1 in Fig. D.5. Where the
termination error ∆k is shown. In this example the algorithm terminates a bit late; it
should have stopped at k = 5867 but stopped at 6236.

2.2 Cost Functions
The requirement of the stopping criterion is that the designer presents it with two cost
functions. One is the objective function of the genetic algorithm; the other is the cost
of the computational time. In the calculations above it was assumed that the cost
of one second of computational time, was equivalent to one second of execution time.
Therefore t = εk was simply added to (D.11) to yield (D.13). It is important that the
two functions use the same unit of measure. In the description of the criterion above,
the common cost was time.

The problem of attributing cost to time has been treated in both economics and
behavioral sciences. Even though the opinions differ on how humans understand time,
it seems that there is a consensus that people tend to get more frustrated when subjected
to long waits [16] and prefer advancing the timing of satisfaction rather than postponing
it [17]. This seems to undermine the notion that the cost of running a genetic algorithm
for 10 minutes is only twice as expensive as running it for 5 minutes.
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Fig. D.5: The predicted termination generation as a function of computed generations. When the al-
gorithm crosses the termination line, the current generation count surpasses the termination generation
and the algorithm should stop. Here it continues for a while to show the termination error ∆k.

Time is also not the best measure for the objective function of the genetic algorithm.
In the case of routing for a flying robot, it will not be equally expensive to fly 10 meters
vertically up and 10 meters horizontally, even though it may take the same time. The
measure might rather be a combination of energy usage, wear and tear, as well as time.

2.3 Other cost functions for computation time
The nature of the genetic algorithm is to provide better and better solutions. So the cost
function of the algorithm will always be monotonic decreasing. To guarantee a stopping
time the cost function on computation time must be increasing. In (D.2) the incline
was set to 1, this is easily extended with any linear cost function cost (t) = ξt = ξεk:

kstop =

√
2∆mv

εξ
+ 2∆m (Ck + Cs) (D.15)

This can be used to model computational time having a different cost than execution
time.
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3 Discussion
The presented termination criterion works with cost functions, which relates directly to
real life measures, such as salary, cost of energy or wear and tear. With the traditional
stopping criteria, such as stall-time and stall-generations, the designer has to decide on
a limit on the rate of change in the solution and either a time frame or a number of
generations to evaluate over. These parameters, especially the rate of change, are not
immediately possible to decide on, if the designer does not know about the mechanics of
genetic algorithms. We think that the cost function is easier to evaluate for the designer.

The termination criterion is more robust to changes in the executing platform. Both
of the traditional stopping criteria are sensitive to changes in the computation time. The
new criterion is robust to these changes. Consequently, the criterion is portable and can
be run on both fast and slow computers without any fine-tuning of the parameters.

The main drawback of the new criterion is that it might stop at local minima,
and start the execution too early. Even though the model is convex and only has one
minimum, the model parameters are estimated from the output of the genetic algorithm,
which is not strictly decreasing. This, however, is also the case in the stall-generations
and -time criteria.

In order to fit the nonlinear model in (D.9), nonlinear regression is used. In this way,
several iterations of the fitting procedure may be needed to find a good approximation.
It is a concern that this process will consume much computing power compared to the
genetic algorithm.

4 Conclusion
A termination criterion for genetic algorithms solving travelling salesman’s problems
in a robotic setting has been presented. Tests have shown the criterion to terminate
the genetic algorithm such that the found solution is within 5 % of optimal. This
is a positive result as this enables a roboticist without expert knowledge of genetic
algorithms to implement these and have confidence in achieving satisfactory results.
Expert users also have an advantage of using this termination criterion as it adapts to
different sizes and types of TSPs, which is convenient in an autonomous system working
in an unknown environment.
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Abstract
Fuel is a limited resource. When planning long missions for unmanned aircraft systems,
refueling stops must be considered. An otherwise distance-optimal path might be infea-
sible without refueling, but the added fuel consumption of going to a refueling station
and resuming the work renders the optimal path sub-optimal. This work describes an
approach to path planning for traveling salesman’s problems using waypoints including
refueling stops at specified locations. The planning is done using a genetic algorithm
that optimizes the length of the path. Refueling stops are randomly inserted into or re-
moved from the solutions in the population. Otherwise, the algorithm treats the depots
as regular waypoints. Some measure of infeasibility is allowed in the population, but the
final product of the planning is a feasible plan for the aircraft.

1 Introduction
The trend in robotics is to work autonomously for longer and longer periods of time.
However, when the durations of the missions of the robots are so long that the fuel may
run out, refueling must be considered in the planning of the mission. An example of this
long-term autonomy is persistent surveillance [1], where a group of unmanned aircraft
(UA) takes turns to keep observation on a specified surveillance location. When one
UA is observing, the others are either in transport to or from the base or recharging.

Many robotic applications require human intervention when the robot needs to be
refueled or recharged. For some applications it is not practical or maybe even impossible
to have human interventions during the mission, for others it is reasonable enough for
the robot to simply present itself at a refueling station, where a human operator will
manage the refueling process. For autonomous refueling of electrically driven UAs, two
roads have been investigated. One is recharging the on-board batteries [2], the other is
to swap the batteries [3].

The fuel constrained traveling salesman problem studied here, is interesting in robo-
tic long-time autonomy applications. This problem is related to the persistent surveil-
lance problem in [1], however here the UA must survey a piece of land by taking aerial
images at several locations to get a complete coverage of it. Sundar and Rathinam have
looked at a similar problem [4]. They have named it Fuel Constrained, UAV Routing
Problem (FCURP). The principal interest of Sundar and Rathinam, however, was to
route UA with small fuel capacities between target waypoints further apart than the
UA could fly on one tankful of fuel by “hopping” from one refueling depot to the next.
In the surveying problem at hand, the targets are many and densely distributed such
that the UA can not visit all of them on one tankful and will have to go back to the
refueling depot. But despite the difference in the problems, the problem definition in [4]
is much the same.



2. Methods 101

1.1 Problem Definition
The problem definition is almost like that of Sundar and Rathinam [4], with the excep-
tion of a fixed start and stop location. Consider a set of target waypoints T and a set
of depots D. Let V = T ∪D be the vertices of the fully connected graph G = (V,E).
The fuel consumption for moving between vertex i ∈ V to j ∈ V is denoted fij . The
fuel consumption is assumed to satisfy the triangle inequality. L denotes the maximal
fuel capacity of the UAS.

The objective is to find a tour TOUR := (v1, v2, · · · , vp) in G that visits all T once
and each D zero or more times while obeying the fuel capacity L and minimizing fuel
usage. Formally:

• TOUR ⊇ T

• For any subsequence of TOUR starting at a depot d1 and ending at the next depot
in line d2, (d1, t1, t2, · · · , tp, d2), the fuel usage must be at most equal to L, i.e.
fd1t1 +

∑k−1
i=1 ftiti+1 + ftkd2 ≤ L

• Minimize the total fuel usage,
∑p−1
i=1 fvivi+1 + fvpv1

In the following, a method to solve this problem is proposed. It is based on a genetic
algorithm for solving traveling salesman problems (TSPs), the main contribution is a
set of mutations to handle refueling stops, a cost function that computes fuel usage, and
a termination criterion that ensures a feasible solution.

2 Methods
This method is based on a genetic algorithm (GA) approach. See [5] for a comprehensive
survey of the possible GA operators in TSP. Here, the path representation is used along
with the classical displacement and inversion mutation operators [5]. Other than these
mutations, two extra types of mutations are introduced to manage the insertion and
extraction of refueling stops. An example of the genetic algorithm used is outlined in
Fig. E.1.

2.1 Path Representation
The genomes are simply represented as a sequence of waypoints

(v1, v2, · · · , vp).

This translates to a route going from v1 over v2 to vp. Each vi may be a target or a
depot. Note that the traditional path representation does not care about the starting
point of the solution as the solution to a TSP is a cycle, so the point following vp
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Require: Np, Pinv, Pdis, Pinj , Pext
procedure Genetic Algorithm

Initialize population← Np random genomes
doTerminate← False
while not doTerminate do

newPopulation← empty population
Make rouletteWheel selector from population
for i← 1, Np do

child← rouletteWheel
if rand(0, 1) ≤ Pinv then

child← inverse(child)
end if
if rand(0, 1) ≤ Pdis then

child← displace(child)
end if
if rand(0, 1) ≤ Pinj then

child← inject(child)
end if
if rand(0, 1) ≤ Pext then

child← extract(child)
end if
Add child to newPopulation

end for
Evaluate newPopulation
if bestNewGenome > allT imeBest then

allT imeBest← bestNewGenome
else

worstNewGenome← allT imeBest
end if
population← newPopulation
doTerminate← evaluate termination criterion

end while
end procedure

Fig. E.1: The genetic algorithm which shows the probabilistic selection of mutation operators and, in
the end, an elitism step.
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is implicitly v1. When taking the fuel consumption into account, it seems natural to
define a start point where the aircraft if fully refueled as is the case in [4], but this
representation does not pose that constraint. This results in a solution that produces
a cycle including refueling which the aircraft can repeat continuously. A way to think
of it may be that the solution is a steady-state refueling plan. This is reminiscent of a
surveillance problem, where the aircraft is patrolling the set of waypoints.

2.2 Displace Mutation
The displace mutation is a random process that picks a section of the genome out and
replaces it in another location. E.g. the genome

(v1, v2, v3, v4, v5, v6, v7)

would become

(v1, v4, v5, v6, v2, v3, v7)

if the mutation replaced the section (v4, v5, v6) after v1.
Because of the cyclic nature of the problem, the section (v7, v1) can also be replaced.

If that section is placed after v3, the result will be

(v2, v3, v7, v1, v4, v5, v6),

which is actually the same as above. This leads to an easy implementation, where three
different ordered indices are chosen and the section between the first and second index
is swapped with the section between the second and third index.

2.3 Inverse Mutation
Like the displace mutation, the inverse mutation also chooses a section of the genome.
But instead of moving it around, it reverses the sequence of the entries in it. E.g. the
genome

(v1, v2, v3, v4, v5, v6, v7)

becomes

(v1, v2, v6, v5, v4, v3, v7)

if the mutation inverted the section (v3, v4, v5, v6). Note that this also equates to in-
verting the section (v7, v1, v2), as the direction of travel is irrelevant.
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2.4 Refueling Mutations
Two refueling mutations are introduced. The first randomly selects a depot from the
genome and removes it, the other inserts a random depot at a random position. We
give the mutations the names inject and extract to emphasize that they are more than
simple insert and remove operators.

If v2 is a depot, the inject mutation can transform the genome

(v1, v2, v3, v4, v5, v6, v7)

into

(v1, v2, v6, v5, v4, v3, v2, v7).

The extract mutation must not remove the depot entry of a genome if there is only
one depot left.

2.5 Mutation Selection
All the mutations are introduced into the GA via a probabilistic selection of mutations.
When the GA has selected a genome for mutation a second selection decides which
mutation to perform. This is seen in Fig. E.1, where the probability of performing the
mutation is determined by Pdis, Pinv, Pinj , and Pext.

2.6 Order Crossover
Genetic algorithms often employ crossover operators to combine parts of two genomes
into an offspring genome. A possible crossover for this formulation is the order crossover,
which was proposed by Davis [6] for use in epistatic problems. It focuses on preserving
the order of the vertices rather than their absolute position in the solution. This also
pertains to the representation at hand, as a “good” sequence of vertices are equally good
no mater whether it is executed early or late in the solution.

The process is to choose a section at random from the first genome, this is then
inserted at the same position in the offspring, then the vertices of the other genome is
inserted into the offspring in the same order as the original but without repeating the
vertices already inserted. For example, if the genomes

(v1, v2, v3, v4, v5, v6, v7)

and

(v4, v6, v2, v7, v1, v3, v5)

are combined, choosing the subsection (v3, v4, v5) from the first genome, they will pro-
duce the offspring
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(v6, v2, v3, v4, v5, v7, v1)

As the solution is allowed to visit depots several times, the crossover operation can
be allowed to repeat depots when inserting from the second genome, so that if the vertice
v4 is a depot, then the resulting offspring of the above parents will become

(v4, v6, v3, v4, v5, v2, v7, v1)

This refueling aware order crossover may introduce extra refueling stops into the
offspring. Even though this may be a step in the right direction towards the best
solution, it might not and the extract depot mutation is then needed to counter the bias
towards adding depots. Conversely, the crossover could be disallowed to repeat depots,
but then the bias would be toward removing depots and the inject mutation is needed
to counter the bias.

These counteractions are achieved by increasing the corresponding selection proba-
bility Pext or Pinj . The best values for these values are not obvious, so the crossover
operator is not used in this work, but can be included with some tweaking of the pa-
rameters.

2.7 Cost Function and Feasibility
The cost of a genome is evaluated as the total fuel usage of the entire solution. This is
simply implemented as the Euclidean distance times a fuel usage constant.

fv1v2 = c · d(v1, v2) (E.1)

where d is the Euclidean distance function. The cost of the ith genome is then

Ci = fsv1 +
p−1∑
i=1

fvivi+1 + fvps . (E.2)

An additional task of the cost function is to evaluate the feasibility of the solutions
in terms of satisfying the fuel capacity constraint. This is done by accumulating the fuel
usages for each edge between two depot vertices in the solution. E.g. for the subsection

(d1, t1, t2, · · · , tp, d2)

the fuel usage is

Fd1 = fd1t1 +
p−1∑
i=1

ftiti+1 + ftpd2 (E.3)

The accumulated fuel amount is then noted as the amount that should be refueled at
the first depot d1 in the subsection. The procedure is executed for each depot-to-depot
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subsection in the solution. If any of the computed refueling amounts are greater than
the fuel capacity L, the solution is infeasible.

The implementation of the genomes includes the fuel that is left in the tank at each
waypoint, so that the genome

((d1, 8), (t1, 6), (t2, 4), (t3, 2))

represents a solution to the three-waypoints one-depot problem with a distance of 2
between each of the points in the sequence.

2.8 Dealing with Infeasible Solutions
This formulation of the algorithm allows infeasible solutions. This is necessary to facil-
itate an effective exploration of the solution space. I.e. it is not possible to guarantee
that the given operators are able to transform any feasible solution to any other feasible
solution in a finite number of operations with every intermediate step being feasible.
However, if the intermediate steps are allowed to be infeasible by breaking the fuel ca-
pacity limit, the displace and inversion mutation can reach all solutions when dealing
with problems without depots [7]. Combined with the two refueling mutations, the
entire solution space may be explored.

An infeasible solution, however, is not useful as an end product. Usually, a genetic
algorithm keeps track of the best solution, but in this case it also needs to keep track
of the best feasible solution so that it can be presented to the user when the algorithm
terminates.

One serious problem with allowing infeasible solutions is that they will alway pro-
duce a lower cost compared to feasible solutions with the same ordering of the target
waypoints but depots inserted to achieve feasibility. This means that there is no selec-
tion pressure to move towards feasible solutions. This is remedied by imposing a penalty
on the infeasible solutions. The penalty is measured as the ratio α of the most severe
fuel limit violation compared to the limit L.

α = maxi Fdi

L
(E.4)

The cost of the infeasible solution is multiplied with the penalty. The feasible solutions,
however, are not favored by multiplying penalties of less than 1, as there is no difference
between flying with a full tank and a less than full tank.

2.9 Termination Criterion
A much used termination criterion is called the stall-generations criterion, which ter-
minates the algorithm when the best solution has not changed significantly in a preset
number of generations. In this case, with presence of infeasible solutions, the termina-
tion criterion evaluates only the feasible solutions. This is in order to not terminate the
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algorithm when it has found the best infeasible solution as this is not of interest to the
user.

3 Results
The algorithm is tested on a problem of waypoints in a circular arrangement of radius
400 with refueling depots located in the center at [±100,±100]. The fuel limit was set
to 1200. This setup is chosen to visualize the output of the algorithm rather than an
emulation of a real life situation, the result is seen in Fig. E.2.

Fig. E.2: The test setup for the algorithm.

For a more real life test case, the berlin52 problem from TSPLIB [8] is used with
two refueling depots located at coordinates [500, 500] and [1000, 500]. The solution for
a fuel capacity of 3000 units per tank is shown in Fig. E.3.

The results were obtained with Pdis and Pinv set to 0.3, Pinj and Pext set to 0.1,
and a population of 100 genomes.

The circular solution was found in 3,000 generations, which on an Intel i7 2.8 GHz
core took 5 seconds. The berlin52 solution was found in 20,000 generations and took 50
seconds. Depending on implementation, this might be significantly improved.

4 Discussion
This genetic algorithm produces a feasible path for a patrolling-refueling problem by
constructing a path that is flyable in a continuous manner.

Practically, the paths can be used by starting the mission from any of the waypoints
included in the solution by making sure that the amount of fuel in the aircraft is at least
the minimum fuel left figure computed in the cost function.
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Fig. E.3: The solution to the berlin52 problem from TSPLIB.

If the problem is to be constrained to a fixed initial and finishing waypoint, the
mutations can be modified to simply not include the first and last waypoint. In that
case, the initial waypoint must be a depot, so that the aircraft can be fueled to the
minimum computed amount.

The refueling mutations developed for this problem are non-biased in that they
insert and remove depots from the genomes in a uniformly random manner. Heuristic
approaches may be evaluated, such as inserting depots only into long sections.

4.1 Future Work
The outline of a modified crossover operator was proposed, but it was not evaluated
because of its bias towards generating too few or too many depots. As such, no unbiased
crossover operator for this patrolling-refueling problem is known.
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Abstract
Mission planning for aircraft is often done as waypoint planning. A sequence of way-
points describing the three-dimensional positions that the aircraft must visit. A common
approach is to plan the sequence of the waypoints such that the Euclidean distance be-
tween them is minimized. When the high-level waypoint planning is finished, a finer
grained planning is executed to obtain a trajectory that the aircraft must follow. When
the waypoints in a plan are distributed far apart compared to the turning radius of the
aircraft, the two-step planning approach works well, but when the waypoints are closer,
the kinematics of the aircraft ruins the plan. This work describes an approach that uses
a genetic algorithm to solve the waypoint planning problem while considering the kine-
matics of the aircraft in one single step. This approach entails the addition of a heading
and target speed along with the position in the waypoint definition. The kinematics of
the aircraft is modeled with Dubins curves, which are extended to allow variable turning
radii.

1 Introduction
When planning a route through a set of waypoints for a mobile robot, the optimization
criterion is often the traveled length or time spent traveling. A straight forward method
of performing this planning is to optimize Euclidean distance of the route. However,
following straight lines between waypoint might easily violate kinematic or dynamic
constraints, in fact such a path might be very far from a feasible route for the mobile
robot. The inertia of a moving robot implies that some sort of ‘turns’ might be quite
useful for planning a route.

The geometrically simplest of turns is (part of) a circle, which when connected
with straight line forms the basis for Dubins curves [1–3]. The Dubins curve is a path
composed of line and circle segments, connecting two points with corresponding headings
in the plane. Dubins [1] showed that any two points with arbitrary headings can be
connected by a combination of two circle segment with a straight line segment in between
(CSC), three circle segments (CCC), or any subset of these, with the circle segments C
being either left- or right-turning (L or R). The circles in the paths are all constrained
to one given radius.

The Dubins curves have also been considered for applications to aircraft [3, 4]. Here
the curves to some extent fit the kinematics of an aircraft moving at a constant speed.
This is because of the bounded turning speed of an aircraft, where a constant forward
speed translates to a constant turning radius. The traditional Dubins curves, defined in
the plane, have been generalized to three dimensions [5], where the circle segments no
longer are defined as left and right turns, but defined on a doughnut shaped manifold
located around the orientation vector of the waypoints. That approach may lead to very
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steep inclines, a problem that has been treated in [4] where a bound is set on the rate
of change in altitude, leading to ‘corkscrew’ maneuvers to increase or decrease altitude.
A nice review of methods for path and trajectory following of Dubins curves in aircraft
autopilots is presented in [6].

The traditional way of planning a waypoint-based path with Euclidean performance
function is solving a traveling salesman’s problem (TSP), i.e. finding an ordering of the
waypoints that produces the shortest possible accumulated distance. The TSP is an
NP-hard problem [7] thus exact algorithms are not efficient and heuristics have been
developed [8, 9]. Typical approaches include neighborhood-search meta-heuristics like
ant-colony optimization, tabu-search, and genetic algorithms (GA).

It seems obvious to combine Dubins curves with a TSP where the performance
function is traveled distance along the curves (rather than Euclidean distance). However,
the Dubins TSP introduces the continuous variable of heading for each waypoint, and
these variables have to be determined somehow in order to determine the Dubins curves
connecting the waypoints. Since the length of the path is very much influenced by the
headings these variables are part of the optimization. Work has been done to solve this
problem by discretizing the headings [3] thus producing a generalized TSP with clusters
of waypoints with fixed headings where only one of the waypoints in the cluster should
be visited. A well-known heuristic method is known as the alternating algorithm [2],
which sets every second heading to point in the direction of the next waypoint in the
sequence and the next heading to the same value. This produces a route of alternating
straight segments and Dubins curved segments. Another approach is to manage the
headings in a genetic algorithm by randomly selecting headings in the neighborhood
function [10].

It should be noted that the optimal solution for a Dubins TSP tends to the optimal
solution for the Euclidean TSP as turning radius of the aircraft becomes smaller in
relation to distance between waypoints. This is because the turning then becomes
an increasingly smaller part of the total traveled distance. Conversely, solving the
Dubins TSP when the waypoints are close together compared to the turning radius
leads to “cluttered” solutions because the aircraft will have to make wide turns to “get
back to” the waypoints. Within certain limits, this can be countered by lowering the
forward speed of the aircraft to reduce the turning radius. We will therefore be using
Dubins curves with varying radii in this work. At the same time we will also consider
the heading associated with each waypoint. Thus, we present a Dubins curve based
trajectory generation and waypoint planning with variable radii, which is based on a
variable forward speed. The planning is based on a genetic algorithm that modifies
the both the continuous heading variable as in [10] and also the target speed in each
waypoint.
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2 Methods
The varying radii in Dubins curves and the application of a genetic algorithm to search
for the optimal path with time as the performance measure are two distinct methods
that we will address in this section. First, we present the generation of point-to-point
Dubins curves with variable radii. This is followed by the formulation of a genetic
algorithm that optimizes over the combinatoric sequence (solving the TSP) along with
optimizing the continuous heading and target speeds of the waypoints.

2.1 Variable Speed Dubins Vehicle
The Dubins Curves that we will present here is an extension of the constant speed,
bounded angular speed vehicle to a bounded speed, bounded angular speed vehicle.
The forward speed v will be bounded

vmin ≤ v ≤ vmax , (F.1)

and is subject to an acceleration that may be either ±amax or 0. It is assumed that
the vehicle is able to turn with an angular velocity ω, which may take on only maximal
values ±ωmax or 0. The forward speed and the angular speed defines the turning radius

r = v

ω
. (F.2)

Further, it is assumed that the vehicle is only able to accelerate on straight stretches
where the angular velocity is 0.

2.2 Point-to-Point Variable Radii Dubins Curve
We want to determine the length of a Dubins curve between two waypoints given the
heading and speed in both waypoints. There are six possible combinations of segments
forming a Dubins curve

{Right-Straight-Right} {LSL} {RSL}
{LSR} {RLR} {LRL} .

The length of each of the three segments are denoted t, p, and q for the first, middle,
and last segments, respectively. The heading is any real number between 0 and 2π,
and the speed is any positive, real number, and defines the radius of the circle segment
associated with the waypoint.

In [11], Shkel and Lumelsky derive formulas for computing the lengths of the different
Dubins curve types along with a classification method to select the right type before the
actual computation, this is opposed to the ‘traditional’ compute-and-compare approach.
The approach in [11] is to translate, rotate, and scale the problem into canonical form
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before computation. The canonical form places the initial waypoint in the origin, is
scaled with the reciprocal of the turning radius, and rotated to place the final waypoint
on the x axis.

The same idea of transforming the original problem into a canonical form will be
used here. However, since the radii of are not equal in our case, a slightly different trans-
formation is appropriate. In stead of transforming the problem to put the waypoints on
the x axis, it is transformed to put the two centers of rotation on this axis. Note that
this means that different transformations must be applied for the different path types.

We want to travel from one waypoint at w1 = (x1, y1) with heading φ1 and radius
r1 to another waypoint at w2 = (x2, y2) with heading φ2 and radius r2. The centers of
rotation then become

cright,i = wi + ri

(
sin(φi)
− cos(φi)

)
, (F.3)

cleft,i = wi − ri
(

sin(φi)
− cos(φi)

)
. (F.4)

These parameters are all illustrated on Fig. F.1 for the case where the Dubins curve is
made as Right-Straight-Right. The task now is to determine the lengths t, p, and q of
the three segments, and for this we will use the transformation described above. The
rotation angle is given by the angle −Θ, the scaling by 1/r1, and the translation by
−c1. This will transform the original configuration to the one seen in Fig. F.2. Now
define the scaled radius of the second circle ρ = r2/r1 and the scaled distance between
circle centers d = ‖c1 − c2‖/r1. The length of the short leg of the right triangle (gray
in the figure) is 1 − ρ and the length of the hypotenuse is d. Thus, the angle at which
the straight segment intersects the two circle is given as φ = arccos

(
(1 − ρ)/d

)
and

the length of this same segment is p′ =
√
d2 − (1− ρ)2. Now, finally, let αi be the

clockwise angle between the x axis and wi − ci, which is given as αi = φi − Θ + π/2.
Then t′ = α1 − φ and q′ = ρ(φ− α2) (constrained to the interval 0 to 2π). For this to
make sense we need only require that d ≥ 1 − ρ, meaning that none of the circles are
properly inscribed in the other (in which case no tangent exists between the two).

Extending this result to include also RSL, LSL, and LSR we get

p′ = d
√

1− λ2 (F.5)

t′ =
{

(α1 − φ) mod 2π RSR, RSL
(φ− α1) mod 2π LSL, LSR

(F.6)

q′ =


ρ((φ− α2) mod 2π) RSR
ρ((α2 − φ) mod 2π) LSL
ρ((φ− α2 − π) mod 2π) LSR
ρ((α2 − φ− π) mod 2π) RSL

(F.7)
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where

α1 =
{
φ1 −Θ + π

2 RSR, RSL
φ1 −Θ− π

2 LSL, LSR

α2 =
{
φ2 −Θ + π

2 RSR, LSR
φ2 −Θ− π

2 LSL, RSL

φ =
{
− arccosλ LSL, LSR
arccosλ RSR, RSL

λ =
{

(1− ρ)/d RSR, LSL
(1 + ρ)/d LSR, RSL

d = ‖c1 − c2‖
r1

ρ = r2

r1

d ≥

{
1− ρ RSR, LSL
1 + ρ RSL, LSR

c1

c2

r1

r2

Θ

D

t w1a

w2a

p

q

x

y

w1

w2

Fig. F.1: Dubins curve in original form.

As the lengths are both rotation and translation invariant, the original lengths
{t, p, q} are achieved by scaling {t′, p′, q′} by r1.

Since we do not allow acceleration of the vehicle on the curving part of the path the
CCC cases are of limited used, and therefore these cases are not included in this work.
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(0, 0) (d, 0)

1
ρ

t′
p′

q′

α

β

φ

φ

Fig. F.2: Canonical representation of the path seen in Fig. F.1.

2.3 Interpolation functions for Dubins Curves
Given the lengths of the non-canonical segments, three motion operators will translate
a point along the path. Let C : R5 7→ R3 be a mapping along a circle. The input is
[x y φ v r]> where x, y is the initial position in R2, φ is the heading angle, v is the arc
distance and r is circle radius (which should be positive to make left turns and negative
to make right turns). Then C is given by

C([x y φ v r]>) =

x− r (sin (φ)− sin
(
φ+ v

r

))
y + r

(
cos (φ)− cos

(
φ+ v

r

))
φ+ v

r

 .

A translation along the straight segment is more simple, and is given by S : R4 7→ R3

as

S([x y φ v]>) =

x+ v cos (φ)
y − v sin (φ)

φ

 .

Note that φ in S is the heading of the straight segment. If the vehicle starts at waypoint
w1 with heading φ1 and is following a left turn circle of radius r1 then a) the position of
the vehicle when it leaves the circle to traverse the straight segment, and b) the position
when it leaves the straight segment to enter the second (right turn) circle with radius
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r2, and c) the position when the entire maneuver is completed, are given by

a) w1a = C



x1
y1
φ1
t
r1




b) w2a = S

([
w1a
p

])

c) w2 = C

w2a
q
−r2


These functions may be useful when visualizing the curves of a computed path.

2.4 Velocities for Time-Optimal Traversal of the Curves
The straight segments are the only places where the vehicle is allowed to accelerate to
match the initial velocity v1 in (x1, y1, φ1) with the final velocity v2 in (x2, y2, φ2). The
time-optimal traversal of the segment is achieved by moving as fast as possible. This
means that the vehicle must accelerate from v1 to maximum velocity and later reduce
it to v2.

Assuming first that there is no upper limit on the velocity, then on the segment p the
maximum velocity that can be achieved vm, subject to a maximum allowed acceleration
of a, must satisfy

p =
(
v1 + vm − v1

2
)
τ1 +

(
v2 + vm − v2

2
)
τ2

where τk = (vm− vk)/a are the times it takes to reach vm from v1 (k = 1) and the time
it takes to reach v2 from vm (k = 2), respectively. Solving this gives

vm =
√

2pa+ v2
1 + v2

2
2 . (F.8)

Now, if this velocity is higher than the maximum allowable velocity vmax then we simply
impose this limit and the total travel time on segment p becomes

τp = τ1 + τ2 + [delay due to speed limit]

= vm − v1

a
+ vm − v2

a
+ (vm − vmax)2

avmax
.

In case the velocity limit is not reached the third term is (defined to be) zero. The time
for traversal of the entire path is then

T = τt + τp + τq = t

v1
+ τp + q

v2
. (F.9)
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Because of the bounded acceleration the path may be infeasible if the difference
between the initial and final speeds is too large to realize over the p-segment. When
this is the case, vm < max{v1, v2}.

2.5 Genetic Algorithm
To find the fastest path through the waypoints we employ a genetic algorithm. In this
case there are three parameters that determine the fitness of the solution when varied.
The parameters are the sequence of the waypoints, the heading in each waypoint, and
the velocity in each waypoint. In the traditional case where the Euclidean distance
between waypoints is used the choice of connecting edges in the TSP graph are decoupled
resulting in a entirely combinatorial problem. However, in the Dubins TSP case, the
headings of the waypoints couples the segments so that each Dubins path cannot be
optimized separately from the order of the waypoints. The same applies to the velocity
in this variable-speed Dubins TSP.

Much work has been done in the genetic algorithms for Euclidean TSP, for a review
see [12]. Yu and Hung [10] extends some of the traditional methods for use in Dubins
TSP. Much of their representation is used here to adapt the genetic algorithm to the
specific problem at hand.

Encoding

The path representation, described in [12], encodes the problem in an ordered list of
indices to the waypoints. In the jargon of genetics, the encoded solution to the problem
is called the genome and the entries of the genome is called the genes. This way, the
ordered list of indices is the genome and each index is a gene. Yu and Hung [10] extends
the path representation to include the heading in each gene. The same approach is taken
here; extending the representation with the velocity, so that a genome is a sequence of
genes of the form (i, φ, v). The genome example

{(1, 1.4, 2.3), (3, 3.6, 2.7), (2, 4.1, 1.6), (4, 1.1, 1.2)}

starts in the waypoint indexed 1 with the heading 1.4 radians and the velocity 2.3, and
move through waypoints 3, 2, and 4 with their associated headings and velocities.

Fitness

The fitness function evaluates how fit each individual in the population is. As the
objective is to minimize the time spent, individuals with a lower time cost should have a
higher fitness than slower individuals. This is achieved here by letting the fitness equal
to the time of the slowest genome of the population minus the time of the evaluated
genome.
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Require: Np, Pc, Pinv , Pex, Pdis, Pφ, Pv
procedure Genetic Algorithm

Initialize population← Np random genomes
doTerminate← False
while not doTerminate do

newPopulation← empty population
Make rouletteWheel selector from population
for i← 1, Np do

repeat
if rand(0, 1) ≤ Pc then

parent1 ← rouletteWheel
parent2 ← rouletteWheel
child← crossover(parent1, parent2)

else
child← rouletteWheel

end if
if rand(0, 1) ≤ Pinv then

child← inverse(child)
end if
if rand(0, 1) ≤ Pex then

child← exchange(child)
end if
if rand(0, 1) ≤ Pdis then

child← displace(child)
end if
if rand(0, 1) ≤ Pφ then

child← φ-random(child)
end if
if rand(0, 1) ≤ Pv then

child← v-random(child)
end if
Add child to newPopulation

until valid(child)
end for
Evaluate newPopulation
if bestNewGenome > allT imeBest then

allT imeBest← bestNewGenome
else

worstNewGenome← allT imeBest
end if
population← newPopulation
doTerminate← evaluate termination criterion

end while
end procedure

Fig. F.3: The algorithm for the genetic algorithm.
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Selection

A roulette wheel selection is used. Here each bin of the roulette wheel has a width equal
to the fitness of the corresponding individual. This way the roulette ball selects more
fit individuals more often.

Crossover

The crossover operator combines parts from two parent genomes to produce an offspring.
In this work, the order crossover [13] is used. This crossover tries to combine segments
of the parents while conserving their order.

The procedure is to choose a subsection from one parent, which is copied to the
offspring, and then fill in the blanks with the sequence from the other parent less the
already used indices. For example, if the genomes

{1, 2, 3, 4, 5, 6, 7} and {4, 6, 2, 7, 1, 3, 5}

are combined, choosing the subsection {3, 4, 5} from the first genome, they will produce
the offspring

{6, 2, 3, 4, 5, 7, 1} .

Mutation operators

Mutation operators operates on a single genome, modifying the representation in the
hope that this may produce a more fit individual. Yu and Hung [10] adopt and extend
the inversion and exchange mutations and introduce the shift mutation, which modifies
the continuous heading value. The method of their shift mutation is used here to
randomly choose headings and velocities. Here, the mutations are called φ-random and
v-random. The extended inversion mutation of Yu and Hung is adopted here along with
their shift mutation, whereas the traditional exchange is used instead of their extension.
Furthermore the traditional displace mutation is also used.

The individual mutations are shortly described here. For a more in-depth review of
mutation- and crossover-operators, see [12].

The inversion mutation chooses a subsection of the mutatee and replaces it with
itself reversed, the extended version used here also shifts the heading of each of the
affected indices by π, reversing the direction of travel.

The exchange mutation simply chooses two genes and exchanges them. Here, the
heading is not shifted as proposed in [10].

The displace mutation chooses a subsection of the genome and moves it forwards or
backwards in the sequence, also here, the heading is untouched.

The random mutations chooses a gene and sets the continuous values to a random
value. The φ-random sets the heading to a value in [0, 2π[, and the v-random set the
velocity to a value in [vmin, vmax].
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Fig. F.4: Two instances of Dubins genetic algorithm solutions to the Berlin52 problem corresponding
to the results listed in Table F.1. Left: Minimum initialized. Right: Maximum initialized.

Fig. F.5: Two instances of Dubins genetic algorithm solutions to the Berlin52 problem corresponding
to the results listed in Table F.2. Left: Minimum initialized. Right: Maximum initialized.

3 Results
The Berlin52 problem from the TSPLIB package [14] serves here as demonstration.
It contains 52 locations of interest in Berlin, Germany, spread out in the interval
[(0, 0), (1740, 1175)] with about 20 of the points located relatively close around the cen-
ter and the rest in the periphery. Our proposed method is well suited to this problem
because it has both widely spaced and closely spaced waypoints. The traditional Dubins
methods with fixed turning radius cannot adapt to the need for both slow and fast turns
to accommodate the close and widely spaced waypoints.

3.1 Simulation results
We have examined two instances of a genetic algorithm optimization. One where the
maximum speed is low and one where it is high. The results presented in Table F.1 are
for an instance where the possible speeds are in the interval [0, 100] units per second
with an acceleration of 10 units per second squared and rotational speed of 3 radians
per second. In Table F.2, the results are given for a setup with the maximum speed and
acceleration increased by a factor 10.
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Fig. F.6: Two examples of Alternating Algorithm–Euclidean genetic algorithm solutions to the
Berlin52 problem, left and right corresponding to the instances in Table F.1 and Table F.2 respec-
tively.

This result is compared to solutions obtained by the Alternating Algorithm (AA)
of Savla et al. [2]. Such a solution consists of two steps; 1) find the desired order of
the waypoints (we use both a Nearest Neighbor and a Euclidean GA), and 2) set the
headings of the waypoints in pairs so that the segments connecting the waypoints al-
ternates between a line segment and a Dubins path. The fitness is measured in the
same way as for the Dubins GA, that is, acceleration to maximum allowable speed is
used on any straight segment, while turns have a constant velocity linearly proportional
to the turning radius. Two examples of AA solutions are shown in Fig. F.6. Here
the sequence of waypoints are found using the genetic algorithm with a Euclidean dis-
tance cost function. To allow a fair comparison, several instances of the AA solution
is evaluated, varying the (fixed) forward speed in the turns from the minimum to the
maximum speed, so that the turning radii varies from least to largest. In both examples
the maximum speed yielded the fastest solution. Note that setting the forward speed
in the turns to zero reduces the turning radii to nothing and equates to a Euclidean
solution where the vehicle slows down to a stop, rotates on the spot (i.e. center turns
like a tank or hovering helicopter), and speeds up along the next line section towards
the next point.

While the first instance with low maximum speed and acceleration gives reasonable
results for the Euclidean GA with AA, it has a bit of trouble in the crowded center.
The second instance has a turning radius of 333.3 units at the speed of 1000 units per
second, which is a lot compared to the individual distances between the points. This
large turning radius proves difficult and gives considerable trouble in the entire region.
The solutions can be seen in Fig. F.6.

Six methods are listed in table F.1. First the nearest neighbor heuristic solution with
an AA smoothing with a forward speed of 0 (center turns) and next with a forward speed
of 100, which translates to turns with radius 33.3. The next two rows are also smoothed
with the AA with forward speeds of 0 and 100 respectively, but here the underlying
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Table F.1: Costs for solutions to the Berlin52 problem.

Method Length Time
Nearest Neighbor + 0 AA 8,980.9 541.7
Nearest Neighbor + 100 AA 11,796.3 118.0
Euclidean GA + 0 AA 7,835.7 501.8
Euclidean GA + 100 AA 10,607.0 106.1 Fig.F.6

Dubins GA (min. init.) 8,476.1 102.2 Fig.F.4

Dubins GA (max. init.) 9,254.3 92.6 Fig.F.4

Speed: [0, 100], Acceleration: 10, Rotational Speed: 3

solution is obtained with a genetic algorithm (GA) based on a Euclidean cost function.
Lastly, two instances of the Dubins GA are listed. The difference between the two is the
way of initialization. The first (minimum initialization) is initialized with a population
of identical solutions obtained with the nearest neighbor heuristic, setting the speed and
headings of the waypoints to 0. The next entry is initialized just like the other, but
with the speeds set to maximum.

All the solutions are evaluated according to two metrics. The first is the traveled
distance, i.e. length of the solution, the next is the time it takes to traverse it. Note that
the Euclidean GA uses the Euclidean distance as the cost function for optimization, but
the distance listed in the table is the distance after AA smoothing. In table F.2 the
results of the same instances, but with a higher maximum speed and acceleration are
listed.

Table F.2: Costs for solutions to the Berlin52 problem.

Method Length Time
Euclidean GA + 0 AA 7,835.7 246.9
Euclidean GA + 1,000 AA 73,125.8 73.1 Fig.F.6

Dubins GA (min. init.) 10,732.7 50.9 Fig.F.5

Dubins GA (max. init.) 39,091.6 39.1 Fig.F.5

Speed: [0, 1,000], Acceleration: 100, Rotational Speed: 3

The computational effort of the Dubins GA is considerable compared to the Eu-
clidean GA. The instances of the Euclidean GA were solved in 10,000 generations,
where the Dubins GA required 15,000 generations, but because of the more computa-
tionally intensive cost function of the Dubins curves, the run time of the Dubins GA
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Fig. F.7: Close-up of the center section of the maximum initialization instance in Fig. F.4.

was roughly six times as long. Specifically 115 seconds for the Dubins GA compared to
20 seconds for the Euclidean GA on a Intel Core i7 2.80 GHz core.

3.2 Observations
When examining the results, note that the heading of the waypoints tend to a value, so
that the circle segments on either side are of equal length, and further that no waypoint
has a heading that results in the path having a left-turn when entering the waypoint
and a right-turn exiting (or vice versa). See a close-up of the center section of Fig. F.4
in Fig. F.7 with the headings of the waypoints illustrated.

4 Discussion
In all instances, the Dubins genetic algorithm outperforms the other solutions by matter
of time. Interestingly, the method of initializing the algorithm has a strong influence on
the obtained solution. The nearest neighbor solutions in Table F.1, gives some insight
to this behavior. The solution initialized with minimum speed produces a short, but
slow execution where the maximum speed initialization produces a longer, but faster
execution. As the algorithm incorporates a validity check, all offspring with too large
difference between the initial and terminal speeds to be realized are discarded. Thus
the algorithm may obtain a solution that is trapped in a local minimum, which the
mutations are not “strong” enough to break out of.

A possible way to visualize this problem is by thinking of the solution space as a hill
with the best solution sitting at the top of the hill. As the solutions are mutated, they
may move a step up or down the hill. The selective pressure of the genetic algorithm
favors the solutions that are stepping up the hill. The validity check creates boundaries
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on the hill that the solutions cannot step over, this could be thought of a a form of
ravine dividing the faces of the hill. The solution may get stuck on one side of the
ravine in a local maximum and have to cross the ravine to get to the global maximum
on the other side. If the mutation operators are not “strong” enough to step across the
ravine in one step, the solution have to backtrack down the hill to a point where the
ravine becomes so narrow that it can be negotiated. The genetic algorithm allows a
portion of backtracking, but the probability dwindles as more steps are needed.

This is what seems to happen in the case of maximum- and minimum-initialized
initialization. The ordering of the waypoints and their headings are fairly quick at
converging to a nice solution, where the speed adaption process are more slow. The
ravine is thus created as new changes in heading or ordering may easily become infeasible
because of a too large speed. Thus, the solution have to backtrack by first reducing the
speed, then changing the ordering, and finally the heading. The probability of this
sequence of mutations happening is quite low.

There are different ways to overcome the problem of getting caught in local min-
ima. Here, one of the problems is that the algorithm cannot search from one feasible
domain through an infeasible domain to another feasible domain. Such problems are
addressed by Ray et al. in [15], where they allow a portion of infeasible solutions in the
population. They also note that optimal solutions often lie on the constraint bound-
aries, an observation that may be seen in this case as well: The maximum-initialized
version maintains the maximum speed throughout the entire path, thus lying on the
speed constraint boundary. Conversely, the minimum-initialized version moves on the
acceleration constraint boundary; the reason why the speed does not reach the maxi-
mum. The approach by Ray et al. bridges or narrows the ravines, easing the transition
from one feasible domain to another.

Interestingly, the sub-optimal minimum-initialized algorithm generally produces “pleas-
ingly” looking paths, whereas the maximum-initialized paths tend to look more complex
(although faster). Rather than dismissing the minimum-initialized approach we will re-
gard it as a conservative version of the algorithm, where the maximum-initialized can
be regarded as the aggressive version. The difference between the two is very apparent
in Fig. F.5 corresponding to the solutions in Table F.2.

5 Further Work
The observation that the circle segments seem to be divided on the middle seems in-
tuitive as this results in the shortest straight segments, which definitely minimizes the
length. But with the acceleration and speed constraints, the same conclusion is not so
obvious. If a closed form solution to this is constructed, there would be no reason for
the genetic algorithm to individually optimize the headings as they would be an implicit
consequence of the ordering and speed.
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Even if no closed form is found, the observation may be used as a heuristic when
constructing initial solutions for the genetic algorithm.

In this case, the vehicle is constrained to only accelerating on the straight segments.
For a real aircraft, however, it is possible to accelerate during a turn. As described
in (F.2) the radius is defined by the forward and angular speed of the aircraft. If the
aircraft is to accelerate in the turns, the radius will become a function of the speed,
and the path will become a spiral segment. Planning with such spirals in stead of circle
segments would certainly bring the model closer to the real system, and construct even
better trajectories. Spirals have been used in planning for aircraft. One often used is the
clothoid, which has a curvature that is linear with arc length [16]. While the clothoid is
an approximation of the spiral alluded to here, it models a constant forward speed and
a bounded angular acceleration.

The differences between the two solutions from the maximum- and minimum-initialized
algorithms show that there may be other factors in the optimization of this problem
than simply the time consumption. The minimal-initialized solution definitely looks
more pleasing to the human eye, even though it is slower. Such a factor may very well
be important when motion planning for robots in human environments. This may lead
to the use of a multi-objective optimization instead; with both the time and distance as
optimization factors. In [17], a genetic algorithm have been developed to handle such
problems.

Another approach to this multi-optimization problem is to consider the fuel usage of
the trajectory. Such a parameter will combine the two other parameters, as it will strike
a balance between the fastest solution and the slowest solution, choosing a speed that
is probably closer to the cruising speed of the aircraft, where it has the best mileage.
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