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Abstract 

In this work Dirichlet series ~(s) = :E w~~) , associated with Thue 
n=l 

-Morse sequence w ( n) is considered. It is known, that this function has 
an analytical continuation to a whole complex plane as entire function 
with trivial zeros on negative real line and imaginary line. The func- 

t 
tion A(t), satisfying integral equation ½A(½) = J A(u)du, naturally 

0 
appears in the representation of the function ~( s). The main result of 
this article is two representations of x;(s)f(s), one of whom is defined 
for ~s < 0 and provides Dirichlet series with complex exponents, mul­ 
tiplied by a function 282 /2+s/2. As a corollary we prove, that x;( s) is 
entire function of order 2. 

Keywords: Dirichlet series, Thue-Morse sequence. 

1 Introduction 
Thue-Morse sequence is defined inductively by 

w(O) = 1, w(2n) = w(n), w(2n + 1) = -w(n). (1) 

That is, it is a sequence 1,-1,-1,1,-1,1,1,-l. .. The other definition of this se­ 
quence is following. Let the binary expansion of the natural number n be 
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I:: Cn i 
n = I:: Cn,i · 2i, where Cn i = 0 or 1. Then w(n) = (-1)•;?:0 ' The third 

i>O I 

00 

way do define a sequence is generated power function, which is E w(n)x" = 
n=O 

00 IT (1 - x2n). It is easy to check the equivalence of these three definitions. 
n=O 
Thue-Morse sequence provides 2-multiplicative and 2-automatic function. 
This sequence was introduced by Thue [6] and by Morse [5), with connection 
to geodesics on the surface of negative curvature. This sequence is non­ 
periodic, and if this sequence is divided into blocks of length 2k from the 
beginning, there are blocks only of two kind, and if denoted by 1 and -1, we 
get the same sequence 1,-1,-1,1, ... ,that is, w(n). This and means, that this 
sequence is 2-automatic. This property will be of the great importance in the 
future, when we'll consider analytical continuation. General q-multiplicative 
functions were studied in detail in (2) and [3]. 

Our aim is to investigate the function 

K(s) = f w(n) 
n=l ns 

(2) 

which is defined for complex numbers = u + it. The Dirichlet series of this 
kind were studied in (1]. It was shown, that the function 

f(s) = f w(n) 
n=O 

which is equal to ( see lemma 1 bellow) !+;: K( s), satisfies functional equation 
00 

f(s) = I: C~+k-I2-s-k J(s + k). 
k=l 

The series for ,._;( s) is convergent for u > 0 (relativilly for O < u < 1) and 
defines the analytical function in this half plane. As was shown in [I] and 
(4), this function has an analytical continuation to a whole complex plane as 
entire function with trivial zeros K(-n) = 0, n E N. We'll do the same in 
other, much more simple way, since in the future we will need the function 
A( t), which will appear in the analytical continuation. All technique used in 
this work is elementary and can be found in any book of complex variable. 
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2 Analytical continuation 
To continue analytically we can use partial summation, but next method 
gives besides and trivial zeros of the function x:( s ). 

L 1 T:'I O ~ w(n-1) _ 1-2• ( ) emma . ror Cf> ~ n• - 1+2.x: s . 
n=l 

Proof. In fact, every natural number n has a unique representation of the 
form n = 2k(2m + I), k > 0, m > 0, and so for CJ'> I we have: 

n=l ns 
2s I: 

m~O 

w(2k(2m + I) - 1) 
2k6(2m + 1)8 

1 - 2s x:( S) 

From analytical continuation we get, that this is valid for a > 0, and thus 
lemma 1 is proved. 

Now define a function p0(t) = w([t]), where [t] means integral part of the 
real number t. Hence from (2) and lemma 1 we have 

s l ::~t,l dt = 1<(s) - }: w(n_: l) = ,2~+:. 1<(s) + 1 (3) 
1 n~2 

Since integral on the left is convergent for CJ' > -I (by Abel-Dirichlet prin­ 
ciple), and uniformly in any angle IArg(s + 1 - 5)1 < i - c with positive & 
and c, this gives analytical continuation to this region. In the future, when 
we'll encounter with a representation of a function as an integral, we will not 
mention, that convergence is uniform in regions, which cover the specified 
region, thus having, that this function is analytic (if not mention the con­ 
trary). Here we deduce, that for s = i1rrn221r1, l E Z, on the left of (3) we have 
a finite number, so on the right it also must be, hence these s are zeros or 

1 ,,ft { t' of x:(s). Also we deduce, that x:(O) = -I.Note that sflf¾ft-dt = -1, when 
0 

Cf < 0, hence, if we denote x:0( s) = ;:~~ x:( s) 
00 

J Po(t) Ko(s)=s ts+1dt,-l<CJ'<0 
0 

(4) 

The equation ( 4) will be the basis of analytical continuation by integrating 
t 

by part. Define P1(t) = J po(u)du. 
0 
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Since p1 ( 0) = p1 ( 2) = 0, and as was noted above , blocks of the length 
2 form the same sequence, it is clear, that p1(t) = po(½)P1(t), where p1(t) is 

t 
periodic function with period 2. Now define inductively Pk+1(t) = J Pk(u)du. 

0 
By induction, Pk(t) = po(2t1c )Pk(t), where Pk(t) is periodic function of period 
2k .Now from integral expression it is easy to check inductive preposition. 
Note, that Pk(t) = ii, for O < t < 1 , and Pk(t) is positive in the interval 
0 < t < 2k .Hence integrating the equation ( 4) by part k times, we obtain 

00 

Ko(s) = s(s + 1) ... (s + k) J _P~~~)- dt 
0 

(5) 

This is valid for -1 < a < 0, but the integral is convergent for -k-1 < a< 0, 
hence it provides with analytical continuation of the function Ko( s) for this 
region. Note, that in the last equation taking s = -k, we get Ko(-k) 
0, k > 0 and this gives trivial zeros of the function K( s) . 

3 Function A(t) 
We now investigate functions Pk(t) and prove that this sequence if normed 
and scaled, is uniformly convergent to a certain function A(t). Namely, we'll 
prove that for constants Ck = 2(k-2)(k-l)/2 the functions 

(6) 

uniformly converge to a certain function A(t). First note, that Pk(t) = Pk(2k­ 
t) for O< t < 2k. For k = 0 it is clear, and if it's true for k, it's true for 
k + 1,since 

t 2"+1 2"+1-t 

Pk+1(t) = j Pk(u)du = - J Pk(u)du = J Pk(u)du = Pk(2k+l - t). 
0 21c+t-t 0 

Next, note that Pk(t) + Pk(2k-l - t) = Pk(2k-t) fork > 1 and O < t < 2k-1. 
For k = 1 it is checked directly, and if it is true for k, it is true for k + 1, 
since 

t 2"-t 2" 

Pk+1(t) + Pk+1(2k - t) = J Pk(u)du + j Pk(u)du = J Pk(u)du = Pk+1(2k). 
0 0 0 
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We now calculate the maximum of the function Pk+i(t). As can be concluded 
from the above, the maximum is obtained at t = 2k. We now can calculate 
this maximum: 

211-1 

2Pk+1 (2k-l) = 2 / Pk( u )du = 
0 

211-1 f (pk(u) + Pk(2k-l - u))du = 2k-IPk(2k-1). 
0 

Since p1 (1) = 1, we get Pk(2k-l) = 2(k-2)(k-l)/2, for k > 1. Now if we substi­ 
tute Pk(t) by ckAk(;1o), we get, that Ak(O) = Ak(l) = 0, Ak(½) = 1 and that 
t 
J Ak(u)du = ½Ak+1(½)- Now define rk(t) = Ak(t) -Ak+1(t). Note, that 
0 

1 3 1 3 rk(t) > 0 , 0 < t < -, - < t < l, and rk(t) < 0, - < t < - - - -4 4- - - 4- -4 

This can be deduced directly from the properties of the function Pk(t), and 
so from the properties of Ak(t). Hence, sup lrk+i(t)I < 2 ·¼sup lrk(t)l and 

00 

sup lrk(t)l < 2-k+i sup lr1(t)l. So the series A1(t) + E (Ak+1(t)-Ak(t)) con- 
k=l 

verges uniformly, and so we have, that the limit function A( t) satisfy integral 
t 

equation J A(u)du = ½A(½), which can be written as A'(t) = 4A(2t), and this 
0 

gives the simplest type of differential equation with delayed argument. 
Since from calculation Ak ( t) = 2'"212:~1c/2-1 xk in the interval [ 0, 2

1,.] , and in 

the interval [o, ¼] rk is negative, then Ak(t) uniformly decreases in the same 
interval, hence 

1 2-k2 /2+3k/2-1 
A( 2k) < u , k > 2 (7) 

It is convenient to replace Pk(t) in the expression of Ko(s) by ckAk(2t,.). 
Hence we have 

Ko(s)r(s) _ 2r(s + k + l) Joo Ak(t) 
O(s) - !l(s+k) ts+k+1dt,for-k-l<G'<O. 

0 

'where 0( s) = 2s2 /2+3s/2. 

(8) 
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4 Integral representation 
We have from (8): 

x:0(s - k - l)f(s - k - 1)!1(s - 1) = I'(s] /00 Ak(t) dt = 
2!1( S - k - 1) ts 

0 
00 00 J e-xxs-ldx J Ak(t)t-sdt,O < O' < k + 1 
0 0 

Since e-xxa-l Ak(t)t-s is integrable function in the first quarter for 1 < u < 
k + 1 (for O < u < 1 it is not), we can write the above as double integral by 
Fubinni theorem. Changing variables t = t, x = at we get from (9) 

(9) 

00 00 

hk(s) = f fk(o:)o:s-ldo: = ln2 / Sk(o:)2asdo: 
0 -oo 

(10) 

00 

where /k(o:) = J e-atAk(t)dt and Sk(o:) = fk(2a). Hence, fk(o:) is a 
0 

Laplace's transform of Ak ( t), and hk ( s) is a Mellin' s transform of f k (a). 
We have Sk(o:) = E e-20i j e-20tw(i)Ak(t)dt = E w(i)e-20i. 

i=O O i=O 
1 00 . 1 1 

. J e-20tAk(t)dt = n (1- e-20+') J e-20tAk(t)dt. Denote I e-20tAk(t)dt by 
0 i=O O 0 

Fk(2a). The function Sk(o:) is defined for a, for which le-201 < 1, since 
generated power series of coefficients w(n) converge only for lzl < 1, and 
has the unit circle as its natural bound. That is, Sk( a) is defined for a, 

00 

for whom ~2° > 0. Now consider the function S(o:) = Je-20tA(t)dt = 
0 

00 a 00 a+l 2 J e-2 td½A(½) = 2a J e-2 tA(t)dt = 2aS(o:+l). Hence S(o:) = 2-a /2+0/2q(o:), 
0 0 
where q is an analytical function, satisfying relation q( a) = q( a + 1), that 
is, periodic function, defined for those a, for whom ~2a > O, that is, for 
-f + 21rl < ~a ln2 < f + 21rl, l E Z. Further, as in the previous example, 

00 +· 1 1 
S(o:) = TI (1 - e-20 ') J e-20t A(t)dt. Denote f e-20tA(t)dt by F(2a).Now for 

i=O O 0 
S k (a) we get the more convenient expression 

S (a) = 2-a2 /2+a/2q(o:) Fk(2a) 
k F(2°) 
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D F-1c(2a} b ,,/.. ( OI) s h enote r.,,...,.., y '-Yk 2 . o we ave 

00 

h1c(s) = ln2 / 2-a2/2+a/2q(a)¢1c(2a)2asda 
-oo 

(11) 

Equation Sk-i(a - 1) = 2a-1Sk(a) written in the terms of Fk have ap- 
_2a-1 

pearance Fk(2a) = 1-;0_1 Fk-1(2°-1 ). And in the same manner F(2°) = 
-20-1 , 

l-e F(2°-1) Since F(2°-k) -+ ! as k -+ oo we have 20-1 . 2 l l 

and so 

(12) 

Note, that ¢k(z) = ¢(z2-k-l ), where 
1 -2z oo 2-i -e z 

¢(z) = ( - ) . n ( 1 - e-7?-J 
i=O 

In the future we will need the following lemma: 
Lemma 2. <Pk(z) is even function. 
Proof. 

1 J e-zt Ak(t)dt 
¢1c(z) = -\---­ 

J e=" A(t)dt 
0 

1 
ez J e-zt Ak(t)dt 

0 
1 

e" J e-zt A(t)dt 
0 

1 J ezt Ak(l - t)dt 
o = ¢1c(-z). 
J e·ie A(l - t)dt 
0 

In the last equation we use symmetry of both functions Ak(t) and A(t) 
with respect to a point t = ½. 

For the completeness we can give explicit expression of q( a). From the 
above can be deduced, that 
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5 Representation in terms of Dirichlet series 
with weights 

For l~al < 21:2 we have Fourier expansion q(a) = I: Cne21rina. Then we can 
nEZ 

integrate (11) term by term, having hk( s) = ln 2 I: cnhk( s, n ), where 
nEZ 

00 

hk(s, n) = I 2-a2/2+af2e21rinar/>k(2a)2asda 
-oo 

(13) 

Note, that 1 < u < k + 1. If not stated the contrary, in this section will 
be I t In 2 I< f. To base the integrating term by term we have to evaluate 
rf>k(z). 

Lemma 3. For Rz > 1 and IArg(z)I < f - e lr/>k(z)I < 
< ck,e:. 2Iog~Jzl/2-{k+3/2)log2Jzl. For Rz < 1 and IArg(z)I < j - e r/>k(z) is 
bounded by constant Dk,e:· 

2
_,. 00 . 1 -z 2-• Proof. r/>k(z)=(-;_,._1 )· TI (

1 
z_2_,)(see(l2)). Second statement z i=k+l -e z 

00 . 

is obviuos. Function J)
0 
( 
1
_:~::-,) for z in the region lzl < 1 is bounded by 

a constant E. For Rz > 2k+l let l = {log2 lzl} and j = [log2 lzl]. Note, that 
00 . I 2_,. I 1· . 2-• 1 -z 2-• j > k+l. Then I TI ( z_ 2_,) < E. Further, ( -;_,._1 ) • TI ( z _ r• )I< 

. ·+1 1-e " z . k 1 1-e " 1=3 1= + 
Fk,e: · lzlj-k-l · 2-P 12-1!2 (We use fact, that ti > ctg( ~ - e ), and that infinite 

00 . 2 

product n (1 - e-2'ctg(f-e:)) converges). Hence l<Pk(z)I < E. Fk,e:. 2-1 !2+1!2• 
1=0 

zlog~ lzl/2-(k+3/2) log2 Jzl and the lemma 3 is proved. 
Since <Pk(z) is even function, we get the same bound for Rz < -1 and 

l1r - Argzl < f - e. 
Hence integral (13) converges for CJ' < k + 1. So for these values of s 

00 2 • , 00 

lcnhk(s, n)I < lcnl J 2-a l2+a/2 • lr/>k(2a)I · 2auda. Since the series I:~ lcnl 
-oo n=-oo 

converges, we can apply the Lebesgue theorem, and integrating term by term 
is based. Changing variables in (13) a= 1;21rin + s + ½ + a',we get 

2 . oo--1r1n ln 2 
hk(s, n) = 2s2/2+s/2. 2-1n~21r2n2+i. (-lf. e21rins I 2-a2/2<Pk(2s+½+a)da 

2 . -oo- ln 21r1n 

(14) 
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(In fact, limits should be -oo - it - 1;21rin to oo - it - 1;21rin, but since 
integrable function has no poles in the considered strip ( since I t ln 2 I< J) 
, and from easy calculations vertical integrals tend to zero, we have right to 
make such a substitution). 

Function cf>k(2z) has poles (see (12)) at points Zl,m == (1°~;=;01)+i(1r/~:;m), 
when ord2(l) > k+3, l EN, m E Z, and these poles are of order ord2(l)-k-2, 
where ord2(l) means the biggest power of 2, dividing l. The equation (14) is 
valid for 1 < a < k + 1 and It ln 21 < f · We now can use Cauchy theorem 
about integrals and residues. Now take any natural number l with property 
{ -d,;} E [¼, ¾] for k < 1og2 l (take, for example, l = Cj :== 4

';
1
) and take 

Tj = log, Cj + log, 1r - a - ½. From calculation for such number Ti we have 
T·- 1ri(m-1) 

(integral is taken by a straight line) ' /~
2 I -2-02/24>k(2s+½+0) I da = 

T 1r1m ;-ii2 
1r2m2 ( ) . . O(e 21n2 • 2 O'-k-I 23), and tends to zero, as J --+ oo, and a < k + 1. For 

negative T we have this property trivially. Now evaluation of the following 
integral for I t In 2 I< f directly follows from the lemma 3: 

T 1rmi ,·+1-­ ln 2 

/ 2-a2 f24>k(2s+½+a)da = Ot( e ;2i:: . 2(1T-k-1)2j) 
T,_1rmi 
J In 2 

If so, then, for positive n and It ln 21 < I 
2 . oo- ln 2 1r1n 
/ 2-a2 f24>k(2s+½+a)da 
2 . -oo- ln 2 1rin 

-2n oo c;+i-1 +2-s2/2-s/2. L I) L Pz7m(s)2z1,ms) 
m=-1 j=O l=c; 

00 

/ 2-a2 /2<Pk(2s+½+a)da + 
+oo 

(15) 

-2n-1 
For negative n we obtain the same integral and sum, with bounds E ,and 

m=O 
for n = 0 an empty sum. The third sum means, that only those l E N 
are counted, for whom ord2l > k + 3. The polynomial P1,m is of degree 
k + 3 - ord-], Since both integrals converges absolutely, the double sum 
converges absolutely in the region a < k + 1 and jt ln 21 < I· We now can 
extend the (15) to the whole region a < k + 1. Both integrals converges 
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absolutely for t ln 2 =f f + nk; hence, double sum converges absolutely for 
the same values of t. Now shifting the lines of integration down for small 
number, we can extend equality (15) for the rest values oft, thus obtaining, 
that the double sum converges absolutely for c, < k + 1. 

Cj+t -1 
Now we can evaluate E P/m(s)2zi,ms. It can be easily deduced, that 

l=c; ' 

Cj+l -1 L P17m(s)2z1,ms = I 2-a2/2<Pk(2s+t+a)da 
l=c; c 

(16) 

where contour C forms a rectangular with adjacent vertices T3 - 7;;2i and 
( )" 2 2 T3+1 - ,r ~~

1 1. Hence, we have, that this integral is Ot( e 1;1:2 · 2{a--k-1)2i). 
Shifting a contour of integration down for a small number we can make this 
bound to be independent oft. 

2 ,r2n2+ 1 ( ) ( 2 · ) Now denote by b., = 4ln2 · Cn • 2-1n22 8 · -1 n. Define by p e ,ris = ntz bne2,rins. Note, that since q( a) has its natural bound the lines t=- 2 i:2 + f;! 
and t = 2 rn 2 + ~71'~, so there are infinity many non-zero coefficients for q( a) for 
both positive and negative n, so this is also true for p( e2m·s). The Fourier series 
for p( e2,ris) is convergent for all complex s and defines periodic analytical 
function. Taking all results in one place, we get 

Ko(s - k - l)r(s - k - 1) = p(e2ffis) j z-a'f•,Pk(2,+½+a)da + 
-oo 

Cj+t -1 
+2-s2/2-s/2. (1ri)s L bne2,rins LL( L Ptm(s)lsei,rms) (17) 

nEZ m j l=c; 

where second sum means as above sums for positive and negative n, and 
empty sum for n = 0, and fourth sum means for l EN, ord2(l) > k + 3. We 
want to sum by n and m. Note, that defining u = 2n + m, we can change the 
first two sums into E E + E E . Thus we obtain 

uENo n> .!! uE-N n< ~ 
2 -2 

00 Cj+l -1 
+2-s2/2-s/2(1ri)s. LL( L Rtu(s)e,riuszs) (18) 

uEZ j=O l=c; 
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The double sum converges absolutely for er < k + l. From the evaluation 
of the sum (16)and coefficients b« we obtain: 

Cj+t -1 
~ k '11'2 u2 ( Lt Rl,u ( S )18 = 0( e- 21n 2 2 u-k-1)2j) 
l=c;j 

(19) 

Translation in (18) s f--+ s + k + l and changing the function <Pk(z) into 
</>(z), we obtain (noticing, that second sum is for l E N,ord2(l) > k + 3 and 
denoting R~1c+ai,u(s + k + l) by Rr,u(s)) 

Ko( S )r( S) = p( e21ris) Joo 2-a2 /2¢,(2s+½+a)da + (20) 
O(s) 

-oo 
oo C;+l -1 

+2-s2 /2-s/2+k/2-k2 /2(81ri)8 . L L( L Rt.I( s )e,riu(s+k+l) zs+k+l) 
uEZj=O l=cj 

This is valid for er < 0 and jt ln 21 < ~. Note, that for z = 28 the 
00 

integral on the right in (20) J 2-02 l24>(z · 2½+0)da for er < 0 and It ln 21 < j 
+ oc 

defines analytical function Z(z) which is from (13) with n = 0 is continued 
analytically to the whole region ff < 0. From lemma 2 we get, that Z(z) = 
X(z2). The distribution of zeros of every function is important question. For 
more detailed study of the function p( e21ris) we'll prove the following lemma: 

Lemma 4. Function p( e21ris) has no zeros in the region It I < 2 ~ 2 • 
Proof.Remark. This gives alternative proof of ability to extend function 

X(z2) analytically to a whole region I z I< 1. In fact, p(e21ris) · X(48
) is 

continued analytically from (20) to the region a < O, so X(48) is finite 
everywhere, except for a zeros of p( e21ris), and if s is irregularity of X( 48), 
then also and s + 1:i2 , so it suffices to prove, that p( e21ris) has no zeros in the 
region !ti < 2;2. Making the same calculations for the integral 

00 

JA(x)dx 
xs 

0 

(21) 

as for (9), we find, that it is equal to 282~~:(
2 p(e21ris) up to a constant multi­ 

plier. The integral (21) absolutely converges for a > 1. Let s be zero of (21) 
in this region u > 1 and ltl < 21:2, then also and s + n, n E N, is a zero. 
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We suppose, that t > 0. The case t < 0 is analogous, and the case t = 0 is 
a more simple one. Making substitution x --+ ¼ and s --+ s + 2, we get, that 
imaginary part is also zero: 

00 1 j A( x )xu sin(t In x )dx = 0 
0 

(22) 

Since integral is additive, then for all polynomials P( x) from (22) we have 

00 1 j A(x)xu P(x)sin(tinx)dx = O 
0 

Our plan is following: we'll construct polynomials, for which (23) is not 
satisfied, thus proving lemma. 

sin( t In x) for x > 1 has simple zeros at the points exp( 1rtk), k E N. Now 
define a function R( x) and polynomials Pr( x), T E N : 

(23) 

00 1rk T 1rk 
R(x) = IT (1 - x · exp(--)), Pr(x) = IT (1- x · exp(--)) (24) 

k=l t k=l t 

Note, that infinite product converges, thus the function R(x) is defined 
correctly. Since R( x) is strongly positive in the interval [O, 1] and finite, 
0 < R( x) < c in this interval. Trivially I Pr( x) I < 1 for O < x < 1. Since 
R(xexp(-1r;)) · Pr(x) = R(x), hence 

1rT 
IPr(x)I > c-1 IR(x)I, 0 < x < exp(-t ) 

Let o(T) be any natural number. We'll chose later o(T) so that o(T) --+ oo. 
Note, that IPr(x)I < drxT for positive x,where dr = exp(- 1r(T:+T)). Now 
evaluate the following integral (we use (7) ): 

(25) 

l 00 

1 j A(x)xu+o(T) sin(tinx)Pr(x)dx 
xp( '"t) 

00 

< dr f A(: )x"+5(T)+T dx < 
exp( ,rt) 

00 

<dr I: 
k=[ i7[2] 

2(k+l)(u+&(T)+T)-k2 /2+3k/2+k-1 

kl (26) 

12 



Since It! < 2~2, then k > 2T - l, and also kT - k2 /2 < k/2, and we can 
continue (26): 

00 I ... dx 
xp(1rt) 

< dT2T-l+o-+6(T) ~ 2k(o-+6(T}+3) 

k>2T-1 k! < 

< exp( - 1r(T2 + T) )2T-1+a-+6(T) exp(2a-+6(T)+3) (27) 
t 

If we now choose o(T) = [log, T] in (27), we will have 

00 1 f A(x)xo-+J(T)sin(tlnx)PT(x)dxl ~ O,asT ~ oo. (28) 
xp( -,r'{) 

Next, evaluation of the integral (23) for P(x) = x6(T)pT(x) in the interval 
[0, 1] is easy: 

1 1 I 1 / A(x)xa-+o(T)pT(x)sin(tlnx)dx < _, U'T'\, 1 ~0,asT~ oo. (29) 
0 

And at last, since sin(tlnx)x6(T)pT(x) and x6(T)R(x) is of constant sign 
in the interval [ 1, exp( 1r;)] , we have ( using ( 25)): 

exp(~) 
t 1 
/ A(x)xo-+J(T)pT(x) sin(tlnx)dxl > 
1 

c-1 
exp( 1rT) 

t 1 j A( x )xo-+J(T) R( x) sin( t ln x )dx 
1 

~ oo,T ~ oo (30) 

Now (28), (29) and (30) are inconsistent with (23). Lemma 3 is proved. 
Making in (20) k = 1 and denoting X(48) = ½X(48), Rz,u(s) = ½l2 Rl,u(s) 

we have a following main theorem: 
Theorem 1. There exist function X(z), holomorphic for lzl < 1, 

function p( z), holomorphic in the whole complex plane, except for a point 

13 



z = 0, and polynomials R1,u(s), for which 

1<( s )r~:) = 2·' /2+•/2 . p( e2"i') . X( 4') + (81ri)'. L f:tf 1 Ri,.(s )e"i"'l") 
+ ueZj=O l=~ 

(31) 
The double sum on the right converges absolutely for (J < 0. 
Corollary. Function K( s) is the entire function of order 2. 
Proof. From (3) by partial integration we get, that for a> -1 

Thus it suffices to evaluate K(s) in the region a < -½- From the evalua­ 
tion of (19) and bn, we obtain, that p( e21ris) = 0(2t212), the double sum for 
a < -½ is 0(2t2/2). The order of the entire function F(z) is the number 
p = limsupr-+oo lnl7n~(r) ' where M(r) = suplzl=r IF(z)I, (r(s))-1 is entire 
function of order 1. For the function on the right of (31) M(r) = 0(2r2/2) 
and evaluation can't be better on the negative real line, hence K( s) is of order 
2. 

6 Other representation 
Note, that from (14) 

00 

hk(s, n) = 2s2/2+s/2. 2t. (-l)n. e21rins I 2-a2/2. e21rina. </>k(2s+t+a)do: (32) 
-oo 

Integral is defined for a < k + l and I t ln 2 I< ~. From (13) it is obvious, 
that this function is continued to the region a < k + l as analytical function. 
Since ef>k is even, the integral with multiplier ½ ln2en(-lt2½ can be defined 

OO 2 1 
as Yn( 48). Note, that I Yn( 48) I< C I Cn I J I 2-a l24>k(2s+2+a) I da. Hence, 

-oo 
the series E e21rins • Yn( 48) converges absolutely in the region (J < k + 1 and 

nEZ I t ln 2 I< ~ ,since q( a) is defined and absolutely convergent in this region. 
Now note, that for every s we can find integer number w, so that It+~; I< 
21:2, so we can apply (32). Now denoting Yn(4s+k+1) by the same Yn(48), 
and defining the m-th coefficient of Taylor expansion at the point z = 0 of 
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• _ 11'
2w2 2nw11'2 the Yn(z) by dn,m and define Dw,n = e11'SWS. 2 2ln22 • (-l)w. e-""lii'2' define 

dn,m,w = dn,m · Dw,n then we obtain the following theorem: 
Theorem 2. There exist coefficients dn,m,w, n E Z, w E Z, m E N0, for 

which 

x;( s )r( s) = 2s2 /2+s/2 . " " d . e21rins . 4ms l + 2., L,.; L,.; n,m,w 
nEZmENo 

The double sum converges absolutely for a< 0 and I (t + ;;) I< 21:2• 

7 Integral equation 
First investigate the function, which we have already encountered. Let for 
u>l 

!
00

A(x) 100 8 1 X s F(s) = -dx = x- d-A(-) = -F(s + 1) 
X8 2 2 28 

0 0 

a 00 

Thus, for a > 1 IF(s + 1)1 < tG(a), where G(u) = J IA(x)I x-o-dx. In 
0 

the same manner for a > 2 we have 
220--l 

IF(s + 1)1 < t2 G(a - 1) 

In previous section we got, that 

2s2 /2+s/2 . 
F(s) = --p(e211'18) 

r(s) 

(33) 

00 

Note, that for a > 0 J A( l )xs-1dx = F(s + 1) and A( l )x0-1 E L(O, oo) 0 :r; X 

for J > O, thus, from Mellin's inversion formula, we have 
o+ioo 

A(x) = ~(v.p.) j F(s + l)x8ds 21ri 
6-ioo 

Since for J > 2 from (33) we get, that integral absolutely converges, then 
l <i+ioo 

A(x) = -. j F(s + I)x8ds, 6 > 2 
21ri 

5-ioo 

(34) 
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oo A(n+l) oo 
Note, that E (n+l)u = K{u)(l-2u) = K1(u) by definition, and E (n+\- = 

n=O 2 n=O 2 

((u)(2u -1) = (1(u), where ( is Riemann zeta function. Making in equation 
(34) x = n + ½, dividing it by (n + ½)u and with assumption Ru > 8 + 1 
summing it with limits n = 0 to oo, we obtain 

6+ioo 

K1(u) = ~ j F(s + 1)(1(u - s)ds 21ri 
5-ioo 

Each summand multiplying by w(n) and summing, we in the same manner 
for ~u > 8 + 1 obtain 

6+ioo 

(1(u) = ~ j F(s + l)K1(u - s)ds 21ri 
6-ioo 

Now define w(u) = ,-c1(u) + (1(u) = (2u - l)(((u) - ,-c(u)).Then summing 
the last two equations, we obtain: 

1 6+ioo 2s2 /2+3s/2 . 
w(u) = -. I nt \ p(e2'11'18)'11(u - s)ds,8 > 2, Ru> 5 + 1. 

1ri - I 1 

5-ioo 

This gives integral equation of convolution type for the function W ( u). 
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