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The statistical mechanics of ideal Fermi-Dirac systems is developed in terms of special functions
defined by integrating the mean occupation number against powers of the single-particle energy. The
analytical and numerical properties of these fermi functions are studied in considerable detail. Here
we emphasize nonrelativistic systems in three dimensions, but other systems can be explored easily
with appropriate modifications of this notebook. The important special case of nearly degenerate
Fermi gases is also developed in some detail, with applications made to the specific heat of metals
and to the properties of atomic nuclei.

Introduction

According to the Fermi-Dirac distribution function, which is derived within the notebook occupy.nb, the mean
occupancy for a single-particle orbital with energy ¢ is

1

Exp[ 5] + 1

nile] =

where the chemical potential i is a function of density and temperature. At 7T = 0, the argument of the exponential is
—oo when & < £ or +o0 when € > u; hence, the occupancy is unity for all states with & below u and is zero for all
states with & above u. Therefore, at absolute zero a Fermi gas is described as completely degenerate and is character-
ized by a frozen distribution in which all orbitals with & < g are occupied and all orbitals with & > g are vacant,
where the Fermi energy and Fermi temperature are defined in terms of the chemical potential as

T=0 = H=EF = kBTF

and are functions of the density of the system. Thus, it is useful to express the thermodynamic properties of Fermi
systems at finite temperature, which are no longer completely degenerate, in terms of reduced energy and temperature
variables scaled to & or T, respectively.

The dependence of the chemical potential upon density and temperature is determined by integrating the
occupation numbers to obtain the total particle number

N = fooﬁ[s] PDlelde
0

where for large systems the density of states, D[&], is approximated by a continuous function of energy. For an ordi-
- L . . . . . o 2 42 .
nary nonrelativistic gas in three dimensions, the single-particle energy is simply € = % and the density of momen-

tum states is D[k]d> k = gV (‘21;’)‘3 where g =25+ 1 is the intrinsic degeneracy for a particle with spin s and V is the

volume of the system. Generalizations to one- or two-dimensional systems or to relativistic kinematics are developed in
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the problems at the end of the notebook. The chemical potential enters the above integral through 7[¢] in a rather
nontrivial fashion that requires numerical evaluation. Similarly, other thermodynamic properties can be expressed in
terms of integrals of this type. Therefore, it is useful to define the fermi function of order v as

1 o) xv—l
fermi[v, z] = f dx
vl Jo z 'Explx]+1

where z = Exp[k:—T] is known as the fugacity and where x = £/ &p is the energy in units of the Fermi energy. The
gamma function is included to ensure a convenient normalization, namely fermi[v, z] — z for small z. Using these
fermi functions, we will show below that some of the common thermodynamic functions for an ideal nonrelativistic
Fermi gas in three dimensions become

N A3 f .[3 ]
np = = fermi| —,
9% v 2 ¢
fermi[ 3, z]
G=-pV =-NkgT ———
fermi[ 5, z]
3 fermi[ 3, 2]
U= =NkgT :
2 fermi[ 3, z]

where ng is the quantum concentration and A = 4/ 7217];—#'; is the thermal wavelength. The properties of fermi functions
are investigated below in considerable detail.
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m Glossary
N = number of particles
Vv = volume
T = temperature
kg = Boltzmann constant
8 = energy-level degeneracy
e = single-particle energy
k = single-particle wave number

PDle] = density of states wrt energy

PDlk] = density of states wrt momentum

A = thermal wavelength

ng = quantum concentration

u = chemical potential

Z = fugacity

Z'P = single-particle grand-partition function
7 = mean occupation number

&p = Fermi energy

kr = Fermi momentum

Tr = Fermi temperature (¢r / kp)

T = reduced temperature (7' /TF)

G = grand potential

U = internal energy

p = pressure

S = entropy

F = free energy

H = enthalpy

Cy = isochoric heat capacity

c, = isochoric heat capacity

y = g—’v = ratio of principal heat capacities
fermi[n, z] = Fermi-Dirac function of order n
a = % (%7)1) = isobaric expansivity

Kr = — % (‘;—‘;)T = isothermal compressibility
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Ks= — % (%)s = adiabatic compressibility
Initialization

m Defaults, packages, and symbols

ClearAll["Global *"];
Off [General: :spell, General: :spelll];

$DefaultFont = {"Times", 12};
$TextStyle = {FontFamily -» "Times", FontSize » 12, FontSlant » "Italic"};

Needs["Utilities Notation "];

Needs ["Miscellaneous PhysicalConstants™ "];
Needs["Miscellaneous Units™ "];

Needs ["Graphics Master™ "]

Symbolize[ZiP]; Symbolize[kp]; Symbolize[ky]; Symbolize[er]; Symbolize[x, ]
Symbolize[Ax ]; Symbolize[Tx ]; Symbolize[Cx ]; Symbolize[vy, ]; Symbolize[Vy ]
Symbolize[n, ]; Symbolize[N, ]; Symbolize[fi]; Symbolize[n, ]; Symbolize[kpax]

Symbolize[B]; Symbolize[p]; Symbolize[U]; Symbolize[§];
Symbolize[F]; Symbolize[G]; Symbolize[C, ]; Symbolize[¥]

SetAttributes[{kz, A, g, m}, Constant];

FundamentalConstants =
BoltzmannConstant PlanckConstantReduced

{kB - l4 ﬁ d };
Joule Joule Second

Kelvin

m Memory management

This notebook consumes enough memory that it becomes advantageous to run the memory conservation utility. How-
ever, we are not interested in seeing the messages reporting the actions of that process.

Needs["Utilities MemoryConserve "];
Off [MemoryConserve: :start, MemoryConserve: :end];

m Error messages

Several annoying error messages can be suppressed, if desired, but should be enabled when developing or debugging
code.
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Off [General: :"ovfl"];
Off[Solve::"ifun"];

Off [NIntegrate::"inum"];
Off [NIntegrate::"ncvb"];
Off [NIntegrate::"slwcon"];
Off [NIntegrate: :"precw"];

m Rules for changing variables

2 7t h? 1
—— B> }i
kaAZ kBT

TtoLambda = {T -

2 gyt h2
lambdaToT = {.7L - };
ka T
.3 1/3
gV fermi| 5 z]
lambdaToZ = {1 - v }i

zToTau = z » fugacity|[t];
muToZ = u - kg T Log[z];

7
zToT = z—>Exp[k T];
B

m Density of states

Evaluate the density of states for nonrelativistic gas in 3 dimensions in terms of both momentum and energy.

4ngVvk?
D[k] =
(2m)°
(nk)®
€ = ;
8 2m
D[k V2
D[e] = [kl /7. {k—) ﬁ} // PowerExpand
k €k h
gm3/2\7\/_g
\2 72 h3

Occupation numbers

The statistics of occupation numbers have already been explored in the notebook occupy.nb. Here we repeat the
derivation of the mean occupation number, briefly, but then investigate its properties for nearly degenerate Fermi
systems in more detail. The goal in this section is to motivate the definition of the Fermi functions and to explain how
expansions with respect to reduced temperature can be developed for various thermodynamic functions.
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m Mean occupation number

The mean occupation number, as a function of energy and chemical potential, is determined from the grand partition
function for a single orbital.

1
Z®= > Exp[-nB (- u)]

n=0

1 4 @B (e-1)

1
fizp = ks T 9, (Log[z{”] /. {B adwr- }) // FullSimplify
B

1

Lol
T

Ngp /. muToZ // FullSimplify
Z

€

e®T +z

m Evaluate Fermi energy and momentum

The Fermi momentum, kr, is defined to be the highest occupied momentum when all lower states are fully occupied.
The corresponding energy is the Fermi energy, €.

N3

Ny =
Q gv

14

kp
kFrule = Solve[j D[k] dk = N, ke | [3]
0

. 61/3 72/3 n1/3
{xe - SSVERVVE

(B ke)?
eFrule = {sF - _—F } /. kFrule
2m
32/3 ;473 N2/3 B2

{er - 2173 g2/3 mv2/3

It is useful to recognize that the density of states, for either momentum or energy, can be expressed in terms of simple
functions of the Fermi momentum or energy which display the scaling relations in a transparent manner. Thus, if we
define k = k/kr and € = £/ &p we can produce the simpler density of state functions below.

D[x] = (D[k] ks> /. kFrule // PowerExpand // Simplify) /. k » k

3N K2

D[e] = (D[e] er*’? /. eFrule // PowerExpand // Simplify) /. e > €

3INAe
2

Thus, we can evaluate the mean energy or momentum, in units of the €7 or kr, for a completely degenerate nonrelativis-
tic Fermi gas in three dimensions using simple dimensional arguments.
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Jole Dl[e] de

€ = T
fo Dl[e] de
S
5
LIKD[K] dx
R o=
Jo D[x] dx
3
4

Therefore, we conclude that the internal energy for a completely degenerate Fermi gas is simply

T=0= U= % N &r, which will provide an important consistency check on the more detailed numerical evalua-
tions to follow for finite temperature. Furthermore, recognizing that the pressure is simply two-thirds of the energy
density for an ideal nonrelativistic gas, regardless of its permutation symmetry, we conclude that

T=0= pV= % N gp for a Fermi gas. The failure of the energy density and pressure to approach zero as the
temperature approaches zero, as expected for a classical gas, represents the most dramatic consequence of the Pauli
exclusion principle for fermions. For dense systems the degeneracy energy and pressure, namely their values at zero
temperature, can be extremely large.

m Occupation numbers for low temperature

Permutation symmetry has its greatest effect on the thermodynamics of Fermi systems when the reduced temperature is
small. The mean occupation number then approaches a step function of temperature, near unity below the Fermi energy
or near zero above the Fermi energy. Particles occupying states far below the Fermi level cannot change orbitals
without absorbing a relatively large amount of energy and hence do not participate in thermodynamic processes.
Therefore, many properties of the system are governed primarily by the states that are in the immediate vicinity of the
Fermi level. We illustrate by comparing the low temperature occupation number distribution with that for a completely
degenerate system. For this purpose it is convenient to express both the energy and temperature in units of the chemical
potential, but it also will be important later to remember that the chemical potential is temperature dependent.

step[x_] := If[x<1, 1, 0]

1

nfermi[x , t_] 1= —m8
e(x-1)/t 4 1

FilledPlot[{step[x], nfermi[ x, 0.05]}, {x, 0, 1.5}, Frame -» True,
FrameLabel » {"e/u", "i"}, PlotLabel -» "FD Occupancy for T=0.05 Tg"];

FD Occupancy for T=0.05 Tg

0.8
0.6 |
0.4
0.2}

0 02 04 06 08 1 12 14
elu
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Particles in the shaded or colored region can be considered active, while the remainder can be considered dormant.
Most of the action occurs near the Fermi surface. From this plot it is clear that the chemical potential is equal to the

single-particle energy for which the mean occupation number is % .

Thermodynamic properties of nearly degenerate systems

In this section we express various thermodynamic functions as expansions with respect to reduced temperature, 7, using
the properties of the occupation number distribution. This procedure provides considerable insight into the behavior of
the important class of systems that are nearly degenerate. Some of these results will be rederived later as low-tempera-
ture limits of more general expressions based upon Fermi-Dirac functions.

m Expansion with respect to temperature

Generally a thermodynamic function is constructed by integrating some function of the single-particle energy against
the density of states and the mean occupation number. Deviations with respect to the properties of a completely
degenerate system arise at finite temperature because the mean occupation number spreads out a little near the Fermi
level. The effect of this change in occupation distributions can be studied using generic integrals of the form

Alz] = J@n[e, t] 6. f[e] de
0
J n[e, t] f'[e] de
0
where J. f[€] includes both the density of states and the single-particle function of interest. Integration by parts is

accomplished using the following rule.

partsRule =
b

b_
j g _O.f [e]de » (gf[e] /. e»Db) - (gf[e] /. € »a) —Jf[e] Oc.gde

a

b_ b
J _f '[e]dew (gf[e] /.€—>b) - (gf[e] /. € > a) 7J fle] Beg de

Hence, assuming that f[e] includes the density of states and vanishes at e = 0 while the mean occupation number
vanishes at € = oo, we can discard the surface terms and obtain

A[t] /. partsRule /. {f[0] » 0, n[w, T] » 0}

—J fle] nt P [e, ] de
0

Examining the derivative of the mean occupation number, we recognize that when 7 is small it is strongly peaked at the
Fermi surface.

dnfermi[x_, t_] := O0ynfermi[x, t]
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Plot [Evaluate[dnfermi[x, 0.1]], {x, 0, 2}];

=25+

Therefore, if f[e] varies slowly with energy near the Fermi energy, we can use a Taylor series approximation about
€ = 1. Furthermore, we can extend the range of integration to (—oo, +00) and use a change of variables to simplify the
integrand, recognizing that dnfermi is symmetric about its peak.

integrand = -£f[e] n™% [e, t] /. {£[€] » Normal[Series[f[e], {e, 1, 4}]],
n?%[e, t] »dnfermife, t]} /. {e > xT + 1} // Expand
£[1) , e*xf[1] e x*tf’[1] e*x’t?f0[1] e*x'r’ £ (1]
(1+<e><)2 (1+ex)? 2 (1+ex)? 6 (1+ex)? 24 (1+ex)?

expansion = (tj integranddlx] // Simplify

f[l}+%n2 T2 £7[1] + at et £ 1)

.
360
m Chemical potential

We can apply this expansion to the relationship between density and chemical potential by identifying %—i with D[e]
and making the necessary substitutions into the expansion formula.

£y = JD[e] de
N e3/2

Nexpansion =
(expansion /. f[x_] » £y /. Derivative[n_][£f][1] »D[£fy, {€, n}]) /.
{e>u, t->kgT}

Tk TN kE?TZN

+
640 1572 N

Realizing that y is near & for low temperatures, we use the substitution u — ¢ + 0 to develop an equation for the
correction term valid to second order in 6. After solving this equation, we expand with respect to temperature, being
careful to limit that expansion to the same order used for Nexpansion, and select the physically meaningful solution.

N U3/2
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Nexpansion .
stuff = — /.u-»>¢egr+6// Series[#, {6, 0, 2}] & // Normal
N ep /
52 49 kit TEN 3k3 ? T2 N 3N
1024 /2 64 ep/? * 8+/er
P F Er
3/2 +
N €r
TREAATAN k3 m* T2 N 3N er ) Tkt AN kg 7 T2 N 3/2
- — s + +N €
6 ( 256 12 16 e2/2 2 640 €3/7 8 Ver N g
N ed? N el

Solve[stuff =1, §][1]
{6 -
(2 (35 ki 7* T* €5 + 80 k3 7 T? €3 - 1920 €2 - /5 / (-441 k§ n® T® €f - 7392 k§ n° T° ef -
38656 kg ' T? €f - 122880 k3 n1° T? €@ + 737280 &;°) ) ) /
(5 (49 kg ¥ T* + 48 k2 m? T2 €2 + 384 €4)) )

6sol = (6 /. Solve[stuff==1, 6] // Series[#, {T, 0, 4}] & // Normal) //
PowerExpand // Simplify

{4lkéﬂ4T4 . 3 k& 2 T? C4el 3kgn4T4+20k§n2T2s§}
80 €3 4 ep o 240 €3

uExpansion = €p + 6sol[[2]] /. {T>ter / kg} // Collect[#, {er}] &

2 +2

e T 4t

12 80

Er (1*

m Internal energy

To evaluate the temperature dependence of the total energy, in units of u, we identify %2— with € p[e] and make the
necessary substitutions into the expansion formula.

fe = Je Dl[e] de

3 5/2
5 N €
Ustuff =
(er®? expansion /. £[x_] » £. /. Derivative[n_][£][1] »D[£., {€, n}]) /.
{e>u, t->kgT}

Tk it TAN 3 1,2 42 72 m 3 5/2
*W*’@k}gﬂ’fN'\//l*’gN,u/
3/2
Er

Finally, we use our expansions for the temperature dependence of y to obtain a simple formula for the temperature
dependence of the internal energy.

Uexpansion =
(Ustuff /. u-> uExpansion /. {T->ter / kg}) // Series[#, {t, 0, 4}]1 & //
Normal // Collect[#, {N, €r}] &
22 304t

3
Ner {5+ =7~ 780
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Fermi-Dirac functions

Although the expansions developed in the preceding section are very useful at low temperatures, a more com-
plete analysis over a broad range of temperatures requires that we develop more general techniques. Thus, it is useful
to define Fermi functions in terms of integrals of powers of the energy against the occupation number such that

¥ 1

1 00
fermi[v, z] = f I dx
I'ivl Jo z'Explx]+1

where the fugacity is defined as z = Expl E“—T—J . The gamma function is included to ensure a convenient normalization,

namely fermi[v, z] - z for small z. Since the chemical potential for a dilute system is large and negative, the classical
limit corresponds to small z. Conversely, at low temperatures the chemical potential approaches the Fermi energy so
that the fugacity for a Fermi system is large. In later sections we will show that the thermodynamic properties of Fermi
systems can be expressed in terms of these Fermi functions for arbitrary temperature and density.

In this section we define the Fermi function and develop rules to exploit some of its analytic properties. We
then display several fermi functions graphically. Finally, we develop expansions that apply to both the classical and
degenerate regimes. The large z expansion, in particular, represents a generalization of the results of the preceding
section.

m Definitions

Fermi-Dirac functions are closely related to the polylogarithm function represented by Mathematica as PolyLog[v,z]

v-1

Integrate[m, {x, 0, ©»}, Assumptions - {Re[Vv] > 0}]
fermi[v_, z_] =

Gamma [Vv]

-PolyLog[v, -z]

The Fermi-Dirac functions for order {v, %, 3, %} are plotted as functions of z. In addition, the limit v - co, which is
simply the line f = z, is included.
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Plot[Evaluate[{Table[fermi[v, z], {v, %, 3, %}], z}],

{z, 0, 5}, PlotRange » {{0, 5}, {0, 2.5}}, GridLines -» Automatic,
Frame » True, FrameLabel -» {"fugacity, z", "£,[z]"},
PlotLabel -» "Fermi-Dirac functions"] ;

Fermi—Dirac functions

2.5
2
— 1.5 |
= T
0.5 /

1 2 3 4 5
fugacity, z

Note that because z becomes large at small temperature, the divergence of Fermi-Dirac functions requires special

handling via asymptotic expansions for low temperatures.

m Small z expansion

Inspection of the Taylor series around z — 0
Series[fermi[v, z], {z, 0, 3}]

z-2"Vz?+3Vz>+0[z]*
suggests that the general power series takes the form

(-z)*

kV

Kmax
fermiZexpansion[v_, z_, kpax ¢ _] 1= - E
k=1

Below we verify that the infinite series does reproduce the desired function.
fermi[v, z] == fermiZexpansion[v, z, o]
True

It will be useful to define a rule for small z as follows.

zSmallRule = -fermi[v_, z] » -fermiZexpansion[v, z, 3]

PolyLog[v_, -z] » -z +27Y 2% -3 23
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m Large z expansion

The degenerate Fermi gas is an important special case characterized by large z. At low temperatures the occupation
probability is nearly a square function, unity below and zero above the chemical potential, with deviations from the
square function confined to a narrow region, of width approximately equal to kg T', surrounding p. It is useful to
separate the deviations from the completely degenerate behavior into two regions, one below and the other above (.
The correction below u is given by integrand1 and above p by integrand2. Since the integrands become very small for
energies more than a few kg T away from u, we can extend the range of integration to -co for integrand1 or to co for
integrand2. The exponentially small error we make in extending the energy range to-co can be treated in more detail, if
desired. With appropriate changes of variables, these two terms can be combined into a single integral over the range
{x, 0, co}. A series expansion of the integrand is then made so that the integral can be performed.

Clear[integrandl, integrand2, integrand]

integrandl[x_ ] :=x""! (1 - ] /. {x->y-x}

Exp[x-y] +1

xv—l
integrand2[x ] :

/.
Exp[x-y] +1 x> y+x}

temp = integrand2[x] - integrandl[x] // Simplify

1+v -1+v

-(=x+y) T+ (x+Y)
1+ e*

integrand = Normal[(Series[#l, {a, 0, 3}] &)[

ax

ax v v
temp/.{(x+y)v——>yv( +1) , (—x+y)v——>y"(— +1) }]]/.a—>1
2xy Y (-1+v) . X2yt (=3+V) (=2+V) (=1+V)

1 + eX 3(1+@X)

correction = J@integrand dx
0

;WHZy'4+V(—l+v) (60 y2+ 77 (6-5v+v?))

zLargeRule =

v
L + correction Gammal[v + 1]

} 7.

-fermi[v_, z] » -
v

m— ] /. {Gamma[v] -

y » Log[z] // Simplify
PolyLog|[v_, -z] -
v (%1— + 555 7 (-1 +v) Log[z] *" (772 (6-5v+v?) +60Log[z]?))

360

Gamma [l + V]
Therefore, we have obtained an asymptotic expansion of the Fermi function for large fugacity, known as Sommerfeld's

lemma, that is very useful in developing low-temperature approximations. With sufficient patience we could carry this
expansion to high order, if desired.

m Recursion relations for symbolic derivatives

It is also useful to note the following downward recursion relation for derivatives.
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0, fermi[v, z]

_ PolyLog[-1+vVv, -z]
zZ

z 0 fermi[v, z] == fermi[v -1, z]

True

m Rules for manipulation of Fermi-Dirac integrals

Unfortunately, the Mathematica Integrate function still fails to recognize several simple variants of the Fermi-Dirac
integral. Furthermore, we would like to employ symbolic integrals without needing to specify the parameters. There-
fore, in order to guide Mathematica toward proper evaluation of these integrals, we need to temporarily unprotect the
Integrate function so that we can install our own rules for the relevant types of integrals. It is necessary to provide
some rather redundant rules to ensure that all equivalent variations are recognized.

Unprotect [Integrate];

© x_"- d Gamma[n + 1] fermi[n +1, z]
L Explox) g =E B+l
J‘“’ x_"- d Gamma[n+ 1] fermi[n+1, z]
x_ :=
o Exp[B_.x ]+z - z 3+l
b_ b b
sumRule:J (£_+g_) dx_ :»j fd1x+J gdx;
a a a

partsRulel = J x "y dx_» J -m x™1 jy dx dx;
0 0

o xm+1 axy
partsRule2 = J x "y dx_» - dx;
0 0 m+1

Protect [Integrate];

gammaRule = n_ Gamma[n_] -» Gamma[n + 1];

Chemical potential and fugacity

m Temperature dependence of chemical potential and occupancy

The chemical potential is related to the temperature and density by
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Clear[eql];
eql[z—l t_] =

Efp

3 T
PowerExpand[nQ z= fermi[; ’ z] /. lambdaToT /. {T - } /. eFrule]

B

== —PolyLog[%, —z]

4
3 1972

where we express energy and chemical potential in units of &z and temperature as 7 = T/ Tr. Although this equation
usually must be solved numerically, it will be useful to develop symbolic relationship valid for either low or high
temperature limits. In both cases we must be careful to select the proper root and not to use the expansion too far
outside its range of validity.

zSmallEq = eql[z, t] /. zSmallRule

4 S A
3/ T3/2 2+/2  34/3
zhigh = z /. Solve[zSmallEq, z][1];

zLargeEq = (eql[z, t] /. zLargeRule // Simplify)

640  77*+80n? Log[z]®+640 Log[z]*
LOg[Z]S/Z

480

T3/2

zlow = Exp[Log[z] /. Solve[zLargeEq, Log[z]][2]1]1;

m Interpolation function for chemical potential

In this section we construct an interpolation function from numerical solutions to the equation related chemical poten-
tial and temperature. Then we compare with the limiting formulas derived in the preceding section.

zSolution[t_] :=2z /. FindRoot [Evaluate[eql[z, t]], {2z, 0.6, 0.4}]
points = Prepend[Table[{t, t Log[zSolution[z]]}, {t, 0.2, 5, 0.2}], {O0., 1.}];

Clear[chemicalPotential];
chem = Interpolation[points];
chemicalPotential[t_] := chem[zt]
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DisplayTogether|[
Plot [chemicalPotential[t], {tz, 0, 3}, PlotStyle » RGBColor[1l, 0, 0]],
Plot[t Log[zlow], {t, 0, 0.45}, PlotStyle -» GrayLevel[0]],
Plot[t Log[zhigh], {t, 1, 3}],
ListPlot[points, PlotStyle -» AbsolutePointSize[4.0]],
PlotLabel » "Chemical Potential", GridLines -» Automatic, Frame - True,
FrameLabel » {"T/Tz", "u/ (kgTr) "}, PlotRange » {{0, 3}, {-6, 1}}]1;

Chemical Potential

] ‘\

S I

u/(kgTr)
&

0.5 1 1.5 2 2.5 3
T/Tr

The Fermi energy is defined to be the chemical potential when 7' = 0 for a specified density, such that

T =0=pu=¢p;similarly, T = Tr = u = 0. Thus, the chemical potential for a Fermi gas is positive for 7 < Tr and
is negative for T > Tr. A Fermi gas is described as completely degenerate for T < Tr. For very large temperatures,
T > Tr = u < —kp T, the chemical potential becomes large and negative such that the nondegenerate Fermi gas
approaches classsical behavior. For intermediate temperatures, T ~ Tr = u ~ 0, the partially degenerate Fermi gas
can be expected to display thermodynamic properties intermediate between the degenerate and classical situations.

Next we compare the interpolation formula for fugacity with the limiting behaviors derived in the preceding section.

]

chemicalPotential[zt]

fugacity[t_/; T > 0] :=Exp|
T
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DisplayTogether|[
Plot[fugacity[t], {t, 0.1, 5}, PlotStyle » RGBColor[1l, O, 0]],
Plot[zlow, {t, 0.01, 0.45}, PlotStyle -» GrayLevel[0]],
Plot[zhigh, {t, 0.5, 3}], PlotLabel -» "Fugacity",
PlotRange » {Automatic, {0, 10}}, GridLines - Automatic,
Frame -» True, Framelabel -» {"t", "z"}];

Fugacity
10 - \\
8 \\
6
. \
4
2
\\
0 0.5 1 1.5 2
T

The small 7 formula appears to be accurate enough for 7 < 0.4 while the large 7 formula is good for T = 1. However,
the divergence of the fugacity as 7 — 0 requires special handling of the low-temperature limits for many thermody-
namic functions. We will employ the large z expansion to provide well-behaved limiting formulas as needed. We also
find that small inaccuracies in the interpolation formula can sometimes produce small imaginary parts in some of the
thermodynamic functions. These spurious contributions are negligible for 7 > 1 and easily suppressed using the Chop
function, but the expansions are needed to obtain accurate results for smaller 7.

m Mean occupation numbers for several temperatures

Clear[temp];

temp[z_] :=hgpp //. {ke»1, T> t, u-> chemicalPotential[z]};

nFDplot[z_] :=Plot[temp[T], {g, 0, 2},
PlotLabel -» "Mean Occupation Number", GridLines - None, Frame - True,
FrameLabel » {"e/eg", "n"}, DisplayFunction -» Identity];
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Show|[ {nFDplot[0.01], nFDplot[0.5], nFDplot[1l], nFDplot[1.5]},
DisplayFunction -» $DisplayFunction];

Mean Occupation Number

0.8 ;

0.6 ;

04

0.2 ;

0 0.5 1 1.5 2
cler
Plot [chemicalPotential[z], {t, 0, 3},

PlotLabel » "Chemical Potential", GridLines -» Automatic, Frame -» True,
FrameLabel » {"T/T¢", "u/ (kgTr)"}, PlotRange » {{0, 3}, {-6, 1}}]1;

Chemical Potential

u1/(kgTF)

T/T
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Plot3D[temp[z], {g, O, 2}, {T, 0.001, 1},
PlotRange » {{0, 2}, {0, 1}, {0, 1}}, PlotPoints -» 30,
PlotLabel -» "Occupation Number", AxesLabel -» {"e/ (kgTs)", "T/T¢", "n"}];

Occupation Number

£/(kgTF)

m Rules for derivatives with respect to temperature and volume

The following rules are provided to facilitate development of thermodynamic relationships.

3z fermi[%, z]
dzdT = - ;

4
2T fermi[ 5, z]
A
dLambdaDT = Dt [A, T, Constants > {N, V}] » - E;

3
eq2 = ng == fermi[;, z]

N A3 3
gV == —PolyLog[?, —z]
dzRules =

{ Solve[Dt [eq2, V, Constants » {N, T, A}], Dt[z, V, Constants > {N, T, A}]11],
Solve[Dt[eq2, T, Constants -» {N, V}],
Dt[z, T, Constants » {N, V}]]} /. dLambdaDT // Flatten

z N A3
{Dt[z, V, Constants > {T, N, A}] > . ,
gV2PolyLog[ 4, -z]
3
Dt[z, T, Constants - {V, N}] > 3ZNA }

2 gTVPolyLog[%, -z]
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DtRules = Join[{dLambdaDT}, dzRules]

{Dt[x, T, Constants - {V, N}] > -

2T/
zZ N A3

Dt[z, V, Constants - {T, N, A -
[ r 14 { 14 14 }] ngPOlyLOg[%, —Z:|

4

)k3
Dt[z, T, Constants - {V, N}] = 3z N : }

2 gTVPolyLog[%, -z

Thermodynamic Functions

The thermodynamic functions for an ideal Fermi system are obtained by integrating single-orbital functions against the
density of energy states. It is useful to express these integrals in terms of fermi functions, but we will also require forms
suitable for numerical evaluation over a wide range of temperatures, including regions where the fugacity diverges.
Therefore, we use ordinary symbols, such as p for pressure, for symbolic expressions and include a tilde, such as p, to
represent functions of 7 in reduced form suitable for plotting.

m Grand potential

It is convenient to express the grand potential in terms of the so-called g-potential defined as
4
q=+7=6G=-kgTq.

B

q = ((j D[e] Log[l + zExp[-Be]] de /. partsRule2 // Simplify] //. TtoLambda //
0

PowerExpand) /. lambdaToZ

NPolyLog[%, -z]
PolyLog[%, -z

G=-kgTq
5

kg TNPolyLog[+, -z]
PolyLog[%, -z

m Mechanical equation of state

Degeneracy pressure

The mechanical equation of state is obtained directly from the grand potential, G = p V. It is useful to express the

mechanical equation of state in the form Npk:T = B[], where B is sometimes called the compressibility factor.

G

Pe-3

kg TN PolyLog[ 2, -z]
VPolyLog[%, -z]
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A%
B- 2
NkgT
PolyLog[%, -z
PolyLog[%, -z]

Note that in these expressions the dependence upon density is implicit in z. For low temperatures it is necessary to
employ asymptotic expansions of the Fermi-Dirac functions with respect to z.

Bhigh[z_] =B /. zToTau;
Blow[t_] =B /. zLargeRule /. zToTau // Simplify;
B[t_] =If[t>0.1, Chop[Bhigh[t]], Blow[t]];

compressibilityPlot = Plot[B[z], {t, 0.2, 5},
GridLines -» Automatic, Frame -» True, FrameLabel -» {"t", "pV/ (NkgT) "},
PlotLabel -» "Mechanical Equation of State"];

Mechanical Equation of State

|
2.2
|

1.8 \
1.6 \
1.4 \

]:2 \

pV/(NkgT)

T

The compressibility factor for an ideal Fermi gas approaches the classical limit from above at high temperatures. The
Pauli exclusion principle, which prevents two fermions from occupying exactly the same quantum state, produces a
type of quantum repulsion which tends to keep fermions apart. This effect increases the pressure for a given density
and temperature, particularly at large density or low temperature. The enhancement of the pressure over classical
expectations, called the degeneracy pressure, is rather small for T > T but increases rapidly as the temperature falls

below 0.5 Tk .

Dimensionless form
The dependence is displayed in a dimensionless form.

pReduced =p /. zToTau /. {g>1, N> 1, kg>1, t > TV33}

TPolyLog| % , —fugacity [T V?/3]]
VPolyLog[%, -fugacity [T V2/3]]
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Plot [Evaluate[Table[pReduced, {T, 0.5, 2, 0.5}]], {Vv, 0.1, 2},
GridLines -» Automatic, Frame -» True, FramelLabel -» {"V", "p"},
PlotLabel -» "Isotherms for ideal Fermi systems"];

Isotherms for ideal Fermi systems

25 i\
20 \\
10 \\\\
5
\
&%
0 L
0 0.5 1 1.5 2
\%
Compressibility and expansivity
Kp = |- ! /. dzRules) /. lambdaToZ // Simplify
VDt[p, V, Constants -» {N, T, A}]

VPolyLog[%, -z]
kg TNPolyLog[%, -z]

a=
xr Dt[p, T, Constants -» {N, V}] /. dzRules /. lambdaToZ // Simplify // Apart

3 5PolyLog[%, —z}PolyLog[%, -z
+
2T

2 TPolyLog[%, 72]2

Virial expansion

pV
NkgT

An expansion is developed for in terms of the quantum concentration, here designated x.
3 3
zToX = Solve [x = fermi[? , z] /. zSmallRule /. z° » 0, z] [1] // Simplify

{z%—\/?<fl+\/l—\/§x>}

virialExpansion =
(Series[#1, {x, 0, 2}] &) [B /. lambdaToZ /. zSmallRule /. zToX] // Simplify
b 4 1 2
1+ — 4+ | = - == x2+0[x}3
4+/2 { 8 94/3 )
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virialExpansion // N // Chop
1.+0.176777x-0.00330006x%+0[x]°>

m Thermal equation of state

Degeneracy energy

The thermal equation of state for a nonrelativistic three-dimensional gas is obtained directly from the scaling relation
U = % p V; other systems display similar scaling relations with different coefficients.

U 3 v
_2p

3kBTNPolyLog[%, -z ]
2PolyLog[%, -z]

Recognizing that U can be expressed in terms of B, we define a function suitable for numerical evaluation of the entire
range of 7 as follows.

~ 3 .
Ulz_] = ? tB[t];

3t
plot[U] =Plot[{T, G[c1}, {t, 0, 2}, PlotStyle >

{Dashing[{0.02, 0.02}], {}}, GridLines -» Automatic, Frame - True,
FrameLabel » {"T/Tg", "U/(NkgTr) "}, PlotLabel » "Internal Energy"] ;

Internal Energy

2.5 -

1.5 =

U/(NkgTF)
\

0 0.5 1 1.5 2
T/Tr

The internal energy for an ideal Fermi gas also approaches the classical limit from above. At low temperatures the
energy of a completely degenerate Fermi gas approaches a constant value, % N &f, whereas the energy of a classical
gas is proportional to temperature and goes to zero. If we imagine that the system is assembled by adding particles one
at a time, then at low temperatures each particle will generally be added to the lowest available energy level. However,
because the Pauli exclusion principle prohibits more than one fermion from occupying each (fully specified) orbital,
each particle must be added to the top of the energy distribution. Therefore, even at absolute zero there will be a
substantial degeneracy energy in a Fermi gas. Recall the expansion we developed for a degenerate Fermi gas.

Uexpansion

N e i+7T2'C2737T4'C4
15 4 80
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m Isochoric Heat Capacity

A symbolic expression for the isochoric heat capacity is obtained by differentiating the internal energy

Cy =Dt [U, T, Constants » {N, V}] /. DtRules /. lambdaToZ //
Collect[#1, {N, kg}] & // Simplify

9PolyLog[%, -z] lSPolyLog[%, -z]
kg N |- <
2

+
4 PolyLog|[+, —-2] 4PolyLog[%, -z]

and is expressed in a form suitable for numerical evaluation as follows.
Cvhigh[z_] = Cy /. zToTau;
CVlow[tz_] = Cy /. zLargeRule /. zToTau // Simplify;
Cy[t_] :=If[t>0.1, Chop[CVhigh[t]], CVlow[T]]

av [z]
N kg
GridLines -» Automatic, Frame -» True, Framelabel » {"T/T¢", "Cy/ (Nkg)"},

plot[Cy] = Plot| , {t, 0, 5}, PlotRange » {{0, 3}, {0, 1.5}},

PlotLabel -» "Isochoric Heat Capacity"] ;

Isochoric Heat Capacity

0.5 1 15 2 25 3
T/Tr

The isochoric heat capacity is linear for small temperatures: it vanishes at absolute zero because with no vacant low-en-
ergy single-particle states the completely degenerate Fermi gas cannot absorb increments of energy less than er. As
vacancies develop at higher temperature the heat capacity rises until it approaches classical equipartition at high
temperatures. Thus, it is instructive to develop the following limiting cases.

0. Uexpansion
T 3743
N er ( 2~ T 20 )

Normal[Series[Cy /. zSmallRule /. z -» zhigh, {t, «, 2}]] //
Collect[#, {N, kg}] &// N

3/2
K N [1.570.0997356 (?) )
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m Isobaric Heat Capacity

The isobaric heat capacity is defined as the derivative of enthalpy with respect to temperature for constant pressure.
The enthalpy, U + pV, for an ideal nonrelativistic gas is quite simple, reducing to S—ZV— , which allows the isobaric
heat capacity to be obtained easily. Alternatively, it can also be obtained using a more general approach which relates
the difference between C, and Cy to the isobaric expansivity and the isothermal compressibility of the system. The
latter approach is more appropriate here.
a2
Cpo =Cy +

// Simplify
Kt

5kBNPolyLog[%, -z] <73PolyLog[%, 72]2+5PolyLog[%, -z] PolyLog[%, —z})

3
4PolyLog[%, -z

Once again, we need a form suitable for numerical evaluation.

Cphigh[t_] = Cp /. zToTau;
Cplow[t_] = Cp /. zLargeRule /. zToTau // Simplify;
c":p[z_] :=If[t>0.1, Chop[Cphigh[t]], Cplow[t]]

Colr]

plot[Cp] = Plot| , {t, 0, 5},

B
PlotRange -» {{0, 5}, {0, 3}}, GridLines -» Automatic, Frame - True,

FrameLabel » {"T/Tg", "Cp/ (Nkg)"}, PlotLabel -» "Isobaric Heat Capacity"];

3 Isobaric Heat Capacity

2.5 o
E 2
215
v
o g /

0.5

1 2 3 4 5
T/Tr

The isobaric heat capacity behaves much like the isochoric in that it approaches zero linearly at low temperature or the
classical equipartition value asymptotically for high temperature.

Normal[Series[C, /. zSmallRule /. z » zhigh, {t, o, 2}]1] //
Collect[#, {N, kg}] &// N

1 3/2
kg N [2.570.498678 (?) )

Series|
Cp /. zLargeRule /. zToT /. {u » uExpansion, T -» €r t / kg} // PowerExpand //
Simplify, {t, 0, 4}] // Collect[#, {N, kg}] &

. ot l

N )
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Compare C, and Cy

For a classical ideal gas we would find Cy, = % Nkg,C, = % N kg, and %’V’— = % where p V7 is constant for adia-

bats and where y = % . For the Fermi gas we find a somewhat more complicated expression for y in terms of Fermi
functions, but simple expansions can be developed for the degenerate or the dilute limits.

Cp
¥ = — //Simplify
Cv

5PolyLog[%, -z] PolyLog[%, -z]
2

3PolyLog[%, -z]

Yhigh[t_] =¥ /. zToTau // Simplify;
Ylow[t_] =¥ /. zLargeRule /. zToTau // Simplify;
¥[t_] =If[t>0.1, Chop[yhigh[t]], ylow[t]];

plot[¥y] =Plot[¥[z], {t, 0, 5}, PlotRange » {{0, 5}, {0, 2}},
GridLines -» Automatic, Frame - True, FrameLabel » {"T/T¢", "C,/Cy"},
PlotLabel » "Ratio of Heat Capacities"];

5 Ratio of Heat Capacities

1.75
1.5
1.25

Cp/Cy
~

0.75
0.5
0.25

1 2 3 4 5
T/Tr

The ratio between the principal heat capacities approaches unity quadratically for low temperature, or the classical
equipartition value asymptotically for high temperature.

Normal[Series[y /. zSmallRule /. z -» zhigh, {t, », 2}]] // N

1 3/2
1.66667 -0.221635 (?)

Series|

¥ /. zLargeRule /. 2zToT /. {u -» uExpansion, T » €r t / kg} // PowerExpand //
Simplify, {t, 0, 4}]
% t? 23 7 ¢t

5
1+ 3 - 180 +0[t]
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m Entropy and free energy

Symbolic forms

U+pV-Nu
= — /. muToZ // Collect[#1, {N, kg, T}] &
5PolyLog[2, -z
kg N |-Log[z] + Y g[é )
2 PolyLog[+, -2]

F=U-TS//Collect[#1, {N, kg, T}] &

PolyLog] 2

2 72] )
PolyLog[%, -z]

kg TN {Log[z] -

Plot reduced forms

Shigh[t_] = /. zToTau;

B

Slow[t_] =

/. zLargeRule /. zToTau // Simplify;
B

S[t_] =If[t>0.1, Chop[Shigh[t]], Slow[t]];

Ft
Fhigh[t_] = —— /. zToTau;
NkgT
T
Flow[t_] = —— /. zLargeRule /. zToTau // Simplify;
NkgT

F[t_] =If[ct>0.1, Chop[Fhigh[t]], Flow[t]];

plot[S] = Plot[S[t], {t, O, 5},
PlotLabel -» "Reduced Entropy", GridLines -» Automatic, Frame - True,
FrameLabel » {"T/Tg", "S/(Nkg)"}, DisplayFunction -» Identity];

plot[F] = Plot[F[z], {t, O, 5},
PlotLabel -» "Reduced Free Energy", GridLines - Automatic, Frame - True,
FrameLabel -» {"T/Tg", "F/ (NkgTf) "}, DisplayFunction -» Identity];
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Show [ GraphicsArray[{{plot[U], plot[S]}, {plot[Cy], plot[F]}},
GraphicsSpacing » {-0.1, 0.05}], DisplayFunction » $DisplayFunction] ;

Internal Energy Reduced Entropy
3 /// 5 /
E 2.; s 4
Q - o) 3
=15 s <
S, = > 2
0.5 == 1 /
0" 0
0 0.5 1 1.5 2 0 1 2 3 4 5
T|Tr T|Tr
Isochoric Heat Capacity Reduced Free Energy
1.4 0
1.2 =25
| =5
= 08/ 3 <75
<06 £ ~10
O 04 | o —12.5
02| P
: -17.5
05 1 15 2 25 3 0 1 2 3 4 5
T/Tr T/Tp

Degenerate Fermi gas

m Expansions for low temperatures

Here we develop small T expansions for the principal thermodynamic functions for a nearly degenerate Fermi gas. We
start by expressing temperature and chemical potential in reduced form (scaled to the Fermi energy) and put the dimen-

sions back later.
temp = eql[z, t] /. zLargeRule //. {z - Exp [ i] } // PowerExpand // Simplify
T

640 u°/? - 640 p* - 80 ;2 w2 t? -7 74t
480 \/;/15/2 3/2

::O

eg3 = Simplify[Normal[ (Thread[Series[#1, {u, 1, 2}], Equal] &) [temp]]]

S S (5760 - 1200 7 T2 - 441 nt* ¢ -
3840 /7 ©3/2

S (384 +48m% T2 +49 % t?) + 10 (-384+80m% 2 +63 % th)) == 0
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musol = Solve[eq3, u] // Simplify
{{u- (400 7% c*+ 3157 ¢* -
2 (960 ++/5 /737280 - 122880 712 T2 - 38656 714 T4 - 7392 16 T6 - 4418 8 )) /
(5 (384 +48 7 t?+ 497" t*))}, {u— (-1920+400x% 2 + 315 7" ¥ +
2+/5 V737280 - 122880 712 T? - 38656 714 T - 7392 7® £6 - 441 78 ¢8 ) /
(5 (384 + 48 70* t° + 49 71* t*)) } }

muSmallTauRule = u » (Normal[ (Series[#1, {t, O, 4}] &) [ er /. musol[[2]]] //
Collect[#, {er, T}] &)

e T

12

ot
1 - -
B Er ( 80 )
uDegenerate = U /. zLargeRule /. zToT /. {kg> 1, T> Tt er} /. muSmallTauRule //
PowerExpand // Series[#1, {t, 0, 4}] & // Collect[#1, {N, €r, T}] &

N e (i+ﬁ2t2 737T4'C4>
Fls 4 80

k.
cvDegenerate = = O.uDegenerate // Collect[#1, {N, kg, T}] &
Er

72

T 354 3
k -
BN( 2 20 )

2 uDegenerate
pDegenerate = 3v // Collect[#1, {N, V, €, T}] &
Wee £+ 2 - A
\4

The easiest way to evaluate the Helmholtz free energy is to remember that the Gibbs free enthalpy for a single-compo-

nent system is proportional to the chemical potential and then to use the thermodynamic relationship between free
energy and free enthalpy.

fDegenerate =
N u - pDegenerate V /. {muSmallTauRule} // Collect[#1, {N, e€r, T}] &
3 mtr? gttt
N e (? T 71 T80 )
uDegenerate - fDegenerate
sDegenerate = kg // Collect[#1, {N, kg, T}] &
T Er
mr atel
ks N ( 2 20 )

a /. zLargeRule /. zToT /. {kg>1, T> ter } /. muSmallTauRule // PowerExpand //
Series[#1, {t, 0, 4}] & // Collect[#1, {N, €r, T}] &

a

Ky /. zLargeRule /. zToT /. {kg>1, T> t er} /. muSmallTauRule // PowerExpand //
Series[#1, {t, 0, 4}] & // Collect[#1, {N, V, €, T}] &

3 2 2 11774 ¢4
V(?’ 3 240 )
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m Examples

Conduction electrons in copper

In metals conduction electrons are free to move throughout the material. It is then useful to approximate the behavior
of conduction electrons by a Fermi gas. However, since the conduction electrons are not really free, the effect of the
mean field can be represented by a modification of the effective mass associated with the electron. The value below is
based upon a fit to specific heat data for low temperatures. It is also of interest to recognize that the enormous pressure
associated with the degenerate electron gas must be balanced by the attractive mean field provided by the lattice ions.

copperValues =
Join[{g -2, N - Vdensity, density - 8.5010%°, effectiveMass -» 1.39,
effectiveMass ElectronMass

Tp » 345, m > }, FundamentalConstants] ;
Kilogram

ep[copper] = e /. eFrule //. copperValues

8.12541x107%°

er [copper] Convert[Joule, ElectronVolt]

5.07148 ElectronVolt

er [copper]
ks
58852.

/ . copperValues

pDegenerate Convert[Pascal, Atmosphere] /.
{€r » ep[copper], t » 0} //. copperValues

272651 . Atmosphere

At room temperature, conduction electrons in a metal already constitute a highly degenerate Fermi gas; hence, the
electronic contribution to the heat capacity is linear wrt temperature. On the other hand, the lattice contribution, as
given by the Debye model, is cubic wrt temperature. Therefore, at temperatures well below the Debye temperature we
can combine these two terms as follows.

cvCopperElectrons =

cvDegenerate kg T

Expand[ /7. {EF - ep[copper], T -

NkB Ep
0.000083851 T-7.16814x107** 13

} /7. copperValues]

12 T \?3
cvCopperLattice = ? nt (—) /. copperValues // N

5.69316x10°° T3

cvCopper = (Collect[#1, {Joule, Kelvin}] &) |

1
Expand [ E ( (cvCopperElectrons + cvCopperLattice)

AvogadroConstant BoltzmannConstant Mole Kelvin) ] ]

0.000697177 T+ 0.0000473356 T>
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Clearly, the electronic contribution is revealed by the coefficient of the linear term, whereas the lattice contribution
dominates the cubic term. These effects are easily separated by plotting Cy /T versus T>. The intercept then repre-
sents the electronic and the slope the lattice contribution.

cvCopper

cvTemp[x_] := Simplify[ ] /. T? 5 x;

Plot[1000 cvTemp[x], {x, O, 10},
PlotRange » {{0, 10}, {0, 1.2}}, GridLines - Automatic, Frame - True,
Framelabel - {"T? (kelvinz) ", "Cy/T (mJ/mole/kelvinz) "},
PlotLabel - "specific heat for copper"];

specific heat for copper
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72 (kelvinz )

Nuclear matter

The atomic nucleus consists of protons and neutrons, which are both spin — % particles of almost equal mass. Itis
useful to consider protons and neutrons to be states of the same particle, the nucleon, differing only in an internal
quantum number called isospin. Nuclear matter is a theoretical system consisting of equal numbers of protons and
neutrons with the Coulomb interaction turned off. Thus, the intrinsic degeneracy factor for momentum states in nuclear
matter is g = 4. The density of nuclear matter is based upon the central density of large nuclei, which is approximately
constant.

Convert [AtomicMassUnit, Kilogram]

nmValues = Join [ {g >4, m-> , density -»
Kilogram
1
0.16SI [ ] Meter3, N>V density} , FundamentalConstants] ;
(Femto Meter) 3

. 1

density Convert[ , ] // . nmValues
Meter?® (Femto Meter) 3

0.16
Femto® Meter?
er[nm] = €p /. eFrule //. nmValues

5.95041x107%2
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er [nm] Convert [Joule, ElectronVolt]

3.71395x 10’ ElectronvVolt

€p [nm]
ks

4.30986x 10"

//. nmValues // PowerExpand

pDegenerate Convert [Pascal, Atmosphere] /. eFrule /. {t » 0} //. nmValues

3.75846x10°7 Atmosphere

Mega ElectronVolt

Convert [ , Atmosphere]

(Femto Meter) 3

1.58123x10%7 Atmosphere

The density of nuclear matter is about (% ) per cubic femtometer. The Fermi energy of about 37 MeV corresponds to a
temperature of about 4 x 10'! kelvin. Clearly, atomic nuclei at room temperature are completely degenerate. The
enormous pressure within the degenerate Fermi gas must be balanced by the strong nuclear forces that bind the nucleus
together. The name "strong interaction” is obviously quite appropriate!

Problems

V¥ n-type semiconductor

An n-type semiconductor contains Np donor atoms per unit volume, which are impurities that supply electron
energy levels that are below the conduction band by an amount E;,. Let np be the average number of electrons
per unit volume that occupy the donor levels, let n. be the average electron density, and let mc¢ be the effective

mass for conduction electrons. Assume that n, is small.

a) Assuming that at most one electron may occupy any donor level, with two possible spin states, show that

ne (Np —np)

. ~ A[T] Exp[— Ep ]

kg T
and deduce A[T].

b) Now suppose that each donor level can accommodate two conduction electrons and find the corresponding

relationship for n,..

[Hint: the equilibrium concentration can be obtained either by using combinatorics to evaluate the entropy and
free energy or by constructing the grand potential for N independent energy levels. You should verify that the
same results are obtained using either method.]
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v Paramagnetic susceptibility

Consider an ideal gas of spin % fermions (electrons) with intrinsic magnetic moment y in the presence of an
external magnetic field B. The system can be treated as two Fermi gases with energy-momentum relationships of
the form

h? k?
€= F uoB
2m

where the upper (lower) sign applies to spin parallel (antiparallel) to the magnetic field. Let the total number of
parallel spins be Ny and the total number of antiparallel spins be Ny, such Ny + N, = N. The net magnetic
moment for the entire system is then M = uy (Ny — N,) . Both magnetic subsystems follow the Fermi
distribution for the appropriate energy-momentum relationship, but must share a common chemical potential u
because the two subsystems are in equilibrium with each other.

a) Obtain a simple expression for magnetic susceptibility of a completely degenerate ideal Fermi gas.

b) More generally, show that the paramagnetic susceptibility for a highly degenerate ideal electron gas can be
approximated by

Y~ o’ f D'[e]lale]de
0

when g B < gp. Discuss the physical significance of this expression and evaluate it in terms of Fermi
functions.

¢) Derive expansions that are useful for the special cases of i) highly degenerate or ii) dilute systems.

d) For several representative systems (conduction electrons, plasmas, etc.) evaluate the range of magnetic fields
for which these results are useful. How would you approach the strong-field case?

v Paramagnetic susceptibility for higher spins

Generalize the analysis of the preceding problem to the paramagnetic behavior of ideal Fermi gases of arbitrary
spin. You might also consider starting from first principles; in other words, begin by constructing the grand
partition function for spin-j particles in an external magnetic field.

v Thermionic emission

Conduction electrons within a metal are confined by their interaction with the ionic lattice. Assume that the
interaction with the lattice can be represented by a potential that vanishes outside the sample and has the constant
value —W everywhere inside the sample. The work function = W — g is then the amount of energy relative
to the Fermi level that is needed for an electron to escape. Due to the distribution of energies for finite
temperature, there will be a steady temperature-dependent rate of thermionic emission from the surface of the
metal (which must be balanced under steady-state conditions by a corresponding counter current). Alternatively,
illumination by light produces photoelectric emission.

a) Assuming that any electron which encounters the surface with sufficiently large perpendicular velocity will
escape, show that the thermionic emission rate R is given by

R = %7: meLog[l + Exp[ 'uk;;Z ”dsz
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where { = 1 for Fermi-Dirac statistics or { = 0 for classical statistics. Compare the thermionic emission rates for
a highly degenerate electron gas with the classical prediction and interpret your result physically.

b) Now suppose that an electron near the surface absorbs a photon of energy 7 w. Show that the photoelectric
emission rate is obtained by changing the lower limit of integration to W — 7 w. However, if # w approaches ¢
one must treat the integral more carefully. Evaluate the photoelectric emission rates for ¢ z fiw.

v Sound velocity

Recall that the velocity of sound in a fluid is

where here p is the mass density of the fluid. Show that

o SkeT fermil 3, 2] _ 5
3m fermi[3,z] 9

where u? is the mean square speed of the particles in the gas. Evaluate v in the small and large z limits.



