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Abstract: In the last few decades, a tremendous growth in the field of nanotechnology has been 
witnessed and its applications to various disciplines are being continuously explored. In this review 
article, we focus on a very important and emerging area of nano-bio sensors and biochips, which have 
prospects of numerous applications to nanomedicine. We will discuss various topics of biosensors and 
transducers based on quantum dots (QD), porous silicon (PS), and Si-nanoparticles. A short discussion 
on biochips, along with their classification and applications to microarrays and drug delivery systems, 
is also presented. Some powerful optical techniques like Fluorescence Resonance Energy Transfer 
(FRET), and Surface Enhanced Raman Spectroscopy (SERS) that are often deployed in conjunction 
with biosensors and biochips, as an interface mechanism, are also reviewed. Copyright © 2010 IFSA. 
 
Keywords: Biochips, Biosensors, Porous silicon, Quantum dots, Nanoparticles, Nanomedicine 
 
 
 
1. Introduction 
 
Recent advances in nanoscience and technology have fueled a complete shift of paradigm in the 
physical, chemical, material, biological, healthcare, medical, and agricultural sciences, and also in 
mechanical, electrical, and computer engineering, as a result of attaining control of matter at the 
molecular or atomic level, i.e., at the single nanometer scale [1-56]. At the nanometer scale, matter is 
observed to exhibit numerous unique properties and phenomena, fundamentally different from their 
macroscopic counterparts. These properties can be harnessed to create new materials for novel 
applications such as biosensors or drug delivery systems, or to design new types of circuits and 
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computers [26] using quantum dots or single-electron transistors, which are 10,000 times smaller than 
the current ones. Colloidal gold, iron oxide crystal, and semiconductor quantum dots having sizes  
1-20 nm, have showed unique diagnostic applications in biology, medicine, and agri-biotechnology 
[7]. 
 
The domain of nanotechnology encompasses a very important area called “nanomedicine”, which is 
concerned with the development of minimally invasive and targeted delivery of diagnostic, 
pharmaceutical and therapeutic agents to various body organs, tissues, and cells in a controlled manner 
[7]. Research in nanomedicine includes three important aspects: (i) nanosensors, (ii) nanofluidics and 
(iii) lab-on-a-chip. Nanosensors consist of nanostructured particles, or nanoparticles, or nanodevices 
that respond to physical, chemical, or biological stimuli. Nanofluidics is concerned with navigation, 
mixing, and controlled delivery of nanoliter volume of fluids through microchannels on a chip [9]. 
Lab-on-a-chip integrates sensors, fluidics, optics and electronics on a silicon chip to be used as a 
biochip for drug delivery systems or for biochemical diagnostics or DNA detection [9, 42-45, 86-88, 
119, 120]. 
 
During the early eighties, powerful microscopes were invented, which could scan the surface of the 
specimen using physical probes to produce images of the surface at the nanometer region. Several 
simultaneous interactions can also be imaged with these microscopes. Some microscopes used electron 
beams for studying surface topography, compositions and also other properties of a sample. These 
powerful microscopes like Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), 
Tunneling Electron Microscope (TEM), etc., helped not only to understand and study materials at the 
nanoscale region, but also to pick them up and move them around to form basic nanostructures, 
allowing some materials to be built molecule by molecule. 
 
For the past several years, various materials have been developed whose dimension lies in the 
nanoscale region, such as, inorganic nanocrystals or quantum dots (QD), nanoparticles, 
nanocomposites, different nanostructured materials and many other for sensor applications. In the nano 
region, materials nomenclatures, i.e. wire, dots, quantum well etc., are defined according to the size of 
the crystals and the way the atoms are arranged in it. Nanostructured materials show interesting 
optical, electronic and catalytic properties. 
 
Among the nanostructured materials, porous silicon (PS) shows very amazing features like 
biocompatibility, biodegradable, electroluminescence (EL), and photoluminescence (PL) at room 
temperature. It also shows non-toxic behavior when applied to human body. These unique properties 
of PS make it particularly suitable for biosensor application and also as a drug delivery material for in 
vivo applications. Sailor and his group reported a review on PS where it has been used as a drug 
delivery material [84]. Nanostructured porous silicon (PS) is also used to create optical biosensors, 
DNA detection sensors and photodetectors. A review on the scope of PS in nanotechnology has been 
reported by C.A. Betty [81]. As PS is fabricated from Si wafers, its production cost is considerably 
lower and can be easily integrated with electronic equipments to produce a link between CMOS 
technology and photonic devices to create smart sensors and biochips. 
 
From the inorganic nanocrystal category, the luminescent semiconductor nanocrystals or quantum dots 
(QDs) appears to be very promising material in the biosensor industry. QDs generated a huge interest 
in the biosensing industry due to their excellent fluorescent properties which may help in eliminating 
the problems faced during the use of conventional organic or protein based fluorophores. 
 
Luminescent porous silicon nanoparticles were also synthesized and studied as a replacement of 
fluorescent dyes and for in vivo applications as a drug delivery system. 
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In this review, we will discuss how QDs, PS, and Si-nanoparticles, can be used as biosensors and 
transducers or as drug delivery materials in biomedical studies. 
 
 

2. Nanobiosensors 
 
A biosensor is a device that detects, transmits and records the information regarding an analyte that 
combines a biological component with a physiochemical detection system. A nanosensor is a biosensor 
which acts on the nano-scale region. There are different types of nanobiosensors – optical biosensors, 
electrical biosensors, electrochemical biosensors, nanowire biosensors, nanotube based biosensors, 
viral nano biosensors and nanoshell biosensors. 
 
Fig. 1 [118] shows a basic biosensor assembly, which includes a bioreceptor, i.e., a biological 
recognition element, a transducer and a processor. The biological recognition elements used are living 
biological systems like, cells, tissues, or whole organism and biological molecular species such us 
antibody, enzyme, protein etc. The transducer essentially acts like a translator which recognizes the 
biological or chemical event from the biological component and transforms it into another signal for 
interpretation by the processor, which then converts it into a measurable output. 
 
 

 
 

Fig. 1. Components of a biosensor [Source: Ref. 118]. 
 
 

The transducers may have different forms depending on the type of parameters being measured. These 
are (a) Amperometric transducers [76]; (b) Potentiometric transducers [77]; (c) Piezoelectric 
transducers [78]; (d) Thermal transducers [79]; (e) Optical transducers [80]. Transducers act as an 
interface, which measures the physical changes occurred at the bioreceptor [102], and transforms that 
energy into a readable output. 
 
Nanobiosensors have wide applications in the field of biology and environment. Among the biological 
applications, there are (a) DNA sensors: genetic monitoring of diseases, (b) Immunosensors: HIV, 
hepatitis, other viral disease, drug testing, environmental monitoring, (c) Cell-based sensors: functional 
sensors, drug testing, (d) Point-of-care sensors: blood, urine, electrolytes, gases, steroids, drugs, 
hormones, proteins and others, (e) Bacteria (E-coli, streptococcus, other) sensors: food industry, 
medicine, environmental and others, (f) Enzyme sensors: diabetics, drug testing, and others are 
important. The environmental applications are (a) Detection of environmental pollution and toxicity, 
(b) Agricultural monitoring, (c) Ground water screening, (d) Ocean monitoring. 
 
Nanosensors can be used to measure biotargets in a living cell without affecting its viability in a major 
way [44]. The effect of nanotechnology is enormous on the sensor industry because most chemical, 
biological and even physical sensors depend on the interactions occurring at the nanoscale level. The 
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improvements required in sensor designing is low cost, small size, lower weight, greater sensitivity 
and better specificity all of which may be achieved through nanotechnology. 
 
 

3. Types of Biosensors 
 
3.1. Quantum Dots Biosensors 
 
Quantum dots (QD) appears to be the most promising functional and reproducible nanostructures 
available in the nanotechnology research circle. Quantum dots are very small and the smallest objects 
that can be synthesized on the nanoscale. Its structure is like a small dot which suggests its 
name. Different kinds of quantum dots can be synthesized in the laboratory through different 
techniques and the shapes normally appear to be pyramids, cylinders, lens shapes, and spheres. It 
confines electrons in three dimensions. The total diameter of a quantum dot varies between 3-60 nm 
depending on its application. QD exhibits quantum confinement properties in all three dimensions, i.e., 
the electrons are not allowed to move freely around in any direction. As its behavior is similar to 
atoms, it is also called an ‘artificial atom’. This has a lot of important consequences for researchers. 
First of all, they exhibit quantized energy levels like an atom. For a particular incident radiation, for 
instance, a quantum dot will only emit certain specific spectra of light. The quantum theory also 
predicts that with the decreasing diameters of quantum dots, there will be a corresponding increase in 
energy of emitted light. From the solution of Schrödinger equation for an electron confined in an  
1-dimentional box of length L, the energy difference between two successive levels En and En+1 can be 
given as, E = (2n+1) {h2/8mL2}. This equation shows that if the length of the box decreases the 
energy difference between the levels increases and for L   (E will be 0, i.e., the electrons are 
delocalized and there is no quantization). This particular emission property of QDs has huge 
applications in diagnostics. Quantum dots are already in use as markers that are inserted into patients’ 
body. These markers can be seen under medical scanners helping detection of biological processes as 
they occur. 
 
Quantum dots can be fabricated with either top-down or bottom-up techniques. Top down techniques 
are very effective for generating a uniform distribution of diameters. This is important if it is desirable 
to create a large array of dots that will emit the same wavelength of light. The top down approaches 
like lithography are diffraction limited and cannot create dense networks of quantum dots. This 
approach inherently implies material damage and many quantum dots produced with these techniques 
have defects that reduce their effectiveness. 
 
The commonly used methods for producing quantum dots are bottom-up approaches. This can be done 
either with chemical vapor deposition or molecular beam epitaxy on a highly mismatched substrate. 
By layering a desired material that does not fit properly with the lattice of the substrate, high strain 
occurs at the interface and that layer will start nucleating into small quantum dots. Bottom-up 
approaches are acceptable ways to create quantum dots in dense arrays that will self-assemble in an 
orderly manner. However, the uniformity of their size distribution is not as precise as that produced 
through top-down approach mainly because it's impossible to control their formation as strictly. 
 
From early eighties, quantum dots are being deployed in nano-scale computing applications, where 
light is used to process information. However, this technology is now being used in medicine. The QD 
crystals are one ten-millionth of an inch in size and can be dissolved in water, which when illuminated, 
act as molecule-sized LEDs, and can be used as probes to track antibodies, viruses, proteins, or DNA 
within the human body. Biomolecules labeled with luminescent colloidal semiconductor quantum dots 
(QDs) have various applications to fluoro-immunoassays and biological imaging. Because of their 
small size, quantum dots can be used to visualize, measure, and track individual molecular events 
using fluorescence techniques, as they have the ability to visualize and track dynamic molecular 
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processes over long time scales, which is a unique property. A review on QD biosensors was reported 
earlier by Sapsford et al. [93]. 
 
It has been found that single QD incorporated nanosensors for DNA detection can reduce significantly 
or even eliminate the complication of background fluorescence encountered by conventional molecular 
fluorescence resonance energy transfer (FRET) technique [35]. Zhang, et al. [35] reported the 
extraordinary performance characteristics of a QD-FRET nanosensor for DNA detection with ultrahigh 
sensitivity, discrimination capacity and great simplicity. Fig. 2 shows how FRET induced QD DNA 
nanosensor works. Tran, et al. [38] described in their paper how CdSe-ZnS QDs can be designed and 
used as nanosensors for detection both in water soluble and in solid phase conditions using Förster 
energy transfer method. 
 
 

 
 

Fig. 2. Schematic of single QD-based DNA nanosensors: a) Conceptual scheme showing the formation of a 
nanosensor assembly in the presence of targets; b) Fluorescence emission from Cy5 on illumination on QD 
caused by FRET between Cy5 acceptors and QD donor in a nanosensor assembly; c) Experimental setup 

[Source: Ref. 35]. 
 
 
Quantum dot technology presents a promising tool in neuroscience research [104]. Several researchers 
are trying hard to produce new quantum-dot-based tools for applications to neurobiology. Triller, et al. 
[98] used antibody functionalized quantum dots to study diffusion of glycine receptors in cultures of 
primary spinal cord neurons. Vu et al. [99] tagged nerve growth factor to quantum dots and used them 
to promote neuronal-like differentiation in cultured pheochromocytoma 12 (PC12) cells. This method 
could be used to visualize and track functional responses in neurons. A technique of producing 
biocompatible water-soluble quantum dot micelles that retain the optical properties of individual 

quantum dots, was developed by Brinker, et al. [100]. Ting, et al. [101] developed a modified quantum 
dot labeling approach that presented the relatively large size of antibody–quantum-dot conjugates and 
the instability of some quantum-dot–ligand interactions. The problems with semiconductor QDs are its 
toxic effects, which prevent it from being used in-vivo applications. 



Sensors & Transducers Journal, Vol. 113, Issue 2, February 2010, pp. 1-17 

 6

 
3.2. Porous Silicon Biosensors 
 
Porous silicon (PS) and Si-nanocrystal have amazing properties that are particularly suitable for 
applications [57, 59] in the biosensor industry. Both PS and Si-nanocrystals have potential applications 
to optical biosensors, DNA detection sensors, or photodetectors [32, 46-51]. Sensors based on PS offer 
enhanced sensitivity, reduced power demands and low cost. A review article explaining various 
applications of PS as a transducer material has been reported recently by Andrew Jane, et al. [95]. The 
interesting features about PS are its high surface area and reactive surface chemistry. Si-nanocrystals 
can also be obtained from PS [54-55] in aqueous form. 
 
Porous Silicon is an electrochemically derived nanostructured material consisting of nanometer-sized 
silicon regions surrounded by empty space, and can be prepared as quantum wires or quantum dots. 
The quantum confinement of Si atoms in PS leads to interesting optical, chemical, and electronic 
properties. The visible room temperature photoluminescence (PL) and the electroluminescence 
properties of PS, along with the simplicity of its fabrication process, make it extremely convenient and 
useful material for several opto-electronic and sensor applications. The wavelength of the 
photoluminescent light can be changed by simply increasing or decreasing the porosity of the material. 
For example, a highly porous sample (70-80% porosity) will emit green/blue light while a less porous 
sample (40%) will emit red light. The most acceptable theory about this photoluminescence (PL) 
property is the quantum confinement effect where by confining the matter in the nanoscale dimension, 
the interaction between matter and light can be limited in nano dimension (as described in Section 3.1). 
 
PS can be divided into three main categories based on their pore size: 1) for microporous porous 
silicon the pore width is less than 2 nm, 2) for mesoporous the pore width is in between 2nm to 50 nm, 
3) for macroporous the pore width is greater than 50 nm. With appropriate modification of the 
electrochemical process, PS can also be fabricated to behave as 1-D photonic crystals [58]. The 
intensity and wavelength of the reflected light is determined by the nanostructure, and these optical 
properties can be deployed in sensing of chemical and biological agents like viruses and bacteria [34]. 
Because of their non-invasive and non-radioactive nature, they promise versatile applications to 
medical diagnostics, pathogen detection, gene identification, and DNA sequencing [12-13, 39]. 
 
The standard procedure for fabrication of nanostructured porous silicon is the electrochemical etching 
method in hydrofluoric (HF) acid solution. The etching resulted in a system of disordered pores with 
nanocrystals remaining in the inter-pore region. The pores propagate primarily in the 100 direction 
of the crystal. Almost all properties of PS, such as porosity, porous layer thickness, pore size and 
shape, as well as microstructure, strongly depend on the fabrication conditions. In the case of 
anodization, these conditions include HF concentration, chemical composition of electrolyte, current 
density (and potential), wafer type and resistivity, crystallographic orientation, temperature, time, 
electrolyte stirring, illumination intensity, and wavelength, etc. Thus, a complete control of the 
fabrication is complicated and all possible parameters should be taken into account. Some of these 
parameters also depend on each other. 
 
The average diameter of the pores can be tuned from a few nanometers to several micrometers. Tuning 
the pore diameters and chemically modifying the surface allow developers to control the size and type 
of molecules adsorbed [60, 111]. The large surface area enables bio-organic molecules to adhere to the 
surface of the PS [81, 85]. Aqueous HF is suitable for the etching process because the silicon surface is 
hydrophobic. The porous layer can be made more structurally uniform if an ethanoic solution is used – 
this increases the wettability of the silicon and allows more surface penetration by the acid. Fig. 3 
shows scanning electron microscope (SEM) images of varying n-type doped PS with different etching 
current densities [106, 107]. 
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Although the electrochemical anodization is commonly used in the fabrication of PS, several other 
fabrication methods have been introduced. Stain etching method is one of them. The stain films are 
produced by immersion of Si substrate in HF solutions without any electrical bias [89-91]. This 
method is even simpler than the previously presented anodization. However, the control of the 
porosity, layer thickness and pore size of PS is quite limited. In addition, in the stain etching of Si 
microparticles, it is quite difficult to control the porosification of particles. Incomplete porosification 
of Si particles might cause problems in drug delivery applications. Porous silicon fabricated by stain 
etching method shows low photoluminescence efficiency than the electrochemically etched one. 
 
Nanoporous silicon consists of a complicated network of silicon threads of 2-5 nm thickness with an 
internal surface area-to-volume ratio of around 500 m2/m3. Thus PS can absorb large amounts of 
foreign molecules onto its surface eventually changing the effective refractive index of the 
semiconductor porous material. Due to the quantum confinement effect strong luminescence at room 
temperature is observed from the tiny pores. This photoluminescence (PL) intensity changes when PS 
is exposed to various chemicals and biological samples and the final photoluminescence efficiency 
depends on the dipole moment of the molecules attached to the pores. Similarly the effective dielectric 
constant and the conductivity of PS layer changes when the pores are filled with some other molecule. 
This property helps in developing electrical and optical PS biosensors adsorbing foreign materials on 
its surface. 
 
 

 
 

Fig. 3. SEM images of PS for different current densities and n-type doping densities [Source: Ref 107]. 
 
 
It has been shown that porous silicon can be used as a base material for passive or active optical 
devices like Fabry-Perot interferometers, Bragg filters and optical microcavities [82], because of its 
lower effective refractive index than that of bulk silicon. It can also be used as an antireflection coating 
for silicon solar cells. A wide range of refractive index varying from 1.25 to 3, allows this material for 
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many optical application. The PS Fabry-Perot film with two planer and parallel interfaces can produce 
high contrast optical fringes. Shift in the fringe occur when an analyte binds to the surfaces in the 
pores, providing a sensitive transduction modality [114]. Multilayer devices, like Bragg filters, can be 
prepared by periodically varying the current density during the etching process. Such multiplayer 
structures act as 1-D photonic crystals with reflectivity maxima that depends on the refractive index 
gradient and the periodicity of the superlattice. Porous silicon 1-D photonic crystals used as a label 
free optical sensor for detection of bacteria has been reported earlier [103]. 
 
The freshly etched PS surface is hydrogen terminated and hydrophobic in nature. Impurities like, 
carbon and fluorine are also found attached to the surface. The PS surface in unmodified form is 
unstable for sensor application and also very much fragile. For biosensor applications the PS surface 
needs to be stabilized. Different surface treatments have been reported to achieve a stable and 
hydrophilic surface [60, 96-97]. Mild oxidation removes the Si-H bonds which stabilizes and protects 
the surface. For biological molecules to be attached to the PS surface silanization or hydrosilanization 
treatment is to be done [94, 96-97]. 
 
The enormous medical application of silicon was recognized very recently. Researchers investigate PS 
material as a transducer in sensing systems [67, 68] because of its physical and structural properties. 
High sensitivity results have been obtained using PS by monitoring changes in optical properties, such 
as photoluminescence [69-70] and ellipsometry [71]. The special features of PS material which led to 
its applications in the sensor industry are large surface area within a small volume, controllable pore 
sizes, convenient surface chemistry and compatibility with conventional silicon microfabrication 
technologies [72]. Scientists used these properties to develop PS sensors to detect toxic gases, volatile 
organic compounds, explosives, DNA and proteins. Porous Silicon is a well known material for 
sensing layers in different gas and humidity sensors. It shows great effectiveness when combined with 
titanium, ceramics, composites, polymers and other materials, which are mainly used for biological 
implants. 
 
The PS optical biosensors normally measure the change in the average refractive index of the device 
when a bioconjugation event takes place [67], because the immobilization of the probe and the target 
biological sample changes the effective refractive index of the PS surface, thus modifying the 
interference pattern on the output. In the case of label free optical biosensors, the biological probe is 
attached with a signaling material, which automatically transduces the hybridization effect into an 
optical signal. The label free optical detection of single strand of DNA (ssDNA) and its 
complementary (cDNA) conjugation is carried out on the PS chip by comparing the signals taken after 
the surface modification, then after probe immobilization on the chip surface and finally after its 
hybridization with the cDNA. In each step of the chip preparation, the optical path length changes 
which is recorded in the reflectivity spectrum [68-69]. Vicky Vamvakaki, et al. [113] developed PS 
DNA sensors, which can be used for label-free detection of oligonucleotides in DNA microarrays and 
microfabricated PS field effect sensors. Francia et al. [109] reported photoluminescence measurements 
for label-free optical porous silicon DNA sensors. 
 
Singh, et al. [112] in their work, showed how PS films with good mechanical and optical properties 
can be effectively used for the biofunctionalization purpose for its possible application in 
immunosensors. 
 
Measurement techniques of molecular binding interactions have been patented by Rauh-Adelmann and 
his coworkers [117], where ligands are immobilized within pores of a PS interaction region produced 
in a Si subtrate, after which analytes suspended in a fluid are flowed over the PS region. A large 
surface area with easily modified chemistry makes porous silicon an effective transducer for optical 
and electrical biosensing. Porous Silicon optical biosensors sensitivity and performance depend 
strongly on their nanomorphology and calculated as a function of the pore size [66]. 
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Due to its biocompatibility and biodegradability properties, PS can be injected inside the body which 
over time releases it without any harm. Current research targets on how to find out the possible 
applications of PS as a biodegradable material in the field of medicine, for slow release of drugs or 
essential trace elements for in vivo applications [84]. PS can be used to treat everything from broken 
bones to cancer. Label –free optical biosensor using PS for detection of immunoglobulin G (IgG) in 
serum and whole blood sample were also reported [105]. Salonel and his co-workers [116] studied the 
effect of size reduction of PS particles from micro to nanosize, which affects in vitro cytotoxicity and 
biochemical mechanism of toxicity when these PS particles are applied to human cells. According to 
their findings, this cytotoxicity depends on the particle size and also on the surface chemistry of the PS 
particles. 
 
Porous silicon has potential of several nanomedical applications, particularly, as a biomaterial in 
cancer detection because of its property of reflectivity and its resistance to stomach acid. Reflectivity 
of PS increases in the presence of cancer related chemicals in the blood, which indicate possible 
growth of tumors in the body. A silicon capsule containing the required drug can thus be directly 
administered orally to reach colon through the stomach without biodegradation therein [110]. 
 
 
3.3. Silicon Nanoparticle Sensors 
 
To prepare Si nanoparticles, first PS is obtained by electrochemical etching of single-crystal silicon 
wafers in ethanolic HF solution. This PS layer was then lifted off and ultrasonicated to get silicon 
nanocrystals. A silicon oxide layer then grows on these nano crystals. These crystals, in aqueous 
solution, generate visible luminescence at room temperature due to quantum confinement effect. 
 
In the case of medical or biological imaging, dyes are used as markers, which are not photostable. The 
dyes can break down under photoexcitation or visible light or at higher temperatures. The amazing 
property of visible room temperature luminescence of PS created an interest among the scientists for 
synthesizing and characterizing silicon nanoparticles. In addition to its luminescence property, PS is 
biocompatible and stable against photobleaching. These properties are ideal for replacing fluorescent 
dyes with silicon nanoparticles. Silicon nanoparticles can even replace highly toxic cadmium quantum 
dots for in vivo applications [92]. For biomedical applications, it is essential that they have high 
stability, a substantial photoluminescence quantum yield in the visible region, and solubility in 
aqueous media. Nanomaterials that can circulate inside the body, have great advantage for disease 
diagnosis and treatment. These nanomaterials ought to be harmlessly eliminated from the body shortly 
after they carry out their diagnostic or therapeutic functions. 
 
Nanoparticle-based sensors and drug delivery systems have considerable potential for various types of 
medical treatment. The important technological advantages of nanoparticles used as drug carriers are 
high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic 
substances, and feasibility of variable routes of administration, including oral application and 
inhalation. Nanoparticles can also be designed to allow controlled (sustained) drug release [92] from 
the matrix. These properties of nanoparticles enable improvement of drug bioavailability and reduction 
of the dosing frequency, and may resolve the problem of nonadherence to prescribed therapy. 
 
Despite efforts to improve their targeting efficiency, significant quantities of systematically 
administered nanomaterials are cleared by the mononuclear phagocytic system before finding their 
targets, increasing the likelihood of unintended acute or chronic toxicity. However, there has been little 
effort to engineer for self-destruction of errant nanoparticles into non-toxic, systematically eliminated 
products. M. J. Sailor and his group [92] showed that luminescent porous silicon nanoparticles 
(LPSiNPs) producing near infrared luminescence can be used as drug payload for in vivo monitoring. 
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The most interesting property manifested by these particles is, when tested on mouse, they self-
destruct and are cleared from the body within a short period of time without producing any toxic 
effect. Their work presents a new type of multifunctional nanostructure for in vivo applications with 
low toxicity. Other uses of silicon nanoporous particles as effective carriers for in vivo simultaneous 
application for different nanotherapeutics have been reported recently [116]. 
 
 
4. Biochips or Lab-on-a-Chips 
 
A biochip or a lab-on-a chip can be broadly classified as three categories: (a) microarray-based chips 
for genomic analysis, (b) microfluidic-based chips for executing biochemical assays, and (c) in vitro 
chips as drug reservoirs and/or monitoring purposes. A microarray contains large number of 
miniaturized test sites, which can perform thousands of biochemical reactions instantaneously, such as 
decoding genes, DNA/protein analysis, etc., in a few seconds. The microfluidic-based biochips are 
widely used for on-chip implementation of several biochemical laboratory assays, for sample 
preparation, dilution and mixing [119, 120]. These chips use only nanoliter volumes of fluids and thus 
offer the advantages of low sample and reagent consumption, high throughput and sensitivity, and 
minimal intervention. The fluidic operations can be performed on-chip either in a continuous fashion 
(continuous-flow microfluidic chips), or in a discrete fashion (digital microfluidic biochips). Their 
applications include clinical diagnostics, enzymatic analysis, e.g., glucose and lactate assays, DNA 
analysis, immunoasays, and environmental toxicity monitoring. The third type of biochips are those, 
which can be implanted inside the human body or administered orally, for drug release or for 
controlling/monitoring some biological functioning, in vivo. All these biochips need several types of 
sophisticated optical and electronic sensors as interface. 
 
In microarray type of chips, the term “gene expression” is used to describe the transcription of the 
information contained within the DNA, into messenger RNA (mRNA) molecules that are then 
translated into the proteins that perform most of the critical functions of the cells. In our body, all 
genes are not “expressed” in the same cell, though almost all cells contain the same gene. Many genes 
represent unique features to a particular type of cell. For example, liver cells express genes for 
enzymes that detoxify poisons, while pancreas cells express genes for making insulin. Scientists are 
working in these areas to identify which genes are expressed by each type of cells. 
 
In a microarray, mRNA molecules bind specifically to a complementary DNA, to hybridize and to 
form a double helix structure. By using an array containing many DNA samples, scientists can 
determine, in a single experiment, the expression levels of hundreds or thousands of genes within a cell 
by measuring the amount of mRNA bound to each site on the microarray. The amount of mRNA 
bound to the spots on the microarray is precisely measured by a microprocessor attached to it, 
generating a profile of gene expression in the cell. 
 
In a microarray, nucleic acid sensing is done by immobilizing single stranded oligonucleotide (5 to  
50 nucleotides long) probe onto transducer surface forming a recognition layer that binds its 
complementary (target) DNA sequence to form a hybrid for the purpose of expression profiling, 
monitoring expression levels for thousands of genes simultaneously or for comparative genomic 
hybridization. The hybridization reaction means coupling of any four different nucleotides, adenine 
(A), thymine (T), guanine (G), and cytosine (C) with its complementary one e.g. the complementary 
sequence of G-T-C-C-T-A is C-A-G-G-A-T. Fig. 4 [121] shows how a hybridization reaction takes 
place. This process of hybridization helps in identifying diseases, where fluorescently labeled nucleic 
acid molecules are used as mobile probes to identify the complementary molecular sequences that are 
able to base-pair with one another. 
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Fig. 4. Schematic diagram of hybridization reaction [Source: Ref. 121]. 
 
 

A review article on protein based lab-on-a-chip sensors reported by Borini et al. [65], describes 
different approaches for fabrication of biochips with PS and their future perspectives. Hu Lingang et 
al. [73] in their paper, reported a new technique for fabrication of a biochip on porous silicon and its 
application for detection of small molecule–protein interactions with desorption/ionization on PS 
(DIOS) [74]. Other applications of PS for building DNA sensors have also been reported earlier [108]. 
 
One of the major challenges in nanobiosensor industry is to design efficient sensors and integrating 
them on a biochip. The information captured by the sensors must be converted into a readable form 
[32]. Several optical, electrical, chemical, and biological data from the nanosensors are to be 
transformed into signals for processing, analysis, and for deciding actions. Thus, integration of sensing 
and controlling probes with the fluidic and the electronic world remains the main challenge while 
designing a multi-function biochip. 
 
 

5. Optical Detection Techniques 
 
For functioning of biochips, one of the most important criteria to be fulfilled is to attach a powerful 
transduction or signal processing unit to the system, which can directly and accurately detect the 
biological event and convert it in to a human readable output. The biological events like, antibody/ 
DNA binding, oxidation/reduction, etc., need to be transduced into a format understandable by a 
computer (voltage, light, intensity, mass, etc.), for analyzing and processing the signal to produce the 
final output. Several optical techniques are commonly used for detecting and quantifying biomolecules 
[62-63] as one does not require electrical contacts with the system for capturing data with optical 
devices. Instead, one can use fluorescent tags either with the probe or with the analyte to detect any 
change in the system. The major advantages of the optical transduction methods are that the devices 
are small, lightweight and portable due to the integrability of all optical components. 
 
Several optical transduction methods such as FRET (fluorescence resonance energy transfer), SERS 
(surface enhanced Raman spectroscopy), and fluorescence spectroscopy are used for detection of 
biological samples. Spectroscopic techniques are used, for detecting biological samples or events 
occurring in it because cells or tissues can absorb or emit light, thereby producing a signal or spectrum, 
which is a characteristic of that particular event. From this fingerprint spectrum, one can directly 
identify or quantify the sample or the event. 
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Fluorescence Resonance Energy Transfer (FRET) is a nonradiative energy transfer process from 
excited state donor molecule to an acceptor molecule, when appreciable overlap exists between the 
emission spectrum of the donor and the absorption spectrum of the acceptor. This radiation-less 
transfer of energy, when the excited state fluorophore and the second chromophore lie within a range 
of approximately 10 nm, provides vivid structural information about the donor-acceptor pair. This is a 
quantum mechanical process that does not require a collision and does not involve production of heat. 
When energy transfer occurs, the acceptor molecule quenches the donor molecule fluorescence, and if 
the acceptor is itself a fluorochrome, increased or sensitized fluorescence emission is observed [35, 36, 
38]. Fig. 5 shows the underlying principle of FRET. The information obtained by this method is 
unique because the surrounding solvent shell of a fluorophore does not affect the FRET measurements. 
 

Wavelength (λ) 

Donor 
molecule

Acceptor 
molecule

 
 

Fig. 5. Fluorescence resonance energy transfer. 
 
 
The Surface Enhanced Raman Spectroscopy or Surface Enhanced Raman Scattering (SERS) is a 
surface sensitive technique that results in the enhancement of Raman scattering by molecules adsorbed 
on rough metal surfaces. The vibrational modes of the adsorbates on the roughened surface are 
sometimes observed to have about one million times the intensity that would be predicted by 
comparison with their Raman spectra in the gaseous phase [39]. 
 
Fluorescent measurement techniques are commonly used for the detection of biomolecules. In 
fluorescence spectroscopy, fixed or living cells or single stranded DNA probes are often labeled with 
fluorescent tags or fluorophores, each specific to a particular intercellular component, which absorps 
light at one wavelength (excitation), followed by a subsequent emission of secondary fluorescence at a 
longer wavelength. The excitation and emission wavelengths are usually separated from each other by 
tens to hundreds of nanometers. 
 
Cellular components are labeled with specific fluorophores to identify their localization within fixed 
and living parameters. In microarray systems, the target molecules are labeled, which is a process of 
covalently binding a molecule or particle to the target DNA strand, for generating transducer signal. 
This approach takes care of the issue related to safety and disposal associated with radioactive markers 
and allows the researchers to study several experimental parameters simultaneously with multiplex 
samples. In the case of multiple probes, different dyes are attached to different probes which can be 
simultaneously detected at different wavelengths using optical filters. After hybridization, the 
fluorescent signals from a DNA chip are studied using specific instruments. However, this method of 
labeling with fluorophores is not possible everywhere [64] because the optical labels are costly and 
unreliable and also the optical scanners are expensive and the procedure of extracting information from 
the data is complicated [70]. Researchers are trying to work it out with label free techniques or 
reagent-less optical biosensors where the target sample can be detected in a heterogeneous solution 
without adding anything but the sample [96]. 
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6. Conclusion 
 
In this review article, attempts have been made to highlight how nanomaterials or nanostructured 
materials like PS, Si nanoparticles, and QDs are being used as highly efficient biosensors for several 
biomedical applications. Inorganic nanocrystals or QDs have been used in nano scale computing for 
the past several years. These crystals dissolve in water and fluoresce when exposed to light radiation, 
and are usable as markers or trackers in biological recognition events. However, these QDs have toxic 
effects and therefore, are unsuitable for in vivo applications. In contrast, PS and Si nanoparticles are 
non-toxic and are easily removed from the body without leaving any trace of harmful effect. They are 
very effective as a biosensor/transducer material and because of their luminescence properties and 
strong biocompatibility, they have wide applications in drug delivery systems and in the design of 
biomedical implants. Other research endeavors aiming at producing low cost sensor material are 
currently being explored. 
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