
Computer Science Journal of Moldova, vol.12, no.3(36), 2004

An algorithm for solving a class of knapsack

problems and its generalization

Elena Balan

Abstract

A class of knapsack problems which generalizes the classical
ones is studied. Algorithms based on the dynamical programming
and Branch and Bound methods are proposed. The correctness
and time estimation of the algorithm are given.

1 Problem formulation

We study a class of knapsack problems which generalizes problems
from [1-2]. The main mathematical model we shall use is formulated
as follows.

Let a knapsack of size D and a set of items I = {1, 2, . . . , n} be
given. For each item j ∈ I the cost cj , the size dj and the volume d′j
related to partition I are known. The set I is divided into p non-empty
disjoint subsets I1, I2, . . . , Ip,

I = I1 ∪ I2 ∪ · · · ∪ Ip; Ii ∩ Ij = ∅, i 6= j.

For each subset Il, l = 1, p, the size Dl is known.
According to this partition, from each of the subsets Il, l = 1, p,

we include into the knapsack no more than kl items and the sum of
volumes d′j of these including items from Il does not exceed Dl. A
sequence of items i1, i2, . . . , iq (q < n) from I we name the packing
in the knapsack if the sum of items sizes dj of the sequence does not
exceed D, each of the subsets Il, l = 1, p, contains at most kl items of
the sequence and the sum of items volumes related to the partition d′j

c©2004 by E. Balan

364

An algorithm for solving a class of . . .

for each Il does not exceed Dl, l = 1, p. We consider the problem of
finding of the packing in the knapsack which has the maximal sum of
items costs.

This problem can be represented as a boolean linear programming
model, which in the case p = n, Dl = D and kl = 1, l = 1, p, becomes
the classical knapsack problem. Therefore it is NP -complete. We
propose an algorithm of dynamical programming method for solving
the formulated problem.

In the terms of boolean programming the problem can be formu-
lated as follows.

To maximize the object function

µ(x) =
∑

j∈I

cjxj

on the subject 



∑

j∈I

djxj ≤ D;

∑

j∈Il

d′jxj ≤ Dl, l = 1, p;

∑

j∈Il

xj ≤ kl, l = 1, p;

xj ∈ {0, 1}, j ∈ I,

where x = (x1, x2, . . . , xn). Here xj = 1 if the item j is included into
the knapsack; otherwise xj = 0.

2 The main results and algorithms for solving
the problem

To solve this problem we shall use an algorithm for solving the following
auxiliary problem:

to maximize the object function

µ(x) =
∑

j∈Il

cjxj

365

E. Balan

on the subject 



∑

j∈Il

d′jxj ≤ Dl;

∑

j∈Il

xj ≤ kl;

xj ∈ {0, 1}, j ∈ Il,

We will number the elements of Il as 1l, 2l, . . . , nl.
Algorithm 1

1. Set M l
0 = {(∅, 0)}.

2. For j = 1l, nl do steps a), b) and c):

a) Set M l
j = ∅;

b) Add each element (S, c) ∈ M l
j−1 to M l

j . Then for each

(S, c) ∈ M l
j−1 form the element (S∪{jl}, c+cjl

) if
∑

i∈S

d′i+

+d′jl
≤ Dl, |Il ∩ (S ∪ {jl})| ≤ kl, and add (S ∪{jl}, c+ cjl

)
to M l

j ;

c) Find in M l
j elements (S, c) and (S′, c′) with the same

second components. For each pair (S, c) and (S′, c) we
delete (S′, c) from M l

j if
∑

i∈S′
d′i ≥

∑

i∈S

d′i ; otherwise delete

(S, c).

3. Find in M l
n the element (S, c) with the maximal second com-

ponent. Then S is a solution of the packing knapsack problem.

To solve the main problem we shall use the following algorithm.

Algorithm 2

1. For each l = 1, p solve the corresponding auxiliary problem.

366

An algorithm for solving a class of . . .

2. Denote by M l
n the sets obtained for l = 1, p, when the algorithm

1 is applied. Set Mn will contain elements which are obtained
as the possible combination of the elements from M l

n: for each
(Sl, cl) ∈ M l

n, l = 1, p, element (S, c) = (
⋃

l

Sl,
∑

l

cl) is added

to Mn if
∑

i∈S

di ≤ D .

3. Find in Mn the element (S, c) with the maximal second compo-
nent. Then S is a solution of the packing knapsack problem.

The algorithm 1 is an extension of the algorithm for a classical
knapsack problem from [3]. Therefore the correctness of the algorithm
can be argued in analogous way.

Theorem 1. Algorithm 1 finds the optimal solution of the auxiliary
problem in time O(n2

l c
l), where nl is the number of items in the set Il

and cl =
∑

j∈Il

cj.

To prove this theorem we need the following lemma.

Lemma 1. Let be (S, c) ∈ M l
j after algorithm’s running. Then:

a) S ⊆ {1l, 2l, . . . , jl};
b)

∑

i∈S

ci = c;

c)
∑

i∈S

d′i ≤ Dl;

d) |Il ∩ S| ≤ kl;
e) if (S′, c) ∈ M l

j then S′ = S;

f) if S′ ⊆ {1l, 2l, . . . , jl} and
∑

i∈S′
ci = c, |Il ∩ S′| ≤ kl ,

then
∑

i∈S

d′i ≤
∑

i∈S′
d′i;

g) moreover, if S ⊆ {1l, 2l, . . . , jl} and
∑

i∈S

d′i ≤ Dl,
∑

i∈S

ci = c,

|Il ∩ S| ≤ kl , then there exists (S′, c) ∈ M l
j;

367

E. Balan

Proof. We use the induction principle on the iteration number j.
The statement for j = 0 is evident. Now we consider that j > 0 and
(S, c) ∈ M l

j . Here two cases may be:
Case 1. j 6∈ S. Then the element (S, c) has been transferred from

M l
j−1 in M l

j at step 2(b). Therefore the properties a), b), c), d), and
e) follow from the induction principle.

Case 2. j ∈ S. Then (S\{j}, c− cj) ∈ M l
j−1 and the properties a),

b), c), d), and e) hold too.
Now let us prove f). Suppose that S 6= S′ and analyze the following

three cases:
Case 1. j 6∈ S, S′. Then (S, c) and (S′, c) ∈ M l

j−1. So, according to
the induction principle S = S′.

Case 2. j ∈ S, S′. Then (S\{j}, c − cj), (S′\{j}, c − cj) ∈ M l
j−1.

Therefore S = S′.
Case 3. j ∈ S, j 6∈ S′ or j 6∈ S, j ∈ S′. Then (S′, c) was eliminated

at the step 2(c). Therefore f) holds.
Now let us prove the property g). We shall use the induction prin-

ciple on the number k = maxS, were maxS is the maximum number
of the elements of the subsets S. This property holds for S = ®. Let
us consider k = maxS > 0. Then according to the induction principle
in M l

k−1 there exists element (S\{k}, c − ck) = (S′, c − ck). Therefore
the element (S′ ∪ {k}, c) has been added to M l

k at the step 2(b). Then
either (S′ ∪ {k}, c) ∈ M l

j . So, the property f) holds ¤.

Proof of Theorem 1. The correctness of the algorithm 1 follows
from Lemma 1.

Since at the step 3 we find the element (S, c) with the maximal
second component and take the first component S as the solution of the
packing knapsack problem, the set S is an admissible solution (conform
properties c) and d)), its cost is equal to c (conform b)) and a better
admissible solution does not exist (conform g)).

Let us find the estimation time of the algorithm 1. Observe, that
the power of each set M l

j−1 does not exceed c, because two elements
with the same second component don’t exist in M l

j−1 (conform e)).
Each modifier operations at the step 2(b) can be implemented in the

368

An algorithm for solving a class of . . .

time O(nl), and must be repeated for all O(cl) elements from M l
j−1.

The step 2(c) needs O(nlcl) time too, because it may be implemented
simultaneously with the step 2(b): for that all elements of M l

j are
memorized in a table with the length equal to cl, are numbered by
second component, and when an other element is tried to be put at a
place, the sums of the volumes d′j are calculated and compared, condi-
tion |Il

⋂
S| ≤ kl is verified and the element, that does not implement

this condition or, otherwise, element with the greater volumes sum, is
eliminated. Therefore the algorithm finds the optimal solution in time
O(n2

l c
l) ¤.

Theorem 2. Algorithm 2 finds the optimal solution of the packing
knapsack problem in time O(pn2c + cp), where c =

∑

j∈I

cj.

Proof . The correctness of the algorithm 2 can be argued in fol-
lowing way.

We obtain the sets M l
n, l = 1, p, when the algorithm 1 is applied to

solve p auxiliary problems. The first components of elements of the sets
M l

n form all admissible solutions for the corresponding auxiliary prob-
lem. At the step 2 all possible combination of elements from different
sets M l

n, l = 1, p are formed if the sum of items volumes from
⋃p

l=1 Sl

does not exceed D. Therefore, on the grounds of the theorem 1 and of
the condition from step 2, sets Mn contain all admissible solutions of
the main problem. Thus, the correctness of the algorithm is argued.

Since at the step 3 we find the element (S, c) with the maximal
second component and take the first component S as the solution of
the packing knapsack problem, the set S is an admissible solution, its
cost is equal to c and a better admissible solution does not exist.

Let us find the estimation time of the algorithm 2. At the step 1
we solve p auxiliary problems, which have the estimation time O(n2c)
each of them. Therefore the step 1 needs time O(pn2c).

At the step 2 we form all possible combinations of p elements from
c elements, therefore we need time O(cp).

Then, the estimation time of algorithm 2 is O(pn2c + cp) ¤.

369

E. Balan

References

[1] D. Lozovanu, E. Tataru, A. Zelikovsky. A generalization of knapsack
problem and finding the k-optimal tree in weighted digraph. Bulletin
of Moldova Academy, ser. Math., (1998), pp. 223–239.

[2] E. Tataru. A generalization of knapsack problem. Numerical anal-
ysis and optimization studies, Moldova State University, V.3, N.
2(6), (2001), pp. 16–19.

[3] Ch.H. Papadimitriu, K.Steiglitz. Combinatorial optimization: Al-
gorithm and complexity. New Jersey, 1982.

Elena Balan, Received December 1, 2004

Institute of Mathematics and Computer Science,
Academy of Sciences, Moldova
str. Academy 5, Chişinău,
2028–MD, Moldova
Phone: (+3732)76− 05− 60

370

