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It is proved that the chromatic polynomial of a connected graph with n vertices
and m edges has a root with modulus at least (m&1)�(n&2); this bound is best
possible for trees and 2-trees (only). It is also proved that the chromatic polynomial
of a graph with few triangles that is not a forest has a nonreal root and that there
is a graph with n vertices whose chromatic polynomial has a root with imaginary
part greater than - n�4. � 1998 Academic Press

1. INTRODUCTION

Let ?(G, x) and /(G) denote respectively the chromatic polynomial and
chromatic number of a graph G with n vertices and m edges. A number of
papers have considered the location of the roots of the chromatic polyno-
mial of a graph. Birkhoff and Lewis [7] showed that the chromatic polynomial
of any plane triangulation has no roots in the intervals (&�, 0), (0, 1), (1, 2),
and [5, �), and Woodall [22] improved this by showing that in fact there
are no roots in (2, 2.546602...) (the latter being the smallest nonintegral real
root of the chromatic polynomial of the octahedron). It is well known (see
[20]) that no graph has a root of its chromatic polynomial in (&�, 0) or (0, 1).
Jackson [13] proved that no graph has a root of its chromatic polynomial
in the interval (1, 32�27], and Thomassen [19] has shown that Jackson's
result is best possible, in that for any *>32�27, there is a graph whose
chromatic polynomial has a root arbitrary close to *.

Regarding the locations of chromatic roots (i.e., roots of chromatic poly-
nomials) in the complex plane, there are relatively few results and many
conjectures (cf. [4, 5, 8, 11, 16, 17, 21]). Read and Royle [16] have
calculated the chromatic roots of many small graphs, and the structure of
these roots is still elusive. The limit points of the chromatic roots of a few
special classes of graphs have been determined [2, 3, 16]. In [9] it was
proved that all the roots of ?(G, x) lie within the disk |z&1|�m&n+1;
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this theorem improves on results obtained earlier by Thier [18] and reported
in [12].

In the opposite direction, Woodall [21] demonstrated that for fixed a
and sufficiently large b, the complete bipartite graph Ka, b has a real root
close to each integer in the interval [2, a�2], and, hence, there are graphs
with real roots far from their chromatic number. We provide a lower bound
for the largest modulus of a chromatic root of a connected graph in terms
of the numbers of vertices, edges, and triangles.

2. CHROMATIC ROOTS OF LARGE MODULUS

Farrell [11] observed an apparent correlation between the largest real
part of a chromatic root of a graph and the number of edges. The next
result provides some mathematical basis for this observation. Throughout,
R(z) and I(z) denote the real and imaginary parts of the complex number
z, respectively.

Theorem 1. Let G be a connected graph with n�3 vertices, m edges,
and t triangles, and set

D=(m&1)2 (n&3)2&(n&2)(n&3)[(m&1)(m&2)&2t], (1)

B=(m&1)�(n&2) and W=B+- D�(n&2)(n&3) (2)

(if n=3, then D=0 and we take W=B). If D�0, ?(G, x) has a root whose
real part is at least W, and if D<0, ?(G, x) has roots z1 and z2 (not necessarily
distinct) such that R(z1)�B and I(z2)�- &D�(n&2)(n&3).

Proof. First note that if G is a tree or K3 , then D=0 and /(G)=B+1,
so that W=B is a root. Thus we can assume n�4.

We shall need some notation. The chromatic polynomial can be written
in the usual form (cf. [6, p. 76�77])

?(G, x)= :
n&1

i=0

(&1) i bi xn&i,

and b0=1, b1=m, and b2=( m
2 )&t. Clearly /(G)�2. Thus x(x&1) divides

?(G, x), and hence the chromatic roots of G are 0, 1 and those of

g(x)=
?(G, s)

x(x&1)
=xn&2&(m&1) xn&3+\\(m&1

2 +&t+ xn&4& } } } .
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Consider the (n&4)th derivative of g(x),

g(n&4)(x)=
(n&2)!

2
x2&(m&1)(n&3)! x+\\(m&1)

2 +&t+ (n&4)!.

By (1) and (2), W is one of the roots of this quadratic. A result from the
theory of polynomials, due to Lucas (see [15, p. 22]), states that if f is a
nonconstant polynomial, then the roots of the derivative f $ of f lie in the
convex hull of the roots of f. It follows that the roots of g(n&4) must lie in
the convex hull of the roots of g, and hence of ?(G, x). Thus ?(G, x) must
have roots z1 and z2 such that R(z1)�R(W) and I(z2)�I(W). The result
now follows from the formula for W. K

Corollary 2. If G is a connected graph with n�3 vertices, then ?(G, x)
has a root z whose modulus is at least (m&1)�(n&2). Further, the moduli
of all the roots are at most B=(m&1)�(n&2) if and only if G is a tree or
a 2-tree (that is, a graph that can built up from the complete graph of order
2 by successively joining a new vertex to both ends of an existing edge).

Proof. As in the proof of the previous theorem, we can assume that n�4.
The first statement follows directly from Theorem 1. Alternatively, if we
work with

g(n&3)(x)=(n&2)! x&(m&1)(n&3)!

instead of g(n&4)(x) in the previous proof, we see that its root, namely B,
must lie in the convex hull of the roots of g(x), and hence of ?(G, x). Now
if g(x) has no root of modulus larger than B, it follows that B must be a
root of g, g$, ..., g(n&3) (for the convex hulls of the roots can only shrink as
we differentiate). Thus the monic polynomial g(x) must be (x&B)n&2, and
hence

?(G, x)=x(x&1)(x&B)n&2.

Now ?(G, x) is a monic polynomial with integer coefficients, and hence all
its rational roots are integers. Thus B must be an integer, which means that
/(G)=B+1 and ?(G, x) has a root at every nonnegative integer �B. It
follows that B=1 or 2. If B=1, then m=n&1 and G is a tree. If B=2,
then ?(G, x)=x(x&1)(x&2)n&2, and a result of Dmitriev [10] (see also
[14, p. 224]) implies that any graph with a polynomial of this form is in
fact a 2-tree.

Finally, if G is a tree, then the roots of ?(G, x)=x(x&1)n&1, namely 0
and 1, are at most B=1, and if G is a 2-tree, then the roots 0, 1, and 2,
of ?(G, x)=x(x&1)(x&2)n&2 are at most B=2, as for any 2-tree of order
n, m=2n&3. K
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This result offers a simpler proof than Woodall's [21] of the fact that
there is no upper bound on the modulus of the chromatic roots of a graph
in terms of its chromatic number (as (m&1)�(n&2) can be arbitrarily large
for graphs of any fixed chromatic number k�2).

A similar argument to the proof of Theorem 1 shows that if /(G)�k�2,
then ?(G, x) has a root whose modulus is at least (m&( k

2))�(n&k). One
can verify that this bound is better than B=(m&1)�(n&2) whenever
B>k&1�2 (if B�k&1, then of course the root at k&1 provides a
better bound than B anyway).

3. SOME REMARKS

Trees and 2-trees are chordal graphs (i.e., they have no induced cycle of
length greater than 3), and so their chromatic polynomials have only real
roots (in fact, only integral roots��cf. [17, p. 34]). These graphs have, in
general many triangles. In contrast:

Corollary 3. If G is a triangle-free graph that is not a forest, then
?(G, x) has a nonreal root.

Proof. Clearly we can assume that G is connected, and hence m�n�4.
With the notation of Theorem 1, t=0 and (1) gives

D=(m&1)(n&3)(n&m&1)<0. (3)

Hence g(n&4) has a nonreal root, and it follows (by Lucas' theorem) that
so does ?(G, x). K

By considering Sturm sequences, one can weaken the requirement for
G to be triangle-free. The Sturm sequence of a polynomial p with real coef-
ficients is p0 , p1 , ..., where p0= p, p1= p$, and for i�2, pi is the negative of
the remainder when pi&1 is divided by pi&2 (one terminates the sequence
when pi becomes the zero polynomial). It is known (cf. [1, p. 175�176])
that a monic polynomial p has only real roots if and only if all the terms
in its Sturm sequence have positive leading coefficient. A calculation on the
polynomial g defined in the proof of Theorem 1 shows that g2 has negative
leading coefficient if

2
n&2 \\

m
2 +&t+&

(m&1)2 (n&3)
(n&2)2 >0,
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and this is equivalent to

t<
m(m&n)+n&1

2(n&2)
.

Hence,

Theorem 4. If G is a connected graph with n�4 vertices, m edges, and
t triangles, then the chromatic polynomial of G has a nonreal root if

t<
m(m&n)+n&1

2(n&2)
.

A number of fascinating questions about chromatic roots emerge. Read
and Royle [16] have asked about the smallest real part of a chromatic
root. In contrast, let I(n) denote the largest imaginary part of a chromatic
root among all graphs on n vertices.

Theorem 5. For all n�4, I(n)>- n�4.

Proof. Let G=Kwn�2x, Wn�2X , a triangle-free graph with n vertices and
m=wn2�4x edges. If n is even then (3) gives

&D= 1
16 (n2&4)(n&3)(n&2)2> 1

16n(n&3)2 (n&2)2

since n2&4>n2&3n. If n is odd then (3) gives

&D= 1
16 (n2&5)(n&3)2 (n&1)> 1

16n(n&3)2 (n&2)2

since n2&5>n(n&2) and n&1>n&2. In each case, by Theorem 1, G has
a chromatic root with imaginary part at least - &D�(n&2)(n&3)>- n�4,
and so I(n)>- n�4. K

The actual value of I(n), and the corresponding extremal graphs, remain
unknown.
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