Chromatic Polynomials

Chromatic Polynomials – Definition

- \star G a simple labelled graph with n vertices and m edges.
- \star k a positive integer.
- * $P_G(k)$ number of different ways of coloring the vertices of G with k colors.
- * $P_G(k)$ is an integer function (polynomial) of k:
 - If $\chi(G) > k$ then $P_G(k) = 0$.
 - If $\chi(G) \leq k$ then $P_G(k) > 0$.

 $\Rightarrow \chi(G)$ is the smallest k such that $P_G(k) > 0$.

 $\star k$ ways to color independently each of the vertices u, v, w.

$$P_G(k) = k^3$$

3 Vertices, 0 Edges, and 2 colors

★ k ways to color v; k ways to color u; k - 1 ways to color w that cannot get the color of u.

$$P_G(k) = k^2(k-1)$$
$$= k^3 - k^2$$

3 Vertices, 1 Edge, and 2 colors

★ k ways to color u; k - 1 ways to color v that cannot get the color of u; k - 1 ways to color w that cannot get the color of u.

$$P_G(k) = k(k-1)^2$$

= $k^3 - 2k^2 + k$

3 Vertices, 2 Edges, and 2 colors

 $P_G(2) = 2^3 - 2 \cdot 2^2 + 2 = 2$

★ k ways to color u; k - 1 ways to color v that cannot get the color of u; k - 2 ways to color w that cannot get the colors of u and v.

$$P_G(k) = k(k-1)(k-2)$$

= $k^3 - 3k^2 + 2k$
= $(k-1)^3 - (k-1)^3$

3 Vertices, 3 Edges, and 3 colors

 $P_G(3) = 3 \cdot 2 \cdot 1 = 6$

4 Vertices and 5 Edges

★ k ways to color v; k - 1 ways to color x that cannot get the color of v; k - 2 ways to color u that cannot get the colors of v and x; k - 2 ways to color w that cannot get the colors of v and x. 4 Vertices and 5 Edges

$$P_G(k) = k(k-1)(k-2)^2$$

= $k^4 - 5k^3 + 8k^2 - 4k$

- * k(k-1) ways to color u and w with different colors; k-2ways to color v that cannot get the colors of u and w; k-3ways to color x that cannot get the colors of u, v, and w.
- ★ k ways to color u and w with the same color; k 1 ways to color v that cannot get the color of u and w; k 2 ways to color x that cannot get the colors of u, v, and w.

4 Vertices and 5 Edges

$$P_G(k) = k(k-1)(k-2)(k-3) + k(k-1)(k-2)$$

= $k(k-1)(k-2)^2$
= $k^4 - 5k^3 + 8k^2 - 4k$

$P_G(k)$ – **Properties**

★ $P_G(k)$ is a polynomial in k:

$$P_G(k) = a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0$$

- * The degree of the polynomial is n: the number of vertices in the graph.
- \star All the coefficients are integers (could be 0).
- ★ The coefficient of k^n is 1: $a_n = 1$.
- ★ The coefficient of k^0 is 0: $a_0 = 0$.
- ★ The coefficient of k^{n-1} is -m: $a_{n-1} = -m$.

$P_G(k)$ – More Properties

 $\star\,$ Signs of coefficients alternate between positive and negative.

 $P_G(k) = k^n - mk^{n-1} + b_{n-2}k^{n-2} \dots + b_1k + 0$

for non-negative coefficients b_1, \ldots, b_{n-2} .

 \star For a graph with at least one edge, the sum of the coefficients is 0.

 $a_n + a_{n-1} + \dots + a_1 = 0$

for positive or negative or zero coefficients a_1, \ldots, a_{n-2} .

 \star The null graph N_n has n vertices and no edges.

 \star Each vertex can be colored independently with k colors.

$$P_{N_n}(k) = k^n$$

= $k^n - 0 \cdot k^{n-1} + 0 \cdot k^{n-2} - \dots + 0$

- ★ The Complete graph K_n has n vertices and all possible edges: $m = \frac{n(n-1)}{2}$.
- * The first vertex can be colored with k colors, the second with k-1 colors . . . and the last with k-n+1 colors.

$$P_{K_n}(k) = k(k-1)(k-2)\cdots(k-n+1)$$

= $k^n - (1+2+\cdots+(n-1))k^{n-1} + \cdots + 0$

- ★ The Star graph S_n has n-1 edges. A root vertex is connected to the rest of the n-1 vertices each connected only to the root.
- ★ The root can be colored with k colors and each of the other n-1 vertices can be colored with k-1 colors.

$$P_{S_n}(k) = k(k-1)^{n-1}$$

= $k^n - (n-1)k^{n-1} + \dots + 0$

- ★ The Path graph P_n has n-1 edges. The vertices are connected as a path of length n-1 edges.
- * The first vertex can be colored with k colors and each one of the other n-1 vertices, in order, can be colored with k-1 colors.

$$P_{P_n}(k) = k(k-1)^{n-1}$$

= $k^n - (n-1)k^{n-1} + \dots + 0$

- ★ A tree T_n is an acyclic (connected) graph with n vertices and n-1 edges.
- ★ The root can be colored with k colors and each of the other n-1 vertices can be colored with k-1 colors if it is colored after its parent and before all of its children.

$$P_{T_n}(k) = k(k-1)^{n-1}$$

= $k^n - (n-1)k^{n-1} + \dots + 0$

Finding the Chromatic Polynomial

 \star Let G be a labelled graph with n vertices.

- * Suppose that there are f(r) different ways to partition G into r independent sets.
- ★ Each color class in any coloring is an independent set.
- ⇒ A given partition into r independent sets can be colored in $k(k-1)\cdots(k-r+1)$ ways with k colors where each independent set gets a different color.

$$P_G(k) = \sum_{r=1}^n f(r) \cdot k(k-1) \cdots (k-r+1)$$

★
$$f(1) = 0$$
 $f(2) = 1$ $f(3) = 2$ $f(4) = 1$.
 $P_{C_4}(k) = f(1)k + f(2)k(k-1) + f(3)k(k-1)(k-2)$
 $+f(4)k(k-1)(k-2)(k-3)$
 $= k^2 - k + 2k^3 - 6k^2 + 4k + k^4 - 6k^3 + 11k^2 - 6k$
 $= k^4 - 4k^3 + 6k^2 - 3k$
 $= (k-1)^4 + (k-1)$

The Coefficients in $P_G(k)$

$$P_G(k) = \sum_{r=1}^n f(r) \cdot k(k-1) \cdots (k-r+1)$$

- ★ $P_G(k)$ is a polynomial.
- ★ All the coefficients in $P_G(k)$ are integers.
- ★ The degree of $P_G(k)$ is *n* because f(r) = 0 for r > n.
- ★ The coefficient of k^n is 1 because f(n) = 1.
- * The coefficient of k^0 is 0. because f(0) = 0.

The Sum of All the Coefficients

Lemma: Let G be a graph with n vertices and at least 1 edge. Then the sum of all the coefficients in $P_G(k)$ is 0.

Proof:

* It is impossible to color G with $1 \text{ color} \Rightarrow P_G(1) = 0$. * By definition, $P_G(1) = a_n 1^n + a_{n-1} 1^{n-1} + \dots + a_1 1^1$. * Therefore, $\sum_{i=1}^n a_i = 0$.

The Coefficient of k^{n-1}

Lemma: Let G be a graph with n vertices and m edges. Then the coefficient of k^{n-1} in $P_G(k)$ is -m.

Proof:

- ★ The coefficient of k^{n-1} in $k(k-1)\cdots(k-n+1)$ is $-\frac{1}{2}n(n-1)$ and f(n) = 1.
- ★ The coefficient of k^{n-1} in $k(k-1)\cdots(k-n+2)$ is 1 and f(n-1) is equal to the number of non-adjacent pairs of vertices: $f(n-1) = \frac{1}{2}n(n-1) m$.
- ★ The coefficient of k^{n-1} in $k(k-1)\cdots(k-r+1)$ for r < n-1 is 0.
- * The coefficient of k^{n-1} in $P_G(k)$ is $1 \cdot \left(-\frac{1}{2}n(n-1)\right) + \left(\frac{1}{2}n(n-1) - m\right) \cdot 1 = -m.$

Disconnected Graphs

Lemma: Let G_1, G_2, \ldots, G_h be the h connected components of G. Then $P_G(k) = P_{G_1}(k) \cdot P_{G_2}(k) \cdots P_{G_h}(k)$.

Proof: The colorings of the h connected components are independent.

Example:

$$P_G(k) = P_{K_2}(k) \cdot P_{K_1}(k)$$
$$= k(k-1)k$$
$$= k^3 - k^2$$

Disconnected Graphs

Corollary: If G is composed of h connected components, then the coefficient of k^{ℓ} for $\ell < h$ is 0.

Proof: The coefficient of k^0 is 0 in $P_{G_i}(k)$ for all $1 \le i \le h$ \Rightarrow in the product of the h polynomials the smallest degree with a positive coefficient is k^h .

Example: The null graph N_n has n connected components \Rightarrow all the coefficients are 0 except the coefficient of k^n which is $1 \Rightarrow P_{N_n}(k) = k^n$.

Trees

Lemma: Assume that the chromatic polynomial of a graph G is $P_G(k) = k(k-1)^{n-1}$. Then G is a tree with n vertices.

Proof:

- ★ The degree of $P_G(k)$ is $n \Rightarrow G$ has n vertices.
- ★ The coefficient of k^{n-1} is $-(n-1) \Rightarrow G$ has n-1 edges.
- ★ The coefficient of k in a disconnected graph is 0 and the coefficient of k in $k(k-1)^{n-1}$ is greater than $0 \Rightarrow G$ is connected.
- \star A connected graph with n vertices and n-1 edges is a tree.

Three Transformations

Delete an edge: G - (u, v) is G without the old edge (u, v).

Add an edge: G + (u, v) is G with the new edge (u, v).

Contract 2 vertices: G/(u, v) is G

- \star without the old vertices u and v and all the edges that are connected to them,
- \star with a new vertex uv that is connected to all the neighbors of u and v.

First Recursive Formula for $P_G(k)$

Theorem: For any non-adjacent vertices u and v,

$$P_G(k) = P_{G+(u,v)}(k) + P_{G/(u,v)}(k)$$

Proof:

- * $P_{G+(u,v)}(k)$ covers all the colorings in which the color of u is different than the color of v.
- ★ $P_{G/(u,v)}(k)$ covers all the colorings in which the color of u is the same as the color of v.

The Null Graph N_2

$$P_{N_2}(k) = P_{K_2}(k) + P_{K_1}(k)$$
$$= k(k-1) + k$$
$$= k^2$$

First Recursive Formula for $P_G(k)$

Corollary: The chromatic polynomial of G is a linear combination of chromatic polynomials of complete graphs with at most n vertices,

$$P_G(k) = P_{K_n}(k) + b_{n-1}P_{K_{n-1}}(k) + \dots + b_1P_{K_1}(k)$$

for some non-negative integers b_{n-1}, \ldots, b_1 .

Second Recursive Formula for $P_G(k)$

Theorem: For any edge (u, v),

$$P_G(k) = P_{G-(u,v)}(k) - P_{G/(u,v)}(k)$$

Proof:

- * $P_{G-(u,v)}(k)$ covers all the colorings in which the color of u is the same as the color of v and all the colorings in which the color of u is different than the color of v.
- * $P_{G/(u,v)}(k)$ covers all the colorings in which the color of u is the same as the color of v.

The Complete Graph K_2

$$P_{K_2}(k) = P_{N_2}(k) - P_{N_1}(k)$$

= $k^2 - k$
= $k(k - 1)$

Second Recursive Formula for $P_G(k)$

Corollary: The chromatic polynomial of G is a linear combination of chromatic polynomials of null graphs with at most n vertices,

$$P_G(k) = P_{N_n}(k) + c_{n-1}P_{N_{n-1}}(k) + \dots + c_1P_{N_1}(k)$$

for integers (positive, negative, or 0) c_{n-1}, \ldots, c_1 .

$$P_{C_4}(k) = P_{N_4}(k) - 4P_{N_3}(k) + 6P_{N_2}(k) - 3P_{N_1}(k)$$

= $k^4 - 4k^3 + 6k^2 - 3k$
= $(k - 1)^4 + (k - 1)$

The Chromatic Polynomial of the Cycle C_n

 $P_{C_n}(k) = P_{P_n}(k) - P_{C_{n-1}}(k)$ = $P_{P_n}(k) - P_{P_{n-1}}(k) + P_{C_{n-2}}(k)$: = $P_{P_n}(k) - P_{P_{n-1}}(k) + \dots + P_{P_2}(k)$ = $k(k-1)^{n-1} - k(k-1)^{n-2} + \dots + -k(k-1)$

The Chromatic Polynomial of the Cycle C_n

Proposition: For $n \ge 3$, $P_{C_n}(k) = (k-1)^n + (-1)^n (k-1)$.

Proof:

★
$$P_{C_3} = k(k-1)(k-2) = k^3 - 3k^2 + 2k = (k-1)^3 - (k-1).$$

★ $P_{C_4} = k^4 - 4k^3 + 6k^2 - 3k = (k-1)^4 + (k-1).$

$$P_{C_n}(k) = P_{P_n}(k) - P_{C_{n-1}}(k)$$

= $k(k-1)^{n-1} - (k-1)^{n-1} - (-1)^{n-1}(k-1)$
= $(k-1)^n + (-1)^n(k-1)$

The Chromatic Polynomial of the Broken Wheel B_n

★
$$P_{B_4} = k(k-1)(k-2)^2$$

The Chromatic Polynomial of the Broken Wheel B_n

$$P_{B_n}(k) = P_{B'_{n-1}}(k) - P_{B_{n-1}}(k)$$

= $(k-1)P_{B_{n-1}}(k) - P_{B_{n-1}}(k)$
= $(k-2)P_{B_{n-1}}(k)$
:
= $(k-2)^{n-2}P_{B_2}(k)$

$$= k(k-1)(k-2)^{n-2}$$

The Chromatic Polynomial of the Wheel W_n

The Chromatic Polynomial of the Wheel W_n

$$P_{W_n}(k) = P_{B_n}(k) - P_{W_{n-1}}(k)$$

$$= k(k-1)(k-2)^{n-2} - P_{W_{n-1}}(k)$$

$$= k(k-1) \left[(k-2)^{n-2} - (k-2)^{n-3} \right] + P_{W_{n-2}}(k)$$

$$\vdots$$

$$= k(k-1) \left[(k-2)^{n-2} - (k-2)^{n-3} \cdots + -(k-2) \right]$$

$$= k(k-2)^{n-1} + (-1)^{n-1}k(k-2)$$

$$= k(k-2) \left[(k-2)^{n-2} + (-1)^{n-1} \right]$$

The Signs of the Coefficients of $P_G(k)$

Lemma: Let G be a graph with n vertices and m edges. Then the coefficients of $P_G(k)$ alternate between positive and negative.

Proof:

- \star By induction on m.
- ★ If m = 0 then $P_G(k) = k^n$ and 0 can be +0 or -0.
- \star Assume correctness for graphs with m-1 edges or less.
- \star Let (u, v) be an edge in G.

Proof Continue

- ★ Both G (u, v) and G/(u, v) have at most m 1 edges. G - (u, v) has n vertices and G/(u, v) has n - 1 vertices.
- * By induction, $P_{G-(u,v)} = k^n b_{n-1}k^{n-1} + b_{n-2}k^{n-2} \cdots$ for non-negative integers b_1, \ldots, b_{n-1} .
- * By induction, $P_{G/(u,v)} = k^{n-1} c_{n-2}k^{n-2} + c_{n-3}k^{n-3} \cdots$ for non-negative integers c_1, \ldots, c_{n-2} .
- * Recall that $P_G(k) = P_{G-(u,v)}(k) P_{G/(u,v)}(k)$.
- * $P_G(k) = k^n (b_{n-1} + 1)k^{n-1} + (b_{n-2} + c_{n-2})k^{n-2} \cdots$
- * The signs alternate since all b_i and c_i are not negative.