Graph Algorithms

Chromatic Polynomials

Chromatic Polynomials - Definition

$\star G$ - a simple labelled graph with n vertices and m edges.

* k - a positive integer.
* $P_{G}(k)$ - number of different ways of coloring the vertices of G with k colors.
$\star P_{G}(k)$ is an integer function (polynomial) of k :
- If $\chi(G)>k$ then $P_{G}(k)=0$.
- If $\chi(G) \leq k$ then $P_{G}(k)>0$.
$\Rightarrow \chi(G)$ is the smallest k such that $P_{G}(k)>0$.

3 Vertices and 0 Edges

* k ways to color independently each of the vertices u, v, w.

$$
P_{G}(k)=k^{3}
$$

3 Vertices, 0 Edges, and 2 colors

3 Vertices and 1 Edge

V

* k ways to color $v ; k$ ways to color $u ; k-1$ ways to color w that cannot get the color of u.

$$
\begin{aligned}
P_{G}(k) & =k^{2}(k-1) \\
& =k^{3}-k^{2}
\end{aligned}
$$

3 Vertices, 1 Edge, and 2 colors

$$
P_{G}(2)=2^{3}-2^{2}=4
$$

3 Vertices and 2 Edges

* k ways to color $u ; k-1$ ways to color v that cannot get the color of u; $k-1$ ways to color w that cannot get the color of u.

$$
\begin{aligned}
P_{G}(k) & =k(k-1)^{2} \\
& =k^{3}-2 k^{2}+k
\end{aligned}
$$

3 Vertices, 2 Edges, and 2 colors

$$
P_{G}(2)=2^{3}-2 \cdot 2^{2}+2=2
$$

3 Vertices and 3 Edges

* k ways to color $u ; k-1$ ways to color v that cannot get the color of u; $k-2$ ways to color w that cannot get the colors of u and v.

$$
\begin{aligned}
P_{G}(k) & =k(k-1)(k-2) \\
& =k^{3}-3 k^{2}+2 k \\
& =(k-1)^{3}-(k-1)
\end{aligned}
$$

3 Vertices, 3 Edges, and 3 colors

$$
P_{G}(3)=3 \cdot 2 \cdot 1=6
$$

4 Vertices and 5 Edges

* k ways to color $v ; k-1$ ways to color x that cannot get the color of $v ; k-2$ ways to color u that cannot get the colors of v and $x ; k-2$ ways to color w that cannot get the colors of v and x.

4 Vertices and 5 Edges

$$
\begin{aligned}
P_{G}(k) & =k(k-1)(k-2)^{2} \\
& =k^{4}-5 k^{3}+8 k^{2}-4 k
\end{aligned}
$$

4 Vertices and 5 Edges

* $k(k-1)$ ways to color u and w with different colors; $k-2$ ways to color v that cannot get the colors of u and $w ; k-3$ ways to color x that cannot get the colors of u, v, and w.
* k ways to color u and w with the same color; $k-1$ ways to color v that cannot get the color of u and $w ; k-2$ ways to color x that cannot get the colors of u, v, and w.

4 Vertices and 5 Edges

$$
\begin{aligned}
P_{G}(k) & =k(k-1)(k-2)(k-3)+k(k-1)(k-2) \\
& =k(k-1)(k-2)^{2} \\
& =k^{4}-5 k^{3}+8 k^{2}-4 k
\end{aligned}
$$

$P_{G}(k)$ - Properties

* $P_{G}(k)$ is a polynomial in k :

$$
P_{G}(k)=a_{n} k^{n}+a_{n-1} k^{n-1}+\cdots+a_{1} k+a_{0}
$$

* The degree of the polynomial is n : the number of vertices in the graph.
* All the coefficients are integers (could be 0).
\star The coefficient of k^{n} is $1: a_{n}=1$.
\star The coefficient of k^{0} is $0: a_{0}=0$.
\star The coefficient of k^{n-1} is $-m: a_{n-1}=-m$.

$P_{G}(k)$ - More Properties

* Signs of coefficients alternate between positive and negative.

$$
P_{G}(k)=k^{n}-m k^{n-1}+b_{n-2} k^{n-2} \cdots+-b_{1} k+-0
$$

for non-negative coefficients b_{1}, \ldots, b_{n-2}.

* For a graph with at least one edge, the sum of the coefficients is 0 .

$$
a_{n}+a_{n-1}+\cdots+a_{1}=0
$$

for positive or negative or zero coefficients a_{1}, \ldots, a_{n-2}.

Null Graphs - N_{n}

* The null graph N_{n} has n vertices and no edges.
* Each vertex can be colored independently with k colors.

$$
\begin{aligned}
P_{N_{n}}(k) & =k^{n} \\
& =k^{n}-0 \cdot k^{n-1}+0 \cdot k^{n-2}-\cdots+-0
\end{aligned}
$$

Complete Graphs - K_{n}

* The Complete graph K_{n} has n vertices and all possible edges: $m=\frac{n(n-1)}{2}$.
* The first vertex can be colored with k colors, the second with $k-1$ colors . . . and the last with $k-n+1$ colors.

$$
\begin{aligned}
P_{K_{n}}(k) & =k(k-1)(k-2) \cdots(k-n+1) \\
& =k^{n}-(1+2+\cdots+(n-1)) k^{n-1}+\cdots+-0
\end{aligned}
$$

Stars - S_{n}

* The Star graph S_{n} has $n-1$ edges. A root vertex is connected to the rest of the $n-1$ vertices each connected only to the root.
* The root can be colored with k colors and each of the other $n-1$ vertices can be colored with $k-1$ colors.

$$
\begin{aligned}
P_{S_{n}}(k) & =k(k-1)^{n-1} \\
& =k^{n}-(n-1) k^{n-1}+\cdots+-0
\end{aligned}
$$

Paths $-P_{n}$

* The Path graph P_{n} has $n-1$ edges. The vertices are connected as a path of length $n-1$ edges.
* The first vertex can be colored with k colors and each one of the other $n-1$ vertices, in order, can be colored with $k-1$ colors.

$$
\begin{aligned}
P_{P_{n}}(k) & =k(k-1)^{n-1} \\
& =k^{n}-(n-1) k^{n-1}+\cdots+-0
\end{aligned}
$$

Trees - T_{n}

* A tree T_{n} is an acyclic (connected) graph with n vertices and $n-1$ edges.
* The root can be colored with k colors and each of the other $n-1$ vertices can be colored with $k-1$ colors if it is colored after its parent and before all of its children.

$$
\begin{aligned}
P_{T_{n}}(k) & =k(k-1)^{n-1} \\
& =k^{n}-(n-1) k^{n-1}+\cdots+-0
\end{aligned}
$$

Finding the Chromatic Polynomial

* Let G be a labelled graph with n vertices.
* Suppose that there are $f(r)$ different ways to partition G into r independent sets.
* Each color class in any coloring is an independent set.
\Rightarrow A given partition into r independent sets can be colored in $k(k-1) \cdots(k-r+1)$ ways with k colors where each independent set gets a different color.

$$
P_{G}(k)=\sum_{r=1}^{n} f(r) \cdot k(k-1) \cdots(k-r+1)
$$

The Cycle C_{4}

$$
\begin{array}{rl}
\star f(1)=0 & f(2)=1 \quad f(3)=2 \quad f(4)=1 . \\
P_{C_{4}}(k)= & f(1) k+f(2) k(k-1)+f(3) k(k-1)(k-2) \\
& +f(4) k(k-1)(k-2)(k-3) \\
= & k^{2}-k+2 k^{3}-6 k^{2}+4 k+k^{4}-6 k^{3}+11 k^{2}-6 k \\
= & k^{4}-4 k^{3}+6 k^{2}-3 k \\
= & (k-1)^{4}+(k-1)
\end{array}
$$

The Coefficients in $P_{G}(k)$

$$
P_{G}(k)=\sum_{r=1}^{n} f(r) \cdot k(k-1) \cdots(k-r+1)
$$

$\star P_{G}(k)$ is a polynomial.

* All the coefficients in $P_{G}(k)$ are integers.
* The degree of $P_{G}(k)$ is n because $f(r)=0$ for $r>n$.
* The coefficient of k^{n} is 1 because $f(n)=1$.
* The coefficient of k^{0} is 0 . because $f(0)=0$.

The Sum of All the Coefficients

Lemma: Let G be a graph with n vertices and at least 1 edge. Then the sum of all the coefficients in $P_{G}(k)$ is 0 .

Proof:

\star It is impossible to color G with 1 color $\Rightarrow P_{G}(1)=0$.
\star By definition, $P_{G}(1)=a_{n} 1^{n}+a_{n-1} 1^{n-1}+\cdots+a_{1} 1^{1}$.
\star Therefore, $\sum_{i=1}^{n} a_{i}=0$.

The Coefficient of k^{n-1}

Lemma: Let G be a graph with n vertices and m edges.
Then the coefficient of k^{n-1} in $P_{G}(k)$ is $-m$.
Proof:
\star The coefficient of k^{n-1} in $k(k-1) \cdots(k-n+1)$ is $-\frac{1}{2} n(n-1)$ and $f(n)=1$.

* The coefficient of k^{n-1} in $k(k-1) \cdots(k-n+2)$ is 1 and $f(n-1)$ is equal to the number of non-adjacent pairs of vertices: $f(n-1)=\frac{1}{2} n(n-1)-m$.
* The coefficient of k^{n-1} in $k(k-1) \cdots(k-r+1)$ for $r<n-1$ is 0 .
* The coefficient of k^{n-1} in $P_{G}(k)$ is

$$
1 \cdot\left(-\frac{1}{2} n(n-1)\right)+\left(\frac{1}{2} n(n-1)-m\right) \cdot 1=-m .
$$

Disconnected Graphs

Lemma: Let $G_{1}, G_{2}, \ldots, G_{h}$ be the h connected components of G. Then $P_{G}(k)=P_{G_{1}}(k) \cdot P_{G_{2}}(k) \cdots P_{G_{h}}(k)$.

Proof: The colorings of the h connected components are independent.

Example:

$$
\begin{aligned}
P_{G}(k) & =P_{K_{2}}(k) \cdot P_{K_{1}}(k) \\
& =k(k-1) k \\
& =k^{3}-k^{2}
\end{aligned}
$$

Disconnected Graphs

Corollary: If G is composed of h connected components, then the coefficient of k^{ℓ} for $\ell<h$ is 0 .

Proof: The coefficient of k^{0} is 0 in $P_{G_{i}}(k)$ for all $1 \leq i \leq h$ \Rightarrow in the product of the h polynomials the smallest degree with a positive coefficient is k^{h}.

Example: The null graph N_{n} has n connected components \Rightarrow all the coefficients are 0 except the coefficient of k^{n} which is $1 \Rightarrow P_{N_{n}}(k)=k^{n}$.

Trees

Lemma: Assume that the chromatic polynomial of a graph G is $P_{G}(k)=k(k-1)^{n-1}$. Then G is a tree with n vertices.

Proof:

* The degree of $P_{G}(k)$ is $n \Rightarrow G$ has n vertices.
* The coefficient of k^{n-1} is $-(n-1) \Rightarrow G$ has $n-1$ edges.
* The coefficient of k in a disconnected graph is 0 and the coefficient of k in $k(k-1)^{n-1}$ is greater than $0 \Rightarrow G$ is connected.
* A connected graph with n vertices and $n-1$ edges is a tree.

Three Transformations

Delete an edge: $G-(u, v)$ is G without the old edge (u, v).
Add an edge: $G+(u, v)$ is G with the new edge (u, v).
Contract 2 vertices: $G /(u, v)$ is G
\star without the old vertices u and v and all the edges that are connected to them,

* with a new vertex $u v$ that is connected to all the neighbors of u and v.

First Recursive Formula for $P_{G}(k)$

Theorem: For any non-adjacent vertices u and v,

$$
P_{G}(k)=P_{G+(u, v)}(k)+P_{G /(u, v)}(k)
$$

Proof:
$\star P_{G+(u, v)}(k)$ covers all the colorings in which the color of u is different than the color of v.
$\star P_{G /(u, v)}(k)$ covers all the colorings in which the color of u is the same as the color of v.

The Null Graph N_{2}

$$
\begin{aligned}
& =- \\
& P_{N_{2}}(k)=P_{K_{2}}(k)+P_{K_{1}}(k) \\
& =k(k-1)+k \\
& = \\
& k^{2}
\end{aligned}
$$

First Recursive Formula for $P_{G}(k)$

Corollary: The chromatic polynomial of G is a linear combination of chromatic polynomials of complete graphs with at most n vertices,

$$
P_{G}(k)=P_{K_{n}}(k)+b_{n-1} P_{K_{n-1}}(k)+\cdots+b_{1} P_{K_{1}}(k)
$$

for some non-negative integers b_{n-1}, \ldots, b_{1}.

The Cycle C_{4}

$$
\begin{aligned}
P_{C_{4}}(k) & =P_{K_{4}}(k)+2 P_{K_{3}}(k)+P_{K_{2}}(k) \\
& =k(k-1)(k-2)(k-3)+2 k(k-1)(k-2)+k(k-1) \\
& =k^{4}-4 k^{3}+6 k^{2}-3 k \\
& =(k-1)^{4}+(k-1)
\end{aligned}
$$

Second Recursive Formula for $P_{G}(k)$

Theorem: For any edge (u, v),

$$
P_{G}(k)=P_{G-(u, v)}(k)-P_{G /(u, v)}(k)
$$

Proof:

$\star P_{G-(u, v)}(k)$ covers all the colorings in which the color of u is the same as the color of v and all the colorings in which the color of u is different than the color of v.
$\star P_{G /(u, v)}(k)$ covers all the colorings in which the color of u is the same as the color of v.

The Complete Graph K_{2}

$$
\begin{aligned}
& == \\
& P_{K_{2}}(k)=P_{N_{2}}(k)-P_{N_{1}}(k) \\
& =k^{2}-k \\
& =k(k-1)
\end{aligned}
$$

Second Recursive Formula for $P_{G}(k)$

Corollary: The chromatic polynomial of G is a linear combination of chromatic polynomials of null graphs with at most n vertices,

$$
P_{G}(k)=P_{N_{n}}(k)+c_{n-1} P_{N_{n-1}}(k)+\cdots+c_{1} P_{N_{1}}(k)
$$

for integers (positive, negative, or 0) c_{n-1}, \ldots, c_{1}.

The Cycle C_{4}

$$
\begin{aligned}
& \begin{aligned}
0 & =0
\end{aligned} \\
& =\bullet \bullet \bullet \bullet-2 \bullet \bullet+{ }^{\bullet}+{ }^{\bullet}-\bullet \\
& =\bullet \bullet \bullet \bullet{ }^{-3} \bullet{ }^{+3} \bullet^{+2} \bullet^{-2} \bullet{ }^{\bullet} \bullet^{-} \\
& =\bullet \bullet-{ }^{-4} \bullet^{+6} \bullet^{-3} \text { • } \\
& P_{C_{4}}(k)=P_{N_{4}}(k)-4 P_{N_{3}}(k)+6 P_{N_{2}}(k)-3 P_{N_{1}}(k) \\
& =k^{4}-4 k^{3}+6 k^{2}-3 k \\
& =(k-1)^{4}+(k-1)
\end{aligned}
$$

The Chromatic Polynomial of the Cycle C_{n}

$$
\begin{aligned}
P_{C_{n}}(k) & =P_{P_{n}}(k)-P_{C_{n-1}}(k) \\
& =P_{P_{n}}(k)-P_{P_{n-1}}(k)+P_{C_{n-2}}(k) \\
& \vdots \\
& =P_{P_{n}}(k)-P_{P_{n-1}}(k)+\cdots+-P_{P_{2}}(k) \\
& =k(k-1)^{n-1}-k(k-1)^{n-2}+\cdots+-k(k-1)
\end{aligned}
$$

The Chromatic Polynomial of the Cycle C_{n}

Proposition: For $n \geq 3, P_{C_{n}}(k)=(k-1)^{n}+(-1)^{n}(k-1)$.
Proof:

$$
\begin{aligned}
& \star P_{C_{3}}= \\
& \begin{array}{l}
\star P_{C_{4}}= \\
k^{4}-4 k^{3}+6 k^{2}-3 k=(k-1)^{4}+(k-1) . \\
\\
\begin{aligned}
P_{C_{n}}(k) & =P_{P_{n}}(k)-3 k^{2}+2 k=(k-1)^{3}-(k-1) . \\
& =k(k-1)^{n-1}-(k-1)^{n-1}-(-1)^{n-1}(k-1) \\
& =(k-1)^{n}+(-1)^{n}(k-1)
\end{aligned}
\end{array} . \begin{array}{l}
\text { (k)}
\end{array}
\end{aligned}
$$

The Chromatic Polynomial of the Broken Wheel B_{n}

$\star P_{B_{2}}=k(k-1)$.
$\star P_{B_{3}}=k(k-1)(k-2)$.
$\star P_{B_{4}}=k(k-1)(k-2)^{2}$.

The Chromatic Polynomial of the Broken Wheel B_{n}

$$
\begin{aligned}
& P_{B_{n}}(k)=P_{B_{n-1}^{\prime}}(k)-P_{B_{n-1}}(k) \\
& =(k-1) P_{B_{n-1}}(k)-P_{B_{n-1}}(k) \\
& =(k-2) P_{B_{n-1}}(k) \\
& \\
& : \\
& =(k-2)^{n-2} P_{B_{2}}(k) \\
& = \\
& =k(k-1)(k-2)^{n-2}
\end{aligned}
$$

The Chromatic Polynomial of the Wheel W_{n}

$\star P_{W_{4}}=k(k-1)(k-2)(k-3)$.
$\star P_{W_{5}}=k(k-1)(k-2)\left(k^{2}-5 k+7\right)$.
$\star P_{W_{6}}=k(k-1)(k-2)(k-3)\left(k^{2}-4 k+5\right)$.

The Chromatic Polynomial of the Wheel W_{n}

$$
\begin{aligned}
P_{W_{n}}(k) & =P_{B_{n}}(k)-P_{W_{n-1}}(k) \\
& =k(k-1)(k-2)^{n-2}-P_{W_{n-1}}(k) \\
& =k(k-1)\left[(k-2)^{n-2}-(k-2)^{n-3}\right]+P_{W_{n-2}}(k) \\
& \vdots \\
& =k(k-1)\left[(k-2)^{n-2}-(k-2)^{n-3} \cdots+-(k-2)\right] \\
& =k(k-2)^{n-1}+(-1)^{n-1} k(k-2) \\
& =k(k-2)\left[(k-2)^{n-2}+(-1)^{n-1}\right]
\end{aligned}
$$

The Signs of the Coefficients of $P_{G}(k)$

Lemma: Let G be a graph with n vertices and m edges. Then the coefficients of $P_{G}(k)$ alternate between positive and negative.

Proof:

\star By induction on m.

* If $m=0$ then $P_{G}(k)=k^{n}$ and 0 can be +0 or -0 .
\star Assume correctness for graphs with $m-1$ edges or less.
* Let (u, v) be an edge in G.

Proof Continue

* Both $G-(u, v)$ and $G /(u, v)$ have at most $m-1$ edges. $G-(u, v)$ has n vertices and $G /(u, v)$ has $n-1$ vertices.
* By induction, $P_{G-(u, v)}=k^{n}-b_{n-1} k^{n-1}+b_{n-2} k^{n-2}-\cdots$ for non-negative integers b_{1}, \ldots, b_{n-1}.
* By induction, $P_{G /(u, v)}=k^{n-1}-c_{n-2} k^{n-2}+c_{n-3} k^{n-3}-\cdots$ for non-negative integers c_{1}, \ldots, c_{n-2}.
夫 Recall that $P_{G}(k)=P_{G-(u, v)}(k)-P_{G /(u, v)}(k)$.
$\star P_{G}(k)=k^{n}-\left(b_{n-1}+1\right) k^{n-1}+\left(b_{n-2}+c_{n-2}\right) k^{n-2}-\cdots$
* The signs alternate since all b_{i} and c_{i} are not negative.

