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1 Regular Perturbations

We begin with a very simple example. Suppose you are solving the equation

x2 + ǫx− 1 = 0 (1.1)

where ǫ << 1. Although we can solve this equation exactly, we will solve it using a simple perturbation
expansion. If we assume that

x = x0 + ǫx1 + ǫ2x2 + ... (1.2)

we see that collecting the zeroeth order terms in ǫ, we conclude that

x2
0 − 1 = 0 (1.3)

This means that x0 = ±1. We will choose the root x0 = 1. If we collect the first order terms in the expansion
we get

2x0x1 + x0 = 0 (1.4)

This implies that

x1 = −
1

2
(1.5)

and hence to first order we have

x(ǫ) = 1−
ǫ

2
+O(ǫ2) (1.6)

Note that we could have used the quadratic formula to get

x =
−ǫ+

√
ǫ2 + 4

2
(1.7)

If we write
√
ǫ2 + 4 = 2

√

1 + ǫ2/4, we can then use the Taylor series for
√
1 + x to get

√

ǫ2 + 4 = 2
(

1 + ǫ2/8
)

+O(ǫ4) (1.8)

To order ǫ this will give us the same result as in Eqn. (1.6).
Here are a few comments about this example.

• Though it is almost trivial, it gets you familar with the procedure of sytematically collecting terms in
a perturbation expansion.

• We could apply the same result to similar equations where we could not so easily find the expansion
by other means. For example x3 − ǫx− 1 = 0.
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• We could have carried out this expansion by doing repeated implicit differentiation. This is in fact
what I would recommend for such problems.

• The fact that we could expand in powers of ǫ follows from the implicit function theorem.

2 A Singularly Perturbed Example

We now consider the example

ǫx2 + x+ 1 = 0 (2.1)

where we once again assume tht ǫ << 1. We could once again carry out a perturbation expansion assuming
that x = x0 + ǫx1 + ǫ2x2 + ... Collecting the zeroeth order terms in ǫ we get

x0 = −1 (2.2)

Collecting the first order terms in ǫ we get

x1 = −x2
0 = −1 (2.3)

This shows us that

x = −1− ǫ+O(ǫ2) (2.4)

We could once again confirm this using the quadratic equation. The solution using the quadratic equation
gives us

x =
−1±

√
1− 4ǫ

2ǫ
(2.5)

Using the approximation
√
1 + x = 1 + x/2− x2/8 + .., we have

√
1− 4ǫ = 1− 2ǫ− 2ǫ2 +O(ǫ2) (2.6)

If we take the positive sign in the square root, this gives us

x =
−2ǫ− 2ǫ2

2ǫ
= −1− ǫ+ ... (2.7)

This agrees with Eqn. (2.4). If we take the negative sign in the square root we get

x =
−2 + 2ǫ+ 2ǫ2

2ǫ
= −

1

ǫ
+ 1 +O(ǫ) (2.8)

Our simple perturbation expansion allowed us to get the first of these roots, but there was no evidence
of the second root. We would like to understand how we could have arrived at this second root by doing a
simple perturbation expansion.

The problem arises from the fact that it may be good to look for a change of variable of the form

x = ǫαz (2.9)

where α is a paramter we would like to determine. If we express Eqn. (2.5) in terms of z we will get the
equation

ǫ1+2αz2 + ǫαz + 1 = 0 (2.10)
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We would like to determine α so that at least two of the three terms in our equation are the same order
as ǫ goes to zero. We would like these two terms to be bigger as ǫ goes to zero than the remaining term. If
this is the case, we say we have a distinguished limit.

To see why a distinguished limit is good, lets take an example that is not a distinguished limit. Suppose
we let α = −2. After multiplying by ǫ3 this will give us the equation

z2 + ǫz + ǫ3 = 0 (2.11)

If we let ǫ = 0 in this equation this will give us z = 0. When doing a perturbation expansion, when
the lowest order term is zero, this is giving you no information. It is merely saying that x is much smaller
than 1/ǫ2. Further evidence that this is giving us little information is that if we try to carry out a regular
perturbation expansion expanding z in powers of ǫ we cannot carry out the expansion. This is because the
conditions of the implicit function theorem do not hold. That is if f(z, ǫ) = z2 + ǫz + ǫ3, then f ′(0, 0) = 0.

We will give one more example of a bad scaling. Suppose we set α = 1. In this case, we get the equation

ǫ3z2 + ǫz + 1 = 0 (2.12)

If we let ǫ = 0 this gives us the equation 1 = 0, which we cannot satisfy.
Unless two of the terms in the equation are of the same order as each other, we will either end up saying

that the leading order term in the expansion is zero (which is giving us no information), or we will get that
we cannot satisfy the equation at all to leading order.

With this in mind, lets look for some distinguished limits of Eqn. (2.10). If we choose α so that the first
two terms in Eqn. (2.10) have the same order, this requires that 1 + 2α = α, this gives us α = −1, which
after multiplying by ǫ will give us the equation

z2 + z + ǫ = 0 (2.13)

This is in fact the scaling we are looking for (we will discuss other possibilities later). If we set ǫ = 0 this
gives us

z2 + z = 0 (2.14)

This has the roots z = 0 and z = −1. The root z = 0 is associated with the root we already found by using
Eqn. (2.5) in its primitive form. We can actually do a regular perturbtion expansion abut z = 0 to get this
previous root.

On the other hand Eqn. (2.14) has the root z = −1. This root is giving us some non-trivial information,
and we will have no problems carrying out a perturbation expansion about this solution. In particular, if we
assume that z = z0 + ǫz1 + ǫ2z2 + .. then collecting the zeroeth order terms in ǫ we get

z0(z0 + 1) = 0 (2.15)

which we already noted has the solution z0 = −1. The first order terms can be written as

2z0z1 + z1 + 1 = 0 (2.16)

Using z0 = −1, this gives us z1 = 1. This gives us

z = −1 + ǫ+O(ǫ2) (2.17)

Puttng this back in terms of x, this gives us

x = −
1

ǫ
+ 1 +O(ǫ) (2.18)

This agrees with Eqn. (2.8).
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It is instructive to consider other scalings. Suppose that we scale our equations so that in Eqn. (2.10)
the first and third terms balance each other. In this case we must have 1 + 2α = 0, and hence α = −1/2.
After multiplying by

√
ǫ this would give us the equation

ǫ1/2z2 + z + ǫ1/2 = 0 (2.19)

Though the first and the third terms are of the same order, they are not the leading order terms. Thus this
is not a distinguished limit. The other possibility is to have the second and third terms in Eqn. (2.10) be
the same order. We can do this by letting α = 0, in which case we get our original scaling.

3 Multi-variate Polynomials-Puiseaux Series

We now give a singularly perturbed example involving mulivariate polynomials.
Suppose we have the equations

ǫy2 + xy + x+ y + 1 = 0 (3.1)

2ǫxy + x2 + y + 2 = 0 (3.2)

We are interested in finding the solutions for small values of ǫ. If we let ǫ = 0, we get the equations

xy + x+ y + 1 = 0 (3.3)

x2 + y + 2 = 0 (3.4)

The second of these equations shows that y = −2 − x2. If we substitute this into the first equation (still
assuming ǫ = 0 ) this will give us

−x(2 + x2) + x− 2− x2 + 1 = 0 (3.5)

which is a cubic equation in x. The three roots of this equation will give us three roots as ǫ goes to zero of
Eqns. (3.1) and (3.2). We would like to see if there are any other roots we have missed that are similar to
the one we missed at first in the last section. We will suppose that

x = ǫαξ, y = ǫβη (3.6)

If we substitute this into the equations (3.1) and (3.2) we get

ǫ1+2βη2 + ǫα+βξη + ǫαξ + ǫβη + 1 = 0 (3.7)

2ǫ1+α+βξη + ǫ2αξ2 + ǫβη + 2 = 0 (3.8)

We will have a distinguished limit if we can choose α and β so that two of the terms in the first equation
are of the same order, and two of the terms in the second equation are the same order. We also require that
these terms that are of the same order in each equation are the leading order terms. This is a much more
challenging problem than in our one dimensional example. It is good to understand conceptually how to
solve this problem, but in prqactice it is good to apply some cleverness.

In this particular example, a bit of playing around shows that we can choose α = −1, β = −2. After
multiplying Eqn. (3.7) by ǫ3 and Eqn. (3.8) by ǫ2 we get

η2 + ξη + ǫ2ξ + ǫη + ǫ3 = 0 (3.9)

2ξη + ξ2 + η + 2ǫ2 = 0 (3.10)
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When ǫ = 0 the first equation gives η(η + ξ) = 0, This either has η = 0 or ξ = −η. If η = 0, the second
equation gives ξ = 0. This is a trivial anwer that we ignore. On the other hand, if ξ = −η, the second
equation gives us η2 = η, which has the solution η = 0 or η = 1. The souton η = 0 will be trivial, and it
follows that the solution η = 1 is the one we are looking for. This will give us the leading order behavior

x = −
1

ǫ
+ .. (3.11)

y =
1

ǫ2
+ ... (3.12)

5


