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12 Safety Engineering 
Objectives 

The objective of this chapter is to explain techniques that are used to 
ensure safety when developing critical systems. When you have read this 
chapter, you will: 

understand what is meant by a safety-critical system and why safety has 
to be considered separately from reliability in critical systems 
engineering; 

understand how an analysis of hazards can be used to derive safety 
requirements; 

know about processes and tools that are used for software safety 
assurance; 

understand the notion of a safety case that is used to justify the safety 
of a system to regulators, and how formal arguments may be used in 
safety cases; 
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In Section 11.2, I briefly described an air accident at Warsaw airport where an 
Airbus crashed on landing. Two people were killed and 54 were injured. The 
subsequent enquiry showed that a major contributory cause of the accident was a 
failure of the control software that reduced the efficiency of the aircraft’s braking 
system. This is one of the, thankfully rare, examples of where the behaviour of a 
software system has led to death or injury. It illustrates that software is now a 
central component in many systems that are critical to preserving and maintaining 
life. These are safety-critical software systems and a range of specialized methods 
and techniques have been developed for safety-critical software engineering. 

As I discussed in Chapter 10, safety is one of the principal dependability 
properties. A system can be considered to be safe if it operates without catastrophic 
failure, that is, failure that causes or may cause death or injury to people. Systems 
whose failure may lead to environmental damage may also be safety-critical as 
environmental damage (such as a leak of chemicals) can lead to subsequent human 
injury or death.  

Software in safety-critical systems has a dual role to play in safety 
achievement: 

1. The system may be software-controlled so that the decisions made by the 
software and subsequent actions are safety-critical. Therefore, the software 
behaviour is directly related to the overall safety of the system. 

2. Software is extensively used for checking and monitoring other safety-
critical components in a system. For example, all aircraft engine 
components are monitored by software looking for early indications of 
component failure. This software is safety-critical because, if it fails, other 
components may fail and cause an accident.  

Safety in software systems is achieved by developing an understanding of 
the situations that might lead to safety-related failures. The software is engineered 
so that such failures do not occur. You might therefore think that if a safety-critical 
system is reliable and behaves as specified, it will therefore be safe.  Unfortunately, 
it isn’t quite as simple as this. System reliability is necessary for safety 
achievement but it isn’t enough. Reliable systems can be unsafe and vice versa. 
The Warsaw airport accident was an example of such a situation, which I’ll discuss 
in more detail in Section 12.2. 

There are four reasons why software systems that are reliable may not be 
safe: 

1. We can never be 100% certain that a software system is fault-free and fault-
tolerant. Undetected faults can be dormant for a long time and software 
failures can occur after many years of reliable operation. 

2. The specification may be incomplete in that it does not describe the required 
behaviour of the system in some critical situations. A high percentage of 
system malfunctions are the result of specification rather than design errors. 
In a study of errors in embedded systems, Lutz (Lutz 1993) concludes: 



Safety Engineering   3 
 

 

©Ian Sommerville 2013 

 “...difficulties with requirements are the key root cause of the safety-related 
software errors, which have persisted until integration and system testing.” 

 More recent work by Veras et al. (Veras et al. 2010) in space systems 
confirms that requirements errors are still a major problem for embedded 
systems. 

3. Hardware malfunctions may cause sensors and actuators to behave in an 
unpredictable way. When components are close to physical failure, they 
may behave erratically and generate signals that are outside the ranges that 
can be handled by the software. The software may then either fail or 
wrongly interpret these signals. 

4. The system operators may generate inputs that are not individually incorrect 
but which, in some situations, can lead to a system malfunction. An 
anecdotal example of this occurred when an aircraft undercarriage collapsed 
whilst the aircraft was on the ground. Apparently, a technician pressed a 
button that instructed the utility management software to raise the 
undercarriage. The software carried out the mechanic’s instruction perfectly. 
However, the system should have disallowed the command unless the plane 
was in the air. 

 Safety, therefore, has to be considered as well as reliability when 
developing safety-critical systems. The reliability engineering techniques that I 
introduced in Chapter 11 are obviously applicable for safety-critical systems 
engineering. I therefore do not discuss system architectures and dependable 
programming here but focus on techniques for improving and assuring system 
safety. 

12.1 Safety-critical systems 

Safety-critical systems are systems where it is essential that system operation is 
always safe. That is, the system should never damage people or the system’s 
environment, irrespective of whether or not the system conforms to its 
specification. Examples of safety-critical systems include control and monitoring 
systems in aircraft, process control systems in chemical and pharmaceutical plants 
and automobile control systems.  

Safety-critical software falls into two classes: 

1. Primary safety-critical software This is software that is embedded as a 
controller in a system. Malfunctioning of such software can cause a 
hardware malfunction, which results in human injury or environmental 
damage. The insulin pump software that I introduced in Chapter 1 is an 
example of a primary safety-critical system. System failure may lead to user 
injury. 
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 The insulin pump system is a simple system but software control is also 
used in very complex safety-critical systems. Software rather than hardware 
control is essential because of the need to manage large numbers of sensors 
and actuators, which have complex control laws. For example, advanced, 
aerodynamically unstable, military aircraft require continual software-
controlled adjustment of their flight surfaces to ensure that they do not 
crash. 

2. Secondary safety-critical software This is software that can indirectly result 
in an injury. An example of such software is a computer-aided engineering 
design system whose malfunctioning might result in a design fault in the 
object being designed. This fault may cause injury to people if the designed 
system malfunctions. Another example of a secondary safety-critical system 
is the Mentcare system for mental health patient management. Failure of this 
system, whereby an unstable patient may not be treated properly, could lead 
to that patient injuring themselves or others. 

 Some control systems, such as those controlling critical national 
infrastructure (electricity supply, telecommunications, sewage treatment, 
etc.) are secondary safety-critical systems. Failure of these systems is 
unlikely to have immediate human consequences. However, if there is a 
prolonged outage of the controlled systems, this could lead to injury and 
death. For example, failure of a sewage treatment system could lead to a 
higher level of infectious disease as raw sewage is released into the 
environment. 

I explained in Chapter 11 how software and system availability and 
reliability is achieved through fault avoidance, fault detection and removal and 
fault tolerance. Safety-critical systems development uses these approaches and 
augments them with hazard-driven techniques that consider the potential system 
accidents that may occur:   

1. Hazard avoidance The system is designed so that hazards are avoided. For 
example, a paper cutting system that requires an operator to use two hands 
to press separate buttons simultaneously avoids the hazard of the operator’s 
hands being in the blade pathway. 

2. Hazard detection and removal The system is designed so that hazards are 
detected and removed before they result in an accident. For example, a 
chemical plant system may detect excessive pressure and open a relief valve 
to reduce pressure before an explosion occurs. 

3. Damage limitation The system may include protection features that 
minimize the damage that may result from an accident. For example, an 
aircraft engine normally includes automatic fire extinguishers. If there is an 
engine fire, it can often be controlled before it poses a threat to the aircraft. 

A hazard is a system state that could lead to an accident. Using the above 
example of the paper cutting system, a hazard arises when the operator’s hand is in 
a position where the cutting blade could injure it. Hazards are not accidents – we 
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often get into hazardous situations and get out of them without any problems. 
However, accidents are always preceded by hazards so reducing hazards reduces 
accidents. 

A hazard is one example of the specialized vocabulary that is used in safety-
critical systems engineering. I explain other terminology used in safety-critical 
systems in Figure 12.1.  

We are now actually pretty good at building systems that can cope with one 
thing going wrong. We can design mechanisms into the system that can detect and 
recover from single problems. However, when several things go wrong at the same 
time, accidents are more likely.  As systems become more and more complex, we 
don’t understand the relationships between the different parts of the system. 

Term Definition 

Accident (or 
mishap) 

An unplanned event or sequence of events that results in 
human death or injury, damage to property or to the 
environment. An overdose of insulin is an example of an 
accident. 

Damage A measure of the loss resulting from a mishap. Damage can 
range from many people being killed as a result of an accident 
to minor injury or property damage. Damage resulting from an 
overdose of insulin could be serious injury or the death of the 
user of the insulin pump. 

Hazard A condition with the potential for causing or contributing to an 
accident. A failure of the sensor that measures blood glucose 
is an example of a hazard. 

Hazard probability The probability of the events occurring which create a hazard. 
Probability values tend to be arbitrary but range from 
‘probable’ (say 1/100 chance of a hazard occurring) to 
‘implausible’ (no conceivable situations are likely in which the 
hazard could occur). The probability of a sensor failure in the 
insulin pump that over-estimates the user’s blood sugar level 
is low. 

Hazard severity An assessment of the worst possible damage that could result 
from a particular hazard. Hazard severity can range from 
catastrophic, where many people are killed, to minor, where 
only minor damage results. When an individual death is a 
possibility, a reasonable assessment of hazard severity is 
‘very high’. 

Risk This is a measure of the probability that the system will cause 
an accident. The risk is assessed by considering the hazard 
probability, the hazard severity and the probability that the 
hazard will lead to an accident.  The risk of an insulin 
overdose is medium to low. 

  

Figure 12.1 
Safety 
terminology 
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Consequently, we cannot predict the consequences of a combination of unexpected 
system events or failures. 

In an analysis of serious accidents, Perrow (Perrow 1984) suggested that 
almost all of these accidents were due to a combination of failures in different parts 
of a system. Unanticipated combinations of sub-system failures led to interactions 
that resulted in overall system failure. For example, failure of an air conditioning 
system may lead to overheating. Once hardware gets hot, its behaviour becomes 
unpredictable so overheating may lead to the system hardware generating incorrect 
signals. These may then cause the software to react incorrectly.  

Perrow made the point that, in complex systems, it is impossible to 
anticipate all possible combinations of failures. He therefore coined the phrase 
‘normal accidents’, with the implication that accidents have to be considered as 
inevitable when we build complex safety-critical systems.  

To reduce complexity, we could use simple hardware controllers rather than 
software control. However, software-controlled systems can monitor a wider range 
of conditions than simpler electro-mechanical systems. They can be adapted 
relatively easily. They use computer hardware, which has high inherent reliability 
and which is physically small and lightweight.  

Software-controlled systems can provide sophisticated safety interlocks. 
They can support control strategies that reduce the amount of time people need to 
spend in hazardous environments. Although software control may introduce more 
ways in which a system can go wrong, it also allows better monitoring and 
protection. Therefore, software control can contribute to improvements in system 
safety. 

It is important to maintain a sense of proportion about safety-critical 
systems. Critical software systems operate without problems most of the time. 
Relatively few people worldwide have been killed or injured because of faulty 
software. Perrow is right in saying that there will always be the possibility of 
accidents. It is impossible to make a system 100% safe and society has to decide 
whether or not the consequences of an occasional accident are worth the benefits 
that come from the use of advanced technologies.  

 
 
  

Risk-based requirements specification 

Risk-based specification is an approach that has been widely used by safety and 
security-critical systems developers. It focuses on those events that could cause 
the most damage or that are likely to occur frequently. Events that have only 
minor consequences or that are extremely rare may be ignored. The risk-based 
specification process involves understanding the risks faced by the system, 
discovering their root causes and generating requirements to manage these 
risks. 

http://software-engineering-book.com/web/risk-based-specification/ 
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12.2 Safety requirements 

In the introduction to this chapter, I described an air accident at Warsaw airport 
where the braking system on an Airbus failed. The enquiry into this accident 
showed that the braking system software had operated according to its 
specification. There were no errors in the program. However, the software 
specification was incomplete and had not taken into account a rare situation, which 
arose in this case. The software worked but the system failed.  

This illustrates that system safety does not just depend on good engineering. 
It requires attention to detail when the system requirements are derived and the 
inclusion of special software requirements that are geared to ensuring the safety of 
a system.  Safety requirements are functional requirements, which define checking 
and recovery facilities that should be included in the system and features that 
provide protection against system failures and external attacks. 

The starting point for generating functional safety requirements is usually 
domain knowledge, safety standards and regulations. These lead to high-level 
requirements that are perhaps best described as ‘shall not’ requirements. By 
contrast with normal functional requirements that define what the system shall do, 
‘shall not’ requirements define system behavior that is unacceptable. Examples of 
‘shall not’ requirements are: 

  “The system shall not allow reverse thrust mode to be selected when the 
aircraft is in flight.”   

“The system shall not allow the simultaneous activation of more than three 
alarm signals.”  

“The navigation system shall not allow users to set the required destination 
when the car is moving.”  

These ‘shall not’ requirements cannot be implemented directly but have to 
be decomposed into more specific software functional requirements. Alternatively, 
they may be implemented through system design decisions such as a decision to 
use particular types of equipment in the system.  

Safety requirements are primarily protection requirements and are not 
concerned with normal system operation. They may specify that the system should 
be shut down so that safety is maintained. In deriving safety requirements, you 
therefore need to find an acceptable balance between safety and functionality and 
avoid over-protection. There is no point in building a very safe system if it does not 
operate in a cost-effective way.  

Risk-based requirements specification is a general approach used in critical 
systems engineering where risks faced by the system are identified and 
requirements to avoid or mitigate these risks are identified. It may be used for all 
types of dependability requirements. For safety-critical systems, it translates into a 
process driven by identified hazards.  As I discussed in the previous section, a 
hazard is something that could (but need not) result in death or injury to a person.  

There are four activities in a hazard-driven safety specification process: 
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1. Hazard identification The hazard identification process identifies hazards 
that may threaten the system. These hazards may be recorded in a hazard 
register. This is a formal document that records the safety analyses and 
assessments and which may be submitted to a regulator as part of a safety 
case. 

2. Hazard assessment The hazard assessment process decides which hazards 
are the most dangerous and/or the most likely to occur. These should be 
prioritized when deriving safety requirements.   

3. Hazard analysis This is a process of root-cause analysis that identifies the 
events that can lead to the occurrence of a hazard.   

4. Risk reduction This process is based on the outcome of hazard analysis and 
leads to identification of safety requirements. These may be concerned with 
ensuring that a hazard does not arise or lead to an accident or that if an 
accident does occur, the associated damage is minimized. 

Figure 12.2 illustrates this hazard-driven safety requirements specification process. 

12.2.1 Hazard identification 
In safety-critical systems, hazard identification starts by identifying different 
classes of hazard, such as physical hazards, electrical hazards, biological hazards, 
radiation hazards, service failure hazards and so on. Each of these classes can then 
be analyzed to discover specific hazards that could occur. Possible combinations of 
hazards that are potentially dangerous must also be identified. 

Experienced engineers, working with domain experts and professional 
safety advisers, identify hazards from previous experience and from an analysis of 
the application domain. Group working techniques such as brainstorming may be 
used, where a group meets to exchange ideas. For the insulin pump system, people 
who may be involved include doctors, medical physicists and engineers and 
software designers. 

The insulin pump system that I introduced in Chapter 1 is a safety-critical 
system, because failure can cause injury or even death to the system user. 
Accidents that may occur when using this machine include the user suffering from 
long-term consequences of poor blood sugar control (eye, heart and kidney 

Hazard 
probability and 

acceptability

Safety 
requirements

Root cause 
analyses

Hazard register

Hazard 
identification

Hazard 
assessment

Hazard 
analysis

Risk reduction

Figure 12.2 
Hazard-driven 
requirements 
specification 
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problems), cognitive dysfunction as a result of low blood sugar levels or the 
occurrence of some other medical conditions, such as an allergic reaction.  

Some of the hazards that may arise in the insulin pump system are: 

• insulin overdose computation (service failure); 

• insulin underdose computation (service failure); 

• failure of the hardware monitoring system (service failure); 

• power failure due to exhausted battery (electrical); 

• electrical interference with other medical equipment such as a heart 
pacemaker (electrical); 

• poor sensor and actuator contact caused by incorrect fitting (physical); 

• parts of machine breaking off in patient’s body (physical); 

• infection caused by introduction of machine (biological); 

• allergic reaction to the materials or insulin used in the machine 
(biological). 

Software-related hazards are normally concerned with failure to deliver a 
system service, or with the failure of monitoring and protection systems. 
Monitoring and protection systems may be included in a device to detect 
conditions, such as a low battery level, which could lead to device failure.  

A hazard register may be used to record the identified hazards with an 
explanation why the hazard has been included. The hazard register is an important 
legal document as it records all safety-related decisions about each hazard. It can be 
used to show that the requirements engineers have paid due care and attention in 
considering all foreseeable hazards and that these hazards have been analyzed. In 
the event of an accident, the hazard register may be used in a subsequent inquiry or 
legal proceedings to show that the system developers have not been negligent in 
their system safety analysis. 

12.2.2 Hazard assessment  
The hazard assessment process focuses on understanding the factors that lead to the 
occurrence of a hazard and the consequences if an accident or incident associated 
with that hazard should occur. You need to carry out this analysis to understand 
whether a hazard is a serious threat to the system or environment. The analysis also 
provides a basis for deciding on how to manage the risk associated with the hazard.  

For each hazard, the outcome of the analysis and classification process is a 
statement of acceptability. This is expressed in terms of risk, where the risk takes 
into account the likelihood of an accident and its consequences. There are three risk 
categories that you can use in hazard assessment: 

1. Intolerable risks in safety-critical systems are those that threaten human life. 
The system must be designed so that such hazards either cannot arise or, that 
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if they do, features in the system will ensure that they are detected before 
they cause an accident. In the case of the insulin pump, an intolerable risk is 
that an overdose of insulin should be delivered.  

2. As low as reasonably practical (ALARP) risks are those that have less 
serious consequences or that are serious but have a very low probability of 
occurrence. The system should be designed so that the probability of an 
accident arising because of a hazard is minimized, subject to other 
considerations such as cost and delivery. An ALARP risk for an insulin 
pump might be the failure of the hardware monitoring system. The 
consequences of this are, at worst, a short-term insulin underdose. This is a 
situation that would not lead to a serious accident. 

3. Acceptable risks are those where the associated accidents normally result in 
minor damage. System designers should take all possible steps to reduce 
‘acceptable’ risks, so long as these do not significantly increase costs, 
delivery time or other non-functional system attributes. An acceptable risk 
in the case of the insulin pump might be the risk of an allergic reaction 
arising in the user. This usually causes only minor skin irritation. It would 
not be worth using special, more expensive materials in the device to reduce 
this risk. 

Figure 12.3 shows these three regions. The width of the triangle reflects the 
costs of ensuring risks do not result in incidents or accidents. The highest costs are 
incurred by risks at the top of the diagram, the lowest costs by risks at the apex of 
the triangle. 

The boundaries between the regions in Figure 12.3 are not fixed but depend 
on how acceptable risks are in the societies where the system will be deployed. 
This varies from country to country – some societies are more risk averse and 
litigious than others. Over time, however, all societies have become more risk-

Figure 12.3 The risk 
triangle 
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averse, so the boundaries have moved downwards. For rare events, the financial 
costs of accepting risks and paying for any resulting accidents may be less than the 
costs of accident prevention. However, public opinion may demand that money be 
spent to reduce the likelihood of a system accident irrespective of cost. 

For example, it may be cheaper for a company to clean up pollution on the 
rare occasion it occurs, rather than to install systems for pollution prevention. 
However, because the public and the media will not tolerate such accidents, 
clearing up the damage rather than preventing the accident is no longer acceptable. 
Events in other systems may also lead to a re-classification of risk. For example, 
risks that were thought to be improbable (and hence in the ALARP region) may be 
reclassified as intolerable because of external events, such as terrorist attacks, or 
natural phenomena, such as tsunamis. 

Figure 12.4 shows a risk classification for the hazards identified in the 
previous section for the insulin delivery system. I have separated the hazards that 
relate to the incorrect computation of insulin into an insulin overdose and an insulin 
underdose. An insulin overdose is potentially more serious than an insulin 
underdose in the short term. Insulin overdose can result in cognitive dysfunction, 
coma and ultimately death. Insulin underdoses lead to high levels of blood sugar. In 
the short term, these cause tiredness but are not very serious; in the longer term, 
however, they can lead to serious heart, kidney and eye problems. 

Hazards 4–9 in Figure 12.4 are not software related, but software 
nevertheless has a role to play in hazard detection. The hardware monitoring 
software should monitor the system state and warn of potential problems. The 
warning will often allow the hazard to be detected before it causes an accident. 
Examples of hazards that might be detected are power failure, which is detected by 

Figure 12.4 Risk 
classification for 
the insulin pump 
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monitoring the battery, and incorrect fitting of the machine, which may be detected 
by monitoring signals from the blood sugar sensor.  

The monitoring software in the system is, of course, safety-related. Failure 
to detect a hazard could result in an accident. If the monitoring system fails but the 
hardware is working correctly then this is not a serious failure. However, if the 
monitoring system fails and hardware failure cannot then be detected, then this 
could have more serious consequences.  

Hazard assessment involves estimating the hazard probability and risk 
severity. This is difficult as hazards and accidents are uncommon so the engineers 
involved may not have direct experience of previous incidents or accidents. In 
estimating probabilities and accident severity, it makes sense to use relative terms 
such as ‘probable’, ‘unlikely’, ‘rare’, ‘high’, ‘medium’ and ‘low’. Quantifying 
these terms is practically impossible because there is not enough statistical data 
available for most types of accident. 

12.2.3 Hazard analysis 
Hazard analysis is the process of discovering the root causes of hazards in a safety-
critical system. Your aim is to find out what events or combination of events could 
cause a system failure that results in a hazard. To do this, you can use either a top-
down or a bottom-up approach. Deductive, top-down techniques, which are easier 
to use, start with the hazard and work from that to the possible system failure. 
Inductive, bottom-up techniques start with a proposed system failure and identify 
what hazards might result from that failure. 

Various techniques have been proposed as possible approaches to hazard 
decomposition or analysis (Storey 1996). One of the most commonly used 
techniques is fault tree analysis, a top-down technique, which was developed for 
the analysis of both hardware and software hazards (Leveson, Cha, and Shimeall 
1991). This technique is fairly easy to understand without specialist domain 
knowledge.  

To do a fault tree analysis, you start with the hazards that have been 
identified. For each hazard, you then work backwards to discover the possible 
causes of that hazard. You put the hazard at the root of the tree and identify the 
system states that can lead to that hazard. For each of these states, you then identify 
further system states that can lead to them. You continue this decomposition until 
you reach the root cause(s) of the risk. Hazards that can only arise from a 
combination of root causes are usually less likely to lead to an accident than 
hazards with a single root cause.  

Figure 12.5 is a fault tree for the software-related hazards in the insulin 
delivery system that could lead to an incorrect dose of insulin being delivered. In 
this case, I have merged insulin underdose and insulin overdose into a single 
hazard, namely ‘incorrect insulin dose administered’. This reduces the number of 
fault trees that are required. Of course, when you specify how the software should 
react to this hazard, you have to distinguish between an insulin underdose and an 
insulin overdose. As I have said, they are not equally serious – in the short-term, an 
overdose is the more serious hazard. 

From Figure 12.5, you can see that: 
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1. There are three conditions that could lead to the administration of an 
incorrect dose of insulin. The level of blood sugar may have been 
incorrectly measured so the insulin requirement has been computed with an 
incorrect input. The delivery system may not respond correctly to 
commands specifying the amount of insulin to be injected. Alternatively, the 
dose may be correctly computed but it is delivered too early or too late. 

2. The left branch of the fault tree, concerned with incorrect measurement of 
the blood sugar level, identifies how this might happen. This could occur 
either because the sensor that provides an input to calculate the sugar level 
has failed or because the calculation of the blood sugar level has been 
carried out incorrectly. The sugar level is calculated from some measured 
parameter, such as the conductivity of the skin. Incorrect computation can 
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result from either an incorrect algorithm or an arithmetic error that results 
from the use of floating point numbers. 

3. The central branch of the tree is concerned with timing problems and 
concludes that these can only result from system timer failure. 

4. The right branch of the tree, concerned with delivery system failure, 
examines possible causes of this failure. These could result from an 
incorrect computation of the insulin requirement, or from a failure to send 
the correct signals to the pump that delivers the insulin. Again, an incorrect 
computation can result from algorithm failure or arithmetic errors. 

Fault trees are also used to identify potential hardware problems. Hardware 
fault trees may provide insights into requirements for software to detect and, 
perhaps, correct these problems. For example, insulin doses are not administered at 
a very high frequency, no more than five or six times per hour and sometimes less 
often than this. Therefore, processor capacity is available to run diagnostic and self-
checking programs. Hardware errors such as sensor, pump or timer errors can be 
discovered and warnings issued before they have a serious effect on the patient. 

12.2.4 Risk reduction 
Once potential risks and their root causes have been identified, you are then able to 
derive safety requirements that manage the risks and ensure that incidents or 
accidents do not occur. There are three possible strategies that you can use: 

1. Hazard avoidance where a system is designed so that the hazard cannot 
occur. 

2. Hazard detection and removal where a system is designed so that hazards 
are detected and neutralized before they result in an accident. 

3. Damage limitation where a system is designed so that the consequences of 
an accident are minimized. 

Normally, designers of critical systems use a combination of these 
approaches. In a safety-critical system, intolerable hazards may be handled by 
minimizing their probability and adding a protection system (see Chapter 11) that 
provides a safety backup. For example, in a chemical plant control system, the 
system will attempt to detect and avoid excess pressure in the reactor. However, 
there may also be an independent protection system that monitors the pressure and 
opens a relief valve if high pressure is detected.  

In the insulin delivery system, a ‘safe state’ is a shutdown state where no 
insulin is injected. Over a short period this is not a threat to the diabetic’s health. 
For the software failures that could lead to an incorrect dose of insulin are 
considered, the following ‘solutions’ might be developed: 

1. Arithmetic error This may occur when an arithmetic computation causes a 
representation failure. The specification should identify all possible 
arithmetic errors that may occur and state that an exception handler must be 
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included for each possible error. The specification should set out the action 
to be taken for each of these errors. The default safe action is to shut down 
the delivery system and activate a warning alarm. 

2. Algorithmic error This is a more difficult situation as there is no clear 
program exception that must be handled. This type of error could be 
detected by comparing the required insulin dose computed with the 
previously delivered dose. If it is much higher, this may mean that the 
amount has been computed incorrectly. The system may also keep track of 
the dose sequence. After a number of above-average doses have been 
delivered, a warning may be issued and further dosage limited. 

Some of the resulting safety requirements for the insulin pump software are shown 
in Figure 12.6. Tables 3 and 4 relate to tables that are included in the requirements 
document – they are not shown here. These are user requirements and, naturally, 
they would be expressed in more detail in a more detailed system requirements 
specification.   

12.3 Safety engineering processes 

The software processes that are used for the development of safety-critical software 
are based on the processes used in software reliability engineering. In general, a 
great deal of care is taken in developing a complete, and often very detailed, system 
specification. The design and implementation of the system usual follows a plan-
based, waterfall model, with reviews and checks at each stage in the process. Fault 
avoidance and fault detection are the drivers of the process. For some types of 
system, such as aircraft systems, fault tolerant architectures, as I discussed in 
Chapter 11, may be used. 

Figure 12.6 
Examples of safety 
requirements 

 

SR1: The system shall not deliver a single dose of insulin that is greater than a 
specified maximum dose for a system user. 

SR2: The system shall not deliver a daily cumulative dose of insulin that is 
greater than a specified maximum daily dose for a system user. 

SR3: The system shall include a hardware diagnostic facility that shall be 
executed at least four times per hour. 

SR4: The system shall include an exception handler for all of the exceptions that 
are identified in Table 3. 

SR5: The audible alarm shall be sounded when any hardware or software 
anomaly is discovered and a diagnostic message as defined in Table 4 
shall be displayed. 

SR6: In the event of an alarm, insulin delivery shall be suspended until the user 
has reset the system and cleared the alarm. 
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Reliability is a pre-requisite for safety-critical systems. Because of the very 
high costs and potentially tragic consequences of system failure, additional 
verification activities may be used in safety-critical systems development. These 
activities may include developing formal models of a system and analysing these to 
discover errors and inconsistencies and using static analysis software tools that 
parse the software source code to discover potential faults. 

Safe systems have to be reliable, but, as I have discussed, reliability is not 
enough. Requirements and verification errors and omissions may mean that reliable 
systems are unsafe. Therefore, safety-critical systems development processes 
should include safety reviews, where engineers and system stakeholders examine 
the work done and explicitly look for potential issues that could affect the safety of 
the system. 

Some types of safety-critical systems are regulated, as I explained in 
Chapter 10. National and international regulators require detailed evidence that the 
system is safe. This evidence might include: 

1. The specification of the system that has been developed and records of the 
checks made on that specification. 

2. Evidence of the verification and validation processes that have been carried 
out and the results of the system verification and validation. 

3. Evidence that the organizations developing the system have defined and 
dependable software processes that include safety assurance reviews. There 
must also be records that show that these processes have been properly 
enacted.  

Not all safety-critical systems are regulated – for example, there is no 
regulator for automobiles although these now have many embedded computer 
systems. The safety of car-based systems is the responsibility of the car 
manufacturer. However, because of the possibility of legal action in the event of an 
accident, developers of unregulated systems have to maintain the same detailed 
safety information. If a case is brought against them, they have to be able to show 
that they have not been negligent in the development of the software in the car. 

The need for this extensive process and product documentation is another 
reason why agile processes cannot be used, without significant change, for safety-
critical systems development. Agile processes focus on the software itself and 
(rightly) argue that a great deal of process documentation is never actually used 
after it has been produced. However, where you have to keep records for legal or 
regulatory reasons, you must maintain documentation about both the processes 
used and the system itself.  

Safety-critical systems, like other types of system that have high 
dependability requirements, need to be based on dependable processes (see Chapter 
10). A dependable process will normally include activities such as requirements 
management, change management and configuration control, system modeling, 
reviews and inspections, test planning and test coverage analysis.  When a system 
is safety-critical, there may be additional safety assurance and verification and 
analyses processes.  
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12.3.1 Safety assurance processes 
Safety assurance is a set of activities that check that a system will operate safely.  
Specific safety assurance activities should be included at all stages in the software 
development process. These safety assurance activities record the safety analyses 
that have been carried out and the person or people responsible for these analyses. 
Safety assurance activities have to be thoroughly documented. This documentation 
may be part of the evidence that is used to convince a regulator or system owner 
that a system will operate safely. 

Examples of safety assurance activities are: 

1. Hazard analysis and monitoring, where hazards are traced from preliminary 
hazard analysis through to testing and system validation. 

2. Safety reviews, which are used throughout the development process. 

3. Safety certification, where the safety of critical components is formally 
certified. This involves a group external to the system development team 
examining the available evidence and deciding whether or not a system or 
component should be considered to be safe before it is made available for 
use.  

To support these safety assurance processes, project safety engineers should 
be appointed who have explicit responsibility for the safety aspects of a system. 
This means that these individuals will be held responsible if a safety-related system 
failure occurs. They must be able to demonstrate that the safety assurance activities 
have been properly carried out.  

Safety engineers work with quality managers to ensure that a detailed 
configuration management system is used to track all safety-related documentation 
and keep it in step with the associated technical documentation. There is little point 
in having stringent validation procedures if a failure of configuration management 
means that the wrong system is delivered to the customer. Quality and 
configuration management are covered in Chapters 24 and 25. 

Hazard analysis is an essential part of safety-critical systems development. 
Hazard analysis involves identifying hazards, their probability of occurrence and 
the probability of a hazard leading to an accident. If there is program code that 
checks for and handles each hazard, then you can argue that these hazards will not 
result in accidents. Where external certification is required before a system is used 
(e.g. in an aircraft), it is usually a condition of certification that this traceability can 
be demonstrated. 

The central safety document that should be produced is the hazard register. 
This document provides evidence of how identified hazards have been taken into 
account during software development. This hazard register is used at each stage of 
the software development process to document how that development stage has 
taken the hazards into account.  
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A simplified example of a hazard register entry for the insulin delivery 
system is shown in Figure 12.7. This documents the process of hazard analysis and 
shows design requirements that have been generated during this process. These 
design requirements are intended to ensure that the control system can never 
deliver an insulin overdose to a user of the insulin pump.  

Individuals who have safety responsibilities should be explicitly identified 
in the hazard register. There are two reasons why personal identification is 
important: 

1. When people are identified, they can be held accountable for their actions. 
This means that they are likely to take more care because any problems can 
be traced back to their work. 

2. In the event of an accident, there may be legal proceedings or an enquiry. It 
is important to be able to identify who was responsible for safety assurance 
so that they can defend their actions as part of the legal process. 

Safety reviews are reviews of the software specification, design and source 
code whose aim is to discover potentially hazardous conditions. These are not 
automated processes but involve people carefully checking for errors that have 
been made and for assumptions or omissions that may affect the safety of a system. 
For example, in the aircraft accident that I introduced at the beginning of this 
chapter, a safety review might have questioned the assumption that an aircraft is on 
the ground when there is weight on both wheels and the wheels are rotating.  

Hazard Register.  Page 4: Printed 20.02.2012 
System: Insulin Pump System 
Safety Engineer: James Brown 

File: InsulinPump/Safety/HazardLog 
Log version: 1/3 

Identified Hazard Insulin overdose delivered to patient 
Identified by Jane Williams 
Criticality class 1 
Identified risk High 

 Fault tree identified YES Date 24.01.11 Location Hazard register, 
Page 5 

Fault tree creators Jane Williams and Bill Smith 
Fault tree checked YES Date 28.01.11 Checker James Brown 

 System safety design requirements 

1.  The system shall include self-testing software that will test the sensor system, 
the clock and the insulin delivery system. 

2.  The self-checking software shall be executed once per minute. 
3. In the event of the self-checking software discovering a fault in any of the 

system components, an audible warning shall be issued and the pump display 
shall indicate the name of the component where the fault has been discovered. 
The delivery of insulin shall be suspended. 

4. The system shall incorporate an override system that allows the system user to 
modify the computed dose of insulin that is to be delivered by the system. 

 5. The amount of override shall be no greater than a pre-set value (maxOverride), 
which is set when the system is configured by medical staff. 

 

Figure 12.7 A 
simplified hazard 
register entry 



Safety Engineering   19 
 

 

©Ian Sommerville 2013 

Safety reviews should be driven by the hazard register. For each of the 
identified hazards, a review team examines the system and judges whether or not it 
would cope with that hazard in a safe way. If there are doubts raised, these are 
flagged in the review team’s report and have to be addressed by the system 
development team. I discuss reviews of different types in more detail in Chapter 
24, which covers software quality assurance. 

Software safety certification is used when external components are 
incorporated into a safety-critical system. When all parts of a system have been 
locally developed, complete information about the development processes used can 
be maintained. However, it is not cost-effective to develop components that are 
readily available from other vendors. The problem for safety-critical systems 
development is that these external components may have been developed to 
different standards than locally developed components. Their safety is unknown.   

Consequently, it may be a requirement that all external components that are 
used may have to be certified before they can be integrated with a system. The 
safety certification team, which is separate from the development team, carries out 
extensive verification and validation of the components. If appropriate, they liaise 
with the component developers to check the developers have used dependable 
processes to create these components and to examine the component source code. 
Once they are satisfied that a component meets its specification and does not have 
‘hidden’ functionality, they may issue a certificate allowing that component to be 
used in safety-critical systems. 
 

12.3.2 Formal verification 
Formal methods of software development, as I discussed in Chapter 10, rely on a 
formal model of the system that serves as a system specification. These formal 
methods are mainly concerned with a mathematical analysis of the specification; 
with transforming the specification to a more detailed, semantically equivalent 
representation; or with formally verifying that one representation of the system is 
semantically equivalent to another representation.  

The need for assurance in safety critical systems has been one of the 
principal drivers in the development of formal methods. Comprehensive system 
testing is extremely expensive and cannot be guaranteed to uncover all of the faults 

Licensing of software engineers 

In some areas of engineering, safety engineers must be licensed engineers. 
Inexperienced, poorly qualified engineers are not allowed to take responsibility 
for safety. In 30 states of the USA, there is some form of licensing for software 
engineers involved in safety-related systems development. These states require 
that engineering involved in safety-critical software development should be 
licensed engineers, with a defined minimum level of qualifications and 
experience. This is a controversial issue and licensing is not required in many 
other countries. 

http://software-engineering-book.com/safety-licensing/ 
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in a system. This is particularly true of systems that are distributed, so that system 
components are running concurrently. Several safety-critical railway systems were 
developed using formal methods in the 1990s (Dehbonei and Mejia 1995; Behm et 
al. 1999). Companies such as Airbus routinely use formal methods in their software 
development for critical systems (Souyris et al. 2009).  

Formal methods may be used at different stages in the V & V process: 

1. A formal specification of the system may be developed and mathematically 
analyzed for inconsistency. This technique is effective in discovering 
specification errors and omissions. Model checking, discussed in the next 
section, is a particularly effective approach to specification analysis. 

2. You can formally verify, using mathematical arguments, that the code of a 
software system is consistent with its specification. This requires a formal 
specification. It is effective in discovering programming and some design 
errors.  

Because of the wide semantic gap between a formal system specification 
and program code, it is difficult and expensive to prove that a separately developed 
program is consistent with its specification. Work on program verification is now 
mostly based on transformational development. In a transformational development 
process, a formal specification is systematically transformed through a series of 
representations to program code. Software tools support the development of the 
transformations and help verify that corresponding representations of the system 
are consistent. The B method is probably the most widely used formal 
transformational method (Abrial 2010). It has been used for the development of 
train control systems and avionics software.  

Advocates of formal methods claim that the use of these methods leads to 
more reliable and safer systems. Formal verification demonstrates that the 
developed program meets its specification and that implementation errors will not 
compromise the dependability of the system. If you develop a formal model of 
concurrent systems using a specification written in a language such as CSP 
(Schneider 1999), you can discover conditions that might result in deadlock in the 
final program, and be able to address these. This is very difficult to do by testing 
alone. 

However, formal specification and proof do not guarantee that the software 
will be safe in practical use: 

1. The specification may not reflect the real requirements of system users. As I 
discussed in Chapter 10, system users rarely understand formal notations so 
they cannot directly read the formal specification to find errors and 
omissions. This means that there it is likely that the formal specification is 
not an accurate representation of the system requirements. 

2. The proof may contain errors. Program proofs are large and complex, so, 
like large and complex programs, they usually contain errors. 
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3. The proof may make incorrect assumptions about the way that the system is 
used. If the system is not used as anticipated, then the system’s behavior lies 
outside the scope of the proof. 

Verifying a non-trivial software system takes a great deal of time. It requires 
mathematical expertise and specialized software tools, such as theorem provers. It 
is an expensive process and, as the system size increases, the costs of formal 
verification increase disproportionately.  

Many software engineers therefore think that formal verification is not cost-
effective. They believe that the same level of confidence in the system can be 
achieved more cheaply by using other validation techniques, such as inspections 
and system testing. However, companies such as Airbus that make use of formal 
verification claim that unit testing of components is not required and this leads to 
significant cost savings (Moy et al. 2013). 

I am convinced that that formal methods and formal verification have an 
important role to play in the development of critical software systems. Formal 
specifications are very effective in discovering some types of specification problem 
that that may lead to system failure. Although formal verification remains 
impractical for large systems, it can be used to verify critical safety and security 
critical core components. 

12.3.3 Model checking 
Formally verifying programs using a deductive approach is difficult and expensive 
but alternative approaches to formal analysis have been developed that are based on 
a more restricted notion of correctness. The most successful of these approaches is 
called model checking (Jhala and Majumdar 2009). Model checking involves 
creating a formal state model of a system and checking the correctness of that 
model using specialized software tools. The stages involved in model checking are 
shown in Figure 12.8. 

Model checking has been widely used to check hardware systems designs. It 
is increasingly being used in critical software systems such as the control software 
in NASA’s Mars exploration vehicles (Regan and Hamilton 2004; Holzmann 2014) 
and by Airbus in avionics software development (Bochot et al. 2009). 

Many different model-checking tools have been developed. SPIN was an 
early example of a software model checker (Holzmann, 2003). More recent 
systems include SLAM from Microsoft  (Ball, Levin, and Rajamani 2011) and 
PRISM  (Kwiatkowska, Norman, and Parker 2011) 

The models used by model-checking systems are extended finite state 
models of the software. Models are expressed in the language of whatever model-
checking system is used – for example, the SPIN model checker uses a language 
called Promela. A set of desirable system properties are identified and written in a 
formal notation, usually based on temporal logic. For example, in the wilderness 
weather system, a property to be checked might be that the system will always 
reach the ‘transmitting’ state from the ‘recording’ state.  

The model checker then explores all paths through the model (i.e. all 
possible state transitions), checking that the property holds for each path. If it does, 
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then the model checker confirms that the model is correct with respect to that 
property. If it does not hold for a particular path, the model checker outputs a 
counter-example illustrating where the property is not true. Model checking is 
particularly useful in the validation of concurrent systems, which are notoriously 
difficult to test because of their sensitivity to time. The checker can explore 
interleaved, concurrent transitions and discover potential problems. 

A key issue in model checking is the creation of the system model. If the 
model has to be created manually (from a requirements or design document), it is 
an expensive process as model creation takes a great deal of time. In addition, there 
is the possibility that the model created will not be an accurate model of the 
requirements or design. It is therefore best if the model can be created 
automatically from the program source code. Model checkers are available that 
work directly from programs in Java, C, C++ and Ada.  

Model checking is computationally very expensive because it uses an 
exhaustive approach to check all paths through the system model. As the size of a 
system increases, so too does the number of states, with a consequent increase in 
the number of paths to be checked. This means that, for large systems, model 
checking may be impractical, due to the computer time required to run the checks. 
However, better algorithms under development to identify parts of the state that do 
not have explored to check a particular property. As these are incorporated into 
model checkers, it will be increasingly possible to use model-checking routinely in 
critical systems development.  

12.3.4 Static program analysis 
Automated static analyzers are software tools that scan the source text of a program 
and detect possible faults and anomalies. They parse the program text and thus 
recognize the different types of statements in a program. They can then detect 
whether or not statements are well-formed, make inferences about the control flow 
in the program and, in many cases, compute the set of all possible values for 
program data. They complement the error detection facilities provided by the 
language compiler, and can be used as part of the inspection process or as a 
separate V & V process activity.  

Automated static analysis is faster and cheaper than detailed code reviews 
and is very effective in discovering some types of program faults.. However, it 

Model
building
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cannot discover some classes of errors that could be identified in program 
inspection meetings. 

Static analysis tools (Lopes, Vicente, and Silva 2009) work on the source 
code of a system and, for some types of analysis at least, no further inputs are 
required. This means that programmers do not need to learn specialized notations 
to write program specifications so the benefits, of analysis can be immediately 
clear. This makes automated static analysis easier to introduce into a development 
process than formal verification or model checking.   

The intention of automatic static analysis is to draw a code reader’s attention 
to anomalies in the program, such as variables that are used without initialization, 
variables that are unused, or data whose values could go out of range. Examples of 
the problems that can be detected by static analysis are shown in Figure 12.9.  

Of course, the specific checks made by the static analyzer are programming-
language specific and depend on what is and isn’t allowed in the language. 
Anomalies are often a result of programming errors or omissions, so they highlight 
things that could go wrong when the program is executed. However, these 
anomalies are not necessarily program faults; they may be deliberate constructs 
introduced by the programmer, or the anomaly may have no adverse consequences. 

There are three levels of checking that may be implemented in static 
analyzers: 

1. Characteristic error checking At this level, the static analyzer knows about 
common errors that are made by programmers in languages such as Java or 
C. The tool analyzes the code looking for patterns that are characteristic of 

Figure 12.9 
Automated static 
analysis checks 
 

 

Fault class Static analysis check 

Data faults Variables used before initialization 
Variables declared but never used 
Variables assigned twice but never used between 
assignments 
Possible array bound violations  
Undeclared variables 

Control faults Unreachable code 
Unconditional branches into loops 

Input/output faults Variables output twice with no intervening 
assignment 

Interface faults Parameter type mismatches 
Parameter number mismatches 
Non-usage of the results of functions 
Uncalled functions and procedures 

Storage management 
faults 

Unassigned pointers 
Pointer arithmetic 
Memory leaks 
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that problem and highlights these to the programmer. Although relatively 
simple, analysis based on common errors can be very cost-effective. Zheng 
and his collaborators (Zheng et al. 2006) analyzed a large code base in C 
and C++. They discovered that 90% of the errors in the programs resulted 
from 10 types of characteristic error.  

2. User-defined error checking In this approach, the users of the static analyzer 
define error patterns to be detected. These may relate to the application 
domain or be based on knowledge of the specific system that is being 
developed.  An example of an error pattern is ‘maintain ordering’ e.g. 
method A must always be called before method B. Over time, an 
organization can collect information about common bugs that occur in their 
programs and extend the static analysis tools with error patterns to highlight 
these errors. 

3. Assertion checking This is the most general and most powerful approach to 
static analysis. Developers include formal assertions (often written as 
stylized comments) in their program that state relationships that must hold at 
that point in a program. For example, an assertion might be included that 
states that the value of some variable must lie in the range x..y. The analyzer 
symbolically executes the code and highlights statements where the 
assertion may not hold.   

Static analysis is effective in finding errors in programs but commonly, 
generates a large number of ‘false positives’. These are code sections where there 
are no errors but where the static analyzer’s rules have detected a potential for 
error. The number of false positives can be reduced by adding more information to 
the program in the form of assertions but this requires additional work by the 
developer of the code. Work has to be done in screening out these false positives 
before the code itself can be checked for errors. 

Static analysis is routinely used by many organizations in their software 
development processes. Microsoft introduced static analysis in the development of 
device drivers where program failures can have a serious effect. They extended the 
approach across a much wider range of their software to look for security problems 
as well as errors that affect program reliability (Ball, Levin, and Rajamani 2011). 
Checking for well-known problems, such as buffer overflow, is effective for 
improving security as attackers often base their attacks on those common 
vulnerabilities. Attacks may target little used code sections that may not have been 
thoroughly tested. Static analysis is a cost-effective way of finding these types of 
vulnerability. 

12.4 Safety cases 

As I have discussed, many safety-critical, software-intensive systems are regulated. 
An external authority has significant influence on their development and 
deployment. Regulators are government bodies whose job is to ensure that 
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commercial companies do not deploy systems that pose threats to public and 
environmental safety or the national economy.  The owners of safety-critical 
systems must convince regulators that they have made the best possible efforts to 
ensure that their systems are safe. The regulator assesses the safety case for the 
system, which presents evidence and arguments that normal operation of the 
system will not cause harm to a user. 

This evidence is collected during the systems development process. It may 
include information about hazard analysis and mitigation, test results, static 
analyses, information about the development processes used, records of review 
meetings, etc. It is assembled and organized into a safety case, a detailed 
presentation of why the system owners and developers believe that a system is safe. 

A safety case is a set of documents that includes a description of the system  
to be certified, information about the processes used to develop the system and, 
critically, logical arguments that demonstrate that the system is likely to be safe. 
More succinctly, Bishop and Bloomfield (Bishop and Bloomfield 1998) define a 
safety case as: 

A documented body of evidence that provides a convincing and valid 
argument that a system is adequately safe for a given application in a given 
environment. 

The organization and contents of a safety case depends on the type of 
system that is to be certified and its context of operation. Figure 12.10 shows one 
possible structure for a safety case but there are no universal industrial standards in 
this area. Safety cases structures vary, depending on the industry and the maturity 
of the domain. For example, nuclear safety cases have been required for many 
years. They are very comprehensive and presented in a way that is familiar to 
nuclear engineers. However, safety cases for medical devices have been introduced 
more recently. The case structure is more flexible and the cases themselves are less 
detailed than nuclear cases. 

A safety case refers to a system as a whole and, as part of that case, there 
may be a subsidiary software safety case. When constructing a software safety 
case, you have to relate software failures to wider system failures and demonstrate 
either that these software failures will not occur or that they will not be propagated 
in such a way that dangerous system failures may occur. 

Safety cases are large and complex documents and so they are very 
expensive to produce and maintain. Because of these high costs, safety-critical 
system developers have to take the requirements of the safety case into account in 
the development process: 
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1. Graydon et al. (Graydon, Knight, and Strunk 2007) argue that the 
development of a safety case should be tightly integrated with system design 
and implementation. This means that system design decisions may be 
influenced by the requirements of the safety case. Design choices that may 
add significantly to the difficulties and costs of case development can then 
be avoided. 

2. Regulators have their own views on what is acceptable and unacceptable in 
a safety case. It therefore makes sense for a development team to work with 
them from early in the development to establish what the regulator expects 
from the system safety case.  

Chapter Description 

System description An overview of the system and a description of its critical 
components.  

Safety requirements The safety requirements taken from the system 
requirements specification. Details of other relevant 
system requirements may also be included. 

Hazard and risk 
analysis 

Documents describing the hazards and risks that have 
been identified and the measures taken to reduce risk. 
Hazard analyses and hazard logs. 

Design analysis A set of structured arguments (see section 12.4.1) that 
justify why the design is safe.  

Verification and 
validation  

A description of the V & V procedures used and, where 
appropriate, the test plans for the system. Summaries of 
the test results showing defects that have been detected 
and corrected. If formal methods have been used, a 
formal system specification and any analyses of that 
specification. Records of static analyses of the source 
code. 

Review reports Records of all design and safety reviews. 

Team competences Evidence of the competence of all of the team involved in 
safety-related systems development and validation. 

Process QA Records of the quality assurance processes (see Chapter 
24) carried out during system development. 

Change 
management 
processes 

Records of all changes proposed, actions taken and, 
where appropriate, justification of the safety of these 
changes. Information about configuration management 
procedures and configuration management logs.  

Associated safety 
cases 

References to other safety cases that may impact on the 
safety case. 

 

Figure 12.10 
Possible 
contents of a 
software safety 
case 
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The development of safety cases is expensive because of the costs of the 
record keeping required as well as the costs of comprehensive system validation 
and safety assurance processes. System changes and rework also add to the costs of 
a safety case. When software or hardware changes are made to a system, a large 
part of the safety case may have to be rewritten to demonstrate that the system 
safety has not been affected by the change.   

12.4.1 Structured arguments 
The decision on whether or not a system is operationally safe should be based on 
logical arguments. These should demonstrate that the evidence presented supports 
the claims about a system’s security and dependability. These claims may be 
absolute (event X will or will not happen) or probabilistic (the probability of 
occurrence of event Y is 0.n). An argument links the evidence and the claim. As 
shown in Figure 12.11, an argument is a relationship between what is thought to be 
the case (the claim) and a body of evidence that has been collected. The argument, 
essentially, explains why the claim, which is an assertion about system security or 
dependability, can be inferred from the available evidence. 

Arguments in a safety case are usually presented as ‘claim based’ 
arguments. Some claim about system safety is made and, on the basis of available 
evidence, an argument is made why that claim holds.  For example, the following 
argument might be used to justify a claim that computations carried out by the 
control software in an insulin pump will not lead to an overdose of insulin being 
delivered. Of course, this is a very simplified presentation of the argument. In a real 
safety case more detailed references to the evidence would be presented. 

Claim: The maximum single dose computed by the insulin pump will not 
exceed maxDose, where maxDose has been assessed as a safe single dose 
for a particular patient.  

Evidence: Safety argument for insulin pump software control program 
(covered later in this section). 

Figure 12.11 
Structured 
arguments 
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Evidence: Test data sets for the insulin pump. In 400 tests, which provided 
complete code coverage, the value of the dose of insulin to be delivered, 
currentDose, never exceeded maxDose. 

Evidence: A static analysis report for the insulin pump control program. 
The static analysis of the control software revealed no anomalies that 
affected the value of currentDose, the program variable that holds the dose 
of insulin to be delivered. 

Argument: The evidence presented demonstrates that the maximum dose of 
insulin that can be computed is equal to maxDose. 

It is therefore reasonable to assume, with a high level of confidence, that the 
evidence justifies the claim that the insulin pump will not compute a dose of 
insulin to be delivered that exceeds the maximum single safe dose. 

The evidence presented is both redundant and diverse. The software is checked 
using several different mechanisms with significant overlap between them. As I 
discussed in Chapter 10, using redundant and diverse processes increases 
confidence. If there are omissions and mistakes that are not detected by one 
validation process, there is a good chance that these will be found by one of the 
other processes. 

There will normally be many claims about the safety of a system, with the 
validity of one claim often depending on whether or not other claims are valid. 
Therefore, claims may be organized in a hierarchy. Figure 12.12 shows part of this 
claim hierarchy for the insulin pump. To demonstrate that a high-level claim is 
valid, you first have to work through the arguments for lower-level claims. If you 
can show that each of these lower-level claims is justified, then you may be able to 
infer that the higher-level claims are justified.   

Figure 12.12 A 
safety claim 
hierarchy for 
the insulin 
pump  

The maximum single
dose computed by
the pump software
will not exceed
maxDose

maxDose is set up
correctly when the
pump is configured

maxDose is a safe
dose for the user of
the insulin pump

The insulin pump will
not deliver a single
dose of insulin that is
unsafe

In normal
operation, the
maximum dose
computed will not
exceed maxDose

If the software fails,
the maximum dose
computed will not
exceed maxDose
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12.4.2 Software safety arguments 
A general assumption that underlies work in system safety is that the number of 
system faults that can lead to safety hazards is significantly less than the total 
number of faults that may exist in the system. Safety assurance can therefore 
concentrate on these faults, which have hazard potential. If it can be demonstrated 
that these faults cannot occur or, if they occur, the associated hazard will not result 
in an accident, then the system is safe. This is the basis of software safety 
arguments.   

Software safety arguments are a type of structured argument, which 
demonstrate that a program meets its safety obligations. In a safety argument, it is 
not necessary to prove that the program works as intended. It is only necessary to 
show that program execution cannot result in it reaching a potentially unsafe state. 
This means that safety arguments are cheaper to make than correctness arguments. 
You don’t have to consider all program states – you can simply concentrate on 
states that could lead to a hazard. 

Safety arguments demonstrate that, assuming normal execution conditions, 
a program should be safe. They are usually based on contradiction, where you 
assume that the system is unsafe then show that this is impossible.  The steps 
involved in creating a safety argument are: 

1. You start by assuming that an unsafe state, which has been identified by the 
system hazard analysis, can be reached by executing the program.  

2. You write a predicate (a logical expression) that defines this unsafe state.  

3. You then systematically analyze a system model or the program and show 
that, for all program paths leading to that state, the terminating condition of 
these paths, also defined as a predicate, contradicts the unsafe state 
predicate. If this is the case, you may then claim that the initial assumption 
of an unsafe state is incorrect.  

4. When you have repeated this analysis for all identified hazards then you 
have strong evidence that the system is safe.  

Safety arguments can be applied at different levels, from requirements 
through design models to code. At the requirements level, you are trying to 
demonstrate that there are no missing safety requirements and that the requirements 
do not make invalid assumptions about the system. At the design level, you might 
analyze a state model of the system to find unsafe states. At the code level, you 
consider all of the paths through the safety-critical code to show that the execution 
of all paths leads to a contradiction. 
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As an example, consider the code outlined in Figure 12.13, which is a 
simplified description of part of the implementation of the insulin delivery system. 
The code computes the dose of insulin to be delivered then applies some safety 
checks that this is not an overdose for that patient. Developing a safety argument 
for this code involves demonstrating that the dose of insulin administered is never 
greater than the maximum safe level for a single dose. This is established for each 
individual diabetic user in discussions with their medical advisors.  

To demonstrate safety, you do not have to prove that the system delivers the 
‘correct’ dose, merely that it never delivers an overdose to the patient. You work on 
the assumption that maxDose is the safe level for that system user. 

To construct the safety argument, you identify the predicate that defines the 
unsafe state, which is that currentDose > maxDose. You then demonstrate that all 
program paths lead to a contradiction of this unsafe assertion. If this is the case, the 
unsafe condition cannot be true. If you can do this, you can be confident that the 
program will not compute an unsafe dose of insulin. You can structure and present 
the safety arguments graphically as shown in Figure 12.14. 

In the safety argument shown in Figure 12.14, there are three possible 
program paths that lead to the call to the administerInsulin method. You have to 
show that the amount of insulin delivered never exceeds maxDose. All possible 
program paths to administerInsulin are considered: 

Figure 12.13 
Insulin dose 
computation 
with safety 
checks 

 

-- The insulin dose to be delivered is a function of  
-- blood sugar level, the previous dose delivered and 
-- the time of delivery of the previous dose 
 
 currentDose = computeInsulin () ; 
    
 // Safety check—adjust currentDose if necessary.  
 
 // if statement 1 
 
 if (previousDose == 0) 
 { 
  if (currentDose > maxDose/2) 
    currentDose = maxDose/2 ; 
 } 
 else 
  if (currentDose > (previousDose * 2) ) 
   currentDose = previousDose * 2 ; 
 
 // if statement 2 
 
 if ( currentDose < minimumDose ) 
   currentDose = 0 ; 
 else if ( currentDose > maxDose ) 
   currentDose = maxDose ; 
 
 administerInsulin (currentDose) ; 
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1. Neither branch of if-statement 2 is executed. This can only happen if 
currentDose is outside of the range minimumDose..maxDose. The post-
condition predicate is therefore: 
 currentDose >= minimumDose and currentDose <= maxDose 

2. The then-branch of if-statement 2 is executed. In this case, the assignment 
setting currentDose to zero is executed. Therefore, its post-condition 
predicate is currentDose = 0. 

currentDose = 0

currentDose = 0

if statement 2
then branch

executed

currentDose =
maxDose

currentDose =
maxDose

if statement 2
else branch
executed

if statement 2
not executed

currentDose >= minimumDose and
currentDose <= maxDose

or

currentDose >
maxDose

administerInsulin

Contradiction

Contradiction Contradiction

Pre-condition
for unsafe state

Overdose
administered

assign assign

Figure 12.14 
Informal safety 
argument based on 
demonstrating 
contradictions  
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3. The else-if-branch of if-statement 2 is executed. In this case, the assignment 
setting currentDose to maxDose is executed. Therefore, after this statement 
has been executed, we know that the post-condition is currentDose = 
maxDose. 

In all three cases, the post-condition predicates contradict the unsafe pre-
condition that currentDose > maxDose. As both cannot be true, we can claim that 
our initial assumption was incorrect and so the computation is safe. 

To construct a structured argument that a program does not make an unsafe 
computation, you first identify all possible paths through the code that could lead to 
a potentially unsafe assignment. You work backwards from the unsafe state and 
consider the last assignment to all of the state variables on each path leading to this 
unsafe state. If you can show that none of the values of these variables is unsafe, 
then you have shown that your initial assumption (that the computation is unsafe) is 
incorrect. 

Working backwards is important because it means you can ignore all 
intermediate states apart from the final states that lead to the exit condition for the 
code. The previous values don’t matter to the safety of the system. In this example, 
all you need be concerned with is the set of possible values of currentDose 
immediately before the administerInsulin method is executed. You can ignore 
computations, such as if-statement 1 in Figure 12.13, in the safety argument 
because their results are over-written in later program statements.  

KEY POINTS 

Safety-critical systems are systems whose failure can lead to human injury 
or death. 

A hazard-driven approach may be used to understand the safety 
requirements for safety-critical systems. You identify potential hazards and 
decompose these (using methods such as fault tree analysis) to discover 
their root causes. You then specify requirements to avoid or recover from 
these problems. 

It is important to have a well-defined, certified process for safety-critical 
systems development. The process should include the identification and 
monitoring of potential hazards. 

Static analysis is an approach to V & V that examines the source code (or 
other representation) of a system, looking for errors and anomalies. It 
allows all parts of a program to be checked, not just those parts that are 
exercised by system tests. 

Model checking is a formal approach to static analysis that exhaustively 
checks all states in a system for potential errors. 

Safety and dependability cases collect all of the evidence that 
demonstrates a system is safe and dependable. Safety cases are required 
when an external regulator must certify the system before it is used. 



Safety Engineering   33 
 

 

©Ian Sommerville 2013 

FURTHER READING 

Safeware: System Safety and Computers. Although now 20 years old, this book is 
still offers the best and most thorough coverage of safety-critical systems. It is 
particularly strong in its description of hazard analysis and the derivation of 
requirements from this. (N. Leveson, Addison Wesley, 1995) 

 ‘Safety-critical software’. A special edition of IEEE Software magazine that focuses 
on safety-critical systems. It includes papers on model-based development of 
safety-critical systems, model checking and formal methods. (IEEE Software, 30 (3), 
May/June 2013) 

‘Constructing safety assurance cases for medical devices’. This short paper gives a 
practical example of how a safety case can be created for an analgesic pump. (A. 
Ray and R. Cleaveland, Proc. Workshop on Assurance Cases for Software-Intensive 
Systems, San Francisco, 2013)  
http://dx.doi.org/10.1109/ASSURE.2013.6614270 

WEBSITE 

PowerPoint slides for this chapter: 

http://software-engineering-book.com/slides/chap12/ 

Links to supporting videos: 

http://software-engineering-book.com/videos/reliability-and-safety/ 

EXERCISES 

12. 1 Identify six consumer products that are likely to be controlled by safety-critical 
software systems. 

12.2 Explain why the boundaries in the risk triangle shown in Figure 12.3 are 
liable to change with time and changing social attitudes. 

12.3 In the insulin pump system, the user has to change the needle and insulin 
supply at regular intervals and may also change the maximum single dose and the 
maximum daily dose that may be administered. Suggest three user errors that 
might occur and propose safety requirements that would avoid these errors 
resulting in an accident. 

12.4 A safety-critical software system for treating cancer patients has two main 
components: 

A radiation therapy machine that delivers controlled doses of radiation to tumor 
sites. This machine is controlled by an embedded software system. 

A treatment database that includes details of the treatment given to each 
patient. Treatment requirements are entered in this database and are 
automatically downloaded to the radiation therapy machine. 
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Identify three hazards that may arise in this system. For each hazard, suggest a 
defensive requirement that will reduce the probability that these hazards will result 
in an accident. Explain why your suggested defense is likely to reduce the risk 
associated with the hazard. 

12.5 A train protection system automatically applies the brakes of a train if the 
speed limit for a segment of track is exceeded, or if the train enters a track segment 
that is currently signaled with a red light (i.e. the segment should not be entered). 
There are two critical safety requirements for this train protection system: 

The train shall not enter a segment of track that is signaled with a red light. 

The train shall not exceed the specified speed limit for a section of track. 

Assuming that the signal status and the speed limit for the track segment are 
transmitted to on-board software on the train before it enters the track segment, 
propose five possible functional system requirements for the onboard software that 
may be generated from the system safety requirements. 

12.6 Explain when it may be cost-effective to use formal specification and 
verification in the development of safety-critical software systems. Why do you 
think that some critical systems engineers are against the use of formal methods? 

12.7 Explain why using model checking is sometimes a more cost-effective 
approach to verification than verifying a program’s correctness against a formal 
specification. 

12.8  List four types of systems that may require software safety cases, explaining 
why safety cases are required. 

12.9 The door lock control mechanism in a nuclear waste storage facility is 
designed for safe operation. It ensures that entry to the storeroom is only permitted 
when radiation shields are in place or when the radiation level in the room falls 
below some given value (dangerLevel). So: 

(i) If remotely controlled radiation shields are in place within a room, an 
authorized operator may open the door. 

(ii) If the radiation level in a room is below a specified value, an authorized 
operator may open the door. 

(iii) An authorized operator is identified by the input of an authorized door entry 
code. 

The code shown in Figure 12.15 (see below) controls the door-locking mechanism. 
Note that the safe state is that entry should not be permitted. Using the approach 
discussed in this chapter, develop a safety argument for this code. Use the line 
numbers to refer to specific statements. If you find that the code is unsafe, suggest 
how it should be modified to make it safe. 
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12.10 Should software engineers working on the specification and development of 
safety-related systems be professionally certified or licensed in some way? Explain 
your reasoning. 
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