
13. Newton’s Exponential Series

Find the power series representation for ex.

The exponential series, which may be the most important series in mathematics, was
discovered by the great English mathematician and physicist Isaac Newton (1642-1727).
The famous treatise that contains the sine series, the cosine series, the arc sine series, the
logarithmic series and the binomial series as well as the exponential series was written in
1665 and bears the title De analysi per aequationes numero terminorum infinitas. Newton’s
derivation of the exponential series, is however, not rigorous and rather complicated.

The following derivation is based on the mean values of the functions xc and ex. [Today,
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Start with the exponential inequality ex � 1 � x (See No. 12), and find the average value
of each side to conclude that ex"1
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2!
� x3

3!
and more generally

(1) ex � 1 � x � x2

2!
� x3

3!
�. . .� xn

n!
.

To obtain an upper limit for ex, start with e"x � 1 " x, multiply by ex to get 1 � ex " xex or
ex � 1 � xex. Note that if v�x  t M on an interval ¡a,b¢, then the average value of u�x v�x  on
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The situation is somewhat simpler for x � 0. It follows from ex � 1 � x that ex"1
x � 1 � x

2
,

but now, since x � 0, ex � 1 � x � x2
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. The next result of finding means gives us
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It follows from (1), (2), (3) and (4) that when x � 0, ex lies between
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is greater than 1 � n. Thus �n " 1 !2 � nn"2, n!2 � nn (for n u 3) and n! � nn . It follows that
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Thus

(5) ex � 1 � x � x2
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for all real numbers x.

Note 1. This series is particularly well suited for computing e :

e � 1 � 1
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Note 2. Dörrie continues with a discussion of extending the exponential function to the
complex numbers by the definition

ez � 1 � z � z2

2!
� z3

3!
�. . .

Note 3. Dörrie shows that the series converges absolutely for all complex numbers z,

and that ea � eb � ea�b for any two complex numbers a and b.

Note 4. Thus if z � x � iy, x and y real and i � "1 , ez � ex � e iy, and since
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� cos y � i siny by No. 15

ez � ex�cos y � i siny .

Note 5. Let y � = in e iy � cos y � i siny to get e i= � "1, Euler’s formula.

Note 6. Addition and subtraction of e iy � cos y � i sin y and
e"iy � cos�"y  " i sin�"y � cos y " i siny give the remarkable pair of formulas:

cosy � e iy � e"iy

2
and siny � e iy " e"iy

2i
.
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