

Robert Martin
Ken Puls

Teresa Hennig

RibbonX

Customizing the Office 2007 Ribbon

Wiley Publishing, Inc.

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page iii

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page ii

RibbonX

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page i

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page ii

Robert Martin
Ken Puls

Teresa Hennig

RibbonX

Customizing the Office 2007 Ribbon

Wiley Publishing, Inc.

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page iii

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page iv

RibbonX: Customizing the Office 2007 Ribbon

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-19111-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose.
No warranty may be created or extended by sales or promotional materials. The advice and strate-
gies contained herein may not be suitable for every situation. This work is sold with the under-
standing that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom.
The fact that an organization or Website is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the informa-
tion the organization or Website may provide or recommendations it may make. Further, readers
should be aware that Internet Websites listed in this work may have changed or disappeared
between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used with-
out written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page v

www.wiley.com

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page vi

To all of those who made this possible.

— Robert Martin

For my daughter, Annika.
I’m sure you’ll have this mastered by next year.

— Ken Puls

I dedicate my work to the very special people in my life.

I am blessed to have such wonderful family and friends with whom I
share my adventures, excitement, and joy of new challenges.

Life is full of opportunities; we should celebrate them all.

I also dedicate this book to everyone who is adventuring into the world
of Ribbon customizations. I am privileged to help you on your journey.

— Teresa Hennig

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page vii

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page viii

Robert Martin holds a postgraduate degree in finance and economics from the Uni-
versity of London. He has worked as IT Director for FairCourt Capital in the U.K., and
has done pro bono work with some African charities, such as NIDOE (Nigerians in
Diaspora Organisation Europe and Africa 2000). He is the author of Excel and VBA in
Financial Modeling: A Practical Approach, and has authored many eBooks on MS Office
development. He currently works as an independent IT consultant.

Robert has also run one of the most popular Excel forums in Brazil since 2004, which
led to his MVP award in 2006 for helping develop the Microsoft Office community in
Brazil. He is also a moderator in the Microsoft Technet forums in Brazil.

Ken Puls has worked at Fairwinds Community & Resort on Vancouver Island, British
Columbia, for over eight years. In his dual role as an accountant and the only IT sup-
port person on staff, Ken was exposed to a vast number of business systems, including
point-of-sale systems, databases, and analysis tools. During his tenure with Fairwinds,
Ken has led the installation of over a dozen systems conversions of various types, and
become addicted to Microsoft Excel. Ken currently holds the position of controller, and
continues to focus his efforts in supporting Fairwinds’ property development, golfing,
and sailing lifestyle. More about Fairwinds can be discovered at www.fairwinds.ca.

Ken has also worked as a freelance Microsoft Office developer, mainly in Excel, but
also with Access, Word, and Outlook. In addition, he has taught several Excel training
courses in his local area. He has been an active participant in many Web forums since
2002, and in recognition of his contributions to the online community was awarded the
prestigious Microsoft Most Valuable Professional award in October 2006. He hosts a
website at www.excelguru.ca, which provides code samples for working with Excel
and other Microsoft Office applications; as well as a blog at www.excelguru.ca/blog.
The blog holds much of his exploratory work with the Ribbon, including customizing it.

Ken has held the Certified Management Accountant (CMA) designation since 2000.

About the Authors

ix

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page ix

Teresa Hennig loves challenges, solving problems, and making things happen. Her
company, Data Dynamics NW, reflects her dynamic personality and her innate ability
to quickly grasp a situation and formulate a solution. With a strong background in
both the private and public sector, covering a wide spectrum of industries, Teresa pro-
vides both consulting and database development to optimize the processing, integra-
tion, and utilization of data. Her emphasis is on designing cost-effective solutions
tailored to meet current and projected needs.

In recognition of her expertise and dedication to the Access community, Teresa has
again been awarded Microsoft Access MVP (Most Valuable Professional) status. She
continues to serve as president of both the Pacific Northwest Access Developer Groups
(PNWADG) and the Seattle Access Group. Since 2005, Teresa has served on several of
INETA’s national committees to provide service, information, and support to user
groups around the world. Her extensive writing experience includes being the lead
author for the Access VBA Programmer’s Reference series and contributing to several
other books. She also publishes two monthly Access newsletters and two Access web-
sites, www.DataDynamicsNW.com and www.SeattleAccess.org.

Teresa is passionate about helping and empowering others, both professionally and
personally. One of her most notable charitable activities was developing a paperless
patient tracking database for a teen clinic in Uganda and then spending nine days at
the clinic to deploy the system and train the staff. She also climbed to the summit of Mt.
Rainier, raising $5,000 for the American Lung Association. In addition, in honor of her
brother, she rode 220 miles on a bike to raise $10,000 for the Spinal Cord Society’s
research to cure paralysis.

Oliver Stohr was born in Germany, but moved permanently to the United States in
2003, where he currently lives with his wonderful wife, Bonnie, and their cat and mini-
dachshund, in Maryland. At present, he is a full-time student at the University of
Maryland working toward his undergraduate degree in computer science.

Oliver has been working with computers from a very young age and started using
Microsoft products with the release of Windows 3.1. He has provided service to online
discussion forums, answering more than 25,000 technical questions. His involvement has
earned him a moderator status at UtterAccess forums as well as a prestigious Microsoft
Most Valuable Professional award. Oliver was also the technical editor for Expert Access
2007 Programming and is the owner and webmaster of www.access-freak.com. Since
it was launched, the site has helped thousands of users of Microsoft Access make the tran-
sition from earlier versions to the new 2007 edition.

x About the Authors

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page x

Executive Editor
Robert Elliott

Senior Development Editor
Tom Dinse

Technical Editors
Jeff Boyce
Nick Hodge

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Compositors
Craig Woods and Craig Thomas,
Happenstance Type-O-Rama

Proofreaders
Jennifer Larsen, Amy Watson,
Word One

Indexer
Robert Swanson

Anniversary Logo Design
Richard Pacifico

Credits

xi

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page xi

91118ffirs.qxd:WileyRedTight 12/2/07 3:11 PM Page xii

Introduction xxix

Part I The Building Blocks for a Successful Customization 1

Chapter 1 An Introduction to the Office User Interface 3
What Is the Ribbon and Why Does It Exist? 3

Problems with the Old UI 4
Issues Solved with the New UI 6
Issues Created with the New UI 7

What Happened to the Toolbars from My Pre-2007 Files? 9
A Customization Example for Pre-2007 UIs 10
Ribbon Components 16
Tips for Navigating the Ribbon and Quick Access Toolbar (QAT) 17

Using Keyboard Shortcuts and Keytips 17
Using the Mouse Wheel 19
Minimizing and Maximizing the Ribbon 19
Adding Commands to the QAT 20
Assigning a Macro to a QAT Button 22
Changing the QAT Location 24

Preparing for Ribbon Customization 24
Showing the Developer Tab 24
Showing CustomUI Errors at Load Time 26
Reviewing Office 2007 Security 26
Has Customization of the Office UI Become Easier? 27

Conclusion 27

Chapter 2 Accessing the UI Customization Layer 29
Accessing the Excel and Word Ribbon Customization Layers 30

What’s New in Excel and Word Files? 30
Creating a Ribbon Customization with Notepad 30

Contents

xiii

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xiii

Creating the customUI File 30
Creating the File to Use the Customized UI 31
Attaching the XML to the File 32

Using the Microsoft Office 2007 Custom UI Editor to
Modify Your UI 35

Installing Microsoft .NET Framework 2.0 for
Windows XP Users 36

Installing the Microsoft Office 2007 Custom UI Editor 38
Using the CustomUI Editor to Customize the Ribbon 39
Storing Customization Templates in the CustomUI Editor 41
Some Notes About Using the CustomUI Editor 42

XML Notepad 43
Installing XML Notepad 43
Using XML Notepad 43
The Benefits of XML Notepad 47
The Drawbacks of XML Notepad 48

A Final Word on Excel and Word Customizations 48
Microsoft Access Customizations 48

Storing the CustomUI Information in Tables 49
Creating an Access UI Modification Using a Table 49
Access USysRibbons Caveat 51

Other Techniques for Access UI Customizations 52
Conclusion 52

Chapter 3 Understanding XML 55
What Is XML and Why Do You Need It? 55
Essential Background 57

Tags 57
Elements 59
Attributes 59

The id Attribute 60
The label Attribute 61

Tips for Laying Out XML Code 61
Creating Comments in XML Code 63

The Core XML Framework 65
The customUI Element 65

Required Attributes of the customUI Element 66
Optional Static and Dynamic Attributes with

Callback Signatures 66
Allowed Children Objects of the customUI Element 67

The ribbon Element 67
Required Attributes of the ribbon Element 67
Optional Static Attributes 68
Allowed Children Objects of the ribbon Element 68
Graphical View of ribbon Attributes 68

The tabs Element 69
Required Attributes of the tabs Element 69
Allowed Children Objects of the tabs Element 70

xiv Contents

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xiv

The tab Element 70
Required Attributes of the tab Element 70
Optional Static and Dynamic Attributes with

Callback Signatures 71
Allowed Children Objects of the tab Element 72
Graphical View of tab Attributes 72
Built-in Tabs 72

Referring to Built-in Tabs 72
Modifying a Built-in Tab 73

Custom Tabs 74
Creating Custom Tabs 74
Positioning Custom Tabs 75

The group Element 76
Required Attributes of the group Element 76
Optional Static and Dynamic Attributes with

Callback Signatures 76
Allowed Children Objects of the group Element 78
Graphical View of group Attributes 79
Built-in Groups 80

Referring to Built-in Groups 80
Using a Built-in Group on a Custom Tab 81

Custom Groups 83
Creating Custom Groups 83
Positioning Custom Groups 83
Custom Groups on Built-in Tabs 85

Conclusion 85

Chapter 4 Introducing Visual Basic for Applications (VBA) 87
Getting Started with Visual Basic for Applications (VBA) 88

What Is VBA? 89
Macro-Enabled Documents 89
Using the Visual Basic Editor (VBE) 90

Recording Macros for Excel and Word 91
A Recording Example 94
Editing the Recorded Macro 95
Editing Macro Options After Recording 96

Subprocedures versus Functions 97
Object Model 98
Subprocedures 98
Functions 100

VBA Coding Techniques 101
Looping Statements 101

For-Next Loops 102
Do-While/Do-Until Loops 105

With . . . End With Statement 106
If . . . Then . . . Else . . . End If Statement 107
Select Case Statement 109

Contents xv

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xv

Writing Your Own Code 110
Naming Conventions 111
Data Types 112
Working with Events 114

Workbook Events 115
Worksheet Events 117
Form and Report Events in Access 119
Document-Level Events in Word 122
Application-Level Events 123

The Object Browser 125
Referencing Libraries 126

Early and Late Bindings Explained 128
Debugging Your Code 129

Debug.Print and Debug.Assert 130
Stop Statement 131
Immediate Window 132
Locals Window 134
Watches Window 135

Error Handling 137
On Error Resume Next 138
On Error GoTo 138

Working with Arrays 140
Determining the Boundaries of an Array 141
Resizing Arrays 142

Conclusion 143

Chapter 5 Callbacks: The Key to Adding Functionality
to Your Custom UI 145
Callbacks: What They Are and Why You Need Them 145
Setting Up the File for Dynamic Callbacks 146

Capturing the IRibbonUI Object 147
Adjusting the XML to Include onLoad 147
Setting Up VBA Code to Handle the onLoad Event 147

Generating Your First Callback 148
Writing Your Callback from Scratch 148
Using the Office CustomUI Editor to Generate Callbacks 150
Understanding the Order of Events When a File Is Open 151
Can I Have Two Callbacks with the Same Name

But Different Signatures? 152
Calling Procedures Located in Different Workbooks 153
Organizing Your Callbacks 155

Individual Callback Handlers 155
Using Global Callback Handlers 157
Handling Callbacks in Access 158

Using VBA to Handle Callbacks 158
Using Macros to Handle Callbacks 160

xvi Contents

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xvi

Invalidating UI Components 162
What Invalidating Does and Why You Need It 162
Invalidating the Entire Ribbon 163
Invalidating Individual Controls 165

Conclusion 167

Chapter 6 RibbonX Basic Controls 169
The button Element 169

Required Attributes of the button Element 170
Optional Static and Dynamic Attributes with

Callback Signatures 171
Allowed Children Objects of the button Element 173
Parent Objects of the button Element 173
Graphical View of button Attributes 173
Using Built-in button Controls 174
A button Idiosyncrasy: The showLabel Attribute 175
Creating Custom button Controls 176

An Excel Example 176
A Word Example 179
An Access Example 181

The checkBox Element 183
Required Attributes of the checkBox Element 184
Optional Static and Dynamic Attributes with

Callback Signatures 184
Allowed Children Objects of the checkBox Element 186
Parent Objects of the button Element 186
Graphical View of checkBox Attributes 186
Using Built-in checkBox Controls 187
Creating Custom Controls 188

An Excel Example 188
A Word Example 192
An Access Example 194

The editBox Element 196
Required Attributes of the editBox Element 197
Optional Static and Dynamic Attributes with

Callback Signatures 197
Allowed Children Objects of the editBox Element 199
Parent Objects of the editBox Element 199
Graphical View of editBox Attributes 200
Using Built-in editBox Controls 200
Creating Custom Controls 200

An Excel Example 200
A Word Example 203
An Access Example 205

The toggleButton Element 209
Required Attributes of the toggleButton Element 209
Optional Static and Dynamic Attributes with

Callback Signatures 210

Contents xvii

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xvii

Allowed Children Objects of the toggleButton Element 212
Parent Objects of the toggleButton Element 212
Graphical View of toggleButton Attributes 212
Using Built-in toggleButton Controls 213
Creating Custom Controls 214

An Excel Example 214
A Word Example 217
An Access Example 220

Conclusion 223

Chapter 7 comboBox and dropDown Controls 225
The item Element 225

Required Attributes of the item Element 226
Optional Static and Dynamic Attributes with

Callback Signatures 226
Allowed Children Objects of the item Element 227
Parent Objects of the item Element 227
Graphical View of item Attributes 227
Using Built-in Controls 228
Creating Custom Controls 228

The comboBox Element 229
Required Attributes of the comboBox Element 229
Optional Static and Dynamic Attributes with

Callback Signatures 229
Allowed Children Objects of the comboBox Element 232
Parent Objects of the comboBox Element 232
Graphical View of comboBox Attributes 232
Using Built-in Controls 232
Creating Custom Controls 234

An Excel Example 235
A Word Example 237
An Access Example 239

The dropDown Element 244
Required Attributes of the dropDown Element 244
Optional Static and Dynamic Attributes with

Callback Signatures 244
Allowed Children Objects of the dropDown Element 247
Parent Objects of the dropDown Element 247
Graphical View of dropDown Attributes 248
Using Built-in Controls 248
Creating Custom Controls 249

An Excel Example 249
A Word Example 254
An Access Example 258

Conclusion 261

xviii Contents

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xviii

Chapter 8 Custom Pictures and Galleries 263
Custom Pictures 263

Suggested Picture Formats 263
Appropriate Picture Size and Scaling 266

Adding Custom Pictures to Excel or Word Projects 266
Using the Custom UI Editor 267
Loading Custom Pictures On-the-Fly 268

Adding Custom Pictures to Access Projects 270
Using GDI+ to Load PNG Files 274
Using the Gallery Control 276

Example of Static Attributes 278
Example of Built-in Controls 280
Creating an Image Gallery On-the-Fly 281

Conclusion 282

Chapter 9 Creating Menus 285
The menu Element 286

Required Attributes of the menu Element 286
Optional Static and Dynamic Attributes with

Callback Signatures 286
Allowed Children Objects of the menu Element 288
Parent Controls of the menu Element 289
Graphical View of menu Attributes 289
Using Built-in Controls 290
Creating Custom Controls 291

An Excel Example 292
A Word Example 294
An Access Example 296

The splitButton Element 299
Required Attributes of the splitButton Element 299
Optional Static and Dynamic Attributes with

Callback Signatures 300
Allowed Children Objects of the splitButton Element 301
Parent Objects of the splitButton Element 301
Graphical View of splitButton Attributes 301
Using Built-in Controls 302
Creating Custom Controls 303

An Excel Example 303
A Word Example 305
An Access Example 306

The dynamicMenu Element 310
Required Attributes of the dynamicMenu Element 310
Optional Static and Dynamic Attributes with

Callback Signatures 311
Allowed Children Objects of the dynamicMenu Element 313
Parent Objects of the dynamicMenu Element 313

Contents xix

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xix

Graphical View of dynamicMenu Attributes 313
Using Built-in Controls 314
Creating Custom Controls 314

Conclusion 320

Chapter 10 Formatting Elements 323
The box Element 324

Required Attributes of the box Element 324
Optional Static and Dynamic Attributes with

Callback Signatures 324
Allowed Children Objects of the box Element 325
Parent Objects of the box Element 326
Graphical View of box Attributes 326
Using Built-in box Elements 327
Creating Custom box Elements 327

Horizontal Alignment 327
Vertical Alignment 328
Nesting box Controls 329

The buttonGroup element 333
Required Attributes of the buttonGroup element 334
Optional Static and Dynamic Attributes with

Callback Signatures 335
Allowed Children Objects of the buttonGroup Element 336
Parent Objects of the buttonGroup Element 336
Graphical View of a buttonGroup 336
Using Built-in buttonGroup Elements 336
Creating Custom buttonGroup Elements 337

The labelControl Element 338
Required Attributes 338
Optional Static and Dynamic Attributes with

Callback Signatures 338
Allowed Children Objects of the labelControl Element 340
Parent Objects of the labelControl Element 340
Graphical View of a labelControl 340
Using Built-in labelControl Elements 341
Creating Custom labelControl Elements 341

The separator Element 344
Required Attributes of the separator Element 344
Optional Static and Dynamic Attributes with

Callback Signatures 345
Allowed Children Objects of the separator Element 346
Parent Objects of the separator Element 346
Graphical View of a Separator 346
Using Built-in separator Elements 346
Creating Custom separator Elements 346

xx Contents

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xx

The menuSeparator Element 347
Required Attributes of the menuSeparator Element 347
Optional Static and Dynamic Attributes with

Callback Signatures 348
Allowed Children Objects of the menuSeparator Element 349
Parent Objects of the menuSeparator Element 349
Graphical View of the menuSeparator Element 349
Using Built-in menuSeparator Elements 350
Creating Custom menuSeparator Elements 350

Conclusion 352

Chapter 11 Using Controls and Attributes to Help Your Users 355
The dialogBoxLauncher Element 356

Required and Optional Attributes 356
Allowed Children Objects 356
Parent Objects 357
Examples of Using the dialogBoxLauncher Element 357

Built-in dialogBoxLaunchers 357
A Custom dialogBoxLauncher with Built-in Dialogs 358
Custom dialogBoxLauncher with Custom Userforms 360

The keytip Attribute 362
Creating a Keytip 363
Keytip Idiosyncrasies 364

screentip and supertip Attributes 366
Creating screentip and supertip Attributes 366

Overwriting Built-in Control Attributes 368
Conclusion 369

Part II Advanced Concepts in Ribbon Customization 371

Chapter 12 Advanced VBA Techniques 373
Working with Collections 373

Determining Whether an Item Belongs to a Collection 377
Class Modules 378

Properties, Methods, and Events 378
Working with Properties 379
Working with Methods 380
Working with Events 382

Web Services and CustomUI 383
Using VBA Custom Properties 389

Setting Up the Custom Properties 389
Saving and Retrieving Values from the Registry 394
Conclusion 399

Chapter 13 Overriding Built-in Controls in the Ribbon 401
Starting the UI from Scratch 402

Setting the startFromScratch Attribute 402
Activating a Tab at Startup 404
Disabling and Repurposing Commands 406

Contents xxi

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xxi

Disabling Commands, Application Options, and Exit 406
Disabling Commands 406
Disabling the Commands Associated with the Application

Options and Exit Controls 407
Repurposing a Command Associated with a Generic Control 408
Affecting the Keyboard Shortcuts and Keytips 410

Conclusion 412

Chapter 14 Customizing the Office Menu and the QAT 413
Adding Items to the Office Menu 413
Adding Items to the QAT 418

Customization Overview 418
sharedControls versus documentControls 419

Adding Custom and Built-in Commands to the QAT 420
Adding Custom and Built-in Groups to the QAT 422
Repurposing QAT Controls 424
Table-Driven Approach for QAT Customization

(Excel and Word) 428
Table-Driven Approach for QAT Customization (Access) 430
QAT Caveats 433

Inability to Load Controls 433
Inability to Load Custom Images to Controls 434
Duplication of Controls on XML-Based and

XML-Free Customizations 434
Conclusion 435

Chapter 15 Working with Contextual Controls 437
Making Your Items Contextual 437

Tabs 438
Groups 439

Working Through Nonvisibility Methods 441
Enabling and Disabling Controls 441

Working with Contextual Tabs and tabSets 442
Creating a Custom Contextual Tab in Access 442

Renaming a tabSet 444
Modifying Built-in Contextual Tabs 445

Working with Contextual Pop-up Menus 447
Replacing Built-in Pop-up Menus in Their Entirety 448
Adding Individual Items to Pop-up Menus 453

Multilingual UI 455
Conclusion 458

Chapter 16 Sharing and Deploying Ribbon Customizations 459
Excel Deployment Techniques 460

Distributing Workbooks 460
Using Templates 461
Creating and Deploying Add-ins 463

Preparing a Workbook for Conversion to an Add-in 464
Converting a Workbook to an Add-in Format 465

xxii Contents

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xxii

Installing an Add-in 465
Unloading and Removing Add-ins 467
Toggling the IsAddin Property 467

A Note on the PERSONAL.XLSB Workbook 468
Word Deployment Techniques 469

Distributing Documents 469
Using Templates 470

Configuring Template Directories 470
Creating Templates 471

Global Templates 472
Preparing a Document for Conversion to a Global Template 473
Converting a Template to a Global Template 474
Editing Global Templates 475
Removing Global Templates 476

A Note on the Normal.dotm Template 476
Sharing Ribbon Items Across Files(Word and Excel) 477

Creating a Shared Namespace 478
Sharing Tabs and Groups in Excel 479
Sharing Tabs and Groups in Word 485

Deploying Word and Excel Solutions Where Multiple
Versions of Office are in Use 491

Do Legacy CommandBar Customizations Still Work? 491
Method 1: Creating Separate Versions 492
Method 2: Calling a Previous Version from a New Add-in 493

Using a 2003 Excel Add-in as a Front-End Loader for a
2007 Add-in 494

Using a Word 2007 Global Template as a Front-End
for a 2003 Template 500

Access Deployment Techniques 504
General Information Concerning Database Deployment 504

Preparing the Files for Multi-User Environments 504
Managing Access Startup Options 507
Leveraging the startFromScratch Attribute 507
Adjusting Access Options for Your Users 508
Creating an ACCDE File 510

Loading the customUI from an External Source 511
Deploying Solutions to Users with Full-Access Installations 514

Deploying Customizations with Full Versions of Access 514
Deploying Solutions to Users with the Access Runtime Version 518

Conclusion 519

Chapter 17 Security In Microsoft Office 523
Security Prior to Office 2007 524
Macro-Enabled and Macro-Free File Formats 524
The Trust Center 525

Trusted Publishers 526

Contents xxiii

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xxiii

Trusted Locations 526
Adding, Modifying, or Removing Trusted Locations 528
Trusting Network Locations 529
Disabling Trusted Locations 529

Add-ins 529
Requiring Add-ins to Be Signed 530
Disabling Notification for Unsigned Add-ins 530
Disabling All Add-ins 531

ActiveX Settings 531
Macro Settings 532

Setting Macro Options 532
Trusting VBA Project Access 533

Message Bar 533
Privacy Options 534

Digital Certificates 534
How Digital Certificates Work 534
Acquiring a Digital Certificate 535
Using SELFCERT.exe to Create a Digital Signature 536
Adding a Digital Certificate to a Project 537
Trusting a Digital Certificate on Another Machine 538
Deleting a Digital Certificate from Your Machine 540

Conclusion 542

Appendix A Tables of RibbonX Tags 545
How to Use This Appendix 545
Ribbon Container Elements 546

customUI Element 546
ribbon Element 548
contextualTabs Element 548
tabSet Element 548
qat Element 549
sharedControls Element 549
documentControls Element 549
officeMenu Element 549
tabs Element 550
tab Element 550
group Element 551

Ribbon Control Elements 552
box Element 553
button Element 553
buttonGroup Element 556
checkBox Element 557
comboBox Element 558
dialogBoxLauncher Element 562
dropDown Element 562
dynamicMenu Element 566

xxiv Contents

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xxiv

editBox Element 568
gallery Element 571
item Element 575
labelControl Element 576
menu Element 577
menuSeparator Element 579
separator Element 580
splitButton Element 581
toggleButton Element 582

Appendix B Tables of Tab and Group idMso Names 587
Common Tab idMso Identifiers 587
Contextual Tab idMso Identifiers 588

Contextual Tab idMso Identifiers for Excel 588
Contextual Tab idMso Identifiers for Access 589
Contextual Tab idMso Identifiers for Word 590

Group idMso Identifiers 590
Excel’s Group idMso Identifiers 590
Access’s Group idMso Identifiers 595
Word’s Group idMso Identifiers 600

Appendix C imageMso Reference Guide 607
How to Get Your Own imageMso References 607
Your Own Reference Tool 608

Appendix D Keytips and Accelerator keys 611
Keytips and Accelerator Keys for Excel 611

Appendix E RibbonX Naming Conventions 615
How Our Naming System Works 615
Naming Samples 617

Appendix F Where to Find Help 621
Websites with RibbonX Information 621
Websites Maintained by the Authoring and Tech Edit Team 623
Newsgroups 623
Web Forums 624

Index 627

Contents xxv

91118ftoc.qxd:WileyRedTight 12/3/07 9:54 AM Page xxv

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxvi

We’ll start by thanking everyone who helped research, write, test, and refine our mate-
rial. We began as a team of two Excel and one Access MVPs, and later recruited Oliver
Stohr, Access MVP, to write the Access deployment section. We send a tremendous
note of appreciation to Oli for stepping up and sharing his expertise. In addition,
because the book covers three, not just two applications, we also enlisted the expertise
of two Word MVPs. Therefore, we send a special thanks to Tony Jollans, for always
responding to our inquiries and assisting whenever we asked, and to Cindy Meister,
for writing the macro to update all the document fields. But writing is just the first
stage in the journey. We relied on our remarkable team of technical editors, Jeff Boyce
(Access MVP) and Nick Hodge (Excel MVP), to check and challenge our writing. They
each added a particular expertise to the book. Jeff’s incessant questions may have
threatened to drive us crazy, but they ensured that we provided ample background
when introducing new material so that users of any level could understand and work
through the examples. Nick’s contributions went far above and beyond his role. His
fingerprints are all over the book, and it truly would not be what it is without him.

Nor would we have this book if it weren’t for the great people at Wiley. We had the
great fortune of working with Tom Dinse as our development editor. In addition to
making sure that our material was consistent, properly sequenced, and fit the guide-
lines, Tom went out of his way to get answers and find ways to make things work. And
Luann Rouff, our copy editor, was remarkably attentive formatting and our deadlines—
definitely not an 8 – 5 worker! We also send a very special thanks to Bob Elliott for his
expertise in shaping the proposal and working through the administrative processes.
We thank Colleen Hauser for inviting us to participate in designing the cover. There are
many others, even those that we haven’t yet met, who deserve our appreciation and
thanks for helping to take this book from a concept to reality.

Writing this book has been a challenging and incredibly rewarding experience. It
was only possible with the help of dozens of people and by pulling together as a team.
Thank you, all!

— The Authors

Acknowledgments

xxvii

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxvii

I thank my girlfriend for putting up with me during a very stressful period.

— Robert Martin

I’d like to thank my wife, Deanna, and my boss and friend, Jim Olsen, for their
encouragement, support, and the latitude they have given me to pursue my quest for
knowledge. Without these two people behind me, none of this would have ever been
possible.

— Ken Puls

I want to say what a great privilege it has been to work with Robert and Ken. They
poured out the pages and maintained wonderful humor as I tried to meld everything
together into a consistent voice and style. Thank you, guys, so very much; coordinat-
ing this book and working on a truly international team is another opportunity that I
shall cherish forever. In addition, I can’t adequately express my appreciation for Oli.
When we needed very special expertise, Oli responded and immediately set to work
on the Access deployment section. I also have to send a personal thank-you to Bob
Elliott and Tom Dinse. I feel incredibly fortunate that you were both guiding our way.

My family and very special friends have my heartfelt appreciation for encouraging
and “being with me” through my adventures, and I send a tremendous thanks to my
clients for hanging in there when it seemed that I barely had time to take their calls.
Most of all, I want to thank my mom, my papa, and my dad for being the caring peo-
ple and stellar citizens that they are. Three of their sayings come to mind, and I’m sure
that they will ring true with you: “Your word is your honor”; “A job worth doing is
worth doing right”; and “Do what you enjoy, and you’ll be good at it.”

— Teresa Hennig

xxviii Acknowledgments

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxviii

Welcome to the wonderful world of Ribbon customizations. With the advent of Office
2007, users and developers alike are faced with major transitions. Office applications
have a whole new look, and the Ribbon is the headliner. While it may have strong
appeal to new users, adapting to the Ribbon can be challenging to those of us who are
accustomed to the legacy menu and toolbar system. With the advent of the Ribbon, you
not only lose the drop-down menus that were always there, but the custom menus and
toolbars have also departed. However, we are not stuck with Microsoft’s Ribbon
which can appear overwhelming with thousands of commands; and you don’t need
advanced training or mastery of coding languages to tailor the Ribbon to your needs.

That’s where this book comes in. Driven by their passion for helping others to enjoy
and maximize the experience of working with Office applications, the team of authors
has created a resource that enables both users and developers to customize the Ribbon
to the extent that they desire. Whether that means replacing the Ribbon with familiar
toolbars from prior versions, using photos and labels to personalize commands, or
merely creating custom groups of existing tools, the book provides instructions and
working examples so that you have the tools and confidence to accomplish your goals.
Not only that, but the task can be accomplished using XML and VBA, so there is no
need to purchase expensive software or learn complicated programming languages.

You will see that customizing the Ribbon can be fun and rewarding. If you are a
developer, you will be empowering users to work more efficiently and you will have
new opportunities to tailor both the functionality and the look to specific solutions.
Power users will appreciate creating time-saving commands that can easily be shared
with associates. In addition, if you are creating customizations for your own purposes,
you will enjoy the latitude to truly personalize the appearance of the commands as you
structure them for your convenience.

In addition to walking you through the stages for customizing the Ribbon, we also
demonstrate how to work with legacy tools. Each chapter presents various options,
along with their benefits and drawbacks, so that you can make informed plans and
decisions.

Introduction

xxix

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxix

Overview of the Book and Technology

Programming and customizing the Ribbon requires a new set of skills, and because the
Ribbon is not compatible with previous custom menus and toolbars, developers and
power users will immediately begin to seek ways to customize the Ribbon. We are all
faced with the choice of either working with the standard Ribbon, replacing the Office
Ribbon with a custom Ribbon, or foregoing the Ribbon and installing custom menus
and toolbars from previous applications.

RibbonX: Customizing the Office 2007 Ribbon has two key target audiences. The obvi-
ous one is power users and developers working in Excel, Access, and Word. However,
because average users continue to expand their ability to control their environment,
the examples are presented so that a typical user will also be able to work through and
implement the processes in total confidence. Therefore, in addition to providing key
tips and techniques that developers expect, this book also contains sufficient introduc-
tory materials to enable any user to follow the examples and begin to benefit from the
efficiencies that can be obtained with a customized Ribbon.

By the time you finish this book and the demo projects, you will have both the
knowledge and confidence to customize the Ribbon for the three major components in
Office: Excel, Access, and Word. Although the customization process is pretty much
the same for the XML code, that doesn’t mean the steps are the same for each applica-
tion — so we scrupulously point out the similarities and differences.

RibbonX: Customizing the Office 2007 Ribbon concentrates on the following:

■■ XML development for Ribbon customization

■■ Using VBA to add functionality to the custom UI

We are sure that readers will enjoy this book and find it extremely useful as a refer-
ence tool for UI customization. It will certainly change the way that one views the new
Office UI.

How This Book Is Organized

RibbonX is sure to become the definitive guide to customizing the Ribbon for Excel,
Access, and Word. The book is a major resource for power users and developers. It cov-
ers the basics in enough detail that even if this is your introduction to writing code, you
will learn what you need to know, understand the concepts, and be able to develop and
share custom Ribbons and Ribbon components that best suit your needs or those of the
intended user.

The material and examples are created using Excel, Access, and Word. We identify
when the same procedure applies to all three programs, and we point out any differ-
ences among them. The chapters are filled with real-world examples and sample code,
so readers will immediately be able to apply their new skills. In many cases, a separate
example is used to demonstrate how to incorporate the same feature into each appli-
cation: Excel, Access, and Word.

xxx Introduction

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxx

The following is a brief summary of what each chapter covers. Although you may
not recognize some of the terminology yet, be assured that comprehensive explana-
tions are provided as material is introduced. We also leverage notes, cross-references,
and other notes to guide you to reference material and points of particular interest.

To help you build a solid foundation, we start with some background material, covering
essential programming processes that you’ll need to be familiar with. Chapter 1 discusses
the user interface and points out some of the challenges associated with transitioning from
menus to the Ribbon, as well as some of the benefits gained with the new UI. Chapter 2
briefly introduces the key components for customizations and how to work with them.
You’ll learn about XML files, the Office Custom UI Editor, and the USysRibbon table.

In Chapter 3, we lay the foundation for working with XML and explain the various
containers that we’ll be using — namely, the ribbon, tabs, tab, and group containers.
Because this is the first time that developers have been required to use XML with their
projects, this chapter will be a handy reference to turn to as you work through subse-
quent chapters and exercises.

Chapter 4 covers the essentials for working with Visual Basic for Applications code
(VBA). If you are an experienced developer, you may breeze right past this chapter, but
readers new to programming will learn what they need to know to create successful
customizations, including how to work with arrays.

Next, in Chapter 5, we introduce callbacks, which are essentially the hook between
the commands on the Ribbon and the code that needs to run. We also explain the
processes for invalidating commands and the Ribbon. (Invalidation is a frequently used
term throughout the book, so it’s important to understand what it is and how it works.)

After that, we start creating new controls. In Chapter 6, you will actually create
custom Ribbon commands, beginning with the most common command, the button.
We walk you through creating a button, checkBox, editBox, and toggleButton.

Then, in Chapter 7, we explain container controls and show you how to create them.
Container controls, which can hold other controls, include the splitButton, the item,
the comboBox, and the dropDown control.

Then the creativity really gets to flow in Chapter 8. That’s where you learn how to
use the icon gallery and add highly personalized touches, such as including custom
images in the Ribbon commands.

From there, we move to on to the menu controls in Chapter 9. These are powerful
controls, such as the Save As control, that can contain a combination of controls and
labels. This means that in addition to creating the controls themselves, you’ll become
accomplished at formatting the controls to add groupings and clarity.

Chapter 10 provides additional formatting tools, such as the box element, which
essentially creates an invisible box for grouping controls. After that, we demonstrate
how to place a visible box around a group of controls by using the buttonGroup. To
complement these groups, we show you how to use the labelControl to add a head-
ing or a description of other controls. Of course, boxes are not always the ticket, and
sometimes just a line is preferable. That’s when you’d use the Separator element or the
menuSeparator element to insert either a vertical line or a horizontal line, respectively.

That brings us to the last chapter of our fundamentals section. Chapter 11 covers fea-
tures that provide that extra level of assistance needed to have highly intuitive user
interfaces. It also shows you how to make custom help and tips available when users

Introduction xxxi

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxxi

need them the most. This includes attributes such as the keytip, the screentip, and the
supertip. We cap it off by showing you how to modify built-in controls.

The next portion of the book deals with advanced concepts. This starts with Chapter 12,
which teaches you some advanced VBA techniques that enable you to work with multi-
ple controls at one time. After explaining collections, we demonstrate how to use proper-
ties, methods, and events. Then, as somewhat of a bonus, we’ll show you how quick and
easy it is to incorporate Web services right into your UI, thereby bringing online resources
to the user’s fingertips.

With all this material under your belt, you are ready to get rid of the Ribbon and lit-
erally “start from scratch.” That’s actually the name of the attribute that removes the
built-in Ribbon and commands from the UI. Of course, it isn’t as drastic as it might
sound, because the Office button and several other commands are still available
through shortcuts. Chapter 13 covers all of that and demonstrates how to build a com-
pletely custom Ribbon.

However, that isn’t the end, because the Ribbon also introduced the Quick Access
Toolbar (QAT). The QAT is probably the closest thing on the Ribbon to what we fondly
remember as toolbars; and the QAT was designed to do exactly what the name implies,
to provide users with instant access to the tools that they most often use. Because the
QAT is not context sensitive, the tools are always in the same place. Chapter 14 pro-
vides detailed steps for working with and organizing the QAT.

With the Ribbon, the QAT is just the tip of the iceberg when it comes to putting con-
trols at the user’s fingertips. We take this to the next level in Chapter 15, where you
learn how to create context-sensitive tabs, groups, and controls. These powerful little
tools are the best replacement for custom pop-ups. In addition to creating new contex-
tual tabs, we also show you how to modify built-in contextual tables. With those skills,
the choice is yours: either start fresh or merely tweak and add to what is provided.

After we’ve pretty much covered the gamut of customizations, it is time to turn our
attention to sharing our solutions. Chapter 16 discusses the issues associated with
preparing files and packaging them for deployment. This chapter includes detailed
guidance about the reasoning behind the process and walks you through the steps for
each application. In addition to deploying complete solutions, we also explore the final
RibbonX attribute: The idQ is geared toward sharing elements across files, and it
enables users to load and unload Ribbon customizations from a central source.

The final chapter in the book, Chapter 17, explains the security issues that can affect
creating, using, and sharing Ribbon customizations. We explain some of the rationale
for various security measures, as well as how they can impact your development work
and the end user. You also learn about macro-enabled and macro-free file formats, trust
centers, and trusted locations. In addition, of course, we share recommendations for
providing steps to ensure that users have the appropriate security settings and are still
able to enjoy the benefits provided by your customization efforts.

To cap everything off, we include appendixes of reference material so that readers
have everything they need at their fingertips. Appendixes cover such topics as naming
conventions, and list the correct names for groups, tabs, and other necessary objects in
the Ribbon and application hierarchies.

As you can see, this book is everything that we said it would be. It provides the
information that you need to immediately achieve results, and it will become an
invaluable reference for future projects.

xxxii Introduction

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxxii

Why Read This Book

This book addresses issues that are daunting multitudes of developers and end users
alike. It provides the information and examples that will prepare you to create and
share intuitive custom UIs, and it demonstrates the options available for working with
legacy custom menus and toolbars.

RibbonX: Customizing the Office 2007 Ribbon is a one-stop reference for anyone who
wants to customize the Ribbon. With that goal in mind, it not only works through cus-
tomizing the Ribbon, but also covers related material. That means the book discusses the
basics for working with VBA, XML, and macros. In addition, because macros and VBA
trigger Windows security settings, the book also reviews relevant aspects of security,
such as trust centers and digital certificates. It also explains issues and processes associ-
ated with preparing and packaging customizations for deployment in target environ-
ments, including detailed instructions for deploying Access run-time installations.

Whether you are an end user, a seasoned Office developer, or somewhere in between,
this book is the perfect reference for customizing and programming the Ribbon.

Tools You Will Need

One of the beauties of this book is that if you have Office 2007, you’ve already made the
prerequisite purchase. That’s because we leverage the XML and VBA capabilities that
are intrinsic to Microsoft Office 2007, and the additional tools that are available as free
downloads from Microsoft. Therefore, contrary to common perception, you can cus-
tomize the Ribbon without purchasing expensive developer software, such as Visual
Studio Tools for Office, and without learning complicated coding languages such as C#.

Your customizations will run on essentially all installations of Office 2007. They can
be developed and deployed on both Windows Vista and Windows XP platforms, and
it matters little whether these are standard installations or are on virtual machines.

In short, essentially anyone with Office 2007 will be able to work through the numer-
ous examples for Excel, Access, and Word.

What’s on the Website

In addition to the material provided in the book, the chapters are supplemented by
sample files that can be downloaded from the book’s website, www.wiley.com/go/
ribbonx. We strongly encourage you to download the files and use them as you work
through the exercises.

The online files are invaluable resources that not only provide working demonstra-
tions of the material being covered, but also serve as an ultra-handy source for code
snippets. In addition to studying the code in the text, you can use the downloads to
view the XML and VBA in their native formats, and you can copy it directly into your
own projects.

Introduction xxxiii

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxxiii

Some of the files are also nice bonuses in and of themselves. For example, in
Appendix C, not only do we provide the source code and file, but our example is actu-
ally a fully functional tool that will locate, group, and display the imageMSO for each
application. Although you may not realize the value of that yet, you soon will —
when you discover that the imageMSO is an integral part of Ribbon customizations.
Robert’s tool in Appendix C is just one example of how the authoring team has taken
extra steps to provide you with the information and resources that you’ll need.

Congratulations

We are excited about the opportunity to help fellow developers and end users to
customize the Ribbon and create solutions that are both personalized and enhance
productivity. You will likely be surprised by how easy it is to create customizations, not
only for your own use, but also to share with others.

An exciting bonus for end users is that in addition to customizing your work environ-
ment, you will be expanding your horizons, adding new programming skills, and build-
ing the confidence to take on bigger and more challenging projects.

We recommend that as you go through the book, you download the sample files so
that you can see it in its native environment, see how a finished example will work,
and experiment with changes. Working through the exercises will enable you to take
ownership of the concepts and incorporate them into your customizations.

Learn, enjoy, be creative. Build solutions that work for you.

xxxiv Introduction

91118flast.qxd:WileyRedTight 12/3/07 9:54 AM Page xxxiv

In This Part

Chapter 1: An Introduction to the Office User Interface
Chapter 2: Accessing the UI Customization Layer
Chapter 3: Understanding XML
Chapter 4: Introducing Visual Basic for Applications
Chapter 5: Callbacks: The Key to Adding Functionality to Your Custom UI
Chapter 6: RibbonX Basic Controls
Chapter 7: RibbonX Basic Container Controls
Chapter 8: Custom Pictures and Galleries
Chapter 9: Creating Menus
Chapter 10: Static and Dynamic Menus
Chapter 11: Making Use of Controls and Attributes to Help Your Users

The Building Blocks for a
Successful Customization

P a r t

I

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 1

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 2

3

When you open Office 2007, you are welcomed by a totally new user interface (UI).
Although the new UI brings immediate productivity improvements to new Office
users, it can take a few days or weeks for experienced Office users to adapt to and
become fluent with the new interface. But it is definitely worth the investment to get
up to speed with the new UI, particularly the Ribbon. Knowing what to expect and
understanding the logic behind the Ribbon will make life much easier.

This chapter is designed to familiarize you with the Ribbon so that you can understand
how to work with it from the perspective of an end user as well as from the perspective of
a power user and developer. There are such dramatic changes to the UI that we highly rec-
ommend that even power users and developers read through this introductory chapter. It
provides an important foundation, as it explains the Ribbon’s background.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s web site at www.wiley.com/go/ribbonx.

What Is the Ribbon and Why Does It Exist?

Office 2007 has been given a face-lift! And what a makeover! For those who got used to
the old toolbars, the new UI can be a tremendous shock. However, as you learn the new
interface, you will start to appreciate its benefits and, hopefully, embrace it as we and
countless of others have done.

An Introduction to the
Office User Interface

C H A P T E R

1

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 3

Microsoft invested a significant amount of time and money in the creation of the
new Ribbon interface. Millions of dollars were spent tracking user trends, including
how people actually used the Office applications and their underlying hierarchical
menus. They studied where users were going, what commands they used, and in
which order. They even tracked eye movement to see where people tend to look first to
find a command. The results were used to develop the Ribbon.

The introduction of hierarchical menus was a great leap from the top-level menu
style. One factor prompting its development was that top-level menus were running
out of space for additional commands for the new features as they were added to an
application. With the introduction of hierarchical menus, more room was available for
the new commands being created. What this meant, of course, was an increase in the
number of features displayed from one version to another.

But just as there is no free lunch in economics, there is no free lunch with such an
approach. As the number of features increased, it became more difficult to actually find
them due to the increased complexity of the UI.

If you think back to the very first versions of Word, for example, there was really no
hierarchy as such. It had the top-level menu, and a user could quickly scan its contents
for the needed feature. By the time we reached Word 97, things had changed dramati-
cally and problems with the UI started to appear. At this point, the future started to
look bleak for the hierarchical order. A change in paradigm became necessary. It was no
longer a matter of whether it would happen, but rather when it would happen.

Problems with the Old UI
As the UI moved from top-level to hierarchical menus, things started to get out of con-
trol and people were frequently searching for commands. It was often so challenging
to find a command that most users had difficulty in locating desired options, or per-
haps worse, they would give up on trying to find something that they knew was there.

Take for example the Insert ➪ AutoText ➪ Header/Footer hierarchy in Word 2003,
shown in Figure 1-1.

Figure 1-1: Hierarchical menu in Word 2003

4 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 4

Chances are good that unless you’re very experienced with Word, you would have
never known that this option even existed. Hence, we end up with a huge dilemma on our
hands: We have a feature-rich application, but just a portion of these features are being
used because they are buried under extensive branching and a burdensome hierarchy.

Thus, not only are many features unused, but it also becomes cumbersome for experi-
enced users to keep track of things under such scenarios. Users are all too familiar with
the frustration of wasting time hunting for the command to execute a needed feature.

Microsoft tried to address this issue when it became obvious back in Office 97. With
Office 2000, they introduced the concept of adaptive menus. The idea was that the top-level
menu would be shorter and only show the features that the user accessed most frequently.
This selection process would translate into a UI that reflected a user’s true daily needs
instead of presenting dozens of commands that he never used and did not care about.

For anyone who was a bit more fluent in the UI from Office 97, this new feature actually
became a hindrance. And for new users, it translated into frustration. Ultimately, a lot of
users were switching off this feature and leaving the menus to show in full instead of rely-
ing on the adaptive menus technology to figure out and create a UI tailored to their actions.

To make matters worse, the introduction of full menu customization meant that
users could move toolbars around, dock them in some silly place, float them on the
screen, close them altogether, and perform a whole bunch of other actions such as
adding and removing controls from the toolbars and menus at will. This may look
great from the point of view of a power user or programmer, but the world is not made
up of power users and programmers alone. Not everyone is technically savvy and this
had to be taken into account too.

As anyone who has had to work the help desk for Office applications knows, many
end users would close toolbars, never to find them again. In addition, users were prone
to float toolbars, impairing their ability to see the document. At that point, the user
would become frustrated and call the help desk with a complaint. Of course, the help
desk staff and many developers might be astounded that someone would do these
things — and then admit it. But we’ve all heard hilarious stories about the CD tray
breaking under the weight of a coffee cup, so as crazy as the stories sound, they’re true,
and they provide valuable information to developers — one of which is that features
need to be as clear and intuitive as possible.

Because of the confusion and difficulties the average user could experience, it was
obvious that something had to be done. The support calls and other challenges triggered
the overhaul of the UI as we knew it. A paradigm shift seemed more and more necessary.

With the release of Office 2007, the new Office Fluent UI was provided to address
such issues. However, as might be anticipated with such a dramatic change, it can be
met with resistance from those who are familiar and comfortable with the old ways. In
addition, it has created new challenges for power users and developers who want to
deliver a custom UI.

This book tackles the issues in a manner that will be comfortable for and will benefit
all levels of users and developers. If you are a beginner, you will love this book because
you learn the fundamentals and will be able to customize your own workspace. If you
are a power user, you will love this book because you will be able to work more effi-
ciently by customizing and sharing your Ribbon components. And if you are a devel-
oper, you will also love this book because you will be able to leverage your custom
components, work across multiple applications, incorporate third-party tools, and
deploy contemporary solutions.

Chapter 1 ■ An Introduction to the Office User Interface 5

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 5

So, it’s time to discuss the old issues addressed by the new UI as well as the new
issues that were created by it.

Issues Solved with the New UI
What came out of the massive budget and research on Microsoft’s part when it was
manifested in the Ribbon? Many painful problems in the old user interface were
solved, including the following:

■■ Lack of context: Wouldn’t it be nice to have the controls you need displayed
when you need them? That’s what contextual controls are all about. In the
older versions of the applications, all commands were buried somewhere —
but not necessarily where users would intuitively expect them to be. In addi-
tion, only a few features (Pivot Tables and Charts in Excel, for example,) had
contextual commands that would display when the feature was being used. In
the new UI format, Microsoft attempts to be much more contextual, and to pre-
sent commands in a way that is consistent with what their research indicated
would be the next logical step. Contextual controls are discussed in Chapter 15.

■■ Command accessibility: Microsoft seems to have put in a huge amount of
effort to make the commands more “discoverable” to new and less familiar
users. In fact, even power users will discover commands that they didn’t know
existed in prior versions. Commands have been logically grouped together,
which was not always the case in the past. In addition, many features that used
to be buried and difficult to find have been moved to the front lines.

■■ Customizations left behind: One of the major pain points in Office 2003 and
prior versions was that a poorly designed customization could leave parts of
the UI customizations exposed when a file was closed. For example, they might
inadvertently change the default menu and toolbars for the user’s applications,
possibly hiding or removing commands and toolbars — and many users would
not know how to recover them. These problems are all gone now, thanks to the
new UI format. The customizations are specific to the container files. As soon as
you navigate away from a file that contains customization code, the customiza-
tions disappear in the UI. Close your file or even navigate to a new one and the
customizations are tossed until you return. While you can share customizations
across files via add-ins, global templates, and shared workspaces, the funda-
mental rule still remains that when that file is closed, the custom UI is unloaded
with it. Unlike prior versions, no hangovers are left behind to haunt users.

■■ Corrupted toolbars: By virtue of not having toolbars to customize, the whole
problem of corrupted toolbars has disappeared. The disappearance of this fea-
ture may seem like a curse for many, but in fact many of these files were quite
fragile and could cost users countless hours to rebuild. Because all customiza-
tions are now built right in to the file, they also go with the file when it is sent
to a new location, eliminating any worry about how the UI will be transferred
or shared. The secret to building your own custom UI for users everywhere
now becomes the task of building a much more stable add-in or global tem-
plate, and that is what this book will teach you how to do.

6 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 6

Issues Created with the New UI
While the new user interface has undoubtedly solved many of the issues that were pre-
sent in previous versions of Microsoft Office, it has naturally created some new ones
that we must deal with. But, hey, this is a new technology and as with any new tech-
nology it will need to be adapted and improved along the way.

One drawback (and the most immediately obvious one) about the Ribbon is that it
takes up a lot of screen space, which, in itself, can defeat the purpose of giving the user
a full experience of the Ribbon’s potential. Therefore, the higher the resolution of your
screen, the more you will enjoy and benefit from your experience with the Ribbon.

Figure 1-2 shows the Ribbon on a screen with a lower resolution. Some of the groups
are collapsed; therefore, it is not possible to know what commands these groups con-
tain until they are expanded.

Figure 1-2: Lower resolutions or minimized windows force Ribbon groups to collapse.

NOTE Resizing the window to a smaller size will cause the groups to collapse.
The UI has four types of groups (large, medium, small, and collapsed) that
come into play when the window is resized or when you’re working in a lower-
resolution environment.

A screen with a higher resolution, as shown in Figure 1-3, provides a greater visible
area of the Ribbon, so the groups are all nicely displayed (compare the Styles group in
Figure 1-2 and Figure 1-3).

Figure 1-3: Higher resolution allows for expanded groups.

Hence, the higher your monitor’s resolution, the more you will benefit from the Rib-
bon (the Ribbon is best visualized in a resolution of 1024 × 768 or higher). As you can
see, this first issue is a visual one — that is, you do not need to know anything about
the Ribbon to figure that out by yourself.

NOTE Although the Ribbon occupies a lot of space, you will notice that
compared to other versions, the actual document visibility is larger for out-of-
the-box installations compared to older versions, as you will not have items
such as horizontal scroll bars, and so on, showing up unnecessarily.

Chapter 1 ■ An Introduction to the Office User Interface 7

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 7

Another visual issue relates to how much is actually available under each tab. You
may find yourself moving back and forth along the Ribbon to get certain tasks done.
The original goal was to make commands readily available, so this seems to defeat part
of the purpose. And what if the user minimizes the Ribbon? You gain visible screen
space, but you end up with something akin to the old menu hierarchy. As Figure 1-4
shows, minimizing the Ribbon gives the impression that you are still under the menu
hierarchy. We discuss later in this chapter the collapsing and expansion (minimization
and maximization) of the Ribbon.

Figure 1-4: Minimizing the Ribbon gives the impression you are
still under the menu hierarchy.

Following are some of the nonvisual issues with the new UI:

■■ Less efficient for power users: Although the Ribbon gives end users instant
access to the tools they need to perform their jobs more productively and pro-
fessionally, it initially causes significant frustration among power users and
developers. The flexibility found in previous versions in terms of easy cus-
tomization is now history. Some of the issues (such as ease of customization)
are already being addressed by Microsoft, but how far they will go only time
will tell. For now, we have to live with what we have and make the best use of
it. Power users and programmers will be happy to know that this book pro-
vides solutions to several of the issues, and it provides full examples of how
to create and incorporate customizations.

■■ Fewer commands on screen: The controls that were determined to be the most
frequently used are grouped and prominently displayed. As mentioned earlier,
screen resolution can play a positive or negative role here because groups will
collapse to fit into a smaller display. To make matters worse, you still need to
navigate between the tabs. In addition, many tasks may still require navigating
between tabs, such as when you need to validate data and then format your
work in Excel, and during any type of database design activities.

■■ Lack of “tear away” toolbars: This is both a blessing and a curse in disguise.
It is a blessing for beginners who will no longer suffer from misplaced toolbars
(the story of the disappearing toolbar). Conversely, it is a curse for power users
and developers who no longer have the flexibility to dock toolbars according to
a specific need, as well as for those users who want to put the tools closer to
their workspace to minimize mouse travel.

■■ Customization requires programming or third-party tools: This statement is
not entirely true if you could not care less about your productivity. You might sit
in front of your PC, open Notepad, and type away until you create an entirely
new UI. But if you are even a little concerned with productivity (as we assume
you must be), you will find that without a third-party customization tool your
life could quite easily become a living hell . . . and we do mean that, despite the
fact that this book will give you a taste of paradise and show you how to actu-
ally get there.

8 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 8

■■ Table-driven menus are not what they used to be: Previously, a custom UI for
an Office application could use external sources (such as tables in Access or
Word, and worksheets in Excel, etc.) to lay out the UI, and then the UI could
be loaded on-the-fly through a standard VBA procedure. Although this is not
completely impossible to do with the Ribbon, the scope has been dramatically
reduced compared to what it used to be. The reason for this limitation comes
from the fact that the Ribbon UI is loaded at design-time and not at run-time.
Chapter 14 includes a detailed discussion about how to do such things and
what circumstances will limit the options.

■■ Commands may not be in the order you need them: It’s estimated that many
Excel users know about 20% of its features, but that they each use a different
20% based on their jobs and experience. Because of this, Microsoft’s usage stud-
ies, despite being across many thousands of users, may not have captured your
needs. Plainly put, the commands may not always be where you need them, and
you may spend significant time searching through tabs to find them.

■■ Only one shot to create your UI structure: Unfortunately, there is currently no
way to repopulate an entire tab, or group with controls in a dynamic manner.
While you can hide or show groups (or enable/disable commands) that you’ve
lain out at design time, you cannot dynamically add new tabs, groups, or con-
trols to those groups on-the-fly. It’s true that you can dynamically populate cer-
tain controls with content, but this is only one very small part of the new UI.
The inability to build tabs and groups on-the-fly is probably the largest piece
missing from the Ribbon from a developer’s perspective, and it prevents us
from building the truly fluent and rich UI that should be possible.

What Happened to the Toolbars
from My Pre-2007 Files?

It would be a nightmare to wake up to the new UI just to find that all your previous
work would be pretty much worthless. Although for some this may be partially true, it
is not necessarily the end of the world.

Being forced to live with the Ribbon glued firmly in one place may not meet the
unusually high standards and expectations of users who are accustomed to the dock-
ing capability. However, this “gluing” process is, in effect, quite sensible given that the
majority of users (not power users and developers) have had a tendency to wreak
havoc in the old UI by scattering toolbars all over the place, hiding toolbars and not
being able to retrieve them, and in general creating UI mayhem.

The Ribbon eliminates all that, but in the process it creates frustrations for more pow-
erful users, as we have to learn new habits. As you know, old habits are hard to break.

At this point you may be wondering a few things about your old customization. It
is hoped that answering a few questions will dispel most of your doubts:

■■ Will your old customizations still work? Yes, they will, but they will certainly
not look like anything you had before.

Chapter 1 ■ An Introduction to the Office User Interface 9

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 9

■■ Where do they show up? If you’re planning to deploy a full-blown VBA-based
customization, this new customization will be added to a new tab called
AddIn. Although your project may not be an add-in, that’s what the tab is
named and your UI can be filled with them. This is as good as it gets, at least
for now. There are exceptions to AddIns, such as pop-up menus (pop-up
menus are covered in Chapter 15).

Is anything else happening to the old way of doing things? The answer is a resound-
ing YES! Developers will be happy to know that the programming model for legacy
CommandBars has been upgraded so that it contains some new methods you can use
to interact with the new UI. For example, we now have the GetImageMso function
(method), which enables you to capture the image of a control (such as HappyFace)
and place it somewhere else. This method is similar to the CopyFace method normally
used to copy the face of a button in the old UI. That may seem like Greek to a lot of you,
but rest assured that this book is designed with you in mind. It covers the fundamen-
tals, explains the scenarios, and then steps through the examples so that not only will
you be able to incorporate them into your files and solutions, but you will also under-
stand what you are doing and be able to create custom Ribbons tailored to your needs.

A Customization Example for Pre-2007 UIs

In order to give you an idea of what is going to happen to your old customization, we
will work through an example. This customization has a reasonable amount of com-
plexity so that you can have a clearer picture of what to expect. Don’t worry if you
don’t understand how it works at this point; it will become clear as you work through
the examples in the rest of the book. (This example is applicable to Excel. You can find
the code on the book’s website at www.wiley.com/go/ribbonx.)

In Figure 1-5, the menu is dynamic. When an option from the list is selected, another
list is created for that particular option. In addition, if other workbooks are opened or
created in the same Excel session, these custom options are no longer available (the
options are disabled). They’re available only for this specific workbook and adapt
according to which worksheet is currently active.

Figure 1-5: How old
customization is built into
the new UI

We describe the entire VBA process for this example so that you can have a look at
how things would work on a relatively complex customization. If you are not fluent

10 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 10

with VBA, there is no need to panic. Chapters 4, 5, and 12 delve into the relevant
aspects of VBA and explain things in sufficient detail for you to understand and be con-
fident in creating customizations.

For now, run this example and see how Excel 2007 handles a customization code
written for Excel 2003. This will help you understand some of the key differences
between the old way and the new way of doing things and it will make it easier for you
to visualize what we are working with as we progress in this book.

We describe below the steps you need to follow in order to implement this solution.
Keep in mind that you aren’t expected to complete this exercise at this time. Rather, it
is intended to give you the big picture and show you where you’re headed. You might
want to start by seeing what we’re creating. Just download this chapter’s files and
open Customization Old Style.xlsm.

As you go through the book, you will learn about each of the steps to create custom
add-ins as well as some VBA fundamentals, including how to create and work with
class modules. For now, it is probably easiest to just review the code in our files. Alter-
natively, if you feel you want to try it yourself, you can copy the code from the refer-
enced Excel file (or from the chapter’s text file) and paste it in as instructed.

First, open ThisWorkbook and add the following code to the code window. (You do
so by pressing Alt+F11 to open the VBE (Visual Basic Editor). From there, double-click
on the ThisWorkbook object to open its code window.)

Private Sub Workbook_BeforeClose(Cancel As Boolean)

Call wsDeleteMenus

End Sub

Private Sub Workbook_Open()

Call wsBuildMenus

End Sub

Next, add a class module to your project. This is done from the Insert menu in the
VBE window (Insert ➪ Class Module).

NOTE Remember that this is just an example to give you the big picture
about what we’ll be covering and why. At this point, you aren’t expected to
understand everything or to be able to interpret all the code, but by the time
you finish this book, you will be proficient with these customizations and all
of their intricacies.

C ROSS-RE FE RE NC E Chapter 12 defines and shows you how to work with
class modules.

You can name the following class module whatever you like, but in this example we
use clsEvents, so be sure to refer to the correct module in your own code.

Public WithEvents appXL As Application

Public WithEvents drop As Office.CommandBarComboBox

Chapter 1 ■ An Introduction to the Office User Interface 11

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 11

Private Sub appXL_SheetActivate(ByVal Sh As Object)

Dim ws As Worksheet

Dim wb As Workbook

Dim i As Long

On Error GoTo Err_Handler

Set wb = ActiveWorkbook

If Not wb.Name = ThisWorkbook.Name Then Exit Sub

Set g_cmdbarcboBox = g_cmdBar.FindControl _

(Type:=msoControlDropdown, Tag:=”myList”)

g_cmdbarcboBox.Clear

For Each ws In Sh.Parent.Sheets

g_cmdbarcboBox.AddItem ws.Name

Next

For i = 1 To g_cmdbarcboBox.ListCount

If g_cmdbarcboBox.List(i) = Sh.Name Then _

g_cmdbarcboBox.ListIndex = i: Exit For

Next

Call drop_Change(g_cmdbarcboBox)

Exit Sub

Err_Handler:

ErrHandle Err

End Sub

Private Sub appXL_WorkbookActivate(ByVal wb As Workbook)

Set g_cmdbarcboBox = g_cmdBar.FindControl _

(Type:=msoControlDropdown, Tag:=”myList”)

If wb.Name = ThisWorkbook.Name Then

g_cmdbarcboBox.Enabled = True

appXL_SheetActivate wb.ActiveSheet

Else:

Call deleleteControls

g_cmdbarcboBox.Enabled = False

End If

Exit Sub

Err_Handler:

ErrHandle Err

End Sub

Public Sub setDrop(box As Office.CommandBarComboBox)

Set drop = box

End Sub

Private Sub drop_Change(ByVal Ctrl As Office.CommandBarComboBox)

12 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 12

Select Case UCase(Ctrl.Text)

Case “SUPPLIERS”

Call setMNUSUPPLIERS

Case “CUSTOMERS”

Call setMNUCUSTOMERS

Case “ACCOUNTS”

Call setMNUACCOUNTS

Case Else

Call deleleteControls

End Select

End Sub

Finally, add a standard module (in the VBE window select Insert ➪ Module) where
we will insert the following code:

Public Const gcstrCMDBARNAME As String = “DYNAMIC MENU”

Public Const gcstrMNUSUPPLIERS As String = “Suppliers”

Public Const gcstrMNUCUSTOMERS As String = “Customers”

Public Const gcstrMNUACCOUNTS As String = “Accounts”

Public g_cmdBar As CommandBar

Public g_cmdbarMenu As CommandBarPopup

Public g_cmdbarBtn As CommandBarButton

Public g_cmdbarcboBox As CommandBarComboBox

Public gcls_appExcel As New clsEvents

Public gcls_cboBox As New clsEvents

Sub wsBuildMenus()

Call wsDeleteMenus

On Error GoTo Err_Handler

Set g_cmdBar = CommandBars.Add(gcstrCMDBARNAME, msoBarFloating)

g_cmdBar.Width = 150

Set g_cmdbarcboBox = g_cmdBar.Controls.Add(Type:=msoControlDropdown)

With g_cmdbarcboBox

.Tag = “myList”

.OnAction = “selectedSheet”

.Width = 150

End With

Set g_cmdbarBtn = g_cmdBar.Controls.Add(Type:=msoControlButton)

With g_cmdbarBtn

.Caption = “Help”

.OnAction = “runHelp”

.Style = msoButtonIconAndCaption

.FaceId = 984

End With

Chapter 1 ■ An Introduction to the Office User Interface 13

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 13

Set gcls_appExcel.appXL = Application

gcls_cboBox.setDrop g_cmdbarcboBox

With g_cmdBar

.Visible = True

.Protection = msoBarNoChangeDock + msoBarNoResize

End With

Exit Sub

Err_Handler:

ErrHandle Err

End Sub

Sub wsDeleteMenus()

On Error Resume Next

Application.CommandBars(gcstrCMDBARNAME).Delete

Set g_cmdBar = Nothing

Set g_cmdbarMenu = Nothing

Set g_cmdbarBtn = Nothing

Set g_cmdbarcboBox = Nothing

Set gcls_appExcel = Nothing

Set gcls_cboBox = Nothing

End Sub

Sub deleleteControls()

On Error Resume Next

g_cmdBar.Controls(gcstrMNUACCOUNTS).Delete

g_cmdBar.Controls(gcstrMNUCUSTOMERS).Delete

g_cmdBar.Controls(gcstrMNUSUPPLIERS).Delete

End Sub

Sub selectedSheet()

Dim g_cmdbarcboBox As CommandBarComboBox

On Error Resume Next

Set g_cmdbarcboBox = _

CommandBars.FindControl(Type:=msoControlDropdown, Tag:=”myList”)

ActiveWorkbook.Sheets(g_cmdbarcboBox.Text).Activate

End Sub

Sub setMNUACCOUNTS()

Call deleleteControls

On Error GoTo Err_Handler

Set g_cmdbarMenu = _

g_cmdBar.Controls.Add(Type:=msoControlPopup, BEFORE:=2)

g_cmdbarMenu.Caption = gcstrMNUACCOUNTS

Set g_cmdbarBtn = g_cmdbarMenu.Controls.Add(Type:=msoControlButton)

g_cmdbarBtn.Caption = “New Account”

14 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 14

Set g_cmdbarBtn = g_cmdbarMenu.Controls.Add(Type:=msoControlButton)

g_cmdbarBtn.Caption = “Delete account”

Exit Sub

Err_Handler:

ErrHandle Err

End Sub

Sub setMNUSUPPLIERS()

Call deleleteControls

On Error GoTo Err_Handler

Set g_cmdbarMenu = _

g_cmdBar.Controls.Add(Type:=msoControlPopup, BEFORE:=2)

g_cmdbarMenu.Caption = gcstrMNUSUPPLIERS

Set g_cmdbarBtn = g_cmdbarMenu.Controls.Add(Type:=msoControlButton)

g_cmdbarBtn.Caption = “New Supplier”

Set g_cmdbarBtn = g_cmdbarMenu.Controls.Add(Type:=msoControlButton)

g_cmdbarBtn.Caption = “Current data”

Exit Sub

Err_Handler:

ErrHandle Err

End Sub

Sub setMNUCUSTOMERS()

Call deleleteControls

On Error GoTo Err_Handler

Set g_cmdbarMenu = _

g_cmdBar.Controls.Add(Type:=msoControlPopup, BEFORE:=2)

g_cmdbarMenu.Caption = gcstrMNUCUSTOMERS

Set g_cmdbarBtn = g_cmdbarMenu.Controls.Add(Type:=msoControlButton)

g_cmdbarBtn.Caption = “New Customer”

Set g_cmdbarBtn = g_cmdbarMenu.Controls.Add(Type:=msoControlButton)

g_cmdbarBtn.Caption = “Outstanding pmts”

Exit Sub

Err_Handler:

ErrHandle Err

End Sub

Sub ErrHandle(ByVal objError As ErrObject)

MsgBox objError.Description, vbCritical, objError.Number

Call wsDeleteMenus

End Sub

You can now run the preceding code and see for yourself how it behaves in relation
to the new UI. Start by selecting the different worksheet tabs and then open/add new
workbooks to your working environment.

Chapter 1 ■ An Introduction to the Office User Interface 15

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 15

Ribbon Components

This section provides a guided tour of the Ribbon components. This will help you
become familiar with the structure so that things will run more smoothly when you
begin XML coding of the UI.

The user interface in Office 2007 is made up of a number of components (or ele-
ments, if you prefer) that determine how you interact with the application, much in the
same way that the hierarchical approach had its own elements. These components are
listed in Table 1-1 and Table 1-2, and illustrated in Figure 1-6. (The numbers in the
tables correspond to the callout numbers in Figure 1-6.)

As previously mentioned, the idea is that this new UI will help users to get the job
done quicker, which should translate into higher productivity. However, before pro-
ductivity increases, you need to familiarize yourself with these elements, especially if
your objective is to customize the Ribbon. The task of customizing the Ribbon will be
a whole lot easier once you understand the underlying logic of the XML code.

Table 1-1: The Three Basic Ribbon Components

COMPONENT WHAT IT IS FOR

1. Tab Each tab brings together core tasks that you perform. Tabs
bring together all these related tasks.

2. Group In the same way that tabs bring together related tasks,
groups bring together related commands.

3. Command A command represents an action that you want to
perform. It can appear packed in different forms, such as
buttons, galleries, menus, edit boxes, etc.

Figure 1-6: Ribbon components viewed from an Access
perspective

Figure 1-6 shows a total of five components (or elements). Numbers 1, 2, and 3 are
“basic” components; numbers 4 and 5 are not.

1 4

2 3

5

16 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 16

Table 1-2: The Two Non-Basic Components of the Ribbon

COMPONENT WHAT IT IS FOR

A toolbar for adding commands that you want just a click
away. The QAT can take shared or document controls.

A menu containing file-related tasks such as printing, file
properties, saving, etc.

These elements are related in a hierarchical construct within the XML code. This
construct (or concept) serves to encapsulate each control within its parent element. The
way this structure works will become clear when we start to analyze the tags used to
build customization.

NOTE When adding controls to the QAT such as buttons and groups, you can
choose between a document control and a shared control. A document control,
as the name suggests, is a control that belongs to the document itself and
cannot be seen or accessed by another document that might be opened in the
same session. Conversely, a shared control is available to all documents
opened in the same session or any other session.

Tips for Navigating the Ribbon
and Quick Access Toolbar (QAT)

This section discusses some tips for navigating the Ribbon and the Quick Access Tool-
bar. Although these tips relate to the default Ribbon, you should keep them in mind for
your customization — especially the keytips accessible through the keyboard, as these
can be changed through XML code and will work with your own customization as well
as built-in tabs and controls.

Using Keyboard Shortcuts and Keytips
We start off with keyboard shortcuts and keytips. This is, simply put, the easiest, quick-
est, and generally most efficient way to access commands in any application. It
involves pressing a combination of keys that will perform some kind of action, such as
copying, cutting, pasting, or navigating through some of the Ribbon’s elements.

If you have used keyboard shortcuts before, you should be happy to know that old
shortcuts still work fine with the new UI (in fact, they work in exactly the same way as
before). Hence, if you need to copy something, you can still use Ctrl+c; similarly, if you
wish to paste, you can continue to use Ctrl+v. A shortcut requires that you press one
key plus another.

5. Office Menu (also
known as Office Button)

4. Quick Access Toolbar
(better known as QAT)

Chapter 1 ■ An Introduction to the Office User Interface 17

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 17

You will remember that for previous versions of Office, you could press the Alt key
to activate the top-level menu (referring to the Accelerator key). You would then use
other keys (which were always underlined, indicating which key you should press
next) to get to the command you wanted. Office 2007 introduces an extension of the
Accelerator idea from previous versions of Office: keytips. Keytips are also accessed by
pressing and releasing the Alt key (if you press and hold long enough it will show the
keytips as well, as shown in Figure 1-7).

Figure 1-7: Keytips for an Access project

Next, all you have to do is press the corresponding key (or combination of keys)
shown in the Ribbon. This is slightly different from the shortcut approach, because
with keytips you first press one key and then you press another.

NOTE Notice that some keytips are dimmed. When a keytip is dimmed it is
not accessible in the current context (for example, undo will not be functional
until there is something that can be undone).

When you press the keytip key and it refers to a tab, you automatically move into
that tab context. This time around, you do not need to press Alt to reveal the keytips for
the controls. As shown in Figure 1-8, all the keytips are automatically revealed to you.

Figure 1-8: Keytips for controls under the Create tab in Access

Now, if the next keytip leads you to a drop-down or menu, these will be extended to
show the keytips for any controls that may have been placed in them.

The greatest single advantage of the keytip is that it is an attribute available in
almost all controls you find in the Ribbon. Compare this with the limited scope in pre-
vious versions of Office and you start to appreciate its beauty.

NOTE Keytips are available in almost all controls, but some controls (such
as the menuSeparator and labelControl) are not really command controls and
therefore have no keytips. These are auxiliary controls and do not perform any
kind of action.

18 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 18

Another benefit is that you can still use the Accelerator keys in the same manner as
you could in previous versions of Office. Suppose you want to open the Insert Func-
tion dialog box in Excel. Using keytips, you could press Alt+M+F. An alternative was
to use the Accelerator route in Office 2003, which just entailed pressing Alt+I+F. Now,
Excel 2007 keeps track of the keys you press to open the Insert Function dialog box, so
it will recognize the key combinations that were used in Office 2003. Figure 1-9 shows
the Accelerator sequence in Office 2007 for Alt+I+F from Office 2003.

Figure 1-9: Office 2007 will
recognize and respond to the
Accelerator sequences used
in Office 2003.

The Accelerator access mode is activated whenever you combine keys that made up
the Accelerator route in Office 2003.

TI P You can also press the F10 function key to bring up the keytips and start
an Accelerator sequence.

Using the Mouse Wheel
If you have your Ribbon maximized, you can navigate the tabs using the mouse wheel.
Just place the mouse pointer on top of the Ribbon and spin the wheel.

If you scroll towards you, the Ribbon will scroll along the tabs from left to right.
Conversely, if you scroll away from you, it will scroll from right to left along the tabs
until it reaches the first tab on the left.

Minimizing and Maximizing the Ribbon
If you feel the Ribbon is taking up too much space at the top of your screen you can
minimize it, as shown in Figure 1-10.

Figure 1-10: Minimized Ribbon

Chevron icon

Chapter 1 ■ An Introduction to the Office User Interface 19

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 19

To minimize or maximize the Ribbon, you can do one of the following:

■■ Double-click on any tab.

■■ Click on the chevron-like icon and toggle Minimize the Ribbon button.

■■ Right-click anywhere on the QAT or tab strip, or on any group’s description
and choose Minimize Ribbon.

Once the Ribbon is minimized you will not be able to navigate the tabs using the
mouse wheel, and clicking on the tabs will only temporarily expand the Ribbon con-
tent for the selected tab. However, while the Ribbon has the focus, you will still be able
to choose other tabs and view the commands within any group under the chosen tab.

To expand the Ribbon back to the default display, merely follow one of the steps
listed for minimizing the Ribbon. Essentially, they work like a toggle to minimize/
maximize on demand.

Adding Commands to the QAT
If you use some controls more often than others (such as open/close), you can place
them on the Quick Access Toolbar (QAT) so that you have just that — quick access. The
QAT is the nearest you will get to toolbar-style customization. It works in pretty much
the same way that toolbars did in the past, by enabling you to place controls on a spe-
cific toolbar for ease of access.

Compared to what was previously possible, the QAT’s scope is rather limited, but
removing unwieldy customizations, such as the docking capability, also eliminated the
complexities and anxieties of managing the old toolbar.

It is remarkably easy to manually add commands to the QAT. Just use any one of the
following processes:

■■ Click on the chevron-like icon, and then select More Commands.

■■ Click the Office Menu and select (Application) Options ➪ Customize.

■■ Right-click anywhere on the QAT or tab strip, or on any group’s description,
and select Customize Quick Access Toolbar. When the Customize Quick Access
Toolbar options window is open, as shown in Figure 1-11, simply select the
commands you want to add to the QAT and click Add.

TI P To quickly add commands, right-click the command (Ribbon or Office
Menu) and choose Add to Quick Access Toolbar.

Note that under the Customize Quick Access Toolbar drop-down list, you will find
your XLSX, DOCX, ACCDB, and so on, files. This means the command you’re adding
to the QAT can be specific to the file or can be shared across all other open files. By
default, the customization is shared (for all files opened). If you want it to be file-specific,
then the icon will change to show this subtle difference, as shown in Figure 1-12.

20 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 20

Figure 1-11: Adding commands to the QAT in Word

Figure 1-12: Icons with a frame refer to document controls.

The little frame around the icon indicates that it is a document control rather than a
shared control. A shared control is available to all opened documents, whereas a docu-
ment control is only available to the document to which it was added.

It all may look great to begin with, but as you might quickly realize, it is very easy
to burden the QAT with too many buttons; and even then there will be more com-
mands that you’d like to add.

Thankfully, the QAT is quite versatile; in addition to being able to add buttons, you
can also add groups. The process is very simple and can be accomplished using one of
the following approaches:

■■ Open the application options. Under Choose Commands From, select the tab
that contains the group you are looking for. In the list, you will notice that some
have an icon with an arrow pointing down. This indicates it is a group.

■■ Right-click on the group name tab and then click on Add to Quick Access Toolbar.

Figure 1-13 shows the QAT in an Access project. In addition to buttons, this has the
Database Tools group.

Document control

Shared controls

Chapter 1 ■ An Introduction to the Office User Interface 21

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 21

Figure 1-13: Adding groups to the QAT

If you are wondering whether this applies to your custom groups, yes, it does apply to
custom groups.

TI P Notice the icons! That’s right, you should look at the icons in the Customize
options because they indicate what type of object is being added. An arrow
pointing down indicates a group, an arrow pointing right indicates a gallery, and
a vertical bar with an arrow pointing right indicates a splitButton.

C ROSS-RE FE RE NC E See Chapter 14 to learn more about Quick Access
Toolbar customization using XML.

Assigning a Macro to a QAT Button
If you plan to customize the Quick Access Toolbar, probably the best way is to use XML
code. The problem with this, however, is that such customization can only happen if
you build the entire Ribbon from scratch. This is covered in detail in Chapter 14.

If you need to add a button to the QAT for which you want to attach certain func-
tionality, you can easily make such a customization using the following steps (see
Figure 1-14 for a walk-through):

1. Go to Office Menu ➪ (Application) Options (alternatively, you can use the
chevron-like QAT icon to access More Commands).

2. Click Customize to enter the Customize the Quick Access Toolbar customiza-
tion window.

3. From the drop-down Choose Commands From, select Macros to show a list of
available macros.

4. From the Customize Quick Access Toolbar drop-down, select the option you
want (such as the Current document or For all documents (default) option).

5. Select your macro from the list and click Add.

6. Click OK when you’re done.

22 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 22

Figure 1-14: Assigning a macro to the QAT

You’re probably now wondering what is up with the icon assigned to the HelloWorld
macro. That is definitely an ugly icon and one that you would certainly want to replace,
which conveniently brings us to another step in the process. To change an icon, click the
Modify button to display a list of the available icons (shown in Figure 1-15).

Figure 1-15: Choosing a different
icon for the macro button

Look through the options and choose an icon (or symbol, if you prefer the dialog
box nomenclature) and when you’ve made your selection, click OK to continue.

While you are at it (and before you click OK), you can also change the Display name.
The Display name is the tip that will appear onscreen when the mouse pointer hovers
over the button, as shown in Figure 1-16.

Chapter 1 ■ An Introduction to the Office User Interface 23

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 23

Figure 1-16: Display name for
the macro button

Changing the QAT Location
By default the QAT is located above the Ribbon. You can change its location by either
of the following methods:

■■ Click the chevron-like icon and select Show Below the Ribbon.

■■ Right-click anywhere on the QAT or tab strip, or on any group’s description
and select Customize Quick Access Toolbar.

Preparing for Ribbon Customization

Developing Ribbon customizations involves several steps. The first stage works mostly
with structure and therefore involves XML; the second stage is functionality-related,
which involves VBA code (or some other programming language such as C#). Happily,
there are some fundamental components that are common to most customizations, so
you can create it once and then use it as the foundation for future projects.

The following sections describe some important preparations that will save you
valuable time throughout the customization process.

Showing the Developer Tab
As you work with VBA in this book, you may find it useful to have the Developer tab
active. The tab itself is not critical, as the keyboard shortcuts still exist and can be used
to access macro features for any work that you will do; but it will be useful to have the
development tools at hand, especially if you prefer using the mouse rather than key-
board shortcuts.

We recommend having the Developer tab active because after you have finished
your XML code you use VBA to add functionality to the UI, so it is convenient to have
the Developer’s tools at hand when you need them. Furthermore, the Developer’s
tools also provide an XML group, which is useful when inspecting the XML schema for
the Ribbon UI.

As shown in Figure 1-17, the Developer tab appears as the last tab in the standard
Ribbon.

24 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 24

Figure 1-17: The Developer tab is useful when it’s time to add VBA
functionality to your customization.

To enable the Developer tab, follow these steps (as illustrated in Figure 1-18):

1. Click on the Office logo.

2. Select (Application) Options.

3. Select Popular and choose the option Show Developer tab in the Ribbon.

Figure 1-18: Enabling the Developer tab

These instructions and illustrations are identical for Excel and Word. In Access,
however, you use the Create tab to access macro and VBA objects.

Another difference in Access is that it does not have certain features, such as macro
recording. Recording macros is a very handy feature that helps us to discover impor-
tant information about objects. Nevertheless, you may find that recording macros in
Excel/Word can actually help you figure out information and processes that are
applicable to Access.

C ROSS-RE FE RE NC E See Chapter 4 for instructions on recording macros
and for programming techniques that are used in this book and that you can
apply to your daily work.

Chapter 1 ■ An Introduction to the Office User Interface 25

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 25

Showing CustomUI Errors at Load Time
Before loading the UI into Excel, Access, or Word, you will always want to check your
XML consistency. To help with this, a few tools are discussed in Chapter 2. Despite all
good intentions, however, the UI may pass the test in these tools but fail when it loads.
Therefore, it is important to be familiar with some of the factors that might cause the
loading failure.

First, although each of these applications shares very similar XML code, they also
contain controls that are unique to that application. Therefore, if code including an
application-unique control were moved to a different application, the code would pass
the test on the tool but fail on load.

Second, you may also have less obvious problems. For example, you could assign an
idMso (we’ll discuss these more in Chapter 3) to a button when it actually belongs to a
toggleButton. Again, these may pass the first check, but will fail on load.

To ensure that consistency is also checked and that errors are displayed when the
CustomUI is loaded, you can use the following process:

1. Click Office Menu ➪ (Application) Options.

2. Select the Advance option and scroll to the General group.

3. Select the Show add-in user interface errors option.

Once you’ve made the selection, click OK to continue. The location for this option is
the same for Excel, Access, and Word.

As shown in Figure 1-19, when the document is loaded, if it contains an error it is
immediately reported, indicating the line and column in which the error is located
(including the file location).

Figure 1-19: Reporting error when loading UI

In this case, an error has occurred because the UI is being loaded in Word but it con-
tains an attribute value that is specific to Excel (ConditionalFormatting).

Reviewing Office 2007 Security
If this is your first time working with Office, you may want to take a few minutes to
review Chapter 17. That chapter contains information about how to set up the Trust
Center, macro security, and digital signatures so that you aren’t constantly being
harassed about potentially dangerous files while you are developing. Making these
changes now will save you some time and frustration as you go through the exercises
in this book.

26 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 26

Has Customization of the Office UI Become Easier?
Our objective throughout this book is to modify and customize the work area (user
interface). Unfortunately, the task is relatively arduous with the new UI for Microsoft
Office as compared to previous versions. Moreover, the challenges are compounded by
the small differences between the applications, which means that we cannot rely 100%
on the XML code to be exchangeable and applicable across different Office applications.

Figure 1-20 shows an example of a Ribbon customization. This has an added tab and
a group containing a few command buttons. And, of course, it includes an action that
will be executed when the command button is clicked.

Figure 1-20: Customizing
the Ribbon

If you previously created a lot of custom menus and toolbars (whether through VBA
or not), you will probably have a hard time accepting the new UI. However, once you get
past that first encounter and resistance to change, things should start looking a bit rosier.

The biggest challenge with respect to the new UI is the XML code it contains; and a
custom UI can require more lines of code than you might currently imagine. Therefore,
for now, accept the guidance that a lot of planning is required prior to writing the first
line of XML for your new UI. Later, a few hundred lines into your code, you do not
want to be trying to find and fix something.

Furthermore, XML is case sensitive, so writing an attribute such as getVisible as
getvisible will cause a syntax error in the structure of the XML code.

In addition, now we need to create and work with callbacks. These take the argu-
ments from the Ribbon objects. Fortunately, there’s the Custom UI Editor that can read
through your code and generate the callbacks for any attribute that requires one.

All of this might sound intimidating now, but by the time you finish this book, you
will be sailing through the Ribbon customization process. Obviously, this book cannot
contain everything you might possibly come across or want to know about, but it con-
tains everything that you need to know for most common scenarios and it will help
you avoid a whole lot of pain during the learning process.

Conclusion

In explaining how the Ribbon came to be, we provided a little background and history of
the Microsoft Office UI. Now you can understand why it was necessary for a paradigm
change after so many years of relying on hierarchical menus. As with any change this dra-
matic, there can be a steep learning curve, but the benefits become evident very quickly.

Chapter 1 ■ An Introduction to the Office User Interface 27

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 27

In this chapter you learned about the Quick Access Toolbar, shortcuts, and keytips.
You learned some basic customizations that can be done without any programming
and how those customizations can be incorporated into your UI as a document or as a
shared customization.

Although lengthy, and maybe a bit intimidating at this stage, you also saw a sample
of an old customization style so that you could try it for yourself. It is hoped that being
able to contrast the new with the old has added to your appreciation for what you will
soon be able to do.

In Chapter 2 we cover access to the UI customization layer, and from there on we
introduce the tools you need to successfully customize the new Office user interface.
Have fun.

28 Part I ■ The Building Blocks for a Successful Customization

91118c01.qxd:WileyRedTight 11/28/07 7:33 PM Page 28

29

Before you can start exploring how to customize the Ribbon to get it the way you like
it, you need to know how and where to place the code to do so. This chapter leads you
there by discussing the file formats in Office 2007, and shows you how to crack your
files open for customization.

The first section, “Accessing the Excel and Word Ribbon Customization Layers,” dis-
cusses Excel and Word files, and begins by describing the fundamentals behind how the
new Office 2007 files are structured. You learn how to access the Ribbon customization
layer and store the required code. Once you’ve mastered this, you learn about a couple
of handy tools you can use to make it much easier to set up, program, and debug Rib-
bon customizations. Rest assured that at this stage, you’ll be provided with all the code
you need, so don’t worry about getting bogged down in learning to write it just yet.

The “Microsoft Access Customizations” section dives into storing RibbonX cus-
tomizations in Microsoft Access, as this is very different from working with the other
Office applications. A few different methods can be used to include Ribbon customiza-
tions in Access, and a brief introduction to each of them is covered. Again, all code is
provided for you at this stage.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s web site at www.wiley.com/go/ribbonx.

NOTE This book provides processes and code for customizing the Ribbon in
Excel, Access, and Word. Microsoft also introduced the Ribbon, and new file
formats, for several other Office applications, including PowerPoint, Outlook
forms, OneNote, Visio, and InfoPath.

Accessing the UI
Customization Layer

C H A P T E R

2

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 29

Accessing the Excel and Word
Ribbon Customization Layers

This section explains how to create Ribbon modifications using only the software that
ships natively with Windows. It also explains how to accomplish the customizations
using some third-party tools.

What’s New in Excel and Word Files?
In versions of Microsoft Office up to 2003, most documents were stored in binary files,
but this changed with the arrival of Microsoft Office 2007. For the release of this ver-
sion of Office, Microsoft adopted the OpenXML file format as their new standard.
While it’s pretty obvious that the file formats have changed, what may not be obvious
is that, unlike files in previous Office versions, the new files are actually contained in a
zipped XML format! This is important for a few reasons:

■■ We can unlock and modify the underlying XML files quite easily with Notepad.
(No third-party tools are required, as Windows XP and later can work with
compressed, or zipped, files.)

■■ We can use a similar data structure across different applications to acquire like
results. From Excel to Word, and even in PowerPoint, customizing the new
Office 2007 user interface follows exactly the same methods.

■■ Generally, files stored in the new file formats are compressed, and take up
much less space than their old binary counterparts.

Creating a Ribbon Customization with Notepad
Enough talk about what can be done; it’s time to actually play with a customization.
For the purposes of this example, you create a very simple Ribbon customization that
adds a new tab to the Ribbon and places a couple of Microsoft’s built-in groups on
this tab.

NOTE While this example demonstrates the method to complete a Ribbon
customization in Excel, you can use the same steps to accomplish this in Word
as well. You simply open Word instead, and modify the docx file instead of the
xlsx file, as demonstrated in a subsequent example.

Creating the customUI File

The first thing to do is create the file that will hold the XML used to modify the Ribbon.
To do this, create a folder on your desktop and rename it customUI.

30 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 30

TI P Before continuing, make sure that your system is not set to hide known
file extensions, as this will get in the way in the next step. Showing extensions
won’t cause any security issues and, in fact, it can sometimes help prevent
them. To show extensions, open your folder view and choose Organize ➪ Folder
and Search Options (Tools ➪ Folder Options in Windows XP). On the View tab,
scroll down and uncheck the box that says “Hide extensions for known file
types” and then click OK.

Now open the customUI folder that you just made and create a new text file. When
prompted for a save name, call it customUI.xml. Right-click it, choose Edit, place the
following code inside, and save the file:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtabCustom”

label=”My Very Own Tab”

insertBeforeMso=”TabHome”>

<group idMso=”GroupFont”>

</group>

<group idMso=”GroupZoom”>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

NOTE This code has been validated and checked for you, so it will work as long
as you type it correctly. The leading spaces on each line are to provide clarity,
rather than functionality, so they do not affect code performance. However, the
code is completely case sensitive, so typing the incorrect case will inevitably
cause the code to fail.

TI P Rather than type code, you can copy the code from this chapter’s
companion files. The files for each chapter are available on the book’s website.

Creating the File to Use the Customized UI

Next, create the Excel file that will implement the customization. This will start out as
a typical Excel file, but that won’t last long because you will attach your customUI.xml
file to it. Naturally, you’ll need to use one of the new Office 2007 OpenXML file for-
mats. To do this:

1. Create a folder named “Test” on your Desktop.

Chapter 2 ■ Accessing the UI Customization Layer 31

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 31

2. Open Excel.

3. Create a new workbook if a blank one is not already showing.

4. Save the workbook to your desktop as a 2007 Excel workbook (.xlsx format).
As shown in Figure 2-1, for the purposes of this example the file is
called MyFirstUIModification.xlsx.

Figure 2-1: Saving an .xlsx file

Attaching the XML to the File

You are now at the stage where you can attach the XML file you created to the work-
book itself. To do this, you need to jump through a couple of hoops.

As mentioned earlier in this chapter, all OpenXML files are zip containers; and in
order for the RibbonX code to be read, it needs to be inside that zip container. Thank-
fully, this is easier than it sounds.

NOTE All customizations to the user interface are written in XML, which
modifies the RibbonX structure within Office. These two terms are used
interchangeably throughout this book.

Find the file you created (MyFirstUIModification.xlsx), right-click the file name,
and choose Rename. Leave the entire filename, including the file type extension, intact,
but add .zip at the end. The file should now be MyFirstUIModification.xlsx.zip. You
are changing the filename extension, so make sure you select Yes in response to the
warning about the potential consequences of your actions, as shown in Figure 2-2!

32 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 32

Figure 2-2: Modifying a file’s extension to expose its zipped structure

Notice that the file has now changed into a zip file, instead of just a standard Office
document file.

NOTE Renaming the file causes the file to show a different icon, indicating
that it is a zipped folder.

Double-click the zipped file to open it, and you should see the result shown in
Figure 2-3.

Figure 2-3: The contents of an OpenXML file

Now that you have the zipped file open, you need to move the customUI folder into
it. The drag-and-drop approach works great for this.

Chapter 2 ■ Accessing the UI Customization Layer 33

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 33

Next, link the UI modifications by editing the .rels file to indicate a relationship
between the file and the customUI folder. To do this, drag the _rels folder to your desk-
top (or another location of your preference). Then, open the newly created _rels folder
and use Notepad to edit the .rels file.

With the .rels file open in Notepad, insert the new relationship immediately before
the </Relationship> element at the end of the file. Specifically, you need to type in the
following code, being very careful with punctuation, spaces, and capitalization. The
code is case sensitive:

<Relationship

Id=”customUIRelID”

Type=”http://schemas.microsoft.com/office/2006/relationships↵
/ui/extensibility”

Target=”customUI/customUI.xml”/>

NOTE The code that you will be looking at in the .rels file is all on a single
line when you begin, but it’s not at all necessary to keep it that way. To make it
easier, scroll through the code and insert a hard return after every blank space
and > character. At the end of the process, you’ll end up with code that looks
like what is shown in Figure 2-4.

Figure 2-4: The contents of the .rels file

Finally, to finish the process, save your new .rels file and close Notepad. Return to
the zip container and right-click the _rels folder and then delete it. You are now ready
to drag your copied _rels folder back into the document’s zip container.

Now that you’ve saved the .rels file and replaced the _rels folder, rename your
workbook back to the xlsx filename that it started with. To do this, again right-click the
file and choose Rename; then just knock the .zip off the end (so that you’re left with
MyFirstUIModifcation.xlsx). The icon should return to the familiar Excel icon. Finally,
open the file in Excel and take a look at what you’ve accomplished.

34 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 34

NOTE If you get the error shown in Figure 2-5, check your .rels and
customUI.xml files. Something is written in the wrong case or spelled incorrectly!
If you do see an error like the following, select OK and return to the Custom UI
editor to troubleshoot the XML code.

Figure 2-5: An error in the .rels or customUI.xml files

If you did everything right, a new tab called My Very Own Tab is inserted before the
Home tab, which contains both the Font and Zoom groups, as show in Figure 2-6. If
you try some of the commands, you’ll see that they function just the same as those
from Microsoft’s built-in groups. Indeed they should, as they are just copies of the
built-in groups placed on your new tab.

Figure 2-6: My Very Own Tab in Excel

Using the Microsoft Office 2007 Custom UI Editor to
Modify Your UI
Without question, using Notepad to set up your Custom UI is a little intimidating and
a lot of work. It can be especially frustrating to deal with text wrapping. Fortunately,
there is an easier way: using a program called the Microsoft Office 2007 Custom UI
Editor. As this is such a mouthful, we’ll refer to it as the CustomUI Editor for the rest
of the book.

The CustomUI Editor is a handy little utility that makes editing your OpenXML files
much easier than the horribly complex route detailed earlier. In addition, it provides
some validation and other tools that reduce the stresses of development. Best of all, this
utility is available as a free download!

Chapter 2 ■ Accessing the UI Customization Layer 35

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 35

Installing Microsoft .NET Framework 2.0 for Windows XP Users

Are you one of those users who has decided to hold off on installing Windows Vista for
any reason? Well, if you’re still running on Windows XP, you need to know something
before you can move on. We’re going to be installing an application to make our jobs
easier, but it requires the Microsoft .NET Framework 2.0 to run. Vista users are ready to
proceed because Vista ships with version 2.0 of the .NET framework. However, it is
another story for computers with Windows XP.

Therefore, before you go any further, it’s a good idea to ensure that you have the
Microsoft .NET Framework 2.0 installed.

The first check is to go to Start ➪ Control Panel ➪ Add or Remove Programs and
check for Microsoft .NET Framework 2.0, as shown in Figure 2-7.

Figure 2-7: Checking for Microsoft .NET Framework 2.0 in Windows XP

If it isn’t there, go to Windows Update (or Microsoft Update if you’ve upgraded) to
get the framework. (If you know for a fact that it is not installed, you can go straight
there.) The Windows Update site can be reached at http://update.microsoft.com (see
Figure 2-8). For reference, the Microsoft .NET Framework 2.0 is included under the
“Software, Optional” category.

36 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 36

Figure 2-8: Microsoft .NET Framework 2.0 Windows Update

If Microsoft .NET Framework 2.0 isn’t in the list for Optional Software updates, it
means that the framework has either been installed already and you should retrace
the earlier steps, or it was hidden by someone who may have been applying updates
in the past. If you suspect that the update was downloaded but hidden instead of
installed, click the Restore Hidden Updates link under the Options section on the left,
as the update might have been flagged to not be shown.

Once you have downloaded and installed the .NET framework package, go back
and check for updates. At the time of writing, there were already two High Priority
updates for this product. While you’re there, you may want to apply any other criti-
cal updates that may have been missed on your system as well.

Now that your Windows XP system is patched and ready, you may proceed to
install the CustomUI editor.

NOTE You could skip the step of checking for the framework and Windows
updates, and take your chances that the install would be successful. If the .NET
Framework is not present, you will see the error shown in Figure 2-9, which will
prompt you to obtain the update.

Chapter 2 ■ Accessing the UI Customization Layer 37

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 37

Figure 2-9: .NET Framework missing dialog

Rather than just take your chances with the CustomUI editor installation, we rec-
ommend that that you utilize the earlier process and go through Windows Update to
get the Microsoft .NET Framework 2.0. This ensures that you get the latest version
direct from Microsoft, and it enables you to collect all the critical updates that follow.
Keeping your updates current is an important part of computer health, so using Win-
dows Update can kill the proverbial two birds with one stone.

Installing the Microsoft Office 2007 Custom UI Editor

The CustomUI Editor can be downloaded free from http://openxmldeveloper.org/
articles/customuieditor.aspx. Once downloaded, extract the zip file and install it on
your computer.

Once the program is installed, open it. You’ll be staring at a blank screen.
That’s not very exciting, so let’s open the file that we’ve been working on:
MyFirstUIModification.xlsx. Suddenly, as shown in Figure 2-10, these files are a lot
more interesting.

Figure 2-10: The CustomUI Editor in action

Compared to the plain bland text that we saw in Notepad, the code in the CustomUI
Editor is quite colorful, rife with red, blue, and burgundy.

Sure, it’s nice that it’s prettier; but you aren’t really interested in pretty code . . . or
are you? The benefits of using this program will become much clearer as you proceed

38 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 38

through this book; but suffice it to say that the colors help you read and interpret
your code. The editor also enables you to easily package pictures, validate your code,
store code snippets, and even generate the code framework required to react to call-
backs. Ahh, a new term — callbacks are custom VBA routines that are fired when you
click on your customized Ribbon controls. You’ll find that this becomes an indis-
pensable tool in your kit for working with the Ribbon.

Using the CustomUI Editor to Customize the Ribbon

Now that you have the CustomUI editor installed, it’s time to try another customiza-
tion. Like the Notepad method, this will work with Excel or Word files equally well, so
this time you’ll focus on a Word customization. To illustrate the difference in ease
between using the two approaches, you’ll use the exact same code, but apply it to a
Word document through the CustomUI Editor interface.

To start the process, open Word, create a new document, and save it as a .docx file
type. Close Word and open the CustomUI Editor. Open the Word file that you just
saved through the Custom UI Editor.

Enter the code that we used in the previous example.

TI P You can either meticulously type the code again or merely copy it from
the workbook that you previously created or from the chapter download file.

Once you have all of your code entered, it is a very good idea to check the validity
of your XML code. This step can alert you to many issues that you might not be able to
see at first glance, and it can save you a huge amount of guessing when your modifi-
cations just don’t show up later. To check the validity, click the second toolbar button
from the far right — the one with the check mark on it (shown in Figure 2-10). The tool
will evaluate the code and report any errors that it might encounter along the way.
What you are hoping to see is the message shown in Figure 2-11.

Figure 2-11: Validity check for the Custom
UI XML

Ahh, isn’t it nice when things are “well formed?” If, on the other hand, you get a
message like the one shown in Figure 2-12, there is at least one issue in your code.

Chapter 2 ■ Accessing the UI Customization Layer 39

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 39

Figure 2-12: Errors in XML validation

At this point, it becomes a hunting game to track down any errors. Careful reading
of the error message can help guide you toward a solution. In the case of the message
shown in Figure 2-12, the “idmso” attribute has been spelled incorrectly; it should be
idMso. You’ll recall that we emphasized the importance of spaces, punctuation, and
case. RibbonX code is indeed case sensitive, and is written in what we call CamelCase
(uppercase “humps” in the middle of the terms.)

Once you have received the “well formed” message, that’s it! You’re good to go
without making any modifications to the .rels file, as the editor takes care of those
issues for you! Just hit the Save button and the custom UI is immediately attached to
your file.

Close the file in the CustomUI Editor and open your new document in Word. Your
modification should be present, as shown in Figure 2-13.

Figure 2-13: “My Very Own Tab” in Word

Note here that despite using the exact same code in both the Excel and Word files,
the options on the groups are slightly different. This is because each program has its
own way of setting up groups with the applicable commands, but some of the groups
share common names across multiple applications.

40 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 40

Storing Customization Templates in the CustomUI Editor

You may encounter scenarios in which you want to refer to a custom UI that you pre-
viously developed. Again, you can use the CustomUI Editor to store and access custom
templates, as shown in Figure 2-14.

Figure 2-14: CustomUI code templates

To demonstrate the ease and benefits of setting up your own templates, use Notepad
to create a new text file on your computer and enter the following code into it:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<!-- Enter your first tab here -->

</tabs>

</ribbon>

</customUI>

Save the file in the folder Program Files\CustomUI Editor\Samples with the file-
name RibbonBase.xml.

NOTE The Program Files\CustomUI Editor\Samples path assumes that you
used the default installation path for the Microsoft Office 2007 Custom UI
Editor. If you installed the program to a different path, you will need to modify
the preceding instruction accordingly.

TI P If you cannot access this file in Windows Vista, it is due to the User Access
Control feature restricting your permissions. You will need administrative rights
in order to store these templates in the specified folder.

Finally, open the CustomUI Editor and select the Samples menu. If your new file is
in the right place, you should now see the RibbonBase entry on the list. Click it and
voilà! There is your XML template, which you can use to start all future Ribbon cus-
tomizations!

Chapter 2 ■ Accessing the UI Customization Layer 41

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 41

Now that you have this on your menu, how do you use it? It’s quite simple, actually.
Just create your new file, open it in the CustomUI Editor, and select your RibbonBase
from the menu. It copies all of the code into your file for you, and you’re good to go!
What a great way to get a head start.

CAUTION If you open a file that has customizations in place already and
select your template, all of your current customizations will be overwritten with
the template’s code. You can, of course, close the file without saving and not
lose your current work.

Some Notes About Using the CustomUI Editor

The CustomUI Editor is a fantastic utility that makes editing XML code much easier. As
with all programs, however, it is not perfect. You should be aware of some CustomUI
Editor “gotchas” before you dive right in:

■■ The CustomUI Editor does check the form of your XML tags, as well as make
sure that you only use attributes that are defined in the XML schema. What it
does not do, however, is check that you have provided valid attributes within
the quotes. (You’ll learn about attributes later, but be aware that you can still
receive errors even if your XML is well formed.)

■■ While writing and debugging your RibbonX code, it is very tempting to open
your file in both the application and the CustomUI Editor at the same time. Trying
to save the file in the CustomUI Editor while the file is open in the Office applica-
tion will result in an error. In addition, even if you close the document that you
are editing in the Office application and then save it in the CustomUI Editor, the
editor will overwrite any changes that you made while editing your document in
the application! It is much safer to close the file in each application before making
changes in the other.

NOTE If you forget and make changes in the application, you can preserve
those changes by saving the file to a new filename. At least then it can be a
reference if you want to incorporate the changes into the original document.

■■ The CustomUI Editor does not have a Find/Replace utility, so if you’re plan-
ning to do large-scale editing on your XML, you may want to copy your infor-
mation to another program, edit it, and then copy it back.

■■ When working on files that have more lines of XML than will fit on the screen,
the CustomUI Editor has an annoying habit of refreshing the screen so that your
cursor is always on the last line of the screen. If you are trying to make an edit
and want to read the information three lines below, this can become a major irri-
tation. Here, again, you may want to copy your XML data into another editor to
work on it and then paste the updated copy back into the CustomUI Editor.

42 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 42

XML Notepad
XML Notepad is another tool that you may find of interest when you are editing or
writing your XML code. It is another free download from Microsoft itself. XML
Notepad enables you to snap in an XML schema that will validate your code as you
work. Unfortunately, as great as this is, it can be a little cumbersome to get your code
into the interface. The following detailed steps walk you through linking this all
together and getting your code in.

Installing XML Notepad

First, download and install the XML Notepad file. At the time of this writing, it was
available at the following URL:

■■ www.microsoft.com/downloads/details.aspx?familyid=72d6aa49-787d-4118

-ba5f-4f30fe913628&displaylang=en

Next, you’ll also want to download and extract the Office 2007 XML schema:

■■ www.microsoft.com/downloads/details.aspx?FamilyId=15805380-F2C0-4B80

-9AD1-2CB0C300AEF9&displaylang=en

NOTE The Office 2007 XML schema page makes reference to Outlook,
OneNote, and Visio, but it fails to mention the more popular applications.
Just ignore that little oversight and download the file anyway, because those
applications are included as well.

The final step in setting up the XML Notepad program is linking the schema to the
program. Open the XML Notepad program, and choose View ➪ Schemas from
the menu. When you reach the XML Schemas screen, choose File ➪ Add schemas and
browse to the folder to which the XML schemas were extracted. (The default location
is C:\2007 Office System Developer Resources\Office2007XMLSchema\CustomUI.xsd).
Once the schema has been added, as shown in Figure 2-15, click OK.

Figure 2-15: Adding an XML schema to XML Notepad

Using XML Notepad

The most difficult part about using XML Notepad is getting your file into it to begin
with. It does not just open Excel or Word files like the CustomUI Editor; and, sadly, you

Chapter 2 ■ Accessing the UI Customization Layer 43

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 43

can’t even create a new file from within it. Instead, you need to open an existing XML
file. There are two main strategies for doing this:

■■ You can rename your document to a zip file, as you would do when editing
with Notepad, and copy the CustomUI.xml file out so that you can work on it.
Naturally, when you’ve finished editing your code, you’ll need to copy the
updated CustomUI.xml file back into the zip container and again rename the
.xlsx file to use the original file extension.

or

■■ You can create a blank text file, copy in your existing XML from the CustomUI
Editor, save the file as an XML file, and then open it in XML Notepad. At this
point, you could edit the code and then send it back to the CustomUI Editor,
where you would save it with your file.

You’re probably now wondering why you would want to go through all this pain.
The answer lies in the ability to use the XML Notepad program to your advantage.
Unlike the CustomUI Editor, this program offers you several features to easily create
valid files without any risk of typing errors. That, as any developer knows, is a huge
benefit. To demonstrate this:

1. Open the MyFirstUIModification.xlsx file in the CustomUI Editor.

2. Copy all of the code there and then close the CustomUI Editor.

3. Right-click your desktop and create a new text file. When prompted for a
name, call the file temp.xml.

4. Right-click the new file and choose Edit (do not choose Edit with XML
Notepad at this stage).

5. Paste the code that you copied from the CustomUI Editor.

6. Save the file and close it.

7. Right-click the file again, but this time choose Edit with XML Notepad.

NOTE If you are working in Windows XP, the Edit with XML Notepad option
will not be present on the right-click menu. You will need to choose Open With
and select the XML Notepad program from there.

Once you are in the program, click to expand all the little plus (+) icons, and you
should be looking at a screen like the one shown in Figure 2-16. Talk about a graphical
display. You just entered developer heaven.

44 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 44

Figure 2-16: XML Notepad

Right-click the “tab” element, choose Element, and then choose Child. As shown in
Figure 2-17, this will create a new element under the last group.

Figure 2-17: Adding an element to XML Notepad

Notice that the program provides you with a list of all the items that will fit here —
in this case, the “group” element. Click it to set this element as a group in the code.

Next, right-click the group, choose Attribute, and then choose Child. This time the
list will be much longer. You’re after idMso, so scroll until you find it, and then click to
select it. Once you’ve done this, you’ll notice that your cursor appears on the right side
of the screen. Click on the line corresponding to idMso, and type in the following case-
sensitive text: GroupStyles (see Figure 2-18).

Chapter 2 ■ Accessing the UI Customization Layer 45

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 45

Figure 2-18: Adding an attribute to XML Notepad

Now that you have some newly modified code, you’ll want to try it out. From the
View menu, choose Source, and select Yes when prompted to save your code. You’ll
then see a screen like the one shown in Figure 2-19, which shows your new markup.

Figure 2-19: Viewing XML source code in XML Notepad

Notice that the code is in a slightly different format than what was previously writ-
ten, and that there are some extra elements that you might not have seen before. That is
to be expected, as the XML Notepad editor adds markup that is valid but not required.
Don’t worry if the code that you create manually does not have all of these tags.

Now that you’ve had a good look at the view shown in Figure 2-19, you’ll want to
do the following:

1. Copy the entire set of code and close the window.

2. Open your MyFirstUIModification.xlsx file in the CustomUI Editor.

3. Press Ctrl+A to select all the existing code.

4. Paste the code that you copied from the XML Notepad program.

5. Run a validity check (just to be sure), and then save and close the file.

Finally, open the MyFirstUIModification.xlsx file and check the appearance of the
My Very Own Tab tab. It should look similar to what is shown in Figure 2-20.

46 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 46

Figure 2-20: The updated My Very Own Tab tab in Excel

If you chose to apply this customization in Word instead, it would look like what is
shown in Figure 2-21.

Figure 2-21: The updated My Very Own Tab tab in Word

The Benefits of XML Notepad

XML Notepad offers many benefits that are not available in the CustomUI Editor or
standard Notepad, including the following:

■■ XML Notepad can make development easier because, with the relevant schema
installed, valid elements and attributes are available from the drop-down lists,
similar in function to the IntelliSense features available in most Microsoft cod-
ing tools.

■■ XML Notepad, unlike the CustomUI Editor, is capable of doing find-and-
replace-style searches. This is a major benefit of the XML Notepad, and you
will have ample opportunities to use it.

■■ XML Notepad includes a “Nudge” feature, which will move a block of code
up or down as a unit. This feature does not exist in either Notepad or the
CustomUI Editor.

■■ The stepped layout displayed in XML Notepad makes it easy to identify what
elements are nested where, a feature that is not evident in Notepad or the
CustomUI Editor.

■■ Because XML Notepad is linked to an XML schema, it can do live validity
checking on-the-fly and report the errors that it finds, another feature that is
not available in Notepad.

Chapter 2 ■ Accessing the UI Customization Layer 47

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 47

The Drawbacks of XML Notepad

Aside from the obvious problems of getting your file into and out of the editor, there
are some other things that the CustomUI Editor offers that XML Notepad does not:

■■ The error-checking features of XML Notepad and the CustomUI Editor look for
different things. Although selecting from the drop-down lists will build well-
formed XML, XML Notepad does not actually validate your code. Therefore,
these two programs should be used in tandem to give your code the best
chance of being validated to perfection.

■■ The CustomUI Editor can generate callback signatures for you. You’ll learn in
later chapters that you can look these up, but it is much easier to have them
generated for you automatically. XML Notepad has no facility to do this.

■■ The CustomUI Editor was written to make building your custom user interface
easy. In addition to automatic setup of certain code portions, it also provides
an easy interface for attaching pictures to your files. XML Notepad lacks this
capability.

■■ If you start your modification by creating your customUI.xml file in XML
Notepad instead of the CustomUI Editor, you’ll need to manually link your
.rels file, as shown earlier in this chapter. Therefore, we recommend that you
use the CustomUI Editor to set up your initial linkage. However, the construc-
tion of the CustomUI code could still be done in XML Notepad and then copied
to the CustomUI Editor for inclusion, as we did in the example.

A Final Word on Excel and Word Customizations
This section has covered how to open Excel and Word files for customization, and it
demonstrated a couple of tools that can be used to make the job easier. It’s important
to realize that the CustomUI Editor and XML Notepad tools work in tandem with each
other, and that they each have their own benefits and drawbacks.

Despite the difficulty in porting code back and forth between the two programs,
they offer complementary benefits, and neither program should be relied on to provide
a solo solution for creating and editing XML files.

Microsoft Access Customizations

Unlike Word and Excel files, which are based on the new OpenXML file standard,
Microsoft Access is still a binary file. While the basic XML used for customization is
virtually the same between all the applications, the binary file structure dictates that
Access Ribbon customizations are loaded through a completely different method from
that used with Open XML files, such as Excel or Word.

48 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 48

At first glance, customizing Access’s UI via a table may seem quite complex, but
Access is actually rather flexible when it comes to customization, as you’ll see as you
progress through this section.

Storing the CustomUI Information in Tables
The most logical starting point when dealing with Ribbon modifications in Access is to
hold the XML code in a table. It also happens to be the easiest route to a customized UI
in Access. The following customization example demonstrates how to accomplish this.

Creating an Access UI Modification Using a Table

This example builds the custom tab shown in Figure 2-22 in a new database project.

Figure 2-22: My Very Own Tab tab in Access

To get this customization up and running, you’ll want to do the following:

1. Open Access and create a new database.

2. Right-click Table1 on the left, and choose Design View.

3. When prompted, give the table the name USysRibbons.

4. Make sure that the table has the following three fields:

■■ ID (an autonumber field to serve as the index for the UI records)

■■ RibbonName (it should be a text type field)

■■ RibbonXml (it should be a memo type field)

5. Close the table, saving it when prompted.

NOTE If your table disappears in the All Tables view, simply right-click All
Tables and choose Navigation Options. Check the box that says “Show system
objects” and click OK.

TI P Naming the table with the “USys” prefix — for example, USysRibbons —
ensures that the table will be hidden in the Navigation Pane unless the Show
System Objects option is checked under the Navigation Options dialog.

Chapter 2 ■ Accessing the UI Customization Layer 49

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 49

Next, open the USysRibbons table and add a new record to it. For the RibbonName
field, type in a meaningful name (perhaps something such as MainRibbonUI). In the
RibbonXml field, paste the following XML code:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtabCustom”

label=”My Very Own Tab”

insertBeforeMso=”TabHomeAccess”>

<group idMso=”GroupRichText”>

</group>

<group idMso=”GroupRecords”>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

TI P The preceding code is available from the chapter download files, but
if you are typing this by hand, you may want to do so in the CustomUI Editor
discussed earlier in this chapter. While the CustomUI Editor cannot directly
place the XML code in your Access database, it is a viable tool for checking your
XML code for consistency. Keep in mind that this is sensitive to case, space, and
punctuation.

Your table may resemble Figure 2-23 after you paste the XML code into the
 RibbonXml field:

Figure 2-23: Pasting XML code into the USysRibbons table

Next, save the table, and then close and reopen the database file. When it reopens,
go to Access Options (in the Office Menu) and select the Current Database option.
There, under Ribbon and Toolbar Options, you will find an option (Ribbon Name) to
select your custom Ribbon UI from the drop-down list, as shown in Figure 2-24.

50 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 50

Figure 2-24: Linking the RibbonUI to your database

Unfortunately, you’ll now be required to close the file one more time to allow the
changes to take effect. Upon reopening the database, however, your UI should be
loaded.

Without question, this method is very time consuming. You have to go through
many steps in order to have your UI recognized by the system before you can finally
get the Ribbon to show. Even worse, it seems to force you to reopen the database more
times than you have to do restarts after applying a service pack! You’d think that there
would be a more efficient way, but apparently not yet.

If you are testing many different UIs and need to swap between them, a better
approach would be to use VBA to carry out this task for you. Obviously, you still need
to spend some time writing your VBA code, but once it is done, you can reuse it as
many times as you want.

We will come back to such issues later in the book when you are introduced to some
advanced concepts of Ribbon customization.

C ROSS-RE FE RE NC E See Chapter 16 for other deployment methods for
your custom UI.

Access USysRibbons Caveat

Despite the shuffle of opening and reopening the database to do the initial link up of
the new UI, you’ll probably agree that this is a relatively minor hassle. Once you are
through that initial pain, you’re off to the races and can customize to your heart’s con-
tent, right? Well, before you can sit back and relax, you should know that Access also
suffers from a limitation in terms of using the USysRibbons table.

For seasoned Access developers, it is a well-known fact that the maximum number
of characters allowed in a memo field is 65,535. And while that seems like a lot, and it
may be sufficient for most projects, you may have realized that a very complex UI

Chapter 2 ■ Accessing the UI Customization Layer 51

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 51

could easily run into hundreds of thousands of characters. Therefore, it is quite con-
ceivable that it could surpass the field’s character limit.

What would happen if you tried to paste XML code that exceeded this limitation
into the RibbonXml field? Well, it simply is not possible. Due to the character limita-
tion, you would not be allowed to paste the UI into this field.

Great, so now what can you do to get around this limitation? Luckily, when you are
using DAO instead of the UI, the Memo field has a 1GB limit, which is also restricted
to text and numbers (not binary data). So, although the 65K limit should be enough to
contain most customizations, there’s actually a significant capacity that should be
more than enough for even the most complex UI. But in the event that you need even
more, we’ll mention some other techniques.

Other Techniques for Access UI Customizations
By now you’re likely wondering what the heck to do if your customization becomes
much bigger than you expected, and it blows past the 65,535 character limit. Fortu-
nately, there are actually several ways to store your custom UI code, and only one has
that limit. So far, some of the known methods you can use to store your UI XML are as
follows:

■■ Store the XML in a table (as you’ve already seen).

■■ Read the XML from external files.

■■ Store the XML in another Access database.

■■ Link to Excel worksheets that contain XML.

In addition, if you run into the character limitation problem and are absolutely
determined to store your XML code in the USysRibbons table (instead of having it in an
external file), you can also turn to VBA for help. This does involve another layer of pro-
gramming, but it is an available alternative.

Because there are many more things that you need to know before becoming fluent
in customizing the new UI, we’re going to hold off on discussing these additional
methods. Rest assured, however, that there are indeed ways to get around the charac-
ter limit. Chapter 16 illustrates some of these methods, providing examples of your UI
customizations from external files and other Access databases.

Conclusion

In this chapter, you have seen how to get your XML/RibbonX code for ribbon modifi-
cation into the appropriate files.

For Excel and Word files, you’ve seen the hard way to accomplish this task, as well
as the easier ways to build and edit your code with a variety of free tools available on
the internet. Unfortunately, while each of these tools is useful in its own way, each
lacks the cohesion that would be nice in a single product. Some are better for setup
and others are better for editing, but none come without drawbacks. It seems that

52 Part I ■ The Building Blocks for a Successful Customization

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 52

playing in this field will involve some application switching until someone builds an
all-in-one tool to work with Ribbon modification.

For Access files, you’ve learned that there are several ways to implement the
customizations, and you’ve walked through a simple example of using a table to do
so. We’ve also alerted you to the limitations of storing customizations in a table.
Finally, we’ve promised that later in this book, we will share some secrets about over-
coming such limitations.

Chapter 2 ■ Accessing the UI Customization Layer 53

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 53

91118c02.qxd:WileyRedTight 11/28/07 9:14 PM Page 54

This chapter explores the fundamentals of building a custom user interface in Office
2007. Chapter 2 discussed how to access the customization layer, so you are now ready
to learn how to create the core XML framework needed to access and manipulate the
built-in Ribbon.

This chapter begins by exploring what XML is and how it factors into customizing
the new UI. It then follows with an explanation of each of the core elements needed to
create or modify the Ribbon. Each section builds on the ones before, and they each
employ only XML code.

If you’ve never programmed anything before, don’t worry. No programming
knowledge is required to get started — at least, nothing more complicated than how to
open the file for customization, which was covered in Chapter 2.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s web site at www.wiley.com/go/ribbonx.

What Is XML and Why Do You Need It?

XML is an acronym for Extensible Markup Language, originally published by the W3C
World Wide Web Consortium. It is not truly a programming language, as it lacks any
mechanism to perform actions, but rather is a set of rules intended to simplify the sharing
of data across platforms.

Understanding XML

C H A P T E R

3

55

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 55

56 Part I ■ The Building Blocks for a Successful Customization

As you saw in detail in Chapter 2, Office 2007 files are deployed in Microsoft’s
OpenXML format, which is simply a zipped container holding several XML files. So
why XML?

The great selling point of XML is data structure. By leveraging XML technology, the
Office 2007 programs are able to split like data into “chunks” and store them in the XML
portions of the file. For example, you can envision a Word document with an XML table
of “strings” (or words) in it.

Assume that you have an entire story written that uses the word “magical” 100 times.
Rather than store the seven-character string 100 times in the document, the XML struc-
ture may refer to string 102, saving four characters each time. This is a very simplified
example, of course, but you can see that this kind of operation could quickly result in
saving space. That is just one of the benefits of the XML structure.

In addition, by having your data structured, it can be quickly indexed. This is
important, as it enables other programs to search the index for specific strings (words)
or other terms.

A great example to demonstrate how indexing can add valuable functionality is to
think of a banking process. Each time an e-mail is sent, the indexed XML underlying
any attachments can quickly be checked for strings matching key fields or patterns
(such as bank account numbers, social security/insurance numbers, and the like.) If
these strings are found, confidentiality can be enforced by programmatically removing
or encrypting the data.

Both of the aforementioned benefits are great, but for the developer there is yet
another factor that can prove its weight in gold. You can link XML schemas within cer-
tain programs to validate XML and thereby ensure that it will work as intended. The
CustomUI Editor and XML Notepad, both discussed in Chapter 2, make use of XML
schemas. Without these schemas, the CustomUI Editor would not be able to validate
code, and XML Notepad would not be able to provide IntelliSense, which provides or
prompts with the available object or functions when writing code.

Again, this is all wonderful, and it’s nice to know what XML is all about, but why
should we care?

We care about XML because it is the heart of the Ribbon. In order to customize the
Office 2007 user interface, you must write XML code; and while it is true that Visual
Basic for Applications (VBA) can also play a huge part in customization, it is not
always necessary. XML, on the other hand, almost always is. We say “almost always”
because we will show you the proverbial exception that proves the rule by providing a
customization that does not require XML, such as pop-up menus and some VBA cus-
tomizations that appear on the Add-Ins tab. These are discussed in Chapters 15 and 16,
respectively.

The rest of this chapter focuses strictly on how to build your XML framework from
the ground up. Beginning with creating a placeholder for your first button, this chap-
ter will guide you through the XML required to build and modify the Ribbon. These
concepts must be mastered before you can move on to fluently work with more com-
plex customizations.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 56

Chapter 3 ■ Understanding XML 57

Essential Background

Before you can start running with XML, you need to learn essential background infor-
mation — namely, how XML is structured and how to write it. If you have used HTML
in the past, certain things will be familiar to you. Otherwise, don’t to worry if you are
starting from scratch; these concepts are straightforward and easy to learn.

Tags
An XML document, such as the customUI.xml file you learned about in Chapter 2,
works by placing verbal cues among the content, giving the document an immediately
obvious structure. (This is true even if what is being structured is not that obvious.)
The collection of all of these cues is referred to as markup (the M in XML).

The verbal cues are known as tags, and they take a consistent format to be consid-
ered valid. Consider the following snippet of code:

<group id=”rxgrpTest”>

<button idMso=”Bold”/>

<button idMso=”Italic”/>

<splitButton id=”rxsbtnTest”>

<button idMso=”Underline”/>

</splitButton>

</group>

Looking at the structure of the preceding code, note the use of the <, >, and / signs.
These characters have very special uses in XML: they denote where tags start and end.
For example, notice that everything between the opening <group> tag and the closing
</group> tag is included within the group as it appears on the Ribbon.

The splitButton that is listed within the group uses a structure that is identical to the
group. It starts with the <splitButton> tag and holds all the items following until
the splitButton is closed by the </splitButton> tag. In the preceding example, only the
Underline button would appear on the splitButton.

Now look at the code for the buttons themselves. Notice that the / character sits at
the end of the tag and that it doesn’t require a separate tag to close the element.

This demonstrates two methods that can be used for opening and closing XML tags.
You need to understand and use both methods to build the structure for your customUI.
Both methods are listed in Table 3-1.

Table 3-1: Forms for Opening and Closing Tags

TYPE FORM

Open and Close separate <element attribute(s)=”value”></element>

Open and Close in one <element attribute(s)=”value”/>

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 57

58 Part I ■ The Building Blocks for a Successful Customization

At this point, you should understand that each tag in XML contains at least one ele-
ment and usually at least one attribute. If you examine the preceding code snippet,
you’ll see that the first line uses a group element, which has an id attribute: <group
id=”rxgrpTest”>. Whereas the elements and attributes are the portions within the
angle brackets, the tag refers to the entire clause, from the < to the >.

How, then, would you know which method to choose? Which do you use for a
group and when? What about a button? These are all great questions that this chapter
will clarify, leading to your understanding of the fundamental concepts being covered.
The answers lie in the relationship between parent and child objects in the XML code.

If you have much experience with programming, this concept will not be new to
you. If you are new, however, you need to become familiar with it, so bear with us as
we explain the coding “facts of life.”

When working with code, every item that we deal with is referred to as an object. For
example, objects include a group on the Ribbon, a button, a checkBox, or even a menu.
Like humans, many (but not all) objects have children, and when a control has children,
we refer to it as a parent control. One thing that should be made clear here is that, in the
code world, a parent object usually (but not always) has child objects of a different type.
A tab will have one or more group objects as children, and a group may have a combi-
nation of button, checkBox, and dynamicMenu child objects. The dynamicMenu object,
however, is especially talented, and can have dynamicMenu children in addition to other
children object types. Some parent objects even have an entire horde of children,
referred to as a collection.

As you would expect, each child can also be a parent to its own children. This is
where the structure of XML can actually come in quite handy, as the relationships
between parent and child can be easily seen. Every child control must be “nested”
within its parent’s opening and closing tags. It should be noted that unlike humans,
however, every child object may only have one parent.

In the following snippet (from the code shown earlier), you can see that the
splitButton object contains one child button and that the button does not have any
children of its own. This is why the button ends with the / character, whereas the split-
Button has separated opening and closing tags. Likewise, the group parent contains
the splitButton child (with its own children), as well as two other button controls:

<splitButton id=”rxsbtnTest”>

<button idMso=”Underline”/>

</splitButton>

You should understand a few other things in order to create well-formed (valid) XML:

■■ All tags, be they elements or attributes, are case sensitive (a SPLITBUTTON ele-
ment is not the same as a splitButton element).

■■ Attribute values must be enclosed in single or double quotation marks (it doesn’t
matter which).

■■ The nesting of child elements within a parent is precise. Every start tag must
be matched with its own end tag, whether it is closed within the same tag (via
“/>”) or by a separate tag later.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 58

Chapter 3 ■ Understanding XML 59

These rules help highlight a quick visual flag, so to speak. If the / is by the closing >
(as shown in the button line of the preceding code), you know that the tag is a com-
plete, standalone tag. However, if the / directly follows the opening < (</), it signals
that the tag is closing an element that was opened earlier. This is clearly illustrated on
the last line of the preceding code sample as it provides the closing tag of the splitBut-
ton element. This is an important style to remember as you learn to read through and
interpret XML or HTML code.

Elements
When working with the Ribbon’s XML, each element can be seen as referring to the
particular portion of the Ribbon’s controls (or structure) that you wish to work with.
As you build your custom UI, you will find that you reference elements on a very reg-
ular basis.

The difference between a tag and an element can be unclear to a novice, but is actu-
ally easily defined: whereas a group is an element, <group> is a tag. Therefore, the tag
is essentially the label that you use to identify any block of code surrounded by the
< and > characters.

Each tag must include one, and only one, element. In addition, the element will
always be in the first part of an XML tag. It tells the compiler which specific item you
wish to start working with or stop working with.

Attributes
Attributes are a very important aspect of XML as well. Unlike tags, which tell the com-
piler what object to work with, attributes tell the compiler about the object’s properties.
Some examples include the object’s name, the caption that shows on the screen, and
whether or not the object is visible.

Unlike elements, you may set more than one attribute for an object within a given
tag. The following code snippet shows an example of a tag with multiple attributes:

<button id=”rxbtnProtectAll”

size=”normal”

label=”Protect All Sheets”

imageMso=”ReviewProtectWorkbook”

onAction=”rxbtnProtectAll_click”/>

The preceding code gives a button a unique id and specifies a size, label, and image
for the button. In addition, it provides an onAction callback signature that will launch
a VBA procedure when the button is clicked.

C ROSS-RE FE RE NC E VBA callbacks are explained in great detail in
Chapter 5.

The next two sections discuss two very important attributes that are used virtually
everywhere: id and label.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 59

60 Part I ■ The Building Blocks for a Successful Customization

The id Attribute

Before we create additional objects, we need to discuss how to identify them in code. The
id attribute is used to identify a specific object within your custom XML code, giving it a
name that you can use to refer to it later. As this is the only way to refer to your objects,
some form of an id attribute is required for each object that resides within any of the fol-
lowing containers:

■■ contextualTabs

■■ officeMenu

■■ qat

■■ tabs

There are several different types of id attributes and each one has a different use.
Table 3-2 describes the different types of id attributes and their main purposes.

Table 3-2: Table of id Attributes

ATTRIBUTE WHEN TO USE

id This is used to uniquely identify your control. If you’re
loading items dynamically, these will be assigned for you.

idMso This is used to uniquely identify a built-in control, tab,
command, etc. Use this to interact with built-in objects.

idQ This is used to refer to objects across a shared namespace.
Shared namespaces are covered in detail in Chapter 16.

The following examples demonstrate the use of the id and the idMso attributes to
refer to controls. You will learn how to construct the XML later, but for now we are
focused on grasping concepts related to the id.

In order to identify an object, you simply add the id attribute within the opening
tag. For example, to refer to a tab by id, you’d provide the following XML:

<tab id=”rxtab”>

<!-- Other tab attributes would go here! -->

</tab>

NOTE The preceding snippet provides an example of how to include a comment
by preceding it with the opening <!-- and closing it with the ending -->. XML
comments are discussed later in this chapter.

Likewise, if we were trying to refer to the built in Font group, we’d point to it by
using the following XML:

<group idMso=”Font”>

<!-- Other group attributes would go here! -->

</group>

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 60

Chapter 3 ■ Understanding XML 61

NOTE It is critically important that all id and idQ attributes be unique. Using
an id that exists, or that is reserved by Microsoft, will result in an error and
prevent your UI from loading.

You can see where naming conventions can be your friend. This also raises a concern
about the potential for conflicts when you start sharing customizations. In order to
avoid conflicts with built-in Microsoft controls, it is advisable to prefix all of your cus-
tom controls using a standardized naming convention. A list of suggested prefixes,
which we use throughout this book, can be found in Appendix E. Because each devel-
oper assigns the id of custom objects, you should employ common sense and good
practices to minimize confusion or frustration.

The label Attribute

Another important attribute is the label. The label is what the user can read onscreen.
This does not need to be unique, but it should be logical, concise, and consistent.

Whereas the id attribute is used to keep track of objects by the system, the label
attribute is used to provide clear guidance to the user. As demonstrated earlier, adding
a label merely requires adding a line of code to the XML. You simply follow the open-
ing tag with as many attributes as you wish and then add the closing tag, as illustrated
in the following snippet:

<tab id=”rxtab”

label=”My Custom Tab”>

</tab>

Tips for Laying Out XML Code
If you have seen any XML for the new UI, you may have despaired at the coding mess
that can come along with it. Who wouldn’t feel bewildered the first time they saw a
block of text like the following?

<tab id=”rxtab” label=”My Custom Tab” insertBeforeMso = “TabHome” >

<group id=”rxgrp” label=”My First Group”>

<button id=”rxbtn1” imageMso=”Italic” label=”Large size button”

size=”large” onAction=”rxbtn1_Click”/>

<button id=”rxbtn2” imageMso=”Bold” label=”Normal size button”

size=”normal” onAction=”rxbtn2_Click”/>

<button id=”rxbtn3” imageMso=”WrapText” label=”Normal size button”

size=”normal” onAction=”rxbtn3_Click”/>

<button id=”rxbtn4” imageMso=”ConditionalFormatting” label=”Normal size

button” size=”normal” onAction=”rxbtn4_Click”/>

</group>

</tab>

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 61

62 Part I ■ The Building Blocks for a Successful Customization

In fact, the preceding code is relatively short, and by now it should be reasonably
easy to understand. After all, it has only a few clearly marked groups and buttons. This
code creates a new tab, “My Custom Tab,” and inserts it before the default Home tab.
The new tab has the group My First Group, which contains four buttons. You might
have noticed that the first label is large, but the remaining three labels are normal. This
XML also states that the buttons will invoke an action when clicked, but it does not
actually include the code to implement the action. We’ll get to that in Chapters 4 and 5,
when we discuss the basics of VBA that are associated with Ribbon customizations,
and how to implement callbacks.

As you read through the XML, you might feel as though it isn’t quite as clear as you
first thought, and you might also realize that it is not enough to deploy a custom group
on the Ribbon. This is where the trouble starts. It’s obvious that we need to add all sorts
of attributes to tabs, groups, commands, and so on. Moreover, as you might expect, the
code can grow rather rapidly and become nearly impossible to read.

Obviously, trying to find a specific control in hundreds of lines of code similar to the
preceding example can be aggravating. To that end, we suggest that you break up your
code into logical blocks using hard returns and tabs. Fortunately, the XML code ignores
these characters!

TI P Unlike VBA, you can include hard returns and tabs in the XML without
affecting the code. Therefore, we highly recommend that you divide the code
into easy-to-read-and-interpret blocks. Several good models are provided
throughout this book and in the chapter downloads.

Have a look at the following adjusted example. Clearly, it is much easier to read:

<group

id=”rxgrp”

label=”My First Group”>

<button

id=”rxbtn1”

imageMso=”Italic”

label=”Large size button”

size=”large”

onAction=”rxbtn1_Click”/>

<button

id=”rxbtn2”

imageMso=”Bold”

label=”Normal size button”

size=”normal”

onAction=”rxbtn2_Click”/>

<button

id=”rxbtn3”

imageMso=”WrapText”

label=”Normal size button”

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 62

Chapter 3 ■ Understanding XML 63

size=”normal”

onAction=”rxbtn3_Click”/>

<button

id=”rxbtn4”

imageMso=”ConditionalFormatting”

label=”Normal size button”

size=”normal”

onAction=”rxbtn4_Click”/>

</group>

On the one hand, in the preceding reformatted example, the code is definitely
longer. On the other hand, it is clear that the buttons belong to one specific group, as
the command button is stepped inside its tag bracket. In addition, because each but-
ton’s attributes have also been indented, you can easily refer to them and edit them as
necessary. Space really isn’t an issue, so it makes sense to use the whitespace to make
it easy to read, interpret, and edit. Trust us, you’ll thank yourself when you are trying
to work with something you wrote six months ago!

Creating Comments in XML Code
It is inevitable that at some point you will want to place a comment in the XML code.
Comments are excellent tools to give yourself or someone else a clue about what the
code is doing. Comments can be invaluable in complex or unique situations. To include
a comment, you start by opening it with a “less than” sign (<). Then you type the excla-
mation mark (!) followed by two hyphens (--). Closing a comment requires two
hyphens followed by a “greater than” sign (>).

<!--This is a comment -->

If you think your comment may run to several lines, you might want to break it
down between the opening and closing tags, as shown in the following example:

<!--

This is a comment that has become extremely long. Since you decided that

you do not want to have short, one line comments to describe what you

are doing, you let it run over several lines.

-->

NOTE Because this is a comment, the block is opened with <!-- and closed
with -->. You will also notice that there is no need to include special characters
to create a carriage return or to precede each line. Everything between the <!--
and --> is treated as one continuous comment.

In a situation like this you do not have to worry about running into several lines
of comments. You simply keep typing until you’ve said everything you need to, as
the comment is not closed until you reach the --> tag. The comment will automati-
cally adjust to the text wrapping provided by the editor.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 63

64 Part I ■ The Building Blocks for a Successful Customization

Another important point worth noting is that you cannot put a comment in the mid-
dle of an open block of XML code. To demonstrate this, we will look at three brief vari-
ations of inserting a comment for a button.

The first example shows how to make a comment that precedes a button:

<!-- This is my first button -->

<button id=”rxbtn”

label=”This is my button”

imageMso=”HappyFace”

size=”large”

onAction=”rxbtn_Click”/>

The preceding XML code is perfectly valid, and probably reflects the most common
placement: with the comment preceding the button. It would be equally acceptable to
insert the comment after the button was closed by the “/>” characters.

The following variant is also acceptable, although it requires extra typing:

<button id=”rxbtn”

label=”This is my button”

imageMso=”HappyFace”

size=”large”

onAction=”rxbtn_Click”>

<!-- This is my first button -->

</button>

If you examine the preceding code, you will see that it is actually formed as <button
[attributes]><!--comment--></button>. Because the initial button tag was closed by
the > character, you can now insert child objects, including comments. Remember that
this button tag still needs to be closed, though, hence the </button> at the end.

Conversely, the following XML variation is not acceptable and will generate an error
because the note is inside an open set of tags:

<button id=”rxbtn”

<!-- This is my first button -->

label=”This is my button”

imageMso=”HappyFace”

size=”large”

onAction=”rxbtn_Click”/>

The difference with this last example is that the comment was inserted in an
unclosed block of code. If you look carefully, you will see that it reads as follows:
<button<!--comment-->[attributes]/>. Notice how the button tag is still open? Each
comment must exist between the tag that closes an element (>) and a tag that opens
the next element (<).

As a general rule, comments are placed throughout other portions of the XML, such
as within the code that creates a custom tab or group. The examples provided through-
out the book demonstrate where and how to place comments.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 64

Chapter 3 ■ Understanding XML 65

The Core XML Framework

From this point forward, we will explore the core XML framework needed to manipu-
late the Ribbon. Every customization begins with the customUI and Ribbon elements
that follow. This applies whether you decide to build your own UI from scratch, make
minor adjustments to the order of built-in controls, or build some combination of both.
In addition to the elements already listed, we will also explore the tabs, the tab, and
the group elements, as you will use these elements in almost all of your customizations.

The customUI Element

To create a well-formed XML document, it is essential that it contains one and only one
“outermost element,” within which all the others are nested. This outermost element is
called the root element, and in the case of Ribbon customizations, is the customUI element.

In plain English, this means that all the other tags we end up using will be nested
within the customUI tag.

To begin this exercise, open the CustomUI Editor. You will now be staring at a blank
code pane. Don’t worry about opening a specific file, as you just need the editor open
in order to follow along with the example.

Enter the following code in the window:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<!-- All other instructions go here -->

</customUI>

As you proceed through this book, you will notice that we repeatedly emphasize
that at this point you should validate your code. Therefore, click the validate button as
shown in Figure 3-1.

Figure 3-1: Validating XML code

Getting into the validation habit will eliminate much grief when trying to test your
files, so it is imperative that you do this each time you think your customization is
complete, or even when you have added a significant section that is complete.

At this point, even if you were to save your code, it wouldn’t do anything. By using
the CustomUI Editor on a live file, however, you would have created the link to the .rels
file, as described in Chapter 2. The code that you have written to date has also opened the
customUI tags, and you’re now ready to start referencing content in your custom UI.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 65

66 Part I ■ The Building Blocks for a Successful Customization

Required Attributes of the customUI Element
Before we move on to content, it is worth exploring what attributes are required for the
customUI element. Every customUI tag must specify the xmlns attribute shown in
Table 3-3.

Table 3-3: Required Attribute of the customUI Element

STATIC ATTRIBUTE ALLOWED VALUES

xmlns http://schemas.microsoft.com/office/2006/01/customui

CAUTION The xmlns attribute must be specified exactly as shown in Table 3-3
or your custom UI will not work. Remember that this is case sensitive!

Optional Static and Dynamic Attributes
with Callback Signatures
In addition to including the required attribute specified above, you may also add any or
all of the attributes shown in Table 3-4 to the customUI tag. Although you may not be
ready to use these attributes yet, we provide the table now so that it serves as a conve-
nient reference when you do need it. We have taken this approach throughout the book.

Table 3-4: Optional Attributes for the customUI Element

xmlns:Q (none) (none) (none)

(none) onLoad (none) Sub onLoad (Ribbon as
IRibbonUI)

(none) loadImage (none) Sub loadImage
(imageID as String,
ByRef returnedVal)

These attributes are covered in later chapters, but just as a reference, adding the
onLoad attribute would make the code look as follows:

<customUI

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

STATIC
ATTRIBUTE

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 66

Chapter 3 ■ Understanding XML 67

onLoad=”rxiRibbonUI_onLoad”>

<!-- All other instructions go here -->

</customUI>

Notice that the onLoad attribute is just nested within the same <> brackets that hold
the customUI element. This would also be true of any of the other optional attributes as
well. And, again, you list one attribute per line without any need to include code for
continuation or line breaks.

Allowed Children Objects of the customUI Element
The customUI tag is a container that may, and undoubtedly will, hold other objects. As
explained earlier in the chapter, it is the parent object, so it may hold child objects.
Actually, the customUI container may only hold either or both of the following ele-
ments/objects:

■■ commands

■■ ribbon

At this point, we’re ready to explore the ribbon element.

The ribbon Element

Now that you know how to open the customUI object for editing, you are ready to
move on to the next step. In order to start any modification to the Ribbon itself, you
would nest the ribbon element within the customUI tag, as shown here:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<!-- All other instructions go here -->

</ribbon>

</customUI>

At this point, you should insert the <ribbon> and </ribbon> tags around the XML
comment and revalidate the code.

Pay careful attention to how we are “encapsulating” tags according to hierarchy,
generating the parent-child relationships that you learned about earlier. Each tag
will be nested within the other, building a logical pyramid of modifications that is
easy to read.

Required Attributes of the ribbon Element
Unlike the customUI element, and indeed most of the other elements that you will see,
the ribbon element does not have any required attributes and can be used entirely on
its own.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 67

68 Part I ■ The Building Blocks for a Successful Customization

Optional Static Attributes
While the ribbon element may not have any required attributes, it does have one very
special attribute, shown in Table 3-5.

Table 3-5: Optional Attribute of the ribbon Element

startFromScratch (none) false (none)

The startFromScratch attribute is the attribute that enables you to hide the entire
built-in Ribbon that Microsoft worked so hard to create.

Notice that because it has a default value of false, we omitted it in the code snippet
earlier. We could have achieved the same results with the following XML:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<!-- All other instructions go here -->

</ribbon>

</customUI>

C ROSS-RE FE RE NC E This attribute is essential learning if you want to
create your own UI entirely from the ground up, so it is covered in much more
detail in Chapter 13.

Allowed Children Objects of the ribbon Element
The ribbon object may only hold any (or all) of the following elements:

■■ contextualTabs

■■ officeMenu

■■ qat

■■ tabs

Graphical View of ribbon Attributes
Using the code provided above, which included the startFromScratch attribute set to
false, would have no effect on the display of the Ribbon, as no tabs, groups, or other
modifications have been made.

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 68

Chapter 3 ■ Understanding XML 69

Conversely, consider Figure 3-2, which shows how the user interface would have
displayed had the startFromScratch attribute been set to true!

Figure 3-2: The Ribbon, with the startFromScratch
attribute set to true

As you can see, the default Ribbon would be hidden, so only the Office Button and
the drop-down for the QAT are displayed. Just because features aren’t visible, though,
doesn’t mean that they aren’t available. In Chapter 13, we’ll build a Ribbon from
scratch and discuss some of the features that remain, such as the shortcut keys.

The tabs Element

Now that we have the customUI container and the ribbon container, the next major tag
in the hierarchy is the tabs element. This is yet another container, which must nest
within the Ribbon block. Modify your code to reflect the code that follows, and remem-
ber to validate your XML:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<tabs>

<!-- All other instructions go here -->

</tabs>

</ribbon>

</customUI>

The purpose of the tabs tag is to collect the elements for each and every individual
tab that you choose to reference, create, or modify.

NOTE Be aware that the preceding code, despite being well formed, will
actually fail validation in the CustomUI Editor. That is because the XML code
is expecting a tab child element. At this point, even if you open your file in the
application, nothing would seem to happen.

Required Attributes of the tabs Element
The tabs element is one of the easiest elements to use, as it does not have a single
attribute of any kind, either required or optional!

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 69

70 Part I ■ The Building Blocks for a Successful Customization

Allowed Children Objects of the tabs Element
The tabs element is a container element that is used to hold specifically referenced (or
created) tab controls.

The tab Element

At long last, we are finally at the place where we can do something that will show up!
The tab element resides in the tabs container, and is used to create or refer to an indi-
vidual tab on the ribbon.

It is extremely important to understand the difference between the tabs object and
the tab object. While tabs (plural) refers to the entire collection of tabs, tab (singular)
indicates a specific tab among many possible tabs (the collection of tabs). If you are
familiar with VBA, you will recognize the use of collections.

If you have customized any of the Office applications in Office 2003 or earlier,
you are already familiar with this sort of hierarchy in the form of the application’s
Commandbars object, which represents the collection of toolbars (command bars). By
contrast, the Commandbar object refers to a specific object command bar object within
the entire group.

Required Attributes of the tab Element
The tab object is the first element in the hierarchy that requires an id attribute. One
selection, and only one selection, must be made from the available options shown in
Table 3-6, which also includes suggestions regarding when to use each type of id
attribute.

Table 3-6: id Attributes of the tab Element

ATTRIBUTE WHEN TO USE

id When creating your own tab

idMso When using an existing Microsoft tab

idQ When creating a tab shared between namespaces

The reason why an id attribute is required is quite simple: If the tab didn’t have an
id attribute, how would you know which tab you were referencing?

NOTE While you can employ multiple tab (or other) elements using a mixture
of id and idQ attributes in a single customization file, it is unlikely that you
would do so. For most purposes, you will simply create new tab elements using
the id attribute and refer to existing tab elements using the idMso attribute. The
idQ attribute is discussed in detail in Chapter 16.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 70

Chapter 3 ■ Understanding XML 71

Optional Static and Dynamic Attributes
with Callback Signatures
The tab element also provides developers with several optional static attributes. In
order to set the position of a tab in relation to any other existing tab, you may want to
use one of the insert attributes shown in Table 3-7.

Table 3-7: Optional insert Attributes for the tab Control

insertAfterMso Valid Mso Tab Insert after last tab Insert after
Microsoft tab

insertBeforeMso Valid Mso Tab Insert after last tab Insert before
Microsoft tab

insertAfterQ Valid Tab idQ Insert after last tab Insert after shared
namespace tab

insertBeforeQ Valid Tab idQ Insert after last tab Insert before shared
namespace tab

NOTE If you do not specify an insert attribute, then the tab is added
immediately after the last tab, whether it’s a custom tab or a built-in tab.

The tab control will also optionally accept any or all of the attributes shown in
Table 3-8.

Table 3-8: Optional Attributes and Callbacks of the tab Control

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

label getLabel (none) Sub GetLabel(control
As IRibbonControl,
ByRef returnedVal)

tag (none) (none) n/a

Visible getVisible true Sub GetVisible(control
As IRibbonControl,
ByRef returnedVal)

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

INSERT
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

WHEN
TO USE

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 3
characters

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 71

72 Part I ■ The Building Blocks for a Successful Customization

C ROSS-RE FE RE NC E Dynamic callbacks are used to dynamically modify
the ribbon while the file is in use. They use Visual Basic for Applications (VBA)
code to function. We explain how to use dynamic callbacks in Chapter 5.

Allowed Children Objects of the tab Element
The tab object may only hold group elements such as the built-in Clipboard group or
custom groups of your own making.

Graphical View of tab Attributes
Figure 3-3 shows a custom tab on the Ribbon. The tab was inserted before the Home
tab, and it has the custom keytip of S.

Figure 3-3: A new tab on the ribbon

Built-in Tabs
When working with tabs on the Ribbon, there are two distinct kinds that you may play
with: built-in and custom. The built-in tabs are tabs are provided by Microsoft,
whereas the custom tabs are, of course, your own creation. We get into custom tabs
later; for now we focus on built-in tabs.

Referring to Built-in Tabs

Every built-in tab has its own unique idMso attribute, and you refer to the tab by calling
that attribute. Indeed, the hardest part of referring to a tab is figuring out its idMso!

Table 3-9 shows some of the more common tab names for Excel, Access, and Word.
As with other code, the use of CamelCase is critical, as your code will fail if these
appear completely in lowercase.

C ROSS-RE FE RE NC E Appendix B contains tables of all the built-in tab
names for all three applications.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 72

Chapter 3 ■ Understanding XML 73

Table 3-9: Built-in Tab Names for the Most Common Tabs

TAB NAME idMso FOR EXCEL idMso FOR WORD idMso FOR ACCESS

Home TabHome TabHome TabHomeAccess

Insert TabInsert TabInsert (none)

PageLayout TabPageLayoutExcel TabPageLayoutWord (none)

Formula TabFormulas (none) (none)

Data TabData (none) (none)

Review TabReview TabReviewWord (none)

Create (none) (none) TabCreate

External Data (none) (none) TabExternalData

Database Tools (none) (none) TabDatabaseTools

Modifying a Built-in Tab

Being able to reference built-in tabs gives us a little power to modify and leverage the
built-in user interface. Our next example demonstrates this using Excel.

Open Excel and create a new workbook. Because the example does not require any
dynamic callbacks, you can save the file in Excel’s default, macro-free (xlsx) workbook
format (as opposed to xlsm for files that contain macros). When you are done, close
Excel and open the file in the CustomUI Editor. Apply the RibbonBase template from
the Sample menu.

C ROSS-RE FE RE NC E The RibbonBase template was created in Chapter 2
and is used throughout this book.

NOTE Notice how the RibbonBase template includes the customUI, ribbon and
tabs elements. This template was created because these items rarely change,
unlike the tab controls and their child objects. Therefore, applying the template
gives you a consistent baseline and beginning point for all of the examples.

Between the <tabs> and </tabs> tags, insert the following XML code:

<tab idMso=”TabHome”

visible=”false”>

</tab>

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 73

74 Part I ■ The Building Blocks for a Successful Customization

Remember to validate and save the code. Close the file in the CustomUI Editor and
then open it in Excel. The Home tab is gone! Don’t worry, though. Closing the file will
make the Home tab reappear.

TI P The preceding XML code works equally well if you try using it in a Word
document instead of an Excel file. To use it in Access, however, you need to
change TabHome to TabHomeAccess. A quick review of the idMso names in
Table 3-9 will show you why.

C ROSS-RE FE RE NC E To deploy the preceding code in Access, review the
steps outlined in Chapter 2.

Custom Tabs
While hiding built-in tabs can make for a great practical joke on an unsuspecting co-
worker, there is only so much use that you can get out of this capability. Fortunately,
we have the toolset that enables us to create our own tabs.

Creating Custom Tabs

To create a custom tab, we don’t reference the idMso, but instead for a new tab by
specifying a unique id attribute. You’ll recall that idMso is reserved for tabs provided
by Microsoft.

Building on the previous exercise, close your example file in Excel, reopen it in
the customUI Editor, and replace the code from <tab through </tab> with the fol-
lowing XML:

<tab id=”rxtabDemo”

label=”Demo”>

</tab>

As always, validate and save the file. Close the file in the CustomUI Editor and then
reopen it in Excel. You will now have an empty tab on your ribbon, as shown in
Figure 3-4.

Figure 3-4: A new custom tab on the Ribbon

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 74

Chapter 3 ■ Understanding XML 75

Positioning Custom Tabs

Now that you’ve created your own tab, it seems a shame to relegate it to the end of the
line, so to speak. After all, if you’re creating your own tools, it is because they are
important! To reflect the tab’s importance, let’s take a look at how to slot it into the Rib-
bon just after the Home tab.

The secret to this action is to use of one of the optional insert attributes listed in
Table 3-7. Specifying a valid idMso name for a tab in one of these attributes will enable
you to position your custom tab exactly where you want to see it.

Since you already know that the Home tab is called “TabHome,” you can easily
insert your tab immediately after the Home tab using the insertAfterMso attribute.

Once again, close your Excel file and reopen it in the CustomUI Editor. Adjust the
code used to create the custom tab so that it includes the insertAfterMso attribute as
follows (this is only a portion of the code; do not delete the other parts):

<tab id=”rxtabDemo”

label=”Demo”

insertAfterMso=”TabHome”>

Validate your code to catch any pesky typing errors, save the file, and close it in the
CustomUI Editor. Now open the file again in Excel and note how the tab has moved,
as shown in Figure 3-5.

Figure 3-5: A custom tab between the Home and Insert tabs

NOTE Although you inserted your tab after the Home tab, you could have
inserted it before the Insert tab by specifying insertBeforeMso=”TabInsert”.
Whichever route you chose, you’d still end up with the same result, at least for
now. Naturally, how you approach this depends on where your object is going,
and what other tabs may be present or might be added.

As you can see, the task of placing tabs is fairly straightforward. However, it can
involve a bit of foresight and planning when working with multiple custom tabs.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 75

76 Part I ■ The Building Blocks for a Successful Customization

NOTE When multiple controls declare that they should be inserted, they are
inserted in the order in which the XML code is written. For example, assuming
that you have three controls in your file that specify insertAfterMso=”TabHome”,
the first control will be added after the Home tab. When the next line is read, it
will place the second control immediately after the Home tab, bumping your first
control to the right. This will continue with all subsequent controls that specify
this position. This also holds true for multiple opened files. The most recent file
will bump the earlier file’s customizations to the right, as its controls are inserted
immediately after the specified control.

The group Element

So far, we’ve managed to create a new tab in the Ribbon, but it’s still empty. Obviously,
it won’t be very useful in that state, so the next thing we’ll cover is how to add items to
a tab. This is where we add the group element.

The job of the group element is to create placeholders for the actual buttons, check-
boxes, menus, and other rich commands that the Ribbon allows us to deploy. While
this section lays the groundwork for the individual commands, you can also place a
large variety of built-in groups on your tabs.

Required Attributes of the group Element
Like the tab element, every group requires one unique id attribute, as shown in
Table 3-10.

Table 3-10: id Attributes of the group Element

ATTRIBUTE WHEN TO USE

id When creating your own group

idMso When using an existing Microsoft group

idQ When creating a group shared between namespaces

Optional Static and Dynamic Attributes
with Callback Signatures
The group element, like many others, also has several optional static attributes. In order
to set the position of a group in relation to any other existing group, you need to specify
one of the insert attributes shown in Table 3-11.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 76

Chapter 3 ■ Understanding XML 77

Table 3-11: Optional insert Attributes for the group Control

insertAfterMso Valid Mso Group Insert after last group Insert after
Microsoft group

insertBeforeMso Valid Mso Group Insert after last group Insert before
Microsoft group

insertAfterQ Valid Group idQ Insert after last group Insert after shared
namespace group

insertBeforeQ Valid Group idQ Insert after last group Insert before
shared namespace
group

NOTE If you do not specify an insert attribute, then the group is added
immediately after the last group that currently exists on the tab. In the case of
a built-in tab, a new group would be added at the end. In the case of a custom
tab, groups without an insert attribute are added from left to right in the order
that they appear in the XML code.

The group control will also optionally accept any or all of the attributes shown in
Table 3-12.

Table 3-12: Optional Attributes and Callbacks of the group Control

image getImage (none) Sub GetImage (control
As IRibbonControl, ByRef
returnedVal)

imageMso getImage (none) Same as above

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl, ByRef
returnedVal)

label getLabel (none) Sub GetLabel (control As
IRibbonControl, ByRef
returnedVal)

Continued

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

WHEN
TO USE

DEFAULT
VALUE

ALLOWED
VALUES

INSERT
ATTRIBUTE

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 77

78 Part I ■ The Building Blocks for a Successful Customization

Table 3-12: (continued)

screentip getScreentip (none) Sub GetScreentip (control
As IRibbonControl, ByRef
returnedVal)

supertip getSupertip (none) Sub GetSupertip (control
As IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl, ByRef
returnedVal)

NOTE While all of the attributes listed in Table 3-12 are valid attributes, the only
attributes that seem to be useful are the label and visible attributes and their
associated callback signatures. Why the rest are valid attributes is somewhat of a
mystery as the controls that nest within the groups provide all the needed
functionality in this regard.

Allowed Children Objects of the group Element
The group element can hold any combination of the following objects:

■■ box

■■ button

■■ buttonGroup

■■ checkBox

■■ comboBox

■■ control

■■ dialogBoxLauncher

■■ dropDown

■■ editBox

■■ gallery

■■ labelControl

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 78

Chapter 3 ■ Understanding XML 79

■■ menu

■■ separator

■■ splitButton

■■ toggleButton

Graphical View of group Attributes
Figure 3-6 shows a custom group on a custom Ribbon tab. It isn’t quite what one might
expect, and we’ll explain that momentarily.

Figure 3-6: A custom group on a custom tab

What is especially interesting about this image is that it was created with the fol-
lowing XML code:

<group id=”rxgrpDemo”

label=”Demo Group”

imageMso=”HappyFace”

keytip=”D”

screentip=”This is my screentip”

supertip=”This is my supertip”>

</group>

Notice that of the properties set in the XML, only the label actually manifested itself
on the Ribbon. In fact, the visible setting does as well, although it is implied because
the default is true and so is not even included in the code. The keytip represented by
(S) is for the tab, rather than the group; and as our earlier note pointed out, group
screentip and supertip commands do not appear, and neither does an imageMso.
Again, this begs the question of why one would bother to list the attributes if they are
going to be ignored. Although we don’t have the answer to that question, this little
exercise does illustrate a point and may help you avoid some needless coding.

TI P The majority of the optional attributes, such as imageMso, will not have a
visible effect on a group control.

Because it is unlikely that you will ever specify the visible property manually, it
appears that you can focus your attention on the label and insert attributes for a
group, safely ignoring the rest of the optional attributes.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 79

80 Part I ■ The Building Blocks for a Successful Customization

Built-in Groups
Using built-in groups and controls can come in handy when you want to start a UI
from scratch but still be able to offer users some of the built-in features. In addition, it
also gives you the capability to create custom tabs that contain the groups of controls
which are frequently used together. After all, you may choose to arrange controls
somewhat different from the way that Microsoft organized them by default.

Using Microsoft’s built-in groups is often much easier than referencing all the individ-
ual controls; and since the groups are available, why not make use of the convenience?

Referring to Built-in Groups

Similar to working with tabs, you can identify custom groups by referring to their id
attribute, and built-in groups by referring to their idMso attribute.

Table 3-13 lists some of the built-in groups in Excel, Access, and Word.

Table 3-13: Common Groups Across Excel, Access, and Word

DISPLAY NAME idMso NAME

Clipboard GroupClipboard

Font GroupFont

Shapes GroupShapes

C ROSS-RE FE RE NC E For a full list of all the built-in group names, refer to
Appendix B.

Armed with what you have learned so far, you could hide the Clipboard group on
the Home tab. Why not give it a try using Word? Create a new Word document and
save it in the macro-free docx format. (As before, no macros will be necessary, as we are
not setting anything dynamically.) Close the file in Word and open it in the CustomUI
Editor. Apply the RibbonBase template and insert the following XML code between the
<tabs> and </tabs> tags:

<tab idMso=”TabHome”>

<group idMso=”GroupClipboard”

visible=”false”>

</group>

</tab>

Validate and save the code, and then close the file in the CustomUI Editor. Reopen
the document in Word. As shown in Figure 3-7, the Clipboard group has disappeared.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 80

Chapter 3 ■ Understanding XML 81

Figure 3-7: The Home tab with a hidden Clipboard group

NOTE While hiding the clipboard may appear to eliminate the cut, copy, and
paste commands, this is not the case. These commands are merely hidden,
and remain available through contextual (right-click) menus and keyboard
shortcuts.

C ROSS-RE FE RE NC E Methods of truly overriding and disabling controls
are covered in detail in Chapter 13.

Using a Built-in Group on a Custom Tab

Like hiding tab controls, hiding groups will really only get us so far. Fortunately, you
are also able to use these built-in groups on your own tabs!

The ability to create copies of the built-in groups is a key feature in Office 2007.
While Microsoft invested a huge amount of time and money into studying user habits,
the default order of controls isn’t always going to be the best fit for your purpose. With
the capability to reuse Microsoft’s groups, you can easily place your most frequently
used commands on a single tab so that they aren’t just convenient (supposedly, the
Ribbon is convenient), but also visible and at your disposal with literally just one click!

The controls for this type of custom tab are obviously based on usage patterns. For
example, assume that you spend much of your time reviewing Excel workbooks for
consistency. In the default Ribbon implementation, you may constantly be jumping
back and forth among the Ribbon tabs to leverage the controls you need. Table 3-14
shows just some of the groups that may be required, and highlights how many differ-
ent tabs you would have to work with.

Table 3-14: Location of Common Auditing Tools in Excel

GROUP NAME DEFAULT TAB NAME

Clipboard Home GroupClipboard

Font Home GroupFont

Formula Auditing Formulas GroupFormulaAuditing

Comments Review GroupComments

Editing Home GroupEditingExcel

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 81

82 Part I ■ The Building Blocks for a Successful Customization

Since it is possible to reuse these groups, why not save yourself the time involved in
tab switching by populating a custom tab with the commands you repeatedly use? In
many work environments, creating a custom, consolidated tab could save countless
keystrokes and significantly boost productivity — to say nothing of reducing the levels
of frustration and tedium.

In the next exercise, we create a custom tab with the groups listed in Table 3-14. To
begin, create a new workbook in Excel and save it in the Macro-free (xlsx) format.
Close the file in Excel and open it in the CustomUI Editor. Apply the RibbonBase tem-
plate and insert the XML below between the <tabs> and </tabs> tags:

<tab id=”rxtabMyTools”

label=”My Tools”

insertBeforeMso=”TabHome”>

<group idMso=”GroupClipboard”/>

<group idMso=”GroupFont”/>

<group idMso=”GroupFormulaAuditing”/>

<group idMso=”GroupComments”/>

<group idMso=”GroupEditingExcel”/>

</tab>

C ROSS-RE FE RE NC E If you want to add other controls, remember that you
can find the entire set of group idMso identifiers in Appendix B.

There is something worth paying extra attention to in the preceding code. Until now,
all of the examples have used separate open and close tags for the group element. In this
code, however, the group is dealt with on one line by closing it immediately with a />
ending. When you validate the code, you’ll see that it works just fine, but you may be
wondering why we’ve done this.

It’s very simple, actually. The previous examples were building custom groups with
the expectation that controls would be nested within the group. In this case, we do not
wish to make any modifications to the groups; we merely wish to place them on our
tab. Therefore, there is no need for additional code, and the tag can be opened and
closed on the same line.

Once you are satisfied that your XML is “well formed” (validated), save and close
the file in the CustomUI Editor. Open it in Excel and have a good look at the new tab
that contains all of your favorite controls, as shown in Figure 3-8.

Figure 3-8: A custom tab populated with built-in groups

When taking this tab for a test drive, you’ll notice that the controls within the groups
function exactly as they do in their native locations. You should also take note of the
fact that the groups still reside in their default locations; a copy has merely been placed
on the custom tab.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 82

Chapter 3 ■ Understanding XML 83

Custom Groups
The painful reality of Ribbon customization is that despite the hard work that
Microsoft has done, they just can’t anticipate exactly how we want our controls dis-
played. We may want only specific Microsoft controls arranged in our groups, we may
want tabs of our own creation, and we may even want a mixture of the two.

Creating Custom Groups

Like tab elements, custom groups are created by specifying a unique id attribute,
rather than referencing the idMso of a built-in group.

Close your example file in Excel, if it’s still open, and reopen the file in the CustomUI
Editor. Immediately after the last group tag, add the following lines of XML code just
before the </tab> tag:

<group id=”rxgrpMyGroup”

label=”My Group”>

</group>

Did you notice that this group does not open and close the group within the same
line of code? Although this is a topic beyond the scope of this chapter, the reason is
because you would only create a new group in order to fill it with other controls, such
as the button, checkBox, or dynamicMenu. Separating the opening and closing tags
establishes the framework for adding additional controls.

Now validate the XML, save the file, and close it in the CustomUI Editor. Open it in
Excel again. Notice that the My Group tab shows up as the empty group that it is, as
expected, to the right of the other groups, as displayed in Figure 3-9.

Figure 3-9: A custom group on a custom tab

C ROSS-RE FE RE NC E The various types of controls that can be contained
within a group container are discussed in detail in Chapters 6 through 11.

Positioning Custom Groups

While the custom group did show up on our tab, perhaps it is not where we would like
to see it. Suppose that you would rather have the custom group appear between the Clip-
board and Font groups. It turns out that there are actually two ways to accomplish this.

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 83

84 Part I ■ The Building Blocks for a Successful Customization

The first way to accomplish this would be to reference the idMso of the group that
you want to appear either before or after. We demonstrated that earlier, so you’ll rec-
ognize the last insert line used here. This may cause the XML to look like the following:

<tab id=”rxtabMyTools”

label=”My Tools”

insertBeforeMso=”TabHome”>

<group idMso=”GroupClipboard”/>

<group idMso=”GroupFont”/>

<group idMso=”GroupFormulaAuditing”/>

<group idMso=”GroupComments”/>

<group idMso=”GroupEditingExcel”/>

<group id=”rxgrpMyGroup”

label=”My Group”

insertBeforeMso=”GroupFont”>

</group>

</tab>

TI P You could also swap the insertBeforeMso=”GroupFont” attribute with
insertAfterMso=”GroupClipboard” to achieve exactly the same results.

While the preceding XML works, it also makes the code a little bit hard to follow as
the groups are no longer created in the order in which they are displayed. This brings
us to the second (and preferred) method for positioning a group. You can create the
groups on the custom tab in the order you wish them to appear. Using that approach,
the code would be as follows:

<tab id=”rxtabMyTools”

label=”My Tools”

insertBeforeMso=”TabHome”>

<group idMso=”GroupClipboard”/>

<group id=”rxgrpMyGroup”

label=”My Group”>

</group>

<group idMso=”GroupFont”/>

<group idMso=”GroupFormulaAuditing”/>

<group idMso=”GroupComments”/>

<group idMso=”GroupEditingExcel”/>

</tab>

Try updating the code in the CustomUI Editor yourself. Whichever version you
decide to use, it will display as shown in Figure 3-10 when you reopen the file in Excel.

Figure 3-10: The custom group is now displayed between the Clipboard and Font groups

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 84

Chapter 3 ■ Understanding XML 85

Custom Groups on Built-in Tabs

While the preceding example placed a custom group on a custom tab, it is just as easy
to insert your own group in one of Microsoft’s built-in tabs. We’ll demonstrate that
here in Word.

Create a new document in Word and save it in the macro-free docx format. Close
Word, open the file in the CustomUI Editor, and apply the RibbonBase template.
Between the <tabs> and </tabs> tags, enter the following XML code:

<tab idMso=”TabHome”>

<group id=”rxgrpMyGroup”

label=”My Group”

insertBeforeMso=”GroupFont”>

</group>

</tab>

Once you’ve validated and saved the code, close the file in the CustomUI Editor.
Upon reopening the file in Word, you will now see a custom group on the Home tab,
as shown in Figure 3-11.

Figure 3-11: A custom group on Word’s Home tab

As you can see, we have added the custom group My Group to the built-in Home
tab. In addition, we’ve positioned the group to be second, or at least to remain just to
the left of the Font group. That’s all there is to it. You are now ready to create your own
groups to hold the controls you wish to add.

NOTE If you try to create this example in Access using the steps outlined in
Chapter 2, you would expect to be able to use the same code. Access’s font
group on the Home tab is actually called GroupTextFormatting, not GroupFont
as you’d expect. You can easily modify the code to work with Access simply by
replacing “GroupFont” with “GroupTextFormatting”.

Conclusion

This chapter began with a discussion of what XML is and why it is important to the
Office 2007 user interface. You learned about tags, which are comprised of elements
and attributes, and how they add structure to an XML document. The essential id and

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 85

label attributes were explored, as well as tips on how to lay out your XML code to
make it more readable. Because we can’t always rely on things being completely intu-
itive to the user (or our own memory for that matter), you also learned the syntax
required to leave comments in your XML code.

With the essential background out of the way, we turned our attention to the actual
elements that are at the core of all Ribbon modifications. From the root customUI ele-
ment to the ribbon element to the tabs element, we looked at how to nest the tags
within one another to build the required customization hierarchy.

Upon reaching this critical level of understanding, you should now be able to write
some code that actually accomplishes visible results in the Office 2007 user interface.
We started by creating and positioning new tabs. Of course, empty tabs aren’t of much
use, so you learned how to place Microsoft’s built-in groups on your tabs. With that
knowledge, you can quickly build a user interface that groups together the tools you
use, and with minimal work on your part.

Following the example of using the built-in groups, we also explored how to create
custom groups. While the placement of controls in these groups is covered in Chap-
ters 6 through 11, you have now learned how to create the fundamental building
blocks to modify your UI.

Where you proceed from here depends on whether you want to merely modify your
Ribbon to organize the controls as you like, or you actually want to build custom con-
trols into your files.

If you are only interested in repositioning Microsoft’s built-in controls to make your
Ribbon more efficient, you can learn about the individual controls in Chapters 6
through 11. Armed with the information from this chapter, you will be able to create
your own tabs and groups, and fill them with built-in controls.

If you are interested in creating your own controls, however, you need to learn about
Visual Basic for Applications (VBA), which is covered in the next chapter.

86 Part I ■ The Building Blocks for a Successful Customization

91118c03.qxd:WileyRedTight 11/28/07 9:14 PM Page 86

87

In Chapter 3, you looked at some simple examples showing how to customize the Rib-
bon using XML. However, in order to create true custom solutions, you will need to
add functionality. This is when Visual Basic for Applications (VBA) comes into play.

This chapter has seven sections, each covering different aspects of VBA, such as
recording macros, writing subprocedures and functions, debugging code, and error
handling.

Each section builds your knowledge and awareness of VBA. At this stage, the code
is as simple as possible. The goal here isn’t to teach you all there is to know about VBA,
but rather to provide a strong enough foundation for you to interpret, modify, and
write code or code snippets to customize the Ribbon.

Bear in mind, however, that this chapter is about learning the basics of VBA in order
to add functionality to Ribbon customization; and because the visual effects are accom-
plished using XML code, which was introduced in Chapter 3, the examples in this
chapter don’t even work with the Ribbon.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s web site at www.wiley.com/go/ribbonx.

Introducing Visual Basic
for Applications (VBA)

C H A P T E R

4

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 87

Getting Started with Visual Basic
for Applications (VBA)

In Chapter 3 you were introduced to XML code, which is used to add or remove tabs,
groups, and controls from the Ribbon. However, just adding those is not enough. To add
functionality to your customization, you need to work with VBA code. After all, what
good is a new button on the Ribbon if it doesn’t do anything when clicked? Now it’s
time to learn some of the fundamental principles and rules for programming with VBA.

NOTE When you work with built-in controls they will work as advertised —
that is, all you need to do is to reference them and the customization will
inherit all the behaviors and features of the built-in control, unless you state
otherwise. Chapter 13 deals with overriding built-in controls and commands.

If you are fluent with VBA, you may choose to skip this chapter, but you may bene-
fit from breezing through the material to see some of the new ways that things work,
such as how to get to the macro recorder. In addition, for those of you who have rela-
tively little experience with VBA and/or macros, we highly recommend that you not
only read through this chapter, but that you also spend some time practicing the exer-
cises, as they lay the foundation for the rest of the book. Of course, you can always refer
back to this chapter as you are working through the examples in later chapters.

How VBA will apply to your work depends on the application you are working
with. In Excel, you find a set of objects that are associated with Excel; similarly, there is
a separate set of objects for Access and for Word. Therefore, although you may be com-
fortable with using VBA and macros in one application, you might need a refresher in
the other applications.

In this chapter, we will look at some important aspects of the object model (or OM)
for these three applications in order to provide key insights into how you can interact
with the program to add the functionality you want.

Generally speaking, the set of instructions you give in a VBA procedure is called a
macro in Excel and Word. However, Access also has objects called macros, which
come with some predetermined instructions you can readily use in your project,
instead of writing the process in a VBA function or subroutine. You should not con-
fuse Excel and Word macros with Access macros. They are not the same entities.
Moreover, you should not mistake macro (a procedure in Excel or Word) with the
macro object in Excel.

Another significant difference between the applications is that Excel and Word have
a macro recorder, but Access does not. As you’ll soon discover, the macro recorder is a
very useful tool. For one thing, it enables you to quickly expose certain properties and
methods that otherwise would take a lengthy time to ascertain by inspecting the
object’s model. However, Access 2007 does have a very nice Macro Designer that
includes fields for users to provide the macro name, condition, action, arguments,
comments, and more. In addition, starting with 2007, the Access wizards generate
macros instead of VBA code.

Although VBA is not the only programming language you can use to program the
Ribbon — you could also use languages such as C# (C-Sharp), C++, VB.NET, and VB

88 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 88

(using COM) — we discuss only VBA in this book because not only is VBA powerful,
but it is also available to anyone who owns a copy of Microsoft Office. Therefore,
everything in this book is much more accessible to anyone venturing into program-
ming the UI for the first time and whose programming experience is limited.

What Is VBA?
We’ve been referring to VBA, so it’s time that we explain what we’re taking about. VBA is
a coding language that enables people to do things that would otherwise be impossible
using the built-in tools. It can also be used to improve upon and automate certain tasks.

Broadly speaking, for Excel and Word, VBA can be divided in two categories of
code: recordable code and nonrecordable code. These two categories don’t apply to
Access, as it does not offer the macro recorder feature. In addition, although Access
wizards generate macros, none of the wizards relate to Ribbon customizations. There-
fore, the discussions and examples using Access rely mostly on VBA, but there are also
a few examples that show how to use Access macro objects.

In the first case, to create recordable code, simply turn on the macro recorder
(detailed steps explaining how to do this are provided later). Any user can record and
play back a macro; it requires no special training or skills. You don’t even have to be
able to interpret the code to be able to use it.

In the second case, which uses nonrecordable code, although you may not need a lot of
specialized training, you will need some knowledge of VBA; you’ll also need some famil-
iarity with the object models of the particular application that you will be working with.

The Developer Tab on the Ribbon contains the developer’s tools that you’ll use to
work with VBA and to inspect the XML schema. This tab is not displayed by default,
so you may want to add it to your Ribbon now. We include instructions for displaying
the Developer tab in Chapter 1, in the section “Showing the Developer Tab.”

The following sections introduce some tools that are useful for writing and working
with code. If you are not familiar with VBA, you should study the tools, as they play a
critical role in adding functionality to the Ribbon and creating a custom UI.

Macro-Enabled Documents
Before delving into VBA code, you need to be aware that Excel and Word have two
new file formats. One of the file formats for each application does not allow you to save
embedded macros with it.

If you have saved your Excel workbook or Word document as plain documents
instead of macro-enabled ones, any code in the files will be permanently removed
when you confirm that the file should be saved. Fortunately, you are warned and given
an option to change your mind, as shown in Figure 4-1.

WARN I NG If code is commented — flagged so that it will not run — in a
workbook, sheet, or document module, be aware that both Excel and Word will
delete the code when the file is closed. In addition, it doesn’t matter whether
the file is macro-enabled or not. In order to avoid this unpleasant surprise, you
must ensure that a standard module or class module is present in your project
(with or without code).

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 89

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 89

Figure 4-1: Choosing the correct file format

Because most Ribbon customizations require code, the document must allow
macros to run. Therefore, it is good to establish the practice of saving your workbooks
and Word documents as macro-enabled. This is not a blanket requirement for
Microsoft Access, as it handles many things differently, as you are already learning.
We’ll go into more detail about the relevant security settings in Chapter 17.

Using the Visual Basic Editor (VBE)
After you’ve ensured that your workbook or document is macro-enabled, it is time to
get started with the Visual Basic Editor (or VBE). The VBE is where you will be writing
VBA code.

To access the VBE window, do one of the following:

■■ Click the Developer tab ➪ Visual Basic (for Excel/Word only).

■■ Press Alt+F11 (for Excel/Access/Word).

If you are using Access you have two additional avenues:

■■ Click Create ➪ Other ➪ Macro ➪ Module.

■■ If you are in Design View, under the Design tab select Tools ➪ View code.

Table 4-1 describes some of the elements of the VBE window. We refer to several of
these throughout the book as we walk through the examples.

Table 4-1: Important Elements of the VBE Window

ELEMENT WHEN TO USE

Code window The code window is where you type your VBA code
(or where the recorded code goes). Each major
object has its own code window. Standard modules
and class modules also have their own code
window.

Code window close button Use this button to close the code window of an
opened object.

Use this button to maximize/restore the code
window of an object.

Code window maximize/
restore button

90 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 90

Table 4-1 (continued)

ELEMENT WHEN TO USE

Use this button to minimize the code window for
the opened object.

Immediate window Use the immediate window to debug code. You
send results from your code to this window or you
can type instructions directly in the window.

Menu bar This is the VBE menu and it remains the same as
previous versions not only in terms of content but
also in terms of looks.

Project explorer This is a container for your project’s objects.

Properties window A window that shows the available properties for
the object that has the current focus

Title bar If you’re having a hard time figuring out to which
object the code window refers, look at the title bar.
This is where the name will be.

Toolbars Toolbars contain useful commands to help you to
get your coding job done more easily.

VBE close button Use this button to close the VBE working
environment.

VBE maximize/restore button Use this button to maximize/restore the VBE
working environment.

VBE minimize button Use this button to minimize the VBE working
environment.

To make it easy to find an element when you’re ready to use it, Figure 4-2 provides
callouts to each VBE element listed in Table 4-1.

Recording Macros for Excel and Word

The best way to get to know the object model in Excel or Word is to record a macro.
When you record a macro, Excel or Word will keep track of almost anything that you
do in the working environment and record these actions as VBA code.

We say “almost anything” because not all actions you perform are macro-record-
able. Therefore, if you need to do something that cannot be recorded by a macro, you
will have to generate the code on your own, or at least with the guidance of this book.
For example, you cannot record the steps to create a function. However, that’s one of
the things that we’ll be covering later.

Code window
minimize button

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 91

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 91

Figure 4-2: Visual Basic Editor window explained

NOTE Although recording a macro is a great way to discover a lot about the
object model, you’ll also find that the macro recorder actually records a lot of
stuff that you don’t need or want in your code. Therefore, cleaning up recorded
code is a must.

To get started with recording a macro (in Excel or Word), just follow three easy steps:

1. From the Developer tab, select Code group ➪ Record Macro.

2. The Record Macro dialog box will open (they are slightly different for Excel
and Word, but similar enough that this example works for both).

3. With the dialog box open, define the following options (because they are options,
you can skip them if you like. Both Excel and Word provide values for non-
optional items). Figure 4-3 shows the Record Macro dialog box for Word and
Excel, respectively.

Code window
close button

Code window maximize/
restore button

VBE close button
VBE maximize/restore button

VBE minimize button
Code window

minimize buttonCode window
Title bar

Menu bar
Project explorer

Properties window
Toolbars

Immediate
window

92 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 92

TI P You can also find a handy macro recording button on the application’s
status bar at the left bottom corner. You can show/hide this button by right-
clicking on the status bar and choosing Macro Recording from the pop-up list.

■■ Macro Name (Excel/Word): Use this text box to enter a meaningful name for
the actions you are about to record. If you do not specify a name for your
macro, Excel/Word will create a sequential name starting at Macro1, incre-
menting each macro by 1.

NOTE Macro names need to follow good naming conventions. The name
cannot include spaces or other special characters. We discuss naming
conventions later in this chapter.

■■ Button (Word only): Use this option to assign the recorded macro to a button.

■■ Shortcut keys (Excel) and Keyboard (Word): Use these options to specify a
keyboard shortcut for your macro. If you click Keyboard in Word, then another
window is opened so that you can insert the key combination you want. This
even includes using uppercase or lowercase letters, but you shouldn’t use num-
bers, spaces, or special characters.

■■ Store macro in: This text box specifies where the macro being recorded should
be stored. By default, Excel stores the macro in the workbook that called the
recorder, whereas Word will store the macro in the Normal.dotm file. It is not a
very good idea to store customization and code in startup files. For the pur-
poses of all the examples discussed in the book, we always save both, cus-
tomization and VBA code, in the example files.

■■ Description: Use this option to specify a description for your recording.

Figure 4-3: Record Macro dialog boxes for Word and Excel, respectively

After filling in the text boxes, click the OK button to start your recording session.
When you have finished recording, simply click the Stop Recording button under

the Developer tab ➪ code group (or on the status bar if you decided to use our tip).

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 93

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 93

NOTE The macro recorder does not record how long you take to perform your
actions, only what you do. Hence, don’t worry if it is taking you what seems like
forever to get things done while recording. However, be aware that it will record
almost everything, including errors, so it’s a good thing that you can clean these
up later.

After you’ve stopped the recorder, open the VBE and the module code window, and
then open the Modules folder and select the new module. When you open the module,
you will see the code that was created to automate your actions. You can add com-
ments and modify the code as necessary. Otherwise, if it does exactly what you want,
simply leave it as it is.

One critical difference between Excel and Word that you need to keep in mind when
recording a macro is that Excel allows you to use the mouse while recording your
actions. Word, conversely, records only keyboard entries. This means that although
you can use the mouse to select text in Excel and then perform some kind of action with
the text and the process will be recorded, in Word you cannot use the mouse in the doc-
ument window. Any action performed with the mouse is not recordable in Word.

NOTE Although you cannot use the mouse to perform actions on the document,
you can use the mouse to select commands on the Ribbon and/or select elements
in the UI.

A Recording Example
This section walks through a simple example of recording a macro. Suppose you have
certain calculations in Excel for which you always insert a specific comment. Instead of
typing the comment each time, you can record the actions associated with inserting the
comment and then simply play back the recording.

Here are the steps for recording such a macro:

1. Go to Developer ➪ Code ➪ Record Macro. The Record Macro dialog box will
open.

2. Type the macro name (we used InsertComment).

3. Define a shortcut for it. We use Ctrl+Shift+C (simply hold down the Ctrl and
Shift keys when typing the letter C in the box and Excel will show the full
shortcut).

4. Click OK to start recording.

Now you need to insert the comment. Follow these steps:

1. Select the cell in which the comment should go.

2. Go to Review ➪ Comments ➪ New comment.

3. Type in your comment (we typed “This is the comment!”).

4. When you’re done, go to Developer ➪ Code ➪ Stop recording.

94 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 94

TI P You might find it quicker to right-click and select Insert Comment from
the pop-up menu list.

That’s it! You’ve saved your macro and you’re done! In the code window for the stan-
dard module created, you should see something similar to what is shown in Figure 4-4.

Figure 4-4: Code window for a standard module
containing the recorded actions performed

Editing the Recorded Macro
The first thing to notice about this procedure is that it will always insert the comment
on cell A1, or whichever cell you created the comment in during the recording process.
This may not be exactly what you want, as it’s more likely that you want to insert the
comment on whichever cell you select.

Also note that if a comment already exists in cell A1, then you will get the error mes-
sage shown in Figure 4-5, which will grind your code to a halt.

Figure 4-5: Error when trying to
overwrite an existing comment

Pity. You were just getting started and you end up in a situation like this. Don’t
panic, however, as this can be resolved in several ways. For now we describe one pos-
sible solution; later we explain how to resolve some error-handling issues.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 95

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 95

To make this macro more feasible for reuse, we can edit the code to accomplish the
following:

■■ Remove the old comment before adding a new one.

■■ Ensure that the comment is always visible.

The amended VBA code is shown here, followed by a detailed explanation:

Sub InsertComment()

‘ InsertComment Macro

‘ Keyboard Shortcut: Ctrl+Shift+C

Range(“A1”).Comment.Delete

Range(“A1”).AddComment

Range(“A1”).Comment.Visible = True

Range(“A1”).Comment.Text Text:= _

“Robert Martin:” & Chr(10) & “This is the comment!”

End Sub

Because we already have a comment in cell A1, we can use the Delete method of the
Comment object to clear it up before inserting a new comment. Note, however, that if
there is no comment in the cell, you get an error — just as you previously got an error
message when trying to insert a comment in a cell that already had one.

But that’s really just the beginning of the modifications, because you also want to
insert the comment in the active cell, rather than always in A1. To put the comment in
the active cell, replace Range(“A1”)in the code with ActiveCell:

■■ Except for the second line, all the other lines refer to the Comment object. The
Comment object does not have an Add method (such as the AddComment method,
which is available in the Range object, as shown in the recording example), which
is what allowed us to add a comment to the cell.

■■ You could add the comment directly on the second line by specifying its text in
the method’s argument: Range(“A1”).AddComment (“Robert Martin:” & Chr(10)
& “This is the comment!”)

For now, this is all we will do in terms of recording, but we’ll come back to this
example later, when we develop error handling and again when we are working with
block constructs of code.

Editing Macro Options After Recording
Up until this point, we’ve assumed that you would record and change all of your
macro options when you started. However, what if you wanted to change something
later? This is not a major issue; in fact, it is relatively easy, as you’ll see by going
through the following steps in Excel:

1. With your workbook open, click Developer ➪ Code ➪ Macros to open the
Macro list dialog box.

2. Select the macro you want to change and then click Options to open the
Options dialog.

3. Change the details and click OK to continue.

96 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 96

As you might expect, the process is slightly different for Word. In the previous
example, you could change the assigned shortcut keys directly in the Options dialog
box. However, if you are working with Word, you need to go to a different location. To
get you familiar with the process, we’ll use that location in the following example.

With your Word document open, follow these steps:

1. Click Office Button ➪ Word Options ➪ Customize.

2. Under Keyboard shortcuts, click the Customize button.

3. Under Category, scroll to Macros and select it.

4. Under Macros, select the macro for which you want to reassign the shortcut keys.

5. Specify the key sequence.

6. Choose where you want to save the macro and click OK to finish.

Figure 4-6 shows the Customize Keyboard window, where you change the shortcut
key for a Word macro.

Figure 4-6: Editing macro options in Word

Subprocedures versus Functions

Unlike the previous section, the subprocedures and functions described here apply to
all three applications: Excel, Word, and Access. The differences are only relevant when
dealing with specific object models that are unique to one application. However, the
object models can be referenced and used across all three applications. (Referencing is
covered later in this chapter.)

We point out any instances of application-specific code in the examples — otherwise,
the code should run without a problem in any of the three applications. We also provide
more information about the individual objects as they are used in the examples.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 97

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 97

Object Model
The object model (OM) enables you to access and control objects in the application. The
Office OM has the Application object as the highest ranking object in the hierarchy of
OMs. As such, it is commonly referred to as the root object.

The OM is basically a set of objects and collections of objects that expose properties
and methods that can be used to perform a variety of actions. Although some of these
properties and methods are not directly accessible from an object, they can be reached
by following the hierarchical path in the model. This is why it is important to under-
stand both the concept and syntax for working with the OM.

For example, suppose that you want to add a table to a Word document. Although
it might be tempting to jump from the Application object straight into the Add method
of the Tables collection, that would be skipping some steps. Instead, you must include
the complete path from the root object to what you want to work with, as demon-
strated in the following line of code:

Application.Documents(“Document1”).Tables.Add

The number of objects varies depending on the application and object; and each
object has its own properties and methods. In the preceding example, we start at the
root object and move to the Documents collection, singling out “Document1” in the col-
lection. We then use the Add method to add a table object to the Tables collection.
Notice that collections are in the plural, whereas an object is in the singular.

Similar to the way in which we move from the highest-ranking object to the lowest-
raking object along the path, we can also move from the lowest-ranking object to the
highest-ranking object by using the Parent property of the low-ranked object. This is
particularly helpful when you want to learn something about the parent object, such as
the directory of a file, or the name of a parent object. Consider the following line:

MsgBox ThisWorkbook.Parent

In the preceding example, the message box will show Microsoft Excel as the parent
(or higher-ranked object) of the ThisWorkbook object in the OM hierarchy.

If you wish to study the hierarchy of the object models for the applications discussed
in this book, you can open the VBA Help and inspect the Object Model Map. In order
to access this resource, open the Help window and then click the Home button ➪

Application Object Model Reference ➪ Application Object Model Map ➪ Object
Model Map.

Subprocedures
Now that you know a little more about the object model, we can move on to subproce-
dures. We’re going to use them, so it’s helpful for you understand a little bit about what
they are. A subprocedure is basically a set of instructions designed to perform a certain
task or set of tasks when it is executed.

For example, you could create a procedure that opens a report in Access, or create a
procedure that turns formulas into text in Excel.

98 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 98

Take a moment to review the following procedures and then we’ll explain the parts
and what they do. The following snippet demonstrates an Excel example:

Sub WorkingWithCell()

ThisWorkbook.Windows(1).ActiveCell.ClearContents

ThisWorkbook.Windows(1).ActiveCell.Value = Now()

ThisWorkbook.Windows(1).ActiveCell.NumberFormat = _

“dd-mm-yyyy hh:mm:ss”

End Sub

Here is the Access example:

Private Sub cmdExit_Click()

CloseCurrentDatabase

End Sub

Finally, the following illustrates a Word example:

Sub TableFit()

ThisDocument.Tables(1).AllowAutoFit = True

End Sub

In the first example, we are working with a cell.

NOTE Because the term ActiveCell is used, this is not specifying a particular
cell, but instead will work with whatever cell is currently the active cell in an
Excel (the application) window.

In the second example, we’re dealing with a database in Access. In the final example,
we’re dealing with a table in Word.

In looking at the three examples, you can discern a few important objects:

■■ ThisWorkbook: This is native to Excel and refers to the workbook that contains
the code. There are other ways to refer to a workbook, but if you need to work
with workbook-level elements, use this object to do so (ThisWorkbook is also a
property of the Application object, which returns a workbook object).

■■ ThisDocument: Similar to Excel, Word uses ThisDocument as the means to
access relevant properties and methods for the document that contains the code.

■■ CurrentProject: This object is native to Access and is used to retrieve important
information about the database project that contains the code, such as the con-
nection string, the path, and so on.

For example, you could use ThisWorkbook in the following way to identify the
author of a workbook:

Sub ThisWB()

MsgBox ThisWorkbook.BuiltinDocumentProperties(“Author”)

End Sub

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 99

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 99

Conversely, you could retrieve the entire connection details from your DB project
with this code:

Sub connectionDetails()

MsgBox CurrentProject.Connection

End Sub

If you haven’t seen the complete connection details before, you’ll be surprised by
how much information is returned. Figure 4-7 shows an example of what you will see.

Figure 4-7: Message box showing connection
details for an Access database

Functions
Functions are normally used to return values, unlike subprocedures, which typically
perform a task. For example, if you want to get the results of a calculation, then you
would use a function. As an example, the following function calculates the nth root of
a number:

Function nthRoot(number As Double, nth As Integer) As Double

nthRoot = number ^ (1 / nth)

End Function

This function can be used as written in all three applications. These terms and the
syntax perform equally well in Excel, Access, and Word.

Functions can be used directly or indirectly. This means that you can use the func-
tion to calculate values in forms or in a worksheet; or you can call the function from
another procedure within your VBA project. The call could come from another func-
tion whose final value depends on an intermediate calculation or it could come from a
subprocedure.

Using an Access form, you could implement the nthRoot function as shown in
Figure 4-8.

100 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 100

Figure 4-8: Implementing the user-
defined function (UDF) in Access

The text box for the result contains the following formula =nthRoot([txtNumber],
[txtnthRoot]) , where txtNumber is the text box containing the number and txtnthRoot
is the text box containing the Nth Root.

This formula calls the function that returns the nth root of the chosen number.
Of course, this is a simple example, and a function can be as complex as needed or

imagined. Now that you’ve seen some basic aspects of subprocedures and functions, in
the following section we turn our attention to some advanced aspects of VBA pro-
gramming.

VBA Coding Techniques

We’ve already discussed some basic aspects of VBA, such as macro recording, macro-
enabled documents and workbooks, and we’ve briefly covered subprocedures and
functions. However, this only scratches the surface of VBA.

In this section you are introduced to some coding techniques that are extremely use-
ful when developing in VBA. You will find yourself in situations where you are unable
to finish a task unless you use loops to repeat a process a certain number of times or
until a specified result occurs. In other scenarios, you might need to structure your
code so that it becomes more readable — in other words, using code blocks such as
With-End With. In others, you will need to make decisions within the code, which is
typically done using If-Then and Select Case statements (aka constructs).

In addition to providing the desired functionality, code blocks also make it easier for
you and other developers to interpret your code and make modifications when appro-
priate to accommodate changes in processes or business rules. All these scenarios are
discussed here so that you can start implementing more advanced coding techniques
in your projects.

Looping Statements
Our first stop is to see some examples of looping constructs. Loops enable your code to
run through a sequence and perform some sort of action — either a set number of
times (as below) or until a condition changes (True/False).

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 101

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 101

Loops come in a variety of flavors. We will look at each of them separately. If you’re
not familiar with loops, you should study the examples, as loops are extremely impor-
tant in some of the coding that we will develop later.

For-Next Loops

This kind of loop can work as a counter or as a loop of elements within a predeter-
mined set. We’ll provide a working example momentarily, but first let’s review the syn-
tax and the definition of the elements. The syntax for the counter is as follows:

For counter = start To end [Step step]

[statements]

[Exit For]

[statements]

Next [counter]

In the Next [counter] part, you can omit the [counter]. However, if you have many
nested loops, you may want to explicitly specify which counter you refer to by the Next
keyword, as we’ll explain shortly.

Table 4-2 lists each part of the loop statement, along with an explanation of what it
does and whether it is required or optional.

Table 4-2: Elements of the For-Next Loop

PART DESCRIPTION

counter Required after the For keyword.
Not required after the Next keyword.
You must specify a numeric variable to be used as the loop
counter. You cannot specify a Boolean or an array as a counter
element.

start Required. This is the initial value of counter.

end Required. This is the initial final value of counter.

step Optional. This specifies by what amount the
counter is changed each time through the loop. If not
specified, step defaults to one. A step can be negative if you
wish to reverse the start-end position to “step up” the loop.

statements Optional. Specifies one or more statements between For
and Next keywords, which are executed the specified number
of times.

This kind of loop will run through the specified items within the specified range, as
shown in the following example:

Sub loopExample()

Dim i As Integer

102 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 102

Dim iCount As Integer

For i = 1 To 100

iCount = iCount + 1

Next i

MsgBox iCount

End Sub

In the preceding example, the loop runs from 1 to 100 and adds 1 to the counter vari-
able each time the loop occurs until it is over. This example will work with any of the
applications discussed in this book. Keep in mind that the terms “group” and “collec-
tion” are often used interchangeably when discussing these types of processes.

TI P You may want to step through the code by pressing F8, as it runs very
fast. By stepping through the code using the F8 key, you can watch the loop
doing its magic.

In the same manner as the For-Next loop, you do not need to explicitly specify the
element after the Next keyword. However, as before, if you have many nested loops,
you may want to explicitly specify it.

The syntax for the elements loop is as follows:

For Each element In group

[statements]

[Exit For]

[statements]

Next [element]

Table 4-3 describes each element of the For Each-Next loop statement.

Table 4-3: Elements of the For Each-Next Loop

PART DESCRIPTION

element Required. Variable used to iterate through the elements of
the collection or array. For collections, element can only be
a Variant variable, a generic object variable, or any specific
object variable (e.g., Worksheet, Document, Database). For
arrays, element can only be a Variant variable.

group Required. Name of an object collection or array (except an
array of user-defined types). As noted, a group can also be
referred to as a collection.

statements Optional. One or more statements that are executed on each
item in group.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 103

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 103

As shown in Table 4-2, you can also step the loop — that is, you can specify a value
for the loop increment other than 1. You can obtain the exact effect as the preceding
loop as follows:

Sub loopExample()

Dim i As Double

Dim iCount As Integer

For i = 0 To 1 Step 0.01

iCount = iCount + 1

Next i

MsgBox iCount

End Sub

What we did above is akin to dividing a one-dollar bill into 100 cents (or 0.01). Thus,
between 0 and 1 we have one hundred units, which is the same as counting from 1 to
100 in the first loop.

Notice, however, that we changed the data type from Integer to Double for the i
variable. This is necessary because the step is not an integer. If you left i as an integer,
you would get an infinite loop because you would never manage to move from 0 to the
next step, as 0.01 would be considered 0.

The next example, Sub listFileNames, is applicable to Excel (it can also be adapted
for Access and Word). The code reads through each file in the folder where the work-
book is located and lists the files in the active worksheet.

For this example, we reference the Windows Script Hosting Model in order to be
able to use objects such as FileSystemObject, Folder, and File. This is a critical refer-
ence, as the following code will fail without this reference:

Sub listFileNames()

Dim fsoObj As New FileSystemObject

Dim fsoFolder As Folder

Dim fsoFile As File

Dim lngRow As Long

Dim strPath As String

strPath = ThisWorkbook.Path

Set fsoFolder = fsoObj.GetFolder(strPath)

lngRow = 1

For Each fsoFile In fsoFolder.Files

ActiveSheet.Cells(lngRow, 1) = fsoFile.Name

lngRow = lngRow + 1

Next fsoFile

Set fsoFile = Nothing

Set fsoObj = Nothing

End Sub

104 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 104

NOTE The workbook must be saved in order for the procedure to work as the
file will not have a path until then.

C ROSS-RE FE RE NC E See “Referencing,” later in this chapter, for details on
referencing libraries.

Do-While/Do-Until Loops

These loops are useful when you want to loop through certain instructions until a con-
dition is met and it equates to true.

The syntax for these two types of loops is as follows:

Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

In the preceding case, you specify the condition prior to entering the loop. You could
also evaluate the condition after you enter the loop:

Do

[statements]

[Exit Do]

[statements]

Loop [{While | Until} condition]

Note that either version of the code will execute at least once.
As pointed out, these two types of loops are useful when you want the loop to occur

until a certain criterion is met, as shown here:

Sub DoUntilLoop()

Dim lngRow As Long

lngRow = 1

Do Until IsEmpty(ActiveSheet.Cells(lngRow, 1))

lngRow = lngRow + 1

Loop

MsgBox ActiveSheet.Cells(lngRow, 1).Address

End Sub

The preceding loop will occur until it reaches an empty cell in the active worksheet.
Once that point is reached, the address of the first empty cell is shown in a message box.

The next example applies to Access (it can also apply to Excel and Word if those
applications are accessing a recordset and looping through it):

Sub DoWhileLoop ()

Do While (Not (rst.EOF))

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 105

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 105

rst.MoveNext

Loop

End Sub

The preceding loop will occur while it is not the end of file (EOF). At each stage, you
move to the next record in the recordset. When the end is reached, the loop finishes.

A variation of the Do While loop could be the following:

While (Not (rst.EOF))

rst.MoveNext

Wend

This loop does exactly the same thing as the previous example, but some people
don’t like the syntax of the Wend keyword because the consolidated format does not list
the elements separately and the condensed style isn’t as easy to interpret.

With . . . End With Statement
This statement is extremely useful when you need to execute a series of statements in
a single object or a user-defined type.

The general syntax for this statement is as follows:

With object

[statements]

End With

Table 4-4 describes each element of the With-End With statement.

Table 4-4: Elements of the With Statement

PART DESCRIPTION

object Required. The name of an object or user-defined type.

statements Optional. One or more statements to be executed on the object.

The great advantage of using the With statement is that you can execute a series of
statements with the same object (or property) without the need to repeat the object’s
name over and over.

You will remember our example for subprocedures where we were working with
the ActiveCell property in Excel:

ActiveCell.ClearContents

ActiveCell.Value = Now()

ActiveCell.NumberFormat = “dd-mm-yyyy hh:mm:ss”

106 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 106

You can see that the ActiveCell property is repeated at every single line, but you
could avoid that repetition by using the With statement. For example, the preceding
code rewritten to use With – End With would be as follows:

With ActiveCell

.ClearContents

.Value = Now()

.NumberFormat = “dd-mm-yyyy hh:mm:ss”

End With

As you can see, you qualify the ActiveCell property and then assign the values for
each property of the object or call a method to be executed (in the case of the ClearCon-
tents method).

This not only saves you the time of requalifying the ActiveCell property at each
line, it also structures your code so that it has a cleaner layout, which makes it easier to
read and understand. You can easily imagine how much time this approach will save
if you are going to repeat the process with several objects. You merely write the code
once, copy and paste it numerous times, and then replace the name of the object — and
modify other relevant commands and values.

If . . . Then . . . Else . . . End If Statement
The If-Then-Else-End If statement is a decision statement that executes a block of
instructions according to whether the specified condition is met or not. Which state-
ment (either the Then statement or the Else statement) should be executed depends on
whether the condition is met or not.

The short syntax for this statement is as follows:

If condition Then [statements] [Else elsestatements]

Although this syntax is perfectly acceptable from the point of view of evaluating the
condition and executing the statement, a better choice is to break the statement into
blocks, as shown in the following example:

If condition Then

[statements]

[ElseIf condition-n Then

[elseifstatements]

[Else

[elsestatements]]

End If

Table 4-5 describes each element of the If...Then...Else statement. As you can see,
only a few of the elements are required. The optional elements make this a very versa-
tile and powerful tool that can be expanded to handle multiple conditions.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 107

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 107

Table 4-5: Elements of the If...Then...Else Statement

PART DESCRIPTION

condition Required. Refers to the condition that needs to be evaluated
during the decision process.

statements Optional in block form.
Required in a single-line form that has no Else clause.
One or more statements separated by colons; executed if the
condition is True.

condition-n Optional. Same as condition.

elseifstatements Optional. One or more statements are executed if the associated
condition-n is True.

elsestatements Optional. One or more statements are executed if no previous
condition or condition-n expression is True.

The following example shows a function that compares a part-string against a full
string:

Function isLike(varValue As Variant, strLike As Variant) As Boolean

If varValue Like strLike Then

isLike = True

Else

isLike = False

End If

End Function

The preceding function can be used in any of the applications discussed in this book.
How you call the function depends on its use. In Excel, you could call it from a formula
in a cell. In Access, you could use it in a formula or call it using a subroutine:

Sub compare()

MsgBox isLike(“robson”, “rob*”)

End Sub

This subroutine compares the part-string “rob*” (starting with “rob” and ending in
anything) against the “robson” string. In the preceding case, the function returns True.
It would also return True if the main string were “robert”, “robertson”, or any other
string containing “rob” in the first three letters and ending in anything.

The last example uses a direct message box, but the comparison could also evaluate
a condition:

Sub compare()

If isLike(“robertson”, “mar*”) Then

MsgBox “The comparison is true.”, vbInformation

Else

MsgBox “The comparison is false.”, vbInformation

End If

End Sub

108 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 108

Select Case Statement
The Select Case statement is also used in decision making. When a case is evaluated
as true, its statement is executed. In addition, at the end, you also have a general case
(Case Else), which can be evaluated in the event that all other case expressions evalu-
ate to false.

This provides a lot of flexibility and can make it easier to read complex operations
than it is by using a series of If...Then...Else statements.

Additionally, with the Select Case statement, the conditional portion is taken care of
within the evaluation of each case, instead of using several nested If...Then statements.

The general syntax for the Select Case statement is provided here:

Select Case testexpression

[Case expressionlist-n

[statements-n]]

[Case Else

[elsestatements]]

End Select

Table 4-6 describes each element of the Select Case statement.

Table 4-6: Elements of the Select Case Statement

PART DESCRIPTION

testexpression Required. Any numeric expression or string expression.

expressionlist-n Required if a Case appears. Delimited list of one or more of the
following forms: expression, expression To expression, Is
comparison operator expression. The To keyword specifies a
range of values. If you use the To keyword, the smaller value
must appear before To. Use the Is keyword with comparison
operators (except Is and Like) to specify a range of values.
When not supplied, the Is keyword is automatically inserted.

statements-n Optional. One or more statements executed if the test
expression matches any part of expressionlist-n.

elsestatements Optional. One or more statements are executed if the test
expression doesn’t match any of the Case clause(s).

Keep a few things in mind when using the Select Case statement:

■■ The case being evaluated must match exactly the expression text specified, and
it is case sensitive. Thus, if an expression specifies “text” but the case is “Text”,
then it will evaluate to false.

■■ If the expression can be matched to more than one case, then only the expres-
sion text belonging to the first case after the expression is evaluated.

■■ Use Case Else to evaluate an expression when there is no match in the cases
specified.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 109

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 109

The following example helps illustrate what the second bullet above means:

Sub caseExample()

Dim Number As Integer

Number = 1

Select Case Number

Case 1

MsgBox 1

Case 1

MsgBox 2

Case 1

MsgBox 3

End Select

End Sub

Because all cases are 1 and the number is 1, only the first case is evaluated, and only
MsgBox 1 will be displayed. You typically won’t find code that matches this example,
however, because there would be little benefit to having the second and third message
boxes. Nonetheless, it effectively illustrates an important aspect of case statements —
namely, that because the comparisons are made in sequential order, you only get the
results specified by the first match.

The next example demonstrates how the Case Else occurs when there is no match:

Number = 2

Select Case Number

Case 1

MsgBox 1

Case 1

MsgBox 2

Case Else

MsgBox “There is no case for the specified number.”

End Select

Here, the case number is 1; and since the number passed is 2, the Case Else is
evaluated.

Writing Your Own Code

You’ve now reviewed the basics of VBA and learned some important programming
aspects. This section introduces some concepts that will be useful for writing your own
code, such as naming conventions and data types.

Also included in this section is a discussion of referencing libraries, which are
extremely important when you need to bring external components into your own
application.

110 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 110

Naming Conventions
This book is about a new technology, and as you’d expect, people are writing XML
code and declaring names in various ways. While this may be convenient to them, it
can be a problem if the code needs to be interpreted or used by others.

The idea behind naming conventions is to provide an easy way for others to under-
stand your code, and you as well for that matter. Trust us, it is not uncommon to be baf-
fled by code in a project that you wrote years or even months before.

For the purposes of standardization, we use RVBA (Reddick VBA, see note below)
as the naming convention for the VBA code presented here. For the XML, we devised
our own naming convention based on RVBA and the naming conventions used in VBA
itself. We discuss them in this chapter in a moment. You can also refer to the appendix
for some tables of the more common names.

Do you have to use a naming convention? The answer is “no,” but we strongly rec-
ommend that you do. The benefits are worth the slight effort to learn the standards.
Implementing naming conventions offers several benefits:

■■ It makes code easier for you and others to read and interpret.

■■ It reduces the chances of using a reserved word or special character.

■■ It avoids name conflicts between the objects that you create and those in code
from other sources, such as third-party add-ins.

■■ It makes it easier for you to interpret code from others — whether you’re
adapting it to your own project, helping someone else find a solution, or just
learning what the code is intended to do.

Admittedly, if you’re writing the code only for yourself, then you can typically get
away with using whatever names you are comfortable with – providing that you don’t
use reserved words or special characters. Even then, however, you’ll probably notice
that you’ve adopted your own convention. Moreover, as soon as you start incorporat-
ing code from other sources, you will see that following naming conventions can avoid
conflicts and save a tremendous amount of time troubleshooting and debugging.

When you are working with many people on a project or you need to share your
code with others, following a standard naming convention is the way to go. Think of it
as a language (like English itself); while it is OK to have slang in any language, not
everyone understands such parlance (vernacular). Conversely, almost everyone can
quickly and consistently interpret the meaning of standard English.

NOTE The Reddick convention can be found at www.xoc.net/standards/
rvbanc.asp.

That said, now it’s time to focus on the naming convention that we’ve adopted for
the XML code that you write. It consists of the following parts:

■■ Prefix: We have adopted the rx prefix to differentiate code written in VBA
from Ribbon customization from that written directly on your project for
your project.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 111

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 111

■■ Tag: We have adopted the RVBA tagging system to tag Ribbon controls. The tag
is very important because it tells the reader of your code what the control or
object really is. For example, a label control in VBA would have the lbl tag.
When we translate this into our Ribbon naming convention, it would become
rxlbl. By doing so, we know by the VBA code that this label comes from the
Ribbon and not from a label control within the VBA project.

■■ BaseName: This is the description of the control. For example, you could have
a Ribbon button and define its prefix and tag as rxbtn; however, what does this
button do? If it were a demo button you could name it rxbtnDemo, making it
more meaningful.

■■ Event suffix: You already have a button, but what happens when a user clicks
it? Well, an event will be triggered. In order to make life easier, we use the com-
mon VBA event suffixes to describe such actions. Therefore, if you have an
onAction attribute attached to the Demo button, the procedure should be
named rxbtnDemo_click.

■■ Shared event: In the previous example, we have a click for the Demo button.
However, what if you wanted to share this event with other buttons? Or with
other controls that have the onAction attribute? You would not be able to add the
tag as we did before, so you’d use a generic tag to indicate that the onAction
attribute is shared among many different controls. For example: rxshared_click.
Now you know that this click is shared by many other controls that have an
onAction attribute. However, the click event can perform different actions
depending on the control that called it. You will learn how to make that happen
in Chapter 5.

■■ Repurpose suffix: We already mentioned that we use event suffixes to match
the events of VBA. However, when you use a built-in command, you may want
to repurpose its action using the onAction attribute. Since onAction returns a
click suffix, it would not be clear to a reader of the code that it was a built-in
command being repurposed. In such cases, we use the rx prefix followed by
the idMso attribute of the control as the base name, followed by an underscore
and the word ”Repurpose” to make it clear that the built-in command is being
repurposed. For example, rxFileSave_Repurpose means that the FileSave
command has been repurposed to perform some other action.

The naming convention we adopted for the Ribbon certainly doesn’t have the force
that an International Treaty on Naming Conventions might have, but it is very appro-
priate for the scope of this book, and it is an excellent way to jump-start a naming con-
vention for the Ribbon XML code.

Data Types
As you start to develop code, you will want to be aware of data types. Knowing what
a data type can contain and how it can function will prevent you from looking for a
solution to a problem that could have been easily avoided in the first place.

112 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 112

If you recall from the loop section, when we created the stepped loop, we had to
change the data type from Integer to Double. If you have not run through the example
yet, this is a good time to do so. Keep the data type as Integer and try to run the stepped
loop. What happens? You’re probably stuck in a never-ending loop. Why? Because you
have the wrong data type and the loop is unable to match the step. That’s a perfect
example of our point that understanding data types can help you avoid problems.

NOTE If you are stuck in a loop and can’t get out of it, press CTRL+BREAK to
break the code and end it.

Table 4-7 lists the data types VBA supports. The table includes storage sizes and
value ranges.

Table 4-7: Some Fundamental Data Types

DATA TYPE STORAGE SIZE VALUE RANGE

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long (long integer) 4 bytes -2,147,483,648 to 2,147,483,647

4 bytes -3.402823E38 to -1.401298E-45 for negative
values; 1.401298E-45 to 3.402823E38 for
positive values

8 bytes -1.79769313486231E308 to
-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal 14 bytes +/ 79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/-7.9228162514264337593543950335
with 28 places to the right of the decimal;
smallest non-zero number is
+/-0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

0 to approximately 2 billion

String (fixed-length) Length of string 1 to approximately 65,400

Continued

String
(variable-length)

10 bytes +
string length

Currency
(scaled integer)

Double
(double-precision
floating-point)

Single (single-
precision
floating-point)

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 113

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 113

Table 4-7 (continued)

DATA TYPE STORAGE SIZE VALUE RANGE

16 bytes Any numeric value up to the range of a
Double

Same range as for variable-length String

The range of each element is the same as
the range of its data type.

Working with Events
You had a taste of events when we provided a sample of code for the old customiza-
tion. Now it’s time to learn more about events. As with loops, events also come in a
variety of flavors. You can use built-in events or you can write custom events to handle
specific tasks. In this section, you will learn how to harness the power of events and
how you can use events to interact with other programs and files.

Excel, Access, and Word can monitor many different types of events. Events are nor-
mally associated with objects that you commonly use. This section covers the follow-
ing events:

■■ Workbook events: As the name suggests, these events are associated with
Excel workbooks. There are many workbook events, such as Open, BeforeClose,
SheetActivate, and so on. Workbook-level events must be stored in the work-
book in which events are being monitored. Application-level events are dis-
cussed later in this section.

■■ Worksheet events: Again, this is native to Excel and is associated with events
happening in a worksheet. For example, you could have a SelectionChange,
Change, BeforeRightClick, and so on.

■■ Form events: These are events occurring in Microsoft Access forms, and
include events such as Load, Open, MouseWheel, and so on. (Although there are
events associated with other types of forms, for our purposes we’re limiting
this to forms in Access).

■■ Report events: These are events occurring in Microsoft Access reports. Among
these events you will find Open, Close, and so on.

■■ Document events: Document events are associated with Word documents.
Here you will find events such as New, Open, and Close.

■■ Application-level events: Application-level events monitor events that you
find in a document or workbook, for example, but which are not locked in the
document or workbook container. There may be cases you need to monitor
when a new workbook or document is created, when a file is sent to print, and
so on. Here, you will need to add custom classes to handle such application-
wide events.

22 bytes +
string length

Number
required
by elements

User-defined
(using Type)

Variant
(with characters)

Variant
(with numbers)

114 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 114

Any event handler can be directly typed into the code window of the object
you’re dealing with. However, this method is extremely prone to typing errors and
entering the procedure incorrectly. If you intend to work with an event, the best way
is to simply let VBE write the procedure stub. Momentarily, we’ll show you how to
make that happen.

Workbook Events

Figure 4-9 shows how to initiate the process.

Figure 4-9: Choosing workbook events in the workbook’s code window

The image is for Excel, but the process is the same whether you’re using Excel,
Access, or Word. In this particular example, you are working with the code window for
a workbook. The event is the Workbook_SheetBeforeRightClick.

The first two steps to get VBE to add the procedure are as follows:

1. Select the object you want to work with from the object list (the left drop-down
menu in the code window).

2. Select the event from the object’s event list (the right drop-down menu in the
code window).

This produces the procedure you use to handle the event. Our example generated
the following procedure:

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _

ByVal Target As Range, Cancel As Boolean)

‘ Your event handler code goes here

End Sub

Note that this event controls the right-click event of all sheets in the workbook. Later
in this chapter, when you learn about worksheet events, you will also learn how to con-
trol the right-click event on a particular worksheet.

In looking at the following code snippet, you will notice that the Open event does not
have any arguments. It is important to recognize that although most events have argu-
ments, some do not. The Open event is an example of an event that does not have any
arguments:

Private Sub Workbook_Open()

‘ Your event handler code goes here

End Sub

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 115

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 115

Now let’s take a look at the arguments for our first example, the
SheetBeforeRightClick event. As written, the sub has the following arguments:

■■ Sh: Refers to the sheet where the right-click occurred. The sheet is passed as an
object because it can be either a chart sheet or a worksheet.

■■ Target: Refers to the target of the right-click and represents a range. The range
can be a single cell or multiple cells.

■■ Cancel: Determines whether the return on the right-click should be canceled or
not. You would normally get a pop-up menu when right-clicking. By setting
Cancel equal to true, the pop-up menu is canceled.

To provide code to block the use of the right-click in the range A1:C25, you could use
the following:

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _

ByVal Target As Range, Cancel As Boolean)

If Union(Target.Range(“A1”), Range(“A1:C25”)).Address = _

Range(“A1:C25”).Address Then Cancel = True

End Sub

NOTE The preceding code assumes you’re dealing with a worksheet. If the
object is a chartsheet, then the code will not behave as expected because a
chartsheet does not have a selectable range as defined in the code.

The preceding procedure will cancel the right-click on any cell within the specified
range. You could, of course, choose any other range:

If Union(Target.Range(“A1”), Range(“C10:E20”)).Address = _

Range(“C10:E20”).Address Then Cancel = True

Keep in mind that the preceding code affects every single sheet in your workbook.
If you need to cancel the right-click on a specific sheet, you can use the preceding code
in the worksheet module, instead of in the workbook module. We discuss worksheet
modules next.

Table 4-8 lists some of the workbook-level events. In order to view the list of avail-
able events, follow the process depicted in Figure 4-9.

Table 4-8: Some Useful Workbook-Level Events

EVENT WHEN IT OCCURS

BeforeClose The workbook is about to be closed

BeforeSave The workbook is about to be saved

NewSheet A sheet is added to the workbook

Open The workbook is opened

116 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 116

Table 4-8 (continued)

EVENT WHEN IT OCCURS

SheetActivate A sheet in the workbook is activated

SheetBeforeRightClick The right-click of the mouse button is actioned

SheetChange A change occurs on any sheet in the workbook

Worksheet Events

The previous events are for the workbook, but they were also able to control what hap-
pened to sheets. When you want to work with events happening in one specific work-
sheet, you could not use the previous example, as it affects all sheets simultaneously.

When it is necessary to work events on just one worksheet, a better alternative is to
use the events for the worksheet itself. Take the example for the right-click. You could
apply the same logic to just Sheet1, as shown in the following example, instead of to
every worksheet in the workbook, as we did in the previous example:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _

Cancel As Boolean)

If Union(Target.Range(“A1”), Range(“A1:C25”)).Address = _

Range(“A1:C25”).Address Then Cancel = True

End Sub

You might immediately notice a few differences between the two examples:

■■ As a worksheet-level event, the argument for the sheet no longer appears in the
procedure.

■■ The procedure is prefixed by Worksheet instead of Workbook.

Now let’s look at a scenario in which a worksheet event can be remarkably helpful.
Suppose that you have validated column A to accept only unique values. Everything
will work just fine, as long as the user inputs data into each cell and does not copy and
paste within the range. That is a critical restriction, because if the user does copy
and paste within the range, your validation will be wiped out. It’s times like these that
event procedures really demonstrate their value.

You can use the Change event to check what is happening in the column, and if the
user pastes something, the procedure can reverse the pasting so that no duplicates
occur in the column. The following code will accomplish your goal:

Private Sub Worksheet_Change(ByVal Target As Range)

Dim rngSelected As Range

Dim rngValue As Range

Dim lngCount As Long

‘ Disable further events while we check what is happening

Application.EnableEvents = False

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 117

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 117

‘ The range being monitored

If Union(Target.Range(“A1”), Range(“A1:A1048576”)).Address = _

Range(“A1:A1048576”).Address Then

On Error Resume Next

‘ Sets the selected range

Set rngSelected = Selection

‘ count the occurrence of the pasted value in the upper most

For Each rngValue In rngSelected

lngCount = WorksheetFunction.CountIf(Range(“A1:A1048576”), _

rngValue)

‘ If the occurrence is greater than one

If lngCount > 1 Then

‘ Show the error message

MsgBox “Column A only accepts unique values. “ _

& “The value/s you typed has/have already been” _

&”entered. Try again.”, vbCritical, _

“Value duplicated in column A...”

‘ Undo the pasting action

Application.Undo

Application.CutCopyMode = xlCut

Exit For

End If

Next rngValue

End If

‘ Enable events so that monitoring can continue

Application.EnableEvents = True

End Sub

Note that because the code also causes a change in the worksheet, you need to tem-
porarily disable events. If you do not, the process may end up in an infinite loop. (That
is accomplished in the line Application.EnableEvents = False.) In addition, of
course, it is critical to enable events before exiting the Sub. In the preceding example,
the first and last step in the routine take care of this.

NOTE It is standard practice to include the enabling of features in error
handling routines. You’ll learn more about that later in this chapter when we
discuss error handling.

118 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 118

Table 4-9 lists some common worksheet-level events and when they occur.

Table 4-9: Some Useful Worksheet-Level Events

EVENT WHEN IT OCCURS

Activate The worksheet is activated

BeforeDoubleClick The left button of your mouse is pressed/clicked
quickly twice

BeforeRightClick The right button of your mouse is pressed/clicked

Change Something in your worksheet changes

SelectionChange A selection in your worksheet changes

Form and Report Events in Access

Now that we’ve covered some of the basics with Excel, let’s look at some events in
Access. Here we’ll focus on the events for forms and reports, as these comprise the pri-
mary user interface.

Envision a scenario in which a user opens a report, but there is nothing to see — that
is, there is no data to be placed in the report. This suggests several undesirable possi-
bilities. If there is no error trapping, then the user will get an error message. And even
if you didn’t get an error message, what good is a report without data? A blank report
can give the impression that there was an error in processing, rather than that there
was no data to report.

You can avoid many of these issues and potentially confusing outcomes by using the
NoData event to determine whether the report should be canceled. In addition to can-
celing the report print event, the following code provides a nice explanation to the user:

Private Sub Report_NoData(Cancel As Integer)

MsgBox “No data available at present. The report will be“ _

&”canceled...”

Cancel = -1 ‘True would also work here as -1 equates to true.

End Sub

By setting the Cancel value to -1, you effectively set its value to True (meaning the
report should be canceled). You could also use True as the value instead of the integer.

Another useful event is the Open event. You can use this event to ensure that impor-
tant elements are loaded before the report is shown. Quite often, users will provide
information on a form that is then used to filter the data (the recordsource) for the
report — for example, choosing an account and dates to filter the report. The report
could open the form, be called from the form, or check to see whether the form is open,
as shown in the following code snippet:

Private Sub Report_Open(Cancel As Integer)

DoCmd.OpenForm “frmInputData”, , , , , acDialog, “Transactions”

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 119

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 119

If Not IsLoaded(“frmInputData”) Then

Cancel = True

End If

End Sub

This example checks whether a particular form (frmInputData) is loaded before the
report can be shown. If it is not loaded, then the report is canceled.

A report also contains other elements that have events. For example, the Detail part of
a report has events such as Format, which can be used to do such things as add lines or
color to alternating rows as a report is about to print. By now, you should be able to inter-
pret the following code, so give it a whirl and then read the explanation that follows:

‘ Module private count variable

Private mRowCount As Long

Private Sub Detail_Format(Cancel As Integer, FormatCount As Integer)

‘ Counts the number of rows in the details at each pass

mRowCount = mRowCount + 1

‘ Determines the remainder of a division by 2.

‘ If zero, then BackColor 16777215 is applied (white background)

If mRowCount Mod 2 = 0 Then

Me.Detail.BackColor = 16777215

‘ Else, BackColor 15263976 (grey) is applied

Else

Me.Detail.BackColor = 15263976

End If

End Sub

In this example, the formatting event fires for each line in the Details section of the
report. When the line number is an even number, no color is applied, but if it is odd, a
grey background is applied.

NOTE Although it required special code to add this type of formatting in prior
versions of Access, 2007 provides some impressive formatting options that do
not require code. In the report, go to Layout View and you can easily change
the appearance of the report by selecting Report Layout Tools ➪ Format ➪

AutoFormat.

Like reports, forms also share some of the same events, plus they allow you to add
other objects that will have events of their own, such as combobox, textbox, and so on.
If you have a data entry form, you can use the Open event to open the form to a new
record, rather than display existing data. The following code snippet is just one of the
ways to do that:

Private Sub Form_Open(Cancel As Integer)

DoCmd.RunCommand acCmdRecordsGoToNew

End Sub

120 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 120

Just as a report has a Details section, so does a form. You will recall that when you
right-click on a form, you get the contextual pop-up menu. We showed you how to
cancel such pop-ups in Excel, and the same technique will work in Access. In fact, you
may prefer to swap out the pop-up menu and use your own, as shown in Figure 4-10.

Figure 4-10: Pop-up menu triggered by a right-click event

The following code enables you to display your custom pop-up menu, whether it is
replacing the standard pop-up or adding a pop-up where Access does not provide one:

Private Sub Detail_MouseDown(Button As Integer, _

Shift As Integer, X As Single, Y As Single)

If Button = acRightButton Then

DoCmd.CancelEvent

CommandBars(gcCMDBARNAME).ShowPopup

End If

End Sub

You first need to determine whether the click came from the right-hand button. If it
did, then you cancel the event and show your own pop-up menu. In looking at the
previous code sample, you can determine that the pop-up is globally defined as
gcCMDBARNAME.

C ROSS-RE FE RE NC E See the section “Replacing Built-in Pop-up Menus in
Their Entirety” in Chapter 15 for complete examples showing how to swap
built-in pop-up menus with your own.

Table 4-10 lists some common report/form events and when they occur. The order
of events can be very important, considering that the outcome of one event may pre-
vent subsequent events from firing.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 121

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 121

Table 4-10: Some Useful Report and Form-Level Events*

EVENT WHEN IT OCCURS

Click A mouse is clicked over the report/form

Close A report/form is closed and removed from the screen

Current The focus moves to a record (in a form or report), making it the
current record, or the form is refreshed or requeried

Load Occurs when a form/report is opened and its records are
displayed

NoData Access formats a report for printing that has no data, but before
the report is printed

OnFormat Access is determining which data belongs in a report section, but
before Access formats the section for previewing or printing

Open A form is opened, but before the first record is displayed. For a
report, it occurs before a report is previewed or printed.

*Includes events for the Detail part of a report/form

Document-Level Events in Word

Document-level events, as the name suggests, are events happening within a particu-
lar document in Word. For example, an event can be printing or it can be creating a new
document.

In Word, as in Excel and Access, you will find some common events, such as Open
and Close, which you can use to perform some sort of action:

Private Sub Document_Open()

‘ Your event handler code goes here

End Sub

Although Excel provides other events straight from the code window for the object
you want (such as the Document equivalent ThisWorkbook), Word does not do that.
Instead, you need to create a class module to handle events for a particular document.
You can also apply this method to global templates or to add-ins that control application-
level events in Word.

The key to making this work is to use the WithEvents keyword to declare a public
Word object that can be used across the project, as shown in Figure 4-11.

Figure 4-11: Choosing an event in a class window in Word

122 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 122

The first thing you need to do is add a class module to your project. In order to add
a class module, with the VBE opened, click Insert ➪ Class Module (or press the Alt ➪

I ➪ C sequence). For this example, name it clsEvents. Now that you have named the
module, open its code window (if it is not opened yet) and enter the following lines
of code:

Public WithEvents appWrd As Word.Application

Private Sub appWrd_DocumentChange()

End Sub

The first line of code says that the events for Word should be monitored. The proce-
dure under it says that a document change should be monitored.

As it is, nothing will happen. However, you can use the Open event at the document
level to set the application-level events for Word:

Dim mappWrd As New clsEvents

Private Sub Document_Open()

Set mappWrd.appWrd = Application

End Sub

Once you have done that, you’re ready to use the event that you just declared in the
class module, clsEvents. Remember, though, that you must write all your events first;
otherwise, the class will be terminated because it has no events to monitor.

Having said that, we’ll add an event that might be useful, as it will enable you to
keep track of the printing of a certain document. We do that with the following code:

Private Sub appWrd_DocumentBeforePrint(ByVal Doc As Document, _

Cancel As Boolean)

If Doc = ThisDocument Then

’Log code goes here

Else:

’Code for when printing another document

End If

End Sub

Notice that the WithEvents appWrd will monitor the entire Word application, so
when you intend to monitor just the document that contains the code, you should con-
struct the code to only execute if it is the correct document. In our example, we used
the ThisDocument object to stipulate the document containing the code.

Application-Level Events

Application-level events can be used to control what happens in different parts of the
application. Because we just addressed this for Word, we’ll move on to Excel and
Access. Before diving into this, however, it is important to note the differences in how
each program opens. Access does not open multiple projects on the same Access win-
dow; instead, it opens multiple instances of Access. Excel, however, can open various
workbooks in the same window. This difference is a critical factor when determining
the scope of application-level events.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 123

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 123

We’ll start by looking at events for Excel and then move on to Access.
As you have already seen in Word, if you plan to deploy application-level event, you

need to use a class module. Thus, all examples here use a class module. To practice
these examples, you should use the standard name clsEvents, as it is the name we will
be referencing throughout our processes.

The first example demonstrates how to monitor the printing of a particular work-
book and only allow the specified workbook to print.

Start by opening Excel and adding a new class module. Insert the following code:

Public WithEvents appXL As Excel.Application

Private Sub appXL_WorkbookBeforePrint(ByVal Wb As Workbook, _

Cancel As Boolean)

If Not Wb.Name = “AllowedWorkbook.xslm” Then

MsgBox “Printing is not allowed, except for the “ _

& “AllowedWorkbook.xslm workbook”, vbCritical

Cancel = True

End If

End Sub

Once you have created the preceding code, you can use the local Open event to set
this application-level event:

Dim mappXL As New clsEvents

Private Sub Workbook_Open()

Set mappXL.appXL = Application

End Sub

Once this has been set, only the allowed workbook will print. All other printing
attempts will be canceled, and the message shown in Figure 4-12 will be displayed.

Figure 4-12: Message box triggered by
printing event

Now let’s look at an example using Access. The need for data validation is fairly uni-
versal, so we’ll use an example that provides one way to validate data before it is
accepted into a table.

In this scenario, assume a text box is used to enter data into a field that should only
contain positive values. Therefore, if the text box appears on multiple forms, you might
be tempted to write validation code for each occurrence of the text box. However, you
can save a lot of time by writing a simple procedure within a class module and then
using it throughout the project.

124 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 124

Start by creating the class module shown below. Although this has some new mate-
rial, you should recognize the terms that we’ve previously used; and because we are
using standard naming conventions, you can probably discern the rest. Read through
and interpret the code, and then review the explanation that follows:

Public WithEvents clsTextBox As TextBox

Private Sub clsTextBox_AfterUpdate()

With Me

If .clsTextBox.Value < 0 Then

MsgBox “Negative values are not allowed in this field...”, _

vbCritical

.clsTextBox.Value = 0

End If

End With

End Sub

NOTE The code example does not test for text typed into the textbox control.

Now that the class module has been created, you need to call it from any form that
will use this text box. Note that the text box must have the same name on every form.
The steps will be the same for each form with the text box, so open an applicable
form in Design View and enter the following code:

Dim mtxtbox As New clsTextBoxEvents

Private Sub Form_Load()

Set mtxtbox.clsTextBox = Me.txtValue

End Sub

Private Sub txtValue_AfterUpdate()

‘ This procedure has no use.

‘ It only serves to ensure the class is executed.

End Sub

The TextBox instance is set when the form is loaded. The AfterUpdate event, which
would normally contain the code that is now in the class module, is now used only to
subclass (trigger) the event. In other words, if you do not have the AfterUpdate event
signature (or whatever event signature you plan to use) present in the code module of
your form, the public event declared in the class is not triggered.

You should now be able to reuse the class anywhere in your project without having
to write the same code repeatedly. This is a very useful technique that can be applied to
many scenarios.

The Object Browser
As no doubt you’ve come to realize, each object model has hundreds of member prop-
erties and methods. This can seem overwhelming and make you wonder how you’re
supposed to remember them all. Thankfully, you don’t need to know them off the top
of your head. However, you certainly need to know where to go in order to get some
help and to find out what objects, properties, and methods are available.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 125

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 125

The best place to find such help is in the Object Browser, where you will be able to
inspect each object and its corresponding members.

To work with the Object Browser, follows these steps:

1. Open the VB editor (Alt+F11).

2. Press F2 (or go to View ➪ Object Browser).

Figure 4-13 shows the Object Browser open to all libraries.

Figure 4-13: Inspecting libraries using the Object Browser

From the Project/Library drop-down list, you can filter which library to show. Fig-
ure 4-13 shows all libraries available in the project, but if you had referenced a
library, then you could filter to see only the classes belonging to that library. You
could then review the members of each class by selecting the class you want to
inspect. (See the following section for information about how to reference libraries.)
When you finally select a member of a class, the Object Browser will provide infor-
mation about that member.

In this particular case, as you can see from the details pane at the bottom of the win-
dow, Item is a property, and it is a member of Excel and of the Areas class.

Referencing Libraries
In many cases, you will find yourself in a situation where you must reference other
libraries. For example, you might want to use PDF objects to read PDF files from your
application or to write PDF files. In such cases, you would not need to reinvent the wheel
in order to create links to other programs. All you need to do is reference the appropriate
library. Obviously, you would still need to know how to use the library, but once the
library is referenced you can inspect its object model.

126 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 126

This probably sounds a little more complicated and intimidating than it really is.
Actually, it is very simple to reference a library — as long as it is installed on your com-
puter or at least accessible to the computer. Just follow these steps:

1. Open the VB editor (Alt+F11).

2. Go to Tools ➪ References.

3. When the reference dialog box opens, scroll through the list to find the desired
reference, check the box in front of it, and then click OK to finish.

You can now use the Object Browser to inspect the library that you just referenced
(see Figure 4-14). From the Project/Library drop-down, choose the library that you
just installed.

Figure 4-14: Referenced library viewed in the Object Browser

In this case, we have referenced the Outlook library. That’s all it takes to make Out-
look’s objects available to your Excel, Access, or Word project. You can now do such
things as save a report, attach it to an e-mail, and have it waiting for the user to com-
plete the address block. In addition, you can further automate the process to automat-
ically fill in the address line and send the e-mail — a routine that can be quite helpful
in obtaining error reports without imposing on the user.

Keep in mind that just because you reference a library in one application, that does
not mean that it is referenced in the others. If you want to work with PDF files in all
three applications, you need to set the reference in all three. Moreover, reference set-
tings do not travel with the files from one computer to another. Although there are cer-
tain scenarios in which references can be set at the project level and essentially installed
on the user’s machine, that is beyond the scope of what we cover here. Nevertheless,
knowing that it is possible might avoid some confusion and frustration if you see dif-
ferent libraries referenced.

We’ve only provided a glimpse at how powerful and versatile VBA can be, and
although you’re probably intrigued and want to explore more right now, we have to

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 127

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 127

stay focused on covering all the fundamentals so that you will be prepared for cus-
tomizing the Ribbon. So now we’ll move on to figuring out why code doesn’t always
work the way we want it to.

Early and Late Bindings Explained

When working with external objects — that is, objects that do not belong to the object
model you are working with — you must create an instance of that external object. You
do that with either early or late binding.

When you install references to other libraries you work with early binding. This
means you bind the objects you dimension in your code to match those of the library
you referenced, as shown in the following example:

Dim olEmail As Outlook.MailItem

Using the referenced Outlook library shown in Figure 4-14, you can dimension an
Outlook e-mail object from either Excel, Access, or Word.

Early binding not only speeds up the programming process, as you now have all the
library’s objects exposed to you, along with all of their properties and methods, but it
also improves code performance. The drawback is that users of your project will need
the library registered in their installation of Office as well.

Late binding, conversely, does not rely on referencing. You simply declare generic
objects and use their properties and methods, and these will be resolved at runtime
(when that part of the code is running). Following is an example:

Dim appOL As Object

Dim Email As Object

Set appOL = CreateObject(“Outlook.Application”)

Set Email = appOL.CreateItem(olMailItem)

The preceding example does a late binding of the appOL object (representing the
Outlook application) and then does the same with the Email object (representing
an Outlook mail item). Because these are generic objects, they can be used to represent
any object you like.

The CreateObject function will always create a new instance of the object you want —
that is, if you have an instance of the object already opened, then another one is created
(this is not the case with applications that only run one instance of the object at any given
time, such as Outlook). If you do not want to use up resources by creating new instances
of an application object, you can use the GetObject function instead:

Set appWrd = GetObject(, “Word.Application”)

The preceding example will fetch the Word application object if it is already open
so that you do not need to create another instance of the application. Of course, if the

128 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:14 PM Page 128

instance of the application doesn’t exist, then the code will return an error. You can get
the best of both situations and avoid the error with the following code:

On Error Resume Next

Set appWrd = GetObject(, “ Word.Application”)

If appWrd Is Nothing Then _

Set appWrd = CreateObject(“Word.Application”)

You use On Error Resume Next in order to ignore the possible error of not having
an instance already running. If the error occurs, then the object is not set and it
remains as “nothing”. You check whether it is nothing and if it is, you create a new
instance of the object.

For more on error handling, see “Error Handling” later in this chapter. At this point,
we will turn our attention to debugging code.

Debugging Your Code

More often than not, users spend a lot of time trying to figure out why a certain piece
of code does not behave as expected. When you write code, it is interpreted according
to rules of logic, not according to what is perceived as truth. This is where a lot of
developers get bogged down.

There is no a priori correlation between the logic of your code and what you con-
sider to be true, which has no bearing on the result; rather, the result is completely
based on the premises set out in your code. Therefore, if the premises of the code are
true, the result of running the code will also be true. However, this is not at all the same
as saying that the code is true (that the code will perform as written) and the desired
result of running the code is true (will create the desired/expected result). Sound con-
fusing? Actually, it doesn’t have to be; but the more complex the code, the more
confusing it can become. And that’s when debugging comes into play.

The following syllogism will help illustrate what is meant by following logically to
a conclusion, rather than trying to figure out what the truth is:

All Excel users are weirdos.

My pet snake is an Excel user.

Conclusion: My pet snake is a weirdo.

Obviously, we know that not all Excel users are weirdos, let alone that my pet snake
is an Excel user. However, if you were to put this into your code, the logic dictates that
you must accept the conclusion (the result) that can be drawn from the first two
premises; therefore, the code would provide the logical conclusion and state that my
pet snake is also a weirdo. This is exactly what code will always do, no matter what
you think or know about Excel users, or whether you believe that my pet snake is a fin-
gerless but competent Excel user.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 129

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 129

In other words, what you think about the truth of the premises has no bearing on the
conclusion itself because the conclusion flows directly from the premises. Once you’re
committed to the premises, you must accept the conclusion.

The preceding example could be written as an If...Then statement. In doing so,
you will quickly realize why it is critical to state the premises correctly in order to
achieve the desired results.

This section explains how to debug your code. Debugging code is about checking
the logic of your code to ensure that it performs as expected. Sometimes, even after a
lot of debugging, you will still find bugs, even after months of running smoothly.
That’s just part of the dynamics of programming and the never-ending changes in pro-
grams and the ways users do things. You will definitely benefit from learning how to
debug and troubleshoot code.

Debug.Print and Debug.Assert
The Debug object is used to send output to the Immediate Window (see Figure 4-15 and
the “Immediate Window” section later in this chapter). It has two methods:

■■ Print: This method is used to print some sort of output to the Immediate Window.

■■ Assert: This method is used to assert a condition that evaluates to False at run-
time when the expected result should evaluate to True.

The first method is very useful when you need to see the value a variable has taken
or how this value behaves during the course of executing the code:

Sub debugPrint()

Dim x As Long

Randomize

x = Int((100 - 0 + 1) * Rnd + 0)

Debug.Print “The value for x is: “ & x

End Sub

This is a simple example that will generate a random number between 0 and 100
and display the result in the Immediate Window. This little bit of code could easily
be used for selecting random winners, to draw numbers for a bingo, and a myriad of
other purposes.

The Assert method can come in handy when you have a logical situation to evalu-
ate, such as the syllogism involving the pet snake. Although we can all agree that the
scenario is absurd, the point is that the conclusion is logical given the premises.

You might be wondering at this point what would happen when you write code that
should return a true value or is based on true assumptions, but actually returns a false
value. You can assert the code so that when it is evaluated to false, it stops at the asser-
tion line, as shown in the following example:

Sub debugAssert()

Dim lngRow As Long

Dim blnAssertNotEmpty As Boolean

130 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 130

lngRow = 1

Do Until IsEmpty(Cells(lngRow, 1))

blnAssertNotEmpty = Not (IsEmpty(Cells(lngRow + 1, 1)))

lngRow = lngRow + 1

Debug.Assert blnAssertNotEmpty

Loop

End Sub

In this example, you loop through the specified cells in a worksheet checking
whether the next one is empty or not. When an empty cell is encountered, the Boolean
value becomes False and the code stops at the assertion line.

Stop Statement
The Stop statement is used to suspend execution of code at a particular point. Suppose
you need to stop the code when the workbook, document, report, or form is opened.
You could add a MsgBox and enter the code after the message is shown. However, that
may create unwanted interruptions, as you would have to deal with the message box
and the code every time the line is executed. A better alternative may be to use the Stop
statement — and avoid the message box.

Using a Stop statement will suspend execution, enabling you to analyze your code.
The following code includes a Stop statement that halts processes before you set the
Ribbon object. If you stopped the execution at this point, then the UI will still load, but
the Ribbon object would not be available to work with:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Stop

Set grxIRibbonUI = ribbon

End Sub

Notice that using Stop has a similar effect to adding a breakpoint to your code.
However, you would not be able to add a breakpoint to closed files. Thus, when the file
is closed, the breakpoint would lose its effect. The Stop statement, however, ensures
that the code is suspended at the precise location you’ve set. Therefore, every time the
file is opened, the process stops at that point, enabling you to check the condition and
correctness of variables and other processes in your code.

If you already have the file open, another alternative is to use breakpoints. These
also stop the code, and they enable you to step through the code to see the effects, one
line at a time. To add a breakpoint, go to the line where you want to add a break/stop
and then press F9 (or go to Debug ➪ Toggle Breakpoint). The code will now stop when
it reaches that point. As you can see from the toggle option, it is just as easy to remove
the breakpoint.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 131

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 131

Immediate Window
The Immediate Window, shown in Figure 4-15, is an inconspicuous part of the VBE but
it is an invaluable tool for debugging code. Many developers use the Immediate Win-
dow to display a value, but it can do so much more, including the following:

■■ Test code you’ve written or debug problems in your code.

■■ Query or change the value of a variable.

■■ Query or change the value of a variable while execution is halted.

■■ Assign the variable a new value.

■■ Query or change a property value.

■■ Run subprocedures or functions.

■■ View debugging output.

Figure 4-15: The Immediate Window

If you recall, this is the window where we sent our x variable earlier in this section.
Additional ways to open the Immediate Window include going to View ➪ Immedi-

ate Window or pressing Ctrl+G.
You have already learned how to send variable values to the Immediate Window so

that you can have a look at them. However, you may encounter scenarios where you
actually do not want to flood the Immediate Window with all sorts of variable values,
lists, and the like.

Study the following piece of code, and you’ll understand what we mean:

Sub immediateWindow()

Dim i As Integer

Dim blnAssert As Boolean

For i = 1 To 10

If i Mod 2 = 0 Then

blnAssert = False

Else:

blnAssert = True

End If

Debug.Assert blnAssert

Next i

End Sub

132 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 132

Here, the Assert method is being used to stop the code, although a more realistic
scenario might have halted the code for some other reason, such as when a modal dia-
log box is shown. What matters here is only that the code halted, so now you need to
find out what the value of i is at that specific point.

Figure 4-16 shows how to use the Immediate Window to query the value assigned
to a variable at the point where the code stopped.

Figure 4-16: Querying a variable
value in the Immediate Window

At this point, all you need to do is type ?i (or the name of any other variable) and
press Enter. The Immediate window will give you the value of the variable at the point
where the Assert method stopped the code.

You’re now probably thinking, “So what?”
Well, the Immediate Window’s usefulness does not stop there. You can also evaluate

expressions, such as comparing the variable to a set value or to another variable. The
following expression compares the current value of i to the value of the variable j:

?i=j

This will return true if the expression is equal (if i indeed equals j); otherwise, it
returns false. You could also type the following query into the Immediate Window to
retrieve the entire connection string of an Access database. The results are shown in
Figure 4-17.

?CurrentProject.Connection

Figure 4-17: Querying a property in the Immediate Window

Note that you use a question mark before typing anything. This question mark
means you are querying something. In the previous examples, we have queried the
value of a variable, the result of a comparison, and the connection string of an Access
database.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 133

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 133

It does not have to stop there. Suppose you wanted to query the result of a custom
function. In Word, you can query the result of your custom function as follows:

?ThisDocument.myCustomFunction

You can do something similar with Excel:

?RibbonXFunctions.hasSuperTip (“rxbtnDemo”)

With Access, you could use the following:

?IsLoaded(“myForm”)

What if it were a subprocedure instead of a function? Not a problem — all you have
to do is remove the question mark to call the procedure and display the results in the
Immediate Window.

Note that in the case of Word and Excel you explicitly identify where the function is
located (ThisDocument and RibboXFunctions standard module). It makes life simpler if
you do this, because then you can clearly refer to the location of the subprocedure.

Locals Window
The Locals Window is used to show variable values as well as other objects that belong
to the procedure being executed. If it isn’t currently showing, you can open the Locals
Window (shown in Figure 4-18), by going to View ➪ Locals Window.

Figure 4-18: Locals Window

From Figure 4-18, you can identify the expression, its type, and the current value, as
described here:

■■ The Me object, which refers to ThisDocument

■■ The i variable, which takes a value equal to 2 and is an Integer data type

■■ The blnAssert variable, which takes a false value and is a Boolean data type

■■ The j variable, which takes a value equal to 2 and is an Integer data type

As you can see, the Locals Window will show you the values of variables as well as
objects that come under the procedure, so it is a very handy way to view how variables
behave as each line of code is executed.

134 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 134

If you have several variables, values, or objects to monitor, using the Locals window
is probably one of the best ways to do so.

Watches Window
The Watches Window is another great tool for debugging code. It enables you to spec-
ify instructions for watching the value of an object, such as a variable, an expression, a
function call, and so on.

Similar to some of the prior examples, a watch will pause code execution when the
criterion is met (such as when the expression is true) or the variable that is being
watched changes.

If the Watches Window, shown in Figure 4-19, is not yet displayed, you can open it
from View ➪ Watch Window.

Figure 4-19: The Watches Window

Now that you have the Watches Window open, you need to specify a watch. You do
that with the Add Watch dialog box, shown in Figure 4-20. To open the Add Watch dia-
log box, do one of the following:

■■ Right-click on the Watches Window and choose Add Watch from the pop-up
menu.

■■ Go to Debug ➪ Add Watch.

Figure 4-20: The Add Watch dialog box

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 135

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 135

Once you’ve set up a watch, every time an expression meets the criterion or a vari-
able changes, the watch will be listed in the Watches Window, as shown in Figure 4-21.

TI P You might find it easier to right-click on the variable and then select Add
Watch from the pop-up menu.

Table 4-11 shows the expressions available in the Add Watch dialog box and
explains how each of the expressions is used.

Table 4-11: Add Watch Dialog Elements

ELEMENT DESCRIPTION

Expression Refers to the expression to be watched. It can be a
variable, a property, a function call, or any valid
expression that you may have in mind.

Procedure Refers to the procedure where the term is located.
By default, it shows the details for the selected term
in the Watches Window. You can choose all
procedures or just a specific one.

Module Refers to the module where the term is located. By
default, it shows the details for the selected term in
the Watches Window. You can choose all modules
or just a specific one.

Project Shows the name of the current project. You cannot
evaluate expressions that are outside the current
project context.

Watch expression Shows the watch expression and its value in the
Watches Window. When its value changes, the result
is updated in the Watches Window.

Break When Value Is True Code execution will break when the expression
evaluates to true or is non-zero (does not apply to
strings).

Break When Value Changes Code execution will break when the value of the
expression changes within the defined context.

Now that you have all the explanations, the following example creates a simple
watch to monitor a string (ensure that the Watches window is visible):

Sub watchT()

Dim strT As String

strT = “This is a T-string”

strT = “This is no longer a T-string”

End Sub

136 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 136

TI P As well as typing your expression in the Add Watch dialog box, you can
also drag and drop it onto the Watches Window. If you drop in an expression
that is a value, VBE will take care of the rest for you. Otherwise, you will get an
error message indicating the problem.

In setting up the watch, choose Break When Value Changes so that the code execu-
tion enters break mode when the string changes from the first to the second. The code
and Watches Window are shown in Figure 4-21.

Figure 4-21: Watching strT for a change in value

NOTE When selecting a context, you should narrow the scope so that you do
not include procedures or modules that are irrelevant to the specific action or
watch. This will improve performance, as there will be less to watch during the
execution process.

Error Handling

As you write more and more code, you will realize that it is virtually impossible to pre-
dict everything that could happen. You could come across overflows, infinite loops,
locked tables, and so on. All of these will generate some sort of error, many of which
are almost impossible to predict. In order to ensure that your code does not crash the
program, you need to add error handling.

There are some very simple ways to tackle unresolved or unpredictable problems
that the end user may encounter. In this section, we cover some of the basics of error
handling. In addition to enabling you to deliver more stable projects, it will also help
you write more robust code.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 137

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 137

On Error Resume Next
Maybe the simplest and most frequently used error handler for VBA is On Error

Resume Next. In lay terms, what the instruction does is simply ignore whatever error
happens and continue execution on the next line. The problem with that, of course, is
that the error has not been handled. It has been ignored, which can have implications
in your code because other parts of the code may be dependent on the line where the
error occurred.

Consider the following code and then we’ll discuss it. The example applies to
Excel, but it can be adapted to Word and Access. Because we’re working with the
FileSystem object, you need to set the reference to the Windows Script Host Model
before continuing.

Sub onErrorResumeNext()

Dim fsoObj As FileSystemObject

Dim fsoFolder As Folder

Dim fsoFile As File

Dim lngRow As Long

lngRow = 1

On Error Resume Next

Set fsoFolder = fsoObj.GetFolder(“C:\YourFolder”)

For Each fsoFile In fsoFolder

ActiveSheet.Cells(lngRow, 1) = fsoFile.Name

Next fsoFile

End Sub

The flaw in this code is that the fsoObj has not been set. By instructing VBA to ignore
the error and resume processing from the next line, all subsequent errors will also be
ignored. The Folder object needs a FileSystem object, so it will fail; and because the
File object depends on the Folder object, it will also fail. This causes a chain reaction
in the entire code, which means it won’t provide the expected result — i.e., a list of files
in YourFolder.

As you can see, although On Error Resume Next is useful, it can also cause bigger
problems than the error itself. This could have been a critical error that needed proper
handling, but if the error is ignored you may be oblivious to its existence.

Thus, you should use this method of error handling sparingly and only when you
know it will not impair anything critical in your project. A better option for handling
exceptions in code is to direct them to an error-handling process, the subject of the
next section.

On Error GoTo
This form of error handling can appear in the form of On Error GoTo 0 or On Error
GoTo <label>, where <label> stands for a label of your choice. You will typically find
that most people use labels such as ErrHandler or Err_Handler (<label> merely repre-

138 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 138

sents the name a procedure or function. In this case, that might be ErrHandler,
Err_Handler, or something meaningful to the purpose of the instruction). The point is
to clearly communicate that if the error occurs, the process must move to the code that
handles the error rather than continuing with the next line of code.

The first option (On Error GoTo 0) is VBA’s default error handling. It will simply
return the usual VBA error message (refer to Figure 4-5 to refresh your memory regard-
ing what it looks like). Essentially, with that message, the user has two options: choose
End to close the program and hope that all data is preserved and the file works when
reopened, or choose Debug and be faced with the code window with the failed line of
code highlighted.

Since neither of these options is very appealing, you can appreciate why effective
error handling is so important.

NOTE On Error GoTo 0 does not mean that error handling begins at line 0
of your code. Rather, it is akin to having no error handling enabled in your
code (error handling is disabled). Even if you have other error handlers in the
procedure, once this line is triggered it is essentially the end of the road, and
the default message appears. Or, worse yet, the program just shuts down after
indicating that it encountered a problem.

Generally speaking, error handling is written in the following format. We’ll review
the parts and then go through a working example.

Sub onErrorGoTo()

On Error GoTo Err_Handler

‘insert body of procedure/function here

Exit Sub

Err_Handler:

‘insert error handling code here

Resume Next

End Sub

Notice that before the Err_Handler label we place an Exit Sub instruction. This is
necessary because without this line, the error handling code will be executed as part of
the procedure. You’ll also notice that we place a Resume Next after the error handling
procedure. This implies that the code should be resume with whatever would other-
wise have happened after the line where the error occurred. You could use Resume
<label> to send the code to another label within the code that handles something else,
such as cleaning up objects.

NOTE When handling errors in a function, use Exit Function. When handling
errors in a property, use Exit Property.

In order to practice this, go back to the example of the previous section and add
error handling code as follows:

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 139

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 139

Sub onErrorResumeNext()

Dim fsoObj As FileSystemObject

Dim fsoFolder As Folder

Dim fsoFile As File

Dim lngRow As Long

lngRow = 1

On Error GoTo Err_Handler

Set fsoFolder = fsoObj.GetFolder(“C:\MyFolder”)

For Each fsoFile In fsoFolder

ActiveSheet.Cells(lngRow, 1) = fsoFile.Name

Next fsoFile

Set fsoObj = Nothing

Set fsoFolder = Nothing

Exit Sub

Err_Handler:

MsgBox “The following error occurred: “ & vbCr & _

Err.Description, vbCritical, “Err number: “ & Err.Number

Resume Next

End Sub

As the errors now occur, you will be able to analyze each one and then take appro-
priate measures to correct it. Because the errors may occur with the end user of your
project, you may also want to devise a means to log the errors. In addition, as men-
tioned earlier, it can also be helpful to silently e-mail the error notices or log files to a
designated recipient. Having a log enables you to track errors and improve error trap-
ping, and it strengthens your ability to fix bugs. Moreover, it can be an invaluable tool
for troubleshooting and delivering more stable and robust solutions.

Working with Arrays

Because you may also use arrays in your customizations, we’ll provide a brief intro-
duction. An array is basically a group of indexed data that VBA treats as single vari-
able. If that sounds confusing, then take a look at the following declaration, and you’ll
start to get the picture:

Dim InflationRate(2000 To 2007) As Double

The indexes in this case are the years between 2000 and 2007, and the data we would
be interested in is the inflation rate. You can assign and retrieve values from an array
as follows:

Sub ExampleArray()

Dim InflationRate(2000 To 2007) As Double

140 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 140

InflationRate(2000) = 0.043

Debug.Print InflationRate(2000)

Debug.Print InflationRate(2005)

End Sub

In this exercise, we assign the imaginary inflation rate of 4.3% for the year 2000. We
then print the values for the years 2000 and 2005 to the Immediate Window. Because no
inflation rate is assigned to the year 2005, the value returned is zero (be careful here;
otherwise, you might think that the inflation rate for 2005 was actually zero).

Notice that although there are several inflation rates, there is only one variable
InflationRate.

Although we used a Double data type, arrays can use other data types — for exam-
ple, when referring to objects. The next example demonstrates how to use an array that
contains worksheet objects:

Sub ExampleArray2()

Dim MyWorksheet(1 To 2) As Worksheet

Set MyWorksheet(1) = ThisWorkbook.Sheets(1)

Set MyWorksheet(2) = ThisWorkbook.Sheets(3)

Debug.Print MyWorksheet(1).Name

Debug.Print MyWorksheet(2).Name

End Sub

The second index of our array (MyWorksheet(2)) does not match the index of the
sheet to which it refers (ThisWorkbook.Sheets(3)). This illustrates that items can go
into the array in whatever order you choose, but it is critical to know where they are so
that you can call the correct object.

Determining the Boundaries of an Array
Suppose you have an array but you don’t know its lower or upper limits. In that case,
you can use the LBound and UBound functions to determine the lower bound and upper
bound of the array.

Using the inflation rate array we created earlier, you can check the upper bound as
follows:

MsgBox UBound(InflationRate)

In this particular example, you would get 2007 as the upper bound. This is substan-
tiated by the settings in code (2000 to 2007), but in most cases the limits will not be so
obvious, so you can use the two handy functions to quickly retrieve the answers.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 141

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 141

Resizing Arrays
Looking again at the inflation rate example, you’ll see that we declared an array which
has a fixed size — that is, you can only use the indexes specified to fill the array with
data. An alternative is to create a dynamic array that can be resized later. You use the
ReDim keyword to resize an array, as shown in the following example:

Sub ExampleArray(ByVal StartingYear As Long, _

ByVal EndingYear As Long)

Dim InflationRate() As Double

ReDim InflationRate(StartingYear To EndingYear)

Debug.Print LBound(InflationRate)

Debug.Print UBound(InflationRate)

End Sub

The problem with this approach is that if the array contains any data already, then
that data will be cleared. If you want to keep the previous information contained in the
array, you can use the Preserve keyword alongside the ReDim keyword, like so:

ReDim Preserve InflationRate(StartingYear To EndingYear)

Here, you set the lower and upper bounds of the array without losing existing data.
Now you can add items to the array by changing its upper limit. What you cannot do
is change its lower bound. Rather than having to build a new array, you can pass the
original array to a variant data type, redimension the array (clearing all its contents),
and finally pass back the information from the variant data type. We’ll do that with
our final example:

Dim InflationRate() As Double

Dim varArray As Variant

Sub RunExampleArray()

Call ExampleArray(1990, 2000)

Call ExampleArray2(1980, 2007)

End Sub

Sub ExampleArray(ByVal StartingYear As Long, _

ByVal EndingYear As Long)

ReDim InflationRate(StartingYear To EndingYear)

InflationRate(1990) = 2.4

InflationRate(2000) = 1.9

varArray = InflationRate()

142 Part I ■ The Building Blocks for a Successful Customization

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 142

End Sub

Sub ExampleArray2(ByVal StartingYear As Long, _

ByVal EndingYear As Long)

ReDim InflationRate(StartingYear To EndingYear)

InflationRate(1990) = varArray(1990)

InflationRate(2000) = varArray(2000)

Debug.Print LBound(InflationRate)

Debug.Print UBound(InflationRate)

Debug.Print InflationRate(1990)

Debug.Print InflationRate(2000)

End Sub

Notice that both variables used in this example are declared in the general declara-
tion area of the module, so your data is back in the new array, and you are set to work
with data from 1980 through 2007, instead of the original array from 1990 to 2000.

Conclusion

This has been a very long chapter, and although we have introduced many aspects of
VBA, we have barely scratched its surface. We will return to VBA in Chapter 12, when
you are introduced to some more advanced concepts regarding VBA programming.
However, from this point forward, our work with VBA will be fully integrated with the
Ribbon customization process.

It is hard to determine what requires a solid understanding and what does not, as
many things can be useful in a certain context and not in another. Our goal with this
chapter was to cover the fundamentals of VBA, while emphasizing the things that we
will use throughout the book. With that in mind, we encourage you to pay particular
attention to working with decision statements such as If...Then...Else and Select

Case. You will also need to be comfortable with the various ways you can loop through
objects and handle events. Finally, of course, you will find that debugging and error
handling are critical skills. As we just demonstrated, error handling is particularly
important because you do not want your customization bombing for the end user. We
cannot overemphasize that programs will change and users will do unexpected things,
so you have to test beyond your own routines; and if you have any doubts, go back,
revise, and practice.

Now that you’ve learned the basics for XML and VBA, you are ready for Chapter 5,
where you will learn the nuts and bolts of callbacks.

Chapter 4 ■ Introducing Visual Basic for Applications (VBA) 143

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 143

91118c04.qxd:WileyRedTight 11/28/07 9:15 PM Page 144

145

If you’ve worked through the earlier chapters, you already know some of the basics
relating to Ribbon customization, such as XML structure, and you’ve had an introduc-
tion to VBA. This chapter introduces you to callbacks — the code that makes your cus-
tomization work.

Without callbacks, your UI may look beautiful, but that’s all it will be: just a pretty
Ribbon — that is, of course, unless you are drawing from built-in controls, as they
don’t require custom callbacks. However, for custom controls, looks just aren’t
enough. What really matters is that your UI adds value for the user. In this chapter
you learn the basics about how callbacks provide the functionality required for cus-
tom controls to work.

In the following pages you learn a combination of XML and VBA, as you will need to
specify a callback in your XML code and then write VBA code to match and handle that
callback. As you are preparing to work through the examples, we encourage you to
download the companion files. The source code and files for this chapter can be found
on the book’s web site at www.wiley.com/go/ribbonx.

Callbacks: What They Are and Why You Need Them

Callbacks are subprocedures and functions used by your custom UI to make your cus-
tomization work. A callback simply represents the movement of the instruction given.
For example, when you set the onAction attribute for a button and load the UI, once the
button is clicked it generates a callback on the action specified in the attribute.

Callbacks: The Key to Adding
Functionality to Your Custom UI

C H A P T E R

5

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 145

If nothing is found, then the callback fails because it has an exception in the code:
In other words, the callback specified in the attribute does not exist in VBA, so it fails.
Figure 5-1 shows how the callback flows from the UI project to the VBA code project,
in much the same way that an event calls a procedure or function.

Figure 5-1: Callback flow

Your UI will call on your VBA project as soon as it loads, searching for the specified
functions or procedures. If they are found, then the value is passed back to UI. If the
specified functions or procedures are not found, then an error results.

There are two primary ways to create callbacks:

■■ Type the procedure or function directly into a standard module in the VB editor.

■■ Generate the procedures using a tool such as the Office 2007 CustomUI Editor.

The key advantage of using tools such as the Office 2007 CustomUI Editor is that
they sweep the XML code and return a callback signature, also known as a subprocedure
stub, for each attribute in the XML code that has a callback needing handling. Attrib-
utes that take a callback as a value include onAction, getVisible, and getImage.

In addition to saving time, using the custom editor also helps you avoid mistakes
that can easily be made when manually writing callback signatures. Each of the pre-
ceding attributes generates a different callback signature that must be handled using
code in order for the UI to function properly. This book relies on VBA, but you can use
other code languages, such as C#.

Another thing to keep in mind is that some callbacks are called upon, and need to
run, when the project loads. This means you will get an error message if the callback
handler (the VBA code that responds to the callback) is not present in the project. How-
ever, there is no need to panic if that happens, as you will learn how to mitigate this
type of error. More important, you will learn how to avoid them altogether.

Setting Up the File for Dynamic Callbacks

In this section you learn some of the basic techniques that are fundamental to all cus-
tomizations. One of the critical elements is that the file must be macro-enabled in order
for custom controls to work. In fact, a file must be macro-enabled, otherwise you will
not be able to add or run VBA code.

146 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 146

The macro-enabled constraint applies to Excel and Word only. Access has another
constraint, addressed later in this chapter in the section “Handling Callbacks in Access.”

Capturing the IRibbonUI Object
An important part of the customization is related to the IRibbonUI object. This object
refers to the Ribbon user interface and can be used to control how things respond.

One of its key uses in VBA is to invalidate the entire Ribbon object (so that certain
features of the Ribbon can be changed) or to invalidate specific controls in the Ribbon
(so that certain features of the control can be changed).

C ROSS-RE FE RE NC E See “Invalidating UI Components” later in this chapter
for more information about invalidating the Ribbon and its components.

Adjusting the XML to Include onLoad

In order to use the IRibbonUI object, you need to set it in VBA. We’ll explain more
about that later, but for now we’re going to stay focused on how you get to that stage.
First, you need to specify a value for the onLoad attribute of the UI. That is done by
specifying a callback for the onLoad attribute, as shown here:

<customUI

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

Because the value of the onLoad attribute is a callback, it needs to be handled in the
VBA code. This, in turn, enables you to use the IRibbonUI object in your project.

Setting Up VBA Code to Handle the onLoad Event

You likely noticed that we previously referred to onLoad as an attribute, but are now
calling it an event. This is because you can define values for a number of attributes,
such as onAction, getLabel, and onLoad, in the XML file. Once a value has been
assigned to an attribute, if it can be triggered in any way it will cause an event to occur,
and thus we make the distinction between attribute and event.

Because the IRibbonUI object is used throughout the application, it needs to be
declared in the Global Declarations area of a standard module, as shown in the follow-
ing code. Recall from Chapter 4 that the g prefix indicates a global variable. We have
adopted and built upon the Reddick naming conventions, but you can implement
whatever standard you choose. The critical part here is that global variables must be
declared at the beginning of the module, before any other type of variable or any code.

‘The global ribbon object

Dim grxIRibbonUI As IRibbonUI

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 147

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 147

We use the standardized form grxIRibbonUI to refer to the IRibbonUI object. The
next step is to add a callback to set the object:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

End Sub

C ROSS-RE FE RE NC E There are other ways to set custom properties of the
Ribbon object. Chapter 12 has additional examples and instructions.

After you have globally set the object, it will be available throughout the project. Note,
however, that the Ribbon object is very “sensitive” to change. This means that if you step
into the code at any time to make changes, the object instance will be lost and any oper-
ation requiring the Ribbon object will fail. Therefore, it isn’t just as simple as test, tweak,
test — you need to save, close, and reopen the project any time you make a change.

Generating Your First Callback

The previous topic explained how to set the IRibbonUI object, and since you know
that you need to get a callback signature, you’re probably wondering how you’re sup-
posed to know which signature to use. That’s the next step in the process, so we’ll
explain that now.

A toggleButton, for example, would have the following signature:

Sub rxtgl_Click(control as IRibbonControl, pressed as Boolean)

A generic button would have this signature:

Sub rxbtn_Click(control as IRibbonControl)

You have already seen that the onLoad attribute generates a callback with a different
signature. We realize that this may seem like a lot of minor nuances, so the goal of this
chapter is to make it perfectly clear how all these details affect the Ribbon. This is a
complex subject with endless variations, but the more you work through it, the better
you’ll understand it.

Writing Your Callback from Scratch
To learn how to write a callback from scratch, begin by taking a look at the previous
example using a callback signature for a toggleButton:

Sub rxtgl_Click(control as IRibbonControl, pressed as Boolean)

This seems pretty straightforward , but it is not the entire story. As with most code,
there is a lot more to it than what meets the eye. For example, if you happen to know

148 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 148

the callback signature, you do not necessarily need to declare the arguments using the
standard form given above.

The following example helps to demonstrate this point. Suppose you have a tog-
gleButton that uses the following XML:

<toggleButton

id=”rxtgl”

label=”Toggle”

size=”large”

onAction=”rxtgl_Click”

imageMso=”FormatPainter”/>

You could then write the rxtgl_click callback as follows:

Sub rxtgl_Click(rxctl As IRibbonControl, toggled As Boolean)

If toggled Then

MsgBox “I am toggled...And my ID is “ & rxctl.ID, vbInformation

End If

End Sub

Because the click on the toggleButton triggers the callback, the arguments are
passed as usual; hence, the change in the signature will not cause the procedure to fail
as long as you have the correct arguments of the correct type. Yes, “correct arguments
of the correct type” sounds a bit like double-talk. This is a time when examples work
best. In the example, the arguments are used to identify the specific controls: rxctl As
IRibbonControl and toggled As Boolean. Notice that the initial As keyword identifies
the control. Next, As is used with the argument type to specify that the value of the
control must be a certain data type. In this case the toggleButton will require a
Boolean value.

C ROSS-RE FE RE NC E If you need a refresher on data types, refer to the
section “Data Types” in Chapter 4.

With this under your belt, you could also change the onLoad callback signature to
suit your needs, as shown next. This callback sets the Ribbon object in the same way the
standard signature does:

Sub rxIRibbonUI_onLoad(MyRibbon As IRibbonUI)

Set grxIRibbonUI = MyRibbon

End Sub

The problem you may have now is that your code differs from the standard format,
so it may not be easily understood by other developers; indeed, it may seem foreign to
you in a few weeks or months. Therefore, even though it is good to have options, you
may find that it is better to stick with the standard format. Table 5-1 lists some callback
signatures that will be handy if you choose to write your callbacks from scratch.

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 149

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 149

Table 5-1: Callback Signatures for Different Object Attributes

ATTRIBUTE CALLBACK SIGNATURE

onLoad (ribbon as IRibbonUI)

(control as IRibbonControl, ByRef returnedVal)

onAction (for toggleButtons) (control as IRibbonControl, pressed as Boolean)

onAction (for buttons) (control as IRibbonControl)

Unless you are a glutton for punishment, we do not advise you to type each signature
on your own — just consider the number of callbacks that you need to handle! Of course,
you could reduce the amount of work by using shared callbacks, so that several controls
are handled by just one callback. That is a subject beyond the scope of this discussion, but
you can look forward to learning about shared callbacks later in this chapter, in the sec-
tion “Using Global Callback Handlers.”

An alternative to writing the callbacks is to use a tool such as the CustomUI Editor.
This will read the XML code, identify where a callback is necessary, and generate the
subprocedure stub, which brings us to the next topic.

Using the Office CustomUI Editor to Generate Callbacks
An easy and hassle-free way to generate callbacks is to use the CustomUI Editor. This
little wonder-tool will sweep together all of the attributes that return a callback and
then generate the callbacks that are needed.

The greatest advantage of using this type of editor is that you do not need to keep
track of all the callbacks in the XML. This is almost invaluable if the XML code becomes
quite long.

With the CustomUI Editor, you can use the following steps to automatically gener-
ate the necessary callbacks:

1. Use the CustomUI Editor to open the Excel or Word file that contains the XML
code. (For an Access file, copy and paste the XML code into a blank CustomUI
Editor code window.)

2. Click the Generate Callbacks button.

3. A new Callbacks tab will appear. Highlight all the callbacks that were gener-
ated and then copy and paste them into the VBA project.

NOTE Make sure you validate the code before continuing — just click the
Validate button on the CustomUI Editor toolbar. Because this does not guarantee
a full validation, refer to the section “Showing CustomUI Errors at Load Time” in
Chapter 1 for more detailed instructions.

getLabel, getPressed,
getEnabled, getImage,
getScreentip, getVisible, etc

150 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 150

Figure 5-2 shows the result of automatically generating callbacks using the
CustomUI Editor.

Figure 5-2: The CustomUI Editor generates callbacks
on-the-fly.

The preceding example has three callbacks. The first two (onLoad and getLabel)
occur when the UI loads. The last callback, onAction, occurs when the button is clicked
by the user. The last callback is a shared callback, used by multiple controls that share
a common onAction attribute and have a common signature.

Understanding the Order of Events When a File Is Open
As you add callbacks to your project, certain procedures will be called when the docu-
ment is open. Which specific procedures are called varies depending on whether or not
your customization has the focus when the project opens. Keep in mind that some pro-
cedures are called only when the tab containing the customization has the focus,
whereas others are called when the mouse hovers over the control.

Understanding the order in which these procedures are called can be tricky because
calling order is influenced by numerous variables. However, the event that tops the list
is the onLoad event. To help you anticipate the typical order of events, Table 5-2 lists the
events for the Ribbon tabs and their corresponding order.

Table 5-2: Event Order When Tab Has Focus After Project Is Opened

EVENT

onLoad Top most event. It will occur when the UI is loaded.

getVisible First First N/A N/A

getLabel Second Third N/A N/A

getImage Third Fourth N/A N/A

Continued

MOUSE
OVER

ALT KEY IS
PRESSED

TAB HAS
FOCUS

TAB GETS
FOCUS

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 151

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 151

Table 5-2 (continued)

EVENT

getEnabled Fourth Second N/A N/A

getKeytip N/A N/A First N/A

getScreentip N/A N/A N/A First

getSupertip N/A N/A N/A Second

The preceding table lists only a few examples of common attributes that you might
use. You should also keep in mind that order will be affected by the introduction of
other attributes, such as getDescription, getTitle, and so on. Nonetheless, the table
can serve as a general guide when you plan the best way to tackle the UI in terms of
performance.

Can I Have Two Callbacks with the Same
Name But Different Signatures?
VBA will not allow two callbacks in the same project to have the same name but differ-
ent signatures. If you try to do this, it will fail, as it would with any other code language.

However, the same callback name can have different signatures if the callbacks are
in different projects. Therefore, if you have more than one Word and/or Excel docu-
ment and add-ins opened simultaneously, you might find yourself in an unusual situ-
ation that causes a callback return to have an unexpected result. That’s because if there
is more than one action (signature) associated with a callback name, then the callback
for the active document will run. Because Access uses a different process to manage
multiple database instances, we cover that in a separate section of this chapter.

The following example will help illustrate how this works in Excel; it is essentially the
same in Word. Suppose you have an open Excel workbook with two add-ins installed,
and all three items have a custom UI with a control that calls rxbtnnsQaShared.

When you click the button on the UI, you expect to add a new workbook. However,
the message box shown in Figure 5-3 appears instead.

Figure 5-3: Message box shown
instead of adding a new workbook

MOUSE
OVER

ALT KEY IS
PRESSED

TAB HAS
FOCUS

TAB GETS
FOCUS

152 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 152

Upon investigating this, you discover that you have used the same callback for all
three buttons. Even so, you might assume that if you click the button in the UI, then
you should get the response for that specific button, so you add a breakpoint to the
VBA to see exactly what is happening with the click event, and then you click the but-
ton again. This shows that because your Party Crasher Workbook is active when the
button is pressed, Excel runs the code associated with that control. In other words,
although we are allowed to use identical names with different signatures as long as
they are in different projects, it is not necessarily a good idea (see Figure 5-4).

Figure 5-4: Callbacks with same names in different locations can cause unexpected
behavior.

We’ve captured the three callbacks in Figure 5-4. As you can see in the title bars, two
of the callbacks are in add-ins and the third is in the Party Crasher workbook. All three
are in the same Excel file. You can also run into a similar scenario if you are sharing
controls from different documents, as it is likely that they will also have a shared call-
back, or the same callback name may be repeated in multiple documents. Keep in mind
that you will only have a problem if the callback has a different function than the one
you are expecting. In general, however, shared callbacks in the same document won’t
have an operational impact.

Calling Procedures Located in Different Workbooks

In the previous example you saw how having the same procedure name in different
files can cause some unexpected behavior depending on which file is active or has
the focus.

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 153

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 153

You can also run into a similar problem if your XML code runs VBA that is located in
a different workbook. Suppose you have two workbooks: Book1.xlsm and Book2.xlsm.
You want to add a button to the first workbook to run a procedure located in the second
workbook. You could do that using the following XML code to build the UI:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<tabs>

<tab id=”rxtabDemo”

label=”My Custom Tab”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”My Demo Group”>

<button id=”rxbtnDemo”

label=”My Demo Button”

size=”large”

onAction=”Book2.xlsm!rxbtnDemo_Click”

imageMso=”FileStartWorkflow”/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

NOTE Using the BookName.xlsm!rxctl_click structure will cause the CustomUI
Editor to struggle with generating the callback. In fact, the callback (shown in the
following code) must be modified in order to work. To correct the problem, you
merely need to remove the xlsm!

Sub xlsm!rxbtnDemo_Click(control as IRibbonControl)

End Sub

The preceding code is an incorrectly generated subprocedure stub. As indicated in
the note, you merely need to remove the xlsm! and it will work just fine, as demon-
strated in the following code sample.

We now have the XML in book1.xlsm with the onAction attribute pointing to
Book2.xlsm, so when you click the button created by Book1, it will look to Book2.xlsm
for the onAction VBA code — so let’s do that. Place the following code in a standard
module in Book2:

Sub rxbtnDemo_Click(control As IRibbonControl)

MsgBox “You called a procedure located at: “ _

& ThisWorkbook.Name

End Sub

154 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 154

Remember that both workbooks must be open for this to run. If you wanted the
onAction attribute to point to a loaded add-in, rather than a workbook, then you
would simply prefix the onAction code name with [add-in name].xlam, rather than
[workbook name].xlsm. e.g., onAction=”myAddIn.xlam!rxbtnDemo_Click” and then
place the callback VBA code in a standard module in the add-in:

Book3.xlam!rxbtnDemo_Click

Keep in mind that this event will run the code contained in the active workbook if
both the xlsm and xlam have the same name for a procedure specified under the onAction
attribute of the UI. You likely also noticed that although we had to remove the xlxm!
from our previous callback, xlam! is required to work with the add-in.

Organizing Your Callbacks

As you progress in your Ribbon customization coding skills, you will notice that there
are different ways to organize the callbacks. You can have an individual callback handler
or you can have a global callback handler that takes care of multiple controls at once.

The way you want your VBA code (as well as your XML code) to look will deter-
mine which method or combination of methods you use.

We start our look at callback organization by working with individual callback
handlers.

Individual Callback Handlers
When you write XML code, you can specify various attributes that return a callback
such as onAction, getLabel, getVisible, getEnabled, and so on. Each of these callbacks
has to be handled. The following example illustrates the process by generating three
buttons in a group. Although this example is for Word, it also works in Excel. Access is
handled differently, so we will work through an Access example later in this chapter.

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<tabs>

<tab id=”rxtabDemo”

label=”My Custom Tab”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”My Demo Group”>

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 155

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 155

<button id=”rxbtnPaste”

label=”My Paste Button”

size=”normal”

onAction=”rxbtnPaste_click”

imageMso=”Paste”

tag=”Custom Paste Button”/>

<button id=”rxbtnCopy”

label=”My Copy Button”

size=”normal”

onAction=”rxbtnCopy_click”

imageMso=”Copy”

tag=”Custom Copy Button”/>

<button id=”rxbtnCut”

label=”My Cut Button”

size=”normal”

onAction=”rxbtnCut_Click”

imageMso=”Cut”

tag=”Custom Cut Button”/>

</group>

</tab>

</tabs>

</ribbon>

As you can see, each button is assigned its own onAction attribute, which means
that each attribute must be handled if you intend to add functionality to the button:

Sub rxbtnPaste_Click(control As IRibbonControl)

MsgBox “You clicked on “ & control.Tag, vbInformation

End Sub

Sub rxbtnCopy_Click(control As IRibbonControl)

MsgBox “You clicked on “ & control.Tag, vbInformation

End Sub

Sub rxbtnCut_Click(control As IRibbonControl)

MsgBox “You clicked on “ & control.Tag, vbInformation

End Sub

As you might anticipate, dealing with each attribute individually can become very
cumbersome and hard to maintain. Keep in mind that you need to handle each onAc-
tion attribute as well as any other attribute that generates a callback.

An alternative to this is to handle multiple attributes at once. As you will appreciate,
this is where following a naming convention becomes a blessing. If you’re using our
suggested method, you will readily see how easy it is to handle all the callbacks in one
tidy process.

156 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 156

Using Global Callback Handlers
As their name implies, global callback handlers can be used to handle several controls
at once, and it gets even better if you standardize the way you name global handlers,
because then you can immediately differentiate a global callback handler from an indi-
vidual callback handler just by glancing through your VBA. This is yet another benefit
of planning ahead when creating callbacks.

The reason why you can use global callbacks is because some instructions may over-
lap; and even when the instructions do not overlap, you can still benefit from the fact that
certain controls share the same attribute for a specific action — such as the onAction
attribute. In addition, if the actions are the same, then the procedures can be grouped
together in a single callback handler.

You can take advantage of this to reduce the number of callbacks to be handled, and
instead of handling individual callbacks, you can handle the control itself through a
common callback.

Take, for example, the following objects: tab, group, and button. Each one of these
controls shares a common attribute — namely, getLabel. Therefore, building on our
previous statements, this tells you that you do not need to write a getLabel callback for
each control in your XML code when you need to dynamically apply a value to each
control. Instead, you can bring them together in a single process by sharing the task in
a VBA procedure. Moreover, because it’s a callback, you do not need to loop through
the controls specified in the XML. It will automatically go through the controls until
they all have their required values.

We can use the example from the previous section so that you can compare both
methods and decide what is best for a given situation.

All you need to do is change the onAction attribute for each of the buttons in the pre-
vious XML code to the following:

onAction=”rxshared_click”

This will generate a single callback that can be used to handle any control that has
an onAction attribute and shares this signature.

The next step is to handle this callback for each button in VBA. That is accomplished
with one small code snippet, as follows:

Sub rxshared_click(control As IRibbonControl)

MsgBox “You clicked on “ & control.Tag, vbInformation

End Sub

Obviously, the preceding code is not really “handling” anything just yet, but it illus-
trates that there is no need to repeat the message box line inside each individual call-
back. It also gives you a taste of how handling various procedures through a single
callback handler can save you a lot of time and hassle.

As you would probably want to add individual code to each button, you can use a
Select Case statement to structurally separate each button and assign it a specific
piece of code:

Sub rxshared_click(control As IRibbonControl)

Select Case control.ID

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 157

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 157

Case “rxbtnPaste”

‘ Your code goes here for the rxbtnPaste button

Case “rxbtnCopy”

‘ Your code goes here for the rxbtnCopy button

Case “rxbtnCut”

‘ Your code goes here for the rxbtnCut button

End Select

End Sub

As you can see, there is no need to handle a callback for each custom control in the
UI. Instead, you can use a global (shared) callback and then handle each control within
the VBA procedure. We used a Select Case statement because it is concise and easy to
interpret. You could also use an If … Then … ElseIf… End If statement.

Handling Callbacks in Access
When it comes to customization, Access is unique in many ways. As you have already
seen with something as basic as attaching the XML code to your project’s UI, Access
uses a table, rather than a zipped group of XML files as in Excel and Word.

C ROSS-RE FE RE NC E See Chapter 16 for other methods of deploying a
custom UI in Access.

In Access, you can use VBA or macros to handle your callbacks. When working with
Word and Excel, the word “macro” typically refers to a VBA procedure, but in Access
a macro is an object that you create. In addition, because macros have predefined
instructions that typically only need an argument, there is little need to know much
about programming in VBA.

The next two sections describe how to use VBA and macros in Access to add func-
tionality to your UI.

Using VBA to Handle Callbacks

The obvious way to handle callbacks in Access is to use the same method that we used
for Excel and Word. In Access, the biggest difference is that you need to reference the
Office 12 Object Library. If you don’t reference this library, you will get the error mes-
sage shown in Figure 5-5.

Figure 5-5: Error due to uninstalled Office 12 Object Library

158 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 158

C ROSS-RE FE RE NC E See Chapter 4 for instructions on how to reference
libraries in your project.

The problem with the message is that it can be misleading. As you can see in Fig-
ure 5-5, the message doesn’t indicate the true root of what we know to be the problem.
Although it may be true that a callback subprocedure or function is missing, it can also
indicate that Access is unable to identify an existing object because the library itself is
missing from the project. Either scenario will generate the same message.

Therefore, considering that forewarned is forearmed, let’s get started with a simple
example. The following XML code creates a single button for your custom tab/group
in Access:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<tabs>

<tab id=”rxtabDemo”

label=”My Custom Tab”

insertBeforeMso=”TabHomeAccess”>

<group id=”rxgrpDemo”

label=”My Demo Group”>

<button id=”rxbtnReport”

label=”My Report Button”

size=”large”

onAction=”rxbtnReport_Click”

imageMso=”CreateReport”

tag=”Create Report”/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

Now add a standard module to your project, to which the following code should be
added for testing purposes:

Sub rxbtnReport_Click(control As IRibbonControl)

On Error GoTo Err_Handler

DoCmd.OpenReport “MyReport”, acViewPreview

Exit Sub

Err_Handler:

MsgBox Err.Description, vbCritical, “Err number: “ & Err.Number

End Sub

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 159

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 159

In this example, after the button is clicked it will open the report named MyReport in
View Preview mode. However, if it encounters an error, instead of the report, it will dis-
play a message box with the error description and number.

Using Macros to Handle Callbacks

With Access 12, the macro object is an alternative to using standard VBA code to han-
dle your callbacks. If you plan to use macros to handle your callbacks in Access, you
need to know that they are slightly different from VBA, and they need to be handled in
XML and in Access.

Suppose you want to handle an onAction attribute using a macro. You would need
to specify the onAction attribute as follows:

onAction=”rxMacroName.ObjectName”

Notice that, similar to the Excel example that runs a procedure in a different work-
book, this procedure also consists of two parts:

■■ rxMacroName refers to the name of the macro object to be created in Access.

■■ ObjectName refers to the object id that was created in the XML code; which, in
turn, refers to a macro name. Do not mistake the macro object, which has a name,
with the macro name itself, which is merely the identifier for the macro object.

If that last bulleted point sounds confusing, Figure 5-6 should help it make more
sense. It shows the macro object named rxsharedMacro, which contains three named
macros: rxbtnPaste, rxbtnCopy, and rxbtnCut. Of course, we’re about to explain how
to name and refer to macros.

Figure 5-6: Access’s macro window

Note that the tab of the macro window contains the macro object name, whereas the
field Macro Name refers to the Ribbon object id (the object in your XML code). The rea-
son for choosing the syntax rxMacroName.ObjectName is that the first part refers to the
macro object itself; the second part refers to a macro name within the macro object; and
that, in turn, points to an object in your XML code. By naming the macros in this man-
ner, you should be able to identify the object in your XML code and match it to the
macro object by looking up its name in the Macro Name field (column), as shown in
Figure 5-6.

160 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 160

NOTE If the Macro Name column is not visible, just click the Macro Names
toggleButton to display it. That is the button with the XYZ shown in Figure 5-6.

To see a demonstration of how to use a macro for the callbacks, create a new tab and
group and add the following buttons to it:

<button id=”rxbtnPaste”

label=”My Paste Button”

size=”normal”

onAction=”rxsharedMacro.rxbtnPaste”

imageMso=”Paste”

tag=”Custom Paste Button”/>

<button id=”rxbtnCopy”

label=”My Copy Button”

size=”normal”

onAction=”rxsharedMacro.rxbtnCopy”

imageMso=”Copy”

tag=”Custom Copy Button”/>

<button id=”rxbtnCut”

label=”My Cut Button”

size=”normal”

onAction=”rxsharedMacro.rxbtnCut”

imageMso=”Cut”

tag=”Custom Cut Button”/>

Now add a new macro object in Access and name it rxsharedMacro. After doing so,
open the macro in Design View and add three new macro instructions, each one named
using the text after the dot in the onAction attribute in your XML code. You’re now set
to go. Your macro should look similar to the one shown in Figure 5-6. For demonstra-
tion purposes, we added three simple macro instructions: a beep and two messages.
Although you wouldn’t find these in a functional application, their simplicity makes
them effective learning tools.

As shown in Figure 5-7, the message box generated by the third macro displays the
comment in the macro’s argument. This demonstrates that the parameters set in the
action’s argument grid (as shown in Figure 5-6) will display in the message box.

Figure 5-7: Message box generated
by the macro rxbtnCut

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 161

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 161

Although the messages relate to the buttons, in a real application the macro name
would have more relevance to the action involved. For example, in a case like the one
shown in this example, in a real application the macro name would likely be something
like rxbtnMsgCut instead of rxbtnCut. We wanted to use a simple example to make it
easier to grasp the principles. Once you understand the process, you can expand the
actions by either writing a more complex macro instruction or by pointing the macro to
a VBA function that runs more complex instructions.

Invalidating UI Components

One important aspect of the Ribbon relates to invalidating the Ribbon or specific con-
trols. As you will see, some actions can only be carried out if you invalidate the entire
Ribbon, but other actions can be accomplished by just invalidating a specific control.

This section explains how to invalidate the Ribbon, how to invalidate specific con-
trols, and how to harness the invalidation power to your benefit.

What Invalidating Does and Why You Need It
Before moving on to invalidation of the Ribbon and its controls, you need to under-
stand what it actually means to you and your project.

The IRibbonUI object contains two methods: Invalidate and InvalidateControl.
These are described in Table 5-3.

Table 5-3: IRibbonUI Object Methods

METHOD WHAT IT DOES

Invalidate() Marks the entire Ribbon (consequently marking
every control in it) for updating

InvalidateControl(strControlID) Marks a specific control for updating. The
control to be updated is passed as a string in
the argument of the method. (strControlID)

A key to understanding the Invalidate method is to remember that it invalidates
every control in the UI — meaning that it will force a call on all callbacks defined in the
UI. In addition, it will cause a refresh on all controls whether they have a callback or
not. That means that when the Ribbon is invalidated, a call is made on the Ribbon, and
every procedure specified in the UI will run.

This is likely to place a performance stress on your code, and it can slow things
down considerably. Think of the Invalidate method as a way to refresh the controls in
your UI, but do not confuse refreshing the controls in the UI with reloading the UI. In other
words, refresh simply refreshes the controls already loaded in the UI when you opened
the project, whereas reloading implies unloading and reloading the entire project along
with the UI.

162 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 162

Unless you truly need to affect the entire Ribbon, a better option is to invalidate indi-
vidual controls at specific moments during execution. That way, you only invalidate
controls when necessary.

In order to invalidate either the entire Ribbon or specific controls in the Ribbon, you
need to set a global variable representing the IRibbonUI object. This is done by speci-
fying a callback on the onLoad attribute, as previously shown. For your convenience,
the XML syntax is repeated here:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

</customUI>

Next, you need to write a piece of VBA code to handle the callback specified in the
onLoad attribute:

Public grxIRibbonUI As IRibbonUI

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

End Sub

Notice that the variable representing the IRibbonUI object is declared in the Global
Declarations area of a standard module. That is because the object needs to be accessible
to other parts of the project.

Now that you’ve seen how to create a global variable to represent the entire Ribbon
object, we’ll look at an example showing how to invalidate the entire Ribbon, and then
we’ll discuss how to invalidate a specific control.

Invalidating the Entire Ribbon
Now that you know how the invalidation process works, and you’re acquainted with
the two methods available in the IRibbonUI object, you are ready to build a simple
example. This first example demonstrates how invalidating the entire Ribbon will
affect the controls in it.

NOTE The example discussed here is for Excel, but the chapter download also
includes a file for Access and a file for Word that will replicate the example for
those programs.

First, create a new Excel file and save it as a macro-enabled workbook. Next, using
the CustomUI Editor, attach the following XML code to the file:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

<ribbon>

<tabs>

<tab id=”rxtabDemo”

label=”My Custom Tab”

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 163

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 163

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”My Demo Group”>

<button id=”rxbtn”

getLabel=”rxshared_getLabel”

size=”normal”

onAction=”rxshared_Click”

imageMso=”FillRight”/>

<button id=”rxbtn2”

getLabel=”rxshared_getLabel”

size=”normal”

onAction=”rxshared_Click”

imageMso=”FillRight”/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

After pasting in the code, save the file. With the CustomUI Editor still open, use the
following steps to add the callbacks:

1. Click the Generate Callback button to generate the callbacks.

2. Copy the callbacks to the clipboard and close the workbook.

3. Open the workbook in Excel and add a standard module (don’t worry about
the error message that appears).

4. With the standard module open, enter the following code (this is a great time to
copy and paste from the online file):

Public grxIRibbonUI As IRibbonUI

Public glngCount1 As Long

Public glngCount2 As Long

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

End Sub

Sub rxshared_Click(control As IRibbonControl)

grxIRibbonUI.Invalidate

End Sub

Sub rxshared_getLabel(control As IRibbonControl, ByRef returnedVal)

Select Case control.ID

Case “rxbtn”

returnedVal = _

164 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 164

“Ribbon invalidated: “ & glngCount1 & “ times.”

glngCount1 = glngCount1 + 1

Case “rxbtn2”

returnedVal = _

“Ribbon invalidated: “ & glngCount2 & “ times.”

glngCount2 = glngCount2 + 1

End Select

End Sub

5. Finally, in order for the code to take effect, you need to save the workbook,
close it, and then open it again. You’ll appreciate that the count displayed on
the button has been added merely to illustrate our point. As you work through
the next example, you’ll gain a better understanding of the rest of the code.

Now click one of the new buttons that appears in the custom tab. The result will look
like Figure 5-8. Note that as you click either button, both labels are updated. This is
because both controls are invalidated when either button is clicked because the code
invalidates the entire Ribbon. You’ll also see that the shared getLabel procedure is
called once for the first button and again for the second button.

Figure 5-8: Invalidating the IRibbonUI
object causes all controls in it to be
invalidated.

The next example repeats this exercise but only invalidates the button clicked.

CAUTION There is a slight MS bug in here. If you click too fast on one
control they can become out of sync. This does not seem to apply to Word, but
both Excel and Access have demonstrated this slightly erratic behavior.

Invalidating Individual Controls
A more realistic scenario would not require the entire IRibbonUI object to be invali-
dated. Instead, it would more likely need to invalidate a specific control. We demon-
strate that now using exactly the same XML code as the previous example; however,
instead of invalidating the entire IRibbonUI object, we invalidate only the button that
triggered the click event. We will thereby be able to create a count indicating how
many times the specific control was invalidated.

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 165

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 165

As before, you need to declare the variables. You’ll notice that the onLoad event does
not change. However, you need to modify the shared click and the shared getLabel
events to read as follows:

Public grxIRibbonUI As IRibbonUI

Public glngCount1 As Long

Public glngCount2 As Long

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

End Sub

Sub rxshared_Click(control As IRibbonControl)

Select Case control.ID

Case “rxbtn”

glngCount1 = glngCount1 + 1

Case “rxbtn2”

glngCount2 = glngCount2 + 1

End Select

grxIRibbonUI.InvalidateControl (control.ID)

End Sub

Sub rxshared_getLabel(control As IRibbonControl, ByRef returnedVal)

Select Case control.ID

Case “rxbtn”

returnedVal = “I was invalidated “ & glngCount1 & “ times.”

Case “rxbtn2”

returnedVal = “I was invalidated “ & glngCount2 & “ times.”

End Select

End Sub

You can now click on an individual control and the count will increment only on the
control that was invalidated by the click, as illustrated in Figure 5-9.

Figure 5-9: Have more control
over the UI by invalidating control
objects only.

Unlike invalidating the entire Ribbon, when you click the buttons on the UI, the but-
ton you click is the one that is invalidated; and therefore its click count is increased by
one. Although you won’t notice a performance change with this few controls, you can
easily understand the concept.

166 Part I ■ The Building Blocks for a Successful Customization

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 166

Conclusion

This chapter discussed a key aspect of customizing the Ribbon: adding functionality
through callbacks. You learned how to capture and use the Ribbon object, and how to
organize your procedures through either individual or shared callbacks.

Although writing callbacks from scratch can be a very complex process, you saw
how to do it in case you choose that option. However, given the advantages of using
the Custom UI Editor to generate the callbacks, we will rely on that for the remainder
of the book.

Another complexity that we covered involved scenarios in which a callback name is
associated with different functions. This was demonstrated in a single Excel file and
then extended to demonstrate how it can affect multiple projects or files.

Because Access has some unique ways of handling customizations, this chapter also
included sections devoted to Access. These showed you how to use macro objects in
Access to handle callbacks, and how to amend the XML code accordingly.

Finally, we described how to invalidate the entire Ribbon, and discussed some of the
relevant implications. Based on our examples, we hope you agree that in most situa-
tions a better approach is to invalidate individual controls as needed.

Now it is time to turn our attention to some basic Ribbon controls. Some of these
have already cropped up in examples in this chapter, but they are explained in more
detail in Chapter 6.

Chapter 5 ■ Callbacks: The Key to Adding Functionality to Your Custom UI 167

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 167

91118c05.qxd:WileyRedTight 11/28/07 9:15 PM Page 168

169

It’s time to start exploring the controls that reflect the RibbonX experience. This chap-
ter begins that process by examining four of the most basic, yet most frequently used,
Ribbon controls: button, checkBox, editBox, and toggleButton.

This chapter is divided into four main sections, each of which discusses an individ-
ual control in great detail. Because the XML and VBA code required to make these con-
trols function is supposed to be agnostic across the several Office applications, in
theory they can all be covered once. However, we all know the benefit of seeing how
something works in our primary application, so each section also includes examples
that are specific to Excel, Word, and Access. When working through the examples, we
encourage you to download the companion files. The source code and files for this
chapter can be found on the book’s website at www.wiley.com/go/ribbonx.

The button Element

Without question, the button is the most well known of all the tools in the developer’s
toolbox. From early versions of the applications, users have had access to buttons on
toolbars, menus, and even in other forms such as ActiveX controls. Some have pictures
and others have text, and they can vary in size and shape, but they all have one thing
in common: When you click a button, something happens.

The Ribbon gives you control over a very rich button experience. You can use built-
in images or supply your own; you can specify that you’d like a large button, or use its
smaller form. With very little extra code you can even supply a label to go with it. In

RibbonX Basic Controls

C H A P T E R

6

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 169

addition, you have access to a wide variety of callback procedures that can be lever-
aged to make the button experience quite dynamic. The button offers several attrib-
utes — or elements — that are used to customize the look and response. Some
attributes are required, others are optional, and a few allow you to pick one from a
short list of candidates.

The following tables will be a good reference when you are creating buttons; but for
now, the acronyms, lists, and terms may seem a little overwhelming to those of you
who are relatively new to XML, VBA, and programming. Keep in mind that each sec-
tion and chapter in this book contains examples with detailed steps to walk you
through the processes. In addition, you can always refer to Chapter 3 for a refresher on
working with XML, or Chapter 4 to review VBA fundamentals. Namespaces, which
you’ll see mentioned in the tables throughout this chapter, are explained in Chapter 16,
in the section “Creating a Shared Namespace.”

Required Attributes of the button Element
The button requires any one of the id attributes shown in Table 6-1.

Table 6-1: Required Attributes of the button Element

ATTRIBUTE WHEN TO USE

id When creating your own button

idMso When using an existing Microsoft button

idQ When creating a button shared between
namespaces

Each button also requires the onAction callback from Table 6-2.

Table 6-2: Required Callback of the button Element

DYNAMIC ATTRIBUTE ALLOWED VALUES VBA CALLBACK SIGNATURE

onAction 1 to 4096 characters Sub OnAction (control As
IRibbonControl)

onAction Repurposing Sub OnAction (control As
IRibbonControl, byRef
CancelDefaultcancelDefault)

C ROSS-RE FE RE NC E The second version of the onAction callback is used
when “repurposing” a built-in control. You’ll learn more about repurposing in
Chapter 13.

170 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 170

Optional Static and Dynamic Attributes
with Callback Signatures
With a button, you have the option to use any one insert attribute from Table 6-3.

Table 6-3: Optional insert Attributes of the button Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

You may also provide any or all of the attributes from Table 6-4.

Table 6-4: Optional Attributes and Callbacks of the button Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

description getDescription (none) Sub GetDescription
(control As
IRibbonControl, ByRef
returnedVal)

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl,
ByRef returnedVal)

Continued

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

1 to 1024
characters

true, false,
1, 0

1 to 4096
characters

Chapter 6 ■ RibbonX Basic Controls 171

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 171

Table 6-4 (continued)

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

imageMso getImage (none) (Same as above)

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

showImage getShowImage true Sub GetShowImage
(control As
IRibbonControl, ByRef
returnedVal)

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

size getSize normal Sub GetSize (control
As IRibbonControl,
ByRef returnedVal)

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

normal,
large

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

172 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 172

Allowed Children Objects of the button Element
The button control does not support child objects of any kind. We mention that to save
you some of the time and frustration of looking for something that isn’t there. If you
are accustomed to VBA programming, you might anticipate the ability to leverage chil-
dren objects.

Parent Objects of the button Element
The button control can be placed within any of the following controls:

■■ box

■■ buttonGroup

■■ dialogBoxLauncher

■■ documentControls

■■ dynamicMenu

■■ gallery

■■ group

■■ menu

■■ splitButton

■■ officeMenu

Graphical View of button Attributes
Figure 6-1 shows a sample customization that displays all of the visible graphical
attributes that you can set on the button control.

Figure 6-1: Graphical view of button attributes

Chapter 6 ■ RibbonX Basic Controls 173

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 173

Using Built-in button Controls
Adding built-in controls to a group is actually fairly simple. Let’s say that you are
working in Excel and would like that nice, pretty little “$” from the Accounting Num-
ber Format control sitting in your own custom group. Intuitively, you’d expect it to be
as easy as doing the following:

1. Create a new .xlsx file and save it as Excel Built In Button Example.xlsx.

2. Close the file in Excel the open it in the CustomUI Editor.

3. Apply the RibbonBase template to the file.

4. Insert the following XML between the <tabs> and </tabs> tags:

<tab id=”rxtabCustom1”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”DemoGroup”

label=”Demo Group”>

<button idMso=”AccountingFormat”/>

</group>

</tab>

Lo and behold, it doesn’t create what you were expecting. Figure 6-2 shows the
group that will be created by the preceding code.

Figure 6-2: Built-in control’s
default appearance

You didn’t ask for that text . . . or did you?
Be aware that when you are working with built-in controls, you get the entire package:

image, label, pre-programmed callbacks, and all. Therefore, if you want just the image
and the functionality, you need to set the showLabel attribute to false in addition to
requesting the desired idMso. To do that, you simply modify the code to read as follows:

<tab id=”rxtabCustom1”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”DemoGroup”

label=”Demo Group”>

<button idMso=”AccountingFormat”

showLabel=”false”/>

</group>

</tab>

174 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 174

Now you will create a nice little button that shows only the image, and not the label, as
shown in Figure 6-3. Of course, it still has all the other properties of the built-in control. In
other words, clicking the control will change the number style, just as you’d expect.

Figure 6-3: Built-in
controls with showLabel=“false”

A button Idiosyncrasy: The showLabel Attribute
Now suppose you’ve decided that the little icon that you received when working with
the prior example just won’t do, and you’ve gone back to make it larger. Based on the
original example, you might think that you could just change the portion of the code
that deals with the button to reflect the larger size:

<button idMso=”AccountingFormat”

showLabel=”false”

size=”large”/>

The result of using the preceding code is shown in Figure 6-4. What’s going on here?
The label is showing up even though the code explicitly dictates that it should not!

Figure 6-4: Built-in
control’s default large
appearance

As it turns out, this is a strange idiosyncrasy of the button model. While the
approach will work as expected for a button that is of size=“normal”, it won’t work for
a button that is specified as size=“large”. As you can see, when the button is size
large, the default values override custom settings for attributes other than the size of
the symbol and label text.

Despite this, it is still possible to get the button to display in a large format without
the label. The secret is to specify the label text as a blank space. This kind of coding is
generally frowned upon in practice, as it is not very elegant, but you must supply at
least one character for a label, so it is currently the only way to accomplish our goal.

Chapter 6 ■ RibbonX Basic Controls 175

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 175

The XML would therefore look like the following:

<group id=”DemoGroup” label=”Demo Group”>

<button idMso=”AccountingFormat”

label=” “

size=”large”/>

</group>

As shown in Figure 6-5, this achieves the desired label-free button with a large image.

Figure 6-5:
Built-in control
with the desired
large icon

Creating Custom button Controls
While it’s great that you can add built-in buttons to your groups, that is only the tip of
the iceberg of what you want and truly need to be able to do. You’re hungry for a place
to store a custom macro that you built, and you don’t want it attached to a simple
forms button or to an ActiveX control. You want to learn how to add your own button
to the Ribbon, and have it fire your macro when it is clicked.

It’s time to create some buttons that do something you might want to accomplish in
the real world.

An Excel Example

For this example, assume that you are an accountant, and you’ve built a continuity
schedule for your prepaid expenses. It might look similar to the file shown in Figure 6-6,
in which you’d expect the user to enter data in the shaded cells.

Figure 6-6: Example of a continuity schedule

176 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 176

TI P This file is included in the Chapter 6 example files under the name
Button–Monthly Roll Forward.xlsm.

Now that you have your continuity schedule built and saved as a macro-enabled
file, it’s time to write the macro that will run on a monthly basis to prepare the sheet for
the next month. Specifically, the macro needs to do the following:

■■ Copy the ending balance to the opening balance column.

■■ Clear the Additions and Usage area (for this month’s entries).

■■ Advance the date to the next month’s end.

■■ Advise the user to save the file.

To do that, you need to write some VBA like the following, and save it in a
standard module:

Public Sub RollForward()

With ActiveSheet

.Range(“E6:E10”).Copy

.Range(“B6:B10”).PasteSpecial Paste:=xlValues

.Range(“C6:D10”).ClearContents

.Range(“A3”) = .Range(“A3”).Value + 40 _

- DatePart(“d”, .Range(“A3”).Value + 40)

End With

MsgBox “Rolled forward successfully!” & vbCrLf & _

“Please save the file under a new name.”, _

vbOKOnly + vbInformation, “Success!”

End Sub

If you’d like, you can test this macro by pressing Alt+F8 and choosing RollForward
from the box. By putting data in the C6:D10 range, you’ll notice that the macro does
each of the tasks on the list.

Well, this is all great and wonderful, but you want to attach it to a button, rather than
press the keyboard shortcut each time. To that end, save and close the Excel file and
open it again with the CustomUI Editor. From there, apply the RibbonBase template to
the file and insert the following code between the <tabs> and </tabs> tags:

<tab id=”DemoTab”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”DemoGroup”

label=”Demo Group”>

<button id=”rxbtnRollForward”

label=”Roll Forward”

imageMso=”CreateReportFromWizard”

size=”large”

onAction=”rxbtnRollForward_Click”/>

</group>

</tab>

Chapter 6 ■ RibbonX Basic Controls 177

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 177

C ROSS-RE FE RE NC E If you don’t remember how to set up the RibbonBase
template, review “Storing Customization Templates in the CustomUI Editor”
from Chapter 2.

After you’ve validated the code to make sure your XML is well formed, click the
Generate Callbacks button and copy the code for your onAction callback. Once you’ve
taken care of that little detail, save the file, close the CustomUI Editor, and reopen the
file in Excel. Do not click the button yet, however, as it won’t do anything except throw
the error message shown in Figure 6-7.

NOTE Remember to enable macros when running this type of file. Although
using built-in controls does not require that the file be code-enabled, any file
that requires VBA code needs to have macros enabled.

Figure 6-7: Error indicating a missing callback

Obviously, in this case, you would expect this error because the callback hasn’t been
programmed, so it is time to take care of that little issue. Go back into the Visual Basic
Editor, enter the module in which you saved your RollForward subroutine, and paste
the callback code that you copied from the CustomUI Editor. You’ll then add a tiny bit
of code to your callback so that it calls the existing procedure that you already wrote
and tested. Your callback will then look like this:

‘Callback for rxbtnRollForward onAction

Sub rxbtnRollForward_Click(control As IRibbonControl)

Select Case control.ID

Case Is = “rxbtnRollForward”

Call RollForward

Case Else

‘do nothing

End Select

End Sub

That’s all there is to it. Just exit the Visual Basic Editor, save your file, and start click-
ing your button to watch your code be called.

WARN I NG If you did click the button prematurely and receive the error
shown in Figure 6-7, you will need to save, close, and reopen the file in order
for the code to take effect. This is because any UI errors break the hooks to the
Ribbon and the file must be re-accessed in order for the hooks to be restored.

178 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 178

A Word Example

In this example you add the capability to update all fields in the document at once.
This is a nice automation to add because the only way to do this natively is to print the
document.

You’ll start by opening your favorite Word document and saving it as a .docm file.
Open the Visual Basic Editor and add the following code in a new standard module:

Public Sub UpdateDocumentFields()

Dim rngStory As Word.Range

For Each rngStory In ActiveDocument.StoryRanges

rngStory.Fields.Update

Do

If rngStory.NextStoryRange Is Nothing Then Exit Do

Set rngStory = rngStory.NextStoryRange

rngStory.Fields.Update

Loop

Next rngStory

End Sub

If you’d like to test this, just create a document with some calculated fields. (Alter-
nately, you could just load the example file called button-Update Word Fields.docm.)
You could use a formula in a table, cross-references to another section of the document,
or whatever calculated field that you like.

For the purposes of building this example, the document shown in Figure 6-8 was
constructed using the following field codes:

Reference { STYLEREF 1 \s }-{ SEQ Figure * ARABIC \s 1}

Figure 6-8: Example of non-updated Word fields

Chapter 6 ■ RibbonX Basic Controls 179

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 179

After you have your choice of fields set up correctly (or you are in the example file),
just copy and paste the line a few times. You’ll notice that the numbers do not update
for you.

Run the preceding macro and you’ll notice that all the fields are updated to new
index numbers. To return the document’s appearance to its original state, just copy the
first reference line and paste it over all of the existing ones again.

Now that you have something to work with, save the file, close it, and open it again
in the CustomUI Editor. Apply the RibbonBase template to the file, and insert the fol-
lowing XML between the <tabs> and <tabs> elements:

<tab id=”DemoTab”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”DemoGroup”

label=”Demo Group”>

<button id=”rxbtnUpdateFields”

label=”Update Fields”

imageMso=”MailMergeRecipientsEditList”

size=”large”

onAction=”rxbtnUpdateFields_click”/>

</group>

</tab>

Don’t forget to validate the code before you save it, just to catch any of those pesky
little typing errors in XML-specific code. After you’ve done that, click the Generate
Callbacks button and copy the code provided. Close the CustomUI Editor, reopen the
document in Word, and head straight into the VBE. Paste the callback code in the same
module in which you stored the UpdateDocumentFields routine, and modify calling
that routine as shown here:

‘Callback for rxbtnUpdateFields onAction

Sub rxbtnUpdateFields_click(control As IRibbonControl)

Call UpdateDocumentFields

End Sub

Close the VBE, save your file, and now turn your attention to the button that appears
on the Demo group (right before the Home tab), as shown in Figure 6-9.

Go ahead, give it a click. Your fields should all update automatically for you.

Figure 6-9: Update Fields button

180 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 180

An Access Example

This section describes how a button is used in Access. Assume that you’re building
an application and you want to provide your users with the capability to launch a
form from a Ribbon group. It’s your lucky day, as that’s exactly what this example
will do!

To start, create a database and set up the RibbonUI so that it is completely linked to
the project.

C ROSS-RE FE RE NC E If you need to work from a guide, follow the
instructions in Chapter 2 to set up a new RibbonUI in a database. You’ll replace
the XML later, but for now it’s important to get the UI linked to work with.

Once you have that done, you need to create a little structure to work with. From the
Create tab, create a new table. You’ll notice that the Datasheet tab on the Ribbon is
immediately activated. Click the View drop-down, choose Design View, and save the
table as tblAuthors when prompted. Set up your table as shown in Figure 6-10.

Figure 6-10: tblAuthors table design

Close the table, saving it when prompted, and reopen it. Populate the table with the
information shown in Figure 6-11.

Figure 6-11: tblAuthors data

Close the table again and ensure that it is selected in the navigation window. Again,
on the Create tab, click Form. Delete the ID field and its corresponding entry field,
select the name, and change it to read “Author Information.” Your form should now
look like the one displayed in Figure 6-12.

Chapter 6 ■ RibbonX Basic Controls 181

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 181

Figure 6-12: frmAuthors display

Close the form, saving it as frmAuthors, and breathe a sigh of relief. The database
structure has been completed, and you’re ready to link it all to the Ribbon.

At this point, you need to create the XML code to display your Ribbon commands.
Depending on how much you need to do, and how familiar you are with the tools, you
may elect to do this using either the CustomUI Editor or XML Notepad. For the pur-
poses of this example, however, you’ll stick with the CustomUI Editor for the moment.

Open the CustomUI Editor and immediately apply the RibbonBase template dis-
cussed in Chapter 2. Replace the line that reads <! — Enter your first tab here — >

with the following XML code:

<tab id=”rxTabMyTools”

label=”My Tools”

insertBeforeMso=”TabHomeAccess”>

<group id=”rxgrpForms”

label=”Forms”>

<button id=”rxbtnFrmAuthors”

imageMso=”FileCreateDocumentWorkspace”

size=”large”

label=”Enter Authors”

onAction=”rxbtnFrmAuthors_click”/>

</group>

</tab>

You’ll recall that one of the reasons for writing code in the CustomUI Editor is to
confirm that the code is valid, so make sure that you validate the code, and then copy
everything in the window (not just what you just entered).

Don’t close the CustomUI editor just yet, but head back to Access and open the
USysRibbons table. Paste the code in the RibbonXML field for the MainRibbonUI and
save it. Now, close your database, reopen it, and take a moment to admire your new
tab, shown in Figure 6-13.

Figure 6-13: The Enter Authors button on the My Tools tab

182 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 182

Unfortunately, as pretty as this looks, it doesn’t do anything yet, as it has not been
linked to any code. Ultimately, however, you’d like to have the user click the button
and launch your form. To accomplish this, you need to write a little VBA code.

The first step, of course, is to create a new VBA module to hold the VBA code. There-
fore, on the Create tab, click the Macro drop-down (the last command on the right),
and choose Module. This will open a new window with the VBE (Visual Basic Editor),
and you’ll be staring at a fresh, almost blank page.

Head back into the CustomUI Editor and click the Generate Callbacks button. Copy
the resulting code and close the CustomUI Editor. When you return to Access, go to the
VBE and paste the code at the end of the module that was just created. Now, modify
the code to read as follows:

‘Callback for rxbtnFrmAuthors onAction

Public Sub rxbtnFrmAuthors_click(control As IRibbonControl)

DoCmd.OpenForm “frmAuthors”, acNormal

End Sub

The preceding code leverages the OpenForm method of the DoCmd object. Notice that
you’ve fed it the name of the Authors form, and you’ve specified that you would like
the form opened in Normal View.

TI P Don’t forget to set a reference to the MS Office 12.0 Objects Library, as
described in Chapter 5.

Finally, save your module as modRibbonX and close it. Try clicking the button. Your
form should jump open in front of you!

WARN I NG If you already clicked the button and received an error, you will
need to close and reopen your database to reactive the Ribbon interface again.
As noted with the Excel example, this is because any UI errors break the hooks
to the Ribbon; to restore the hooks you need to re-access the file.

The checkBox Element

The checkBox control enables users to toggle between two states. Although these states
are true and false by default, this element could indicate on/off, up/down, left/right,
1/0, or any other combination of opposite states that the developer could imagine.

There are numerous scenarios in which you might wish to use a checkBox to control
or indicate something. A couple of practical examples might help prompt some ideas
of your own. For example, you might benefit from using a checkBox for the following:

■■ To indicate whether a specific criterion has been met in a field in your database.
In this case, when the criteria is met, the check would automatically appear in
the box.

Chapter 6 ■ RibbonX Basic Controls 183

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 183

■■ To allow the user to determine whether an object should be displayed or not,
such as to show or hide gridlines or even a subform.

As you explore the examples in this section, you’ll begin to see how the concept of
invalidation is applied in a real-world setting as well.

Required Attributes of the checkBox Element
The checkBox control requires any one of the id attributes shown in Table 6-5.

Table 6-5: Required Attributes of the checkBox Element

ATTRIBUTE WHEN TO USE

id Create your own checkBox

idMso Use an existing Microsoft checkBox

idQ Create a checkBox shared between namespaces

The checkBox control also requires the onAction callback, shown in Table 6-6.

Table 6-6: Required Callback for the checkBox Element

DYNAMIC ATTRIBUTE ALLOWED VALUES VBA CALLBACK SIGNATURE

onAction 1 to 4096 characters Sub OnAction (control As
IRibbonControl, pressed as
Boolean)

Optional Static and Dynamic Attributes with
Callback Signatures
In addition, the checkBox control can optionally make use of any one insert attribute,
shown in Table 6-7.

Table 6-7: Optional insert Attributes of the checkBox Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

Insert at
end of group

184 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 184

Table 6-7 (continued)

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

The checkBox element may also employ any or all of the attributes shown in Table 6-8.

Table 6-8: Optional Attributes and Callbacks of the checkBox Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

description getDescription (none) Sub GetDescription
(control As
IRibbonControl, ByRef
returnedVal)

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

(none) getPressed false Sub GetPressed
(control As
IRibbonControl, ByRef
returnedVal)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

Continued

Insert at
end of group

Insert at
end of group

Insert at
end of group

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

1 to 3
characters

true, false,
1, 0

1 to 4096
characters

Chapter 6 ■ RibbonX Basic Controls 185

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 185

Table 6-8 (continued)

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

Allowed Children Objects of the checkBox Element
The checkBox control does not support child objects of any kind.

Parent Objects of the button Element
The checkBox control can be placed within any of the following controls:

■■ box

■■ dynamicMenu

■■ group

■■ menu

■■ officeMenu (Note that when the checkbox is unchecked, only the description,
but not the checkbox, appears on the menu.)

Graphical View of checkBox Attributes
Figure 6-14 shows a sample customization that displays all of the visible graphical
attributes that you can set on the checkBox control.

Figure 6-14: Graphical view of
checkBox attributes

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

186 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 186

Using Built-in checkBox Controls
To demonstrate the use of a built-in control, you’ll add a custom tab in Word, and put
the View Gridlines checkBox on it. To do this, create a new Word document and save it
as a .docx file.

NOTE Because you are only using built-in controls, and do not need to
program any callback macros, the file does not have to be saved in a macro-
enabled format. This is an exception to the norm, because most Word and Excel
files with custom Ribbons will include macros and therefore require a file
extension ending with “m”.

Close the document in Word and open it in the CustomUI Editor. Apply the Rib-
bonBase template to the file, and then insert the following XML between the <tabs>
and </tabs> tags:

<tab id=”rxtabDemo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”Demo Group”>

<checkBox idMso=”ViewGridlinesWord”/>

</group>

</tab>

Validate the code to ensure that you’ve typed it correctly, and then save and close
the file in the CustomUI Editor. Reopen the document in Word and click the Demo tab
to the left of the Home tab, as shown in Figure 6-15.

Figure 6-15: Built-in checkBox default appearance

You’ll notice that the checkBox is there and that it works, although the name is prob-
ably not what you’re after. Why not go back, edit the XML, and give it a new name.
Update the XML to add a label to the code that declares the checkBox. Instead of one
line, you will have two lines, as shown here:

<checkBox idMso=”ViewGridlinesWord”

label=”Toggle Gridlines”/>

Upon reopening your document, your group should now look like what is shown in
Figure 6-16.

Chapter 6 ■ RibbonX Basic Controls 187

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 187

Figure 6-16: Built-in checkBox relabeled

NOTE The preceding example will work in Excel with only one minor change:
Instead of using idMso=”ViewGridlinesWord” in your XML, substitute
idMso=”GridlinesExcel” and save it in an Excel file.

Creating Custom Controls
Now it’s time to explore some of the diversity of the Ribbon checkBox and create your
own customizations. Again, you’ll have the opportunity to work through an example
in Excel, Word, and Access. So let’s get started!

An Excel Example

One of the things that can be handy when working in Excel is the capability to quickly
toggle between A1 and R1C1 formulas in your workbook. There are several scenarios
in which it may be more advantageous to place your formulas via R1C1 notation, so
this example demonstrates how to make it easy to quickly flip your formulas to display
in the alternate notation.

NOTE For users who may not be familiar with the difference between A1 and
R1C1 notation, A1 notation enables users to specify formulas and references by
pointing to the cell’s coordinates in the spreadsheet grid. R1C1 notation,
however, tends to be more like referring to an off-setting cell a certain number
of rows and columns in any direction. Excel allows either notation type.

This example adds a control to the Formulas tab to save you the hassle of having to
dig through the Office menu to find the checkbox for that setting. The completed UI
modification is shown in Figure 6-17, with the new checkBox control on the far right, in
the Other Settings group.

Figure 6-17: R1C1 formula checkbox

188 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 188

To begin, create a new workbook and insert all the required XML. There’s going to
be a bit of VBA code involved to set this up, so make sure you save the workbook as an
.xlsm workbook, and then close the file. Open the file with the CustomUI Editor, apply
the RibbonBase template, and insert the following XML code between the <tabs> and
</tabs> tags:

<tab idMso=”TabFormulas”>

<group id=”rxgrpOtherSettings”

label=”Other Settings”

insertBeforeMso=”GroupNamedCells”>

<checkBox id=”rxchkR1C1”

label=”R1C1 Formulas”

getPressed=”rxchkR1C1_getPressed”

onAction=”rxchkR1C1_click”/>

</group>

</tab>

In addition, you need to modify the first line of the XML code to capture the Ribbon
object for later use:

<customUI

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

NOTE Remember that although it may seem wrong at first glance, the last
two lines are </tab> and </tabs>. This is because each tag must be individually
closed. The code that you are inserting has a </tab> that partners with the
opening line, and the entire tab is encompassed by the <tabs> and </tabs>.

Again, don’t forget to validate it before you save the file, and be sure to copy the call-
back signatures before you close it. Reopen the file in Excel, open the VBE, and paste
the code in a new standard module.

You’ll notice that there are now three callback signatures in the file:
rxIRibbonUI_onLoad, rxchkR1C1_getPressed, and rxchkR1C1_click. These have the
following purposes:

■■ rxIRibbonUI_onLoad will store the RibbonUI object for you, enabling you to
invalidate controls later to force their updates.

■■ rxchkR1C1_getPressed is fired when the Formulas tab is first activated (or
upon invalidation) and sets the checkBox appropriately.

■■ rxchkR1C1_click is triggered whenever the checkbox is checked or unchecked.
The purpose of this macro is to actually toggle the setting from on to off.

Before you can use this, you need to lay a little more groundwork. The rxIRib-
bonUI_onLoad needs a custom workbook property to operate, so that should be set up
first. Browse to the ThisWorkbook module for the project, and enter the following code:

‘Private variables to hold state of Ribbon and Ribbon controls

Private pRibbonUI As IRibbonUI

Chapter 6 ■ RibbonX Basic Controls 189

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 189

Public Property Let RibbonUI(iRib As IRibbonUI)

‘Set RibbonUI to property for later use

Set pRibbonUI = iRib

End Property

Public Property Get RibbonUI() As IRibbonUI

‘Retrieve RibbonUI from property for use

Set RibbonUI = pRibbonUI

End Property

Once that has been accomplished, you’ll want to complete the rxIRibbonUI_onLoad
routine. Browse back to the standard module and modify this routine to look as follows:

Private Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

‘Set the RibbonUI to a workbook property for later use

ThisWorkbook.RibbonUI = ribbon

End Sub

Your RibbonUI object should now be captured when the workbook is loaded, and
will be available for invalidation.

NOTE The preceding code uses public properties but it could have used
public variables instead. We chose to work with the properties in this case
because we will be invalidating the code in several procedures, and using
properties will be more elegant.

The next step in the process is to generate the macro to toggle this setting. The easi-
est way to work out this bit of code is to record a macro, so start the macro recorder and
create a new macro that will be stored in the workbook you just created.

C ROSS-RE FE RE NC E If you need a refresher on how to use the macro
recorder, review “Recording Macros for Excel and Word” in Chapter 4.

Now, go to the Office Menu, choose Excel Options ➪ Formulas, and check (or
uncheck) the R1C1 Reference Style checkbox. Once you have done this, stop the macro
recorder and jump into the VBE to examine the code. It will most likely look like this:

Application.ReferenceStyle = xlR1C1

This is a situation in which the macro recorder can really help you, as it tells you
exactly what objects you need to reference. You still need to make some modifications
to the code, but at least you know where to start and you have the correct syntax.

Fill in the getPressed callback first. It’s actually not too difficult. Basically, you want
to determine whether the application is in R1C1 mode, and if so return true. This can
be accomplished by modifying the routine to read as follows:

‘Callback for rxchkR1C1 getPressed

Sub rxchkR1C1_getPressed(control As IRibbonControl, ByRef returnedVal)

190 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 190

If Application.ReferenceStyle = xlR1C1 Then returnedVal = True

End Sub

Next, you want to deal with the callback that handles the actual clicking of the
checkbox. With your checkbox, the pressed parameter tells you whether the checkbox
is checked (pressed=true) or not (pressed=false). This means that you can test the
pressed argument and react accordingly:

‘Callback for rxchkR1C1 onAction

Sub rxchkR1C1_click(control As IRibbonControl, pressed As Boolean)

Select Case pressed

Case True

Application.ReferenceStyle = xlR1C1

Case False

Application.ReferenceStyle = xlA1

End Select

End Sub

If you were to click the Formulas tab now, the getPressed routine would fire, setting
the checkbox to indicate what display mode you’re currently in. Likewise, checking the
box would set it to the opposite state.

Unfortunately, there is an issue remaining with this setup: What if someone goes
through the Excel Options to change the value of that checkBox? In that case, the
checkBox will not be updated.

While you can’t make this perfectly transparent, you can force it to update when-
ever you activate a new worksheet. (This will also force an update when your work-
book is reactivated as well.) To do this, you make use of the capability to invalidate a
specific control — in this case, the rxchkR1C1 checkBox.

Head back into the ThisWorkbook code module, and choose Workbook from the
drop-down list on the left, as shown in Figure 6-18.

Figure 6-18: Selecting the Workbook code container

You will be greeted by a new procedure in your code called Workbook_Open. Before
you delete it, choose Sheet_Activate from the right hand drop-down list. Modify the
resulting procedure to read as follows:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

‘Invalidate the tab each time a worksheet is activated

ThisWorkbook.RibbonUI.InvalidateControl (“rxchkR1C1”)

End Sub

Chapter 6 ■ RibbonX Basic Controls 191

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 191

TI P You could have typed your code in instead of selecting the appropriate
procedure from the drop-down lists, but going this route offers you the benefits
of browsing the available events, and ensures that they are syntactically correct
when you set them up.

That’s it. Save and reopen your workbook, and then place the following formula in
cell B1: =A1

When you click the checkBox, it will change to =RC[-1]. Notice that changing the
R1C1 setting through the Excel Options screen does not immediately update your
checkBox, but selecting a different sheet and coming back to the first sheet does.

A Word Example

Word also has some useful tools that might seem buried, such as those in the Word
Advanced Options window. For instance, it would be handy to have the capability to
quickly show or hide the Style Inspector window so that you can see what styles are
active in your document. This next example focuses on using a checkBox to control this
setting on a custom Ribbon tab.

Because this setting is effective in Draft or Outline views only, it probably makes
most sense to put this information on the View tab. To do this, you again begin by cre-
ating a new Word file and inserting the following code in a new standard module:

Private Sub ShowStyleInspector()

‘Show the Style inspector window

ActiveWindow.StyleAreaWidth = InchesToPoints(1)

If ActiveWindow.View.SplitSpecial = wdPaneNone Then

ActiveWindow.ActivePane.View.Type = wdNormalView

Else

ActiveWindow.View.Type = wdNormalView

End If

End Sub

Private Sub HideStyleInspector()

‘Hide the Style inspector window

ActiveWindow.StyleAreaWidth = 0

End Sub

Because both of these routines have been marked Private, they are not included
with the macros listed in the Macro window. To try them out, you need to enter the
VBE (Alt+F11), click somewhere within the appropriate macro, and press F5 to run it.
If you do decide to try the ShowStyleInspector macro, you’ll notice upon leaving the
VBE that you are switched to Draft view, and the Style Inspector, displaying the “Nor-
mal” style, is shown on the left side of the screen, as illustrated in Figure 6-19.

192 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 192

Figure 6-19: The Style Inspector

Likewise, run the HideStyleInspector routine to hide the Style Inspector.
The next step is to save the file as a macro-enabled document (.docm), exit Word, and

open the file in the CustomUI Editor. Apply the RibbonBase template to the file, and insert
the following XML between the <tabs> and </tabs> elements:

<tab idMso=”TabView”>

<group id=”rxgrpStyleInsp”

label=”Custom Options”

insertBeforeMso=”GroupZoom”>

<checkBox id=”rxchkStyleInsp”

label=”Style Inspector”

getPressed=”rxchkStyleInsp_getPressed”

onAction=”rxchkStyleInsp_click”/>

</group>

</tab>

Again, validate the code before you save it, and click the Generate Callbacks button
to copy the callback code. Close the CustomUI Editor and reopen the document in
Word. Do not click the View tab, but rather head straight into the VBE again. (If you
don’t, you will get an error and will need to reload the file once your callbacks have
been successfully implemented.)

Paste the generated callbacks code in the module that holds the two routines you
saved earlier and modify them to read as follows:

Sub rxchkStyleInsp_getPressed(control As IRibbonControl, ByRef

returnedVal)

‘Callback for rxchkStyleInsp getPressed

Select Case ActiveWindow.View.Type

Case Is = wdNormalView, wdOutlineView

If ActiveWindow.StyleAreaWidth > 0 Then

returnedVal = True

Else

returnedVal = False

End If

Case Else

returnedVal = False

End Select

End Sub

Chapter 6 ■ RibbonX Basic Controls 193

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 193

Sub rxchkStyleInsp_click(control As IRibbonControl, pressed As Boolean)

‘Callback for rxchkStyleInsp onAction

Static lState As Long

Select Case pressed

Case True

lState = ActiveWindow.View.Type

Call ShowStyleInspector

Case False

Call HideStyleInspector

ActiveWindow.View.Type = lState

End Select

End Sub

So what’s happening here?
The getPressed routine will fire the first time you click the View tab, and will check

the width of the StyleArea. If it’s greater than 0, the checkbox will be flagged as true,
and display a checkmark. If not, it won’t be displayed.

The rxchkStyleInsp_click routine is fired when you actually click the checkBox. It
checks the state of the button; if it is true (checked), it calls the ShowStyleInspector
macro. Otherwise, it calls the routine to hide the Style Inspector.

TI P Notice the Static variable lState that was included in this routine.
This records the view state before calling the macro to show the Style Inspector.
Because it is a static variable, it holds its values in scope between macro
executions, and you can then use it to return the view to its original state upon
calling the macro to turn off the Style Inspector!

Now close the VBE, save your file, and click the View tab. You will see a new group
with your checkBox, as shown in Figure 6-20.

Figure 6-20: The Style Inspector checkbox

Give it a click and the Style Inspector will become visible. Uncheck it and it goes
away. In addition, thanks to the Static variable, this even remembers the view setting
that was active when you clicked the checkBox!

An Access Example

One of the things that can be a little daunting to a new user, and that causes frustration
for users who frequently set up customizations, is that the USysRibbons table is a system

194 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 194

object, and therefore it is hidden by default. It can be quite the unpleasant surprise for
novice users to have their new table disappear as soon as they save it. With that in mind,
this next example creates a checkbox on the Ribbon to show/hide the Systems Objects.

To make life easier, why not just add this to the project that you started working on
button controls earlier? Find that file and let’s get started.

TI P You can always download the completed button example file from the
website if you want to catch up, or even start fresh at this point.

Open the previous example and open the USysRibbons table. Copy all of the code
in the RibbonXML field, and then open a fresh instance of the CustomUI Editor and
paste the code there. Now you will insert a new group, rxgrpTools. Put the cursor
between the </group> and </tab> lines, and insert the following XML code:

<group id=”rxgrpTools”

label=”Tools”>

<checkBox id=”rxchkShowSysObjects”

label=”Show System Objects”

getPressed=”rxchkShowSysObjects_getPressed”

onAction=”rxchkShowSysObjects_click”/>

</group>

Again, validate your code and then copy the entire code listing. Leave the CustomUI
Editor open, and switch back to Access. Replace the value of the RibbonXML field with
what you just copied. Save and close the table.

Switch back to the CustomUI Editor and press the Generate Callbacks button. You’ll
notice that three callback signatures are listed. Because the example file already holds
the callback signature for the rxbtnFrmAuthors button, you only need to worry about
copying the rxchkShowSysObjects callbacks. After you have done so, you may close
the CustomUI Editor.

Flip back to Access, open the modRibbonX module, and paste your new callbacks at
the end of the module. You’ll then need to modify them to actually do something when
called, so revise them to read as follows:

`Callback for rxchkShowSysObjects getPressed

Sub rxchkShowSysObjects_getPressed(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = Application.GetOption(“Show System objects”)

End Sub

`Callback for rxchkShowSysObjects onAction

Sub rxchkShowSysObjects_click(control As IRibbonControl, _

pressed As Boolean)

Application.SetOption “Show System objects”, pressed

End Sub

The preceding code uses the getPressed callback to check whether the Show System
Objects setting is true when your tab is first activated. If it is true, then the checkBox

Chapter 6 ■ RibbonX Basic Controls 195

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 195

will appear as checked; if it is false, then the checkBox will be empty. The second rou-
tine actually toggles the setting. Because the object model requires a true/false value to
be specified in order to set this option, the checkBox state can simply be queried and
fed right to it!

The final step in making this work is to save the code module and reload the data-
base to make the Ribbon code effective. Upon doing so, you’ll notice that the new
group has been added to the tab, as shown in Figure 6-21.

Figure 6-21: The Show System Objects
checkBox set to false

Now give the checkBox a click. In addition to seeing all of the tables that Access cre-
ates by default, you’ll be happy to see that your USysRibbons table is prominently dis-
played as well.

NOTE This setting is a global setting and will affect all databases opened in
your Access application. This checkBox is intended to make your life as a
developer a little easier, but it is not something that you’d deploy to all of your
users. If you use this technique, make sure that your deployment checklist
includes a step to hide system tables.

The editBox Element

The editBox control allows users to enter text. This is quite handy if you are looking for
some kind of input from the user. You might use an editBox to rename a worksheet in
Excel, or to assign a caption to each image in Word, for example. The basic concept is
that the user is asked for the input, which is then used when the editBox loses focus,
the event that occurs just before the next control in the sequence is activated. Although
some developers may prefer to provide a second button for users to click that will run
code to store the text from the edit box, we’ve found that using loss of focus works
quite well for this purpose.

196 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 196

Required Attributes of the editBox Element
The editBox requires any one of the id attributes shown in Table 6-9.

Table 6-9: Required Attributes of the editBox Element

ATTRIBUTE WHEN TO USE

id When creating your own editBox

idMso When using an existing Microsoft editBox

idQ When creating an editBox shared between namespaces

The editBox also requires the onChange callback shown in Table 6-10.

Table 6-10: Required Callback for the editBox Element

DYNAMIC ATTRIBUTE ALLOWED VALUES VBA CALLBACK SIGNATURE

onChange 1 to 4096 characters Sub OnChange (control As
IRibbonControl, text As String)

Optional Static and Dynamic Attributes
with Callback Signatures
In addition to the required attributes, your editBox can optionally make use of any one
insert attribute, described in Table 6-11.

Table 6-11: Optional insert Attributes of the editBox Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

Continued

Insert at
end of group

Insert at
end of group

Insert at
end of group

Chapter 6 ■ RibbonX Basic Controls 197

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 197

Table 6-11 (continued)

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

The editBox can also employ any or all of the attributes described in Table 6-12.

Table 6-12: Optional Attributes and Callbacks of the editBox Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl,
ByRef returnedVal)

imageMso getImage (none) Same as above

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

maxLength (none) 1024 (none)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

showImage getShowImage true Sub GetShowImage
(control As
IRibbonControl, ByRef
returnedVal)

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Insert at
end of group

198 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 198

Table 6-12 (continued)

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

sizeString (none) 12* (none)

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

(none) getText (none) Sub GetText (control As
IRibbonControl, ByRef
returnedVal)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

NOTE *The default value for the sizeString attribute (if the attribute is not
declared) is approximately 12, but this will vary based on the characters used
and the system font.

Allowed Children Objects of the editBox Element
The editBox control does not support child objects of any kind.

Parent Objects of the editBox Element
The editBox control can only be placed within the following two controls:

■■ box

■■ group

true, false,
1, 0

1 to 4096
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Chapter 6 ■ RibbonX Basic Controls 199

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 199

Graphical View of editBox Attributes
Figures 6-22 and 6-23 display all of the visible graphical attributes that you can set on
an editBox control.

Figure 6-22: Graphical view of editBox attributes (part 1)

Figure 6-23: Graphical view of editBox attributes (part 2)

Using Built-in editBox Controls
Interestingly enough, there does not appear to be a way to customize any built-in
editBox controls in Excel, Access, or Word. However, as you can see in the previous
two figures, we have extensive opportunities for creating and customizing our own
editBox controls.

Creating Custom Controls
As mentioned, the editBox can provide an efficient way to obtain input from a user.
The following examples walk you through a couple of popular uses, such as to change
a file or worksheet name. By now you are familiar with many of the individual steps so
they aren’t repeated in the examples. However, you can always get a refresher by fol-
lowing the detailed processes described earlier in this chapter.

An Excel Example

For this example, assume that you are building an application within Excel that takes
control of the entire user interface. This is actually fairly common in practice. It
involves hiding every built-in facet of the provided UI, and replacing the standard UI

200 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 200

with a custom setup that limits the user to only those actions that you explicitly allow.
There are some specific Ribbon tricks for doing this, which are covered in later chap-
ters, but for now you’ll focus on giving the user a way to rename a worksheet.

You’ll start, once again, by going into Excel and creating a new Excel file. Save it in
a macro-enabled (.xlsm) format, as you’ll need to rely on macros to work your magic.

With the Excel file open, the next step is to build your macro so that you can link it up
to the editBox later. For now, create VBA code similar to the following, and store it in a
standard module:

Private Function shtRename(sCallSheet As String) As Boolean

On Error Resume Next

ActiveSheet.Name = sCallSheet

If Err.Number = 0 Then shtRename = True

End Function

Public Sub RenameSheet()

Dim sNewSheetName As String

sNewSheetName = InputBox(“Please enter a new name for the sheet.”)

If shtRename(sNewSheetName) = False Then

MsgBox “There was a problem and I could not” & vbCrLf & _

“rename your sheet. Please try again.”, _

vbOKOnly + vbCritical, “Error!”

End If

End Sub

It’s important to understand the purpose of not only these two routines but also the
individual parts. Of course, these examples can also be enhanced, such as to provide
more elegant error messages. The focus here, however, is on working with the editBox.

■■ shtRename is a function that renames the sheet. On Error is used to allow the
routine to continue even if an error is encountered in the process. A function
was used here, as it can test whether an error was encountered and return a
true/false statement indicating whether the renaming was successful.

■■ RenameSheet then calls the function and tests whether it was successful. If it
wasn’t, it informs the user.

To test this, run the RenameSheet macro and give it a name when prompted. Notice
that your worksheet will be renamed. If you supply an invalid parameter, however,
such as an existing sheet name, you will get an error message.

Now that you have some functional code, save and close the file, and then open it in
the CustomUI Editor.

Again, because the idea is to be running these customizations without relying on
built-in tabs or groups, you need to supply your own. Apply the RibbonBase template,
and insert the following XML code between the <tabs> and </tabs> tags:

<tab id = “rxtabCustom”

label=”My Tools”

insertBeforeMso=”TabHome”>

<group id=”rxgrpCustom”

Chapter 6 ■ RibbonX Basic Controls 201

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 201

label=”Worksheet”>

<editBox id=”rxtxtRename”

label=”Rename sheet to:”

imageMso=”SignatureLineInsert”

keytip=”R”

sizeString=”123456789012345”

onChange=”rxtxtRename_Click”/>

</group>

</tab>

TI P Now you will notice that even though there is no user interface to work
with, the code still specifies the custom tab’s position before the Home tab.
This is OK, as the built-in tabs are merely hidden, not completely destroyed,
when you create a new user interface from scratch.

TI P When working with the sizeString attribute, it can be helpful to type
out the number of characters with incrementing numbers so that you can
quickly determine the number of characters allowed. As shown in the example,
“123456789012345” is 15 characters, and “123456789012345678901” would be
21 characters.

Now validate your XML, copy the callback signature, and save and close the file.
Upon reopening the file in Excel, you should now see the editBox on your custom tab,
as shown in Figure 6-24.

Figure 6-24: editBox example in Excel

You have not yet implemented the callbacks, so the editBox obviously won’t work.
Therefore, jump straight into the VBE, locate the standard module, and paste in the
callback signature.

In reviewing the VBA that was written earlier, you can see that you could not call
this procedure directly from the callback. While that worked well in other examples, in
this case we needed to determine whether the name already existed and check for
other errors that would require the user to provide the sheet name twice.

In order to accomplish our objective, we used the callback to run a series of func-
tions. This may seem a little complex right now, but it is an important technique for
you to become familiar with. To demonstrate this, put the following line in your call-
back and give it a test. Just don’t forget to remove it once you’re convinced:

Call RenameSheet

202 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 202

Fortunately, the onChange callback actually passes the text value that the user typed
into the editBox. Now you have a couple of options. You could opt to pass the user’s
response as a parameter to the already written routine, or you could just integrate the
required portions right in the callback. The latter sounds like a much better and more
direct approach, so that will be your next step.

You want to copy the contents of the RenameSheet procedure into the callback, but
make sure that you do not copy the following two lines:

Dim sNewSheetName As String

sNewSheetName = InputBox(“Please enter a new name for the sheet.”)

Those two lines were used to ask the user for a new worksheet name, before you had
the editBox at your disposal. The user can now input the new sheet name right in the
editBox before the procedure is run, so you don’t need those lines at all. The only prob-
lem that causes is that the callback now refers to the sNewSheetName variable, which has
not been declared. You need to update the name to refer to the string that is passed to
the callback: text.

The adjusted callback will look as follows:

‘Callback for rxtxtRename onChange

Sub rxtxtRename_Click(control As IRibbonControl, text As String)

If shtRename(text) = False Then

MsgBox “There was a problem and I could not” & vbCrLf & _

“rename your sheet. Please try again.”, _

vbOKOnly + vbCritical, “Error!”

End If

End Sub

Once you have your callback set up like the preceding example, jump out of
the VBE, save the file, and click the My Tools tab. Type in a new name, and watch as the
worksheet tab is updated.

A Word Example

In the previous Word example, you built a checkBox control to show and hide the Style
Inspector. One thing that was lacking, however, was a way to easily set the width. The
editBox is the perfect control for that purpose, so in this example you’ll learn how two
controls can be set on a Ribbon group to interact with and complement each other.
You’ll keep the checkBox control in place, but also add an editBox to the Ribbon group.
The purpose of the editBox will be to give users a place to enter whatever width they’d
like to see.

To get started, open the Word editBox example file that you worked on earlier in
this chapter and save it under a new name. (Why reinvent the wheel if you already
have half the code, right?) Remember to keep it in a .docm format, as you will still need
to use the macros.

Chapter 6 ■ RibbonX Basic Controls 203

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 203

Now open the new file in the CustomUI Editor and add the following XML code
right before the </group> tag:

<editBox id=”rxtxtStyleWidth”

label=”Width”

sizeString=”1234567890”

onChange=”rxtxtStyleWidth_change”/>

Again, validate the XML, save the file, and copy the rxtxtStyleWidth callback sig-
nature. Close the document in the CustomUI Editor and open it in Word. If you acti-
vate the View tab, you’ll see your UI modifications, which should look the same as
what is shown in Figure 6-25. The Custom Options group now has the Width editBox
below the Style Inspector checkBox.

Figure 6-25: The Style Inspector Width editBox

Now that you’ve satisfied your curiosity about the new look, it’s time to program
your callbacks to fire. Head back into the VBE and paste your callback signature into
the standard module that holds the rest of your Ribbon code.

The next step, if you haven’t already thought this through, is to determine how the
editBox control will interact with the existing checkBox control. You know that users are
going to enter the width into the editBox, so what happens when they do this? In addi-
tion, what if they enter a value when the checkBox isn’t true? To deal with these even-
tualities, you need to save that value for later access. Obviously, this isn’t an exhaustive
list of potential actions that a user could take, but it illustrates the need to think through
a wide gamut of possibilities. It would be so much easier to write code if only we could
control the user, but we do what we can to predict and provide accordingly.

For now, you’ll learn a fundamental step, which is to store a value from the editBox.
To do this, set up a new global variable at the top of your module (just under the
Option Explicit line, which is at the top of all modules if you are following our recom-
mended best practices):

Dim dblStyleAreaWidth as Double

TI P Setting this up as a Double, unlike a Long or an Integer data type,
enables you to hold decimal values. This is important, as not all users will want
to use round numeric increments as their Inspector widths.

Next, look at your new callback signature and modify it to read as shown here:

‘Callback for rxtxtStyleWidth onChange

Sub rxtxtStyleWidth_change(control As IRibbonControl, text As String)

204 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 204

On Error Resume Next

dblStyleAreaWidth = CDbl(text)

If Err.Number <> 0 Then

MsgBox “Sorry, you must enter a numerical value in this field!”

text = “”

Else

ActiveWindow.StyleAreaWidth = InchesToPoints(dblStyleAreaWidth)

End If

End Sub

This might look a little confusing, but it breaks down as follows: The text from the
editBox is passed to the routine and converted to a Double by way of the CDbl method.
The reason why error handling was activated in the previous line, however, is to check
whether this failed. If it did, then the user is informed that they did not enter a number,
and the editBox is cleared. If the value was numerical, no error would be triggered, so
the width is set to the value.

Keep in mind that if the checkBox is not set to true, then nothing will appear to hap-
pen. In fact, every time the number is changed in the editBox, the value is passed to the
dblStyleAreaWidth variable and stored there for you.

The value is stored, but there is still one small thing you need to do before your func-
tion will work as intended. You might be wondering how the value is pulled from that
variable when you need it.

The answer, currently, is that it isn’t. You need to modify the ShowStyleInspector
routine, programmed in the previous example, to make that happen. Therefore, take a
look at that routine and change the first line to read as follows:

ActiveWindow.StyleAreaWidth = InchesToPoints(dblStyleAreaWidth)

That’s all you need to do here. Now you can close the VBE, save the file, and start to
play with the controls. Enter a new number in the editBox, and check and uncheck the
checkBox. The Style Inspector window will react to your requests.

NOTE This setup does not deal with a couple of things. First, the Style
Inspector width can only go so far. Currently, if you change it to a number
above the maximum threshold, calculated as half of the points value of the
ActiveWindow.UseableWidth, it just won’t do anything. Second, if a user were
so inclined, they could still go into the Word Options screen to set this width
property and it would not be reflected in your Ribbon controls. However, the
chances of this approach are quite slim.

An Access Example

This example again builds on the previously illustrated database used in the last sec-
tion, so if you need a refresher on the detailed steps, you can review the process there
as well. Here, you’ll add the capability to rename forms from the Ribbon by specifying
the old form name and then providing a new name. This involves using two editBox
controls, and invalidating the UI.

Chapter 6 ■ RibbonX Basic Controls 205

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 205

To get started, create a copy of the project you were working on for the checkBox
example (or download the complete checkBox example from the website) and open the
new file. Create a new form in the database project. We’ll use this new form to test the
renaming procedure.

Next, navigate to the USysRibbons table and copy the XML code from the Rib-
bonXML field into a new instance of the CustomUI Editor.

You need to add two new editBoxes to this project, and the most sensible place
seems to be under the Show Systems Objects checkBox that you created earlier. To add
the editBoxes, insert the following XML just before the last </group> line:

<editBox id=”rxtxtRenameFrom”

label=”Rename Form:”

getText=”rxtxtRenameFrom_getText”

onChange=”rxtxtRenameFrom_change”/>

<editBox id=”rxtxtRenameTo”

label=”Rename To: “

getText=”rxtxtRenameTo_getText”

onChange=”rxtxtRenameTo_change”/>

Now you need to add one more piece to your XML in order to be able to invalidate
the UI. Recall that invalidating the UI causes the entire Ribbon to reload so that it will
incorporate the new objects. To accomplish this, you must capture the IRibbonUI
object, which requires you to modify the opening CustomUI tag to read as follows:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

Once you’ve done all this, validate the XML, and then copy all the code from the
CustomUI Editor. Paste this back into the RibbonXML field in your database, replacing
the code that was in the field.

Now, head back into the CustomUI Editor, generate the callbacks, and copy the fol-
lowing callbacks into the modRibbonX module in the Access Project:

rxIRibbonUI_onLoad

rxtxtRenameFrom_getText

rxtxtRenameFrom_change

rxtxtRenameTo_getText

rxtxtRenameTo_change

Before you start modifying these routines, you need to set up two global variables.
This is done by placing the following two lines just beneath the Option lines that
should appear at the top of the module, as mentioned earlier:

Dim RibbonUI As IRibbonUI

Dim sRenameFrom As String

The purpose of the first variable is to hold the RibbonUI object in memory so that
you can invalidate it, forcing the Ribbon controls to be rebuilt. The second variable will

206 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 206

hold the name of the form that you wish to rename. This variable is important, as it can
be referenced in other routines that need to use the value.

Now that the global variables are set up, it’s time to modify the callback signatures.
The first is the onLoad signature that captures the ribbon object. It should look as follows:

‘Callback for customUI.onLoad

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set RibbonUI = ribbon

End Sub

Next, you want to deal with the rest of the callbacks. They should look as follows:

`Callback for rxtxtRenameFrom getText

Sub rxtxtRenameFrom_getText(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = sRenameFrom

End Sub

‘Callback for rxtxtRenameTo getText

Sub rxtxtRenameTo_getText(control As IRibbonControl, ByRef returnedVal)

returnedVal = “ “

End Sub

‘Callback for rxtxtRenameFrom onChange

Sub rxtxtRenameFrom_change(control As IRibbonControl, text As String)

On Error Resume Next

sRenameFrom = CurrentProject.AllForms(text).Name

If Err.Number <> 0 Then

‘Table does not exist, so clear the editBox

MsgBox “That table does not exist!”

sRenameFrom = “ “

RibbonUI.InvalidateControl (“rxtxtRenameFrom”)

End If

On Error GoTo 0

End Sub

‘Callback for rxtxtRenameTo onChange

Sub rxtxtRenameTo_change(control As IRibbonControl, text As String)

Dim sOldName As String

On Error Resume Next

‘Check if from name is valid

sOldName = CurrentProject.AllForms(sRenameFrom).Name

If Err.Number <> 0 Then

MsgBox “Specify a valid table to rename first!”

GoTo EarlyExit

End If

‘Attempt to rename the table to new name

DoCmd.Rename text, acForm, sOldName

Chapter 6 ■ RibbonX Basic Controls 207

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 207

If Err.Number <> 0 Then

MsgBox “Sorry, that is an invalid name. ” _

& “Please enter a different name”

GoTo EarlyExit

End If

‘Rename was successful, so clear the editBoxes

sRenameFrom = “ “

RibbonUI.InvalidateControl (“rxtxtRenameFrom”)

RibbonUI.InvalidateControl (“rxtxtRenameTo”)

EarlyExit:

On Error GoTo 0

End Sub

These routines are built on the following methods:

■■ The rxtxtRenameFrom_getText routine returns the text displayed in the
RenameFrom text box. Every time this routine is called, whether that’s at the
time the tab is initially activated or when the control has specifically been
invalidated, it will check the value (if any) that is held in the global variable
sRenameFrom and place the value in the editBox.

■■ The rxtxtRenameTo_getText callback is very similar to the above, but it does not
use a global variable to hold a value. It simply returns a blank space every time
it is called. This may seem strange, but you’ll never need to store a value for this
editBox. If the renaming is successful, the editBox rxtxtRenameTo_getText is
cleared by invalidating it. If it is not successful, then the user must reconfirm the
value in this editBox to fire its code, so storing the value is not necessary.

NOTE If you’ve done any programming in VBA, you’ll find the use of the blank
space a little jarring. To conform to best practices, most coders would never
commit such an atrocity to clear a value from a control. They would instead
provide the vbnullstring constant, which equates to a Null value. Unfortunately,
XML requires that any string data type, of which the editBox text length is one,
be at least one character long.

The rxtxtRenameFrom_change routine uses a trick to test whether the form name
supplied is valid. It checks by asking for the supplied form’s name. If it can be pro-
vided, then the form must exist. If not, then the user must have provided an invalid
form because every form has a name. In the case of a user providing an invalid name,
the control is cleared by invalidating it.

The rxtxtRenameTo_change routine is the most complicated routine in the set. It
first checks to ensure that the form the user has asked to be renamed exists. This is
necessary in case the first editBox has been left blank. If this test passes successfully,
then the routine tries to rename the form to the value provided by the user in the
rxtxtRenameTo editBox. Because it is possible for a user to provide an invalid name

208 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 208

(one reserved by Access, that of an existing form, or one that uses forbidden charac-
ters), the code checks whether an error was encountered during the renaming
process. If so, then the user receives an error message and the editBox is cleared. If
there was no error and this test passes, the renaming was successful, and therefore
both editBoxes are cleared by invalidation.

Finally, you are ready to save the VBA project. You need to close and reload your
database so that the RibbonUI modifications can take effect.

In your new UI, type the name of the temporary table that you created in the first
editBox, and the new name that you’d like to call it in the second editBox, as shown in
Figure 6-26.

Figure 6-26: Renaming a form

Upon pressing the Enter key, you’ll see that the frmTemp form will be renamed to the
name that you provided. Try providing an invalid name in the first editBox, or try to
give the form the same name of an existing object, such as repeating a table name. Note
how the error handling informs the user about the issue.

The toggleButton Element

A toggleButton is used to alternate between states — such as turning some feature on
and off — when it is pressed. For example, you could use this button to turn the ruler
in Word on and off, or to switch from the Page Break view in Excel, or to hide/unhide
a form in Access. Whatever way you use it, you are alternating between two possible
states of an object, control, and so on.

Required Attributes of the toggleButton Element
The toggleButton requires any one of the id attributes listed in Table 6-13.

Chapter 6 ■ RibbonX Basic Controls 209

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 209

Table 6-13: Required Attributes of the toggleButton Element

ATTRIBUTE WHEN TO USE

id When creating your own toggleButton

idMso When using an existing Microsoft toggleButton

idQ When creating a toggleButton shared between namespaces

The toggleButton also requires the onAction callback shown in Table 6-14.

Table 6-14: Required Callback of the toggleButton Element

DYNAMIC ATTRIBUTE ALLOWED VALUES VBA CALLBACK SIGNATURE

onAction 1 to 4096 characters Sub OnAction (control As
IRibbonControl, selectedId As
String, selectedIndex As Integer)

Optional Static and Dynamic Attributes
with Callback Signatures
The toggleButton may have one of the insert attributes shown in Table 6-15.

Table 6-15: Optional insert Attributes of the toggleButton Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

In addition, it may have any or all of the attributes listed in Table 6-16.

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

210 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 210

Table 6-16: Optional Attributes and Callbacks of the toggleButton Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

description getDescription (none) Sub GetDescription
(control As
IRibbonControl, ByRef
returnedVal)

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl,
ByRef returnedVal)

imageMso getImage (none) Same as above

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

(none) getPressed (none) Sub
GetPressed(control As
IRibbonControl, ByRef
returnedVal)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

showImage true Sub GetShowImage
(control As
IRibbonControl, ByRef
returnedVal)

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

size getSize normal Sub GetSize (control
As IRibbonControl,
ByRef returnedVal)

Continued

normal,
large

true, false,
1, 0

getShowImage true, false,
1, 0

1 to 4096
characters

true, false,
1, 0

1 to 4096
characters

1 to 3
characters

1 to 4096
characters

1 to 4096
characters

true, false,
1, 0

1 to 4096
characters

Chapter 6 ■ RibbonX Basic Controls 211

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 211

Table 6-16 (continued)

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

Allowed Children Objects of the toggleButton Element
The toggleButton does not support any child objects.

Parent Objects of the toggleButton Element
The toggleButton control can be placed within any of the following controls:

■■ box

■■ buttonGroup

■■ dynamicMenu

■■ group

■■ menu

■■ officeMenu

■■ splitButton

Graphical View of toggleButton Attributes
Figure 6-27 is a sample customization that displays all of the visible graphical attrib-
utes that you can set on the toggleButton control.

true, false,
1, 0

1 to 4096
characters

1 to 4096
characters

212 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 212

Figure 6-27: Graphical view of toggleButton
attributes

Using Built-in toggleButton Controls
Quite a few built-in toggleButton controls are used by Microsoft in the Ribbon. They
range from font styles to borders to paragraph alignment tools. This example adds four
built-in toggleButtons to a custom tab. It includes one of the controls not prominent in
the Ribbon, despite being a built-in control.

Create a new Word file to house the example. You won’t need any macros for this
example, so a .docx file type will work just fine. After saving the file, open it in the Cus-
tomUI Editor, apply the RibbonBase template, and insert the following XML code
between the <tabs> and </tabs> tags:

<tab id=”rxtabCustom”

label=”My Tools”

insertBeforeMso=”TabHome”>

<group id=”rxgrpFormats”

label=”Formatting”>

<toggleButton idMso=”Bold”/>

<toggleButton idMso=”Italic”/>

<toggleButton idMso=”Underline”/>

<toggleButton idMso=”UnderlineDouble”/>

</group>

</tab>

Once you’ve validated your code, save the file and open it in Word. After clicking
the My Tools tab, you should be looking at the group shown in Figure 6-28. It can be a
little frustrating to have the label displayed, but it helps to illustrate the next point.

Chapter 6 ■ RibbonX Basic Controls 213

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 213

Figure 6-28: The My Tools tab in Word

Although there are consistencies between the applications, there are also some
inconsistencies present. Try creating a new Excel file and using the exact same XML
code to create your new UI. The result will look like what is shown in Figure 6-29.

Figure 6-29: The My Tools tab in Excel

Notice how Excel hides the caption for the Double Underline, whereas Word promi-
nently displays it. Hiding the caption was covered in the button control example at the
beginning of the chapter, so you already know how to do that. The point is to illustrate
some of the nuances that you should be aware of.

Before moving into the following examples, try typing some text in your document
(or worksheet) cell and playing with the formatting controls. They will toggle on and
off with the setting. Isn’t it reassuring that it is becoming relatively easy to insert a cus-
tomization that functions just as you’d expect?

Creating Custom Controls
It is now time to look at some examples of creating your own custom controls in Excel,
Word, and Access. The Word example provides a new tool that enables you to use image
placeholders, rather than store the entire image in a document. The Excel and Access
examples continue to build upon previous examples by adding extra functionality.

An Excel Example

To show off the features of the toggleButton, this example revisits the Prepaid Expense
schedule that was used earlier in this chapter in the custom button example. We’ll add
the capability to turn a custom view on or off, thereby allowing users to show or hide
the Expense To column, shown in Figure 6-30.

214 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 214

Figure 6-30: Prepaid Expense schedule
showing the Expense To column

Are you ready to get started? Open the previous example, or use the file button-
Monthly Roll Forward.xlsm from the book’s website. Save the file with a new name,
but don’t head over to the CustomUI Editor quite yet. There’s a bit of work to be done
here first.

It’s time to set up the custom views that you will need to make this work. Therefore,
before you do anything else, go to the View tab and click Custom Views. Select Add
and call the view cvw_Show. This view will be used to return to a full view of the work-
sheet, with all columns showing.

Next, you’ll want to set up the second view that will hide the Expense To column. To
do that, click Close to close the Custom Views window and return to the main Excel
interface, and then hide column F. You’ll notice now that your cursor is missing, and
that the line between columns E and G seems to be selected. This is a cosmetic issue that
can be resolved by selecting cell A1, and then returning to Custom Views. This time, add
a new custom view called cvw_Hide. Close the Custom Views window again.

TI P If you make a mistake when setting up your view, you can replace it by
setting up a new view the way you like it and then saving it with the name of
the view that you want to replace.

Now it’s time to record the macro to toggle the views on and off. Click the Record
Macro button, which is found on both the status bar and the Developer tab. With the
recorder on, use the following steps to record the process:

1. Go back to the View tab.

2. Click Custom Views.

3. Select the cvw_Hide view and choose Show.

4. Click Custom Views again.

5. Select the cvw_Show view and choose Show.

6. Go back to the Developer tab and stop the Macro recorder.

You may be wondering why you did this. The answer will become obvious when
you open the VBE and look at the code that was recorded. You’ll see the following:

ActiveWorkbook.CustomViews(“cvw_Hide”).Show

ActiveWorkbook.CustomViews(“cvw_Show”).Show

Chapter 6 ■ RibbonX Basic Controls 215

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 215

Notice that it generated only two lines, which are fairly self-explanatory. These will
come in very handy in a moment, when you are programming the callbacks.

Your next step, though, is to set up the new toggleButton on the Ribbon. Save your
file, close it in Excel, and open it in the CustomUI Editor. Insert the following XML just
before the </group> tag:

<toggleButton id=”rxtglHideExpense”

label=”Hide Expenses”

imageMso=”FieldList”

size=”large”

onAction=”rxtglHideExpense_Click”/>

As always, validate the code, save the file, and remember to copy the new rxtgl-
HideExpense_Click callback signature before closing the file. Open the file in Excel,
jump into the VBE, and paste the callback signature into the standard module that con-
tains the existing code.

It’s now time to modify the callback to do what you need. Once again, you’ll want
to set up a Select Case statement to evaluate which action to take when the button is
clicked. Like the checkBox, the RibbonX code passes a parameter named pressed to
the routine when it is fired. This makes your job very easy, as you merely need to paste
the appropriate lines into the case statement, as shown here:

`Callback for rxtglHideExpense onAction

Sub rxtglHideExpense_Click(control As IRibbonControl, _

pressed As Boolean)

Select Case pressed

Case True

ActiveWorkbook.CustomViews(“cvw_Hide”).Show

Case False

ActiveWorkbook.CustomViews(“cvw_Show”).Show

End Select

End Sub

Now that the callback is programmed and completely operational, head back to the
Excel interface and click the Demo tab. Congratulations! You’ve successfully added
automation. Note that when the sheet opens, the toggleButton is not highlighted and
column F is visible. However, clicking the Hide Expenses button changes the view to
that shown in Figure 6-31.

216 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 216

Figure 6-31: Prepaid Expense schedule under mask of a
custom view

Clicking the Hide Expenses button again will display Column F, and revert the Hide
Expenses toggleButton to its unselected state, as shown in Figure 6-32.

Figure 6-32: Hide Expenses toggleButton in its unselected state

You should be aware that this example is not set up to deal with the issue caused
when the workbook is saved with the cvw_Hide view active. In that case, when the
workbook was opened, the toggleButton would show unselected, but the view with
the hidden column would be active. A couple of clicks by the user would resolve the
disparity, but it’s better to manage this with code. There are two ways to fix this issue:

■■ Set up a Workbook_Open procedure that sets the cvw_Show view to active when
the workbook is opened.

■■ Set up the getPressed callback to test which view is active when the workbook
is opened and return that state to the toggleButton.

A Word Example

If you work with long documents that contain numerous images, you will likely per-
ceive a performance hit. Fortunately, there is a setting in Word that allows us to show
placeholders for pictures, rather than render the entire image. Logically, this should

Chapter 6 ■ RibbonX Basic Controls 217

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 217

provide a noticeable improvement in response time, and make users rather happy. The
toggleButton is the ideal control for turning this setting on and off.

Since the previous example started a collection of custom tools, we’ll add the
toggleButton to the same group, as shown in Figure 6-33.

Figure 6-33: Using a toggleButton control

NOTE If you want to create this in a new file, feel free to do so, as none of
the VBA routines overlap. Be aware that you’ll also need to create the XML
framework.

Start by saving a new copy of the example file from the previous illustration (or
open a copy from the example files available at the website for this book). Make sure
that the file is a macro-enabled (.docm) file, as this will require a little more work in the
VBE.

Before you move to the XML arena, we recommend that you start in Word and
record a macro that will do what you are trying to accomplish — that is, change the
ShowPicturePlaceholders property. After all, if the VBA macro doesn’t work, all
the XML code in the world won’t do any good.

In the Word file, start the Macro recorder. Once you’ve given the recorder a name for
the macro, go to the Office button, choose Word Options, and click the Advanced but-
ton. Under the Show Document Content header, you’ll find the setting for Show Pic-
ture Placeholders. Check the box, say OK, and stop the macro from recording. If you
now check the VBE, you’ll see that your code looks like the following:

ActiveWindow.View.ShowPicturePlaceHolders = True

This is fantastic, as it provides a short, concise, and fairly intuitive code snippet. You
can easily change this value by setting it to true or false. Moreover, you can test it to
determine the current value.

Confident that the code that will work, you can now set the XML markup in the Cus-
tomUI. Save the file, open it in the CustomUI Editor, and then insert the following
XML just before the </group> tag:

<toggleButton id=”rxtglPicHold”

label=”Picture Placeholders”

getPressed=”rxtglPicHold_getPressed”

getImage=”rxtglPicHold_getImage”

onAction=”rxtglPicHold_click”/>

218 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 218

There is just one more step in this part of the process. In this example, you want to
invalidate a control, which means that you need to capture the ribbon object to a vari-
able. To do this, you must include an onLoad statement in your XML. Therefore, at the
top of the XML code, modify the opening tag to read as follows:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

As always, before you close the file in the CustomUI Editor, you need to validate the
code. In addition, you also need to copy all three rxtglPicHold callback signatures and
the rxIRibbonUI_onLoad signature.

Because activating your tab will generate missing callback errors, you might as well
skip that for now and head straight into the VBE. Paste your callback signatures into
the standard module that holds the rest of the code.

Now it’s time to set the groundwork for linking your file together. First, create a
variable to hold the RibbonUI object. At the top of your module, just under the Option
Explicit line, insert the following line:

Private ribbonUI As IRibbonUI

Next, update your callback signatures. Because there are several signatures, it’s best
to review them one at a time. As we go through them in order and explain what each
one does, keep in mind that all four functions will appear together in your code.

The first routine is triggered at load time, and captures the ribbon object to the
ribbonUI variable for later use:

Private Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

‘Store the ribbonUI for later use

Set ribbonUI = ribbon

End Sub

The getPressed routine, shown in the following code, is fired when the tab is first
activated, and attempts to determine whether the control should show as pressed or
not. In this case, it evaluates whether the ShowPicturePlaceHolders setting is true or
false, and passes that back to the returnedVal parameter:

Public Sub rxtglPicHold_getPressed(control As IRibbonControl, _

ByRef returnedVal)

`Callback for rxtglPicHold getPressed

returnedVal = _

ActiveDocument.ActiveWindow.View.ShowPicturePlaceHolders

End Sub

The getImage routine was inserted to update the picture on the toggleButton
depending on the state of the setting. If it is true, then it uses one picture
(SignatureInsertMenu); and if it is false, then it displays the DesignMode image. This
routine isn’t strictly necessary, but it is an relatively easy way to jazz up your controls:

Public Sub rxtglPicHold_getImage(control As IRibbonControl, _

ByRef returnedVal)

Chapter 6 ■ RibbonX Basic Controls 219

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 219

‘Callback for rxtglPicHold getImage

Select Case ActiveDocument.ActiveWindow.View.ShowPicturePlaceHolders

Case True

returnedVal = “SignatureInsertMenu”

Case False

returnedVal = “DesignMode”

End Select

End Sub

Last but not least is the actual Click routine. This is the routine that really controls
what’s going on. Whenever it is clicked, it sets the ShowPicturePlaceHolders property
to the toggleButton’s pressed state. (Remember that each click toggles the pressed
state between true and false.) In addition, it invalidates the control, forcing the Rib-
bon to rerun the getImage and getPressed routines. By running those two routines, it
can toggle the image with each press of the toggleButton.

Public Sub rxtglPicHold_click(control As IRibbonControl, _

pressed As Boolean)

`Callback for rxtglPicHold onAction

ActiveDocument.ActiveWindow.View.ShowPicturePlaceHolders = pressed

ribbonUI.InvalidateControl “rxtglPicHold”

End Sub

It’s time to save and reload the document. Give it a try and take a moment to appre-
ciate your handiwork!

An Access Example

This example builds on the prior database by adding some really neat functionality.
Specifically, you’ll build a group that only shows up when a specific form is opened, a
truly contextual group. The new group will provide the capability to toggle between
the DataSheet and Normal views.

To get started, make another copy of the database that we were working with in the
previous example. Open the file and then copy the RibbonUI code from the USysRib-
bons table and paste it into the CustomUI Editor. Because you will typically want to
hide this entire group, you’ll need to create a brand-new group. It makes the most
sense to put the new group between the two existing groups, so paste the following
code between the </group> and <group> lines:

<group id=”rxgrpFormTools”

label=”Form Tools”

getVisible=”rxgrpFormTools_getVisible”>

<toggleButton

id=”rxtglViewDataSheet”

label=”Show DataSheet View”

onAction=”rxtglViewDataSheet_click” />

</group>

220 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 220

Validate the code to ensure that it was typed correctly, and then copy the entire code
listing, and paste it back into the RibbonUI field in your database. You’ll then need to
go back and copy the new callbacks into your modRibbonX VBA project as well. This
time, you’ll be copying the following:

rxgrpFormTools_getVisible

rxtglViewDataSheet_click

Again, you need to set up a global variable, so just underneath the existing ones, add
the following:

Public bShowFormTools As Boolean

The purpose of the variable is to hold the state indicating whether the form is currently
active, which in turn will determine whether the new group should be visible or not.

NOTE Because this will be referred to from another module later, it should be
marked as public. Public variables can be “seen” from the other modules. In
addition, the RibbonUI variable should also be marked as a public variable.

Now it’s time to program your callbacks. Add code to the signatures so that they
look as follows:

`Callback for rxgrpFormTools getVisible

Sub rxgrpFormTools_getVisible(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = bShowFormTools

End Sub

`Callback for rxtglViewDataSheet onAction

Sub rxtglViewDataSheet_click(control As IRibbonControl, _

pressed As Boolean)

`Open the correct view

Select Case pressed

Case True

DoCmd.OpenForm “frmAuthors”, acFormDS

Case False

DoCmd.OpenForm “frmAuthors”, acNormal

End Select

End Sub

The getVisible callback pulls its value from the global variable the first time the
group is activated, as well as whenever it is invalidated. The rxtglViewDataSheet_click
routine, however, is a little more complex. It checks the state of the toggleButton,
(true for clicked, false if not), and opens the form in Data Sheet or Normal View as
appropriate. It also toggles the Show Totals variable to ensure that it will be hidden if in
Normal View. By invalidating the control after the Show Totals variable is set, you know
that it will always be in the correct state.

Chapter 6 ■ RibbonX Basic Controls 221

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 221

At this point, you may be wondering how this toggleButton ever shows up at all.
The answer is that it will be triggered by launching the Enter Authors form. To do this,
you need to add some event code that will be triggered by various form actions.

The easiest way to set up the required code is to open the form and set it to Design
View. (You can change the view via the View button on the Home tab.) Once there, on
the Design tab, click the Property Sheet button on the Tools group. Next, click the Event
tab of the Property Sheet window, and then in the blank space next to the On Activate
line. You’ll notice that a little drop-down arrow and an ellipses (. . .) button appear.
From the drop-down arrow, select [Event Procedure], and then click the . . . button to
be taken to the VBE.

Notice that a new Forms module was created, and that you are now looking at an
event procedure for the Forms object. Change this procedure to read as follows:

Private Sub Form_Activate()

bShowFormTools = True

RibbonUI.Invalidate

End Sub

MS Office forms have Activate and Deactivate events that fire each time the Ribbon
UI is invalidated, so these are ideal events for controlling when a contextual group is
visible or not. The preceding routine takes care of making sure that the group shows up
when the form is activated, but you’ll also need to set up the Deactivate event.

On the left side of the code pane, Form is selected; the right side shows Activate. On
the right drop-down, select Deactivate, and notice how the event signature is placed in
your code module. Adjust it to read as follows:

Private Sub Form_Deactivate()

bShowFormTools = False

RibbonUI.Invalidate

End Sub

These routines toggle the bShowFormTools values and invalidate the entire Ribbon in
order to show or hide the group when the form is active or inactive, respectively.

TI P In order to get a group’s callbacks to fire, you may have to invalidate the
entire Ribbon, instead of just the individual control.

NOTE Because there are rare instances when the Activate and Deactivate
events aren’t triggers, some developers might be tempted to use the onLoad and
onClose events. However, these would leave the custom group visible when the
user moves from one form to another without closing the “target” form.

Now it’s time to try it out. Save everything, and then close and reload your database.
When you click the Enter Authors button, the form will still launch, and you should
see the My Tools tab with the Form Tools group, as shown in Figure 6-34.

222 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 222

Figure 6-34: The visible Form Tools group

Now try clicking the Show DataSheet View toggleButton; both the form’s display
and the Ribbon group will change to appear as shown in Figure 6-35.

Figure 6-35: DataSheet view

Conclusion

This chapter provides several reference tables so that you can conveniently find the
attributes and callback signatures associated with the various Ribbon controls. We also
included images to illustrate where you can add visible attributes.

Our examples demonstrated a variety of required and optional features so that you
will have the experience and confidence to expand and extrapolate the processes to
work with your projects. We covered many of the most popular controls, such as the
button, checkBox, editBox, and toggleButton. As the examples began to build on one
another, you were exposed to just some of the richness that can be attained by using

Chapter 6 ■ RibbonX Basic Controls 223

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 223

Ribbon controls, both alone and in concert with other controls. Even with the variety of
examples provided here, we’ve only begun to explore the limits of these and other con-
trols. By now you are likely realizing that the appearance of your UI is limited only by
your own imagination.

Now that you have a firm understanding of the most common Ribbon controls, you
are ready to move into some more robust features. Chapter 7 is the next step, as it
focuses on the dropDown and comboBox elements.

224 Part 1 ■ The Building Blocks for a Successful Customization

91118c06.qxd:WileyRedTight 11/30/07 5:25 PM Page 224

225

In the previous chapter, you learned about the button, checkBox, editBox, and
toggleButton controls. This chapter explores two new controls: the comboBox
and the dropDown. The comboBox and dropDown list are similar in a great many ways,
including design, implementation, and appearance. They also have some important
differences that are discussed in this chapter.

Before you can start exploring these two controls, you need to learn about the fun-
damental element that supports them: the item element. The chapter begins by explor-
ing this critical piece.

Following the section on the item element, you’ll find both the comboBox and dropDown
sections, which explore these two elements in great detail. As in the previous chapter,
examples are included for each application, some of which display the creation of static
versions of controls, while others create fully dynamic versions. Whether you’re working
through the examples or just reading the chapter, you will appreciate seeing a fully func-
tioning version. As you are preparing to work through the examples, we encourage you
to download the companion files. The source code and files for this chapter can be found
on the book’s web site at www.wiley.com/go/ribbonx.

The item Element

The item element is used to create static items that must be used within a gallery,
dropDown, or comboBox. This particular element is not intended for use on its own, but
rather must be an integral part of other controls, such as those mentioned above.

comboBox and
dropDown Controls

C H A P T E R

7

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 225

Unlike other sections of this book, where we provide full working examples of the
element being discussed, we review only the XML construct and discuss the structure
of the item element. This departure from the pattern reflects the fact that the item ele-
ment is so tightly integrated with the comboBox, dropDown, and gallery controls that it
cannot be separated from them. Because of this, you need to know a little bit about
item before you can move on. The way these are used may seem rather complicated for
now, but rest assured that the processes will become surprisingly clear when you
examine the comboBox and dropDown RibbonX elements later in this chapter.

Required Attributes of the item Element
Each item requires a unique id attribute, as described in Table 7-1.

Table 7-1: Required Attribute of the item Element

ATTRIBUTE WHEN TO USE

id Use this attribute to create your own item.

The item element has only one attribute, the id. As we just mentioned, the item con-
trol must be used in conjunction with other elements; therefore, it relies on the other
elements for all other attributes.

NOTE Unlike other elements, there is no idMso or idQ attribute available for
the item control.

Optional Static and Dynamic Attributes
with Callback Signatures
Each item element can optionally make use of any or all of the attributes shown in
Table 7-2.

Table 7-2: Optional Attributes for the item Element

image (none) (none) (none)

imageMso (none) (none) (none)

label (none) (none) (none)1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

226 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 226

Table 7-2 (continued)

screentip (none) (none) (none)

supertip (none) (none) (none)

Did you notice the lack of callback signatures in Table 7-2?
It is important to understand that the items in the XML code underlying Ribbon

modifications are always static. This is actually a good thing, as it means that you can
provide a static list of items to the control without having to write a single line of VBA.

Don’t misunderstand this to mean that you can’t create items for a control on-the-fly
using VBA, as that is not the case. When you create an item for a control, the callback
is actually associated with the Parent object (i.e., the comboBox, dropDown, or gallery
control), not the actual item itself.

NOTE As you design your XML code, you are given a choice between using
static item elements (specified in your XML), or dynamic elements (generated
via the parent control’s callback signature.) Whichever route you choose is
mutually exclusive of the other. In other words, if you specify static items for
a control, you cannot also specify dynamic items for that control as well.

Allowed Children Objects of the item Element
The item element does not support child objects of any kind, so it cannot have any
embedded controls.

Parent Objects of the item Element
An item may only be used in the following controls:

■■ comboBox

■■ dropDown

■■ gallery

Graphical View of item Attributes
Figure 7-1 shows a dropDown control on a Ribbon group. It houses three static item
elements that are written into the XML code. The callouts annotate where the item’s
static attributes are displayed.

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

Chapter 7 ■ comboBox and dropDown Controls 227

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 227

Figure 7-1: Graphical view of the item elements

Using Built-in Controls
You don’t have the opportunity to leverage built-in item elements because Microsoft
does not expose them for our use, but the chances are fairly good that you wouldn’t
want to use them anyway, so it’s not really a big loss. If you did want to have some of
these items in a control, you could just include the entire parent element in your Ribbon.

Creating Custom Controls
We explore the setup for the parent controls shortly, so this section focuses on the
underlying XML code needed to create the static item elements demonstrated in
Figure 7-1.

As mentioned earlier, Figure 7-1 makes use of a dropDown control to house these
items. The dropDown control should be constructed, like all controls, with opening and
closing XML tags. The following code goes between those tags:

<item id=”rxitemddColor1”

imageMso=”AppointmentColor1”

label=”Red”

screentip=”This is Red!”

supertip=”Trust me, it really is Red!”/>

<item id=”rxitemddColor2”

imageMso=”AppointmentColor2”

label=”Blue”

screentip=”This is Blue!”

supertip=”Trust me, it really is Blue!”/>

<item id=”rxitemddColor3”

imageMso=”AppointmentColor10”

label=”Yellow”

screentip=”This is Yellow!”

supertip=”Trust me, it really is Yellow!”/>

As you review Figure 7-1, you will see each of the elements in the live representation
on the Ribbon.

228 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 228

The comboBox Element

The comboBox control displays data based on a designated record source, and it is a
hybrid of the editBox that we covered in Chapter 6 and the dropDown control that we
review next.

One of the great features of a comboBox control is that, in addition to being able to
pick something from the list, the user can also type something into the text box. In
searching and selecting from the list, it acts like a “hot lookup,” enabling users to skip
to the closest match. As the user keeps typing, the choices are narrowed down. At any
time, users may accept one of the displayed values or they may keep typing to create a
new entry.

The comboBox is best used in the following situations:

■■ The list is very long and you wish to give users the capability to quickly jump
to the appropriate place by typing a few keys. (The fonts control is a good
example of this.)

■■ You wish to present users with a pre-defined list, but also want them to be able
to add items to the list.

As mentioned earlier in the chapter, you can populate the comboBox with both static
lists and dynamically created lists.

Required Attributes of the comboBox Element
The comboBox control requires any one of the id attributes shown in Table 7-3.

Table 7-3: Required id Attributes of the comboBox Element

ATTRIBUTE WHEN TO USE

id When creating your own comboBox

idMso When using an existing Microsoft comboBox

idQ When creating a comboBox shared between namespaces

Optional Static and Dynamic Attributes
withCallback Signatures
In addition to the required id attribute, the comboBox control will optionally accept any
one of the insert attributes listed in Table 7-4.

Chapter 7 ■ comboBox and dropDown Controls 229

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 229

Table 7-4: Optional insert Attributes of the comboBox Element

insertAfterMso Valid Mso Group Insert after Microsoft
control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace control

insertBeforeQ Valid Group idQ Insert before shared
namespace control

Finally, the comboBox may also be configured to use any or all of the optional attrib-
utes or callbacks shown in Table 7-5.

Table 7-5: Optional Attributes and Callbacks of the comboBox Element

(none) onChange (none) Sub OnChange (control
As IRibbonControl, text As
String)

enabled getEnabled true Sub GetEnabled (control
As IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl, ByRef
returnedVal)

imageMso getImage (none) Same as above

(none) getItemCount 1 to 1024 (none) Sub GetItemCount (control
As IRibbonControl, ByRef
returnedVal)

(none) getItemID (none) Sub GetItemID (control As
IRibbonControl, index
As Integer, ByRef id)

(none) getItemImage (none) Sub GetItemImage (control
As IRibbonControl, index As
Integer, ByRef returnedVal)

Unique
text string

1 to 1024
characters

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

WHEN
TO USE

DEFAULT
VALUE

ALLOWED
VALUES

INSERT
ATTRIBUTE

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 4096
characters

Insert at end
of group

Insert at end
of group

Insert at end
of group

Insert at end
of group

230 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 230

Table 7-5 (continued)

(none) getItemLabel (none) Sub GetItemLabel (control
As IRibbonControl, index As
Integer, ByRef returnedVal)

(none) (none) Sub GetItemScreenTip
(control As IRibbonControl,
index As Integer, ByRef
returnedVal)

(none) getItemSupertip (none) Sub GetItemSuperTip
(control As IRibbonControl,
index As Integer, ByRef
returnedVal)

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl, ByRef
returnedVal)

label getLabel (none) Sub GetLabel (control As
IRibbonControl, ByRef
returnedVal)

maxLength (none) 1 to 1024 1024 (none)

screentip getScreentip (none) Sub GetScreentip (control
As IRibbonControl, ByRef
returnedVal)

showImage getShowImage true Sub GetShowImage (control
As IRibbonControl, ByRef
returnedVal)

(none) true (none)

showItemImage (none) true (none)

showLabel getShowLabel true, false true Sub GetShowLabel (control
As IRibbonControl, ByRef
returnedVal)

sizeString (none) 12* (none)

supertip getSupertip (none) Sub GetSupertip (control As
IRibbonControl, ByRef
returnedVal)

Continued

1 to 1024
characters

1 to 1024
characters

showItem ↵
Attribute

true, false,
1, 0

getItem ↵
Screentip

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

Chapter 7 ■ comboBox and dropDown Controls 231

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 231

Table 7-5 (continued)

tag (none) (none) (none)

(none) getText (none) Sub GetText (control As
IRibbonControl, ByRef
returnedVal)

visible getVisible true Sub GetVisible (control As
IRibbonControl, ByRef
returnedVal)

NOTE The default value for the sizeString attribute (if the attribute is not
declared at all) is approximately 12, but this varies depending on the characters
used and the system font.

Allowed Children Objects of the comboBox Element
The only child object that can be used with the comboBox element is the item element.

Parent Objects of the comboBox Element
The comboBox element may be nested within the following elements:

■■ box

■■ group

Graphical View of comboBox Attributes
Figure 7-2 gives a graphical representation of the visible attributes that can be set on
the comboBox control.

Figure 7-2 shows all of the comboBox attributes except for the screentip and super-
tip. These two attributes only show when the dropDown list portion is not active; con-
sequently, they could not be captured while showing the dropDown list.

Using Built-in Controls
Of all the controls in Excel and Word, probably the best known is the Fonts comboBox.
If you are creating custom Ribbon tabs to group your most commonly used controls
together, then you will certainly want to add this control. It is therefore the first one
that we look at.

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 4096
characters

1 to 1024
characters

true, false,
1, 0

232 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 232

Figure 7-2: Graphical view of the comboBox elements

The XML code for the example that you are about to build is almost completely
application agnostic; it will work equally well in Excel and Word, and it only requires
a very minor change to work in Access. We’ll go through examples for each application
so that you will be comfortable and confident in all three.

NOTE The completed example files (comboBox-Fonts.xlsx, comboBox-Fonts
.docx, and comboBox-Fonts.accdb) can be downloaded from the book’s website
at www.wiley.com/go/ribbonx.

Because we are only using built-in controls, this example does not require VBA.
We’ll begin with Excel, so start by creating and saving a new xlsx file. Open the file in
the CustomUI Editor, apply the RibbonBase template you created in Chapter 2, and
insert the following code between the <tabs> and </tabs> tags:

<tab id=”rxtabDemo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”Demo”>

<comboBox idMso=”Font”/>

<comboBox idMso=”FontSize”/>

</group>

</tab>

Remember to validate your code to catch any pesky typing errors. Once you have
done this, save the file, and open it in Excel. Navigate to the Demo tab and you will see
the UI shown in Figure 7-3.

Figure 7-3: The Font and FontSize comboBox controls on a new
Excel tab

Chapter 7 ■ comboBox and dropDown Controls 233

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 233

With regard to differences between Excel and Word, this code is 100% application
agnostic. Try it for yourself — create a new .docx file and open it in the CustomUI Editor.
Enter the same XML code and save the file. (Remember to validate the code if you retyped
it all by hand!) Upon opening Word, you’ll see the Ribbon as it appears in Figure 7-4.

Figure 7-4: The Font and FontSize comboBox controls on a new
Word tab

As we mentioned, there is a minor change required to get this code to work in
Access. You merely need to revise the insertBeforeMso attribute, as TabHome is not a
defined tab in Access. In other words, the Demo tab’s insertBeforeMso attribute for
Access should read as follows:

insertBeforeMso=”TabHomeAccess”

With this code in place, when you reopen the database, the UI will appear as shown
in Figure 7-5.

Figure 7-5: The Font and FontSize comboBox controls
on a new Access tab

“But wait,” you say, “that does not look exactly the same!” That’s true — the name
of the font is not displayed because nothing is open that has a font that can be edited.
If you open a table or a form, you’ll find that these controls are immediately enabled.
Our example was intended to provide the added benefit of demonstrating when you
might see the blank list, so you needn’t be alarmed that your code might have failed.

Creating Custom Controls
Demonstrating how to use Font and FontSize comboBoxes as was an easy example
that you will reuse many times, but we can only get so far using Microsoft’s built-in
comboBoxes. It’s time to look at some examples of building items that do things that
Microsoft hasn’t allowed for.

234 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 234

The Excel and Word examples in this section display how to employ static lists in the
comboBox controls and incorporate the item controls that were covered in the first sec-
tion of this chapter. With the Access example, we start to explore a dynamic comboBox
control.

An Excel Example

For this example, we again assume that you have hidden the entire user interface. In
addition, also imagine that in an attempt to make your application look less like Excel,
you have hidden all the worksheet tabs. You still want users to be able to move
between the three worksheets, however, so you need to provide some vehicle to
accomplish this. In many ways, the comboBox can be an ideal control for this kind of
navigation: It lists all the “pages” in your application, and allows users to type in a spe-
cific one that they may wish to jump to.

Naturally, you need a macro or two to make this work, so create a new macro-enabled
Excel file (.xlsm). Save it, and then open it in the CustomUI Editor. Apply the RibbonBase
template, and insert the following code between the <tabs> and </tabs> tags:

<tab id=”rxtabDemo”

label=”Navigation”

insertBeforeMso=”TabHome”>

<group id=”rxgrpNavigate”

label=”Navigate To”>

<comboBox id=”rxcboSelectSheet”

label=”Activate:”

onChange=”rxcboSelectSheet_Click”>

<item id=”rxitemcboSelectSheet1”

label=”Sheet1”/>

<item id=”rxitemcboSelectSheet2”

label=”Sheet2”/>

<item id=”rxitemcboSelectSheet3”

label=”Sheet3”/>

</comboBox>

</group>

</tab>

Notice that the comboBox makes use of the onChange callback to take action when
an item is selected. In addition, this comboBox holds three items: Sheet1, Sheet2, and
Sheet3. These items are static and cannot be changed from within the file; nor will
the user be able to add additional items. This is a perfect fit for the goal of ensuring
that users are able to navigate only to these worksheets.

Before you close the CustomUI Editor, be sure to validate your code for typing
errors, and then copy the onChange callback.

C ROSS-RE FE RE NC E For a refresher on working with callbacks and the
CustomUI Editor, see Chapter 5.

Chapter 7 ■ comboBox and dropDown Controls 235

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 235

When you are back in Excel, open the VBE and paste the callback into a new stan-
dard module. Now you need to edit the callback to make it react as you wish. You can
figure out how to do that by thinking through the order of events:

1. The user will select an item from the Worksheet list.

2. The callback will be triggered.

3. The selected value of the comboBox (in this case, the worksheet name) will be
passed to the routine.

4. The worksheet will be activated.

So far so good, but there is one more piece that may cause a glitch: We stated that
users can only select one of the sheets specified in the code. And what happens if they
type in a different value? To deal with these eventualities, you should edit the callback
signature to read as follows:

‘Callback for rxcboSelectSheet onChange

Sub rxcboSelectSheet_Click(control As IRibbonControl, text As String)

On Error Resume Next

Worksheets(text).Activate

If Err.Number <> 0 Then

MsgBox “Sorry, that worksheet does not exist!”

End If

End Sub

The second line of code attempts to activate the worksheet that has been passed to
the callback. Items chosen from the list will always be a valid name, but text typed in
by the user may not match an item in the list. The On Error statement at the beginning
of the routine deals with this by telling the code to continue to the next line even if an
error is present.

At this point, you can check whether the Err property is zero. If the Err property does
not equal zero, then an error must have occurred; therefore, the value the user typed is
not valid. In addition, because you want the user to know that their input wasn’t accept-
able, you include a message box. Of course, you can display whatever message that
you’d like and even add other options, but message box customization is outside our
focus, so let’s keep moving.

Now that your callback is set up correctly, click the Navigation tab and play with
the comboBox. Try selecting items from the list, as well as typing in a value, as shown
in Figure 7-6.

Figure 7-6: Using a comboBox to change worksheets in Excel

236 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 236

A Word Example

Recall that in Chapter 6 we built a customization that allowed the user to enter the
width of the Styles pane in an editBox. Although this works nicely for giving users the
capability to control the width, it isn’t very intuitive, as there is no indication of what
type of values to put in the box. There are some techniques that provide this informa-
tion to the user, but those are more complex, and we cover them in Chapter 11. For
now, you can use the comboBox to provide the user with a pre-set list of options from
which to choose.

To make things easy for the user, we keep the checkBox that we used to toggle the
Styles pane on and off. In addition, rather than create everything from scratch, you can
use the editBox example file created in Chapter 6. In that, we replaced the editBox
with the comboBox control.

NOTE Instead of using the editBox example you created in the previous
chapter, you can also download the complete editBox example, editBox-Style
Inspector Width.docm, from the book’s website.

To get started, open the existing file in the CustomUI Editor and replace the editBox-
specific XML with the following:

<comboBox id=”rxcboStyleWidth”

label=”Inspector Width”

sizeString=”1234”

onChange=”rxcboStyleWidth_Click”>

<item id=”rxitemcboStyleWidth1”

label=”1.00”/>

<item id=”rxitemcboStyleWidth2”

label=”2.00”/>

<item id=”rxitemcboStyleWidth3”

label=”3.00”/>

<item id=”rxitemcboStyleWidth4”

label=”4.00”/>

<item id=”rxitemcboStyleWidth5”

label=”5.00”/>

<item id=”rxitemcboStyleWidth6”

label=”6.00”/>

<item id=”rxitemcboStyleWidth7”

label=”7.00”/>

<item id=”rxitemcboStyleWidth8”

label=”8.00”/>

</comboBox>

As usual, validate the XML code before saving the file, and because you already
have the checkBox callbacks programmed in the file, you only need to copy the call-
back signature for the rxcboStyleWidth_click event.

If you examine this XML, you will see that we have added eight options to the
comboBox’s drop-down list portion: the numbers 1.00 through 8.00. Remember that
while each item’s id must be unique, it is the item’s label that will be passed to the
callback when the control is accessed.

Chapter 7 ■ comboBox and dropDown Controls 237

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 237

TI P In this example, a four-character sizeString is declared even though we
only show three digits. This is because we want to allow a number with two
decimal places and one leading digit. The decimal also counts as a character, so
we must include it in our maximum size.

Upon opening Word, you will again want to jump into the VBE right away to paste
your callback. Recall that earlier in the chapter we mentioned that the comboBox control
is a hybrid between the editBox and dropDown controls. This works very much to your
benefit in this case because the editBox callback already exists in the file.

To port the code from the editBox to the comboBox, you have two options:

1. Copy the code from the rxtxtStyleWidth_getText routine to the rxc-
boStyleWidth_Click routine and delete the original rxtxt routine.

2. Replace the rxtxtStyleWidth_getText signature line with the rxc-
boStyleWidth_Click line.

TI P If you elect to rewrite the signature line, it is a good idea to get into the
practice of making sure that you rewrite all of the parameters as well, not just
the name of the callback. This will ensure that if you are updating from one
type of callback to another it will still run.

TI P If you paste a callback signature line into your module and then update
another callback to an identical signature, be sure to delete or rename the
original. Otherwise, you will receive an error that an “Ambiguous Name Has
Been Detected.”

Once you have updated your procedure, save the file and select the View tab. Your
updated Style Options will look like what is shown in Figure 7-7.

Figure 7-7: Using a comboBox to change Word’s Style
Inspector width

238 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 238

Try using the comboBox to change the width of the Style Inspector pane. Notice the
following:

■■ It only shows when the checkbox is checked.

■■ The width changes each time you select a new value.

■■ Typing a custom value also changes the Style Inspector width.

■■ Typing text will return a custom error message.

An Access Example

In this example, we again build on the Access database used in the last chapter. This
time, we add a new group containing a comboBox that opens a form directly to a spe-
cific field.

Unlike previous examples that used static callbacks, this customization makes use
of callbacks to dynamically populate the comboBox with a list of all the authors in the
tblAuthors table. To do this, we repopulate the comboBox every time the form is closed.
We recognize that the data in the comboBox and the table may become out of sync, but
it could be impractical to maintain the XML code for each and every record added to
the database, as frequent updates would have a significant performance impact.

To get started, open the Access example from the previous section or download the
toggleButton-Form Tools.accdb file from the book’s website. Copy the RibbonX infor-
mation from the RibbonXML field of the USysRibbons table and paste it into a fresh
instance of the CustomUI Editor. Between the </group> and <group id=”rxgrpTools”>
tags, enter the following XML for the comboBox control:

<group id=”rxgrpSearch”

label=”Search Tools”>

<comboBox id=”rxcboSearchAuthor”

label=”Review Author:”

onChange=”rxcboSearchAuthor_Click”

getItemID=”rxcboSearchAuthor_getItemId”

getItemCount=”rxcboSearchAuthor_getItemCount”

getItemLabel=”rxcboSearchAuthor_getItemLabel”/>

</group>

As you can immediately see, the comboBox specification looks much different than
that shown in the Excel and Word examples. A host of callbacks are declared and no
item controls are listed. Because the items will be provided dynamically by the call-
backs at run-time, it isn’t necessary to declare any static items.

NOTE Although it has been mentioned before, it is worth repeating a very
important point: Even if you did want to declare one or more static item controls
that will show up in every comboBox control you use, it must be done through the
callback if you elect to populate any controls dynamically. Use of dynamic (or
static) callbacks is an “all or nothing” approach.

Chapter 7 ■ comboBox and dropDown Controls 239

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 239

C ROSS-RE FE RE NC E Another thing to notice about the preceding XML
code is that there is no </comboBox> tag. Instead, the comboBox declaration ends
with a /> instead of the / character. As discussed in Chapter 3, this is possible
because no child elements are declared for the comboBox control.

Once you have the code validated and copied into the RibbonXML field of the USys-
Ribbons table, generate and copy all of the rxcboSearchAuthor callbacks.

If you are keeping track, you will notice that we have declared four callbacks,
but only three callouts are generated by the CustomUI Editor. Specifically, the
rxcboSearchAuthor_getItemId callback signature is missing, which appears to be a
bug in the CustomUI Editor program.

Fortunately, you can consult Table 7-5, earlier in this chapter, and obtain the signa-
ture for this callback. It is declared as follows:

Sub GetItemID(control As IRibbonControl, index As Integer, ByRef id)

NOTE If for some reason you don’t have this book with you when you’re
attempting this in a project, you can also search for these callback signatures
on the Internet. An article containing all of the callback signatures can be
located on the MSDN site at the following URL: http://msdn2.microsoft.com/
en-us/library/ad7222523.aspx

Most of the callback signatures have been generated for you, so copy and paste them
into the code module that holds the rest of the code. Next, you need to manually type
in the GetItemID callback signature.

Before we start writing the code, it’s time to figure out exactly how this works.
Again, you do this by thinking through the steps in a logical manner. We want to do the
following:

1. Create a list of all the authors currently in the database.

2. Submit that list to the comboBox.

3. Open the form when the user clicks on (or manually enters) an author’s name.

4. Let the user know when an author cannot be found (and close the form).

5. Start again at Step 1 when the form is closed (to ensure that the list is current if
any authors were added).

As with all code, the methods by which you accomplish these things are limited
only to your imagination and ability. What is detailed below can certainly be done dif-
ferently, but it works well for the purposes of this example.

To begin, the code needs a place to store the list of author names, and a count of
those names. To do this, you add two global variables to the top of your project, just
underneath the Option lines. The first is a variant array (a dynamically sized space to
hold the list of names), and the second is a Long data type, which can hold the count of
the names in the array. They read as follows:

Public gaAuthorList As Variant

Public glngItemCount As Long

240 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 240

C ROSS-RE FE RE NC E For a review of variant arrays, please see Chapter 4.

Now that you have a variable to hold the list of names, it makes sense to work on the
routine that populates the list. Because we indicated that the list will be populated
when the file is loaded and every time a form is closed, it makes sense to build the
process into a routine, and to call the routine whenever we need to check the table and
populate the list. The routine looks as follows:

Sub PopulateAuthorArray()

‘Populate the global array of author names

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim lngLoopCount As Long

‘Open the recordset for the authors table

Set db = CurrentDb()

Set rst = db.OpenRecordset(“tblAuthors”, dbOpenTable)

‘Store list of all authors in an array

On Error Resume Next

lngLoopCount = 0

With rst

If .EOF Then .MoveFirst

glngItemCount = .RecordCount

ReDim gaAuthorList(glngItemCount - 1)

Do While Not (.EOF)

gaAuthorList(lngLoopCount) = !AuthorName.Value

.MoveNext

lngLoopCount = lngLoopCount + 1

Loop

End With

‘Release all objects

rst.Close

db.Close

Set rst = Nothing

Set db = Nothing

End Sub

The routine loops through all the records in the tlbAuthors table and adds them to
the gaAuthorList array. In addition, it sets the glngItemCount variable to hold the total
number of records that were in the table (and therefore the array.)

Next, we deal with the callbacks.
The getItemCount callback simply returns the number stored in the glngItemCount

variable, telling the control how many records you have:

‘Callback for rxcboSearchAuthor getItemCount

Sub rxcboSearchAuthor_getItemCount(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = glngItemCount

End Sub

Chapter 7 ■ comboBox and dropDown Controls 241

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 241

The getItemID callback is used to create a unique item ID for each of the item con-
trols that are dynamically fed into the comboBox. The index variable is always unique
(numbered from zero to the number of items you have, less one), so you can simply
add the index to a string of text, as shown here:

‘Callback for rxcboSearchAuthor getItemID

Sub rxcboSearchAuthor_getItemID(control As IRibbonControl, _

index As Integer, ByRef ID)

ID = “rxitemcboSearchAuthor” & index

End Sub

TI P You may wonder why we didn’t just set up this callback using ID = index
to generate an ID for the item. We could have used that approach, but it would
fail if we added another comboBox to the project and used the same logic
because the IDs would no longer be unique (i.e., two controls could end up
with an id=0.) It is a far better practice to ensure that your ID is tagged with
your control name. Therefore, in addition to generating a unique ID, you are
now generating a coding habit that will never leave you debugging this issue.

The getItemLabel callback returns the author’s name from the global array that was
established earlier. When the array is created, each element has an index, or place, in
the array. You can use the following callback to return the element of the array corre-
sponding to the index number:

‘Callback for rxcboSearchAuthor getItemLabel

Sub rxcboSearchAuthor_getItemLabel(control As IRibbonControl, _

index As Integer, ByRef returnedVal)

returnedVal = gaAuthorList(index)

End Sub

NOTE If you are experienced with changing the base of an array and intend to
apply that technique in these databases, you need to adjust these indexes to
coincide with your arrays.

The Click event is the final callback that needs programming in our example. It uses
the following code:

‘Callback for rxcboSearchAuthor onChange

Sub rxcboSearchAuthor_Click(control As IRibbonControl, text As String)

‘Open the form at the requested Author

Dim sAuthorName As String

Dim rs As DAO.Recordset

‘Open the appropriate form

sAuthorName = “[AuthorName] = ‘“ & text & “‘“

242 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 242

DoCmd.OpenForm “frmAuthors”

‘Find the correct author

With Forms!frmAuthors

Set rs = .RecordsetClone

rs.FindFirst sAuthorName

If rs.NoMatch Then

MsgBox “Author Not found”

DoCmd.Close acForm, “frmAuthors”, acSaveNo

Else

.Bookmark = rs.Bookmark

End If

End With

‘Release the objects

Set rs = Nothing

End Sub

This event opens the form and attempts to activate the record pertaining to the author
who has either been selected from the comboBox or typed in manually. If the record can be
found it is “bookmarked” and activated. If the record is not found, the user is informed
(via our friendly message box) and the form is closed.

There is one final thing left to do in order for this example to work: You need to hook
the PopulateAuthorArray to the appropriate routines. Without this hook, the array will
never be filled and the comboBox will sit empty.

To create the hook, simply insert the following code snippet in the rxIRibbonUI_
onLoad event (before or after the line that captures the RibbonUI), as well as in the
frmAuthor’s Form_Deactivate event (just before the line that invalidates the RibbonUI):

‘Populate the array of Author names

Call PopulateAuthorArray

Now that you have made all of these modifications, save, close, and reopen your data-
base. You will have a new group on the Ribbon that holds the combBox. Select an author’s
name from the list and you will be taken to their record, as shown in Figure 7-8.

Figure 7-8: Using a comboBox to jump to a specific

Chapter 7 ■ comboBox and dropDown Controls 243

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 243

record in a form

Now try adding your name to the Author’s table. After all, you have done a lot of
work just to get to this point! After adding your name, close the form and check the
comboBox list. Voilà, your name in print!

The dropDown Element

Like the comboBox, the dropDown control presents the user with a pre-defined list of
options from which to choose. In addition, it too can be populated either at design-time
using XML to provide a static list, or dynamically at run-time via callbacks.

The biggest of differences between the comboBox and dropDown controls lies in the
ability of the comobBox to accept user-entered data; the dropDown control has no such
facility, forcing the user to select an item from the pre-defined list and only from that list.

At first glance, you may ask yourself why anyone would want to use a dropDown
over a comboBox. After all, wouldn’t you always want to make the controls more robust
and accessible? The answer depends upon your implementation, of course, but some
reasons you may want to use the dropDown control include the following:

■■ You do not want users to enter their own information.

■■ Your list is not long, so using the “auto complete” capability is not a concern.

■■ You are not interested in programming the callbacks to validate user-entered data.

Required Attributes of the dropDown Element
To create a dropDown control, you need to define one and only one of the id attributes
shown in Table 7-6.

Table 7-6: Required id Attributes for the dropDown Element

ATTRIBUTE WHEN TO USE

id When creating your own dropDown

idMso When using an existing Microsoft dropDown

idQ When creating a dropDown shared between namespaces

Optional Static and Dynamic Attributes
with Callback Signatures
The dropDown element optionally accepts any one insert attribute shown in Table 7-7.

244 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 244

Table 7-7: Optional insert Attributes for the dropDown Element

insertAfterMso Valid Mso Group Insert after Microsoft
control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace control

insertBeforeQ Valid Group idQ Insert before shared
namespace control

In addition to the insert attribute, you may also include any or all of the optional
static attributes or dynamic equivalents shown in Table 7-8.

Table 7-8: Optional Attributes and Callbacks of the dropDown Element

enabled getEnabled true Sub GetEnabled (control
As IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl, ByRef
returnedVal)

imageMso getImage (none) Same as above

(none) getItemCount (none) Sub GetItemCount (control
As IRibbonControl, ByRef
returnedVal)

(none) getItemID (none) Sub GetItemID (control
As IRibbonControl, index
As Integer, ByRef id)

(none) getItemImage (none) Sub GetItemImage (control
As IRibbonControl, index
As Integer, ByRef
returnedVal)

Continued

1 to 1024
characters

Unique
text string

1 to 1024

1 to 1024
characters

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

WHEN
TO USE

DEFAULT
VALUE

ALLOWED
VALUES

INSERT
ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

true, false,
1, 0

Insert at end
of group

Insert at end
of group

Insert at end
of group

Insert at end
of group

Chapter 7 ■ comboBox and dropDown Controls 245

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 245

Table 7-8 (continued)

(none) getItemLabel (none) Sub GetItemLabel
(control As IRibbonControl,
index As Integer, ByRef
returnedVal)

(none) getItemScreentip (none) Sub GetItemScreenTip
(control As IRibbonControl,
index As Integer, ByRef
returnedVal)

(none) getItemSupertip (none) Sub GetItemSuperTip
(control As IRibbonControl,
index As Integer, ByRef
returnedVal)

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl, ByRef
returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl, ByRef
returnedVal)

screentip getScreentip (none) Sub GetScreentip (control
As IRibbonControl, ByRef
returnedVal)

(none) (none) Sub GetSelectedItemID
(control As IRibbonControl,
ByRef returnedVal)

(none) (none) Sub GetSelectedItemIndex
(control As IRibbonControl,
ByRef returnedVal)

showImage getShowImage true Sub GetShowImage (control
As IRibbonControl, ByRef
returnedVal)

(none) true (none)

(none) true (none)

getSelected ↵
ItemID

showItem ↵
Label

true, false,
1, 0

showItem ↵
Image

true, false,
1, 0

true, false,
1, 0

getSelected ↵
ItemIndex

1 to 1024

Unique
text string

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

246 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 246

Table 7-8 (continued)

showLabel getShowLabel true Sub GetShowLabel (control
As IRibbonControl, ByRef
returnedVal)

sizeString (none) 12* (none)

supertip getSupertip (none) Sub GetSupertip (control
As IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl, ByRef
returnedVal)

(none) onAction (none) Sub OnAction (control
As IRibbonControl,
selectedId As String,
selectedIndex As Integer)

NOTE The default value for the sizeString attribute (if the attribute is
not declared at all) is approximately 12, but this will vary depending on the
characters used and the system font.

Allowed Children Objects of the dropDown Element
The only child object that can be used with the dropdown element is the item element.

Parent Objects of the dropDown Element
The dropDown element may be used within the following controls:

■■ box

■■ group

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Chapter 7 ■ comboBox and dropDown Controls 247

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 247

Graphical View of dropDown Attributes
Figure 7-9 shows a dropDown control on a Ribbon group, which houses two dynamic
items. The captions annotate the properties that can be set on a dropDown control.

Figure 7-9: Graphical view of the dropDown element

Using Built-in Controls
Because there are no built-in dropDown controls that span all the applications,
this example again focuses on referencing one of Excel’s native dropDown controls: the
BorderStyle control.

To make use of the control, create a new xlsx file and open it in the CustomUI
Editor. Apply the RibbonBase template and place the following code between the
<tabs> and </tabs> tags:

<tab id=”rxtabDemo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”Demo”>

<dropDown idMso=”BorderStyle”/>

</group>

</tab>

Validate your XML, save the file, and reopen it in Excel. You will now see the fully
functional control available on the Demo tab, as shown in Figure 7-10.

Figure 7-10: Using the BorderStyle control in a custom Excel group

248 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 248

Creating Custom Controls
In this section we again create custom tools, rather than reuse the commands and func-
tionality inherent in the programs.

In addition to employing a static dropDown list in Excel, the previous comboBox
example will also be revised so that it dynamically populates a dropDown control. The
Word example will remain static, but we add another useful tool to the collection that
you have been building. The Access example again creates a completely dynamic list
in the dropDown control.

An Excel Example

This example is quite interesting because it uses two dropDown elements in tandem.
Similar to the comboBox example in the previous section, the first control lists all the
worksheets in the workbook. In this case, however, we employ the available callbacks
to update the dropDown list as worksheets are added to or removed from the workbook.
Pretty cool — and you can certainly see the value in the example and anticipate ample
opportunities to incorporate this into your customizations.

NOTE By switching from a comboBox to a dropDown, we lose the capability
to type in the worksheet we want to activate. It should be assumed that this
process was a conscious choice on the part of the developer.

The second control allows us to toggle the visibility of the selected worksheet
between Excel’s three states: xlSheetVisible, xlSheetHidden, and xlSheetVeryHidden.

NOTE The xlSheetVeryHidden state of an Excel worksheet is not known to
most users because it must be set from VBA. This is a state that enables a
developer to completely hide a worksheet from the users, and it will not show
in the menu that allows users to unhide sheets.

One of the best ways to highlight the differences between the two controls is to convert
one to the other, so that is exactly how this example begins. If you have not completed the
previous example, or are unsure how it compares to the examples in this book, download
the comboBox-Select Sheet.xlsm file from the book’s website.

Before you open the file in Excel, open it in the CustomUI Editor and replace every-
thing from and including the <comboBox> to the end of and including </comboBox> with
the following XML:

<dropDown id=”rxddSelectSheet”

label=”Apply To:”

visible=”true”

onAction=”rxddSelectSheet_Click”

getItemID=”rxitemddSelectSheet_getItemId”

getItemCount=”rxitemddSelectSheet_getItemCount”

getItemLabel=”rxitemddSelectSheet_getItemLabel”/>

Chapter 7 ■ comboBox and dropDown Controls 249

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 249

<dropDown id=”rxddSheetVisible”

label=”Set To:”

onAction=”rxddSheetVisible_Click”>

<item id=”rxitemddSheetVisible1”

label=”Visible”/>

<item id=”rxitemddSheetVisible2”

label=”Hidden”/>

<item id=”rxitemddSheetVisible3”

label=”VeryHidden”/>

</dropDown>

Notice a few things about the preceding code:

■■ The first dropDown declaration has no ending </dropDown> tag. This is because it
contains all of its attributes within the code block and is requesting all of its
child objects via callbacks; therefore, it does not require any static child objects
declared in the XML, and can be closed by using /> at the end.

■■ The callback signature for the dropDown is different from the comboBox. Whereas
the comboBox used an onChange callback, the dropDown uses an onAction call-
back when it is clicked.

■■ The second dropDown list does have a </dropDown> tag to close it. This is
because it holds a static list of item objects declared directly in the XML code.

In addition, we also need to capture the RibbonUI object in order to update the lists
dynamically. Adjust the CustomUI tag to include the onLoad element as shown below:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

As always, you should validate your code, save it, and generate and copy the call-
back signatures. As with the comboBox element, be aware that the callback for the
getItemID callback will not be generated by the CustomUI Editor. If you were doing
this on your own, you’d once again need to look this up and type it in manually (or
copy it from a functional example).

Open Excel again, but don’t be alarmed when you see the error message indicating
that it cannot run the macro, shown in Figure 7-11.

Figure 7-11: Error message indicating a missing callback

This is to be expected, as we have declared an onLoad callback but have not yet pro-
vided the programming. To do that, in the VBE, open the code module that holds all
the RibbonX event code and paste the callback signatures at the end.

250 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 250

Before we go any further, let’s deal with the onLoad callback. You want to add two
variables to the top of the project. The first will hold the RibbonUI object, while the sec-
ond will store the worksheet name that was selected. They are placed just under the
Option Explicit line and should be declared as follows:

Public RibbonUI As IRibbonUI

Dim sSheetName As String

Next, we make sure that the RibbonUI object is captured at load time by setting the
onLoad callback as follows:

‘Callback for customUI.onLoad

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set RibbonUI = ribbon

End Sub

Now it’s time to look at the rest of the callback signatures, starting with the callback
that tells the control how many items exist. Fortunately, it doesn’t require much code
to make this work, as the item count will always be equal to the number of worksheets
in the workbook. You can use the following code:

‘Callback for rxddSelectSheet getItemCount

Sub rxitemddSelectSheet_getItemCount(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = Worksheets.Count

End Sub

Next, we set up the callback for the getItemLabel, which returns the text of each
item to the dropDown list:

‘Callback for rxddSelectSheet getItemLabel

Sub rxitemddSelectSheet_getItemLabel(control As IRibbonControl, _

index As Integer, ByRef returnedVal)

returnedVal = Worksheets(index + 1).Name

End Sub

If you haven’t worked much with arrays, you might not notice a very big issue lurk-
ing in the middle of this routine. Pay careful attention to the fact that the name being
returned for an item is the index + 1.

The reason for this shift is that by default VBA works in zero-based arrays (as previ-
ously mentioned, VBA starts counting at 0, not 1), but Excel’s default worksheet
indexes and names work in one-based arrays (Excel starts counting at 1, not 0.)

To understand the ramifications, assume that we have a workbook set up to start with
the default 3 worksheets. In the getItemCount procedure, we asked for a count of the
Worksheets 1, 2, and 3. We received a total count of 3, as we would expect. What is inter-
esting, however, is how this actually dimensions the array. Have a look at Table 7-9 to see
how the array will manifest itself.

Chapter 7 ■ comboBox and dropDown Controls 251

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 251

Table 7-9: Dimensions and Values of an Array

ARRAY INDEX ELEMENT VALUE ACTUAL VALUE

0 Worksheets(index + 1).Name Sheet1

1 Worksheets(index + 1).Name Sheet2

2 Worksheets(index + 1).Name Sheet3

NOTE If this appears intimidating, don’t worry about it. It is confusing for most
users who are not accustomed to working with arrays. As a rule of thumb, if the
values you are trying to pass in to or retrieve from an array appear to be out of
sync by one, just adjust your index, as shown in the previous code snippet.

Next, you will want to ensure that the callback is programmed to dynamically gener-
ate the unique ID for each of the drop-down items. The callback should read as follows:

‘Callback for rxddSelectSheet getItemID

Sub rxitemddSelectSheet_getItemID(control As IRibbonControl, _

index As Integer, ByRef id)

id = “rxitemddSelectSheet” & index

End Sub

There is one more callback to set up: the rxddSelectSheet_Click callback. Because
we started with the previous file, you have all the code for the rxcboSelectSheet_
Click event that was triggered by selecting a comboBox item. However, you can’t just
rename and reuse. Take a look at Table 7-10, noting the difference between the callback
signatures.

Table 7-10: Difference between dropDown and comboBox Callback Signatures

CONTROL CALLBACK SIGNATURE

comboBox rxcboSelectSheet_Click (control As IRibbonControl, text As String)

dropDown rxddSelectSheet_Click (control As IRibbonControl, id As String, ↵
index As Integer)

You can see that while the comboBox passes the text of the control to the callback, the
dropDown is not quite so friendly. Instead, it passes the ID and the index number. Unfor-
tunately, we’re not interested in that number at this time; we need to show the user the
actual name of the sheet.

In order to work out the control’s name, we can leverage one of the less obvious fea-
tures of Ribbon construction. We can actually call the getItemLabel callback to give us
this information!

252 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 252

If you take a good look at the getItemLabel callback, you’ll see that it accepts three
parameters. The key to making this work is the keyword that prefaces the variable in
the last parameter:

Sub rxitemddSelectSheet_getItemLabel(control As IRibbonControl, _

index As Integer, ByRef returnedVal)

In VBA, every parameter is passed to a procedure specifying that the variable is passed
by either ByVal (which is the default, so the parameter is typically omitted, as it is implied)
or ByRef. The difference is that when a variable is passed ByVal, a copy of the variable is
used inside the receiving procedure. Anything that is done to it within the procedure
is lost when the procedure goes out of scope (ends).

In contrast, when a variable is passed to a procedure ByRef, the actual variable is
passed as a parameter. Anything that is done to the variable inside that procedure
is passed back to the calling procedure when the called procedure ends. It’s this capa-
bility that enables us to make use of the getItemLabel callback.

Update your callbacks so that the rxddSelectSheet_Click routine reads as follows,
and delete the rxcboSelectSheet_Click event:

‘Callback for rxddSelectSheet onAction

Sub rxddSelectSheet_Click(control As IRibbonControl, id As String, _

Index As Integer)

On Error Resume Next

Call rxitemddSelectSheet_getItemLabel(control, index, sSheetName)

If Err.Number <> 0 Then

MsgBox “Sorry, that worksheet does not exist!”

RibbonUI.InvalidateControl “rxddSelectSheet”

End If

End Sub

Make note of how we are calling the getItemLabel callback, and especially how we
are passing the sSheetName variable to the returnedVal parameter. Because the actual
sSheetName variable is passed, and not a copy, the changes made in that procedure will
replicate back to the global variable, and the worksheet name will be ready when we
need it.

Finally, we’ve completed the setup for the dynamic dropDown control, and we can
focus on setting up the sole callback for the static dropDown. Update the callback for this
control to read as follows:

‘Callback for rxddSheetVisible onAction

Sub rxddSheetVisible_Click(control As IRibbonControl, id As String, _

index As Integer)

`Check that a worksheet has been selected

On Error Resume Next

sSheetName = Worksheets(sSheetName).Name

If Err.Number <> 0 Then

MsgBox “Sorry, but you need to select a valid sheet first!”

Exit Sub

End If

Chapter 7 ■ comboBox and dropDown Controls 253

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 253

‘Change the sheet’s visibility

Select Case id

Case “rxitemddSheetVisible1”

Worksheets(sSheetName).Visible = xlSheetVisible

Case “rxitemddSheetVisible2”

Worksheets(sSheetName).Visible = xlSheetHidden

Case “rxitemddSheetVisible3”

Worksheets(sSheetName).Visible = xlSheetVeryHidden

End Select

‘Tell user if it is last visible sheet

If Err.Number <> 0 Then

MsgBox “Sorry, this is the only visible sheet.” & vbCrLf & _

“You can’t hide them all!”

End If

On Error GoTo 0

End Sub

This callback evaluates whether any value is contained in the sSheetName variable.
If there is one, it then sets the visibility of the sheet as chosen by the user.

You’ll recall that we experienced an error when the file was originally loaded, so we
won’t be able to try out our customization until we save and reload the workbook.
Once you’ve done this, navigate to the Review tab and play with the new controls,
shown in Figure 7-12.

Figure 7-12: The sheet visibility dropDown menu set

A Word Example

In the tradition of adding useful tools to the Word Ribbon groups, we’re going to
continue adding another feature to the example that we created in the section on the
comboBox.

If you frequently use Word templates, you may find that you are offered a ton of
styles that you don’t use, which results in a lot of unwanted clutter. Word has four dis-
tinct settings to filter the styles to make them easier to use. In this section, we’ll create
a customization that provides the capability to quickly select these four settings.

To start, make a copy of the Word comboBox example from the previous section, or
download the completed comboBox-Style Inspector Width.docm file from the book’s

254 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 254

website. Open the new file in the CustomUI Editor and insert the following XML
between the </comboBox> and </group> tags:

<dropDown id=”rxddStylesView”

label=”Show Styles:”

onAction=”rxddStylesView_Click”>

<item id=”rxitemddStylesAll”

label=”All”/>

<item id=”rxitemddStylesInCurrent”

label=”InCurrent”/>

<item id=”rxitemddStylesInUse”

label=”InUse”/>

<item id=”rxitemddStylesRecommended”

label=”Recommended”/>

<item id=”rxitemddStyles(none)“

label=”None”/>

</dropDown>

This will enter a static dropDownunder the existing controls. It holds five different items:
four related to the Styles view options and a final option to hide the Styles task pane.

Validate the code, as you usually do, and copy the rxddStylesView_Click callback.
Open Word, open the VBE, and paste your callback signature in the module that holds
the rest of the existing callback signatures. The next step is to record a macro that will
capture as much information about the process as possible.

TI P Never overlook the macro recorder, as it is a handy tool. Even if it can
only record pieces of the process, the documentation provides a great place to
start learning about the objects that you are trying to manipulate. In addition,
you can save a lot of time and avoid typos by copying and pasting from the
generated code.

We’re trying to capture a couple of different things here. The first is how to show
and hide the Styles task pane at the side of the document. The second is how to select
the desired filtered view.

Let’s walk through the process. To begin, start the macro recorder and press
Alt+Ctrl+Shift+S to show the Styles task pane on the side of your screen. (You could
also navigate to the Home tab and click the little arrow in the bottom, right corner of
the Styles group, if you prefer.)

Next, in the bottom right corner of the Styles pane, you will see an Options link.
Click the link and you will see the dialog shown in Figure 7-13.

In the drop-down list, select Recommended and then click OK. Return to the Style
Pane Options and select each option in turn, saying OK to each one. Finally, close the
Styles task pane.

Chapter 7 ■ comboBox and dropDown Controls 255

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 255

Figure 7-13: The Style Pane Options
dialog

Now it’s time to examine the code that was recorded. You should see something
similar to the annotated version shown here:

Sub Macro1()

‘All styles

ActiveDocument.FormattingShowFilter = wdShowFilterFormattingInUse

‘In current document Styles

ActiveDocument.FormattingShowFilter = wdShowFilterStylesAll

‘In use Styles

ActiveDocument.FormattingShowFilter = wdShowFilterStylesInUse

‘Recommended Styles

ActiveDocument.FormattingShowFilter = wdShowFilterStylesAvailable

‘Turn off the Styles task pane

CommandBars(“Styles”).Visible = False

End Sub

NOTE We’ve annotated the code because the constants that Microsoft used
are less than intuitive. One might think that the wdShowFilterStylesAll would
apply the All setting, not the In Current Document setting, as it does. Rather
than have you waste time figuring out which is which, we’ve provided the
clarification so that you can stay focused on the exercise.

NOTE There is no code recorded to launch the Styles pane, but there is code
to close it. Interestingly enough, once you have opened the Styles pane in your
current Word instance, you can show the Styles task pane by executing the
command CommandBars(“Styles”).Visible = true. Until you have activated
it at least once manually, however, the code will fail. This is a known bug in
Microsoft Word, and it is hoped that it will be fixed in an upcoming service
pack. There is a workaround for the issue, however, which is to replace
CommandBars(“Styles”).Visible = true with Application
.TaskPanes(wdTaskPaneFormatting).Visible = True.

256 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 256

The good news here is that you can easily adapt this code into the callback signature,
as the commands are relatively straightforward. Placing a case statement in the call-
back will give us the following:

‘Callback for rxddStylesView onAction

Sub rxddStylesView_Click(control As IRibbonControl, id As String, _

Index As Integer)

On Error Resume Next

Application.TaskPanes(wdTaskPaneFormatting).Visible = True

Select Case id

Case “rxitemddStylesAll”

ActiveDocument.FormattingShowFilter = _

wdShowFilterFormattingInUse

Case “rxitemddStylesInCurrent”

ActiveDocument.FormattingShowFilter = _

wdShowFilterStylesAll

Case “rxitemddStylesInUse”

ActiveDocument.FormattingShowFilter = _

wdShowFilterStylesInUse

Case “rxitemddStylesRecommended”

ActiveDocument.FormattingShowFilter = _

wdShowFilterStylesAvailable

Case “rxitemddStylesNone”

CommandBars(“Styles”).Visible = False

End Select

End Sub

NOTE The addition of the line continuations (a space followed by the
underscore and a hard return) is not essential to making the code work,
but it does make it easier to read.

Once you have this code fully integrated, save the file and browse to the View tab.
Try using various selections on the Show Styles dropDown, as shown in Figure 7-14.

Figure 7-14: The Show Styles dropDown in use

Chapter 7 ■ comboBox and dropDown Controls 257

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 257

An Access Example

The final example in this section also builds on the previous file. This time, you replace
the button that was created to launch the Authors form with a dynamic dropDown list
that will launch any of the forms. This dropDown will update each time a new form is
added to, or removed from, the database. As an added twist, we also add a callback to
retrieve an image for each item in the dropDown list.

Make a copy of the Access example from the previous section or download the
comboBox-Author Query.accdb file from the book’s website. Open it and copy
the RibbonX information from the RibbonXML field of the USysRibbons table. Once
you’ve done that, open the CustomUI Editor and paste the code in the blank pane.
Locate the following code:

<button id=”rxbtnFrmAuthors”

imageMso=”FileCreateDocumentWorkspace”

size=”large”

label=”Enter Authors”

onAction=”rxbtnFrmAuthors_click”/>

Replace it with this code:

<dropDown id=”rxddSelectForm”

label=”Select a form”

imageMso=”CreateForm”

onAction=”rxddSelectForm_click”

getItemCount=”rxddSelectForm_getItemCount”

getItemID=”rxddSelectForm_getItemID”

getItemImage=”rxddSelectForm_getItemImage”

getItemLabel=”rxddSelectForm_getItemLabel”/>

Like the comboBox code used in the previous example, setting up a dynamic
dropDown involves a great many callbacks.

As always, validate the XML code. Once it is error-free, copy all of the XML and
replace the code that is stored in the RibbonX field of your USysRibbons table.

Next, use the CustomUI Editor to generate the callbacks, copy all of the rxddSe-
lectForm signatures, and paste them to the code module that holds the rest of the call-
back code. Be sure to manually create the following callback that the CustomUI Editor
does not generate:

‘Callback for rxddSelectFrom getItemID

Sub rxddSelectForm_getItemID(control As IRibbonControl, _

index As Integer, ByRef ID)

End Sub

Now that all of the callbacks are placed in the module, it’s time to start hooking
them up to do the things that we want. By examining the XML code, you can see that
the dropDown control will be placed in the group with an icon beside it. The rest of the
content, of course, will be dynamic.

258 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 258

In order to populate the dropDown list dynamically, you need to return the total num-
ber of items that the list will contain, which is done using the getItemCount callback.
We’re interested in knowing the total number of forms in the database, and that number
can be retrieved with the following code:

‘Callback for rxddSelectForm getItemCount

Sub rxddSelectForm_getItemCount(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = CurrentProject.AllForms.Count

End Sub

You also know that each item in the dropDown list must have its own unique ID. As
in the previous examples, this can easily be accomplished by setting up the callback to
read as follows:

‘Callback for rxddSelectFrom getItemID

Sub rxddSelectForm_getItemID(control As IRibbonControl, _

index As Integer, ByRef ID)

ID = “rxitemddSelectForm” & index

End Sub

Next, you need to determine how to get the label for each item. Because each form
has an index number in the collection, the callback can be set up as follows:

‘Callback for rxddSelectForm getItemLabel

Sub rxddSelectForm_getItemLabel(control As IRibbonControl, _

index As Integer, ByRef returnedVal)

returnedVal = CurrentProject.AllForms(index).Name

End Sub

One more callback needs to be set up in order to populate the items in the list box.
The XML code specifies that we also want an image for each item in the list, so we need
a callback to get the image. The completed callback signature will look like this:

‘Callback for rxddSelectForm getItemImage

Sub rxddSelectForm_getItemImage(control As IRibbonControl, _

index As Integer, ByRef returnedVal)

Select Case CurrentProject.AllForms(index).Name

Case Is = “frmAuthors”

returnedVal = “FileCreateDocumentWorkspace”

Case Else

returnedVal = “HappyFace”

End Select

End Sub

This callback looks up the name of the form by passing the index number to the
AllForms collection. Once that name has been returned, it is evaluated by the case

Chapter 7 ■ comboBox and dropDown Controls 259

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 259

statement. If the form name matches any of the cases, it is assigned the picture speci-
fied. The Else portion of this code assigns Microsoft’s HappyFace image to any form
that is not specified in the code.

NOTE Remember that the contents of the dropDown list will be populated
dynamically. This is important, as a user may add a new form — so it would not
likely be in the list. By using the Else statement to assign a default image, you
don’t have to worry about constantly updating the code.

Now that all the callbacks are in place to populate the dropDown, we need to add the
callback to handle the user’s selections. We’ll use the onAction callback, which is set up
as shown here:

‘Callback for rxddSelectForm onAction

Sub rxddSelectForm_click(control As IRibbonControl, ID As String, _

Index As Integer)

Dim sFormName As String

Call rxddSelectForm_getItemLabel(control, index, sFormName)

DoCmd.OpenForm sFormName, acNormal

RibbonUI.InvalidateControl (“rxddSelectForm”)

End Sub

Note that this routine again uses the trick of retrieving the item’s label by leveraging
the ability to set the sFormName variable by executing the getItemLabel callback. Once
the selected form name has been retrieved, the form is opened.

The invalidation contained in this routine ensures that each time a form is opened,
the dropDown is repopulated. Therefore, if a new form has been added, then it will be
added to and appear in the dropDown list.

NOTE Because a form needs to be opened via the dropDown to repopulate it,
there is a one-click delay in the updating of the list each time a form is added
to or deleted from the project. Ideally, the invalidation would actually be
housed in a class module to monitor the creation and deletion of a form.
However, this is more complicated and would distract from our demonstration
of incorporating and using the dropDown control. We’ve placed the invalidation
in the onAction callback. We encourage you to investigate creating a class
module to monitor the form creation and removal events at your leisure.

The final piece of programming work is to clean up remnant code from the button
you replaced. All you need to do is locate the rxbtnFrmAuthors_click routine and
delete it from the project.

Now that all the code is in place, close and reload the Access database, thereby sav-
ing your work and allowing the new Ribbon to be installed as the file opens.

When you return to your database, check the dropDown menu. Next, try adding a
new form. Click on the menu to launch the Authors form and then check the dropDown

260 Part I ■ The Building Blocks for a Successful Customization

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 260

list again. You will see that your control now also houses the new form as well, as
shown in Figure 7-15.

This demonstrates that one-click delay just mentioned. The drop-down list needs to
be refreshed after it is repopulated.

Figure 7-15: Dynamic dropDown list to select a form in Access

Conclusion

As you’ve seen, the comboBox and dropDown controls are extremely similar in imple-
mentation and appearance. The examples presented in this chapter covered using sta-
tic items defined in the XML code, as well as leveraging VBA to provide dynamically
updated controls. There is no question, however, that one of the biggest deterrents to
using either of these methods to set up an effective, fully dynamic solution is the copi-
ous amount of code that would have to be manually generated.

When considering these controls, the main questions facing you are which one
should you use, and when? The answer depends completely on how much latitude
you wish to give your users. If, on the one hand, you need to limit users to selecting
from a standard list that never changes, then you’ll want to use a dropDown control. On
the other hand, if you want to offer your users either of the following options, then you
will want to use a comboBox:

■■ The ability to jump to an item in the list

■■ The ability to enter text that is not already defined in the list

Now that you have learned how to present users with different lists of items, it is
time to learn about two controls that can add impressive richness to your applications.
In Chapter 8, you will learn how to incorporate the picture and gallery controls into
your customizations.

Chapter 7 ■ comboBox and dropDown Controls 261

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 261

91118c07.qxd:WileyRedTight 11/28/07 9:16 PM Page 262

263

As you become more experienced in developing a custom UI, you will probably find
that the built-in icon gallery just isn’t enough. You may want to take it to the next level
and add a greater personal touch by introducing your own images (icon or pictures).

In this chapter, you learn how to harness the power of custom pictures and how to
use galleries, one of the coolest new features in the UI.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s web site at www.wiley.com/go/ribbonx.

Custom Pictures

Many of the examples you’ve seen so far involve built-in pictures (or images if you
prefer). Using custom pictures is a highly visible way to truly personalize your UI.

There are different ways you can add pictures to your project. You can attach them
to the project itself or you can load them from external picture files. You will learn these
methods as well as the unique way in which Access can work with pictures. First, how-
ever, you need to get acquainted with which formats are appropriate for the job.

Suggested Picture Formats
If you really get into planning a customized UI, you will probably also consider using
your own images to add that extra touch.

Custom Pictures and Galleries

C H A P T E R

8

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 263

Adding custom images is not rocket science, but it is important that you get to know
some file formats so that you can make an educated choice as to which type you should
use in particular situations. Consider, for example, Figure 8-1, which shows a cus-
tomized button.

Figure 8-1: A custom image
placed in a custom button to
match the color scheme

The customization looks perfect because it uses an old trick that many Office power-
users and programmers have long used: the image background matches the UI back-
ground. For the most part, this approach is acceptable, with one significant caveat. It
can be a problem if the color scheme (or color theme, if you prefer) is changed, as illus-
trated in Figure 8-2.

Figure 8-2: Changing color
scheme disrupts the harmony
of the UI

Now you can clearly see that the image no longer matches the background, and the
framing makes your UI look plain ugly. By using the right file format for your pictures,
you can avoid this problem.

A good format for working with custom pictures is the PNG format. PNG files allow
for full transparency (something not supported by some of the other possible formats
such as BMP, GIF, and JPEG), which means you should not find yourself suffering the
embarrassment caused by the scenario shown in Figure 8-2 after deploying your solu-
tion. To demonstrate this, we’ll save the image used for the Custom Button as a PNG
file type and use the PNG file with two color schemes, shown in Figure 8-3.

264 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 264

Figure 8-3: Full transparency solves the problem of differing
UI color schemes.

As you can see from the composite image shown in Figure 8-3, by adding full back-
ground transparency to a PNG file you no longer need to worry about the user choos-
ing different color schemes and destroying your cherished UI.

However, we don’t live in a perfect world and, like everything else, PNG files can let
you down in some circumstances. For example, if you need to load an image on-the-fly
using the VBA LoadPicture function, you cannot use the PNG format. This limited
scope of usage means that you will need to look for alternatives — either a different
format or a different method to load the image.

TI P Check the two Excel files that accompany this chapter on the book’s
website to contrast the differences. Change the color scheme and note the
differences between a PNG file and a BMP file. You can use the same example
for Access and Word.

Table 8-1 shows some of the file formats you can use in your custom UI.

Table 8-1: Some Possible Picture Formats for the Custom UI

PICTURE EXTENSION FORMAT

PNG Portable Network Graphics is an excellent format
to use with your custom UI if you plan to have it
attached with the project. You cannot use the
LoadPicture function with this file format.

BMP This refers to a bitmapped picture format. It is useful
for loading pictures using the LoadPicture function.

ICO Refers to icon format

WMF Refers to Windows Metafile. Also useful when
loading using the LoadPicture function.

JPG, JPEG JPEG (Joint Photographic Experts Group) format
offers a lower quality for the image.

GIF Graphic Interchange Format, like JPEG, offers lower
image quality overall.

Chapter 8 ■ Custom Pictures and Galleries 265

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 265

If your UI will be custom-picture intensive, you should choose PNG over the other
file formats. PNG is the only format that provides full support for transparency, and
PNG pictures are highly compressible without loss of quality. In contrast, JPG and GIF
formats are generally not recommended because of their low image quality.

NOTE If you are wondering whether PNG format is the Eighth Wonder, that
question does not have a straight answer. Although the format is great, you
cannot load it on-the-fly using the available tools in VBA. Instead, you need to
get specialized help from the GDI+ subsystem. We explain more about this in
the section “Using GDI+ to load PNG files” later in this chapter.

Appropriate Picture Size and Scaling
Now that you know what types you can use in your custom UI, it is only appropriate
that you invest some time in learning a few things about size and scaling.

These factors are important to displaying clear and crisp pictures in your UI, rather
than something sloppy and distorted. As a rule of thumb, figures should be sized at
16 × 16 and 32 × 32 with 96dpi, as shown in Figure 8-4. As you can see, these are square
images. Although it isn’t imperative, square images minimize distortion.

Figure 8-4: 16 × 16 and 32 × 32 images are the perfect size.

The thing to keep in mind here is that you may have a picture file that has the right
canvas dimensions (16 × 16 or 32 × 32) but whose picture is not in the correct dimen-
sion, meaning that the picture covers an area that is smaller than the total canvas size.
This may cause distortion (or some other unexpected result) when it is added to the UI.
A disparity between the image’s size and its canvas size often manifests as a white
band representing the background of the image. You can learn more about the image
dimensions and the canvas size by opening the image in an imaging software package,
where you can look at the image (as a layer) against its background.

Adding Custom Pictures to Excel or Word Projects

Because Excel and Word work differently from Access, we will present the methods
separately. In this first section, we demonstrate how to get the job done in Excel and
Word. We later work with Access to load images using different methods.

You can load your custom pictures in different ways. You can attach the pictures in
advance within the zipped XML group or you can load them on-the-fly. In this section,
you will learn both methods.

266 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 266

Using the Custom UI Editor
When it comes to loading images, you will find that the methods used can vary from
one another. You could, for example, go through the trouble of manually packaging
them all together by sorting out the UI relationship files yourself. You’d soon learn that
this involves too much unnecessary work and is prone to errors. An alternative is to
simply use the Custom UI Editor and let it sort all the relationship files and attach-
ments for you. That’s the approach that we’re going to use here.

C ROSS-RE FE RE NC E If you skipped the chapter on the CustomUI Editor or
need a refresher, see Chapter 2.

In order to add a custom image, you must use the image attribute of the control. Sup-
pose you want to add a custom image to a button — the XML code for the button
should look something like this:

<button id=”rxbtn”

label=”Custom Button”

image=”test_img”

size=”large”/>

By now, you’re probably fluent in interpreting such straightforward XML, so we’re
just going to point out some helpful factors. In the preceding example, the image name
is test_img. Notice that it is unnecessary to specify the file extension; the relationship
file takes care of that as well as pointing to the correct location of the image within the
XML zipped group. In this example, if you were to inspect the relationship XML file
(CustomUI.xml.rels), you’d find the following code snippet:

<Relationships

xmlns=”http://schemas.openxmlformats.org/package/2006/relationships”>

<Relationship

Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/image”

Target=”images/test_img.bmp”

Id=”test_img” />

</Relationships>

This relationship file and its XML code are automatically generated by the CustomUI
Editor, a very handy tool to use. The next task is to load the images.

In order to use the CustomUI Editor to load custom images, follow these steps:

1. Open your workbook/document using the CustomUI Editor.

2. Add your UI XML code. Wherever you wish to add an image, use the image
attribute and specify the filename — for example, image=”test_img”. You do
not need to worry about file extensions.

3. Click the Insert Icon button on the CustomUI Editor toolbar.

4. Browse to the folder containing the images and open the image files.

Chapter 8 ■ Custom Pictures and Galleries 267

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 267

Figure 8-5 shows the test_img file added through the CustomUI Editor. Notice that
the CustomUI Editor now has an extra column to list all images attached to the project.

Figure 8-5: Adding custom pictures using the
CustomUI Editor

This is a very easy way to load custom pictures to your UI, but it can also be very
time consuming, especially if you have a lot of pictures to load. An alternative is to load
the pictures on-the-fly, so we’ll cover that next.

Loading Custom Pictures On-the-Fly
You now know how to load custom pictures using the CustomUI Editor, and how to iden-
tify your custom pictures in the UI. However, there may be times when you need to swap
images on-the-fly, or when the volume of images is simply too large to justify a mega
operation to write the XML code; in other words, you would spend more time writing
XML code than anything else. In such situations, the images should not be bundled
together with the XML files that make up your Excel workbook or Word document. Doing
so would cause the images to sit statically on the UI because the UI will be built at design-
time, not at run-time. If you need to swap images on-the-fly — for example, making a
change at run-time — then you need to load the images using the getImage attribute of
the control.

However, this brings us to yet another problem. In this case, the method for loading
an image is normally through the VBA LoadPicture function. As pointed out previously,
this function cannot handle PNG files, which are the best picture format for the Ribbon.

We’ll start with something simple before getting to the details of loading custom
PNG pictures. Our first example will load common BMP pictures into a toggleButton,
as shown in the following code. We’ve chosen BMP files because they are very common.

268 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 268

After we cover how to load PNG images, which support full transparency, you can com-
pare the results. Note that the method used to load bitmap files can also be used for icon
files and Windows metafiles such as FileName.ico, FileName.wmf, and so on.

<toggleButton id=”rxtgl”

label=”Custom Button”

getImage=”rxtgl_getImage”

size=”large”

onAction=”rxtgl_Click”/>

You use the getImage attribute to define a callback that will handle the loading of the
picture. In this example, the callback is named as rxtgl_getImage and has the follow-
ing signature:

rxtgl_getImage(control as IRibbonControl, ByRef returnedVal)

Because this example uses a toggleButton, you need to keep track of the toggle
state — that is, is the button toggled or not? You can do this in various ways, such as
by keeping its value in the registry. However, for our purposes, we will use a global
Boolean variable to keep track of it. We also need an onLoad event to invalidate the con-
trol and ensure that the image is loaded according to the click of the toggleButton.

Hence, we will have the following VBA code in a standard module. Please note that
this code is also provided in the download file for this chapter.

NOTE When placing code in modules, you can place them all in the same
module. However, you may find it easier to separate the code into different
modules for better organization and compartmentalization of the code. For
example, you may wish to place callbacks in one module, custom functions
in another, and so on. Remember to save the modules and name them in
accordance with whatever naming conventions you have adopted.

Dim grxIRibbonUI As IRibbonUI

Dim gblnPressed As Boolean

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

End Sub

Sub rxtgl_getImage(control As IRibbonControl, ByRef returnedVal)

Set returnedVal = LoadImage(ThisWorkbook.Path & “\mex.bmp”)

If gblnPressed Then Set returnedVal = _

LoadImage(ThisWorkbook.Path & “\usa.bmp”)

End Sub

Sub rxtgl_Click(control As IRibbonControl, pressed As Boolean)

gblnPressed = pressed

grxIRibbonUI.InvalidateControl (“rxtgl”)

End Sub

Chapter 8 ■ Custom Pictures and Galleries 269

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 269

Figure 8-6 shows the customized toggleButton. Note that the labels for the images
are static.

Figure 8-6: Swapping images on-the-fly

If you wish, you can use the getLabel attribute instead of the Label attribute to
dynamically change the labels as you toggle and release the toggleButton. The follow-
ing lines of code are enough to get that done:

Sub rxtgl_getLabel(control As IRibbonControl, ByRef returnedVal)

returnedVal = “Mexico Rocks!”

If gblnPressed Then returnedVal = “The US Rocks!”

End Sub

NOTE Before using the preceding code, ensure that you have replaced the Label
attribute with the getLabel attribute, as they cannot coexist in the XML code.

Adding Custom Pictures to Access Projects

Access, as you have already seen, is unique when it comes to customization. You will
remember that you added your XML code to a table, loaded the UI, chose the UI, and
then had to close and reopen the file before you could have a glimpse of the new UI.

Just as you do not attach your XML UI file to a bundle of compressed XML files that
make up an Excel workbook or Word document, you cannot bundle pictures in Access
using this method. Instead, you have to rely on other means.

Despite Access’s uniqueness, one of the methods presented for Excel and Word also
works for Access: using the getImage attribute to specify a callback that will load the
images into Access on-the-fly.

Loading on-the-fly is not always going to be the desired approach, though, so
another option is to store the images in an attachment field (a great new feature in
Access 2007) and then retrieve these files and load them to the UI. This is akin to
bundling the image files in the compressed format for Excel and Word. Storing the
images within the file avoids concerns about shipping images separately or suddenly
missing images.

270 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 270

Use the following steps to store images in an attachment field:

NOTE When adding the fields to the table, ensure that you are in Design View.
If you create a field from Datasheet View by typing in the data, you cannot
convert the field to an attachment field later.

1. Add a new table and name it USysRibbonImages. (You may use a different
name, but this name is used in the following code and examples).

2. Add the following fields to the new table:

■■ ID (an auto numbering field)

■■ ImageName (a text field)

■■ ImageFile (an attachment field)

3. Save and close the table.

4. With the table selected (but still closed), go to Create ➪ Forms ➪ Form and cre-
ate a new form based on the USysRibbonImages table.

Next, you need to fill in the details for each image and attach the image files to their
corresponding fields in the table. You are, in fact, simply adding records to the table.
After you have added a couple of records, the table (in Datasheet View) should look
similar to the table shown in Figure 8-7.

Figure 8-7: Adding image files as records in an
attachment field

With the images attached to the fields and the table ready, you can now write the
VBA code that will handle the swapping (loading) of the two images. We used the fol-
lowing code placed in a standard module (to add a standard module, click Create ➪

Other ➪ Macro ➪ Module):

‘Declaration of global variables

Dim grxIRibbonUI As IRibbonUI

Dim gblnPressed As Boolean

Dim gFrmImages As Form

Dim grstForm As DAO.Recordset2

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

‘ Open the form containing the records for the images

DoCmd.OpenForm “USysRibbonImages”, , , , acFormReadOnly, acHidden

Chapter 8 ■ Custom Pictures and Galleries 271

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 271

‘ Set the global form as being the USysRibbonImages form

Set gFrmImages = Forms(“USysRibbonImages”)

‘ Set the form recordset

Set grstForm = gFrmImages.Recordset

Set grxIRibbonUI = ribbon

End Sub

Sub rxtgl_getImage(control As IRibbonControl, ByRef returnedVal)

‘ If the toggleButton is not pressed, then load the Mexican flag by...

If Not (gblnPressed) Then

‘ ... finding the Mexican flag record...

grstForm.FindFirst “ImageName=’mex.bmp’“

‘ ... and setting the toggleButton image

‘ equal to the image attachment

Set returnedVal = gFrmImages.imagefile.PictureDisp

Else

‘ Otherwise, load the American flag image

grstForm.FindFirst “ImageName=’usa.bmp’“

Set returnedVal = gFrmImages.imagefile.PictureDisp

End If

End Sub

Sub rxtgl_Click(control As IRibbonControl, pressed As Boolean)

gblnPressed = pressed

grxIRibbonUI.InvalidateControl (“rxtgl”)

End Sub

This method works fine, but you should also know that all of the images can be
stored in a single record. You can do this in conjunction with using the USysRibbons
table to save time and keep customization-specific images in a single location. Keep in
mind that there may be more than one customization stored in the table, and each one
of these customizations may have its own set of images.

Now it is time to demonstrate this technique. Using your current file, follow
these steps:

1. Add a new field to the USysRibbons table and set its data type to attachment.
In our example, the field is called RibbonImages.

2. Create a new form based on the USysRibbons table. (By default it will have the
same name as the table; you can keep the name or change it if you like.)

3. Attach to this field all of the images that you want to use. You may want to
match the attachments to each UI you have on the table. The attachment field
will show the total number of pictures attached to it, as shown in Figure 8-8.

272 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 272

Figure 8-8: Adding image files as attachments
to a single record

Next, it is time to write the VBA that will handle loading the image for the
toggleButton. We used the following code in a standard module (you can create a
new module or add this to an existing module, whichever fits best with your stan-
dard practices and naming conventions):

Dim grxIRibbonUI As IRibbonUI

Dim gblnPressed As Boolean

Dim gAttachment As Attachment

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

‘ Open the form and set the attachment as being the attachment

‘ control on the form

DoCmd.OpenForm “USysRibbons”, , , , acFormReadOnly, acHidden

Set gAttachment = Forms(“USysRibbons”).Controls(“RibbonImages”)

Set grxIRibbonUI = ribbon

End Sub

Sub rxtgl_getImage(control As IRibbonControl, ByRef returnedVal)

‘ Set the image according to the need. Use the file name to

‘ refer to the image you want to load

Set returnedVal = gAttachment.PictureDisp(“usa.bmp”)

If Not (gblnPressed) Then Set returnedVal = _

gAttachment.PictureDisp(“mex.bmp”)

End Sub

Everything looks great except for one significant detail: the image is a BMP that
displays with a white background, which makes it look plain ugly.

As previously mentioned, you cannot load PNG images to the UI using the common
methods applied here; instead, you need to use Windows APIs. That is covered in the
next section, so keep working.

Chapter 8 ■ Custom Pictures and Galleries 273

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 273

Using GDI+ to Load PNG Files

This section describes how to use the GDI+ (Graphics Device Interface Plus) APIs to
load PNG files. However, because many of you may not be familiar with GDI+, we’ll
take just a moment to provide a definition before jumping into the examples.

GDI+ is one of the core subsystems of Windows. It is used as an interface for repre-
senting graphical objects when you need to send these objects to devices such as dis-
plays and/or printers. The GDI+ handles the rendering of various drawing objects,
and here we use it to render PNG objects so that they can be loaded onto the UI.

Unfortunately, you cannot use PictureDisp, as you did in the preceding section, to
refer to a PNG file, let alone use the LoadPicture function to load a picture from an
external location. You need to use some other technique to load your pictures.

The method you will use involves the implementation of some Windows APIs,
whose explanation is beyond the scope of this book. Moreover, the code for such a task
is quite long, so we will not repeat it here; however, you can find it in the accompany-
ing sample files in the download for this chapter on the book’ website.

Because the focus of this example is loading images, you can use the examples from
the previous sections and thereby use the same XML. Right now, it is only VBA code
that we’re concerned about.

The User Defined Function (UDF) based on GDI+ APIs is called LoadImage. Hence, if
you wish to load images in Excel or Word, all you need to do is replace the LoadPicture
function with the LoadImage function. The VBA code relating to the getImage attribute
would now look like the following after making the appropriate changes:

Sub rxtgl_getImage(control As IRibbonControl, ByRef returnedVal)

Set returnedVal = LoadImage(ThisWorkbook.Path & “\mex.png”)

If gblnPressed Then Set returnedVal = _

LoadImage(ThisWorkbook.Path & “\usa.png”)

End Sub

You can use the same method in Access, but be aware that you also have other
options. For example, suppose you used a table containing an attachment field to store
your PNG images (like the one you used in the first Access example). In that case, you
need to modify the rxtgl_getImage callback. You also need to declare and instantiate a
new variable.

To get started, open the VBE and, in the General Declarations area of your standard
module, declare the following variable:

Dim gstrTempFolderFile As String

For the onLoad event, you only need to set the IRibbonUI object. The form and
attachment objects used previously will not be necessary this time. The rxtgl_Click
event will remain the same. The big change occurs in the rxtgl_getImage callback. For
that, we use the following code:

Sub rxtgl_getImage(control As IRibbonControl, ByRef returnedVal)

Dim rstData As DAO.Recordset

Dim rstImages As DAO.Recordset

Dim db As DAO.Database

274 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 274

Dim objWSHShell As Object

Dim strSQL As String

Set db = CurrentDb

If gstrTempFolderFile = “” Then

Set objWSHShell = CreateObject(“WScript.Shell”)

gstrTempFolderFile = _

objWSHShell.SpecialFolders(“Desktop”) & “\temp.png”

End If

strSQL = “SELECT * FROM RibbonImages WHERE ImageName=’usa.png’“

If gblnPressed Then strSQL = _

“SELECT * FROM RibbonImages WHERE ImageName=’mex.png’“

On Error Resume Next

Set rstData = db.OpenRecordset(strSQL, dbOpenDynaset)

Set rstImages = rstData.Fields(“ImageFile”).Value

rstImages.Fields(“FileData”).SaveToFile gstrTempFolderFile

Set returnedVal = LoadImage(gstrTempFolderFile)

Kill gstrTempFolderFile

db.Close

rstData.Close

rstImages.Close

Set db = Nothing

Set rstData = Nothing

Set rstImages = Nothing

Set objWSHShell = Nothing

End Sub

Now that you have the code in front of you, take a moment to review what it
is doing:

1. You create a Shell object so that you can temporarily save the image to a location
in your hard drive. Our example uses the Desktop as the temporary location.

2. You define a SQL instruction to retrieve the image and save it to the defined
location (directly on the Desktop) using the SaveToFile method.

3. The image is loaded using the LoadImage function.

4. The temporary image is deleted from the Desktop.

5. You close with some good housekeeping techniques.

NOTE If you are using Windows Vista with User Account Control switched on,
you must choose an area of the hard drive for which you have permission to
write. To avoid undue complications, we chose the Desktop as the destination
of the temporary PNG file.

Chapter 8 ■ Custom Pictures and Galleries 275

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 275

Using the Gallery Control

The gallery control is new to Office 2007 and was conceived in conjunction with the
Ribbon. The gallery was designed as a way to graphically display user options; an
excellent example is the Styles gallery, which enables users to select a style by looking
at a graphical representation of the style, rather than a name.

You can use galleries for such tasks as organizing photos, accessing styles, or storing
color palettes. A gallery is the perfect control for a customization that requires and pro-
vides visual impact.

Figure 8-9 shows a photo gallery.

Figure 8-9: A two-column photo gallery

Note that you can also add buttons at the bottom of the gallery. With such versatility,
the uses for a gallery are limited only by your imagination.

Before we get into the code for a gallery, let’s briefly review how this example
works. It is advisable that you download all files for this chapter before continuing. We
have created various examples of image galleries for your reference.

As you can see from the image gallery examples in Access, each image represents an
item in the gallery — these items are loaded from images contained in a folder. When
you click on the icon to expand the gallery, it will list the images contained in the
folder; clicking on a specific image will open the folder that contains the actual image
files that are represented in the gallery. Note that our example only displays the PNG
version of the image in the gallery, but the folders actually contain both a PNG and a
BMP version of the selected photos.

When users click on an image, they will get a standard message from Access advis-
ing them that they are about to open the folder with the gallery images. Clicking Yes
will then open the selected folder using Windows Explorer, so it will show all the files,
not just the image files. At that point, the behavior of the files and images is controlled
by the default setting on the computer. If you click on an image, it will open with the

276 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 276

default program, such as Windows Picture and Fax Viewer (you can open the image
using its associated program directly from your project through a Shell function, for
example).

The markup for a gallery is as follows:

<gallery>

<!-- Your XML code goes here -->

</gallery>

A gallery is made up of static, dynamic, and optional child attributes. It requires
each of the static attributes shown in Table 8-2.

Table 8-2: Gallery Static Attributes

columns 1 to 1024 N/A

itemHeight 1 to 4096 Sub getItemHeight (control As
IRibbonControl, ByRef height)

itemWidth 1 to 4096 Sub getItemWidth (control As
IRibbonControl, ByRef width)

rows 1 to 1024 N/A

sizeString 1 to 1024 characters N/A

showItemImage true, false, 1, 0 N/A

showItemLabel true, false, 1, 0 N/A

A gallery may also have all of the dynamic attributes shown in Table 8-3.

Table 8-3: Gallery Dynamic Attributes

getItemCount 0 to 1000 Sub GetItemCount (control As
IRibbonControl, ByRef count)

getItemID Sub GetItemID (control As
IRibbonControl, index As Integer,
ByRef id)

getItemImage Sub GetItemImage (control As
IRibbonControl, index As Integer,
ByRef image)

Continued

VBA CALLBACK SIGNATURE
FOR DYNAMIC ATTRIBUTE

ALLOWED
VALUES

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

VBA CALLBACK SIGNATURE
FOR DYNAMIC ATTRIBUTE

ALLOWED
VALUES

Chapter 8 ■ Custom Pictures and Galleries 277

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 277

Table 8-3 (continued)

getItemLabel 1024 Sub GetItemLabel (control As
IRibbonControl, index As Integer,
ByRef label)

getItemScreentip 1024 Sub GetItemScreenTip (control As
IRibbonControl, index As Integer,
ByRef screentip)

getItemSupertip 1024 Sub GetItemSuperTip (control As
IRibbonControl, index As Integer,
ByRef supertip)

getSelectedItemID 1 to 1024 characters Sub GetSelectedItemID (control As
IRibbonControl, ByRef index)

getSelectedItemIndex 1 to 1024 Sub GetSelectedItemIndex (control As
IRibbonControl, ByRef index)

onAction Sub OnAction (control As
IRibbonControl, selectedId As String,
selectedIndex As Integer)

Finally, a gallery can take either or both of the objects shown in Table 8-4 as its child
elements; it can also have multiple instances of each.

Table 8-4: Child Elements of a Gallery

OBJECT WHAT IT IS FOR

button Add a clickable button to the gallery in the same way you can
add a clickable button to a group, for example.

item Adds an item to the gallery. The item can be a graphical
representation of some action that you want to perform, such
as a graphical representation of a chart layout.

Now that you’ve seen the list of gallery attributes, let’s take a look at the benefits and
uses of each category.

Example of Static Attributes
Using static values for attributes means that the customization cannot be modified
after the UI has been loaded. Remember that the Ribbon is built at design-time, not at
run-time. After the UI is loaded, limited changes may be possible if the control is
dynamic or has dynamic attributes.

VBA CALLBACK SIGNATURE
FOR DYNAMIC ATTRIBUTE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

278 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 278

Our demonstration walks through creating the gallery shown in Figure 8-9. In order
to create a gallery, follow these steps:

1. Create your Excel or Word file and ensure that it is macro-enabled.

2. Save and close the file. Open it using the CustomUI Editor.

3. Paste the following XML code into it:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtab”

insertBeforeMso=”TabHome”

label=”My Custom Tab”>

<group id=”rxgrp”

label=”My Photo Gallery”>

<!-- Starts the definition of our gallery-->

<gallery id=”rxgal”

label=”My Photo Gallery”

image=”img4”

columns=”2”

rows=”2”

itemWidth=”200”

itemHeight=”150”

showItemLabel=”false”

size=”large”>

<!-- Insert the photo gallery-->

<!-- Import the photos you want to use first-->

<item id=”rxitem0” label=”London 1” image=”img0”/>

<item id=”rxitem1” label=”London 2” image=”img1” />

<item id=”rxitem2” label=”London 3” image=”img2” />

<item id=”rxitem3” label=”London 4” image=”img3” />

<item id=”rxitem4” label=”London 5” image=”img4” />

<item id=”rxitem5” label=”London 6” image=”img5” />

<!-- Insert a button at the end of the gallery-->

<button id=”rxbtn”

imageMso=”RefreshStatus”

label=”Visit Wiley online...”

onAction=”rxbtn_Click”/>

</gallery>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

4. Load the images named img0 through img5 using the CustomUI Editor.

Chapter 8 ■ Custom Pictures and Galleries 279

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 279

C ROSS-RE FE RE NC E For more detailed instructions on this method of
loading custom images, refer to the section “Using the Custom UI Editor” earlier
in this chapter.

Example of Built-in Controls
A good use for built-in galleries is to consolidate into one location those tools you use
most often. For example, you may have galleries under the Home, Insert, and Page
Layout tabs that you want to bring together under a custom tab so that you have them
all in one place. That way, you don’t need to navigate from one tab to another, which
can be distracting and time consuming.

As you know, you refer to built-in controls by invoking the idMso attribute for the
control that you want. The following example brings together three gallery controls
onto a custom tab and group in Excel:

<box id=”rxbox1” boxStyle=”horizontal”>

<gallery idMso=”FontColorPicker” label=”AAA”/>

<labelControl id=”rxlbl1” label=”Font Color”/>

</box>

<box id=”rxbox2” boxStyle=”horizontal”>

<gallery idMso=”CellFillColorPicker”/>

<labelControl id=”rxlbl2” label=”Cell Color”/>

</box>

<box id=”rxbox3” boxStyle=”horizontal”>

<gallery idMso=”ChartTypeColumnInsertGallery” size=”normal”/>

</box>

Reviewing the code, you may have noticed two controls that we haven’t yet cov-
ered: labelControl and box. Chapter 10 explains the features and attributes of these
controls, as well as how to work with them. For now, we want to stay focused on work-
ing with images.

Figure 8-10 shows our new consolidation and custom group.

Figure 8-10: Consolidated built-in
galleries

280 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 280

Creating an Image Gallery On-the-Fly
The previous example is fine as long as you do not have to load a lot of images. As the
number of images in your gallery increases, you need to type more into the XML code.
Obviously, this is not only time consuming but also complicated to maintain.

The following example helps you avoid that extra typing. Although it is for Access,
it can also be used in Excel or Word. In fact, this example is drawn from the previous
one, with the difference that this dynamically loads the images. You will also notice
two new attributes, as well as one that you’ve already seen.

■■ getImage: You have already seen this attribute. You will use it to load the front
picture of the gallery (not the actual gallery pictures).

■■ getItemCount: This attribute is used to return the total number of items in the
gallery. You will use a constant in the VBA code to determine this value so that
you can easily change the item count if you need.

■■ getItemImage: This attribute is used to load the item image — that is, each
image that appears in the gallery.

Note that you do not run a loop through each item; instead, the Ribbon will call back
on the getItemImage attribute (hence the “callback” terminology) until it runs through
all the items determined for the getItemCount attribute. As it does so, it returns an
index number for each item’s image. You then use this index to grab and load each cor-
responding picture.

The XML code for this customization is as follows:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtab”

insertBeforeMso=”TabHomeAccess”

label=”My Custom Tab”>

<group id=”rxgrp”

label=”My Photo Gallery”>

<!-- Starts the definition of our gallery -->

<gallery id=”rxgal”

label=”My Photo Gallery”

columns=”2”

rows=”2”

itemWidth=”200”

itemHeight=”150”

getImage=”rxgal_getImage”

getItemCount=”rxgal_getItemCount”

getItemImage=”rxgal_getItemImage”

onAction=”rxgal_Click”

showItemLabel=”false” size=”large”>

<!-- Inserts a button at the bottom of the gallery -->

Chapter 8 ■ Custom Pictures and Galleries 281

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 281

<button id=”rxbtn”

imageMso=”RefreshStatus”

label=”Visit Wiley online...”

onAction=”rxbtn_Click”/>

</gallery>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

Save the XML code to your USysRibbon table in Access and add a standard module
to which you add the following callbacks:

Public Const gcItemCount = 6

Sub rxgal_getItemCount(control As IRibbonControl, ByRef returnedVal)

returnedVal = gcItemCount

End Sub

Sub rxgal_getItemImage(control As IRibbonControl, index As Integer, _

ByRef returnedVal)

Set returnedVal = _

LoadPicture(CurrentProject.Path & “\img” & index & “.bmp”)

End Sub

Sub rxgal_getImage(control As IRibbonControl, ByRef returnedVal)

Set returnedVal = LoadPicture(CurrentProject.Path & “\img4.tif”)

End Sub

Sub rxgal_Click(control As IRibbonControl, id As String, _

index As Integer)

MsgBox “You have click on image index number “ & index

End Sub

You are now probably questioning the BMP format. No worries — if you need to
load the suggested format (PNG) you can use the LoadImage function to do so. The
Access project that accompanies this example uses the LoadImage function to load
PNG files.

Conclusion

In this chapter, you learned the intricacies of dealing with custom images in a custom
UI. You learned what file formats are appropriate and which sizes are ideal, as well as
scaling and resolution of such files.

282 Part I ■ The Building Blocks for a Successful Customization

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 282

You went through the process of manually loading images, and used the LoadPicture
function and a more specialized UDF wrapper function based on a Windows API.

You also learned some unique ways of storing and retrieving images from an attach-
ment field of an Access table to be used in your UI and how to build custom galleries
and consolidate built-in galleries.

Now you are ready to add a very personal touch to an already personalized work-
ing environment, so go have fun with your photos and other images.

The next chapter describes how to create menus and how to use the splitButton
and dynamicMenu controls to organize your UI.

Chapter 8 ■ Custom Pictures and Galleries 283

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 283

91118c08.qxd:WileyRedTight 11/28/07 9:16 PM Page 284

285

In implementing the Ribbon, one of Microsoft’s primary goals was to provide a more
intuitive user interface and to move away from the old menu-driven paradigm that had
historically housed Office’s commands. Therefore, it may come as a bit of a surprise to
find out that menus are still very much alive and well. In fact, in selected scenarios they
actually form the most dynamic of all the controls that the Ribbon has to offer.

The comboBox and dropDown controls you learned about in Chapter 7 can be viewed
as menu-type controls, in that they both provide a label next to an empty box; and by
clicking that box, the user is provided a list of items to pick from.

This chapter deals with three other menu-type controls: the menu, the splitButton
and the dynamicMenu. Unlike the comboBox and dropDown controls, the menu and
splitButton controls provide their menus behind a button-style interface from which
the options become available. The dynamicMenu is similar in purpose to the menu, but
actually creates a full menu on-the-fly.

This chapter provides a detailed discussion of these three controls and includes
examples showing how to create and use each one. As you are preparing to work
through the examples in this chapter, we encourage you to download the companion
files. The source code and files can be found on the book’s website at www.wiley.com/
go/ribbonx.

Creating Menus

C H A P T E R

9

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 285

The menu Element

On the surface, the menu is very similar in purpose to the dropDown controls we created
in Chapter 7. A menu provides the user with a pre-defined list of options to pick from,
and like the dropDown it can incorporate both images and text. Why learn about the
menu control if the dropDown does the same thing?

One major limitation of a dropDown control is that it can only hold “items,” whereas
a menu control can hold a wide variety of other controls, including buttons, checkboxes,
galleries, and even another menu. Although we haven’t yet demonstrated these other
controls in the examples, you can appreciate that the capability to nest all of these ele-
ments within a menu gives it very rich formatting possibilities, and thereby makes the
dropDown seem quite plain in comparison.

In addition, the default display of the dropDown is an empty box, but the menu can be
configured with a “face” that is independent of the actual items that appear in its list.
Given that appearance and first impressions matter, being able to give the menu a face
is a rather attractive feature.

The menu control also has an attribute that can be used to draw lines between con-
trols in the menu. While the menuSeparator attribute is not explored until Chapter 10,
it is nonetheless one of the reasons why the menu control is used; used together, these
elements enable you to bring controls together in groups and then organize them into
subgroups.

Required Attributes of the menu Element
To create a menu element, you need to define one, and only one, of the id attributes
shown in Table 9-1.

Table 9-1: Required Attributes of the menu Element

ATTRIBUTE WHEN TO USE

id When creating your own menu

idMso When using an existing Microsoft menu

idQ When creating a menu shared between namespaces

Optional Static and Dynamic Attributes
with Callback Signatures
The menu element will optionally accept any one insert attribute shown in Table 9-2.

286 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 286

Table 9-2: Optional insert Attributes of the menu Element

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

In addition to the insert attribute, you may also include any of the optional static
attributes, or their dynamic equivalents, listed in Table 9-3.

Table 9-3: Optional Attributes and Callbacks of the menu Element

description getDescription (none) Sub GetDescription
(control As
IRibbonControl, ByRef
returnedVal)

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl,
ByRef returnedVal)

imageMso getImage (none) Same as above

itemSize (none) normal (none)

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

Continued

INSERT
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

WHEN
TO USE

1 to 3
characters

Insert at
end of group

normal,
large

Insert at
end of group

1 to 1024
characters

1 to 1024
characters

Insert at
end of group

true, false,
1, 0

Insert at
end of group

1 to 1024
characters

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Chapter 9 ■ Creating Menus 287

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 287

Table 9-3 (continued)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

showImage getShowImage true Sub GetShowImage
(control As
IRibbonControl, ByRef
returnedVal)

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

size getSize normal Sub GetSize (control
As IRibbonControl,
ByRef returnedVal)

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

Allowed Children Objects of the menu Element
The menu element will accept any combination of the following child objects:

■■ button

■■ checkbox

■■ control

■■ dynamicMenu

■■ gallery

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

normal,
large

true, false,
1, 0

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

288 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 288

■■ menu

■■ menuSeparator

■■ splitButton

■■ toggleButton

Parent Controls of the menu Element
The menu element may be used within the following controls:

■■ box

■■ buttonGroup

■■ dynamicMenu

■■ group

■■ menu

■■ officeMenu

■■ splitButton

Graphical View of menu Attributes
Figure 9-1 displays a custom Ribbon group in Word with a menu control. Because the
menu control is shown in its expanded form, you cannot see the screentip, supertip, or
keytip associated with the custom Save As menu, but they are available. The figure
also illustrates the effect of the itemSize attribute, showing the menu items with a set-
ting of “normal,” rather than “large.”

Figure 9-1: Visible attributes of the menu element

Despite the fact that this is a completely customized Save As menu, it will probably
look quite intuitive. The “97-2003 Files” and “2007 Files” headers are both menuSeparator
elements, which instantly add clarity by grouping the controls. The menuSeparator can

Chapter 9 ■ Creating Menus 289

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 289

also provide the dividing line, as shown in the heading lines “97-2003 Files” and “2007
Files.” Chapter 10 explains how to add the various menuSeparator elements to a
customization.

Using Built-in Controls
Microsoft exposes several menu controls for our use, so let’s take a look at how you
would go about using one of them. The Prepare menu is available in both Excel and
Word. It is usually located on the Office Menu (see Figure 9-2).

Figure 9-2: The Prepare menu in Excel

However, let’s assume that due to frequent usage, it would save the users time if this
were conveniently located on a custom Ribbon tab instead of being buried on the
Office button. The first thing that you would want to do is create a new file to hold the
code. Open either Excel or Word, create a new document, and save it in the macro-free
file format (xlsx or docx, respectively). That’s a benefit of working with a built-in con-
trol. No VBA code is required to make this work, so the file can be saved in a macro-
free format, and the customizations will be fully functional. Once the file is saved, close
the application.

C ROSS-RE FE RE NC E Chapter 17 provides a more complete discussion of
security and enabling macros.

Launch the CustomUI Editor and open the file within it. Apply the RibbonBase tem-
plate that you created in Chapter 2, and insert the following code between the <tabs>
and </tabs> tags:

290 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 290

<tab id="rxtabDemo"

label="Demo"

insertBeforeMso="TabHome">

<group id="rxgrpDemo"

label="Demo">

<menu idMso="FilePrepareMenu"

size="large"/>

</group>

</tab>

Once you have validated your code, save it and close the file in the CustomUI Editor.
Reopen the file in its native application and check the Demo tab. As shown in Figure 9-3,
the menu has smoothly moved into a Ribbon group.

Figure 9-3: The “FilePrepareMenu” on a custom tab

Of course, this is actually just a copy of the Prepare menu, so it will still be in the
default location under the Office button. That is only logical, as users are accustomed
to finding commands where Microsoft places them. In other words, unless you use the
startFromScratch setting, discussed in Chapter 13, customizations will merely create
additional links to built-in commands.

Creating Custom Controls
With so many controls on the Ribbon, it is nice to know that you can use Microsoft’s built-
in controls pretty much wherever you’d like. It is relatively easy to provide convenient,
custom groups of the controls that an individual (or department) uses the most. However,
as you begin to design your own user interfaces, it will quickly become apparent that the

Chapter 9 ■ Creating Menus 291

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 291

built-in controls are just not enough. This is why we now turn our focus to some practical
examples that demonstrate why you might want to create custom menu controls, and
how you can do that for each of the three applications. The menu control is used in a vari-
ety of examples throughout the book, so you’ll have more opportunities to use it in con-
junction with other controls. In fact, you’ll use it later in this chapter with the splitButton
control.

An Excel Example

For this example, we create a menu that holds a few useful Internet links. It will be
contained on a custom group called “Ribbon Help” and placed at the end of the
Developer tab.

Naturally, Microsoft cannot provide us with this exact menu, because we want it to
contain our preferred links. That means that we need to create the entire menu from
scratch. That requires VBA code to react to the selected items, so open Excel, create a
new workbook, and save it in the macro-enabled (xlsm) format. After saving the file,
close Excel and open the file in the CustomUI Editor.

Apply the RibbonBase template (created in Chapter 2) to the file, and enter the fol-
lowing code between the <tabs> and </tabs> tags:

<tab idMso="TabDeveloper">

<group id="rxgrpRibbonHelp"

label="Ribbon Help">

<menu id="mnuResources"

imageMso="HyperlinkInsert"

size="large"

label="Useful Links">

<menuSeparator id="rxmSepRibbon"

title="RibbonX Resources"/>

<button id="rxbtnMSDN"

label="MSDN Ribbon Developer Centre"

onAction="rxsharedLinks_click"

tag="http://msdn2.microsoft.com/↵
en-us/office/aa905530.aspx"/>

<button id="rxbtnKenPuls"

label="The Ken Puls blog (Excel MVP)"

onAction="rxsharedLinks_click"

tag="http://www.excelguru.ca/blog/2006/12/01/↵
ribbon-example-table-of-contents"/>

<button id="rxbtnRondeBruin"

label="Ron deBruin’s Site (Excel MVP)"

onAction="rxsharedLinks_click"

tag="http://www.rondebruin.nl/ribbon.htm"/>

<button id="rxbtnAccessFreak"

label="Access Freak (Access MVP)"

onAction="rxsharedLinks_click"

tag="http://www.access-freak.com"/>

<button id="rxbtnPatrickSchmid

292 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 292

label="Patrick Schmid’s RibbonX Forum"

onAction="rxsharedLinks_click"

tag="http://pschmid.net/office2007/forums"/>

<menuSeparator id="rxmSepAuthors"

title="Authors Sites"/>

<button id="rxbtnAuthorRobertMartin"

label="Robert Martin"

onAction="rxsharedLinks_click"

tag="http://www.msofficegurus.com/"/>

<button id="rxbtnAuthorKenPuls"

label="Ken Puls"

onAction="rxsharedLinks_click"

tag="http://www.excelguru.ca/"/>

<button id="rxbtnAuthorTeresaHennig"

label="Teresa Hennig"

onAction="rxsharedLinks_click"

tag="http://www.DataDyanmicsNW.com/"/>

</menu>

</group>

</tab>

This code creates a menu that lists seven websites in all. (Four of those sites have
Ribbon-specific information, while the last three are the authors’ own sites.) The
menuSeparator effectively distinguishes the two groupings. We explain how to use the
menuSeparator in Chapter 10.

Notice that we have used the same callback for every menu control. While this is not
necessary, it helps to make the VBA code very concise. Also note that we store the
actual URLs in the tag attribute. The reason for that will become very clear when you
read the VBA code.

C ROSS-RE FE RE NC E The standard processes for working with callbacks
were discussed in detail in Chapter 5. If you feel a little less confident with any
of the other steps, a quick review of Chapters 3 and 4 will provide a refresher
on XML and VBA.

As usual, validate the code to ensure that no typing errors were made and then save
the file. Before closing the file in the CustomUI Editor, don’t forget to generate and
copy the callback signature.

Reopen the file in Excel, launch the VBE, and add a new standard module to the pro-
ject. Paste your callback signature within the new module and adjust it to read as follows:

‘Callback for rxsharedLinks onAction

Sub rxsharedLinks_click(control As IRibbonControl)

ActiveWorkbook.FollowHyperlink _

Address:=control.Tag, _

NewWindow:=True

End Sub

Chapter 9 ■ Creating Menus 293

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 293

This code launches a hyperlink in a new Web window. It is very simple, but why do
we only need the one line? Will it work for all the different menu items? The answer to
this question is yes, of course, and it all revolves around how we constructed the tag
property.

When a callback is fired, the control object is passed to the procedure. This object
has three properties: context, id, and tag. A callback will normally query the ID of the
control and react accordingly, but in this case it queries the tag because that is where we
stored the URL. The hyperlink is then provided for whichever control is clicked. This
eliminates the need to worry about which control was actually fired, and the appro-
priate hyperlink is launched.

Try it out. Save the code, return to the main Excel user interface, and click the Devel-
oper tab. As shown in Figure 9-4, the Useful Links menu is now at the end. Try clicking
one of the items to be taken to the site listed.

Figure 9-4: A Useful Links menu on the Developer tab

NOTE While the formatting of the individual items was left quite plain in the
example, you could just as easily assign images to the buttons to spruce it up a
little. Of course, URLs do change, but that will be left to you to maintain.

A Word Example

To demonstrate use of the menu in Word, we take an existing group and create a cus-
tom menu to hold all of its controls. Our goal is to thin out the Document Views group
on the View tab so that we have more room to display our own groups.

This portion only uses built-in child controls, so it won’t require VBA. This means
that we’ll start by creating a new Word document, which can be saved in the macro-
free docx format. After saving the file, close the document in Word and open it in the
CustomUI Editor. Apply the RibbonBase template and place the following code
between the <tabs> and </tabs> tags:

<tab idMso="TabView">

<group idMso="GroupDocumentViews"

294 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 294

visible="false"/>

<group id="rxgrpDocViews"

label="Document Views"

insertBeforeMso="GroupDocumentViews">

<menu id="rxmnuDocViewsMenu"

itemSize="normal"

imageMso="FilePrintPreview"

label="Document Views"

size="large">

<toggleButton idMso="ViewPrintLayoutView"/>

<toggleButton idMso="ViewFullScreenReadingView"/>

<toggleButton idMso="ViewWebLayoutView"/>

<toggleButton idMso="ViewOutlineView"/>

<toggleButton idMso="ViewDraftView"/>

</menu>

</group>

</tab>

Notice that we begin by hiding the built-in Document Views group and creating our
own custom group with the same name. This is a sneaky way of imposing our own
mask on what the user assumes is still the built-in Microsoft group. We’ve also inserted
our group before the group that we hid, essentially taking its place. This may seem to
contradict one of the basic premises regarding consistency, but sometimes simplicity or
the need for absolute control of the environment trumps consistency. For those situa-
tions, you’ll want to know about this technique.

As you can also see, we’ve provided the Print Preview image to be the “face” of the
menu. The only purpose this image serves, along with the label, is to give the menu a
pretty appearance. Within the actual menu itself, we simply nested each of the toggle-
Button controls that Microsoft uses on the Document Views group.

Validate the code before saving the file. When you are done, close the file in the
CustomUI editor and open it in Word. Browse to the View tab to see the changed Rib-
bon, as shown in Figure 9-5.

Figure 9-5: The Document Views controls moved into
a menu

As you can see, the document Views group is now holding its commands in a menu,
not as individual controls displayed on the Ribbon.

Chapter 9 ■ Creating Menus 295

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 295

An Access Example

This example adds functionality to one of our previous examples by adding a menu
that enables us to look up an author by country. The menu we will use offers a
pre-programmed selection of the countries in the database. It does this by creating
and updating a query on-the-fly.

Rather than start this whole example from scratch, we build on the toggleButton
example from Chapter 6, where we built the Form Tools menu. If you completed
this example yourself, then open it now. If not, feel free to download a copy of
toggleButton-FormTools.accdb from the book’s website.

After you have the database open on your system, enter the USysRibbons table and
copy the code from the RibbonXML field of the first record. Open the CustomUI Editor
and paste the code within. Browse through the XML code until you come across the fol-
lowing two lines:

</group>

<group id=”rxgrpTools”

You probably recognize that this is the closing tag for one group and the opening tag
for the Tools group. It is between these two lines that we are going to insert the
required XML code to create our menu, the intention being to place the menu in a cus-
tom group immediately before the Tools group. Place the following XML code between
those two lines:

<group id=”rxgrpDataMining”

label=”Data Mining”>

<menu id=”rxmnuAuthByCountry”

label=”Authors by Country”

imageMso=”OutlookGlobe”

size=”large”

itemSize=”large”>

<button id=”rxbtnAuthByCountry_Brazil”

label=”Brazil”

tag=”Brazil”

onAction=”rxsharedAuthByCountry_click”/>

<button id=”rxbtnAuthByCountry_Canada”

label=”Canada”

tag=”Canada”

onAction=”rxsharedAuthByCountry_click”/>

<button id=”rxbtnAuthByCountry_USA”

label=”United States of America”

tag=”USA”

onAction=”rxsharedAuthByCountry_click”/>

</menu>

</group>

As you can see, this code adds a new group, Data Mining, and populates it with a
static menu of pre-defined countries. All the countries listed here will show up in our
menu, but only those countries will appear. In other words, if you added “France” as a

296 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 296

value in the tblAuthors table, it would still not show up in the menu, as it has not been
specified in the XML.

Another point worth noticing here is that, like the Excel example, this uses a single
shared callback to control what happens when a menu item is clicked.

NOTE We could have placed this XML immediately before or after any group
on the custom tab and still have it show up where we wanted it, simply by
using one of the attributes; for example, insertBefore=”rxgrpTools”.

At this point, validate the XML code to ensure that it is well formed and then save
and copy it all. Now we’re ready to return to Access and replace the existing code in the
USysRibbons table.

TI P Although it’s theoretically possible to just copy the new custom group
portion of the XML code from the CustomUI Editor and insert it into the existing
code in the Access database, it is recommended that you not take this
approach. An Access field will only expand to display a limited amount of data,
so it can become difficult to find exactly where you need to place your XML
code. That can cause issues with XML validity, which was just checked with the
CustomUI Editor. Rather than risk pasting into the wrong spot, it is faster and
easier to just replace the entire XML code base.

After the XML has been successfully replaced with the updated version, it is time to
create the required VBA code to react to the menu clicks. Generate and copy the
rxsharedAuthByCountry_click callback in the CustomUI Editor. Head back to Access,
double-click the modRibbonX code module in the main Access window, and scroll down
to the very bottom of the VBA module. Paste the callback signature there and modify
it to read as follows:

Sub rxsharedAuthByCountry_click(control As IRibbonControl)

‘Callback for rxbtnAuthByCountry_Brazil onAction

Const cstrQueryName As String = “Query Authors”

Dim db As DAO.Database

Dim qry As DAO.QueryDef

Dim strSQL As String

strSQL = “SELECT tblAuthors.[Author Name] “ & _

“FROM tblAuthors “ & _

“WHERE tblAuthors.[Country]=’” & control.Tag & “‘“

Set db = CurrentDb

On Error Resume Next

db.QueryDefs.Delete cstrQueryName

Set qry = db.CreateQueryDef(cstrQueryName, strSQL)

Chapter 9 ■ Creating Menus 297

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 297

DoCmd.OpenQuery qry.Name, acViewNormal

db.Close

Set db = Nothing

End Sub

This routine will launch a query called “Query Authors”, showing a list of authors
from the country selected from the menu. Let’s examine how this works.

First, a SQL query is created that requests a list of the names of each author from
tblAuthors and filters the list on the country specified. By using the tag attribute of the
control, you can ascertain which country this should be.

Next, the code sets a variable to hold a pointer to the database that you are working
with and deletes any query that has this name — just in case one exists. (The query’s
name is defined at the beginning of the procedure and is held in the cstrQueryName
constant.)

The routine then creates a new query, with the specified name, by using the SQL
string that was defined earlier in the code. This new query is then launched, enabling
the user to view the results. At that point, the reference to the database is closed and
released.

We have finished writing our code, so it is now time to compile it to catch any typ-
ing errors. From the Debug menu, click Compile [your database’s filename].

To get this to work, you will, of course, need to save your VBA code, and then close
and reopen the database (in order for the Ribbon modifications to become linked to the
database UI). Upon doing so, you will see the new menu on your My Tools tab, as
shown in Figure 9-6.

Figure 9-6: Getting a list of authors
by country

Clicking the menu item launches a list of all authors who come from the specified
country. After you have tried it out for yourself, close the query and open the form
frmAuthors. If you have not already done so, add your own name to the list of authors.
For the country, enter one of the countries that are pre-defined in the XML: Brazil,
Canada, or USA. Close frmAuthors, and select your chosen country from the list. You
should now see at least two entries in the query.

298 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 298

Chapter 9 ■ Creating Menus 299

Finally, close the query, go back into frmAuthors, and locate your record. This time,
change the country to one that is not specified in the XML code. (The country is not
important, as long as it is not Brazil, Canada, or USA, so why not pick your preferred
vacation destination?) Close the form again and check the menu. Nothing is different
and there are still only three countries listed.

As logic dictates, while the results of the query are dynamic and include changes to
data, the actual menu structure does not change. The only way to have an additional
country listed is to edit the XML and then reload the database. At that point, the menu
will list all of the countries in the XML, and all related records would then appear
when a country is chosen from the menu.

The splitButton Element

On the outside, the splitButton is virtually identical to the menu element. As with a menu,
when a user clicks on a splitButton it will either implement a command or a cascading
list will display additional options. (See related comments in the “Allowed Children”
section.) In fact, the only visible difference between the menu and splitButton controls is
the horizontal line that gives the splitButton its name. Apart from that, the differences
are all under the hood in the XML code.

Unlike the menu, which can have lines between items, the splitButton has no such
formatting attributes. As a general rule, therefore, the splitButton is typically used to
keep like commands together, rather than to organize a variety of commands into log-
ical groups and subgroups.

The splitButton also offers the capability to provide a button or toggleButton as
the “Face” control. While this button functions very much like using the menu’s
default attributes to create the control’s face, the ability to use a toggleButton in the
splitButton is part of what makes it unique.

In truth, aside from the dividing line in the appearance, the menu can do all but one
thing that the splitButton can, and a whole lot that it can’t. The one place where the
splitButton does outshine the menu is in the ability to face the splitButton control
with a toggleButton. In fact, this may be the main reason to choose a splitButton con-
trol over a menu control.

Required Attributes of the splitButton Element
To create a splitButton element, you need to define one, and only one, of the id attrib-
utes shown in Table 9-4.

Table 9-4: Required Attributes of the splitButton Element

ATTRIBUTE WHEN TO USE

id When creating your own splitButton

idMso When using an existing Microsoft splitButton

idQ When creating a splitButton shared between namespaces

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 299

Optional Static and Dynamic Attributes with Callback
Signatures
The splitButton element optionally accepts any one insert attribute shown in
Table 9-5.

Table 9-5: Optional insert Attributes of the splitButton Element

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

In addition to the insert attribute, you may also include any combination of the
optional static attributes, or their dynamic equivalents, shown in Table 9-6.

Table 9-6: Optional Attributes and Callbacks of the splitButton Element

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

true, false,
1, 0

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

WHEN
TO USE

DEFAULT
VALUE

ALLOWED
VALUES

INSERT
ATTRIBUTE

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

1 to 3
characters

300 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 300

Table 9-6 (continued)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

Allowed Children Objects of the splitButton Element
According to Microsoft’s original documentation, found at MSDN, the splitButton
element must contain one button or one toggleButton (to be the face of the control), as
well as one menu element, which must be defined after the button or toggleButton
control. In reality, the button or splitButton is actually optional, which is why our
introduction indicated that the splitButton could either directly implement a command
or cascade a list of additional commands. Whether intentional or a bug, the omission
of the button or toggleButton forces the first item in the splitButton’s menu to
become the face of the splitButton control. Thankfully, the item will still appear in the
list, so the intended functionality is preserved.

Parent Objects of the splitButton Element
The splitButton control may be used in the following controls:

■■ box

■■ buttonGroup

■■ dynamicMenu

■■ group

■■ menu

■■ officeMenu

Graphical View of splitButton Attributes
Unfortunately, it is impossible to capture any visible attributes of the splitButton
element, as all but the keytip attribute are actually controlled by the button or
toggleButton used to place a face on the control. Figure 9-7 displays the standard
PivotTable splitButton control used in Excel.

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

1 to 1024
characters

Chapter 9 ■ Creating Menus 301

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 301

Figure 9-7: The splitButton element in use

As you can see, the horizontal separator and two-tone effect are quite distinguishing
and are not offered with any other control.

Using Built-in Controls
Microsoft provides a wide variety of splitButton controls, one of which is the File
SaveAs control, used in both Excel and Word. Although this splitButton resides on the
Office Menu, we will replicate it as a custom Ribbon tab.

To begin, open either Excel or Word and create a new file. Save it as a macro-free file
(either xlsx or docx) because this won’t require any VBA code. Close the file and open
it in the CustomUI Editor.

After applying the RibbonBase template to the file, place the following code between
the <tabs> and </tabs> tags:

<tab id=”rxtabDemo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”Demo”>

<splitButton idMso=”FileSaveAsMenu”

size=”large”/>

</group>

</tab>

Figure 9-8: The SaveAs splitButton on a custom tab

302 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 302

Validate the code as you usually would, save the file, and close it in the CustomUI
Editor. Now reopen the file in its original application and browse to the newly created
Demo tab, shown in Figure 9-8. Go ahead and use this to save the file. The controls
work just as they do on the Office Menu. Moreover, as we mentioned earlier, they are
indeed still on the Office Menu.

As you can see, it is relatively easy to take entire groups of built-in controls and
place them where they will be most convenient for users.

Creating Custom Controls
Of course, you can anticipate that the built-in controls will become insufficient at some
point. Therefore, we will work through some examples demonstrating how to create
some splitButton controls from scratch. A different example is used for each application.

An Excel Example

In this example, we add a splitButton that enables us to insert new sheets in our
workbook. Rather than right-click on the Sheet tab, choose Insert, and then pick a sheet
type, we enable users to insert a new sheet by using a splitButton on the Insert tab. In
addition, because inserting a sheet is likely a frequent task, we put our new control at
the very beginning of the Ribbon.

Of course, Microsoft hasn’t given us any default controls that complete the entire
process, so we need to write a little VBA code to make it happen. Open Excel, create a
new workbook, and save it in the macro-enabled (xlsm) format. Close Excel and open
the file in the CustomUI Editor.

Next, you’ll want to save yourself some typing by applying the RibbonBase tem-
plate. Between the <tabs> and </tabs> tags, enter the following code:

<tab idMso=”TabInsert”>

<group id=”rxgrpInsertSheet”

label=”Sheets”

insertBeforeMso=”GroupInsertTablesExcel”>

<splitButton id=”rxsbtnInsertSheet”

size=”large”>

<button id=”rxbtnSplitFace”

label=”Sheets”

imageMso=”CreateReportFromWizard”/>

<menu id=”mnuInsertSheet”>

<button id=”rxbtnWorksheet”

label=”Insert Worksheet”

imageMso=”GetExternalDataFromText”

onAction=”rxbtnInsertSheet_click”/>

<button id=”rxbtnChartsheet”

label=”Insert Chart Sheet”

imageMso=”PivotChartType”

onAction=”rxbtnInsertSheet_click”/>

</menu>

Chapter 9 ■ Creating Menus 303

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 303

</splitButton>

</group>

</tab>

Notice that the actual splitButton holds a button that lacks an onAction callback.
This is a very important aspect, as the sole purpose of this button is to be the face
(image) on the splitButton. This initial element basically holds the image and the
words that you see, and that’s it.

In addition, right after the button is a menu. This particular menu holds only two
buttons: Insert Worksheet and Insert Chart Sheet. As a matter of convenience, they
share a callback signature.

Now that we’re done perusing the code, make sure you validate it before saving.
Copy the callback signature, close the CustomUI Editor, and reopen the file in Excel.
Enter the VBE, insert a new standard module, and paste your callback signature. You
should then modify it to read as follows:

‘Callback for rxbtnWorkSheet onAction

Sub rxbtnInsertSheet_click(control As IRibbonControl)

Select Case control.ID

Case Is = “rxbtnWorksheet”

ActiveWorkbook.Worksheets.Add

Case Is = “rxbtnChartsheet”

ActiveWorkbook.Charts.Add

End Select

End Sub

As you can see, the callback is set up to immediately query the ID of the control that
has been fired. If it is the rxbtnWorksheet control, then it will insert a new worksheet in
the file. If it is the rxbtnChartsheet control, then it will insert a new chartsheet instead.

TI P You may have also noticed that we haven’t included error handling. This
is worth mentioning because, in this particular case, it isn’t needed. Because
this is a static menu with defined controls, only two options are available. In
addition, because we’re handling them both with Select Case statements, this
essentially provides the error handling as well.

Close the VBE, save the file, and navigate to the Insert menu, which now looks like
what is shown in Figure 9-9.

Figure 9-9: A custom splitButton in Excel

304 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 304

As you’d expect, the splitButton is there waiting for you to use. Give it a try and you’ll
see that it inserts new sheets exactly as if you followed the original process to do so.

A Word Example

In an effort to show the similarities and differences between the menu and splitButton
elements, this example uses the same premise as the example used to showcase a cus-
tom Word menu in the first section of this chapter.

If you followed along with the previous Word example, then make a copy of the
file you created and start with that. Alternately, download the menu-Custom
DocViewsMenu.docx file from the book’s website. Open the file in the CustomUI
Editor and modify the entire rxgrpDocViews element to read as follows:

<menu id=”rxmnuMenuVersion”

itemSize=”normal”

imageMso=”FilePrintPreview”

label=”Menu Version”

size=”large”>

<toggleButton idMso=”ViewPrintLayoutView”/>

<toggleButton idMso=”ViewFullScreenReadingView”/>

<toggleButton idMso=”ViewWebLayoutView”/>

<toggleButton idMso=”ViewOutlineView”/>

<toggleButton idMso=”ViewDraftView”/>

</menu>

<splitButton id=”rxsbtnSplitVersion”

size=”large” showLabel=”false”>

<button id=”rxbtnSplitVersionFace”

imageMso=”FilePrintPreview”

label=”Split Button Version”/>

<menu id=”rxmnuSplitVersionMenu”

itemSize=”normal”>

<toggleButton idMso=”ViewPrintLayoutView”/>

<toggleButton idMso=”ViewFullScreenReadingView”/>

<toggleButton idMso=”ViewWebLayoutView”/>

<toggleButton idMso=”ViewOutlineView”/>

<toggleButton idMso=”ViewDraftView”/>

</menu>

</splitButton>

While the menu control only requires minor modifications to make it look like a pol-
ished menu, it takes a few extra lines to create a basic menu using a splitButton. In
addition, some nice features such as the menuSeparator (discussed in Chapter 10), just
aren’t available to a splitButton.

As usual, the next step is to validate the code, save it, and close the CustomUI Edi-
tor. Open the file in Word and navigate to the View tab. You will now see two virtually
identical controls side by side in our custom group, as shown in Figure 9-10.

Chapter 9 ■ Creating Menus 305

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 305

Figure 9-10: splitButton version of the Document Views menu

Do you notice the difference between the two? It comes down to only the thin hori-
zontal line that separates the image from the text on the splitButton control. This line
is not evident on the menu control.

An Access Example

To begin this example, download the partially constructed file (splitButton-Base-
File.accdb) from the book’s website. This file holds the USysRibbons table for this
exercise, as well as two reports already prepared with their code modules.

In this example, we create a splitButton with a toggleButton as the main face of the
button. The toggleButton shows as active when either or both reports are open, but
inactive when the reports are closed. This is a nifty little trick that you can easily apply
to other situations.

Once you have the database file downloaded and open, you need to add the code to
the USysRibbons table to create the new UI. Open the USysRibbons table and replace
all of the existing XML in the MainRibbon’s RibbonXML field with the code listed here:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtab”

insertBeforeMso=”TabHomeAccess”

label=”My Custom Tab”>

<group id=”rxgrpReporting”

label=”Reporting Tools”>

<splitButton id=”rxsbtnReporting”

size=”large”>

<toggleButton id=”rxtglFace”

imageMso=”LookUp”

label=”Open Report”

getPressed=”rxtglFace_getPressed”/>

<menu id=”rxmnuReporting”

label=”Reporting Menu”

imageMso=”CreateReportInDesignView”

itemSize=”large”>

<button id=”rxbtnAListing”

306 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 306

label=”Account Listing”

imageMso=”CreateReportFromWizard”

onAction=”rxbtnshared_Click”/>

<button id=”rxbtnASummary”

label=”Account Summary”

imageMso=”CreateReport”

onAction=”rxbtnshared_Click”/>

</menu>

</splitButton>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

TI P Remember that when you are building your XML from scratch, you should
do it in the CustomUI Editor. This enables you to validate it before copying it to
Access, and the editor will also generate the callback signatures.

As you can see from reading the code, a new group is created on a custom tab. Our
splitButton will be housed in that group, and will contain a list of two individual
menu items that trigger a shared callback. Of course, we need to update the
toggleButton to ensure that it indicates whether one of the reports is open,
so we include the onLoad callback; and because it needs to check the state of the
toggleButton within the splitButton control, the getPressed callback is used as well.

Once you are confident that your XML code has been typed correctly, close the
USysRibbons table and we will turn our attention to writing the necessary VBA code.
We need to start by inserting a new code module to hold our code, so click the Create
tab on the Ribbon and choose Macro\Module.

As you’ll recall, we need the onLoad statement to fire before anything else, so we’ll
deal with that first. Add the following code to the end of the module:

Public rxRibbon As IRibbonUI

‘Callback for customUI.onLoad

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set rxRibbon = ribbon

End Sub

That part was fairly simple, so let’s move on to something a little more challenging:
the getPressed callback. The beauty of our scenario is that we know we only have two
reports, which makes it tempting to consider using a public variable. Why not set up a
public variable, adding 1 to it each time a report is opened, and subtracting 1 each time
a report is closed. That way, we will always know that if the number is greater than
zero, then a report must be open.

Chapter 9 ■ Creating Menus 307

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 307

To do this, you need to create a new public variable, in addition to the getPressed
routine. Insert the following code between the public variable declaration for the
rxRibbon object and the onLoad callback signature:

Public lReportsOpen As Long

‘Callback for rxtglFace getPressed

Sub rxtglFace_getPressed(control As IRibbonControl, ByRef returnedVal)

If lReportsOpen > 0 Then

returnedVal = True

Else

returnedVal = False

End If

End Sub

Next up, you need to write a routine to react when a menu item is selected. This rou-
tine needs to open the form and increment the lReportsOpen variable by 1. Naturally,
it should also invalidate the toggleButton to ensure that it is displaying in its pressed
state when a user does open a report. You need to be careful that you don’t increment
the counter when the button is clicked but it does not open a new instance of a report.
(If you did, you would not have an accurate count for resetting to the untoggled state
when the count reaches 0.) To accomplish all of this, use the following callback, which
makes use of a function to check whether the report has already been opened. Place
these routines somewhere after the public variable declarations:

Sub rxbtnshared_Click(control As IRibbonControl)

Dim sReport As String

‘Record name of report to open

Select Case control.Id

Case “rxbtnAListing”

sReport = “rptAccountListing”

Case “rxbtnASummary”

sReport = “rptAccountSummary”

End Select

If IsReportOpen(sReport) = False Then

‘Open new report, increment report counter and refresh

DoCmd.OpenReport sReport, acViewReport

lReportsOpen = lReportsOpen + 1

rxRibbon.InvalidateControl (“rxtglFace”)

Else

MsgBox “That report is already open!”

End If

End Sub

Function IsReportOpen(ByVal strReportName As String) As Boolean

IsReportOpen = False

If SysCmd(acSysCmdGetObjectState, acReport, strReportName) <> 0 Then

308 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 308

Chapter 9 ■ Creating Menus 309

If Reports(strReportName).CurrentView <> 0 Then

IsReportOpen = True

End If

End If

End Function

We’re almost finished setting up the code, but there is one thing left to do: You need
to decrement the lReportsOpen variable each time a report is closed. If you had several
reports to deal with, you would write your own class module to monitor when any
report is unloaded, but since there are only two that would be overkill here.

While you are still in the VBE, browse to the Report_rptAccountListing and
Report_rptAccountSummary class modules. Double-click them to open their code win-
dows (an alternative method is to right-click and choose View Code). At the end of
each of these class modules, paste the following code:

Private Sub Report_Close()

lReportsOpen = lReportsOpen - 1

rxRibbon.InvalidateControl (“rxtglFace”)

End Sub

Finally, it is time to compile the code, close the VBE, and then close the database itself,
as you need to reload the entire database to have it compile the new XML customiza-
tions. Upon returning to the database, look at My Custom Tab. You’ll now find the split
button that enables you to open the reports. Notice that it is currently not glowing.
Selecting a report, however, will toggle it to “pressed,” as shown in Figure 9-11. Open-
ing the other report will have no effect at this point, but closing them both will set the
toggleButton back to its unselected state.

Figure 9-11: The splitButton, showing that a report is open

The Open Report toggleButton is toggled on when a report is opened, and, thanks
to our nifty code to count the number of open reports, the Open Report button will
“glow” until all reports are closed.

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 309

The dynamicMenu Element

The main purpose of the dynamicMenu is to build a menu “on-the-fly” from XML code
that is fed back to the control through a VBA callback.

The dynamicMenu is, without a doubt, the crown jewel of flexibility in the Ribbon.
Although it can take a fair amount of work to set up, the dynamicMenu offers unparal-
leled options that give it a major role in many Ribbon customizations. It is so robust
that it is a shame to not find comparable functionality in both tabs and groups.

The dynamicMenu works by using a getContent callback to request the XML code
needed to build a Ribbon menu. The XML for ID, images, callback signatures, and all
other attributes can be compiled by VBA code and passed to the dynamicMenu. This
code is then implemented just as if it were a menu that had been coded into the XML
structure typically used to build the Ribbon customization, thereby allowing for a
robust and remarkably dynamic user experience.

The potential of this control is vast — from creating an updated list of all workbooks
and worksheets open on the system to providing an updateable menu hierarchy of all
files within a network drive. With that type of capability, this control can provide some
exciting new features for your applications.

One thing that is extremely important to know before diving into the dynamicMenu
element is that you must write a significant amount of VBA code to use it. Even if all
you want to do is dynamically create a menu that uses built-in controls, the XML still
needs to be compiled and fed back to the dynamicMenu control through the use of a VBA
callback.

C ROSS-RE FE RE NC E If you are not feeling comfortable with your VBA
skills, you may want to return to Chapter 4.

Required Attributes of the dynamicMenu Element
To create a dynamicMenu element, you need to define one and only one of the id attrib-
utes shown in Table 9-7.

Table 9-7: Required Attributes of the dynamicMenu Element

ATTRIBUTE WHEN TO USE

id When creating your own dynamicMenu

idMso When using an existing Microsoft dynamicMenu

idQ When creating a dynamicMenu shared between namespaces

In addition to the id attribute, each dynamicMenu must have the callback shown in
Table 9-8 programmed as well.

310 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 310

Chapter 9 ■ Creating Menus 311

Table 9-8: Required Callback of the dynamicMenu Element

(none) getContent (none) Sub GetContent
(control As
IRibbonControl, ByRef
returnedVal)

Optional Static and Dynamic Attributes
with Callback Signatures
The dynamicMenu element will accept any one insert attribute shown in Table 9-9,
although it is not required.

Table 9-9: Optional insert Attributes of the dynamicMenu Element

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared namespace
control

In addition to the insert attribute, you may also include any of the optional static
attributes or their dynamic equivalents shown in Table 9-10.

Table 9-10: Optional Attributes and Callbacks of the dynamicMenu Element

description getDescription (none) Sub GetDescription
(control As
IRibbonControl, ByRef
returnedVal)

Continued

1 to 1024
characters

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

WHEN
TO USE

DEFAULT
VALUE

ALLOWED
VALUES

INSERT
ATTRIBUTE

1 to 1096
characters

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 311

Table 9-10 (continued)

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

image getImage (none) Sub GetImage (control
As IRibbonControl,
ByRef returnedVal)

imageMso getImage (none) Same as above

keytip getKeytip (none) Sub GetKeytip (control
As IRibbonControl,
ByRef returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

showImage getShowImage true Sub GetShowImage
(control As
IRibbonControl, ByRef
returnedVal)

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

size getSize normal sub GetSize (control As
IRibbonControl, ByRef
returnedVal)

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

tag (none) (none) (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

true, false,
1, 0

1 to 1024
characters

1 to 3
characters

true, false,
1, 0

VBA CALLBACK
SIGNATURE FOR
DYNAMIC ATTRIBUTE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

normal,
large

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

312 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 312

Allowed Children Objects of the dynamicMenu Element
The dynamicMenu control will accept any or all of the following child objects:

■■ button

■■ checkbox

■■ control

■■ dynamicMenu

■■ gallery

■■ menu

■■ menuSeparator

■■ splitButton

■■ toggleButton

Parent Objects of the dynamicMenu Element
The dynamicMenu control can be placed in any of the following objects:

■■ box

■■ buttonGroup

■■ dynamicMenu

■■ group

■■ menu

■■ officeMenu

Graphical View of dynamicMenu Attributes
The visible attributes of the dynamicMenu are identical to those of the menu element in
every way; the only visible attributes that can be set for the dynamicMenu are the image,
label, keytip, screentip, and supertip, as illustrated in Figure 9-12.

Figure 9-12: Visible attributes of a dynamicMenu

Chapter 9 ■ Creating Menus 313

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 313

The “Create from” button shown in Figure 9-12 is a new custom dynamic menu that
we create in this section.

Using Built-in Controls
Because Microsoft pre-programmed all of the controls available on the Ribbon, they
had no need for a built-in dynamicMenu of any kind. This control has been provided
solely to allow flexibility for the user.

Creating Custom Controls
Although our example won’t add any new functionality to Excel or Word, it serves its
purpose of showcasing the incredible power of the dynamicMenu. With the ability to be
refreshed by the user (you), we add a dynamically created menu that creates a new file
based on any of the existing templates that you may have in your personal templates
folder.

We start this project by building the example in Word (available as
dynamicMenu-CreateFromTemplate.docm from the book’s website). Although we
won’t cover the very minor adjustments that need to be made to build the same
functionality in Excel, a sample file for Excel is available from the book’s web-
site (dynamicMenu-CreateFromTemplate.xlsm).

As mentioned many times in this section, the key to creating a successful dynamic
Menu is to use VBA code to provide the appropriate XML code to the getContent call-
back. That makes it sound complicated; and although it can be, we break this down
into bite-size pieces so that it will be easy to understand and incorporate into your
solutions.

We start at the very beginning: To store VBA code in your file, you naturally need to
save your file in a macro-enabled format. You now have your first step: Create a new
document in Word and save it as a macro-enabled file.

Next, you need to craft your XML code, so close the file in Word and open it in the
CustomUI Editor. Again, apply the RibbonBase template to the file, and then insert
the following code below between the <tabs> and </tabs> tags:

<tab idMso=”TabHome”>

<group id=”rxgrpNewFile”

label=”New File”

insertBeforeMso=”GroupClipboard”>

<dynamicMenu id=”rxdmnuTemplates”

label=”Create from...”

imageMso=”CreateReportFromWizard”

size=”large”

getContent=”rxdmnuTemplates_getContent”/>

</group>

</tab>

As you can see, the actual XML code used to create the dynamicMenu is actually quite
short. You have given it a label and a large image for the face of the menu. Apart from

314 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 314

that, it also requires a getContent callback that will be used to build the actual menu
items on-the-fly.

Before we can call this job done, however, remember that we want to give the user
the ability to refresh this menu at will. That requires invalidating the Ribbon, so you
need to add the onLoad attribute to the customUI element. You’ll recognize the line
when you update the opening customUI tag to read as follows:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

Now it’s time to validate the XML code and save the file. Before closing it, remem-
ber to generate and copy the callback signatures.

Let’s head back into Word and open the document. If you enable macros, you will
immediately receive an error because the rxIRibbonUI_onLoad macro cannot be found.
Just ignore the error message, as you know that it was generated because you haven’t
yet programmed any callbacks.

You’ve likely noticed the new group on the Home tab that will hold your new
dynamicMenu. Of course, clicking it now only generates an error, so there is not much
reason to do so at this point. Instead, open the VBE and add a new standard module to
the VBA project.

Paste the callback signatures that you copied from the CustomUI Editor into the
module. As you learned in Chapter 5, the onLoad callback required to capture the
RibbonUI object can be set up as follows:

Dim rxIRibbonUI As IRibbonUI

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

‘Callback for onLoad to capture RibbonUI

Set rxIRibbonUI = ribbon

End Sub

TI P Remember that the first line of the preceding code must be placed before
the first Sub or Function in the module, and it must come after any Option
statements (such as Option Explicit).

The next thing you need to do is create the getContent callback for the dynamicMenu.
This is the tricky part of using the dynamicMenu, and it takes considerable thought and
planning. Fortunately, we’ve done this for you and have come up with the following
code:

Sub rxdmnuTemplates_GetContent(control As IRibbonControl, ByRef content)

‘Callback for GetContent to return XML used to create dynamicMenu

Dim objFSO As Object

Dim objTemplateFolder As Object

Dim file As Object

Dim sXML As String

Chapter 9 ■ Creating Menus 315

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 315

Dim lBtnCount As Long

‘Open the XML string

sXML = "<menu xmlns=""" & _

"http://schemas.microsoft.com/office/2006/01/customui"">"

‘Create FSO object and set to templates folder

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTemplateFolder = _

objFSO.getfolder(_

Application.Options.DefaultFilePath(wdUserTemplatesPath))

‘Add template files

If objTemplateFolder.Files.Count > 0 Then

For Each file In objTemplateFolder.Files

‘Check if file is a temporary file

If Not Left(file.Name, 2) = "~$" Then

‘File is not a temp file, so check extension

Select Case LCase(Right(file.Name, 4))

Case ".dot", "dotx", "dotm"

‘Word template.

If Not LCase(Left(file.Name, 6)) = "normal" Then

sXML = sXML & _

"<button id=""rxbtnDyna" & _

lBtnCount & """ " & _

"label=""" & file.Name & """ " & _

"imageMso=""FileSaveAsWord97_2003"" " & _

"tag=""" & file.Path & """ " & _

"onAction=""rxbtnDyna_onAction""/>" & vbCrLf

lBtnCount = lBtnCount + 1

End If

Case Else

‘Unknown format. Ignore.

End Select

End If

Next file

End If

‘Release the FSO objects

Set file = Nothing

Set objTemplateFolder = Nothing

Set objFSO = Nothing

‘Check if any items buttons were created

‘Create a "No Templates" button if not

If lBtnCount = 0 Then _

sXML = sXML & "<button id=""rxbtnDyna0"" label=""No Templates _

Found""/>"

316 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 316

‘Add Refresh button & close the menu tags

sXML = sXML & _

“<button id=”“rxbtnRefresh”“ “ & _

“label=”“Refresh List”“ “ & _

“imageMso=”“RecurrenceEdit”“ “ & _

“onAction=”“rxbtnDyna_onAction”“/>” & _

“</menu>”

‘Feed the XML back to the Ribbon

content = sXML

End Sub

Wow, does that ever look complicated! Let’s break it down a bit and examine what
everything does. The first portion of the code begins the creation of an XML string, (held
in the sXML variable) which will eventually be passed back to the dynamicMenu element.
This XML string will contain an entire menu hierarchy and must begin with a specific
XML namespace. Like the customUI element, every dynamic menu callback must
include this line so that the Ribbon knows how to interpret the code and compile it.

The next step is to actually look at the individual files in the templates directory to
determine whether any menu items should be added. To do this, you make use of a
handy little object called the file system object (FSO). While not specifically part of VBA,
this little fellow has been around in Visual Basic for many years, and it gives us the
capability to look at folders, subfolders, and files. The code we have used creates an
FSO object, sets a folder object to reference our templates folder, and then looks at each
file within that folder.

TI P While full coverage of FSO is outside the scope of this book, the Internet
offers a wealth of information about how to use the FSO. Type FSO VB6 into
any search engine and you will find a large number of pages that expose how
to use FSO for various purposes: moving files, copying files, renaming files, and
so on.

C ROSS-RE FE RE NC E If you do run into a wall trying to create or debug
your VBA code, don’t forget to consult Appendix F, which lists several sources of
help!

Next, the code checks whether the file starts with ~$, which indicates it is a temp file.
If it is, the file is ignored, as we’re not interested in temporary files.

Following that, you check the extension to see whether it is a document template.
Notice that you actually check the last four characters. This is because the new file for-
mats have four characters, but you also list the old “dot” format as .dot so that it will
return all Word templates. In addition, you use the LCase()function to convert the file-
name to lowercase before checking it. Use of the LCase()function is a standard way to
ensure that you do not run into issues with case sensitivity, and it will effectively treat
“dot”, “Dot” and “DOT” as equal, whereas they may not have been before.

Chapter 9 ■ Creating Menus 317

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 317

Finally, you also eliminate the files that start with “Normal.” Word bases its files on
the normal templates, so they are for Word’s internal use and should not be launched
directly by a user. Therefore, you want to ensure that you don’t include the Normal
templates.

If a file passes all of these tests, then you finally create the XML to add a button for
it to the menu. This XML is then added to the end of the sXML string that you used ear-
lier, with each successive button’s XML code being appended to the string. You also
increment the lBtnCount variable to indicate how many buttons you have.

TI P When trying to include the “ character in a VBA string, you actually need
to provide two quotes instead of one. If this seems confusing, it’s time for a
refresher about the proverbial collapsing quotes.

Using a quote mark (“) within a VBA string requires two quotes. This makes sense
when you consider that the quote mark is typically a command. Therefore, the first
quote essentially indicates that the next quote should be taken literally. For example, to
derive an sXML value of id=”rxbtnHello”, you would need to enclose both the com-
plete string and the quote itself in quotes. The required code would therefore look as
follows: sXML=”id=”“rxbtnHello”“”.

This is a very important piece of information to become familiar with, as missing
quotes are a common cause of errors when writing XML and VBA code.

After working through each file in the templates subfolder, you tell the FSO objects
that you are finished with them, setting each of them to nothing. (This is a good pro-
gramming practice, as it releases them from memory.)

The code then evaluates the number of buttons that were added to the XML string.
If the lBtnCount variable’s value is still zero, you must not have added any buttons, so
a button is created to let the user know that no templates were found (a polite way of
providing consistency and avoiding any questions about whether the code is working
properly). As you can read in the code, this button has no onAction callback, so instead
of firing any action, it acts as an informative label.

As mentioned at the outset of the example, you also want users to be able to refresh
the button; for example, they might create a new template and want to see it in the list.
Again, you will need to append the code to the XML string, along with a closing
</menu> tag, which will finish off the XML code.

Assuming that you had one template in your templates folder and it was named
MyTemplate.dotx, the sXML variable would end up holding the following XML code:

<menu xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<button id=”rxbtnDyna0”

label=” MyTemplate.dotx “

imageMso=”FileSaveAsWord97_2003”

tag=”C:\Users\YourName\AppData\Roaming\Microsoft\Templates↵
\MyTemplate.dotx”

onAction=”rxbtnDyna_onAction”/>

<button id=”rxbtnRefresh”

label=”Refresh List”

318 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 318

imageMso=”RecurrenceEdit”

onAction=”rxbtnDyna_onAction”/>

</menu>

Ultimately, the real purpose of the dynamicMenu’s getContent callback is to feed back
well-formed XML code to the dynamicMenu object so that it will create the menu for
you. Your goal when programming a dynamicMenu is to build a routine that generates
clean and valid XML to feed out of the getContent callback.

NOTE The “YourName” portion included in the tag attribute would be your
username. In addition, the tag would need to reference a slightly different path
depending on whether you are running Windows XP (or another platform)
instead of Windows Vista.

Pay attention to a couple of things in the preceding XML output. The first item
ensures that the path to the template is stored in the tag attribute. This enables us to
easily reference the file path when we want to launch a specific template.

The second item is to note that we created a single callback that works with all of the
buttons that were created. The reason for this is actually quite simple: If you created
onAction routine names on-the-fly, then you would have to write VBA code to write
the VBA callbacks as well. While this is certainly possible, it is definitely an unneces-
sary complication that we can do without.

Each button will fire the rxbtnDyna_onAction callback, so we’ll build it now. The
code for this routine is surprisingly simple:

Sub rxbtnDyna_onAction(control As IRibbonControl)

‘Callback for button onAction

If control.ID = “rxbtnRefresh” Then

rxIRibbonUI.InvalidateControl (“rxdmnuTemplates”)

Else

Documents.Add (control.Tag)

End If

End Sub

As you can see, the routine is set up to check whether it was called by the “Refresh”
button and to invalidate the dynamicMenu if so. However, if it wasn’t, it simply creates
a new document based on the template stored in the control’s tag attribute.

That was a lot to cover, but you’re ready to try this out. Close the VBE and then save
and close the file. Reopen it and try clicking on the menu. Wait a minute . . . this may
not be what you expected: a message telling you that no templates were found, as
shown in Figure 9-13.

Figure 9-13: The dynamicMenu showing No Templates Found

Chapter 9 ■ Creating Menus 319

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 319

Fortunately, this is a very easy problem to overcome. Just create a template! Create a
new document and then immediately go to the Office Menu and choose Save As.
Change the file format to Document Template (dotx), call it something interesting like
“My Template,” and make sure it is saved in your default templates directory.

TI P The standard location for your templates directory on Windows Vista is

C:\Users\username\AppData\Roaming\Microsoft\Templates

On Windows XP it is

C:\Documents and Settings\username\Application Data\Microsoft\Templates

(Note that in both cases, username will be the username that is currently logged
into Windows.)

Save and close the file and then return to the dynamicMenu file. Now click the menu and
choose Refresh List. Voilà! You will now see your new template as shown in Figure 9-14.

Figure 9-14: The dynamicMenu showing a template

OK, it may have been mean to make you suffer the initial disappointment of getting
the No Templates Found message, but we wanted to demonstrate that portion of the
code. Of course, if there are templates in your default directory, you missed that part of
the fun.

Conclusion

In this chapter, you have seen three different elements that can be used to create menus
on the Ribbon: menu, splitButton, and dynamicMenu.

While the menu and splitButton controls can both be used to deliver menu solutions
with static items, it appears that virtually everything a splitButton can do, a menu can
do better — with two exceptions: the splitButton has an attractive separating line
when selected, and it can be faced with a toggleButton. Beyond that, however, the
variety and richness you can create with a menu control is far more vast and exciting.
Unless either of the splitButton’s specific benefits is needed, it makes sense to use the
more robust menu element, especially when you consider that it also takes less XML
code to produce.

320 Part I ■ The Building Blocks for a Successful Customization

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 320

Unlike the former two controls, which restrict the application’s users to specified
lists, the dynamicMenu offers incredible flexibility and can be used to create context-
sensitive menus. With the ability to create and reload XML on-the-fly, you are given a
huge amount of contextual ability. Just think about it — these are just a few of the
things that can be done:

■■ React to user-driven choices, providing controls that are appropriate settings
(see Chapter 15 for information about context-sensitive controls).

■■ Compile different menus based on security settings.

■■ List directories and files on a system.

■■ Build a table of contents that changes as worksheets or sections are added or
removed.

Of course, this list is just the proverbial tip of the iceberg, and it is limited only by
your own imagination and skill set.

Ultimately, the power of the dynamicMenu is so great that it is a shame that Microsoft
has yet to offer a similar control at the tab or group level. With a dynamicTab control, we
could reload entire tabs on-the-fly, creating the ultimate contextual solutions, but alas
this is not currently possible. The best we can hope for is that Microsoft adds this func-
tionality in future versions of the Ribbon.

The next step in our journey is to look at controls that can be used to format the Rib-
bon. In Chapter 10, we explore how to group controls and add other visual effects that
not only enhance the look of the Ribbon, but also make it more intuitive and efficient.

Chapter 9 ■ Creating Menus 321

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 321

91118c09.qxd:WileyRedTight 12/2/07 3:32 PM Page 322

323

So far, this book has focused on setting up environments and controls to interact with
the user. Each control discussed in this book thus far has a specific purpose — to allow
the user to make a choice. Whether the control is a button, checkBox, or comboBox, each
provides the user with the opportunity to do something.

The controls in this chapter, however, have different purposes than those that we’ve
been working with. Our new focus here is strictly on formatting. (None) of the controls
discussed in this chapter are provided for the user to work with in any way. While
these controls will not react to clicks, they do retain a certain dynamic so that they can
react to other controls, should you so choose.

We begin the chapter by looking at two grouping elements: the box, and its close
cousin, the buttonGroup. Following that, we explore the labelControl, which is purely
a textual control. Finally, we discuss the separator and menuSeparator controls. These
final two controls enable us to divide menus and controls into logical groupings.

Because the concepts for working with formatting controls apply equally to Excel,
Access, and Word, we do not demonstrate working with the controls in each program.
However, you can rest assured that the XML elements, attributes, and callbacks are
indeed equally applicable to each of the applications, and you will have little or no dif-
ficulty adding them to your projects, regardless of the program.

As you prepare to work through the examples in this chapter, we encourage you to
download the companion files. The source code and files for this chapter can be found
on the book’s website at www.wiley.com/go/ribbonx.

Formatting Elements

C H A P T E R

10

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 323

The box Element

Based on its name, you might expect the box object to place a visible box around the
specified controls in your group. As logical as that may seem, it is not the case, because
the box itself is invisible. Therefore, although the box is an element used for visual
grouping, it does not provide the dividing lines to aid the user in quickly recognizing
and navigating through controls.

The main purpose of the box control is to group controls together as one unit. This is
important, as it enables us to manage the way controls are displayed within groups. Nor-
mally, each control that we assign to a group is placed underneath the prior control until
the column is filled. At that point, the next control is placed in the top row of the column
to the right. By grouping our commands within a box, however, we can treat several con-
trols as one entity and place the entire group on the Ribbon at once. This has the great
benefit that we can easily organize the order of display and not have to fiddle around
with dummy buttons or create other workarounds just to provide “whitespace.”

Required Attributes of the box Element
Every box element requires a unique id attribute (see Table 10-1).

Table 10-1: Required Attributes of the box Element

ATTRIBUTE WHEN TO USE

id When creating your own box

idQ When creating a box shared between namespaces

TI P Keep in mind that the id for each control, including each box, must not
conflict with (i.e., be the same as) any other control.

NOTE To save you some time searching for something that isn’t there,
Microsoft does not provide any built-in box elements, so the idMso attribute
cannot be specified.

Optional Static and Dynamic Attributes with Callback
Signatures
Although specifying a position is optional, if you choose to position a box in relation to
another element, you must use one of the insert attributes listed in Table 10-2.

324 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 324

Table 10-2: Optional insert Attributes for the box Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso group Insert after
Microsoft control

insertBeforeMso Valid Mso group p Insert before
Microsoft control

insertAfterQ Valid group idQ p Insert after shared
namespace
control

insertBeforeQ Valid group idQ Insert before
shared
namespace
control

NOTE If you are not concerned with positioning the box adjacent to a specific
control, then you do not need to provide an insert attribute. As with other
controls, the default action is to append the control to the UI in the order that it
is listed in the XML code.

The box element will also accept either or both of the optional attributes and call-
backs shown in Table 10-3.

Table 10-3: Optional Attributes and Callbacks of the box Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

boxStyle (none) horizontal (none)

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

Allowed Children Objects of the box Element
The box control can hold a great variety of RibbonX controls, each of which is shown in
the following list. While one might assume that there is a limit to the number of con-
trols that can be in one box control, we have not found any documentation to indicate
such a limit. Moreover, we have successfully inserted dozens of controls — so many, in
fact, that the box extended past the edge of the screen, leaving a “more. . .” arrow. Since

Insert at end
of group

Insert at end
of group

Insert at end
of group

Insert at end
of group

horizontal,
vertical

true, false,
1, 0

Chapter 10 ■ Formatting Elements 325

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 325

the focus should be on making things logical and easy for the user, it is hard to imag-
ine a scenario where you would hit the limit, if indeed there actually is one.

■■ box

■■ button

■■ buttonGroup

■■ checkBox

■■ comboBox

■■ control

■■ dropDown

■■ dynamicMenu

■■ editBox

■■ gallery

■■ labelControl

■■ menu

■■ splitButton

■■ toggleButton

Notice that the box control will also hold other box controls. This concept, known as
nesting, can be very useful when you are trying to get controls to display in exactly the
right order. We demonstrate several layouts for nesting box controls later in this chapter.

Parent Objects of the box Element
The box control may only be nested within one of the following two controls:

■■ box

■■ group

Graphical View of box Attributes
Figure 10-1 displays a Ribbon group with nested box controls used to create white-
space on the Ribbon.

Figure 10-1: Nested box controls

326 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 326

Figure 10-1 uses three box controls to create the desired grouping and spacing. The
first is a vertical box element holding two horizontal box elements. The first horizontal
box contains the Bold and Italic toggleButton controls, while the second horizontal box
holds the Underline and Double Underline toggleButton controls. There are no box
elements defined around the happy face buttons, and the buttons fill the space, top
down and then moving to the next columns on the right. Since you’re familiar with the
Ribbon, you’ll immediately recognize that the dotted lines have been added to provide
clarity to the image; they are not part of the Ribbon itself.

The important thing to notice here is that the space under the box elements is left
blank. This is because the vertical box control has space for three horizontal box controls,
so an empty space is created by only using two of the three rows. Had the vertical box
been left out of the XML code, the Button1 control would have filled that blank space.

Using Built-in box Elements
The only purpose of the box element is to group other controls, so it makes sense that
Microsoft does not expose any built-in box controls for use as commands. Therefore,
there it has no need for an idMso.

Creating Custom box Elements
Now that we’ve explained the basics, it is time to actually construct some custom box
elements to organize our Ribbon controls. The examples that follow will give you a
thorough understanding of the box control and how to use it in any configuration,
whether it be horizontal, vertical, nested, or any combination thereof. While the exam-
ples that follow are all drafted in Excel, the concepts can be applied to Access or Word
just as easily.

Horizontal Alignment

Our first example demonstrates the effect of using a horizontal box control. Start by
creating a new Excel file. This example won’t require using any VBA code, so feel free
to save it as a macro-free (xlsx) workbook.

Close the file, open it in the CustomUI Editor, and apply the RibbonBase template,
(created in Chapter 2) to the file. Between the <tabs> and </tabs> tags, enter the fol-
lowing XML:

<tab id=“rxtab_Demo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrp_Demo”

label=”Demo Group”>

<box id=”rxboxFormat1”

boxStyle=”horizontal”

visible=”true”>

<toggleButton idMso=”Bold”/>

Chapter 10 ■ Formatting Elements 327

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 327

<toggleButton idMso=”Italic”/>

<toggleButton idMso=”Underline”/>

<toggleButton idMso=”UnderlineDouble”/>

</box>

<button id=”rxbtnHappy1”

imageMso=”HappyFace”

label=”Button 1”/>

<button id=”rxbtnHappy2”

imageMso=”HappyFace”

label=”Button 2”/>

<button id=”rxbtnHappy3”

imageMso=”HappyFace”

label=”Button 3”/>

<button id=”rxbtnHappy4”

imageMso=”HappyFace”

label=”Button 4”/>

</group>

</tab>

As always, validate the file before you save it. Then, because no callbacks are
required here, you can just close the file in the CustomUI Editor and reopen it in Excel.

Figure 10-2 shows the results of the preceding code sample. It creates a horizontal
box, (highlighted by the added dotted lines) to group the four formatting elements
together, allowing them to be moved as one unit. In addition to allowing the buttons to
span more than one column, the horizontal group also creates “whitespace” to the
right of Button 1 and Button 2. You’ll notice that Button 3 and Button 4 do not have this
“padding,” so to speak.

Figure 10-2: The box element,
using a horizontal alignment

Vertical Alignment

Using the example presented in the “Horizontal Alignment” section, let’s look at what
happens when we select a vertical alignment. Close the Excel file and reopen it in the
CustomUI Editor. Scan the XML for the following line and replace horizontal with
vertical:

boxStyle=”horizontal”

328 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 328

Now save the file, close the CustomUI Editor, and reopen the workbook in Excel.
Your group will now look like the one shown in Figure 10-3 (minus the dotted lines
added for illustrative purposes, of course).

Figure 10-3: The box element, using a vertical alignment

As you can see, the controls are now aligned top to bottom, left to right, almost as
though it did not use a box control. What is different, however, is the whitespace under
the Double Underline toggleButton. That, of course, would not be there if the four for-
mat controls were not in a box control. By using the box, that space is reserved for con-
trols in the box, and other controls cannot infringe on the space.

Nesting box Controls

Now that you have seen how the box control is displayed using both the horizontal and
vertical attributes of the boxStyle element, it is time to see what happens when you
nest boxes within each other. In addition to the nesting aspect, this next example also
shows the effects of using the getVisible callback to control the visibility of the box.

This example houses two box controls, each containing two of the formatting con-
trols used in the previous examples. In addition, each of these boxes is housed within
a parent box, allowing us to reserve vertical space on the Ribbon so that no other but-
tons can end up below our controls. We’ll also use three checkboxes to select which
boxes are visible.

Since the previous two examples were built in Excel, we will construct this one in
Word. If you prefer, you can just as easily go through the steps in either Excel or Access.
Regardless of the program, you will need to use a macro-enabled file format because
we will be using callbacks to make the Ribbon group dynamic.

The first step is to create a new Word file and save it as a macro-enabled (docm) doc-
ument. Close Word, open the file in the CustomUI Editor, and apply the RibbonBase
template. Between the <tabs> and </tabs> elements, enter the following XML code:

<tab id=“rxtabDemo”

insertBeforeMso=”TabHome”

label=”Demo”>

<group id=”rxgrpDemo”

Chapter 10 ■ Formatting Elements 329

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 329

label=”Demo Group”>

<box id=”rxbox1”

boxStyle=”vertical”

getVisible=”rxboxShared_getVisible”>

<box id=”rxbox11”

boxStyle=”horizontal”

getVisible=”rxboxShared_getVisible”>

<toggleButton idMso=”Bold”/>

<toggleButton idMso=”Italic”/>

</box>

<box id=”rxbox12”

boxStyle=”horizontal”

getVisible=”rxboxShared_getVisible”>

<toggleButton idMso=”Underline”/>

<toggleButton idMso=”UnderlineDouble”/>

</box>

</box>

<checkBox id=”rxchkVisibleBox1”

label=”Box 1 Visible?”

getPressed=”rxchkShared_pressed”

onAction=”rxchkShared_click”/>

<checkBox id=”rxchkVisibleBox11”

label=”Box 1-1 Visible?”

getPressed=”rxchkShared_pressed”

onAction=”rxchkShared_click”/>

<checkBox id=”rxchkVisibleBox12”

label=”Box 1-2 Visible?”

getPressed=”rxchkShared_pressed”

onAction=”rxchkShared_click”/>

<button id=”rxbtnReset”

imageMso=”HappyFace”

label=”Reset All”

onAction=”rxbtnReset_click”/>

</group>

</tab>

Notice that in this case we actually have a total of three box controls, two of which
are nested in the first. All three of these controls will use a shared callback to make the
programming a bit easier.

C ROSS-RE FE RE NC E For a review of shared callbacks, see Chapter 5.

Of course, you need to be able to invalidate the Ribbon to force your box controls to
hide or show, and to do this you need to capture the RibbonUI object. Naturally, this
means that you need to modify the CustomUI tag to include an onLoad statement, so
modify your opening line to read as follows:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

330 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 330

Validate the code and copy the callback signatures before you close the file in the
CustomUI Editor and reopen it in Word. Ignoring the error about the missing onLoad
macro, press Alt+F11 to open the VBE, create a new standard module, and paste the
callback code.

Each of the callbacks is explained in detail as we go through the examples, but for
now we focus on completing the code. At the top of your module (below any lines
beginning with Option — such as Option Explicit — but above any callbacks), add
the following code:

Dim rxIRibbonUI As IRibbonUI

Dim bBox1_Visible As Boolean

Dim bBox11_Visible As Boolean

Dim bBox12_Visible As Boolean

You’ll recognize the first line as the variable that will store the RibbonUI object and
enable you to invalidate the Ribbon later. The other three variables will hold the visi-
ble state of the various groups. Since you are controlling these through checkBox con-
trols, you can also use these variables to store the state of the checkBox that is related to
each box.

In addition to capturing the RibbonUI at load time, you need to ensure that each box
control is visible. To do this, the onLoad callback should read as follows:

‘Callback for customUI.onLoad to make each box control visible

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set rxIRibbonUI = ribbon

bBox1_Visible = True

bBox11_Visible = True

bBox12_Visible = True

End Sub

You’ve probably noticed the rather boilerplate comments that precede each callback.
Those are graciously provided by the CustomUI Editor. To stay focused on the project,
we have left the comments pretty much as generated and merely added the elements
when creating shared callbacks. In following code snippets, we added “shared” and
the two additional elements rxbox11 and rxbox12. Feel free to modify the comments to
suit your style and needs.

The next step is to set up the shared getVisible callback for the box controls. This
should read as follows:

‘Shared Callback for rxbox1, rxbox11 and rxbox12 getVisible

Sub rxboxShared_getVisible(control As IRibbonControl, ByRef returnedVal)

Select Case control.ID

Case “rxbox1”

returnedVal = bBox1_Visible

Case “rxbox11”

returnedVal = bBox11_Visible

Case “rxbox12”

returnedVal = bBox12_Visible

End Select

End Sub

Chapter 10 ■ Formatting Elements 331

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 331

As you can see, a case statement evaluates which control fired the callback, and
retrieves the appropriate value from the variable to return to the RibbonUI.

The getPressed callback to handle the checkBox controls is also based on the same
variables, so it looks very similar. The main difference is the name of the controls. The
getPressed code should read as follows:

‘Shared Callback for rxchkVisibleBox1, -Box11 and -Box12 getPressed

Sub rxchkShared_getPressed(control As IRibbonControl, ByRef returnedVal)

Select Case control.ID

Case “rxchkVisibleBox1”

returnedVal = bBox1_Visible

Case “rxchkVisibleBox11”

returnedVal = bBox11_Visible

Case “rxchkVisibleBox12”

returnedVal = bBox12_Visible

End Select

End Sub

Next you want to create the routine that fires when a checkBox is clicked. It changes
the value of the visible variable to the current “pressed” state (true or false), and then
triggers an invalidation of the Ribbon. This invalidation not only triggers the getVisi-
ble callbacks for each of the box controls, it also ensures that all of the checkBox con-
trols are up to date:

‘Shared Callback for rxchkVisibleBox1, -Box11, -Box 12 onAction

Sub rxchkShared_click(control As IRibbonControl, pressed As Boolean)

Select Case control.ID

Case “rxchkVisibleBox1”

bBox1_Visible = pressed

Case “rxchkVisibleBox11”

bBox11_Visible = pressed

Case “rxchkVisibleBox12”

bBox12_Visible = pressed

End Select

rxIRibbonUI.Invalidate

End Sub

Finally, you have the onAction callback for the button that you added. While this
callback is not really required for your UI to run, it is a handy shortcut to set each and
every control back to the default state of visible:

‘Shared Callback to make buttons visible for rxbtnReset onAction

Sub rxbtnReset_click(control As IRibbonControl)

bBox1_Visible = True

bBox11_Visible = True

bBox12_Visible = True

rxIRibbonUI.Invalidate

End Sub

332 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 332

Now it’s time to take this UI for a test drive! Save your code, close the file, and
reopen it. You should see the new tab that holds the group you just created, as shown
in Figure 10-4.

Figure 10-4: Nested box controls on the Ribbon

Now try clearing the check from the checkBox marked Box 1-1 Visible? You’ll see the
Bold and Italic icons vanish! Uncheck Box 1-2 Visible? and all of the formatting buttons
will disappear! Click the Reset All button to set everything back to visible, or you can
recheck the individual checkBox controls.

This time, uncheck the checkBox labeled Box 1 Visible? This will toggle the parent box.
Notice how it appears as though nothing happened? However, there is a different reac-
tion if you now toggle the visibility of one of the nested box controls. Go ahead and try a
few different combinations. In addition to demonstrating how to nest boxes, this exercise
provides some good tools for experimenting with the synergistic effects of controls.

NOTE While you are permitted to use the getVisible callback to set a parent
box to visible=“false”, this will not hide the parent box and all child controls
as you might expect. Instead, both the parent and child box controls will be
frozen in their current state — visible or not. The controls themselves will all be
visible (if they were before the parent was toggled) and work, but any attempts
to change the state of the nested controls by callbacks will be ignored. The
effects of this will be reversed when the getVisible callback for the parent box
is again set to true.

NOTE The only way to hide a parent box control is to hide all of the child
items. Upon doing so, the parent box will collapse and therefore appear
invisible, even though the box’s visible property is set to true.

The buttonGroup element

The buttonGroup element is similar to the box element but it has some unique features
as well. The biggest difference in appearance between the buttonGroup and the box
controls is that although the box does not place a visible perimeter around the group,
the buttonGroup element actually displays a border. The buttonGroup cannot be
aligned vertically, however, and unlike the box, it will not accept either the box or but-
tonGroup elements as children.

Chapter 10 ■ Formatting Elements 333

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 333

The main differences between the box element and the buttonGroup element are
summarized in Table 10-4.

Table 10-4: Differences Between the box and buttonGroup Elements

ABILITY BOX BUTTONGROUP

Align controls horizontally ✔ ✔

Align controls vertically ✔

Will accept a nested box control ✔

Will accept a nested buttonGroup control ✔

Places a visible outline around the controls ✔

Based on this information, you may conclude that the box is a far more robust con-
trol. While this may be true, keep in mind that the buttonGroup is the only control that
allows you to place a visible border around a collection of controls.

In truth, it is a shame that the Ribbon designers did not add a “showBorder” attribute
to the box control. Had they done so, the buttonGroup attribute probably would not be
needed at all.

Required Attributes of the buttonGroup element
Each buttonGroup object requires one of the two unique id attributes listed in Table 10-5.

Table 10-5: Required Attributes of the buttonGroup Element

ATTRIBUTE WHEN TO USE

id When creating your own buttonGroup

idQ When creating a buttonGroup shared between namespaces

NOTE Like the box element, Microsoft does not provide any built-in
buttonGroup controls, so the idMso attribute cannot be specified, as no controls
can be referenced.

334 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 334

Optional Static and Dynamic Attributes with Callback
Signatures
In order to position your buttonGroup in relation to an existing control, you must use
one of the insert attributes listed in Table 10-6.

Table 10-6: Optional insert Attributes for the buttonGroup Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

The buttonGroup element also accepts the optional visible attribute or callback
shown in Table 10-7.

Table 10-7: Optional Attribute or Callback of the buttonGroup Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

NOTE While the buttonGroup has a getVisible callback available, there was
a bug with the callback at the time this was written. This bug stymies the
callback if the value is set to false; however, the callback works properly when
the value is set to true. It is hoped that this will be fixed in an upcoming
service release.

true, false,
1, 0

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

Chapter 10 ■ Formatting Elements 335

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 335

Allowed Children Objects of the buttonGroup Element
The buttonGroup element may contain any or all of the following controls:

■■ button

■■ control

■■ dynamicMenu

■■ gallery

■■ menu

■■ splitButton

■■ toggleButton

Parent Objects of the buttonGroup Element
A buttonGroup may only be nested within one of the following two elements:

■■ box

■■ group

Graphical View of a buttonGroup
Figure 10-5 gives a clear picture of how a buttonGroup is displayed in a group.

Figure 10-5: A buttonGroup displayed in a group

While it may be difficult to see in print, not only does the buttonGroup display a bor-
der around the four supplied formatting buttons, each button is also separated by a
faint line.

Using Built-in buttonGroup Elements
Like the box element, the only purpose of the buttonGroup is to help format the Ribbon.
For this reason, it makes sense that Microsoft doesn’t expose any buttonGroup controls,
as we would undoubtedly want to use nested controls other than those provided.

336 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 336

Creating Custom buttonGroup Elements
In the next example, we build a modified version of the Ribbon shown in Figure 10-5.
Rather than leave empty space under the buttonGroup, we will bump all of the buttons
over to the second column of controls.

To start this process, create a new Word document. We won’t be adding any
dynamic controls to this file, so you can save it in the macro-free (docx) format. Close
Word and open the file in the CustomUI Editor, apply the RibbonBase template, and
enter the following code between the <tabs> and </tabs> elements:

<tab id=“rxtab_Demo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrp_Demo”

label=”Demo Group”>

<box id=”rxboxCustom”

boxStyle=”vertical”>

<buttonGroup id=”rxbgrpMsoControls”>

<toggleButton idMso=”Bold”/>

<toggleButton idMso=”Italic”/>

<toggleButton idMso=”Underline”/>

<toggleButton idMso=”UnderlineDouble”

showLabel=”false”/>

</buttonGroup>

</box>

<button id=”rxbtnHappy1”

imageMso=”HappyFace”

label=”Button 1”/>

<button id=”rxbtnHappy2”

imageMso=”HappyFace”

label=”Button 2”/>

<button id=”rxbtnHappy3”

imageMso=”HappyFace”

label=”Button 3”/>

</group>

</tab>

In reviewing this code, note that the buttonGroup control is encapsulated within a
vertical box control. As you learned earlier in this chapter, using the box control enables
you to reserve the whitespace under your controls by forcing all the button controls
into the next column.

The next step, of course, is to validate the code. There are no dynamic features to this
example, so no callback signatures are required. Save the file, close the CustomUI Edi-
tor, and reopen the document in Word. You will now see the buttonGroup displayed on
the custom tab, as shown in Figure 10-6.

Chapter 10 ■ Formatting Elements 337

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 337

Figure 10-6: A buttonGroup with whitespace below

Notice that the font controls, which are in a horizontal button group, are displayed
on one line at the top of the vertical box control. The vertical control reserves the entire
area for its contents, so three happy-face buttons appear in a column to the right.

The labelControl Element

The labelControl gives developers a way to show a text label on the Ribbon. This con-
trol has no actions and is typically used for headings or descriptions of other controls.
It is mostly used to give context to buttons that are arranged in a column.

Required Attributes
Each labelControl requires one of the three id attributes shown in Table 10-8.

Table 10-8: Required Attributes of the labelControl Element

ATTRIBUTE WHEN TO USE

id When creating your own labelControl

idMso When using an existing Microsoft labelControl

idQ When creating a labelControl shared between namespaces

Optional Static and Dynamic Attributes with Callback
Signatures
As with other controls, the insert attribute is again optional. It is only needed when
you want to position a labelControl in relation to another control. Table 10-9 lists the
insert attributes.

338 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 338

Table 10-9: Optional insert Attributes for the labelControl Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

The labelControl will also accept any combination of the attributes or callback
equivalents shown in Table 10-10.

Table 10-10: Optional Attributes and Callbacks of the labelControl Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

enabled getEnabled true Sub GetEnabled
(control As
IRibbonControl, ByRef
returnedVal)

label getLabel (none) Sub GetLabel (control
As IRibbonControl,
ByRef returnedVal)

screentip getScreentip (none) Sub GetScreentip
(control As
IRibbonControl, ByRef
returnedVal)

showLabel getShowLabel true Sub GetShowLabel
(control As
IRibbonControl, ByRef
returnedVal)

supertip getSupertip (none) Sub GetSupertip
(control As
IRibbonControl, ByRef
returnedVal)

Continued

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

Chapter 10 ■ Formatting Elements 339

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 339

Table 10-10 (continued)

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

tag (none) (none) (none)

visible getVisible true, false true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

Allowed Children Objects of the labelControl Element
The labelControl does not support child controls of any kind.

Parent Objects of the labelControl Element
The labelControl element may only be used within the following controls:

■■ box

■■ group

Graphical View of a labelControl
The labelControl is a very simple text label that can appear either on a group or in a
box. While it can contain screentip and supertip attributes (which you learn about in
Chapter 11), Figure 10-7 shows it in its most basic format. The labelControl is the por-
tion marked “Audit Formulas” at the top of the custom-built Audit group.

Figure 10-7: The labelControl on a group

As you can see, the labelControl takes the space of one entire row of controls. You
will want to keep this in mind when planning the layout of control groups.

1 to 1024
characters

340 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 340

Using Built-in labelControl Elements
Believe it or not, Microsoft actually does expose six of its own labelControl elements
in Excel; and it exposes two labelControl elements in Word. However, when it comes
to Access, none of the labelControl elements are exposed. In any case, it is difficult to
imagine why you would ever want to use these elements, as it is much quicker to build
a custom label of your own design than to look up one of theirs.

Consider for a moment how long this process would take. You would first have to
look up the idMso for an existing labelControl, and then you would still have to put
the name in the CustomUI Editor and build a lableControl element that references the
idMso name. Again, why bother? Since you have to write XML anyway, it is faster and
more straightforward to create a custom labelControl and give it the exact name that
you want.

Creating Custom labelControl Elements
A rather cool use of the labelControl is to use it as a flag — a visual indication that
something has been done. After all, it’s right there on the Ribbon, so all you have to do
is draw attention to it and make it change. Maybe you have a procedure that only runs
once per session. Rather than have users click the button and have a message box
advise them if the procedure has been run or not, you could provide a visual cue first
so they don’t need to click the button.

Our next example works through that scenario. Rather than hide the buttons, which
might be disconcerting for the users, we instead change the label above the button. Just
for fun, we also change the image on the button as well. We again work through the
process in Excel, although it could just as easily be implemented in Access or Word.

Start by creating a new Excel file. You need to invalidate the Ribbon to change the
labelControl, so save the file in the macro-enabled format (xlsm). Close the file and
open it in the CustomUI Editor. Apply the RibbonBase template and insert the follow-
ing XML between the <tabs> and </tabs> elements:

<tab id=“rxtabDemo”

insertBeforeMso=”TabHome”

label=”Demo”>

<group id=”rxgrpDemo”

label=”Demo Group”>

<labelControl id=”rxlblFeedback”

getLabel=”rxlblFeedback_getLabel”/>

<button id=”rxbtnProcess”

getImage=”rxbtnProcess_getImage”

onAction=”rxbtnProcess_click”/>

</group>

</tab>

Chapter 10 ■ Formatting Elements 341

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 341

In addition, you also need to edit the CustomUI element to request an onLoad event.
You’re quite familiar with the prerequisite code, so modify the first line of the XML to
read as follows:

<customUI

onLoad=”rxIRibbonUI_onLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

Now it’s time to validate the code, copy the callbacks, save and close the file, and
reopen it in Excel. Again, ignore the error messages about the missing onLoad callback
and just open the VBE to paste your callbacks in a new module.

Before we deal with the callbacks themselves, it is important to think through the
entire process. We want the label to read Process Accounts before the button is clicked,
and Accounts Complete afterward. We need a variable to store the value that indicates
whether the button has been clicked or not, so insert the following code snippet at the
top of the module, but below any lines prefaced with the Option keyword:

Dim bButtonClicked as Boolean

Of course, you need to include a global variable to store the RibbonUI, and this
should be placed with the variable to store the button’s clicked state. We can now pro-
ceed to create the individual callbacks. Notice that there are four callbacks in all. The
first callback, onLoad, is shown here and should look very familiar:

Dim rxIRibbonUI As IRibbonUI

‘Callback for customUI.onLoad

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set rxIRibbonUI = ribbon

End Sub

Next, create the getLabel callback for the labelControl. The easiest way to evaluate
whether the button has been clicked or not is to check the bButtonClicked variable.
You can do that using a select case statement, as follows:

‘Callback for rxlblFeedback getLabel

Sub rxlblFeedback_getLabel(control As IRibbonControl, ByRef returnedVal)

Select Case bButtonClicked

Case False

returnedVal = “Process Accounts”

Case True

returnedVal = “Accounts Complete”

End Select

End Sub

You can use a similar construct to return the image for the button. Which image or
label is displayed is determined by the evaluation of the Select statement. You can see
that this can be a powerful and flexible tool.

342 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 342

‘Callback for rxbtnProcess getImage

Sub rxbtnProcess_getImage(control As IRibbonControl, ByRef returnedVal)

Select Case bButtonClicked

Case False

returnedVal = “CreateReportFromWizard”

Case True

returnedVal = “DeclineInvitation”

End Select

End Sub

Finally, you need to deal with your button. Again, you check the value of bBut-
tonClicked. If it is False, you change the value of bButtonClicked to true, run your
routine, and then invalidate the Ribbon. The invalidation will, of course, trigger the
rebuild, and your controls will update to show the user it has been done. If the value of
bButtonClicked is already true, you tell the user that they have already completed the
routine. The following code will accomplish this:

‘Callback for rxbtnProcess onAction

Sub rxbtnProcess_click(control As IRibbonControl)

Select Case bButtonClicked

Case False

bButtonClicked = True

‘Code to process accounts goes here

rxIRibbonUI.Invalidate

Case True

MsgBox “You have already run this routine!”

End Select

End Sub

Now that the necessary code has been entered, save, close, and reopen the work-
book. You will see the tab displayed in Figure 10-8.

Figure 10-8: The Process Accounts label on the group

Click the button, and the group will update to the view shown in Figure 10-9.

Chapter 10 ■ Formatting Elements 343

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 343

Figure 10-9: The Process Accounts labelControl updated
via a callback

As shown in the code, we have used both the label and the graphic to call the user’s
attention to the status — or change in status. It is hoped that this example has sparked
some ideas about how you can use a labelControl to alert users about the status of an
object or an event.

The separator Element

The separator control is quite different from the three controls covered so far in this
chapter. While it is the job of the box and buttonGroup to collect controls into a unit, it
is the job of the separator to draw clear and logical boundaries and to essentially cre-
ate subgroups within a tab’s groups.

The separator control manifests itself as a vertical line break between items in a
group. It spans from the top of the group to the bottom of the group, and cannot be set
to any other orientation or size. It can, however, provide whitespace on the Ribbon,
similar to the space that you can create using a vertical box control.

Required Attributes of the separator Element
Every separator requires a unique id attribute from the two listed in Table 10-11.

Table 10-11: Required Attributes of the separator Element

ATTRIBUTE WHEN TO USE

id When creating your own separator

idQ When creating a separator shared between namespaces

NOTE There is no idMso for this control, as there would be no benefit to
referencing a built-in separator.

344 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 344

Optional Static and Dynamic Attributes
with Callback Signatures
The placement of a separator control in relation to an existing control requires use of
one of the insert attributes listed in Table 10-12. As is usual, ignoring this attribute
enables the XML code to be executed in the order in which it is written.

Table 10-12: Optional insert Attributes for the separator Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

The separator element will accept the static visible attribute or the callback equiva-
lent shown in Table 10-13.

Table 10-13: Optional Attributes and Callbacks of the separator Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

visible getVisible true Sub GetVisible (control
As IRibbonControl,
ByRef returnedVal)

NOTE Up to and including the release of Office 2007 Service Pack 1 (released
as we write this chapter), the separator control suffered from a fairly serious
bug. While the XML schema allows you to specify false as the value for the
separator element’s visible attribute, (using either static XML or using a
callback), the value has no effect. Regardless of the settings or combinations of
settings, the separator control always remained visible during our testing.

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

true, false,
1, 0

Chapter 10 ■ Formatting Elements 345

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 345

Allowed Children Objects of the separator Element
The separator element does not support child objects of any kind.

Parent Objects of the separator Element
The separator control may only be used in the following three elements:

■■ documentControl

■■ group

■■ sharedControl

Graphical View of a Separator
As shown in Figure 10-10, adding a separator control places a dividing line between
existing controls in a group.

Figure 10-10: A separator control brings order to a Ribbon group

In this example, the separator makes it instantly clear that the label Name Manager
refers to the control above it, and that the labelControl bearing the title Audit Formu-
las refers to the six controls under it.

Using Built-in separator Elements
The separator element is essentially a visible line. Since it would take us much more
typing to refer to a built-in version than to just create our own, there is absolutely no
reason for us to use one of Microsoft’s built in separator controls, even if we could
access them.

Creating Custom separator Elements
Because the separator control has one primary function and very few options, this
example shows how you can use the separator to create whitespace on the Ribbon.

In the section on box controls, we demonstrated how you can nest a horizontal box
within a vertical box and create whitespace (because the vertical box prevents buttons
from encroaching into its area). However, this requires multiple controls and can take
a bit of planning. That’s what makes the separator so convenient: it works indepen-
dently. One of the key benefits of the separator is that it forces a break between con-
trols, so the whitespace is preserved without the effort of adding nested box controls.

346 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 346

We demonstrate this here using the Excel workbook used earlier in this chapter in
the “Horizontal Alignment” portion of the box examples. (You can also download box-
horizontal.xlsx from the book’s website.) Open the file in the CustomUI Editor and
place the following code right after the </box> line:

<separator id=”rxsep1”/>

Upon saving and opening the file in Excel, the Ribbon group should look like the
one displayed in Figure 10-11.

Figure 10-11: The custom separator

Wow — that is so much easier than nesting horizontal box controls in a vertical box.
Don’t get us wrong; there are other reasons for nesting controls. We’re just not recom-
mending it as the first choice for creating whitespace.

The menuSeparator Element

The menuSeparator is somewhat of a hybrid between the separator and labelControl
elements. While this might seem like a strange combination, you will see that, in the
right circumstances, it can be quite useful.

Like the separator control, the menuSeparator can be used to draw a line, except this
control creates a horizontal line instead of vertical line. Before you get excited, be
aware that this control is reserved for specific types of menu controls (listed in the sec-
tion on parent objects). It cannot be used to format standard groups.

On the upside, however, you can provide text with the menuSeparator control, and
this nifty option enables you to add some pizzazz and distinction by adding headers
between menu items. That will be demonstrated in just a moment.

Required Attributes of the menuSeparator Element
Each menuSeparator requires a unique id attribute from the two shown in Table 10-14.

Table 10-14: Required Attributes of the menuSeparator Element

ATTRIBUTE WHEN TO USE

id When creating your own menuSeparator

idQ When creating a menuSeparator shared between namespaces

Chapter 10 ■ Formatting Elements 347

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 347

NOTE As with the separator control, there is no idMso for this control, as
there would be no benefit to referencing a built-in menuSeparator.

Optional Static and Dynamic Attributes
with Callback Signatures
Placing a menuSeparator relative to any existing menu item requires one of the insert
attributes listed in Table 10-15. The alternative is to default to the order in which the
control is listed in the XML code. If you construct a menu following our example, the
desired positioning is achieved even without this attribute.

Table 10-15: Optional insert Attributes for the menuSeparator Element

INSERT ATTRIBUTE ALLOWED VALUES DEFAULT VALUE WHEN TO USE

insertAfterMso Valid Mso Group Insert after
Microsoft control

insertBeforeMso Valid Mso Group Insert before
Microsoft control

insertAfterQ Valid Group idQ Insert after shared
namespace
control

insertBeforeQ Valid Group idQ Insert before
shared
namespace
control

The menuSeparator control accepts the title element or callback equivalent shown in
Table 10-16.

Table 10-16: Optional Attribute and Callback of the menuSeparator Element

VBA CALLBACK
STATIC DYNAMIC ALLOWED DEFAULT SIGNATURE FOR
ATTRIBUTE ATTRIBUTE VALUES VALUE DYNAMIC ATTRIBUTE

title getTitle line Sub GetTitle (control
As IRibbonControl,
ByRef returnedVal)

1 to 1024
characters

Insert at
end of group

Insert at
end of group

Insert at
end of group

Insert at
end of group

348 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 348

NOTE There is no visible attribute or callback for the menuSeparator. If you
decide to use this control, it will show on your menu in one way or another —
either as a textual header, using whatever text you specify for the title attribute,
or simply as a line if no title is provided.

Allowed Children Objects of the menuSeparator Element
The menuSeparator does not support child objects of any kind.

Parent Objects of the menuSeparator Element
A menuSeparator may only be used within the following three controls:

■■ menu

■■ officeMenu

■■ dynamicMenu

Graphical View of the menuSeparator Element
Building from the menu example shown in Chapter 9, this example adds a few
menuSeparator elements to make it more readable, as shown in Figure 10-12. Note that
there are actually four menuSeparator elements in this image. Three of them were pro-
vided a title element, and are displayed as the headings within the menu: Save in 2007
format, Save in 97-2003 format, and Save in other format. The last one was declared in
the XML with the title attribute omitted, and manifests as the shaded line between
the Macro Enabled and Binary menu items in the first section.

Figure 10-12: menuSeparator attributes used to
divide a menu

Chapter 10 ■ Formatting Elements 349

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 349

The title attribute provides the bonus of adding shading to the line. Combined
with the lack of an image, it makes the headings stand out and clearly differentiates
them from the clickable controls.

Using Built-in menuSeparator Elements
Like the separator and labelControl elements, Microsoft does not expose any
menuSeparator controls for our use. As before, this is neither surprising nor of particu-
lar concern, as it takes less effort to create our own menuSeparator than it does to find
and reference one of theirs.

Creating Custom menuSeparator Elements
To demonstrate how to build custom menuSeparator controls, we will construct the UI
modification displayed in Figure 10-12.

To begin, create a new Excel document and save it in the macro-free (xlsx) file for-
mat. Close the file and open it in the CustomUI Editor. Apply the RibbonBase template
and insert the following XML between the <tabs> and </tabs> elements:

<tab id=”tabDemo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”grpSaveFiles”

label=”Save File”>

<menu id=”mnuNewFile”

label=”Save As File Type”

size=”large”

imageMso=”FileCompatibilityChecker”>

<menuSeparator id=”rxmSep01”

title=”Save in 2007 format”/>

<button idMso=”FileSaveAsExcelXlsx”/>

<button idMso=”FileSaveAsExcelXlsxMacro”/>

<menuSeparator id=”rxmSep02”/>

<button idMso=”FileSaveAsExcelXlsb”/>

<menuSeparator id=”rxmSep03”

title=”Save in 97-2003 format”/>

<button idMso=”FileSaveAsExcel97_2003”/>

<menuSeparator id=”rxmSep04”

title=”Save in other format”/>

<button idMso=”FileSaveAsOtherFormats”/>

</menu>

</group>

</tab>

In this XML code, notice that unlike the other rxmSep controls, rxmSep02 does not
specify a title attribute. This is how we will create a thin line to separate the menu
items, rather than use a title bar with a line.

350 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 350

Now you are ready to validate the code, save the file, and close it in the CustomUI
Editor. Upon reopening the file in Excel, you will see a newly formatted menu (refer to
Figure 10-12).

Of course, the menuSeparator element is provided purely to support your format-
ting goals. Generally, it won’t be necessary to show lines between your items. For
example, there wouldn’t be much benefit to adding lines to the menu shown in Fig-
ure 10-13.

Figure 10-13: Separating a custom Word menu with
textual separators

Alternately, maybe you prefer to have thin lines and to avoid the distraction created
by titles, as Figure 10-14 illustrates. The uniform appearance of a menu with just faint
lines and no titles gives the menu a totally different feel.

Figure 10-14: Separating a custom Word menu with
linear separators

The great thing about the menuSeparator element is that you can quickly flip it
between different views to see which you prefer. Let’s do exactly that. Create a new
Word document and save it as a macro-free (docx) file. Close the file and open it in the
CustomUI Editor. Apply the RibbonBase template and insert the following XML
between the <tabs> and </tabs> elements:

<tab id=”tabDemo”

label=”Demo”

Chapter 10 ■ Formatting Elements 351

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 351

insertBeforeMso=”TabHome”>

<group id=”grpSaveFiles”

label=”Save File”>

<menu id=”mnuSaveFile”

label=”Save As File Type”

size=”large”

imageMso=”FileCompatibilityCheckerWord”>

<menuSeparator id=”rxmSep01”

title=”Save as document”/>

<button idMso=”FileSaveAsWordDocx”/>

<button idMso=”FileSaveAsWord97_2003”/>

<menuSeparator id=”rxmSep02”

title=”Save as template”/>

<button idMso=”FileSaveAsWordDotx”/>

<menuSeparator id=”rxmSep03”

title=”Save in other format”/>

<button idMso=”FileSaveAsOtherFormats”/>

</menu>

</group>

</tab>

Validate the code, save the file, and close it in the CustomUI Editor. When you open
the file in Word, you should see a menu like the one shown in Figure 10-13.

Now that you’re satisfied that the menu exists, close the file and reopen it in the Cus-
tomUI Editor. Find every menuSeparator element and remove the title attribute from
it so that they all read similarly to the following:

<menuSeparator id=”rxmSep01”/>

Again, validate the code, save the file, close it in the CustomUI Editor, and reopen it
in Word. Notice that the menu now looks like the image shown in Figure 10-14.

It is also worth pointing out that the first menuSeparator actually becomes invisible
during this process. While the code still calls the element, it is ignored because it is
above the first menu item. In fact, it could have just as easily been omitted, but some-
times you may wish to keep it there. If you are building a very complex menu, you may
want to create a numbering convention, using your menuSeparator controls as logical
breaks between selected numbers. As you can see, using invisible menuSeparators
could be a very useful tool for that purpose.

Conclusion

This chapter focused exclusively on the elements that can be used to format the Rib-
bon, making it more intuitive and visually appealing. You first learned how to use the
box element. While the box itself is invisible, the effects that it creates can appear quite
dramatic. The box not only enables us to group controls together, it can also be used to
reserve whitespace on the Ribbon, thereby providing a more attractive and under-
standable UI.

352 Part I ■ The Building Blocks for a Successful Customization

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 352

We also demonstrated that the buttonGroup is a close cousin to the box element. Sim-
ilar in purpose, this element is actually very obvious, putting a border around the
group of controls nested within it. While this can add great visual effect to your Rib-
bon, the buttonGroup is limited in the types of controls that it can contain.

Next, we took a detailed look at the labelControl. This element, used to provide
text on the Ribbon, can really add flair and distinction, to say nothing of the vital infor-
mation that it can convey to users. By placing a labelControl over one or more groups
of controls, you can immediately indicate their purpose to users, without forcing them
to rely on a screentip.

While the box and buttonGroup controls are intended to bring different controls
together in logical groups, it is the job of the separator element to draw clear bound-
aries between the controls. The separator can only be a vertical line running from the
top of the Ribbon group to the bottom.

That brings us to the final control in this section. We ended the chapter by looking at
the menuSeparator control. Similar in purpose to the separator, the menuSeparator is a
horizontal line used to separate the items on menu-style controls. Although it can only
be used with the menu controls, it is still more robust than its group-level counterpart,
the separator. The menuSeparator can have a text title so that it will display both a hor-
izontal line and a title.

Ultimately, Microsoft has provided us with a fairly good collection of elements with
which we can format and layout our Ribbon customizations. While improvements can
always be made, these controls will accomplish most of the formatting that you want.

The next chapter focuses on the controls and attributes that help users. You’ll learn
how you can create a Ribbon that makes it easier for users to get their work done.
Chapter 11 is the final chapter in this part, covering the fundamental concepts that are
the prerequisites for creating truly customized Ribbons. After the next chapter, we
move into more advanced concepts and work a lot more with VBA.

Chapter 10 ■ Formatting Elements 353

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 353

91118c10.qxd:WileyRedTight 11/28/07 9:17 PM Page 354

355

One of the things developers often overlook when building programs is ease of use.
Indeed, this is one aspect of development that the Ribbon was designed to fix. Even so,
it is still the developer’s responsibility to ensure that needed controls are logically placed,
have meaningful labels, and are easily understood by the user. Despite our best efforts,
sometimes even we developers are unable to make things completely intuitive — and
that is where providing help to your users comes in.

In this chapter you’ll learn techniques for providing custom help and tips to users,
when and where they need it most. We’ll examine one control and three attributes, and
show you how to give a face-lift to existing controls. When used together, these can
effectively become the first level of help for users.

We start by looking at the dialogBoxLauncher control, which is used to display cus-
tom userforms or built-in dialogs. While the main purpose of this control is to enable
the user to choose from a wide array of options, it can also be used to provide infor-
mational forms. This chapter describes both uses for this control.

Following the dialogBoxLauncher, three specific attributes are explored: keytip,
screentip, and supertip. Each of these attributes can be used in its own special way to
make the Ribbon more accessible, easier to navigate, and more logical to follow.

Finally, we demonstrate how to replace some of the attributes of built-in controls. By
modifying some of the built-in controls to be consistent with your custom controls, you
can provide a more uniform user interface. This enables users to become more com-
fortable and fluent with the controls specific to the application. At the same time, it
enables you to avoid creating everything from scratch.

By the end of the chapter, you will have the tools and knowledge to create easy-to-
use custom UIs, and you’ll be able to incorporate strategically placed help files and

Using Controls and
Attributes to Help Your Users

C H A P T E R

11

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 355

tips. As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s website at www.wiley.com/go/ribbonx.

The dialogBoxLauncher Element

The dialogBoxLauncher is a little, almost invisible, gadget that you can use on your
group. This tiny square with an arrow in it, shown in the lower-right corner of each
group in Figure 11-1, launches a dialog box (either custom or built-in).

Figure 11-1: Three groups with dialogBoxLauncher elements
in place

In most cases, the dialogBoxLauncher is used to provide users with many more
options than you could, or would want to, fit on the Ribbon. It does this by launching
one of Microsoft’s built-in dialogs. Fortunately, we are not limited to simply using the
built-in dialogs provided by Microsoft. Indeed, as demonstrated later in the chapter,
you can create your own userforms, which can be used to provide users with addi-
tional options or help documentation.

This section looks at three ways to use the dialogBoxLauncher: using a built-in
version to launch the default dialog that Microsoft has assigned; creating a
custom dialogBoxLauncher to launch a built-in dialog; and creating a custom
dialogBoxLauncher to launch your own custom userform. First, though, we explore
the XML structure of the dialogBoxLauncher.

Required and Optional Attributes
The dialogBoxLauncher is somewhat unusual compared to the rest of the fleet of Rib-
bonX elements. Whereas normally we provide a table of all the required and optional
attributes for the element, the dialogBoxLauncher does not have any — not even an id!

While it may seem very strange at first, the sole job of this element is to launch another
element; therefore, it does not need any attributes. Instead, the dialogBoxLauncher relies
on the child object to provide its own attributes.

Allowed Children Objects
The dialogBoxLauncher is a container, nothing more. Therefore, it not only accepts a
child object, it requires a child object in order to function. The dialogBoxLauncher must

356 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 356

have one button, and only one button, as a child object. In fact, it is actually the job of
the button to launch the application’s dialog, so the dialogBoxLauncher doesn’t even
do that!

NOTE dialogBoxLauncher is unique in that it has no attributes. In addition, it
must have one, but only one, child button. Although it might be easiest to use a
built-in button, this has the extra challenge of ensuring that the correct built-in
dialogBoxLauncher button is selected.

Parent Objects
The only place where a dialogBoxLauncher may be used is on a group.

Examples of Using the dialogBoxLauncher Element
As mentioned earlier, there are three different ways to implement a dialog-
BoxLauncher in the UI:

■■ Use one of the defaults that Microsoft has made available,

■■ Create a custom launcher to use one of Microsoft’s other dialogs.

■■ Create a custom launcher to launch your own custom userform.

Each of these approaches is now explored in detail.

Built-in dialogBoxLaunchers

The easiest way to add a dialogBoxLauncher to your group is to use one of Microsoft’s
built-in dialogBoxLauncher buttons as the child object. Because Microsoft provides
several built-in dialogBoxLauncher buttons, it makes sense to use them where you can,
rather than program the callbacks to launch the dialogs yourself.

The example that follows will be created in Microsoft Word, but it can also be com-
pleted in Access or Excel. As it only uses built-in controls, it does not require VBA, so
it can be saved in a macro-free file format.

Begin by creating a new Word file and opening it in the CustomUI Editor. After
applying the RibbonBase XML template designed in Chapter 2, insert the following
XML code between the <tabs> and </tabs> tags:

<tab id=”rxtabDemo”

label=”Demo”

insertBeforeMso=”TabHome”>

<group id=”rxgrpTest”

label=”Test”>

<box id=”rxboxFormat”>

<comboBox idMso=”Font”/>

<comboBox idMso=”FontSize”/>

</box>

Chapter 11 ■ Using Controls and Attributes to Help Your Users 357

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 357

<dialogBoxLauncher>

<button idMso=”FontDialog”/>

</dialogBoxLauncher>

</group>

</tab>

NOTE Remember that if you are following along in Access, you need to
replace “TabHome” with “TabHomeAccess” in the insertBeforeMso attribute.

Notice that the dialogBoxLauncher is merely a shell that holds one button. The trick
to using the dialogBoxLauncher is to ensure that the correct built-in dialog-
boxLauncher button is used.

Once you have validated and saved your XML, reopen the file in Word. On the
Demo tab, you’ll see that the dialogBoxLauncher is now showing in the bottom right-
hand corner of the Test group. Clicking the arrow will launch the dialog, as shown in
Figure 11-2.

Figure 11-2: The Font dialog launched from a built-in dialogBoxLauncher

A Custom dialogBoxLauncher with Built-in Dialogs

While Microsoft has pre-programmed many dialogBoxLauncher buttons, they cer-
tainly did not provide one for each of their many application dialogs. Sometimes it is

358 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 358

just easier to look up the dialog you are after, and then program the callbacks to launch
the dialog yourself. The following example, again focused on the Font group, walks
you through the process.

Rather than start from scratch, we’ll reuse the file created for the previous example.

NOTE You can download a completed version of the previous example from
the book’s website.

One immediate change that we need to make to our prior file is to save it in a macro-
enabled format. Because the changes we’re about to make require callbacks, the file has
to allow VBA to run. Therefore, open the file in Word, save it as a macro-enabled (docm)
file, and then close it again. Now open the file in the CustomUI Editor so that you can
make the necessary changes to the dialogBoxLauncher button.

The only section of the XML that you need to replace is the following line within the
dialogBoxLauncher tags:

<button idMso=”FontDialog”/>

Change the preceding line to read as follows:

<button id=”rxbtnDialog”

onAction=”rxbtnDialog_click”

screentip=”Launch Dialog”/>

Note here that no image is associated with the button. This may not seem like a big
deal, but we point it out so that you don’t try to add one. In fact, even if you did supply
a button image, it would be overwritten by the dialogBoxLauncher image anyway.

As usual, validate the code and generate and copy your callback before you save the
file. Reopen Word, launch the VBE, and insert a new standard module to hold the call-
back signature.

Now comes the tricky part. You want your callback signature to read as follows:

‘Callback for rxbtnDialog onAction

Sub rxbtnDialog_click(control As IRibbonControl)

Application.Dialogs(wdDialogFormatAddrFonts).Show

End Sub

The hard part in this callback is finding the appropriate constant for the dialog (the
wdDialogFormatAddrFonts portion). Figuring this part out tends to be a bit of an edu-
cated guess at the best of times, so it can quickly become very frustrating to anyone
new to the game.

There are two common ways for reviewing lists of constants: using the Object Browser
and using IntelliSense. To use the Object Browser, access the Visual Basic Editor and open
the Object Browser. Start by searching the Word library for the term “wdDialog.” Once
you have successfully narrowed the object model to the wdDialog constants, as shown in
Figure 11-3, it is merely a matter of scanning the right-hand column for a constant that
looks promising and then trying it out. If you’ve seen the dialog in action somewhere in
the application, it will be in this list, but the challenge is figuring out what it is called.

Chapter 11 ■ Using Controls and Attributes to Help Your Users 359

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 359

Figure 11-3: The Object Browser searching for dialog constants

C ROSS-RE FE RE NC E For a review of the Object Browser, revisit Chapter 4.

The other approach is to use IntelliSense. You’re probably familiar with that by now,
and can anticipate that as you type “Application.dialogs(” the IntelliSense will kick in
when “(“ is typed and provide a list of applicable constants. Here, again, you’ll be
scrolling through the list; but at least as you keep typing, the list continues to zero in on
matching the existing text.

Our example again uses wdDialogFormatAddrFonts. Now that we have our dialog
launcher callback in place, we are ready to exit the VBE and close the file and try it out.
Return to the Demo tab in Word and click the dialog launcher icon. The dialog will pop
up, front and center, just as it did in the previous example.

Once you’re satisfied that the dialog is working the way you want, try going back
into the VBE and substituting a different dialog constant. Click the launcher and it will
quickly become apparent how versatile this callback tool can be. Even better, note how
many dialogs are now available to you!

Custom dialogBoxLauncher with Custom Userforms

No matter how many built-in dialogs Microsoft provides, it is inevitable that you will
eventually want to create your own. In this section you will learn to do just that. While
it is possible to create complete userform interfaces to set different options, that’s a
topic beyond the scope of this book. Instead, we will confine our example to a simple
implementation of a userform that provides help.

We start with the file we just finished in the previous example. The XML is ready to
use, but we need to make some changes to the VBA.

NOTE A completed version of the previous example (dialogBoxLauncher-
BuiltinDialog.docm) can be downloaded from the book’s website.

360 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 360

If you are not already in the Word document, open it and go to the VBE (Alt+F11).
Make sure that both the Project Explorer and Properties windows are showing,
because you’ll need to use both.

TI P To show the Project Explorer window, just press Ctrl+R, and F4 for the
Properties window. In both cases, the windows will be opened or activated if
already open.

Insert a new userform in your project and add a label and a CommandButton to it.
Add some text to the label control, and change the caption on the CommandButton to
“Close.” For now, leave the name of the userform and all the controls at their defaults.

Next, right-click the CommandButton and choose View Code. You will be taken to the
code module behind the userform, where you will be able to see that the CommandButton1_
click event has been created for you. Modify the procedure to read as shown here:

Private Sub CommandButton1_Click()

Unload Me

End Sub

This line will unload the userform when the CommandButton is clicked.

TI P Confused about the difference between hide and unload when it comes
to userforms? Whereas “hide” merely makes the userform invisible, “unload”
actually closes the form and unloads it from memory completely.

Now you need to modify the callback so that it launches your own userform instead
of the Microsoft userform used in our previous example. Browse to the standard module
where you stored the callback signature and edit the code to read as follows:

‘Callback for rxbtnDialog onAction

Sub rxbtnDialog_click(control As IRibbonControl)

UserForm1.Show

End Sub

Close the VBE, save the changes, and return to the Word document. By clicking on
the dialogBoxLauncher, you’ll now see your very own userform pop up. Figure 11-4
shows an example of such a userform, and should leave you with no doubts about its
versatility.

NOTE Naturally, your forms will vary depending upon the controls and text
that you used. In addition, while many of the colors and formatting can be set
when designing the userform, some settings (such as title bar color, font, and
size,) are controlled at the system level.

Chapter 11 ■ Using Controls and Attributes to Help Your Users 361

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 361

Figure 11-4: A custom userform
launched from a dialogBoxLauncher

The keytip Attribute

Contrary to what the name implies, the keytip does not have anything to do with
displaying tips or help. Rather, the keytip is the feature that enables users to navigate
the Ribbon via the keyboard, in lieu of the mouse. While keytips are not required in a
simple UI, they are appreciated by users who do not like to use the mouse, and they
also help make the UI more accessible. Thankfully, setting up a keytip for a command
is very easy, and only a tiny bit of planning is required to successfully implement
some time-saving options.

Pressing the Alt key puts the keyboard into keytip navigation mode. This enables users
to navigate the tab, group, and control hierarchy without ever having to grab the
mouse. Simply press the characters(s) of a command and it will be activated. You defi-
nitely want to keep in mind that keytips are context sensitive, so some invoke different
actions depending on the program, the application, and even which window or Ribbon
tab is active.

While the keytip attribute accepts up to three characters, remember that they are
used in an attempt to grant a more efficient access path through your UI than using the
mouse. It therefore makes sense to try to keep them as short as possible.

Likewise, just because the keytip will accept either textual, numeric, or mixed data,
it is not supposed to be cryptic. Rather than make these challenging, every attempt
should be made to keep the key selection as logical as possible. The more the keytip
departs from the name of the control that it activates, the harder it will be for users to
remember, and therefore the less useful it will be.

TI P Remember that you can display the available keytips just by pressing the Alt
key. At that point, typing the key has the same effect as clicking on the control.

Figure 11-5 displays Excel’s Ribbon tabs and Quick Access Toolbar in keytip naviga-
tion mode.

362 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 362

Figure 11-5: The keytip attributes of Excel’s tabs and QAT

If you were to press the letter H, which represents the shortcut for the Home tab, you
would be presented with the shortcuts for the each of that tab’s commands, as shown
in Figure 11-6.

Figure 11-6: keytip attributes for the controls of Excel’s Home tab

Fortunately, it’s easy to display keytips, because it would be quite a challenge to
remember all the common commands, let alone figure out the underlying logic to their
designation.

Creating a Keytip
So how do you go about creating your own keytip attributes? As mentioned earlier, it
is actually quite easy — you simply add an appropriate keytip=”abc” tag to the parent
element in the XML structure.

To illustrate, create a new file in your favorite application (this can be saved in a
macro-free format), and insert the following XML code:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtabDemo”

label=”Demo”

keytip=”cD”

insertBeforeMso=”TabHome”>

<group id=”rxgrpDemo”

label=”Demo Group”>

<button id=”rxbtnDemo”

label=”Testing”

keytip=”B”

imageMso=”HappyFace”/>

</group>

</tab>

Chapter 11 ■ Using Controls and Attributes to Help Your Users 363

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 363

</tabs>

</ribbon>

</customUI>

As you can see, you are simply creating a new group that contains a happy-face but-
ton.

TI P If you build the example in Access, the insertBeforeMso attribute needs
to be updated from TabHome to TabHomeAccess.

Once the file has been reopened (and after pressing the Alt key), the new UI will
look like the one shown in Figure 11-7.

Figure 11-7: A custom keytip in place on the Ribbon

Notice that while the keytip is displayed in whatever format or case that is typed in
the code, a keytip is not case sensitive. In the preceding example, pressing the “c” and
then “d” keys will take you into the Demo Group, which displays the Testing button
with its keytip of “B”.

NOTE You can also populate your keytip attributes dynamically using the
getKeytip callback signatures in lieu of a static keytip.

Keytip Idiosyncrasies
One thing that may seem odd about Figure 11-7 is the decision to use a keytip that
is two characters long. Moreover, it uses a mixture of uppercase and lowercase char-
acters! You may be thinking that it makes more sense to use an uppercase D to be
consistent with the rest of the tabs, rather than make the keytip stick out like a sore
thumb.

The painful reality is that had you decided to use a “D” for your keytip, pressing
the Alt key would have revealed the keytips shown in Figure 11-8. Frustrating as it
may be, there is no warning about the impending switch. In addition, the XML code
will not be updated for you either, so it will continue to state that the keytip should
display a “D”.

364 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 364

Figure 11-8: The Demo tab with a programmed keytip=”D”

What is going on here? Is “D” already used as a keytip? Even if it is, this should not
prevent assigning a letter a second time. You can see that “H” is in use by the Home
tab. Strangely, if you had assigned “H” to your keytip, the results would look like what
is shown in Figure 11-9. Note both an H1 and an H2.

Figure 11-9: The Demo tab with a programmed keytip=”H”

Because using “H” modifies both your keytip and the default keytip, you know that
there isn’t an issue with assigning a keytip that is already in use. However, it certainly
alerts you to the issue that the original keytip became H2. This is not good, as it is con-
trary to convention and would shock users who might be rapidly typing a succession
of keytips and suddenly find themselves in unfamiliar territory. It also begs the ques-
tion of whether this is related to positioning and whether the numbers will always
ascend from left to right so that additional Hs will become H1 and these two would be
bumped up yet another number.

As it turns out, the Alt+D keystroke combination is reserved by Microsoft to place
the user in Office 2003 keystroke mode. Microsoft actually recommends beginning all
keytips with a “Z” character. Ironically, starting a keytip with an uppercase “Z” will
yield an effective keytip of “Y” on the ribbon, but using a lowercase “z” as the first
character works just fine.

Before you do anything, however, think about this for a moment. How many devel-
opers currently use Z as a flag for objects that are pending deletion? We’re all for nam-
ing conventions, but “Z” certainly isn’t the answer, and “z” is questionable at best.
Besides, the keytips should benefit the user, and how many users are going to think,
“I’m about to use a custom keytip, so it must begin with “z”?

Unfortunately, despite all your best planning in this regard, you may still have to
play around a bit to select a logical keytip, and even then it might not be exactly the one
you prefer. Thankfully, it only takes a moment to create, test, view, and even revise a
keytip, so you can immediately change the character if it doesn’t seem appropriate.
One thing in your favor is that with the Ribbon being essentially all icons with very few
words, when keytip mode is used, the keytip letters virtually leap out at the user.

Chapter 11 ■ Using Controls and Attributes to Help Your Users 365

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 365

screentip and supertip Attributes

The screentip and supertip attributes enable you to provide helpful text for your con-
trols when a user moves the mouse over them. One of Microsoft’s very rich screentip
and supertip combinations is shown in Figure 11-10.

Figure 11-10: Excel’s Filter screentip and supertip attributes

NOTE The screentip portion is the bolded line at the top of the box that gives
the keystroke shortcuts, while the supertip is the rest of the information
within the drop-down pane.

Now that we’ve teased you with a peek at this incredible attribute, we also need to
put a cap on your excitement. Microsoft does not let us add our own images to super-
tips. This is a shame, but it certainly doesn’t render these attributes useless. It simply
deprives them of some additional luster. It also gives us something to hope for in ver-
sion 2.0 of the Ribbon.

Focusing once again on the purpose of these attributes, they are intended to share
information with the user — specifically, to indicate the purpose of the control. This is
the first or second line of help for users, and it should be kept clean and concise. Use the
screentip to tell users what the control is, and use the supertip to provide a slightly
longer explanation of what the control does.

Creating screentip and supertip Attributes
Like the keytip, it is very easy to add screentip and supertip attributes to a control.
For use of static screentip and supertip attributes, you simply code them into the
XML. When you want to assign these dynamically, they have the prerequisite call-
back signatures.

366 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 366

For this example, we will again work with static versions of the attributes. Locate
the previous example file that you created, or download the completed version
(CustomKeytip.xlsx) from the book’s website. Replace the XML used to create the but-
ton with the following:

<button id=”rxbtnDemo”

label=”Testing”

screentip=”This is very accurate information!”

supertip=”It tells you nothing... which is exactly what this button↵
does!”

imageMso=”HappyFace”/>

After you save the file and reopen it in the application, rolling the mouse over the
button will display the tips that were programmed, as shown in Figure 11-11.

Figure 11-11: Custom screentip and supertip attributes for a button

TI P When working with text that spans multiple lines in your XML, the tab
character can be used to align the XML code without affecting what the user
sees. However, entering an extra hard return or space will insert a space in the
text displayed for the attribute.

TI P If you want to force a line break in your outputted text, you need to add
the  characters to your XML. These five characters force a hard return in the
output. Try it for yourself, changing the screentip line in the preceding example to
read screentip=”This is very accurate  information!”

While it is unfortunate that we can’t add images to our supertips, it is even more
frustrating that we can’t customize or remove the filename, gear icon, or help label that
shows at the bottom of the supertip window. Although users may become accustomed
to and even ignore these, it definitely counters any attempt to make things completely
seamless with the existing application; and to add insult to injury, so to speak, pressing
F1 for help, as advised by the supertip, offers no assistance whatsoever.

Chapter 11 ■ Using Controls and Attributes to Help Your Users 367

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 367

Overwriting Built-in Control Attributes

Suppose you are creating your application’s entire Ribbon interface from scratch.
Chances are very good that you will want to use some of Microsoft’s built-in controls,
but most likely some of them won’t be labeled quite right for your purposes. Rather
than confuse the user, it would be better to rename them, but it doesn’t seem worth
having to create the control from scratch. Thankfully, you can change some attributes,
and that is precisely what we cover in this final section.

For this example, we use a Microsoft Access database and change the Home tab to
contain a label stating Start Here. In addition, it only seems logical that the keytip to go
with it should be “S,” not “H,” as shown in Figure 11-12.

Figure 11-12: Overwriting a tab’s label and keytip attributes

To accomplish the customization shown in Figure 11-12, you merely need to refer to
the idMso of the control that needs to changed, as shown in the following XML:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab idMso=”TabHomeAccess”

label=”Start Here”

keytip=”S”>

</tab>

</tabs>

</ribbon>

</customUI>

To try this out, create a new database and copy the preceding code into the field on
the USysRibbons table responsible for holding your XML. Of course, you could also
use this same code in Excel or Word if you changed TabHomeAccess to TabHome.

C ROSS-RE FE RE NC E For a refresher on how to do this in Access, review
the “Microsoft Access Customizations” section in Chapter 2.

This technique can also be used to change a great many other attributes of built-in
controls; probably the most common use is to rename buttons or hide their labels.

One frustrating exception to this technique, however, is that we are not permitted
to modify any of the properties of built-in groups. It isn’t clear why Microsoft chose to
exclude groups, as it would have been made things so much easier. For example, it

368 Part I ■ The Building Blocks for a Successful Customization

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 368

would be nice (and a lot less work) to simply set a group’s visible property to false,
rather than have to create a custom tab to contain the existing groups that you do
want to use.

Conclusion

In this chapter, you learned how to use several tools to create a more helpful and intu-
itive user interface. You learned not only how the dialogBoxLauncher control can be
used to display built-in dialogs full of options, but also how to create a custom version
to display help that is specific to the controls on your group.

We also covered the keytip, screentip, and supertip attributes, and showed how
each one can be customized and incorporated into an application. By employing these
easy-to-create attributes, you can put information and guidance literally at a user’s fin-
gertips. In doing so, you not only help them navigate more efficiently, but also expose
them to more features so they can use the programs more effectively.

Finally, you learned how to replace some of the attributes of built-in Microsoft con-
trols, which enables you to rename certain aspects in the UI without having to re-create
everything from scratch.

This is the final chapter for covering the basics. By now, you understand the funda-
mentals for creating customizations. At this point, you’re ready to move into more
advanced VBA techniques that can really make your work shine.

Chapter 11 ■ Using Controls and Attributes to Help Your Users 369

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 369

91118c11.qxd:WileyRedTight 11/28/07 9:17 PM Page 370

In This Part

Chapter 12: Advanced VBA Techniques
Chapter 13: Overriding Built-in Controls in the Ribbon
Chapter 14: Customizing the Office Menu and the QAT
Chapter 15: Working with Contextual Controls
Chapter 16: Sharing and Deploying Ribbon Customizations
Chapter 17: Security In Microsoft Office

Advanced Concepts
in Ribbon Customization

P a r t

I I

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 371

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 372

373

Now that you’ve learned about the basic building blocks for Ribbon customizations,
it’s time to delve into some more advanced VBA techniques. We’re calling these
advanced because they require specialized knowledge of VBA, not necessarily because
they are difficult to implement.

In this chapter you learn how to implement custom properties, methods, and events
through classes. You also learn how to add custom properties to built-in objects such as
ThisWorkbook, Sheet, ThisDocument, Form, and so on. These techniques help you to
streamline your code and make it more manageable when implementing the UI across
your entire project.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s website at www.wiley.com/go/ribbonx.

Working with Collections

A Collection object is a set containing various elements. Because it is a set, it can be
referred to as a single unit. A Collection object is very handy when it comes to col-
lecting information about related elements — although they do not necessarily need to
be related or even have the same data type.

When working with classes, for example, a Collection object can work as a con-
tainer for elements that you need to add to your custom object.

Advanced VBA Techniques

C H A P T E R

12

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 373

C ROSS-RE FE RE NC E For a refresher on classes, you might want to review
“Document-Level Events” in Chapter 4.

A Collection object can be created as follows:

Dim myCollection As New Collection

A custom collection is made up of four methods, as shown in Table 12-1.

Table 12-1: Methods Present in a Custom Collection

METHOD DESCRIPTION

Add Adds an item to the collection. You can define the item, its key,
and its position.

Count Counts how many items are in the collection

Item Returns a specific item within the entire collection. You can use
the index or the key to return the corresponding item.

Remove Removes an item from the collection. Use the index or key to
refer to which item is to be removed.

When working with built-in Collection objects, you will recognize them because
they are written in the plural form. Notice in the following example that we dim
(dimension) each database as a DAO.database, and later in the code we use the data-
bases in the line For Each db In wrkSpace.Databases.

Sub dbCollection()

Dim wrkSpace As DAO.Workspace

Dim db1 As DAO.database

Dim db2 As DAO.database

Dim db As DAO.database

Dim strBD As String

Dim tbl As DAO.TableDef

Dim fld As DAO.Field

On Error Resume Next

Set wrkSpace = CreateWorkspace(“Sample_WrkSpace”, _

“admin”, “”, dbUseJet)

‘ Set the first database in the workspace

strBD = CurrentProject.Path & “\Northwind.mdb”

Set db1 = wrkSpace.OpenDatabase(strBD)

‘ Set the second database in the workspace

strBD = CurrentProject.Path & “\Northwind - Copy.mdb”

Set db2 = wrkSpace.OpenDatabase(strBD)

374 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 374

Debug.Print “ Workspace Name: “ & wrkSpace.Name

For Each db In wrkSpace.Databases

With db

Debug.Print db.Name

For Each tbl In db.TableDefs

Debug.Print tbl.Name

For Each fld In tbl.Fields

Debug.Print “ “ & fld.Name

Next fld

Next tbl

End With

Next db

db1.Close

db2.Close

wrkSpace.Close

End Sub

The preceding example opens two databases under the Sample_WrkSpace workspace.
These databases, in turn, make up the databases collection of the workspace. We can
then run through each database in the workspace to work with each one individually.

You use the same logic to work with the workbooks and documents collections in
Excel and Word:

Sub wbCollection()

Dim wb As Workbook

For Each wb In Application.Workbooks

Debug.Print wb.Name

Next wb

End Sub

Sub docCollection()

Dim wrdDoc As Document

For Each wrdDoc In Application.Documents

Debug.Print wrdDoc.Name

Next wrdDoc

End Sub

In the same way, you use the Add method in custom collections to add elements to
the collection; you can also use this method to add elements to built-in collections, as
shown in the following code snippet:

Set wrdDoc = Application.Documents.Add

Chapter 12 ■ Advanced VBA Techniques 375

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 375

Note that with Access we use the OpenDatabase method. Excel and Word also pro-
vide an Open method that adds a workbook/document to the Workbooks/Documents
collection. The difference is that the first method adds a new workbook/document
(that is, either blank or based on a template), and the second method opens an existing
workbook/document.

Referring to an item within the collection follows the same pattern (the number in
parentheses refers to the database item):

wrkSpace.Databases(1).TableDefs.Count

The preceding example accesses the database collection and then, looking at the
database with the index count of 1, counts the number of table objects — returning that
value. A similar approach can be used to obtain the number of sheets in an Excel work-
book. You can also use this approach to obtain other information about the files within
a collection. For example, the following line of code would return the name of the sec-
ond Word document in the Documents collection:

Application.Documents.Item(1).Name

As you can see from the previous two examples, once you get the hang of working
with collections, many of the techniques used in one application can be immediately
transferred to another application within the Office suite.

TI P It is important to remember that the index count starts with 0, which is
why the (1) returns the value associated with the second item in a collection.

In some cases, you will come across items in a built-in collection that have pre-
defined values for the indexes — for example, the Borders collection:

With ActiveCell.Borders.Item(xlEdgeRight)

.LineStyle = xlDouble

.ColorIndex = 5

End With

For the Borders collection, we have a pre-defined value for each item that belongs to
the collection. The preceding example uses the index number of the pre-defined value
of the color to specify that the item (xlEdgeRight) is blue. If you are accustomed to set-
ting format properties of text and lines, you’re probably familiar with some of the
numbers associated with the color pallet.

TI P xl[something], wd[Something], and so on, are global constants that mask
the underlying index number. If you type ?xlEdgeRight in the Immediate
window, you will get the index number. In this example, you would get 10 as
the value for xlEdgeRight.

376 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 376

Determining Whether an Item Belongs to a Collection
One of the things that immediately comes to mind when dealing with collections
relates to how you retrieve an item from the collection. By using the Item method, you
can refer to a specific element by passing the index number as the argument; you can
also refer to an item’s key, to the pre-defined index of an item, or to the name of the
object in the collection. The trouble starts when you have several elements and you do
not know whether the element that you are looking for is actually in the collection.

You could, of course, loop through all the elements until you locate what you are
looking for, or you could simply pass the index value and pray that it is there. The
problem with this approach is that if it’s not there, it will return an error. The good
news about the error is that it indicates that an element is not present; hence, you can
use this error to determine the absence or presence of an element in a collection. The
following example should help clarify what we mean:

Function ItemExists(ByVal strItemKey As String, _

ByVal objColName As Object) As Boolean

Dim objGeneric As Object

On Error Resume Next

ItemExists = False

Set objGeneric = objColName(strItemKey)

If Err = 0 Then ItemExists = True

End Function

This generic function can be used to determine whether an item exists within a col-
lection. For example, you could determine whether a specific Word document (Docu-
ment3, for example) is currently open by using the following code snippet:

?ItemExists(“Document3”,Application.Windows)

Simply type the request in the Immediate window of whatever application you are
currently working in. Because it is a generic function, it will also work in Excel and
Access just by tweaking the syntax, as illustrated by the following examples:

?ItemExists(“WBName”,gWBCollection)

The preceding code applies to a custom collection that collects workbook objects.
You test for a specific workbook presence by passing the item’s Key value (filename).
This example searched for the Excel file named “WBName”. In Access, you could check
for the presence of a specific table using the following line of code:

?ItemExists(“MSysQueries”,Application.DBEngine.Workspaces(0)↵
.Databases(0).TableDefs)

Note that this example checked for the presence of a system table, MSysQueries. This
method enables you to accurately determine whether a system or hidden table exists
without the need to expose it. In this example, we use the default Workspace (which
has the index value of zero) and the default Database (which also has the index value
of zero) to specify the current project.

Chapter 12 ■ Advanced VBA Techniques 377

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 377

Class Modules

We touched on classes in Chapter 4, where you learned a few things that can be done
with them, such as writing application-level events, as well as control-specific events.
We now introduce you to some other concepts that will be relevant as you start creat-
ing more complex code.

Class modules are normally underutilized because a lot of people tend to pack
everything into standard modules. Although there is nothing wrong with using stan-
dard modules, certain things cannot be achieved relying solely on standard modules.

A class module (class) basically enables you to create new objects that have their
own methods and properties in the same way that application objects, such as Work-
book, Document, and Database, have their own set of properties and methods. In this
way, class modules serve as the perfect type to encapsulate complex code and expose
only the methods and properties associated with the object you create. Once the meth-
ods and properties are exposed, you simply call on them and the class does the rest.

Implementation becomes very simple, as developers do not need to understand any-
thing that goes on inside the class module. All they need to do is call it. Consider how
many times you used the Add method to add a new workbook or Word document. You
rely on it to perform as intended, but you don’t know how the code for the methods
works behind the scenes. That’s how you should be able to rely on your class modules.

Properties, Methods, and Events
As you write code for your classes, you will be interested in some specialized segments
of it. When you create an object, this object can have properties, methods, and events. For
example, suppose the object is a tree. This object will have properties (such as Height,
Width, etc.), methods (such as Grow, etc.), and events that will occur (such as Die).

■■ Properties: These refer to certain characteristics such as Name, Creator, Height,
and Width. The properties can be read-only, write-only or they can be write/read.
When naming properties, you should use nouns to refer to them — for example,
MyComputer.Name where MyComputer is the object and Name is its property.

■■ Methods: Methods refer to actions that can happen during the life of the object.
For example, your tree object could grow throughout its life until it dies. When
naming methods, choose a verb or a verb phrase to refer to them — for exam-
ple, MyComputer.GetIP.

■■ Events: Events refer to what happens to your object. When your tree dies (in
class parlance, when the object “terminates”), an event occurs. Metaphorically
speaking, if you are environmentally conscious and your tree dies, you can
hook the event, put it in your diary, and attend the memorial services.

As you have seen, you can have methods that use the same verb as an event. For
example, we have an Open event as well as an Open method. How do you know which is
which? The method is an instruction; you instruct the application to Open a document, a
workbook, or a database. The event is what actually has happened in the process.

378 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 378

The following illustration should help to distinguish between methods and events.
Consider MyComputer.GetIP (a method for retrieving the IP of my computer) and
MyComputer_OnGetIP (an event that is triggered when the IP addressed is retrieved).
Typically, you would not add the On prefix to an event, but thinking about it in this way
makes it a little easier to understand and differentiate between the nomenclature for
methods and events.

Working with Properties

Properties are an important aspect of an object. Take an Excel workbook, for example.
You can retrieve its path by using the Path property or you can change the name of a
worksheet by changing the Name property of the Worksheet object. By the same logic,
you can read the connection string of your Access project by accessing the Connection
property of the CurrentProject object. You might find it particularly helpful to use this
to confirm the location of the data files when moving or replacing applications, and
even when you are providing a new Ribbon customization.

Setting the properties is the first step in creating a class module.

Property Let

The first thing you need to do is declare a global variable to hold the property value.
Assume your object will take a Name property — in the general declaration of your
class module, you will have the following:

Dim gstrName as String

The next step is to write the code for the property:

Property Let name(ByVal strName As String)

gstrName = strName

End Property

You can now change this property in the same manner you change the name prop-
erty of other objects:

Sub clsProperty()

Dim MyComputer As New clsProperty

MyComputer.Name = “My Computer Name”

Set MyComputer = Nothing

End Sub

This procedure is placed in a standard module, and you declare your object vari-
able as being a new instance of your class. (In this case, clsProperty is the name of the
class module.)

Note that the only property you have is defined by the keyword Let, so at this point
this is a write-only class. You can change its value by writing a new value to it, but you
cannot read its property value.

Chapter 12 ■ Advanced VBA Techniques 379

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 379

Property Get

You know now how to write to a property. This is great, but you certainly need to know
how to retrieve its value as well. This is done by writing another property using the Get
keyword:

Property Get Name() As String

Name = gstrName

End Property

You can test this in a standard module as follows:

Sub clsProperty()

Dim MyComputer As New clsProperty

MyComputer.Name = “My Computer Name”

MsgBox MyComputer.Name

Set MyComputer = Nothing

End Sub

The preceding code simply uses both the write and read properties to change the
property value — that is, the Name property. Remember that Let allows you to write to
the property (think of this as it “lets” you specify a value for the property), whereas Get
allows you to retrieve its value. In the first example, we used the Let keyword to give
the computer the name of “My Computer Name.” Then, in the second example, we used
the Get keyword to retrieve the name of the computer, and it returned “My Computer
Name.” At the end of each routine, we used the Set keyword to set the value of the vari-
able to Nothing. This is important because it removes the value from temporary mem-
ory and helps to prevent memory leaks.

Figure 12-1: Exposing properties
and methods

Working with Methods

Methods refer to such actions as Add, Update, MoveNext, Clear, Delete, and so on.
Working with methods in classes can save you a lot of hassle in terms of implementing
complex code. Suppose you have code for sending e-mails that bypass the security
warning of Outlook. In this case, your class can expose a SendMail method that
requires only the recipient as the argument of the method. The person who implements

380 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 380

the code only needs to instantiate the class object and call upon the method. There is no
need to understand what goes on behind the scenes.

Figure 12-1 shows a scenario in which a client object is declared as a new instance
of the clsClients class. You can now add a new client, count the number of clients,
define the name, or send an e-mail to a client, and so on.

Methods are simply subprocedures or functions written in a class module. If you
need a value to be returned, then you need to use a function. Otherwise, you would use
a subprocedure to perform a certain action.

Now let’s create some of the methods displayed in the previous image. Here, you will
use a Collection object to store information about the client. The first thing you need to
do is declare a global variable representing this collection of clients:

Dim gcolClients As New Collection

Now you are ready to write the methods. In this example, you create Add, Count,
Delete, and GetDetails methods. The VBA code for these methods is as follows:

Sub Add(ByVal strName As String)

Dim lngIDClient As Long

On Error Resume Next

lngIDClient = gcolClients.Count + 1

gcolClients.Add strName, CStr(lngIDClient)

End Sub

Function Count() As Long

Count = gcolClients.Count

End Function

Sub Delete(ByVal strIDClient As String)

On Error Resume Next

If gcolClients.Count = 0 Then Exit Sub

gcolClients.Remove (strIDClient)

repopulate

End Sub

Function GetDetails(ByVal strIDClient As String) As Variant

On Error Resume Next

If gcolClients.Count = 0 Then

GetDetails = vbNullString

Exit Function

End If

GetDetails = gcolClients.Item(strIDClient)

End Function

It is always good to test as you go. Therefore, in a standard module, you can run a
simple test to check how things respond:

NOTE To test, ensure that you insert the name property; otherwise, you’ll get
an error.

Chapter 12 ■ Advanced VBA Techniques 381

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 381

Sub clsMyClients()

Dim client As New clsClients

With client

.Add (“Ken Puls”)

.Add (“Robert Martin”)

.Add (“Teresa Hennig”)

.Name = .GetDetails(2)

MsgBox .Name

.Delete (2)

.Name = .GetDetails(2)

MsgBox .Name

MsgBox .Count

End With

Set client = Nothing

End Sub

In the preceding case, we add three clients. We then get the details for the second
client, whose index is two (2) and display the details through a message box. Next, we
delete this client and again request the client with index two (2) to check what hap-
pened to the order and count. We show the client name and then count how many
customers are left in the collection. Sound complicated? Actually, it is not. Run the
code using F8 to step through each line and you will see how simple it is; and by see-
ing the results after each line, you’ll have a much better understanding of what the
code actually does.

NOTE Indexes normally start at zero, which might leave you wondering why
the index in the preceding example matches the number and position of the
items in the collection. The key is in the Add method that we created. We
specified that the next index (client ID) is the count of items in the collection
plus one, so if the collection starts with zero items, then the first item will have
an index equal to one and the index will match the count. As demonstrated in
our example, this technique can be very helpful.

Working with Events

An event simply refers to something that happens when you perform an action such as
opening a document, opening a form, and so on. Events can be specific to an object or
they can have wider implications, as application-level events do. For example, the class
you developed in the previous section has two basic events attached to it. One is trig-
gered when the class is initialized and the other when the class is terminated:

Private Sub Class_Initialize()

‘ Your code goes here

End Sub

382 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 382

Private Sub Class_Terminate()

‘ Your code goes here

End Sub

You can use these two events to control your own class, but you can also add events
to the class to control the application or other objects.

C ROSS-RE FE RE NC E See Chapter 4 for an overview of application-level
events.

Web Services and CustomUI
You’re probably familiar with Web services, and maybe have even used some. They
are services provided via Internet portals, such as Amazon, stock brokerages, and
geographic locator services. In most cases, Web services enable you to link to a data-
source and incorporate the data in your applications. Microsoft Office provides a
toolkit that can be used to harness the power of Web services to your advantage. For
example, you can use Web services in your UI to provide useful working tools to your
clients or users.

We’re about to show you how to utilize this power and leverage it in a neat UI
implementation.

NOTE You must download and install the toolkit from www.microsoft.com/
downloads/details.aspx?FamilyId=4922060F-002A-4F5B-AF74-978F2CD6C798&

displaylang=en before you can continue. Close all running applications before
installing the toolkit, and check the system requirements outlined in the URL.

Once the toolkit is installed, a new command will be available on the Tools menu of
the VB Editor, as shown in Figure 12-2.

Figure 12-2: Web services
tools for Office

All you have to do now is click this command to open the Web Service Reference
form. Using the form, you can either search for a Web service using keywords or you
can type in a URL. Our example uses the following Web service for currency conver-
sion: www.webservicex.net/CurrencyConvertor.asmx?WSDL. Type this URL into the

Chapter 12 ■ Advanced VBA Techniques 383

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 383

URL box and click Search. Once the search is finished, the results will be displayed in
the Search Results section of the form, as shown in Figure 12-3.

Figure 12-3: Web Service References form

Click Add to continue and a new class module will be inserted for you. Note that all
the class code is added, including initialization and termination events. In addition, as
pointed out earlier, you do not need to know anything about how the Web service code
is written. All you have to do is to implement the class. We will not repeat the class
code here, but it is available in the Web Service.accdb download file for this chapter.

Once the class has been created, add a standard module and insert the following code:

Public gclsCurConverter As clsWebservices

Function getRates(ByVal countryOrigin As String, _

ByVal countryDestination As String) As Double

If countryOrigin = “” Or countryDestination = “” _

Then Exit Function

If gclsCurConverter Is Nothing Then _

Set gclsCurConverter = New clsWebservices

countryOrigin = ExtractCurCode(countryOrigin)

countryDestination = ExtractCurCode(countryDestination)

On Error Resume Next

384 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 384

getRates = gclsCurConverter.wsm_ConversionRate(countryOrigin, _

countryDestination)

End Function

Function ExtractCurCode(ByVal strCurrency As String) As String

ExtractCurCode = Replace(Right(strCurrency, 4), “)”, “”)

End Function

Here, we have two functions. The first function does most of the work and returns
the exchange rate by passing the arguments to the Web service function declared in the
class module. The second function simply extracts the currency code from the currency
string. For example, the string passed could be “Canadian Dollar (CAD)” but we are
only interested in the currency code, i.e., the CAD part, because this is what is used by
the Web service.

The next step is to create the UI. Two comboBox controls will hold the country names
and currency codes for the first and second currency, as shown in Figure 12-4. We will
also add a labelControl in order to show the conversion result.

Figure 12-4: Currency
conversion UI based on
Web services

Up to this point, the same code works for Excel, Word, and Access. The remainder
of the example applies only to Access, but the code can easily be adapted for Word
and Excel.

NOTE You must reference the Microsoft SOAP Type Library in your project in
order to be able to access the Web services.

The code that goes into the class module is written for you by the toolkit. You
already have the implementation function. Now you need to write the XML code and
VBA code to add functionality to it. The XML code for this example is as follows:

<comboBox id=”rxcboCurrencyOrigin”

label=”Currency 1”

sizeString=”mmmmmmmmmmm”

screentip=”Click here to select the currency of origin...”

getItemCount=”rxshared_getItemCount”

getItemLabel=”rxshared_getItemLabel”

onChange=”rxshared_onChange”/>

Chapter 12 ■ Advanced VBA Techniques 385

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 385

<comboBox id=”rxcboCurrencyDestination”

label=”Currency 2”

sizeString=”mmmmmmmmmmm”

screentip=”Click here to select the currency of destination...”

getItemCount=”rxshared_getItemCount”

getItemLabel=”rxshared_getItemLabel”

onChange=”rxshared_onChange”/>

<labelControl id=”rxlblResult”

getLabel=”rxlblResult_getLabel”/>

The preceding code adds the two comboBoxes and the label control to your
CustomUI. Once you have generated the callbacks, you can copy and paste them into
a standard module in Access.

We used the following function to implement the class:

Public gclsCurConverter As clsWebservices

Function getRates(ByVal countryOrigin As String, _

ByVal countryDestination As String) As Double

If countryOrigin = “” Or countryDestination = “” _

Then Exit Function

If gclsCurConverter Is Nothing Then _

Set gclsCurConverter = New clsWebservices

On Error Resume Next

getRates = gclsCurConverter.wsm_getRate(countryOrigin, _

countryDestination)

End Function

clsWebservices is the name we’ve given to the class. When this class is automati-
cally generated, it will have a different name. You can either use the suggested name or
change it to whatever name you like. We strongly recommend changing the name and
following standard naming conventions.

Inside the function, we check whether the names of the countries have already
been passed or not. If not, the class does not get involved in anything, as this would
create an unnecessary performance hit. We also leave the class initialized during the
life of the session, so that it is not initialized and terminated each time the Web ser-
vice is called upon.

NOTE Because you’re dealing with an Internet connection and service, there
may be a slight delay when returning the value from the Web service. Of
course, you must also have an active Internet connection.

Finally, it is time to write the code for your UI. Start by declaring the following vari-
able in the general declarations area of your standard module:

Public grxIRibbonUI As IRibbonUI

386 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 386

Public gaCountries As Variant

Public glngItemCount As Long

Public glngCount As Long

Public gstrCountry1 As String

Public gstrCountry2 As String

Next, enter the following procedures. It’s a lot to type, so you might want to save
time and avoid errors by copying the text from the chapter download. Although by
now you could probably interpret these on your own, we’ll provide a brief explanation
of what each procedure is intended to do.

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Dim rst As DAO.Recordset

Dim db As DAO.Database

Dim strSQL As String

On Error GoTo ErrHandler

strSQL = “SELECT * FROM tblCountries ORDER BY ” _

& “tblCountries.CountryName;”

Set db = CurrentDb()

Set rst = db.OpenRecordset(strSQL, dbOpenSnapshot)

glngItemCount = rst.RecordCount

ReDim gaCountries(glngItemCount - 1)

glngCount = 0

With rst

If .EOF Then .MoveFirst

Do While Not (.EOF)

gaCountries(glngCount) = !CountryName.Value & “ (“ _

& !CountryCurCode.Value & “)”

.MoveNext

glngCount = glngCount + 1

Loop

End With

Set grxIRibbonUI = ribbon

rst.Close

db.Close

Set rst = Nothing

Set db = Nothing

glngCount = 0

Exit Sub

ErrHandler:

MsgBox Err.Description, vbCritical, Err.Number

End Sub

Chapter 12 ■ Advanced VBA Techniques 387

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 387

Sub rxshared_getItemCount(control As IRibbonControl, ByRef returnedVal)

returnedVal = glngItemCount

End Sub

Sub rxshared_getItemLabel(control As IRibbonControl, index As Integer, _

ByRef returnedVal)

On Error GoTo ErrHandler

returnedVal = gaCountries(index)

Exit Sub

ErrHandler:

MsgBox Err.Description, vbCritical, Err.Number

End Sub

Sub rxlblResult_getLabel(control As IRibbonControl, ByRef returnedVal)

returnedVal = “Conversion: $” & Round(getRates(gstrCountry1, _

gstrCountry2), 4)

End Sub

Sub rxshared_onChange(control As IRibbonControl, text As String)

Select Case control.id

Case “rxcboCurrencyOrigin”

gstrCountry1 = text

Case “rxcboCurrencyDestination”

gstrCountry2 = text

End Select

grxIRibbonUI.InvalidateControl (“rxlblResult”)

End Sub

Now that you’ve added the procedures to your module, let’s review what they do.:

■■ rxIRibbonUI_onLoad: This procedure loads, as usual, your IRibbonUI object.
You also use this same event to read through a list of countries in tblCountries
and load them into a global array. It also gets the number of countries to be
added to the comboBoxes.

■■ rxshared_getItemCount: Because we have two comboBoxes and they both use
the same list of countries, you pass the same total count as the attribute value
for both controls. If it happened to be a different count, you could handle each
control (case) separately by referring to the control id case. We’ve covered that
in previous examples, so you could just grab some code from one of those and
tweak it to fit your needs.

■■ rxshared_getItemLabel: Each item requires a label and each label is retrieved
from the global array (populated when the UI was loaded) using the label index.

■■ rxlblResult_getLabel: This labelControl receives the result of the currency
conversion after calling on the function that uses the Web service class.

■■ rxshared_onChange: This passes the country name to the global string variable
so that it can be used to retrieve the quotes for conversion.

388 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 388

Web services are a great way to add tremendous functionality to your projects. They
enable you to leverage the work of others without having to write a lot of your own
code, and they enable you to consume information that is normally very expensive to
generate. Be aware, though, that most Web services have subscription fees. We’ve only
touched the tip of an iceberg here, and it is hoped that you are enticed to explore more.

Using VBA Custom Properties

In addition to creating custom properties using classes, you can also create custom
properties for many objects (such as Workbooks, Sheets, Documents, and Forms). In
addition, after the custom properties are defined for an object, the properties are
exposed as a member of the object, as shown in the following example:

ThisWorkbook.MyRibbon

As you can see from the preceding line, this makes it very easy to refer to the UI
objects directly from a parent object (in this case, the ThisWorkbook object), which can
save a lot of hassle when you are referring back to the Ribbon object. Considering that
users frequently have multiple programs open at the same time, and each program
could easily have an object named MyRibbon, it is critical that the code can clearly spec-
ify the exact object to which it is referring.

Setting Up the Custom Properties
Setting up a custom property for a built-in object is the same as creating a custom prop-
erty using a standard class module, as you’ve already learned. The only difference is
that the property must reside within its container object so that the property can be
exposed as a member of that specific object.

You can use custom properties to simulate contextual tabs to easily access visibility
properties, to determine label values, and more. In the example that follows, we develop
custom properties to control visibility. Basically, the example creates the following:

■■ A custom property to show/hide a tab associated with a worksheet

■■ Two checkboxes that control the visibility of two built-in groups (Font and Table)

The key attribute in this example is the getVisible attribute. We will turn it into a
custom property so that we can change its value through the property, rather than
directly in the subprocedure. Notice that the groups we will hide/show through these
custom properties are located under different tabs. The Font group is under the same
tab as the customization, but the Table group is under the Insert tab. We included this
configuration to demonstrate the behavior when you can see it happen, as well as
when the change occurs in a group that is not currently visible. In the second scenario,
you won’t have proof that everything worked as expected until you activate the tab on
which the group is located.

Chapter 12 ■ Advanced VBA Techniques 389

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 389

We demonstrate this technique using Excel. Start with the following XML (just see-
ing how many lines you’d be writing will give you a new appreciation for being able
to download the code from the book’s website):

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

<ribbon startFromScratch=”false”>

<tabs>

<tab id=”rxtabSheet”

label=”Sheet Tab”

insertBeforeMso=”TabHome”

getVisible=”rxtabSheet_getVisible”>

<group id=”rxgrp1”

label=”My Custom Group”>

</group>

</tab>

<tab idMso=”TabHome”

label=”Modified Home”>

<group id=”rxgrp2”

insertBeforeMso=”GroupClipboard”

label=”My CheckBox”>

<!— Add a checkBox —>

<checkbox id=”rxchkHideFontGroup”

getLabel=”rxchkHideFontGroup_getLabel”

onAction=”rxchkHideFontGroup_Click”

screentip=”Hide the Font Group”

supertip=”Click here to hide/unhide the Font Group”/>

<!— Add a checkBox —>

<checkbox id=”rxchkHideTableGroup”

getLabel=”rxchkHideTableGroup_getLabel”

onAction=”rxchkHideTableGroup_Click”

screentip=”Hide the Tables Group”

supertip=”Click here to hide the Tables Groups”/>

</group>

</tab>

<tab idMso=”TabHome”>

<group idMso=”GroupFont”

getVisible=”GroupFont_getVisible”/>

</tab>

<tab idMso=”TabInsert”>

<group idMso=”GroupInsertTablesExcel”

getVisible=”GroupInsertTablesExcel_getVisible”/>

</tab>

</tabs>

</ribbon>

</customUI>

390 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 390

The code creates the Modified Home tab, adds the My CheckBox before the Clip-
board group, and adds a custom tab (Sheet Tab) with a blank group (for example pur-
poses only). The complete UI should look like what is shown in Figure 12-5.

Figure 12-5: Defining custom
properties for built-in objects

The next step is to define the properties. Open the code window for the ThisWork-
book object to define the following properties:

Private pRibbonUI As IRibbonUI

Private pblnGrpTblVisible As Boolean

Private pblnGrpFontVisible As Boolean

‘Sets the Ribbon object such that it can be accessed

‘as a member of ThisWorkbook

Public Property Let rxIRibbonUI(iRib As IRibbonUI)

Set pRibbonUI = iRib

End Property

Public Property Get rxIRibbonUI() As IRibbonUI

Set rxIRibbonUI = pRibbonUI

End Property

‘Sets the visibility attributes to a property such that i can

‘be accessed as a member of ThisWorkbook

Public Property Let rxIRibbonUIGroupTableVisible(_

ByVal blnVisible As Boolean)

pblnGrpTblVisible = blnVisible

End Property

Public Property Get rxIRibbonUIGroupTableVisible() As Boolean

rxIRibbonUIGroupTableVisible = pblnGrpTblVisible

End Property

Public Property Let rxIRibbonUIGroupFontVisible(_

ByVal blnVisible As Boolean)

pblnGrpFontVisible = blnVisible

End Property

Public Property Get rxIRibbonUIGroupFontVisible() As Boolean

rxIRibbonUIGroupFontVisible = pblnGrpFontVisible

End Property

Chapter 12 ■ Advanced VBA Techniques 391

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 391

Note that although the variables used to determine the visibility are private to the
ThisWorkbook module, the values set for the properties are exposed outside the scope
of the module. Because the parent object, ThisWorkbook, is accessible anywhere in the
project, so are the variables that are modified and accessed within the workbook’s
scope.

Before moving on to the callbacks, we need to create the custom properties for the
worksheet. We will then use these custom properties to determine whether a tab
associated with a sheet should be visible or not. It doesn’t really matter which sheet
you use for this exercise, but it might be easiest to emulate our example, which uses
sheet1.

You can use the following code to set the custom properties for the worksheet:

Private pglnTabVisible As Boolean

Property Let rxIRibbonUISheetTabVisible(ByVal blnVisible As Boolean)

pglnTabVisible = blnVisible

End Property

Property Get rxIRibbonUISheetTabVisible() As Boolean

rxIRibbonUISheetTabVisible = pglnTabVisible

End Property

Private Sub Worksheet_Activate()

Sheet1.rxIRibbonUISheetTabVisible = True

ThisWorkbook.rxIRibbonUI.Invalidate

End Sub

Private Sub Worksheet_Deactivate()

Sheet1.rxIRibbonUISheetTabVisible = False

ThisWorkbook.rxIRibbonUI.Invalidate

End Sub

Notice that you can now take advantage of the custom property that we created for
ThisWorkbook to invalidate the Ribbon. We no longer refer to the property as belonging
to a generic object; instead, we refer to it as a property that is a member of the This-
Workbook object. Hence, you know at a glance that the UI is part of ThisWorkbook. There
is no more guesswork.

Finally, provide the callbacks that will handle the calls from the UI:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

ThisWorkbook.rxIRibbonUI = ribbon

End Sub

Sub rxtabSheet_getVisible(control As IRibbonControl, ByRef returnedVal)

returnedVal = Sheet1.rxIRibbonUISheetTabVisible

End Sub

Sub rxchkHideFontGroup_Click(control As IRibbonControl, _

pressed As Boolean)

392 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 392

ThisWorkbook.rxIRibbonUIGroupFontVisible = pressed

ThisWorkbook.rxIRibbonUI.Invalidate

End Sub

Sub rxchkHideTableGroup_Click(control As IRibbonControl, _

pressed As Boolean)

ThisWorkbook.rxIRibbonUIGroupTableVisible = pressed

ThisWorkbook.rxIRibbonUI.Invalidate

End Sub

Sub GroupFont_getVisible(control As IRibbonControl, ByRef returnedVal)

returnedVal = True

If control.ID = "GroupFont" Then

returnedVal = Not (ThisWorkbook.rxIRibbonUIGroupFontVisible)

Else:

ThisWorkbook.rxIRibbonUI.Invalidate

End If

End Sub

Sub GroupInsertTablesExcel_getVisible(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = True

If control.ID = "GroupInsertTablesExcel" Then

returnedVal = Not (ThisWorkbook.rxIRibbonUIGroupTableVisible)

Else:

ThisWorkbook.rxIRibbonUI.Invalidate

End If

End Sub

Sub rxchkHideFontGroup_getLabel(control As IRibbonControl, _

ByRef returnedVal)

Select Case

Case True

returnedVal = “Show Table Group”

Case False

returnedVal = “Hide Table Group”

End Select

End Sub

You can now define various attributes associates with the UI objects through custom
properties. By incorporating a few lines of code, you no longer depend on generic
object variables that can become pretty much meaningless in a larger context. Instead,
you use properties that are immediately associated with their container objects (in this
case, a workbook and a worksheet). With these new skills, it is time to go one step fur-
ther and get information from the Registry.

Chapter 12 ■ Advanced VBA Techniques 393

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 393

Saving and Retrieving Values from the Registry

The Windows Registry is a database used to store settings related to various aspects
of your computer, such as user preferences, application settings, hardware settings,
and so on.

When you program in VBA, the language provides ways to directly interact with the
Registry. This is a powerful feature because it not only allows you to retrieve informa-
tion about other programs and hardware, but also enables you to select important
information about your application and store it in the Registry.

As our objective is to store and retrieve information about the UI, we will use a por-
tion of the Registry that is set aside specifically for VBA (and VB) settings. Unlike most
interactions with the Registry, our tasks do not require working with Windows APIs.

VBA provides two functions to work with the Registry: GetSetting and
SaveSetting. These two functions can only access the following Registry handle key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings

Figure 12-6 shows the Registry Editor window opened to the key specific to VBA
and VB projects.

Figure 12-6: Registry Editor window

NOTE To open the Registry Editor window, click the Windows Vista logo and
in the Start Search box, type regedit and press Enter. As long as you’re only
working with this key, you’re relatively safe and whatever you do only affects
your own project (or any other project that uses this key). This book is not
about the Registry, but you must not attempt to modify any other key without
making a backup of it unless you’re sure you actually know what you’re doing.
Otherwise, your actions can spell disaster.

The folder named AddInProject is the application name, the subfolder
TabVisibility refers to the section name of our customization. Inside the section

394 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 394

folder you have the key that stores the setting for a particular part of your application.
The types of values vary, and a full explanation of each one is beyond the scope of this
book. The examples given here concentrate only on what we have at hand.

Figure 12-7 illustrates a scenario in which the Registry may come to the rescue. As
you toggle the button, it stays toggled until you either click it again or you close the
project. Once you close the project, the state is thrown out. However, you may want
the button to retain the state that it had just before the project was closed.

Figure 12-7: Using the Registry to keep track of toggleButton state

The complete XML code to generate the preceding UI (toggleButtons and custom
tabs) is given here, followed by a brief explanation of the process:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

<ribbon startFromScratch=”false”>

<tabs>

<!--

**

THE FIX STARTS HERE.

THIS ALLOWS THE TOGGLEBUTTONS TO HANDLE UI STATES.

FOR EASE OF ACCESS, THE BUTTONS ARE PLACED IN A CUSTOM GROUP

WITHIN THE HOMETAB.

**

-->

<tab idMso=”TabHome”>

<group id=”rxgrp1”

insertBeforeMso=”GroupClipboard”

label=”Toggle Custom Tabs”>

<toggleButton id=”rxtglCustomReview”

label=”Toggle Custom Review Tab”

imageMso=”ReviewAcceptChangeMenu”

size=”large”

getPressed=”rxtglCustomReview_getPressed”

onAction=”rxtglShared_Click”/>

<separator id=”rxsep1”/>

<toggleButton id=”rxtglDataHandling”

label=”Toggle Data Handling Tab”

Chapter 12 ■ Advanced VBA Techniques 395

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 395

imageMso=”Consolidate”

size=”large”

getPressed=”rxtglDataHandling_getPressed”

onAction=”rxtglShared_Click”/>

</group>

</tab>

<!--

**

END OF FIX FOR HANDLING UI STATES.

**

THE CUSTOM REVIEW TAB UI STARTS HERE

**

-->

<tab id=”rxtabCustomReview”

getVisible=”rxtabCustomReview_getVisible”

label=”Custom Review”

keytip=”K”>

<group idMso=”GroupClipboard”/>

<group idMso=”GroupFont”/>

<group id=”rxgrpProofingComments”

label=”Proofing and Comments”>

<box id=”rxbox1” boxStyle=”vertical”>

<button idMso=”Spelling”/>

<button idMso=”Thesaurus”/>

<button idMso=”TranslationPane”/>

</box>

<separator id=”rxsep2”/>

<box id=”rxbox2” boxStyle=”vertical”>

<button idMso=”ReviewNewComment”/>

<button idMso=”ReviewDeleteComment”

label=”Delete Comment”/>

<toggleButton idMso=”ReviewShowAllComments”/>

</box>

</group>

<group id=”rxgrpChanges”

label=”Worksheet related changes”>

<box id=”rxbox” boxStyle=”vertical”>

<button idMso=”ReviewHighlightChanges”/>

<button idMso=”ReviewProtectAndShareWorkbook”/>

<button idMso=”ReviewAllowUsersToEditRanges”/>

<button idMso=”SheetProtect”/>

</box>

</group>

</tab>

<!--

396 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 396

**

END OF CUSTOM UI REVIEW TAB

**

-->

<tab id=”rxtabDataHandling”

getVisible=”rxtabDataHandling_getVisible”

label=”Data Handling”

keytip=”Z”>

</tab>

</tabs>

</ribbon>

</customUI>

The code contains some key callbacks that must be handled in VBA. The getPressed
attribute is set because it returns the callback that retrieves the pressed state for the
toggleButton from the Registry. The state is either true or false.

Next, you handle the Click event (which is defined as a shared callback via the
onAction attribute). The click will save the current state of the button to the Registry
every time it is clicked.

Finally, the getVisible attribute determines whether the tab is visible or not
depending on the state of the toggleButton.

NOTE The example that follows was made with Excel in mind; however, it can
be replicated in Word and Access.

For this example, encapsulate the following two VBA functions into your own func-
tion. This will give you the opportunity to hard-code certain parameters into the func-
tion itself and to practice passing arguments to UDFs (user-defined functions). The
UDF doesn’t do anything different from the VBA function itself, but it gives you
greater control over certain aspects, as we’re about to demonstrate:

Function getRegistry(ByVal strKey As String) As Boolean

On Error Resume Next

getRegistry = GetSetting(“AddInProject”, “TabVisibility”, strKey)

If Err <> 0 Then getRegistry = False

End Function

Function saveRegistry(ByVal strKey As String, _

ByVal blnSetting As Boolean)

SaveSetting “AddInProject”, “TabVisibility”, strKey, blnSetting

End Functionn

Because the getRegistry function will return an error if the key does not exist, you
need to add error handling to the trap for that error. If an error occurs, you know that
there is no key and that the getRegistry function should return False.

With the two functions ready to be used, you handle the callbacks as follows:

Public gblnShowCustomReviewTab As Boolean

Public gblnShowCustomDataHandlingTab As Boolean

Chapter 12 ■ Advanced VBA Techniques 397

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 397

Public grxIRibbonUI As IRibbonUI

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

End Sub

Sub rxtglCustomReview_getPressed(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = getRegistry(“CustomReviewTab”)

gblnShowCustomReviewTab = getRegistry(“CustomReviewTab”)

grxIRibbonUI.InvalidateControl (“rxtabCustomReview”)

End Sub

Sub rxtglDataHandling_getPressed(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = getRegistry(“CustomDataHandlingTab”)

gblnShowCustomDataHandlingTab = getRegistry(“CustomDataHandlingTab”)

grxIRibbonUI.InvalidateControl (“rxtabDataHandling”)

End Sub

Sub rxtglShared_Click(control As IRibbonControl, pressed As Boolean)

Select Case control.ID

Case “rxtglCustomReview”

gblnShowCustomReviewTab = pressed

saveRegistry “CustomReviewTab”, pressed

gblnCalledOnOpen = False

Case “rxtglDataHandling”

gblnShowCustomDataHandlingTab = pressed

gblnCalledOnOpen = False

saveRegistry “CustomDataHandlingTab”, pressed

End Select

grxIRibbonUI.Invalidate

End Sub

Sub rxtabCustomReview_getVisible(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = gblnShowCustomReviewTab

End Sub

Sub rxtabDataHandling_getVisible(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = gblnShowCustomDataHandlingTab

End Sub

With that done, you can now close your project and be confident that the next time
it opens, the settings for the handled control will be updated according to the values
recorded in your Registry keys.

398 Part II ■ Advanced Concepts in Ribbon Customization

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 398

Conclusion

In this chapter, you learned several advanced concepts of VBA, coupled with UI cus-
tomization. Some of the highlights included working with collections, class modules,
and custom properties. With collections, you were able to use Access workspaces to
enumerate databases in the collection, and we demonstrated how to determine
whether an item is present in a collection. In working with class modules, you created
your own properties and methods; and then you learned how to handle events.

You also saw how easy it is to connect to Web services and incorporate some of those
resources directly into your Ribbon customizations. After demonstrating how to work
with custom properties for built-in objects, we closed the chapter by working with the
Windows Registry, and explained how to store UI values so that they can be retrieved
after a session has been closed, thereby allowing the UI to return to that state the next
time it is opened.

These examples only scratch the surface of what you can accomplish with these
tools. Some of the tools will crop up later in the book as you advance in your under-
standing and begin creating a truly custom UI. The next step is to learn how to over-
ride the built-in Ribbon and controls.

Chapter 12 ■ Advanced VBA Techniques 399

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 399

91118c12.qxd:WileyRedTightPart 12/3/07 10:00 AM Page 400

401

In this chapter, we get into the issues and details associated with overriding built-in con-
trols in the Ribbon. We’ll also show you how easy it is to get rid of the built-in Ribbon, so
if you truly want to remove all of the tabs and major controls in the Ribbon, you can do
that with just one command. Thankfully, that will still leave you with some basic controls
for handling the project.

Covered here are topics to help you plan and implement your customizations in the
event that you deem such a drastic overhaul is the right approach for a project. We start
by explaining how to build a UI from scratch.

Deciding to start a project from scratch is not an easy decision. In fact, it might seem
counterintuitive, as we typically want to add new features, rather than remove existing
tools. However, there may be times when this is necessary, such as when you build a
front end in Excel, Access, or Word and only want selected commands to be available
to the user. Whether they are custom commands, built-in commands, or a combination
of the two, you need to start by removing the existing Ribbon. That means you need to
use the startFromScratch attribute to remove the Ribbon so that you can then add
back only the commands that you want to make available to users.

If you have built custom menus and toolbars in previous versions of Office, you will
remember how challenging it can be to completely remove the standard menu and
toolbars. Even worse was trying to recover them if someone inadvertently replaced the
default menus with their customized ones.

As you are preparing to work through the examples, we encourage you to down-
load the companion files. The source code and files for this chapter can be found on the
book’s website at www.wiley.com/go/ribbonx.

Overriding Built-in
Controls in the Ribbon

C H A P T E R

13

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 401

Starting the UI from Scratch

Starting your UI from scratch means just that: starting from zilch! At least that’s the
way it will appear. However some controls will still be available — but those are just
the basics so that you can still perform certain key operations in the project, such as
those listed in Table 13-1. However, starting (nearly) from scratch will do away with
everything the UI has to offer in terms of accessibility. Hence, this is a feature that
should be used with caution.

Setting the startFromScratch Attribute
As mentioned in the introduction to this Chapter, when you start a UI from scratch you
eliminate a lot functionality that users may need. On the one hand, this can be counter -
productive, as changes to the UI normally mean adding new features, not removing
familiar ones. On the other hand, your project might be very specific and therefore best
served by incorporating custom-tailored menus and commands. In such cases, you
would normally want to do away with a lot of unwanted features in the UI, such as
tabs and groups.

Starting a project from scratch is very simple — at least removing features is simple.
The rebuilding is something that takes careful planning and meticulous implementa-
tion. One of the biggest risks is the potential to overlook adding back a command that
is needed by end users.

Having said that, starting a project from scratch requires only the addition of the
startFromScratch attribute and setting its value to true. The XML code would then
read as follows. It is as simple as that: Add one short line and the Ribbon disappears:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”true”>

</ribbon>

</customUI>

After setting the attribute to true and saving the UI, when the project is loaded the
working environment for the project will appear as shown in Figure 13-1 (for an
Excel project).

Figure 13-1: An Excel project started
from scratch

However, this still leaves a few commands for you to work with. Table 13-1 lists the
controls that will be available when you start a project from scratch, along with the appli-
cations in which they are available.

402 Part II ■ Advanced Concepts in Ribbon Customization

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 402

Table 13-1: Controls Available When Starting from Scratch

CONTROL APPLICATION

New Excel, Access and Word

Open Excel, Access and Word

Save Excel and Word

Save As Access only

Application Options Excel, Access and Word

Application Exit Excel, Access and Word

Close Database Access only

Besides these controls, you will also have default access to two additional options in
the Quick Access Toolbar (QAT), as shown in Table 13-2.

Table 13-2: Additional QAT Options Available When Starting from scratch

OPTION APPLICATION

Show Below/Above the Ribbon Excel, Access and Word

Minimize the Ribbon Excel, Access and Word

Although starting from scratch removes all controls with the exception of those
listed in the preceding tables, it does not disable any built-in commands (starting from
scratch is not the same as disabling commands associated with controls). Hence, users
who know a shortcut to a command, such as copy, will be able to copy a selection by
using Ctrl+c. By the same token, you could close a workbook or document by using the
Ctrl+w shortcut, even though the control that executes the command is no longer dis-
played on the Ribbon.

Besides, if you needed to access, say, the Format Cells dialog box in Excel, you
could use the Accelerator keys from Office 2003. To do so, you would use the follow-
ing sequence: Alt → O → E. The keytip route, however, would not work here unless
the keytip leads to the Office Button (which is equivalent to the File menu in previ-
ous versions of Office).

TI P When accessing Accelerator keys or keytips, you can also press F10.
This works the same as pressing the Alt key.

C ROSS-RE FE RE NC E For a list of common shortcuts, keytips, and
accelerator key combinations, see Appendix D.

Chapter 13 ■ Overriding Built-in Controls in the Ribbon 403

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 403

Disabling such features is covered in the section “Disabling and Repurposing Com-
mands” later in this chapter, but first we focus on adding some tabs and controls to the
startlingly empty Ribbon. Adding tabs and controls is an exercise you have already
covered in earlier chapters, so we combine this with activation of tabs at startup so that
you do not get a fragmented picture of what we plan to show you.

Activating a Tab at Startup

You might think that all you need to do is add a tab and specify that it is to be placed
in front of the Home tab; and that because it will be the first tab on the Ribbon, it will
become the default tab and be automatically selected upon opening your project.
Sounds logical, but it isn’t that straightforward. A custom tab is selected by default, so
just adding a custom tab before the Home tab does not mean that it would be selected
because it is the first tab on the Ribbon — at least not in Excel. Of course, Access
responds differently than the other programs. Actually, Access and Word are both
more intuitive in their behavior because when a custom tab is placed at the beginning
of the Ribbon, it is indeed selected by default.

Because you have to use code to specify the default tab in Excel, the example uses Excel.

NOTE The aforementioned behavior in Access and Word is only applicable for
a tab placed before the Home tab. If you plan to use the tab somewhere else,
you need to select it through code. Examples for Access and Word are included
in the download files for this chapter.

In this example, selecting the tab at startup requires two steps. The first step is to
define a keytip in the XML code. The second step is to define a procedure that uses the
SendKeys method to send the keytip to the application so that it can be executed and,
consequently, so that the tab be selected at startup.

As explained in the previous paragraph, the first thing to do is specify a keytip for
your custom tab. You will use this keytip later in VBA (the second step) as a means to
select the tab. To add a keytip to a tab (or control), you simply specify the keytip
attribute in the XML code, as shown in the following example:

<tab id="rxtab"

label="Active Tab"

insertBeforeMso="TabHome"

keytip="UN">

C ROSS-RE FE RE NC E For more information about keytips, see Chapter 11.

After specifying the keytip for the tab, you need to include the callback that will handle
the selection of your custom tab. You might think that Open is the first event for the work-
book, but the OnLoad event actually occurs first. Specify the selection instruction together

404 Part II ■ Advanced Concepts in Ribbon Customization

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 404

with the onLoad event. In order to select the tab when the UI is loaded, use the SendKeys
method, as shown in the following procedure:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Application.SendKeys “%UN{RETURN}“

End Sub

The percent sign indicates the Alt key, which is necessary to trigger keytips. The UN
is our chosen keytip. We also add the RETURN key so that the keytips within the tab lose
focus when the tab is selected. We do that because we want the tab to have the focus,
but we don’t want the keytips displayed.

Table 13-3 shows combination keys you can use with the SendKeys method. It is
important to remember and recognize the symbols representing each key when you’re
writing this type of code.

Table 13-3: Combination Keys for Use with the SendKeys Method

COMBINATION KEY SYMBOL

ALT % (percentage)

CTRL ^ (circumflex)

SHIFT + (plus)

You can use the keys from Table 13-3 with any other key to make up a combination.
Table 13-4 shows some other keys you might find useful when using the SendKeys
method and when a key combination is required. Although they may seem intuitive,
we’ve included the list because it is safer to be precise than to guess and miss some-
thing. These are not case-sensitive, but we recommend using all uppercase because
that way they stand out in your code.

Table 13-4: Some Special Keys and Their Respective Code

KEY KEY CODE

BACKSPACE {BACKSPACE} or {BS}

BREAK {BREAK}

CAPS LOCK {CAPSLOCK}

DELETE or DEL {DELETE} or {DEL}

DOWN ARROW {DOWN}

END {END}

ENTER ~ (tilde)

ENTER (numeric keypad) {ENTER}

Continued

Chapter 13 ■ Overriding Built-in Controls in the Ribbon 405

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 405

Table 13-4 (continued)

KEY KEY CODE

ESC {ESCAPE} or {ESC}

F1 through F15 {F1} through {F15}

HOME {HOME}

RETURN {RETURN}

TAB {TAB}

The SendKeys method is extremely useful for a number of tasks. This section just
covered the basics before taking a look at disabling and repurposing commands.

Disabling and Repurposing Commands

Unlike previous versions, Office 2007 allows us to globally disable and repurpose com-
mands. In the past, disabling a command entailed disabling every single instance of
the control that executed the command in the UI. That was a mammoth task.

With the new UI you can globally disable and repurpose commands without much
effort. It is true that there are some loopholes, but overall it is of tremendous benefit,
reducing tedium and frustration; and it is much faster and easier to implement and
maintain.

Disabling Commands, Application Options, and Exit
This section describes how to disable commands in Office 2007. The process is very
simple and requires very little effort. The most important part is knowing the exact
names of the controls whose commands you plan to disable and what type of control
those commands come under. Once you have that sorted out, the rest should go very
smoothly.

We’ve divided this into two separate sections to make it easier to learn the basic
principles associated with the process. The first section looks at commands in general
and the second section looks into two rather specialized commands that are exposed
by the controls Application Options and Exit.

Disabling Commands

As already pointed out, disabling commands has more to do with knowing what to
disable than knowing how to disable it. The main thing about disabling is that com-
mands are disabled globally from the commands collection, rather than from within the
Ribbon object and the object’s parent container. Trying to disable a command from
within the parent container will produce an error message.

406 Part II ■ Advanced Concepts in Ribbon Customization

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 406

When you think about it, the good news is that disabling a command does not
involve, in any way, work with the Ribbon container. You can do it all with simple
code. For example, suppose that you wanted to disable the Bold command. You can do
so as follows:

<commands>

<command idMso="Bold"

enabled="false"/>

</commands>

That’s all there is to it. The key is to ensure that you have the correct idMso for the
command you want to disable. Now let’s look at disabling the Application Options
and the Exit button.

Disabling the Commands Associated with the
Application Options and Exit Controls

As you have seen, when you start a project from scratch, some commands are still avail-
able by default; and although you may appreciate them as a developer, it’s just as likely
that you’ll want to have better control over what the user can do. Exit is a prime example
of a control that can cause some grief, as it will persist even after using startFromScratch
to eliminate the Ribbon. For obvious reasons, you might want to ensure that the Exit com-
mand is disabled, as it allows users to abruptly quit a program and thus bypass all the nice
shutdown and clean-up routines that you may rely on.

Although the QAT is there to provide one-click access to the most frequently used
tools, it also contains the More Commands option, which gives users access to a host of
other application features. Although the More Commands option is disabled when
starting the UI from scratch, it still persists via the Application Options button under
the Office Menu. Not only that, if you take a quick look at the commands available
through Application Options, you will quickly appreciate the risk associated with
making them so readily available to users. Ergo, the reason why you might decide to
disable the commands associated with the Exit and Application Options controls.

Although these two controls expose commands that belong to the officeMenu Ribbon
element, neither control can be disabled from within the officeMenu container. Instead,
you must use the command element, as shown here:

<commands>

<command idMso="FileExit"

enabled="false"/>

<command idMso="ApplicationOptionsDialog"

enabled="false"/>

</commands>

NOTE You can use this method to disable commands associated with any
control in Access, Excel, and Word.

Chapter 13 ■ Overriding Built-in Controls in the Ribbon 407

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 407

When you have quite a few controls to disable, a better option is to have a shared
callback so that you don’t need to specify each case for the enabled attribute. In that
scenario, the code would look similar to the following:

<commands>

<command idMso="FileExit"

getEnabled="rxshared_getEnabled"/>

<command idMso="ApplicationOptionsDialog"

getEnabled="rxshared_getEnabled"/>

<command idMso="Bold"

getEnabled="rxshared_getEnabled"/>

</commands>

Having identified the command and the attribute, the next step is to handle the
callback and disable the controls themselves. This is done by setting the value of
getEnabled to False, as shown in the following code snippet:

Sub rxshared_getEnabled(control As IRibbonControl, ByRef returnedVal)

returnedVal = False

End Sub

Besides being able to disable a command associated with a control, you can also
repurpose the command associated with it. This means that you can change the origi-
nal function of a control to have it do something else. For example, a control that would
normally save changes could be repurposed to open documents instead. Yes, we real-
ize that this invites some imaginations to run wild with fun ideas that should never be
implemented. Nonetheless, at the risk of unleashing some pranks, we’ll move on to
explain how to repurpose commands.

Repurposing a Command Associated
with a Generic Control
Repurposing a command is accomplished in the same fashion as disabling a com-
mand, as you cannot repurpose from inside the Ribbon container; you must work in
the commands collection.

Again, the key to a successful repurposing depends more on knowing the controls
for the commands you want to repurpose than on the work involved to write the XML
code itself. Another key factor to remember is that although a command may not be
visible, it will still function as designed if it is called by a shortcut.

This can pose some issues for your code. More important, it can cause a lot of stress.
A simple example will illustrate our point. Take a toggleButton; when the button is
clicked, it changes from toggled to not toggled, or vice-versa. This is all fine, as long as
it is an actual click. However, because the shortcut also works here, the combination of
keys that triggers the shortcut occurs before the toggling event. You can see where this
is going, because the shortcut will trigger the callback. That’s OK so far, but the trouble

408 Part II ■ Advanced Concepts in Ribbon Customization

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 408

starts when the button is toggled, because that will also trigger the callback. The
upshot of all this is that the procedure is run twice, which is typically not a good thing
and has the potential to wreak havoc in your project.

Another thing you should be aware of is that the callback signature will vary. A call-
back will have the following argument added to its normal signature:

ByRef cancelDefault

This means that a control such as a toggleButton that would normally have the
signature

Sub rxtgl_ repurpose(control as IRibbonControl, pressed as Boolean)

would now need to be amended in order to avoid an error advising of a missing
argument:

Sub rxtgl_repurpose(control As IRibbonControl, pressed As Boolean, _

ByRef cancelDefault)

This added argument is used to cancel the default event. We’ll provide complete
examples momentarily.

NOTE When using the CustomUI Editor to generate the callbacks, note that it
does not handle this properly. Because you’re dealing with a generic command,
it will generate a generic callback signature. Therefore, you need to modify the
signature to avoid getting an error. The preceding information and the following
example will be helpful guides when you are modifying callbacks.

NOTE In working through this section, recall that a generic control is much
like a generic object when declared in VBA — at least in the sense that the
control only takes form or delivers any functionality after it is bound to a
specific object, such as a label, button, checkBox, and so on.

Continuing with the previous example, you could repurpose the Application
Options button as follows:

<command idMso="ApplicationOptionsDialog"

onAction="rxApplicationOptionsDialog_repurpose"/>

The callback could then be handled as follows (using the standard callback signa-
ture for a repurposed button):

Sub rxApplicationOptionsDialog_repurpose(control As IRibbonControl, _

ByRef cancelDefault)

MsgBox “Sorry, Word options are currently disabled.”, vbCritical

End Sub

Chapter 13 ■ Overriding Built-in Controls in the Ribbon 409

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 409

As with previous examples, you can use a shared procedure if the controls share the
same callback signature.

CAUTION As pointed out earlier, we realize that the capability to
repurpose a command might invite some imaginations to run wild. Keep in
mind that it is usually a very bad idea to repurpose a command that you know
end users expect will behave in a specific way. If the command does not
behave as expected it will certainly cause confusion, and it could even lead
to serious problems. The approach taken in the last example of this section is
probably a better option, as it explicitly informs users that the command they
are attempting to use has been disabled. Bottom line: Don’t disable or
repurpose commands without informing the end user.

Affecting the Keyboard Shortcuts and Keytips
There may be times when you need to overwrite built-in shortcuts as well as keytips.
As you will recall, the keytip is the new feature that draws on the old accelerator keys
from previous versions of Office. In order to activate keytips, you simply press and
release the Alt key or the F10 function key.

It is very simple to override a keytip. You merely reference the control and then
assign a new keytip to it. The following XML code shows how this is done. By assign-
ing $ as the keytip for the Insert tab, the keytip is effectively changed from I to $:

<tab idMso=”TabInsert” keytip=”$”>

In addition, despite using $, which is a special character, the customization is dis-
played and functions as expected, as shown in Figure 13-2

Figure 13-2: Swapping built-in keytips
for preferred ones

TI P A keytip is accessed through a “key then key” approach. A shortcut is
accessed through a “key plus key” approach. In the first case you press and
release one key and then press another key. In the second case, you hold down
all the keys at the same time.

410 Part II ■ Advanced Concepts in Ribbon Customization

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 410

The next step would be to override built-in shortcuts such as Ctrl+c, Ctrl+p, etc. We
already touched on this subject when we covered how to record macros. You can assign
shortcuts to macros that match built-in shortcuts, and in doing so you will effectively
override the built-in shortcut key. Again, we recommend caution and prudence
because changing shortcuts that are used across multiple programs and versions can
be counterintuitive and counterproductive — and even counter to employment.

However, there are times when it is appropriate to establish your own set of short-
cuts, so we’ll cover some other methods to override built-in shortcuts such as using the
OnKey method in Excel or an AutoKeys macro in Access.

C ROSS-RE FE RE NC E For working examples using the OnKey method and
an AutoKeys macro, see the “Repurposing QAT Controls” section in Chapter 14.

The OnKey method in Excel is used to run the procedure that you specify. It works in
a similar fashion as the SendKeys method works with the same values, so you can use
the same key table as a reference, Table 13-4. However, the OnKey method is structured
somewhat differently and uses the arguments shown in Table 13-5.

Table 13-5: OnKey Method Arguments

NAME REQUIRED/OPTIONAL DATA TYPE DESCRIPTION

Key Required String A string indicating the key or
key combination to be pressed

Procedure Optional Variant A string indicating the name of
the procedure to be run. If the
value is '''' (empty text),
nothing happens when the key
or key combination is pressed.
This form of OnKey changes the
normal result of keystrokes. If
the argument is omitted, then
the key or key combination
goes back to its normal
behavior (any key or key
combination assignments
made with previous OnKey
methods are cleared).

Thus, the general OnKey method can be structured as follows:

Application.OnKey Key, ProcedureName

As shown in Table 13-5, the Key argument refers to the key or key combination you
plan to trap (override), whereas the ProcedureName argument refers to the procedure

Chapter 13 ■ Overriding Built-in Controls in the Ribbon 411

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 411

that must be executed when the key or key combination is pressed. Suppose you
wanted to trap the print shortcut (Ctrl+p). You can do so as follows:

Sub print_override()

Application.OnKey “^p”, “myPrintMsg”

End Sub

To return things to normal, all you have to do is omit the procedure name in the argu-
ment of the OnKey method, as shown in the following code, and like magic, the com-
mands will resume their default actions and no additional steps are required:

Sub print_override()

Application.OnKey “^p”

End Sub

You will see additional examples in Chapter 14 when we discuss the QAT. You’ll
appreciate that the examples are more relevant to real-world situations. The goal of this
chapter was to cover the basics, so although the examples may not seem to have much
practical value, they made it easy to understand the concepts at work. Chapter 14 also
includes a demonstration of how to incorporate a shortcut override in Access.

Conclusion

In this chapter, you’ve learned the basics of starting your customization from scratch,
including some of the issues to be aware of. We’ve also looked at activating tabs on
startup, and we worked with disabling and repurposing controls.

We finished by working with keytips and shortcuts, including how to override
them. This is the perfect lead-in to Chapter 14, which covers some of these techniques
in more detail and provides opportunities to practice them more fully as you progress
into more specialized customization.

412 Part II ■ Advanced Concepts in Ribbon Customization

91118c13.qxd:WileyRedTight 11/28/07 9:18 PM Page 412

413

In Office 2007, the Quick Access Toolbar (QAT) is the nearest thing that you have to the
toolbars. As you have already learned, you can add buttons and entire groups to the
QAT, so the tools you need are readily available to you. The Office Menu, on the other
hand, is basically a menu containing various options, much the same that you would
find under the old File menu in previous versions of Office. The Office Menu is
accessed by clicking the Office Button.

In this chapter, you will learn more about the Office Menu and the QAT and how to
customize them. These are a bit different from the customizations we’ve covered so far.
As you are preparing to work through the examples, we encourage you to download
the companion files. The source code and files for this chapter can be found on the
book’s website at www.wiley.com/go/ribbonx.

Adding Items to the Office Menu

The Office Menu is represented by the little application button at the upper-left corner
of the application window. This button, also known as the Office Button, contains some
common actions, or commands, that affect the document as a whole, such as Print,
Save, and Publish.

As you learn how to customize the Office Menu, please keep in mind that controls
are grouped under the Office Menu to reflect the concept that these commands affect
the document as whole, rather than a specific part of the document, such as a para-
graph or the font format.

Customizing the Office
Menu and the QAT

C H A P T E R

14

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 413

That said, we temporarily ignore this guideline so that our examples can give you
greater exposure to the Office Menu.

The Office Menu uses the following XML markup:

<officeMenu>

<! --

Everything else goes here

-- >

</officeMenu>

By now, that should be a familiar layout to you. Table 14-1 shows the child elements
of the Office Menu. We will use these elements to add customizations.

Table 14-1: Child Elements of the Office Menu

OBJECT WHAT IT IS FOR

control Refers to a generic control object that can represent
other objects such as buttons, splitButtons, groups, etc.

button Refers to a button control used for normal clicks to
perform some sort of action

checkbox Refers to a checkbox control

gallery Refers to a gallery control. See Chapter 8 for
information on this type of control.

toggleButton Refers to a toggle button and switches between
True/False values

menuSeparator Refers to a menu separator item

splitButton Refers to a splitButton that can be used to hold other
controls such as button controls

menu Refers to a menu control that can be used to hold
other controls such as button controls

dynamicMenu Refers to a dynamic menu that can receive dynamic
XML content at run-time

Figure 14-1 shows an example of an Office Menu customization in Access. In this
example, we added the My Tools button with two groups, My Toolset1 and My Toolset2.
We’re about to walk through the process of creating and adding this customization.

414 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 414

Figure 14-1: Adding controls to the Office Menu

In this example, we create a splitButton containing a menu with several buttons
organized according to their specific task. The XML code for this customization is as
follows:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

<ribbon startFromScratch="false">

<officeMenu>

<splitButton id="rxsbtn"

insertBeforeMso="FilePrintMenu">

<button id="rxbtnSplitMain"

label="My Tools"

imageMso="CreateModule"/>

<menu id="rxmnu"

itemSize="large">

<menuSeparator id="rxsep1"

title="My Toolset 1"/>

<button id="rxbtnEmailDoc"

imageMso="FileSendAsAttachment"

label="E-mail selected table as attachment"

description="E-mail the selected table as an attachment↵
to an e-mail recipient..."

onAction="rxshared_click"/>

<buttonid=”rxbtnEmailSupport”

imageMso=”MessageToAttendeesMenu”

Chapter 14 ■ Customizing the Office Menu and the QAT 415

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 415

label=”E-mail technical support”

description=”E-mail technical support about issues on this↵
application...”

onAction=”rxshared_click”/>

<buttonid=”rxbtnEmailBug”

imageMso=”ResearchPane”

label=”E-mail a bug”

description=”E-mail technical support about bugs found on↵
this application...”

onAction=”rxshared_click”/>

<menuSeparator

id=”rxsep2”

title=”My Toolset 2”/>

<buttonid=”rxbtnPrintPDF”

imageMso=”PrintDialogAccess”

label=”Print to PDF”

description=”Print active report to PDF file format”

onAction=”rxshared_click”/>

</menu>

</splitButton>

</officeMenu>

</ribbon>

</customUI>

The preceding code uses a splitButton that encapsulates a menu. You may have
noticed that a splitButton has a demarcation between the icon and arrow, whereas
a menu does not. Figure 14-2 shows this difference. The built-in Print button is a
splitButton; the built-in Send button is a menu button. For the most part, this is
pretty much a style preference.

Figure 14-2: Comparing a
splitButton with a menu control

The image on the left represents a splitButton, whereas the image on the right rep-
resents a menu. Essentially, the menu control provides the same customization with-
out the intermediary step of a splitButton, which means you can do away with the
splitButton-button combination and move straight into using menu buttons for
additional functional items. For example, to redo the last splitButton example to use
a menu control, you would use the following code:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

<ribbon startFromScratch="false">

<officeMenu>

<menu id="rxmnu"

insertBeforeMso="FilePrintMenu"

416 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 416

imageMso="CreateModule"

itemSize="large">

<menuSeparator id="rxsep1"

title="My Toolset 1"/>

<button id="rxbtnEmailDoc"

imageMso="FileSendAsAttachment"

label="E-mail selected table as attachment"

description="E-mail the selected table as an attachment↵
to an e-mail recipient..."

onAction="rxshared_click"/>

<button id="rxbtnEmailSupport"

imageMso="MessageToAttendeesMenu"

label="E-mail technical support"

description="E-mail technical support about issues on↵
this application..."

onAction="rxshared_click"/>

<button id="rxbtnEmailBug"

imageMso="ResearchPane"

label="E-mail a bug"

description="E-mail technical support about bugs found↵
on this application..."

onAction="rxshared_click"/>

<menuSeparator id="rxsep2"

title="My Toolset 2"/>

<button id="rxbtnPrintPDF"

imageMso="PrintDialogAccess"

label="Print to PDF"

description="Print active report to PDF file format"

onAction="rxshared_click"/>

</menu>

</officeMenu>

</ribbon>

</customUI>

If there was any doubt in your mind about how little the difference would be, just com-
pare your new menu control to your splitButton. They are virtually the same except for
coloring and line, and, of course, the extra features offered by the menu control.

These two examples assume you want to add your own custom items to the Office
Menu. However, you may also want to add custom or built-in items to the built-in ele-
ments within the Office Menu. In that case, you will appreciate knowing where to find
the elements associated with the program that you are using. Table 14-2 provides a
quick reference to Office Menu elements. Now you can quickly locate the standard ele-
ments to add items to them, using splitButtons or Menus; of course, you can also cre-
ate and add your own items.

Chapter 14 ■ Customizing the Office Menu and the QAT 417

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 417

Table 14-2: Office Menu Elements

ELEMENT TYPE IDMSO APPLIES TO

New button FileMenu Excel/Access/Word

Open button FileOpen Excel/Word

Open button FileOpenDatabase Access

Save button FileSave Excel/Word/Access

Save As splitButton FileSaveAsMenu Excel/Word

Save As splitButton FileSaveAsMenuAccess Access

Print splitButton FilePrintMenu Excel/Word/Access

Prepare menu FilePrepareMenu Excel/Word

Manage menu FileManageMenu Access

Send menu FileSendMenu Excel/Word

E-mail button FileSendAsAttachment Access

Publish menu MenuPublish Excel/Word/Access

Close button FileClose Excel/Word

Close Database button FileCloseDatabase Access

Adding Items to the QAT

The Quick Access Toolbar is the part of the new UI for which your customization
efforts might seem reminiscent of the methods you used with the old Office toolbars.
This section introduces you to QAT customization through XML, rather than the labor-
intensive manual processes discussed in Chapter 1. Of course, we needed to cover the
basics so that you know where to find — and how to work with — controls. With that
behind you, you are ready to automate and streamline when possible.

C ROSS-RE FE RE NC E If you need a refresher on manual customization,
refer to Chapter 1, where the difference between a document control and a
shared control is also explained.

Customization Overview
The QAT is unique in many ways, but you will find that it is very flexible when it
comes to customization, even though you may not yet think of it that way. It can con-
tain, for example, both shared and document-specific controls. It can also include

418 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 418

entire control groups (both built-in and custom) so that more controls are conveniently
stored in a single location.

Keep in mind that when customizing the QAT, you must start it from scratch. This
means that you must set the startFromScratch attribute to true; otherwise, you can-
not proceed:

<ribbon startFromScratch=”true”>

C ROSS-RE FE RE NC E See Chapter 13 for more information about the
startFromScratch attribute.

Another thing to bear in mind is that as you start from scratch, a lot of controls are
removed from the Office Menu, and all tabs are removed from the Ribbon. That is
probably a little more drastic than what you wanted or anticipated, but rather than let-
ting that become a stumbling block, just take some time to plan for the future uses of
the UI and determine which controls it will need, eliminating those that it won’t.

NOTE Although startFromScratch will remove controls from the UI,
command shortcut keys will still work. Consider, for example, the Office Menu:
In Excel, the menu is reduced to three basic controls: New, Open, and Save.
However, you can still close the document using the Ctrl+w shortcut, or you can
send the document to print using Ctrl+p.

sharedControls versus documentControls

When working with the QAT, you will notice that there are two types of icons. One
type has a border around it and the other one does not. This distinction indicates which
control is shared and which one is specific to the document. Figure 14-3 shows two
controls within the border — these are specific to the currently loaded document.

Figure 14-3: sharedControls and documentControls

This is important because you can quickly determine which controls are document
controls and which are shared controls. You can use this knowledge to tailor a UI that
is specific to the document that contains it or to share a custom UI with other docu-
ments, such as through an add-in. Of course, this means that the distinction is mostly
for the benefit of the developer, rather than the user, but it can also alert users that new
controls are conveniently placed at their fingertips, eliminating the time it takes to look
for them elsewhere.

The XML markup for QAT document controls is provided by the following:

<qat>

<documentControls>

<control/>

Chapter 14 ■ Customizing the Office Menu and the QAT 419

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 419

</documentControls>

</qat>

The markup for QAT shared controls is as follows:

<qat>

<sharedControls>

<control/>

</sharedControls>

</qat>

As you progress through this chapter, these outlines will be filled out in the examples.

NOTE Groups that are added to the QAT have a different icon than shared or
document-specific controls. QAT groups are discussed later in this chapter.

Adding Custom and Built-in Commands to the QAT
Adding custom and built-in commands to the QAT is very simple. You already know
the difference between a shared control and a document control. (A control is a generic
object that can represent a button, a splitButton, a group, etc.)

A Quick Access Toolbar shared or document control has the child elements shown
in Table 14-3.

Table 14-3: Child Elements of the Quick Access Toolbar

OBJECT WHAT IT IS FOR

control Refers to a generic control object that can represent other
objects such as a button, splitButton, group, etc.

button Refers to a button control

separator Refers to a separator control

Let’s start with a simple example that adds a built-in control and a custom button.
The result is shown in Figure 14-4.

Figure 14-4: Custom button
and built-in control added to
the QAT

420 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 420

The following XML code adds both a built-in control and a custom button to the QAT:

<qat>

<documentControls>

<control idMso="Bold"

screentip="Make it Bold"

supertip="Click here to make the selected text bold."/>

<button id="rxbtnOpen"

imageMso="FileOpen"

screentip="This is Happy"

supertip="Click here for a happy message"

onAction="rxbtnOpen_click"/>

</documentControls>

</qat>

You use the control object to refer to a built-in button (in this case, the command
button for Bold), and then use a button to create your own customized button. (By that
we mean you can use the control object to refer to other controls such as a button or
splitButton.) Think of it as the VBA generic Object class, which can morph into other
objects as needed.)

In the next example, we create a splitButton control and then add it to the QAT.
Because the QAT has no splitButton child element, we have to create the splitButton
outside the QAT and then refer it back to the QAT. You do so by adding the splitButton
control in the normal way — that is, you start by adding it to a group:

<group id="rxgrp"

label="My Custom Group">

<splitButton id="rxsbtn"

size="large">

<button id="rxbtn2"

imageMso="HappyFace"

label="My Happy Split"/>

<menu id="rxmnu">

<button id="rxbtn3"

label="My Happy Menu"

imageMso="HappyFace"

onAction="rxbtn3_click"/>

</menu>

</splitButton>

</group>

In the preceding example, we have the splitButton and with a menu on it. The
menu, in turn, contains a button. Since QAT uses existing controls, you can now refer
to the existing splitButton in the QAT, as shown in the following XML code:

<qat>

<documentControls>

<control id="rxsbtn"

imageMso="HappyFace"

screentip="This is Happy"

supertip="Click here for a happy message"/>

Chapter 14 ■ Customizing the Office Menu and the QAT 421

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 421

</documentControls>

</qat>

The customization should look like what is shown in Figure 14-5.

Figure 14-5: Custom splitButton
added to the QAT

You can access the full working examples of this section in this chapter’s download
on the book’s website. If it still seems a bit confusing, just run through the file a couple
of times. Then you’ll be ready to move on to adding entire groups to the QAT.

Adding Custom and Built-in Groups to the QAT
Customizing the QAT is not just a matter of adding a button or two. As you have
already seen, you can add entire groups to the QAT, which enables you to have fre-
quently used commands just two clicks away. Of course, we had to jump through a few
hoops to get what we wanted, but so far it’s been worth it.

You are now ready to move a step further and use XML code to build your own groups.
These can be added to the QAT along with built-in groups and individual controls.

If you look at the XML schema for the QAT you will not find anything about groups,
which, at first glance, may seem odd. However, the QAT draws controls from the tabs.
What this means is that you must first create the groups; then, from the QAT, you can
refer to the id specified for the group (in the same way we did with the splitButton in
the previous example).

The good news is that you can add groups to a tab and keep them invisible on the
tab but visible on the QAT. Figure 14-6 illustrates this scenario.

Figure 14-6: Built-in groups and
customs groups on the QAT

My QAT Custom Group belongs to the custom Home tab (this is “custom” because we
started from scratch and placed a “Home” tab in the UI). However, we keep its visibil-
ity set to false. In doing so, we can add other groups and controls to the tab and keep
only those critical groups on the QAT. In fact, you could have all the built-in tabs on the

422 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 422

Ribbon and add hidden groups to any of the built-in tabs, only showing your groups
on the QAT.

Have a look at the XML code for the preceding example and then we’ll explain how
it functions:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

<ribbon startFromScratch="true">

<tabs>

<tab id="rxtabHome"

label="Home">

<group id="rxgrp"

label="My QAT Custom Group"

getVisible="rxshared_getVisible">

<button id="rxbtnHappy"

label="Mr. Happy Face"

imageMso="HappyFace"

size="large"

onAction="rxshared_click"/>

<button id="rxbtnHappy2"

label="Mr. Happy Face 2"

imageMso="HappyFace"

size="large"

onAction="rxshared_click"/>

</group>

</tab>

</tabs>

<qat>

<documentControls>

<control idMso="GroupInsertChartsExcel"/>

<control idMso="GroupFont"/>

<control id="rxgrp"

imageMso="GroupFunctionLibrary"/>

</documentControls>

</qat>

</ribbon>

</customUI>

Here’s how it works:

■■ We start the customization from scratch — a requirement when working with
the QAT.

■■ We set up a custom tab and group in the normal way and add two buttons to it
as an example.

■■ We set the getVisible attribute to False so it does not show up on the tab.

■■ With the group set up within a tab, we open the QAT tag. We add two built-in
groups to the QAT (Clipboard and Font) and use the generic control object to
refer back to the custom group we want on the QAT. We also assign a built-in
image to the group (if you don’t, a generic image is shown instead).

That’s all there is to it.

Chapter 14 ■ Customizing the Office Menu and the QAT 423

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 423

NOTE If you ran through this example and could not see a group loaded to
the QAT, read the section “QAT Caveats” later in this chapter.

Repurposing QAT Controls
Repurposing a control in the QAT is very similar to general repurposing of a control in
any group. Figure 14-7 shows two commands repurposed in Word.

When you repurpose a control in the QAT, you in fact repurpose a command asso-
ciated with it. (A command would typically be an element that is available throughout
the project, such as the Paste command.) You then add the same command to the QAT
as a control (either shared or document specific).

Figure 14-7: Repurposing
QAT commands

One great advantage of repurposing is that it has a global effect on the control, unlike
previous versions of Office in which you had to disable each instance of the control.

In this Word example, we devised the following XML to repurpose the two controls
File Open and File Save:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

<commands>

<command idMso="FileSave"

onAction="rxFileSave_repurpose"/>

<command idMso="FileOpen"

onAction="rxFileOpen_repurpose"/>

</commands>

<ribbon startFromScratch="true">

<qat>

<documentControls>

<control idMso="FileSave"

screentip="Repurposed Save"

supertip="This is a repurposed command"/>

<control idMso="FileOpen"

screentip="Repurposed File Open"

supertip="This is a repurposed command"/>

</documentControls>

</qat>

</ribbon>

</customUI>

424 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 424

In the preceding XML code, we begin by declaring the commands we want to repur-
pose and assigning a macro to each control. Next, we open the Ribbon tag and define
the commands we want to appear on the QAT.

As pointed out, this has a global effect. Thus, if you click on any of the commands or
use shortcuts that point to the command (in this specific case, Ctrl+0 and Ctrl+s), then
the command will point to the callback you assigned for the onAction attribute.

NOTE The preceding paragraph applies to Word. If you repurpose commands
in Excel or Access, then the shortcut remains fully operative, even though the
command itself is disabled globally.

In Excel and Access, you would use a different approach. Excel has a handy method
named OnKey that is triggered when a specific key or combination of keys is pressed.
This is an application-wide method, so once you disable a command in a workbook, all
other workbooks opened during the same session will have the same commands dis-
abled. Access, conversely, treats each project independently. Hence, what you do in one
project does not affect other projects.

We begin by looking at how to handle this problem in Access. We won’t give you the
UI XML code, as you can adapt it from the Word example already given. The main dif-
ference is not in the XML code, but in how you will handle it in VBA or through macro
objects in Access. Here we concentrate on blocking the shortcuts keys. You accomplish
this in Access by adding a macro object named AutoKeys. When you have added the
macro, open it in Design View and ensure that the Macro Name column is toggled to
display. Figure 14-8 shows the macro object set up.

Figure 14-8: Repurposing QAT commands

The Macro Name represents the shortcut we want and the Action determines what
should be done once the keys are pressed. Finally, the arguments point to a custom
function placed in a standard module, which takes a string argument that represents
the name of the actions we want to perform (“open” and “new”).

Once that has been set up, all you need to do is handle the function referenced in the
macro object. The following function is an example of what you could do:

Function message(ByVal strCaller As String)

Select Case UCase(strCaller)

Chapter 14 ■ Customizing the Office Menu and the QAT 425

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 425

Case “OPEN”

MsgBox “The ‘Open Database’ “ _

& “button “has been “ _

& “repurposed.”, vbExclamation

Case “NEW”

MsgBox “The ‘File New Database’ “ _

& “button has been “ _

& “repurposed.”, vbExclamation

End Select

End Function

Table 14-4 shows the shortcut combination keys that you can use in Access macros.
We “repurposed” the commands to provide a message box that advises the user that
the command does not function as anticipated.

Table 14-4: Shortcut Combination Keys for Access

KEY REPRESENT BY THE SYMBOL

Control ^

Function {F1}

Shift +

If you define the macro name as ^+o, this states that the shortcut is represented by
the combination Ctrl+Shift+O.

Excel, on the other hand, works differently, so you may need to evaluate different sce-
narios to decide when the shortcut should be cancelled. If the shortcut is to be cancelled
only for the workbook that contains the UI, you need to undo the shortcut cancellation
when you move to another workbook, when a workbook is opened, and so on. Because
this is an application-wide event, you would need to use a class module to monitor for
and respond to moves between workbooks.

C ROSS-RE FE RE NC E See Chapter 4 if you need a refresher on class
modules and events.

Add a new class module to the Excel project. You can name the class whatever you
like, but the name used in our example is clsAppExcelEvents. The class module will
contain the following procedures:

Public WithEvents appXL As Excel.Application

Private Sub ShortcutsEnabled(ByVal blnEnabled As Boolean)

Select Case blnEnabled

Case Is = True

Application.OnKey “^o”

Application.OnKey “^s”

426 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 426

Case Is = False

Application.OnKey “^o”, _

“commandDisabled”

Application.OnKey “^s”, _

“commandDisabled”

End Select

End Sub

Private Sub setEnabled(ByVal Wb As Workbook)

Select Case Wb.Name

Case Is = ThisWorkbook.Name

ShortcutsEnabled False

Case Else

ShortcutsEnabled True

End Select

End Sub

Notice that we declare the Excel application in the General Declarations area of the
class module. There are two procedures to carry out the task: One procedure checks
which workbook is the active one and the other specifies the OnKey method. For the two
key combinations we’re after, we point to another procedure, named commandDisabled,
which must be placed in a standard module.

In the class module, you can specify which events to monitor. For example, you
could monitor the activation or deactivation of a workbook to decide whether the
shortcut should be cancelled or not:

Private Sub appXL_WorkbookActivate(ByVal Wb As Workbook)

setEnabled Wb

End Sub

Private Sub appXL_WorkbookDeactivate(ByVal Wb As Workbook)

setEnabled Wb

End Sub

Finally, you need to set the class when the project opens. This is done using the Open
event of the workbook that contains the project:

Dim XL As New clsAppExcelEvents

Private Sub Workbook_Open()

Set XL.appXL = Application

End Sub

This section provided a variety of sample files for Excel, Access, and Word. The files
are available for download from the book’s website.

The next section discusses how to build customization with the help of tables to
hold information about the UI.

Chapter 14 ■ Customizing the Office Menu and the QAT 427

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 427

Table-Driven Approach for QAT Customization
(Excel and Word)
A lot has been said about how much flexibility was lost when it comes to building a
custom UI in Office 2007. One of the biggest complaints stems from the fact that we can
no longer take a table-driven approach to customizing the UI.

Although it is true that you cannot build the entire UI on-the-fly from tables, you
can still accomplish lot with tables. In fact, using tables can simplify some of the work
you do in XML prior to moving it to the UI.

Figure 14-9 shows one such example of customization that uses tables to load details
to the QAT.

Figure 14-9: Table-drive QAT customization

This type of customization has been around for quite a while and has always
applied to toolbar customization. The first step to successfully implement this solution
is to build your XML code containing your UI and a QAT button to take the menu. We
created a document control button as follows:

<documentControls>

<control id="rxgrp"

imageMso="AdvancedFileProperties"/>

<button id="rxbtnShowPopup"

image="rob"

onAction="rxbtnShowPopup_Click"/>

</documentControls>

This XML code will generate the two QAT buttons you see in Figure 14-9. The key
here is the callback assigned to the onAction attribute. This is the click that will show
the menu after the custom button is clicked.

The next step is to create the table that will contain your menu details. Figure 14-10
shows a suggestion.

Figure 14-10: Table containing the suggested customization items

428 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 428

This table is just a suggestion because you may consider adding more options to it.
With the table set up with all the details you want, you’re ready for the VBA that will
read through the table and built the menu:

Public Const POPNAME As String = “MY POPUP”

Sub loadPopup()

Dim mnuWs As Worksheet

Dim cmdbar As CommandBar

Dim cmdbarPopup As CommandBarPopup

Dim cmdbarBtn As CommandBarButton

Dim nRowCount As Long

Call unloadPopup

Set mnuWs = ThisWorkbook.Sheets(“MenuItems")

Set cmdbar = Application.CommandBars.Add(POPNAME, msoBarPopup)

nRowCount = 2

With mnuWs

Do Until IsEmpty(.Cells(nRowCount, 1))

Select Case UCase(.Cells(nRowCount, 1))

Case “POPUP"

Set cmdbarPopup = _

cmdbar.Controls.Add(msoControlPopup)

cmdbarPopup.Caption = .Cells(nRowCount, 2)

If .Cells(nRowCount, 3) <> “" Then

cmdbarPopup.BeginGroup = True

End If

Case “BUTTON"

Set cmdbarBtn = _

cmdbarPopup.Controls.Add(msoControlButton)

cmdbarBtn.Caption = .Cells(nRowCount, 2)

If .Cells(nRowCount, 3) <> “" Then

cmdbarBtn.BeginGroup = True

End If

cmdbarBtn.FaceId = .Cells(nRowCount, 4)

cmdbarBtn.OnAction = .Cells(nRowCount, 5)

Case “BUTTON_STANDALONE"

Set cmdbarBtn = _

cmdbar.Controls.Add(msoControlButton)

cmdbarBtn.Caption = .Cells(nRowCount, 2)

If .Cells(nRowCount, 3) <> “" Then

cmdbarBtn.BeginGroup = True

End If

cmdbarBtn.FaceId = .Cells(nRowCount, 4)

cmdbarBtn.OnAction = .Cells(nRowCount, 5)

End Select

Chapter 14 ■ Customizing the Office Menu and the QAT 429

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 429

nRowCount = nRowCount + 1

Loop

End With

End Sub

Finally, you need the VBA for the callbacks. You use the onLoad event to call the
loadPopup procedure so that the pop-up is built and ready to use when you click its
button on the QAT. We also have the click event that will show the pop-up menu when
the click occurs:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

On Error Resume Next

Set grxIRibbonUI = ribbon

Application.Workbooks.Add

If ActiveWorkbook.Name <> ThisWorkbook.Name Then

With ActiveWorkbook

.Saved = True

.Close

End With

End If

‘ You can load the popup menu from this event or

‘ from the Open event of ThisWorkbook

Call loadPopup

End Sub

Sub rxbtnShowPopup_Click(control As IRibbonControl)

On Error Resume Next

Application.CommandBars(POPNAME).ShowPopup

End Sub

NOTE You can find a similar example for Word in the sample files available
from the book’s website.

Table-Driven Approach for QAT Customization (Access)
You’ve learned how to load a custom pop-up menu in Excel, and it is hoped that you
have worked through the last example and even downloaded and tested the example
for Word. Now we’ll look at an example for Access, which works a bit differently for
this technique. The goal is to build something similar to what’s shown in Figure 14-11.

Figure 14-11: Table-driven QAT customization in Access

430 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 430

The idea behind this example is pretty much the same as the Excel and Word exam-
ples. We use a table to store information about the menu, which is in turn loaded when
the database is open. Figure 14-12 shows a suggested table layout (and name:
tblMenuDetails).

Figure 14-12: Table containing the suggested customization items

Again, you can expand the contents of the table to suit your needs. Our goal is to
keep the example short and simple so that we can focus on the technique, rather than
the product.

One of the key points here is to specify when to run the code that builds the pop-up
menu. Obviously, it must be run when the project opens. You can choose from various
methods, such as using an auto-executable macro, or a less conventional method, such
as through a form. We believe that using the onLoad event (placed in a standard mod-
ule) of the Ribbon is the perfect time to run the code:

Function rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

Call mnu

End Function

In this example, we use a built-in control and repurpose it so that when it is clicked,
the pop-up menu is shown. We do not repeat the XML code here because it is a single
control and by now you have quite a bit of experience with creating a single control for
the QAT.

The step that we are concerned with is ensuring that the pop-up menu is shown
when the repurposed control is clicked. This is accomplished with a simple line of code
in the callback of the repurposed control:

Sub rxCreateReport_repurpose(control As IRibbonControl, _

ByRef cancelDefault)

Application.CommandBars(POPNAME).ShowPopup

End Sub

NOTE POPNAME is a string constant representing the name you want to give to
your menu. This was shown on the previous example for Excel and Word. We
use exactly the same structure for the benefit of the example, making it easier
to follow.

Chapter 14 ■ Customizing the Office Menu and the QAT 431

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 431

You now have the two callbacks for the Ribbon: rxIRibbonUI_onLoad and
rxCreateReport_repurpose. Now we need the procedure that will build the menu.
We will use the procedure Sub mnu() (outlined in the following example) in the
onLoad event. In order to compartmentalize the procedures, you may want to add a
new standard module with this code, which builds the menu into the new module.
A more detailed explanation is provided at the end of the code:

Public Const POPNAME As String = “MY POPUP”

Sub mnu()

Dim cmdbar As CommandBar

Dim cmdbarPopup As CommandBarPopup

Dim cmdbarBtn As CommandBarButton

Dim db As Dao.Database

Dim rst As Dao.Recordset

Dim strTYPE As String

Set db = CurrentDb ()

Set rst = db.OpenRecordset(“tblMenuDetails", dbOpenTable)

On Error Resume Next

CommandBars(POPNAME).Delete

If (rst.EOF) Then

MsgBox “Sorry, there are no items to add to your custom popup!", _

vbInformation

Else

Set cmdbar = Application.CommandBars.Add(POPNAME, msoBarPopup)

Do While (Not (rst.EOF))

strTYPE = UCase(rst![Type])

Select Case strTYPE

Case “POPUP"

Set cmdbarPopup = _

cmdbar.Controls.Add(Type:=msoControlPopup)

With cmdbarPopup

.Caption = rst![Caption]

.Width = rst![Width]

.BeginGroup = rst![BeginGroup]

End With

Case “BUTTON"

Set cmdbarBtn = _

cmdbarPopup.Controls.Add(Type:=msoControlButton)

With cmdbarBtn

.BeginGroup = rst![BeginGroup]

.Caption = rst![Caption]

.FaceId = rst![FaceId]

.OnAction = rst![OnAction]

End With

Case “BUTTON_STANDALONE"

432 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 432

Set cmdbarBtn = _

cmdbar.Controls.Add(Type:=msoControlButton)

With cmdbarBtn

.BeginGroup = rst![BeginGroup]

.Caption = rst![Caption]

.FaceId = rst![FaceId]

.OnAction = rst![OnAction]

End With

End Select

rst.MoveNext

Loop

End If

rst.Close

db.Close

Set rst = Nothing

Set db = Nothing

End Sub

We use DAO to get an instance of the database and a recordset because DAO is
native to Access and does not require adding or changing the priority of references, as
you need to do when using ADO. After instantiating the database and opening the
recordset, the code removes the pop-up menu. This is just a precaution in case it was
left behind from previous customization, as you do not want duplicates.

You then check for records that define the buttons in the group. If no records are
available, then there is nothing to be placed in the pop-up menu. Conversely, if there
are items in the recordset, the code loops through the records and builds the pop-up
menu. You close with a few clean-up tasks, such as closing the database and setting the
record set and database equal to nothing.

QAT Caveats
Although the QAT is a great way to customize your working environment, it does seem
to suffer from a few drawbacks that might be considered bugs in the current build of
Microsoft Office. And, being the considerate people that we are, we thought we’d men-
tion a few of those issues here and help fellow developers avoid unnecessary frustration.

Inability to Load Controls

When working with custom controls such as buttons and groups, you will find that
Excel, Access, and Word sometimes fail to load the controls upon opening the project.
This is particularly common when using sharedControls. Be assured that this is not a
fault in your customizations; instead, it can be attributed to a bug that sporadically
manifests itself. (As with other known bugs, we want to advise you of the situation and
provide some options that you can consider using pending a fix.)

One workaround is to refresh the window by either minimizing it and then maxi-
mizing it back or by loading and then promptly unloading a blank file on top of the
window containing the problematic custom UI.

Chapter 14 ■ Customizing the Office Menu and the QAT 433

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 433

That brings us to another problem: loading custom images to QAT.

Inability to Load Custom Images to Controls

Loading custom images can also be tricky in the same way that loading custom controls
and groups can be. All the applications discussed in this book encounter problems
when loading custom images to the QAT if the QAT contains both shared and docu-
ment-specific controls. Shared controls seem particularly tricky because they tend to
behave erratically, and therefore do not provide a reliable and coherent interface. For the
time being at least, we recommend not using custom images in the shared controls area.

As for document controls, you can work around the problem by using the following
procedure to refresh the window that contains the UI:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

On Error Resume Next

Application.Workbooks.Add

If ActiveWorkbook.Name <> ThisWorkbook.Name Then

With ActiveWorkbook

.Saved = True

.Close

End With

End If

End Sub

The preceding procedure is for Excel, but it can be replicated to function equally well
in Word. All you have to do is replace the ActiveWorkbook, Workbooks, and ThisWorkbook
objects with ActiveDocument, Documents and ThisDocument objects, respectively.

Regretfully, we did not discover an acceptable workaround for Access. The only
alternative seems to be to repurpose built-in controls.

NOTE The preceding example can be used to work around the inability to
load custom controls, especially when working with custom groups that
normally do not load on opening the project.

Duplication of Controls on XML-Based and XML-Free
Customizations

Duplication of controls in the QAT normally happens when you switch between work-
books or documents. Suppose you have a workbook or document that contains a QAT
customization. When you press Alt+Tab to move to another document and then return
to the customized workbook or document, the controls on the QAT are duplicated,
triplicated, quadruplicated . . . well, you get the point.

Figure 14-13 shows this duplication scenario, taken from an example already shown
in this chapter.

434 Part II ■ Advanced Concepts in Ribbon Customization

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 434

Figure 14-13: Duplication
of controls on the QAT

This duplication can propagate to other workbooks and documents that do not even
contain any XML customization. They seem to be most susceptible when they contain
document controls, but it can affect workbooks and documents that contain any form
of Ribbon customizations. Therefore, if you (or others using your files) are moving
between documents, you may think that you are working too hard and seeing double,
as shown in Figure 14-14.

Figure 14-14: Duplication of controls on
the QAT on a XML-free customization

Although we don’t have a vaccine, the antidote will reverse the effect. To get rid of
the extra controls, you simply need to close and reopen the document. In the worst-
case scenario, you may need to exit the application and reopen it.

Conclusion

This chapter covered customization of the Office Menu and the Quick Access Tool-
bar, and provided a lot of new material. You learned the difference between a shared
control and a document control, and even how to distinguish document controls
based on the border that surrounds them. You also learned the key ideas behind
adding items to the QAT, including both custom and built-in controls and groups.

In addition, this chapter kept you busy with topics such as a table-driven approach
to customizing the QAT, adding custom pictures, and repurposing built-in commands.
It also explained how to handle shortcuts in Excel and Access that are not disabled
through repurposing. You also learned about a few inconvenient issues with QAT cus-
tomization, such as duplication of controls and some of the peculiar challenges you
face when loading custom controls and images.

At this point in the book, you have been introduced to all the tools you need to pro-
fessionally customize both the Office Menu and the QAT. With that under your belt,
you’re ready to move on to contextual controls, which you to make your customiza-
tions appear when, and only when, they are relevant.

Chapter 14 ■ Customizing the Office Menu and the QAT 435

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 435

91118c14.qxd:WileyRedTight 11/30/07 5:29 PM Page 436

437

Contextual tabs offer a tremendous boost to the functionality of the new UI. These are
specialized tabs that appear when the user is performing a specific task on certain
objects. For example, when working with a chart in Excel, a contextual tab provides
additional options specific to chart handling. The same goes for tables in Word, and
forms and reports in Access.

In this chapter, you learn how to create and implement these specialized tabs, as
well as how to modify built-in ones. You also learn how to customize or replace the
built-in pop-up menus and how to create your own contextual pop-up menus. Finally,
we discuss creating a multilingual UI.

As you are preparing to work through the examples in this chapter, we encourage
you to download the companion files. The source code and files can be found on the
book’s website at www.wiley.com/go/ribbonx.

Making Your Items Contextual

Making an item contextual implies that it must react to the context of what is being
done, such as manipulating a table or a picture. According to the pure definition of
context-sensitive controls, you would need to use a contextual tab collection to carry
out the task in the new Office UI. However, this is not always possible or practical, so
we will show you some alternatives and workarounds.

This section introduces you to the concept of contextual controls, such as tabs,
groups, and general controls.

Working with
Contextual Controls

C H A P T E R

15

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 437

Tabs
When it comes to context-sensitive commands, what immediately comes to mind are
the contextual tabs. An integral part of the Ribbon’s functionality, these specialized tabs
will appear and disappear from the Ribbon depending on which object is selected or has
the focus, such as a chart, pivot table, tabs, or picture. For example, when you are work-
ing on a picture in Microsoft Word, you have the special Picture Tools tab, with the com-
mands that are relevant to working with pictures, as shown in Figure 15-1.

Figure 15-1: Picture Tools contextual tabSet
with the Format tab

Figure 15-1 shows a tabSet named Picture Tools that contains one tab, which is
named Format. In order to implement such a solution, you need to use the contextual
tabs collection and the tabSet element. The following XML markup works as the con-
tainer for contextual tabSets and the corresponding tabs:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<contextualTabs>

<tabSet>

<!-- Your contextual tab code goes here -->

</tabSet>

</contextualTabs>

</ribbon>

</customUI>

The contextualTabs collection is the parent object for each tabSet in the same way
that the tab’s collection object is the parent object for a tab.

You can use the preceding code to create your own context-sensitive functionality
and to access built-in tabSets to modify them. Unfortunately, the extensibility of such
tabSets does not apply to Excel or Word; only Access’s forms and reports offer such
extensibility. When working with custom contextual tabSets in Access, you need to
refer to the extensibility tabSet in the following manner:

<tabSet idMso=”TabSetFormReportExtensibility”>

438 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 438

It is within this tabSet that you will build the contextual UI.
For Excel and Word, you need to work around this deficit by either taking full con-

trol over a built-in contextual tab or by using events combined with the getVisible
attribute to make tabs behave as though they are contextual. This is essentially the
process that is used in our upcoming example for working with groups in Excel
worksheets.

C ROSS-RE FE RE NC E See Chapter 12 for a full working example of how to
use getVisible to imitate contextuality.

Groups
Groups are not contextual objects per se — that is, they are dependent on the tabSet
and tab to which they belong — so by default they will only appear and disappear in
conjunction with the parent tabSet. In order to give a group the appearance of being
context sensitive, we recommend using the getVisible attribute.

To demonstrate this, consider a scenario in which you want to have the group Font
and the group Insert Chart visible only when the user is working with Sheet1 in an
Excel workbook.

Begin by inspecting the XML code used in this example:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

<ribbon startFromScratch=”false”>

<tabs>

<tab idMso=”TabHome”>

<group idMso=”GroupFont”

getVisible=”rxShared_getVisible”/>

</tab>

<tab idMso=”TabInsert”>

<group idMso=”GroupInsertChartsExcel”

getVisible=”rxShared_getVisible”/>

</tab>

</tabs>

</ribbon>

</customUI>

C ROSS-RE FE RE NC E This example is based on the material covered in
Chapter 12. If that seems like the distant past at this point, a quick review
might be all it takes to get up to speed.

The XML code is very simple. You start with an onLoad callback that sets the Ribbon
object. Then you assign a shared callback to the getVisible attribute for the two
groups, GroupFont and GroupInsertChartsExcel.

Chapter 15 ■ Working with Contextual Controls 439

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 439

Using the shared callback defined in the XML, you can now determine the
attribute’s returned value by using a custom property for the particular worksheet you
want to monitor. That is accomplished with the following code:

Sub rxShared_getVisible(control As IRibbonControl, ByRef returnedVal)

Select Case control.id

Case “GroupFont”

returnedVal = Sheet1.rxGroupFontVisible

Case “GroupInsertChartsExcel”

returnedVal = Sheet1.rxGroupInsertChartsExcel

End Select

End Sub

The attribute value is set according to the custom property value. First, set the
Ribbon object when the document is opened so that you have set the Ribbon as a
property of the ThisWorkbook object. The following code must be inserted in the
ThisWorkbook code window:

Private pRibbonUI As IRibbonUI

Public Property Let rxIRibbonUI(iRib As IRibbonUI)

Set pRibbonUI = iRib

End Property

Public Property Get rxIRibbonUI() As IRibbonUI

Set rxIRibbonUI = pRibbonUI

End Property

Second, specify the custom property for the sheet you want to monitor, which is
done using the following code. This custom property is read/write so that a value can
be reassigned to the property at any time during execution:

Private pblnGroupFontVisible As Boolean

Private pblnGroupChartVisible As Boolean

Property Let rxGroupFontVisible(ByVal blnVisible As Boolean)

pblnGroupFontVisible = blnVisible

End Property

Property Get rxGroupFontVisible() As Boolean

rxGroupFontVisible = pblnGroupFontVisible

End Property

Property Let rxGroupInsertChartsExcel(ByVal blnVisible As Boolean)

pblnGroupChartVisible = blnVisible

End Property

Property Get rxGroupInsertChartsExcel() As Boolean

rxGroupInsertChartsExcel = pblnGroupChartVisible

End Property

440 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 440

Finally, you can change the custom property according to your needs. Here, we
want to show the groups when a specific worksheet is active, so we use the Worksheet_
Activate and Worksheet_Deactivate events to change the properties values, as
shown here:

Private Sub Worksheet_Activate()

Sheet1.rxGroupFontVisible = True

Sheet1.rxGroupInsertChartsExcel = True

ThisWorkbook.rxIRibbonUI.Invalidate

End Sub

Private Sub Worksheet_Deactivate()

Sheet1.rxGroupFontVisible = False

Sheet1.rxGroupInsertChartsExcel = False

ThisWorkbook.rxIRibbonUI.Invalidate

End Sub

As the sheet activates/deactivates, the groups are shown or hidden accordingly.

Working Through Nonvisibility Methods

Using visibility to create context-sensitive tabs and groups may be somewhat unortho-
dox, but it is an effective way to achieve your goals. However, this approach is not
available in all circumstances — especially if you are working with built-in controls in
built-in groups.

In cases where it is not feasible to make a control visible or invisible, we suggest yet
another workaround: Plan B is to enable and disable the controls.

Enabling and Disabling Controls
As you have already seen, you can use the enabled attribute to determine whether a
control is enabled or not. We’ve also provided some techniques for circumventing
some of the issues that may be associated with disabling controls.

NOTE Although disabling controls has its advantages, it also carries the risk
of removing some functionality that is critical to end users.

We now look at providing context-sensitive controls through the use of the getEnabled
property. This method is actually quite simple and follows the same logic as the visibility
examples. The difference, of course, is the method used. As you will remember, to disable
a command, you must refer to the command itself and the button or a generic control. For
example, the XML code for disabling the two commands Copy and Cut would look some-
thing like the following:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”rxIRibbonUI_onLoad”>

Chapter 15 ■ Working with Contextual Controls 441

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 441

<commands>

<command idMso=”Copy” getEnabled=”rxshared_getEnabled”/>

<command idMso=”Cut” getEnabled=”rxshared_getEnabled”/>

</commands>

</customUI>

The next step is simply to add a shared callback to handle procedures to be executed:

Sub rxshared_getEnabled(control As IRibbonControl, ByRef returnedVal)

Select Case control.id

Case “Copy”

returnedVal = Sheet1.rxCopyEnabled

Case “Cut”

returnedVal = Sheet1.rxCutEnabled

End Select

End Sub

Again, you use custom properties to specify the returned value for the callbacks,
which results in a much neater way to work through the standard module holding the
callbacks for the Ribbon.

Working with Contextual Tabs and tabSets

You already know something about the contextual tab container, and that it is the parent
for a tabSet. When customizing Access, you must use the extensibility tabSet. We start
this section by looking at how things work in Access, as this will provide the most com-
prehensive exposure to contextuality. After that, we analyze examples in Excel and Word.

Creating a Custom Contextual Tab in Access
As you have learned in previous chapters, Access is unique when it comes to cus-
tomization. One of the unique aspects refers to contextual tabs for forms and reports.
In this section, we will use that feature to create the custom, context-sensitive tab that
is shown in Figure 15-2.

Figure 15-2: Custom contextual tab for an Access report

442 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 442

Figure 15-2 shows our usual custom tab (My Home Tab), which contains a button to
open the report. Once the report is open, the contextual tab My Contextual Report Tab
is shown. Because this is based solely on the opening and closing of the report, it does
not require a callback to handle the contextual tab’s visibility.

The first task, as usual, is to prepare the XML code. The following example provides
the complete code that will generate the UI shown in Figure 15-2. After reading
through the code, you can compare notes with our explanation of what is happening:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

<contextualTabs>

<tabSet idMso=”TabSetFormReportExtensibility”>

<tab id=”rxtab”

label=”My Contextual Report Tab”>

<group id=”rxgrp”

label=”My Task Group”>

<button id=”rxbtnCloseRpt”

label=”Close Report”

imageMso=”FileCheckOut”

supertip=”Click here to close the active report...”

size=”large”

onAction=”Macros.closeReport”/>

<button idMso=”FilePrintQuick”

supertip=”Click here to print the active report...”

size=”large”/>

</group>

<group idMso=”GroupExport”/>

</tab>

</tabSet>

</contextualTabs>

</ribbon>

</customUI>

Here, we use the TabSetFormReportExtensibility tabSet to be able to present the
user with the contextual tab shown previously. We created the tab “My Contextual
Report Tab” to hold the custom group “My Task Group.” That group has two custom
buttons for closing and printing reports. Obviously, you would need to add addi-
tional code to carry out any actions, but the purpose of this exercise is to create a con-
textual tab.

With this XML code ready to copy, add a new record to your USysRibbons table in
Access, enter a name for this Ribbon, and paste the XML code into its corresponding field.

Unlike the main Ribbon that loads when the Access project opens (which you select
from the Access options window), for a report or a form the UI is loaded using the Ribbon
Name property found in the property window for these two objects.

Chapter 15 ■ Working with Contextual Controls 443

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 443

The Ribbon Name property can be obtained by one of the following methods:

■■ Open the report/form in Design View (or Layout View, if you prefer) and make
sure you are viewing the properties for the report/form itself and not an object
on the report (by default, Access shows the property of whatever object cur-
rently has the focus). If the property window is not open, press F4 or Alt+Enter
to activate it.

■■ Select the Other tab and scroll down to the Ribbon Name property.

■■ From the drop-down list, choose the contextual tab you originally saved in the
USysRibbons table (the record that was just added).

TI P You can also click in the little square at the top, left corner of the object
to select it. For example, to get the focus on the report, click the uppermost
square on the top, left corner and you will have selected the report. You can
check this by looking at the selection type in the properties window.

You need to close and open your Access project before the new Ribbon functionality
is fully loaded and ready to use.

Renaming a tabSet

You’ve probably noticed that Figure 15-2 shows the tabSet caption as USysRibbons
Report. This is probably not what you want. Instead, you may want to give it a more
meaningful name. Figure 15-3 shows a renamed tabSet.

Figure 15-3: Changing the
tabSet caption

Changing the tabSet caption is another simple process, especially if it is done in
conjunction with specifying the Ribbon name. Just follow these steps:

1. Open the report/form in Design View (or Layout view, if you prefer) and make
sure you are viewing the properties for the report/form.

2. Select the Format tab.

3. Change the Caption property to whatever you want as the caption of your con-
textual tab.

4. Return to View mode.

444 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 444

Unlike many of the other changes that you’ve made, you do not need to restart the
project for this to take effect. The caption is updated immediately.

The same logic and processes can be used to create a contextual UI for forms.

Modifying Built-in Contextual Tabs
The previous example demonstrated how to implement a contextual solution for a
report in Access. We will now use Excel to demonstrate how to change a built-in con-
textual tab.

Seasoned Excel developers have come to realize that it is no longer possible to cus-
tomize certain pop-up menus, such as the one for Excel charts. In the past, you could
add customization to these pop-ups and everything would work smoothly. With the
advent of the Ribbon, we can no longer use some of these favored features.

Although we lost our custom pop-ups, we gained another feature that might be
even more powerful and flexible: the contextual tab. Figure 15-4 shows how you can
harness the power of built-in contextual tabs.

Figure 15-4: Adding a custom tab to a built-in
contextual tabSet

Figure 15-4 shows the addition of a custom tab to the contextual tabSet for the
built-in Chart Tools. This may not always be the perfect solution, but we believe that
it is the next best alternative for most situations. As we previously noted, the tab is
immediately visible, you can add all your customization to it; and the tab can expand
to accommodate its contents rather than cramming all of the controls into a preset
pop-up menu size.

The key to getting this right is knowing the idMso for the tabSet that you plan to
customize. In this particular case, we want to change the TabSetChartTools tabSet.

C ROSS-RE FE RE NC E For a fairly extensive list of tabSets, refer to
Appendix B.

Therefore, the XML code for adding your custom tab to a built-in tabSet would be
as follows:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>

Chapter 15 ■ Working with Contextual Controls 445

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 445

<contextualTabs>

<tabSet idMso=”TabSetChartTools”>

<tab id=”rxtab”

label=”My Chart Tools”>

</tab>

</tabSet>

</contextualTabs>

</ribbon>

</customUI>

Of course, this assumes that you actually want to add to built-in controls and tabSets,
rather than replace them altogether. However, there may be times when you have a dash-
board with loads of charts, in which case you might prefer to remove all the built-in tabs
in the contextual chart tab and add only some very specific editing tools to the tabSet.

We’ll work through both scenarios, but before we do, let’s take a look at the tabs
under the Chart Tools tabSet. These three tabs are described in Table 15-1.

Table 15-1: Default Tabs under the Chart Tools tabSet

TAB NAME DESCRIPTION

TabChartToolsDesign Gives the user tools for designing the selected chart,
such as built-in style options, data selection, chart
type, etc.

TabChartToolsLayout Gives the user tools for laying out the selected chart,
such as labels, trend lines, etc.

TabChartToolsFormat Gives the user tools for formatting the selected
chart, such as shape styling, text fills, text effects,
arrangement, etc.

Tabs do not come with an enabled attribute like buttons do; therefore, you will use
its visible attribute to manage their appearance. Keep in mind that by making the tabs
invisible, all of their objects will also disappear from the UI. However, you’ll also
remember that making them invisible does not disable the controls contained in them.

Building on the previous example, you can simply add the following XML to the
contextual chart tabSet:

<tab idMso=”TabChartToolsDesign”

visible=”false”/>

<tab idMso=”TabChartToolsLayout”

visible=”false”/>

<tab idMso=”TabChartToolsFormat”

visible=”false”/>

446 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 446

If you inserted it correctly, you should now have the customization shown in
Figure 15-5 when, and only when, a chart is selected.

Figure 15-5: Changing
visibility of built-in tabs in
a contextual tabSet

That’s all it takes to add a custom tab to a built-in contextual tabSet.

Working with Contextual Pop-up Menus

Contextual pop-up menus are our familiar friends from previous versions of Microsoft
Office. They are visible when you right-click on an object or anything on your working
environment that has a pop-up attached to it. Similar to contextual tabs, pop-up menus
display the options that are relevant to the active object.

Pop-ups are based on VBA and do not require XML code, as they are still based on
the command bar’s objects. Therefore, these will seem like old friends to anyone who
has worked with them in Office 97 through 2003. Most pop-ups can be customized,
but we’re sorry to report that the ones based on the new OfficeArt cannot be cus-
tomized. However, you can still do quite a lot in terms of customization, and many of
the old pop-ups are still accessible for customization. Figure 15-6 shows an example
of a built-in pop-up in Excel.

NOTE If you use a lot of graphics, keep in mind that pop-ups based on the
new OfficeArt cannot be customized. However, things are constantly improving,
so there is hope for the next release.

The pop-up shown in Figure 15-6 is called “Cell” and has an index equal to 36. The
next section gets into the mechanics of working with these contextual controls. We
begin with some useful examples in Excel and then move on to Word and Access.

NOTE The “floatie” (Mini toolbar) is not currently customizable, but it can be
switched on and off from the Application Options under the Popular group.

Chapter 15 ■ Working with Contextual Controls 447

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 447

Figure 15-6: Excel’s
contextual pop-up
menu “Cell”

Replacing Built-in Pop-up Menus in Their Entirety
When you right-click on a cell in an Excel worksheet, you get the Cell pop-up (refer to
Figure 15-6). However, you may have a range for which a custom pop-up would be
preferable. Figure 15-7 clearly illustrates this type of situation.

Figure 15-7: Custom pop-up
replacing the built-in Cell pop-up

This is one of the few customizations that you can achieve in Office 2007 without
using XML. This example is accomplished solely through use of VBA code.

Before we delve into the code, let’s review what needs to happen for the pop-up
customization:

■■ It must be shown in place of the “Cell” pop-up.

■■ It must be shown only in a predetermined area. The example uses the range
A1:O32.

448 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 448

With these two points in mind, you are ready to build the pop-up. The first step is to
add the following code to the worksheet code window in which the pop-up replaces
the built-in Cell pop-up:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Excel.Range, _

Cancel As Boolean)

If Union(Target.Range(“A1”), Range(“A1:O32”)).Address = _

Range(“A1:O32”).Address Then

CommandBars(MYPOPUP).ShowPopup

Cancel = True

End If

End Sub

This code performs the following operations: First, the code checks for the union of
the target address with the range defined (A1:O32). If the right-click occurs within this
range, then the pop-up named MYPOPUP is called (please note that MYPOPUP is a global
constant; you will look at the associated code momentarily). Finally, the code cancels
the built-in pop-up menu by setting the Cancel return value to true.

For the second step of this example, you need to add two procedures to the work-
book code window. One procedure refers to the open event of the workbook and the
other refers to the close event of the workbook. In the first case, it creates the pop-up
menu, and in the second it deletes the pop-up menu. The deletion is necessary so that
the pop-up is not left in the customization. The two procedures are provided here:

Private Sub Workbook_Open()

Call mnuPopup

End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)

Call delPopup

End Sub

The third and final step is to add a standard module to the project. This module will
contain the code that generates the pop-up, as well as the code that deletes it. This
means you need to insert both the mnuPopup and delPopup procedures, as presented
here. Notice that the module starts by declaring a public constant, MYPOPUP. As men-
tioned earlier, this must be a public constant so that the value is available to both of the
subprocedures:

Public Const MYPOPUP As String = “MY POPUP”

Sub mnuPopup()

Dim cmdBar As CommandBar

Dim mnu As CommandBarButton

delPopup

Set cmdBar = CommandBars.Add _

(Name:=MYPOPUP, Position:=msoBarPopup, Temporary:=True)

Chapter 15 ■ Working with Contextual Controls 449

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 449

Set mnu = cmdBar.Controls.Add(Type:=msoControlButton)

With mnu

.Caption = “Bold”

.OnAction = “bold”

.FaceId = 113

End With

Set mnu = cmdBar.Controls.Add(Type:=msoControlButton)

With mnu

.Caption = “Italics”

.OnAction = “italics”

.FaceId = 114

End With

Set mnu = cmdBar.Controls.Add(Type:=msoControlButton)

With mnu

.Caption = “Underline”

.OnAction = “underline”

.FaceId = 115

End With

Set mnu = cmdBar.Controls.Add(Type:=msoControlButton)

With mnu

.Caption = “&About...”

.OnAction = “about”

.FaceId = 326

.BeginGroup = True

End With

Set mnu = cmdBar.Controls.Add(Type:=msoControlButton)

With mnu

.Caption = “&Help”

.OnAction = “help”

.FaceId = 984

.BeginGroup = True

End With

End Sub

Sub delPopup()

On Error Resume Next

CommandBars(MYPOPUP).Delete

End Sub

The first procedure is executed when the workbook is opened; the second procedure
is executed when the workbook is closed (although the first procedure calls on the sec-
ond upon opening the file).

450 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 450

The only task left is to add the functionality to the button in the pop-up. The sample
file in the chapter download contains some simple functionality code, as follows:

Sub bold()

Selection.Font.bold = Not Selection.Font.bold

End Sub

Sub italics()

Selection.Font.Italic = Not Selection.Font.Italic

End Sub

Sub underline()

If Selection.Font.underline = xlUnderlineStyleSingle Then

Selection.Font.underline = xlUnderlineStyleNone

Else

Selection.Font.underline = xlUnderlineStyleSingle

End If

End Sub

These are simple procedures to illustrate the point, but you should note that the
functionality is added in the same manner as it is in XML code — that is, you use the
onAction property (called attribute in XML) to refer to a subprocedure or function in
your VBA project containing the code that needs to execute.

The examples that follow are for Word and Access. The VBA code to build the pop-
up menus is pretty much the same, so we do not repeat them. However, we provide
and discuss the event code for each example.

Starting with the example for Word, you first need to add a class module. We named
it clsRightClick, but you’re free to name it anything you like as long as you make the
correct reference to it later in your code. To this class module, add the following code:

Public WithEvents appWord As Word.Application

Private Sub appWord_WindowBeforeRightClick _

(ByVal Sel As Selection, Cancel As Boolean)

Dim selectionExists As Long

selectionExists = Len(Sel)

Select Case selectionExists

Case Is > 1

Cancel = True

Call showMyPopup

End Select

End Sub

The main objectives of the preceding code are to capture the right-click and to show
the pop-up menu. The pop-up menu is only shown if the selection length is greater
than one. Figure 15-8 shows how this example works.

Chapter 15 ■ Working with Contextual Controls 451

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 451

Figure 15-8: Right-click selection on
a Word document

We use an application-wide event, so if you right-click on another document with a
selection length greater than one, it will also show the pop-up menu in that document.
You can add code to limit the scope to the current document by checking whether the
click happens in the document containing the code.

Our next example is for Access and involves a right-click on a form detail. You can,
of course, extrapolate the process to add the right-click to another object. Access works
a bit differently than Excel and Word, as it allows you to determine which mouse but-
ton was actually clicked. This is handy if you want to provide different responses
depending on whether the user right-clicked or left-clicked.

The first step is to add a form to your Access project. Then, open the code window
for the new form and add the following event procedure:

Private Sub Detail_MouseDown(Button As Integer, _

Shift As Integer, X As Single, Y As Single)

If Button = acRightButton Then

DoCmd.CancelEvent

CommandBars(MYPOPUP).ShowPopup

End If

End Sub

Figure 15-9 shows the pop-up menu when a right-click is applied on the detail area
of your form.

Figure 15-9: Custom pop-up menu in Access

Note that this will work fine as long as your form is in the same language as the
example. Because the forms have been translated by Microsoft, the event needs to be
added in whatever language you’re programming your project in.

452 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 452

Adding Individual Items to Pop-up Menus
Another useful way to customize built-in pop-ups is to add new functionality. For
example, you could add a button to the Ply pop-up menu in Excel so that, with just
two clicks, you have a handy tool that puts the worksheets in alphabetical order.
Figure15-10 shows the ply pop-up menu with a custom button added to it.

Figure 15-10: Adding custom
controls to built-in pop-up menus

Try it out. Add a button to the pop-up that enables users to quickly alphabetize the
worksheets. The first step is to add the button. This can be done placing the following
procedure in a standard module:

Sub addButton()

Dim cmdbar As CommandBar

Dim btn As CommandBarButton

Application.CommandBars(“Ply”).Reset

Set cmdbar = Application.CommandBars(“Ply”)

Set btn = cmdbar.Controls.Add(Type:=msoControlButton, Before:=1)

With btn

.Style = msoButtonIconAndCaption

.Caption = “Order sheet tabs”

.FaceId = 210

.OnAction = “orderTabs”

End With

End Sub

If you want to automate this, you could run the preceding procedure when the
workbook opens just by adding a call to it. In addition, while you are at it, you could
also add a close event to the workbook so that it triggers the following procedure:

Sub resetPopup()

Application.CommandBars(“Ply”).Reset

End Sub

Chapter 15 ■ Working with Contextual Controls 453

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 453

NOTE If you use the Reset procedure shown in the preceding code, you can
substitute the line equivalent to it in the addButton procedure. Simply make a
call to the resetPopup procedure in the addButton procedure.

This procedure will reset the Ply pop-up menu to its original state so that it does not
leave any customization hanging around after the workbook is closed.

OK, back to the original focus, which is to add customization to the right-click func-
tion. The next step for that is to write a procedure to put the sheets in order when the
button is clicked. We used the following procedure:

Sub orderTabs()

Dim i As Long

Dim j As Long

Dim n As Long

n = ActiveWorkbook.Sheets.Count

If n = 1 Then

MsgBox “There is only one worksheet in this work-book!”, _

vbInformation

Exit Sub

End If

For i = 1 To n - 1

For j = i + 1 To n

If Sheets(j).Name < Sheets(i).Name Then

Sheets(j).Move Before:=Sheets(i)

End If

Next

Next

End Sub

That’s all there is to it! The key to this sort of customization is to know the command
bars that you plan to customize. Figure 15-11 shows a compilation of lists that we’ve
created in Access. These lists can come in handy, especially as they are updated every
time they are generated.

This database is one of the sample files for this book. As a nice bonus, in addition to
demonstrating how to use the right and left mouse clicks, we’ve provided a database
that creates lists of the command bars and controls in your projects. Surely you have to
agree that that is truly a nice bonus, thank you very much. The lists are created at run-
time and you can run it to list the command bars and child controls. The code creates
three tables and adds a relationship to them so that you can easily identify the hierar-
chy between the tables. Although the database lists the controls in Access, the code can
be adapted to accomplish the same task in Excel and Word.

454 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 454

Figure 15-11: List of built-in command bars and
child controls

Multilingual UI

The possibilities regarding what you can accomplish with contextual elements can take
different turns depending on your needs and imagination. We now look at the multi-
lingual UI to see how the contextual elements can support multilingual projects. Many
approaches could be considered, but the current objective is to enable users to choose
the language that they prefer.

Our example will offer two languages. Figure 15-12 shows the example that we will
build in Excel. You could also modify the steps to work with either Word or Access. For
Word, you would want to use an external file, to simplify maintenance; but when
working with Access, you can easily use either table or an external source file. The
process is fairly straightforward and doesn’t even require XML in order to work with
the resource file — the file that contains the control names and their translations. You’ll
notice that because we have to provide the translations, the resource file contains only
the languages we are offering.

Figure 15-12: Multilingual UI
in Excel

Chapter 15 ■ Working with Contextual Controls 455

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 455

The process is quite simple. Basically, building the solution can be broken down into
four essential tasks:

■■ The label for each control must be changed at run-time; thus, we use the getLa-
bel attribute in each one of them.

■■ Because this is an attribute shared among all the controls, we use a shared call-
back to handle the change. This avoids a lot of coding.

■■ We use a worksheet (aka a resource file) to keep the controls’ names and trans-
lations. The worksheet can be hidden so that it is not readily accessible to users.

■■ We use the VLookup function to search for the controls in the list and return the
label value.

As you can see from the list, the resource for, or the worksheet with, the control
names and translations is a key element in the implementation of this solution. An
example of the spreadsheet is shown in Figure 15-13.

Figure 15-13: Worksheet table containing
controls’ translations

Although you can define a dynamic range for the area containing the translation,
this might require a rather lengthy explanation of how dynamic ranges work.
Another option would be to convert the range into a table. However, because we’re
focused on Ribbon enhancements rather than Excel formulas, our example uses the
straightforward approach of a fixed range. For this example, we also concentrate on
VBA and do not expand into options that require XML.

Given those caveats, we are now ready to begin. We first define a few variables that
will be used throughout the example. Declare the following global variables in the
general declarations area of your standard module:

Public grxIRibbonUI As IRibbonUI

Public giColControls As Integer

Public gWS As Worksheet

The first variable is the Ribbon object; the second variable refers to the column in
which the language version is located; and the last variable refers to the worksheet
object that contains the translations.

456 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 456

Next, use the onLoad event to set these variables for later use:

Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

Set grxIRibbonUI = ribbon

giColControls = 2

Set gWS = ThisWorkbook.Sheets(“Languages”)

Application.SendKeys “%UN{RETURN}“

End Sub

This code does the following:

■■ Sets the ribbon object

■■ Determines the initial column in which the translation is located

■■ Sets the worksheet that contains the translation

■■ Sends the shortcut Alt+UN to the application so that the custom tab is selected
upon opening the workbook

C ROSS-RE FE RE NC E For a refresher on SendKeys and how to specify
which tab has the focus when the file opens, see Chapter 13.

The initial labels will be loaded when the document is opened, so you need to handle
the shared getLabel callback. That is done as follows:

Sub rxshared_getLabel(control As IRibbonControl, ByRef returnedVal)

On Error Resume Next

returnedVal = Application.WorksheetFunction.VLookup(_

control.id, gWS.Range(“A1:C200”), giColControls, 0)

End Sub

Using the VLOOKUP function, you take the control id to determine the value being
looked up in the table. You then use a fixed range (A1:C200) indicating where the
details are, including the column containing the values that will be returned (i.e., dis-
played on the controls).

This code will be called back when the user chooses a different language from the
splitButton/menu in the UI. When the user clicks on the chosen language command,
you need to invalidate the Ribbon so that the values can be reloaded onto the UI. This
is done with the following code:

Sub rxbtnshared_Click(control As IRibbonControl)

Select Case control.id

Case “rxbtnSpanish”

giColControls = 3

Case “rxbtnEnglish”

giColControls = 2

End Select

grxIRibbonUI.Invalidate

End Sub

Chapter 15 ■ Working with Contextual Controls 457

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 457

You use a Select statement to choose between the two languages available. If the
language chosen is Spanish, then the column where the look up must occur is set to 3.
If English is selected, then the column is set to 2 (the default value).

Conclusion

In this chapter, you learned how to create context-sensitive customizations. We used an
Access example to explore some new ways of adding contextual controls. In addition
to creating custom groups, you learned how to customize built-in contextual tabs and
harness their power and flexibility.

We also demonstrated a couple of less conventional methods for adding context-
sensitive controls by using the getVisible and getEnabled attributes to hide/show
and enable/disable Ribbon objects. This chapter also covered pop-up menus, a legacy
from previous versions of Office, and described how to replace built-in pop-up menus
with your own, as well as how to modify built-in ones.

We closed the chapter by providing a very handy tool that lists old command bars
and pop-up menus, which you can use to access the information necessary to modify
legacy UIs in Office 2007. You also created a multilingual UI. Who would have thought
that context sensitivity covered such a wide range of controls and features?

We packed a lot into a few pages, but it is all important for preparing you for
the next chapter, because now you are ready to move on to “Sharing and Deploying
Ribbon Customizations.”

458 Part II ■ Advanced Concepts in Ribbon Customization

91118c15.qxd:WileyRedTight 11/28/07 9:18 PM Page 458

459

Throughout this book, we’ve focused on customizing the Ribbon to best suit your
needs, emphasizing functionality and convenience. It is now time to learn how to
deploy customizations.

It is important to realize that every customization we built in this book was con-
tained in a workbook, database, or document, and each customization was evident in
that file only. As soon as you switched to another file, even within the same applica-
tion, you would see a fresh and clean UI, with none of your customizations present.
While this is a great feature to ensure that the UI is reset and not cluttered with irrele-
vant information, sometimes you will want to develop and use customizations across
all files for a specific program.

That’s why we’ll now discuss how to share customizations. This chapter covers sev-
eral methods, complete with both the pros and the cons of each approach. As each
application deals with deployment in a slightly different manner, we cover each one
separately to demonstrate the available techniques.

We begin by reviewing three ways to deploy custom solutions in Excel, and provide
an in-depth discussion of the code and the modifications necessary to share customiza-
tions. The second section of this chapter covers similar material as it relates to Word.

The third portion of this chapter looks at our final RibbonX attribute: idQ. This
attribute is specifically geared toward sharing elements across files, and it enables
users to load and unload Ribbon customizations from a central source.

After that, you will learn some techniques for deploying Word and Excel solutions
in an environment where prior versions of Office may also still be active. This is an
invaluable section, as many people use different machines on a regular basis, and they
need their files to work with Office 2000 and newer.

Sharing and Deploying
Ribbon Customizations

C H A P T E R

16

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 459

Finally, we cap off the chapter by discussing techniques to deploy Ribbon cus-
tomizations in Microsoft Access. By the time you finish this chapter, you will have both
the knowledge and the confidence required to successfully deploy solutions in a real-
world environment. As always, we encourage you to download the companion files.
They are an invaluable resource for working through the examples in this chapter. The
files can be found on the book’s website at www.wiley.com/go/ribbonx.

Excel Deployment Techniques

This section is geared primarily for Excel users and provides very specific information
about how to deploy Ribbon customizations built for Microsoft Excel. Here, we discuss
the three methods that are available for deploying customizations: workbooks, templates,
and add-ins. In addition to describing what to do, we also provide some recommenda-
tions about what works best for each of these scenarios.

NOTE Word users should also read this section, as the “Distributing
Workbooks” and “Using Templates” sections contain many parallels with the
way that Word operates. The “Word Deployment Techniques” section of this
chapter highlights the differences between the two applications, rather than
cover everything from scratch.

Distributing Workbooks
So far, the Excel solutions that we’ve created would be termed “workbook-level
deployments.” Each was created and saved as a workbook in either a macro-free (xlsx)
or macro-enabled (xlsm) file format.

This is the most common format for a novice programmer to create, and there is cer-
tainly nothing wrong with it. All the required XML and VBA code is saved within the
file and travels with the workbook wherever it goes.

A workbook-level deployment has some great advantages over other deployment
methods. It creates a nice, portable little package that is very easy to deploy. Simply
send it to a user and it will run without issues, providing the following:

■■ The end user’s security setting permits any code to run

■■ Any VBA code is correctly crafted for changes in environments (such as vari-
able file paths, etc.)

C ROSS-RE FE RE NC E Security is discussed in detail in Chapter 17.

There are also some disadvantages that attend the workbook-level deployment
methods. The largest of these issues revolves around the maintainability of the file.

Packaging a solution using the workbook-level approach actually violates one of
the best-practice guidelines generally accepted in the development industry: sepa-
rating business logic from data. Consider the scenario in which you have released a

460 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 460

customization in the same file as your critical business data. How do you go about
updating the file? Do you take it offline for as long as you need to write the update?
What happens if you accidentally destroy the data while updating the code?

Another maintainability issue relates to replicated workbooks. This could lead to
hundreds of copies of the same customization. Consider what it would take to track
down all of the copies and roll out an update. Worse yet, what happens if you’ve
updated the code, and the file is overwritten by an old version? Granted, this may be a
worst-case scenario, because it also means that you have much bigger problems than
just code maintainability, as the data would also be lost. You may think, “That could
never happen to me,” but we have seen this type of compounding of errors.

It is hard to beat the portability of a workbook deployment for creating simple VBA
functionality enhancements, such as copying data to historical tables or clearing input
cells, but this may not be the file type that is best suited to deploying Ribbon cus-
tomizations.

Using Templates
The next method for deploying Excel solutions is to store the file as a template. This
provides a quick way to create a new file built on the specified underlying structure.

As mentioned in the previous section, many fledgling developers create solutions,
save them in a workbook format, and then distribute the files to other users. Many
times, the intention is to use these files as a template. The end user may be given
instructions to save the workbook under a new filename before starting, to always
overwrite the old data, or to simply clear old data from the file before working with it.
As the developer picks up more VBA skills, he or she may even create a button for
users to clear the data cells. Sadly, these steps are an unnecessary waste of time.

The purpose of the template is to provide a fresh clean workbook when the file is
called. It simply requires the developer to set up the workbook correctly and then save
it as a template. Once installed in the end user’s templates folder, it is as simple as
choosing Office Menu ➪ New ➪ My Templates and double-clicking on the appropri-
ate file. A new workbook will be created in the selected template’s image. The new file
is immediately given a new name so that the template cannot be overwritten.

Creating a template is much easier than you might think. We’ll go through the
process now. But, rather than create a brand-new file with a Ribbon customization,
download one of our completed examples. For the purposes of this example, we’ve
used the editBox-RenameWorksheets.xlsm file from the Chapter 6 downloads.

After you have the file open, go to the Office Menu and choose Save As. From the
Save As Type drop-down list, choose Excel Macro-Enabled Template.xltm. Give the file
a name and save it in the default directory, as specified in Table 16-1.

Table 16-1: Default Locations for the Local Templates Folders

PLATFORM PATH

Windows Vista C:\Users\username\AppData\Roaming\Microsoft\Templates

Windows XP C:\Documents And Settings\username\Application Data\
Microsoft\Templates

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 461

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 461

That’s it! It really is that simple. The file is still open in the template format (it may
end with .xltm in the application title bar), so close it now. Then go to the Office
Menu and choose New ➪ My Templates to browse the Excel templates on your system.
Select and open the file that you just saved.

The file opens and looks just like it did when saved, but notice the name of the file
in the application’s title bar. As shown in the circled area of Figure 16-1, it ends in 1 and
shows no extension. Why is this?

Figure 16-1: A new file created from a template

Actually, this is a fundamental selling point for the template file type. The file lacks an
extension because you have not yet saved it. As soon as you hit the Save button, you will
be prompted for a new filename and type. The file will not be saved over the template file.

NOTE The file number will increment each time a new file is created from the
same template. (You can prove this by deleting the newly created file and
repeating the process.) The program increments the filename to ensure that it
doesn’t create a new file with the name of an existing (open) file.

The template provides the ability to create files from a consistent and approved
base. Because templates can be stored within the user’s own templates directory, or a
network directory, you can easily deploy and update your workbook templates, ensur-
ing that all new files are built from that source.

NOTE You must configure template directories through Microsoft Word, as
Excel has no way of changing any of the default template locations. Changing
these settings is covered in the discussion of Word, later in this chapter.

If your template makes use of VBA, then rest assured that the VBA will still work
just fine. However, be aware that the default file format for saving a file is macro-free
(xlsx). Therefore, unless users consciously select xlsm, they will delete the VBA and
remove all macro functionality. Currently, the only way to work around this issue is to
program a custom Workbook_BeforeSave event to save the file in the xlsm file format.
Although that programming is outside the scope of this book, you can quickly find
additional information online.

WARN I NG XML travels with the document based on a template, even if the
file is saved in a macro-free file format! This means that even though any
required VBA code is stripped from the document, the Ribbon customizations
still travel with the file.

462 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 462

At this point, you may be asking how you would update a template if you can’t
make changes to it. The secret lies in how the file is opened.

If you are going to use templates, it is paramount that you train users to select
Office ➪ New (file) to create new files. If they instead open the file by choosing Office ➪

Open, they will have full access to the template. Any changes that they save will then
become part of the template. Fortunately, templates are generally not stored in directo-
ries that users access frequently, such as the default folder for user documents. Instead,
the default location is buried quite deeply in the Windows folder hierarchy. This pro-
vides an inherent level of protection, as most users have no idea where to browse to find
the template files. For the same reason, workgroup template directories should not be
stored within directories that users typically access.

Templates can be an ideal deployment option for creating standardized workbooks
that always need to start fresh — for example, purchase orders or checklists. If you
need to add data, save the file and return later to add or change data. However, work-
book-level distributions may be better suited to this task.

Keep in mind that templates can also provide the foundation for a workbook deploy-
ment that has a limited shelf life. For example, a monthly reconciliation of transactions
may be created from a template on the first of the month and saved. Throughout the
month, data is added and passed around in the workbook until it is complete at the end
of the month. At that point, a new month is started from the template, ensuring that all
the necessary formulas are again whole and complete. Clearly, this can be a convenient
way to distribute new features, as interim changes to the Ribbon customizations in the
template would be available to users when they use the new template.

Creating and Deploying Add-ins
The next deployment vehicle is the Excel add-in. This solution is a little more complex
to create and deploy, but it adds considerable flexibility for developers. Add-ins sepa-
rate the data from the code required to provide the tools. Another significant benefit
for Ribbon customizations is that unlike workbooks and templates, whose customiza-
tions are hidden when switching to another file, the add-in makes the customizations
visible and accessible to all files.

NOTE Although we prefer to do our development in the add-in format, this is
a personal preference. Some think that those who are new to creating add-in
files may find it easier to edit and modify files in the xlsx and xlsm formats,
rather than develop in the Add-in format. Regardless of the format used while
creating the customization, all functionality should be tested before the add-in
conversion is deployed.

To demonstrate the construction of an add-in in Excel, we will convert the dynamic-
Menu example that was created in Chapter 9. This file, if you recall, added the capabil-
ity to create a new file from a template with a few less clicks than the method outlined
above. To follow along, download the dynamicMenu-CreateFromTemplate.xlsm example
from the Chapter 9 example file.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 463

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 463

Preparing a Workbook for Conversion to an Add-in

When preparing to convert a file to an add-in, it is important to ensure that all the VBA
code will transfer across seamlessly. If your file contains only XML customizations, you
may skip this section, but if it uses any VBA code, you will want to pay careful atten-
tion. The specific things that need to be checked are as follows:

■■ Instances where ThisWorkbook is referenced in the code

■■ Instances where the subroutines and functions are not prefaced by the words
Public or Private

Because the majority of add-ins start as xlsm files, many of them reference the
ThisWorkbook object in the code. This is fine for a regular file, as the code and data are
both contained within the same workbook, but once the file is converted to an add-
in, the data that you will be working with will rarely be stored in the actual add-in.

NOTE It is considered a best practice to separate all data from the actual
add-in, which should serve only as a code container. This is true even for data
related to custom settings for the add-in, such as languages or number of items
shown in a listbox. Separating this type of data from the code allows you to
deploy updates to the add-in without worrying about overwriting user settings.

C ROSS-RE FE RE NC E One method for storing user settings data outside a
file is to store it in the Registry. We’ll use this technique later in this chapter (it
was also demonstrated in Chapter 12).

Open the dynamicMenu-CreateFromTemplate.xlsm file in Excel, launch the VBE, and
open the standard code module. Using the Find or Find Next commands from the Edit
menu, search through the code to locate all instances of ThisWorkbook.

If you find an instance of ThisWorkbook, you need to determine whether it should be
replaced with ActiveWorkbook instead. Keep in mind that the target of the code is most
likely the workbook with the data (ActiveWorkbook) and not ThisWorkbook, which
would refer to the add-in itself.

Take care, however, not to use a blanket “Find and Replace” of the term. There are
frequently legitimate reasons to reference ThisWorkbook, including referring to work-
book properties, as well as referring to any data tables that may be stored in work-
sheets of the add-in, such as a list of postal codes used to populate a UserForm ListBox.

Fortunately, our current example file contains no instances of ThisWorkbook in the
code, so we don’t need to worry about this.

The second item that you need to be aware of is the distinction between Public,
Private, and unspecified routines and functions. By default, all routines and func-
tions that are not prefaced with the Public or Private keyword are treated as Public.
This is an important distinction because Public means that they are viewable when
pressing the Alt+F8 keystroke sequence in the Excel UI.

It is a good practice to mark routines as Private whenever possible. Certain routines
must be public, so that the user can run them, but if routines or functions are called
only from other procedures or functions, they should be marked as Private.

464 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 464

As you review the code in the example, you will find that none of the routines have
been prefaced with Private or Public. Modify each routine to start with the Private
keyword, as shown here:

Private Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

CAUTION Private routines and functions cannot be called from other
modules. Assume that you have decided to hold all of your Ribbon callbacks in
one code module and all other “global” routines in another so that they can be
called from callbacks, userforms, or class modules; you will not be able to set
your “global” routines as private, as they would not be found when needed.

As with all code, you may not get things right the first time, but don’t worry about
it. Code in add-ins can still be edited, so if you do make a mistake you haven’t backed
yourself into a corner.

Now that we have updated the code, let’s turn the project into an add-in.

Converting a Workbook to an Add-in Format

The process of converting a workbook to an add-in is quite simple. From the Office
Menu, choose SaveAs ➪ Other Formats. When prompted for the filename and type,
choose the Excel Add-in (*.xlam) format. At this point, that location changes to the
Add-ins folder. Make sure that the file is named CreateFromTemplate.xlam and click
the Save button.

NOTE If multiple users will simultaneously use your add-in, you’ll need to do
two things. First, save the add-in in a network folder instead of in a personal
Add-ins folder. Second, locate the file (through Windows), right click the add-in
file, and set it to be “Read-only.” This will force each user to load a copy of the
file, while still letting you overwrite it if you have a new version that you’d like
to deploy. If you do not change this property, then the first user to open your
add-in puts an exclusive lock on the file and no one else can use, delete, or
replace the file until the lock is released. For more details on this topic, please
visit www.excelguru.ca/node/45.

Notice that once the file is saved, the original filename still graces the title bar of the
Excel application. This is to be expected, as the add-in is created as a copy of the origi-
nal file. Close the original file and we’ll get to work on the installation portion.

Installing an Add-in

Because you created the add-in on your system, it is stored in the local Add-ins direc-
tory. If you send this to a user and want it to be as easy as possible to install, you should
direct the user to save the file to their local Add-ins folder. This folder can be found in
the locations shown in Table 16-2.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 465

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 465

Table 16-2: Local Add-ins Folder Locations

PLATFORM PATH

Windows Vista C:\Users\username\AppData\Roaming\Microsoft\AddIns

Windows XP C:\Documents And Settings\username\Application Data\
Microsoft\Addins

TI P It is not necessary to place the file in the default Add-ins directory. Indeed,
if the Add-in file will be shared by multiple users, this is the last thing that you
should do. However, it does make the installation a few clicks easier in Excel.

Now, ensure that your add-in is installed. Open Excel, go to the Office Menu, and choose
Excel Options ➪ Add-Ins ➪ Go. This will bring you to the dialog shown in Figure 16-2.

Figure 16-2: Installing a new
add-in

If you stored the add-in in your local Add-ins folder, it will be in the list. Simply
check the box next to it. If you stored the add-in in another location, however, you’ll
need to click the Browse button to locate the file. To complete the loading of the add-in,
simply check the box next to the file and say OK.

Upon returning to the Excel UI, you’ll see that the Ribbon customization you created
in the Chapter 9 example is loaded, as shown in Figure 16-3.

You will also find that the add-in functions exactly as you’d expect. Click the menu
for a list of all the templates stored in your Templates directory. If it doesn’t list any
templates, you can create some by following the steps outlined earlier in this chapter.

Why did we go through all of this? Open any other Excel file on your system and
you’ll notice that the New File menu is still there. As you can see, creating an add-in
enables you to share your customizations no matter which file is open.

466 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 466

Figure 16-3: The “CreateFromTemplate” add-in in action

Unloading and Removing Add-ins

Add-ins require memory when they load, so it is a common practice for users to turn
Excel add-ins on and off as needed. It is easy to turn an add-in off, but it requires a few
additional steps to completely remove an add-in. One of the reasons to remove an add-
in is so that you can change it from a local deployment to a network deployment.

To unload an add-in but still leave it available for loading in the future, go to the
Office Menu and choose Excel Options ➪ Add-Ins ➪ Go. This will again bring you to
the dialog shown in Figure 16-2. This time, simply uncheck the box next to the add-
in(s) that you wish to unload. These add-ins will not be removed from your system but
they will be unloaded, freeing up the portions of Excel’s memory that were reserved by
the add-in(s). The add-in(s) will remain in the list so that they can be easily loaded
when needed.

To completely remove an add-in from your system, begin by unloading it as just
described. Then close Excel and locate the actual add-in file so that you can move it or
delete it from your system. Next, reopen Excel and return to the Add-ins interface,
where you’ll notice that the add-in is still listed. As there is no button to remove an
add-in from this list, check the box next to the add-in. If you successfully moved or
deleted the correct file, you will be prompted with a message to delete it from the list,
as shown in Figure 16-4.

Figure 16-4: Add-in cannot be found

Select Yes and then make sure you close Excel. This is important, as closing Excel
sets the change in the Registry, where the list of add-ins is maintained.

Toggling the IsAddin Property

In the discussion about add-ins, we mentioned that all is not lost if you make a mistake
with any portion of the add-in. For example, perhaps you need to add a list of data to
one of the worksheets in an add-in that is used in a vlookup formula or some other

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 467

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 467

method. You can temporarily re-expose the worksheets by setting the IsAddin prop-
erty of the add-in to False.

To do this, open the VBE and ensure that the Properties window is open. (Press
Ctrl+R to show it if it isn’t.) Browse to the ThisWorkbook class module in the Add-in
project, select it, and press F4. This will change the view of the Properties window to
show the properties of the ThisWorkbook object, launching the Properties window if it
is not open.

Browse down the list until you find the IsAddin property, as shown in Figure 16-5.

Figure 16-5: Properties of the
ThisWorkbook module

Changing the IsAddin property to False tells Excel to treat the file as a regular work-
book. All sheets will become visible again and the file can be modified. To turn the file
back into an add-in again, access the IsAddin property by following the preceding
steps, setting the property to True.

CAUTION Once you have made your changes, you will want to ensure that
you save your add-in again. You can do this by ensuring that one of the add-in’s
code modules is activated in the VBE’s Project Explorer and pressing the Save
button.

NOTE Toggling the IsAddin property may cause your RibbonX customizations
to collapse — that is, they not only disappear, but they are gone until you
reload Excel.

A Note on the PERSONAL.XLSB Workbook
Users of Excel who are experienced with writing VBA macros in earlier versions of
Office will undoubtedly be familiar with Excel 97–2003’s PERSONAL.XLS workbook — a
hidden workbook that was used to hold self-developed VBA procedures. As this work-
book was the primary repository in which most budding developers could store their

468 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 468

code libraries, it is completely understandable that users would try to store their per-
sonal Ribbon customizations in Excel 2007’s new PERSONAL.XLSB file. Save yourself
some time and don’t bother, as it doesn’t work the way you would expect.

While Ribbon customizations can be attached to the PERSONAL.XLSB workbook, the
workbook remains hidden and so will all the Ribbon customizations. Changing
the workbook to visible does display the Ribbon customizations, but that defeats the
purpose of the PERSONAL.XLSB workbook, as the customizations are only available
while that workbook is active. As with all workbooks, switching from the workbook
that holds the customization discards the customizations until the workbook is acti-
vated again, so any tools you’ve programmed will not be available in the workbook(s)
for which you created them.

In previous versions of Excel, we also had a trick to set the IsAddin property of the
PERSONAL.XLS file to True, which would force the file to behave like an add-in. This was
a great feature, as it avoided the irritating message “This workbook is in use” when a
second instance of Excel was opened. Changing this setting in an effort to treat the file
as an add-in causes some strange behavior in Excel 2007:

■■ The IsAddin property reverts to false every time you open the file.

■■ Changing the IsAddin property causes the PERSONAL.XLSB workbook to open as
a normal, visible workbook.

Because the PERSONAL.XLSB workbook does not seem to work well with RibbonX
customizations, it is recommended that you use a separate add-in to store customiza-
tions that will be shared globally across Excel workbooks.

Word Deployment Techniques

In this section we turn our attention to deploying our customization in Microsoft
Word. Like Excel, Word offers three methods for deploying solutions: documents, tem-
plates, and global templates. Again, we will demonstrate how to make your solutions
work with each of these file types.

Distributing Documents
As with Excel’s workbook-level deployment, each of the Word examples in this book
were deployed within the document. Whether saved in a macro-free (docx) or macro-
enabled (docm) file format, these documents contain all the required XML and VBA
code within the file.

While this method may seem attractive at first, it is far less functional in Word than
in Excel. That’s because Excel files are typically used to process data, and occasionally
warehouse it. A single Excel file may be used repeatedly to add data to an ever-grow-
ing store, whereas a Word document is generally created for a single use.

While deployment on a document level may be a good way to keep specialized tools
in place for a specific report, most Word customizations will be needed on a more
global scale. Because of this, Word is built around templates and the use of “boiler-
plate” forms and documents, which can be used repeatedly.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 469

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 469

If you have created a very specialized set of tools for a specific document, then stor-
ing it within the file may work well for you. However, if you need the tools on a larger
scale, it may be time to investigate templates and global templates.

Using Templates
Templates are the lifeblood of Microsoft Word. Properly constructed, they enable users
to focus on creating content, as new documents are created with the majority of the
document framework already in place.

Creation and deployment of Word’s templates are quite similar to the methods used
in Excel. There are some minor differences, however, which we will look at now.

Configuring Template Directories

Before we begin the discussion of how to create templates, it makes sense to look at
where the templates will be stored. Without this information, you cannot hope to save
your files in the correct locations.

Open the Office Menu and choose Word Options ➪ Advanced. Scroll to the bottom
of this window until you find the File Locations button. Upon clicking it, you will be
taken to the interface shown in Figure 16-6.

Figure 16-6: The File Locations tab

This tab provides the option to choose or modify the folder for both User Templates
and Workgroup Templates. The User Templates folder is usually set on the user’s own
PC and holds templates specific to the user who is logged in. The Workgroup Templates
directory, however, is usually placed on a network folder, and holds all of the templates

470 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 470

that are approved for use within the corporation — of course, subject to network per-
missions and other controls.

CAUTION Any template installed in the template folders listed here will
open without macro warnings, even if it holds code. This is because the
template folders are treated as “trusted locations.” For more about trusted
locations, see Chapter 17.

Regardless of which template folder the template is in, it will open in an identical
interface, as you’ll see in a moment.

To find the full path for any of the locations listed in this window, highlight the item
and click the Modify button. You will immediately be taken to the directory. The
default locations of the local Templates folders are listed in Table 16-3. You’ll probably
notice that these are the same locations used by Excel (refer to Table 16-1).

Table 16-3: Default Locations for the Local Templates Folders

PLATFORM PATH

Windows Vista C:\Users\username\AppData\Roaming\Microsoft\Templates

Windows XP C:\Documents And Settings\username\Application Data\
Microsoft\Templates

Make a note of your template directories as you will use this information shortly
when you create a new template.

Creating Templates

Creating a new template in Word is virtually identical to doing so in Excel, as you will
see in this example. Open Word and create a new document. Type some text into the
document and then go to the Office Menu and choose SaveAs ➪ Word Template. Save
the file, using a macro-free template (dotx) format, to either the local or workgroup
template folder that you recorded earlier. As expected, the document stays active after
saving, so close it.

Now try out the new template. As you did with Excel, go to Office Menu ➪ New ➪

My Templates. Double-click the new template to create a new document. When the file
opens, you will see the words that you saved in the template file.

NOTE As with Excel, there are two different template formats for Word:
macro-free (dotx) and macro-enabled (dotm). Be aware that even when the file
is saved as a macro-enabled template, new documents created from the
template will default to the macro-free (docx) format.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 471

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 471

TI P When creating VBA code for a template, use the Document_New event
procedure, rather than the Document_Open procedure, if you want the macro to
run when a new file is created from the template. The Document_Open event will
not fire when a document is created from a template. However, after the file is
saved and closed in a macro-enabled format, opening the file will trigger the
Document_Open macro but not the Document_New procedure.

CAUTION Like in Excel, XML travels with the document based on a
template, even if it is saved in a macro-free (docx) file format. Again, this
means that if Ribbon customizations stored in a template rely on VBA, then
they will fail if the user saves the resulting file in a macro-free document
format.

The strengths and weaknesses of deploying solutions using templates are virtually
identical in Word and Excel. While you can be assured that any customizations will
travel with the documents created on the template, you cannot guarantee that the VBA
will go with it, as the user may save in a macro-free format. This can lead to serious
frustration when the tools do not work.

In addition, as with document-level deployments, customizations are only good for
files that are created using the template. If the tools need to be accessible by all docu-
ments, a better option is to use Word’s global templates.

Global Templates
Word actually has two slightly different formats for add-in files: add-in templates and
global templates. The difference between the two is solely the manner in which they
are loaded. The add-in template is loaded by clicking the Document Template button
on the Developer tab and then selecting a standard Word template; this method must
be repeated each time Word is loaded. Global templates, conversely, load every time
Word is launched.

Both methods result in identical functionality: the ability to share Ribbon cus-
tomizations and other custom functionality across all documents and templates in the
application. Unlike standard templates, XML and VBA from active global template or
add-in files are not stored within regular documents that are created. This leaves the
files free from clutter, while still allowing use of the tools that have been developed.

Here, we focus on Word’s automatically loading global template, as it is the equiva-
lent of the Excel add-in. Using an add-in template is explored later in this chapter, dur-
ing the discussions of sharing tabs and groups in Word.

While the global template is identical in purpose to the Excel add-in, the methods of
creation, deployment, and management are quite different. Global templates are not
stored in regular template directories, and they are never directly referenced by the
user; rather, they sit under the surface and share their functionality with the user.

472 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 472

To demonstrate the construction of a global template in Word, we will convert the
button-UpdateWordFields.docm example that was created in Chapter 6. This file, avail-
able in the Chapter 6 downloads package on the book’s website, adds a button to the
Review tab, which allows you to update all fields — something that you normally
can’t do without printing the document.

Preparing a Document for Conversion to a Global Template

Three major steps are required to prepare a document for deployment as a global
template:

1. Save the file as a template.

2. Review any VBA code for references to the ThisDocument object.

3. Verify that subroutines and functions are prefaced by the words Public or Pri-
vate.

To begin the preparation process, download and open the button-UpdateWord
Fields.docm file from the book’s website. You’ll notice immediately that it still has all
of the example text in the document. As the document will be hidden when the file is
converted to a global template, you won’t need this data, so delete it.

The first step to preparing the document for conversion is to save it as a template.
For those files that employ XML only, you may save the file as a macro-free (dotx) file
and skip ahead to the section entitled “Converting a Template to a Global Template.”
However, if the template uses any VBA, it needs to be saved in the macro-enabled tem-
plate (dotm) format.

The next step is to check whether the file contains any references to the
ThisDocument object in the VBA code. Where the commands are targeted at the docu-
ment that holds the code, this will work just fine. Remember, though, that the purpose
of the global template is to use the created functionality with other documents, so these
references may need to be updated.

Open the VBE and browse to the code module named Module1 in the Project
Explorer.

TI P If the Project Explorer window is not visible, you can press Ctrl+R to
display it.

For your reference, the VBA code for this module is reproduced here:

Public Sub UpdateDocumentFields()

Dim rngStory As Word.Range

For Each rngStory In ThisDocument.StoryRanges

rngStory.Fields.Update

Do

If rngStory.NextStoryRange Is Nothing Then Exit Do

Set rngStory = rngStory.NextStoryRange

rngStory.Fields.Update

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 473

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 473

Loop

Next rngStory

End Sub

‘Callback for rxbtnUpdateFields onAction

Sub rxbtnUpdateFields_click(control As IRibbonControl)

Call UpdateDocumentFields

End Sub

Take a moment to review the code, looking for any references to ThisDocument. You
should see one instance: the line beginning For Each, where the code references
ThisDocument.StoryRanges.

The most difficult part of making these conversions is to determine whether using
ThisDocument is appropriate or not. In this example, we are converting the file to a
global template, so the template will not store data of its own and therefore will rarely
contain anything in the StoryRanges object for ThisDocument. Conversely, the active
Word document will likely have text in its StoryRanges. Because the template will pro-
vide functionality for the active document, update this line to read as follows:

For Each rngStory In ActiveDocument.StoryRanges

As that is the only reference to ThisDocument in the code, we can now move on to the
next step: checking for Public and Private subroutines and functions.

You’ll notice that in the original routine, UpdateDocumentFields was already
declared as a public subroutine. This means that it will be available in the Macros dia-
log, which is accessed by pressing Alt+F8. If you want users to press your fancy button
on the Ribbon, you can change this to a Private Sub declaration, which would hide it
from the Macros dialog.

As a matter of good practice, you should also specify your callback signatures as
Private routines, as there is no reason to have the routine declared as Public. After you
have finished making the modifications, close the VBE and save the file.

CAUTION Remember that private routines and functions cannot be called
from other modules. Make sure that you completely test the functionality of
your application after setting all your routines, just to ensure that you haven’t
created a problem.

The document is now prepared for deployment as a global template.

Converting a Template to a Global Template

Compared to creating an Excel add-in, creating a global template is surprisingly easy.
You do not need to save the file in a specific add-in format, and you don’t need to
install it through the Add-ins interface. All you need to do is copy the file into Word’s
STARTUP folder, as listed in Table 16-4.

474 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 474

Table 16-4: Location of Microsoft Word’s Startup Directory

PLATFORM PATH

Windows Vista C:\Users\username\AppData\Roaming\Microsoft\Word\STARTUP

Windows XP C:\Documents And Settings\username\Application
Data\Microsoft\Word\STARTUP

After the template is saved in Word’s STARTUP folder, you must restart Word in order
for the global template to become active, so do that now. After Word has reloaded, nav-
igate to the Review tab. Your button now appears between the Changes and Compare
groups, as shown in Figure 16-7.

Figure 16-7: The Update Fields button deployed via a global template

Try it out. Open any file that you have with updateable fields. If you don’t have one
handy, download the UpdateFieldsExample.docx file from the Chapter 16 example
files on the book’s website.

Upon opening the document, note two things. One, the button works and updates
the fields for you. Two, you can actually see this button, even though it is not part of the
example file. Try closing the example and creating a new document — you’ll see that
the customization stays in place!

Editing Global Templates

If you recall from working through the Excel section, you can edit the VBA code in an
Excel add-in while the add-in is in use. You can also toggle the IsAddin property, forc-
ing the file to revert to workbook format, thereby enabling you to review the otherwise
hidden worksheets. The bad news is that Word is not quite so friendly.

Although you can see the VBA project for a global template (or add-in template)
listed in the VBE’s Project Explorer window, clicking on it will result in the error mes-
sage shown in Figure 16-8.

Figure 16-8: Error message
generated by attempting to
access a global template’s
code module

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 475

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 475

In order to edit the VBA code of an active global or add-in template, you must do the
following:

1. Close Word.

2. Move the templates out of Word’s STARTUP directory to another location.

3. Reopen Word.

4. Choose Office Menu ➪ Open and open the template.

5. Make your changes and save the file.

6. Close Word.

7. Copy the file back to the STARTUP directory.

8. Reopen Word again.

This tedious process underscores the importance of testing a template thoroughly
before deploying it as a global template.

NOTE Add-in templates do not need to be moved, they just need to be
opened via Office Menu ➪ Open, instead of through the Add-ins interface.

Removing Global Templates

Another drawback of Word’s global template implementation is that you cannot deac-
tivate the templates as easily as you can Excel’s add-ins. Whereas Excel allows you to
unload unnecessary add-ins from memory by going into the Add-Ins Manager (refer to
Figure 16-1) and unchecking them, Word has no such option. Every global template is
loaded into memory, whether you need it or not. The only way to stop a global tem-
plate from loading (and therefore consuming your PC memory), is to remove it from
Word’s STARTUP folder!

NOTE Remember that you can find the location of Word’s STARTUP folder in
Table 16-4.

A Note on the Normal.dotm Template
If you are developing solutions for Word, it is generally not advisable to store work in
the Normal.dotm template.

RibbonX customizations and macros can be stored in the Normal.dotm file. This is, in
fact, the default location for storing recorded macros. The Normal.dotm file even works
as a global template: While code and Ribbon customizations will be present in the UI,
documents based on the file will not inherit its code or Ribbon customizations. Why,
then, do we recommend not using Normal.dotm in this way?

476 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 476

It is not uncommon for the Normal.dotm file to become corrupted. One of the first
troubleshooting steps to take when diagnosing issues with Word is to delete the
Normal.dotm file. This forces Word to create a replacement file from scratch the next
time Word is started, so any customizations stored in the template file will also be
deleted. Our recommendation is to invest the extra effort to create a global template file
and avoid this potential loss.

Sharing Ribbon Items Across Files
(Word and Excel)

As you’ve seen earlier in this chapter, you can share your Ribbon customizations
across all files in the application by deploying your solution as an Excel add-in or as a
Word global template. As you begin to send Ribbon customizations to co-workers or
clients, you may begin to find that you don’t want to do everything in a single file. For
example, you may simply want to add a button to a standard add-in when a specific
document or template is opened.

One way to make writing code more efficient is to break it down into reusable sub-
routines or functions, thereby enabling a routine to be written once and used repeat-
edly. The same is true for Ribbon customizations through the use of a namespace that
is shared across files. The namespace gives you the ability to create a master file that
holds tab and group controls, after which documents and add-ins can add to those
tabs. This is the same way that Microsoft’s built-in tabs work — you can add custom
groups to their built-in tabs. Using a shared namespace also enables you to load con-
textual controls into the UI, and it reduces consumption of computer memory by
unloading files that are not required.

This section focuses on creating a host file that holds a shared tab and group, as well
as separate leech file that adds its own commands to the host file’s tab. To make com-
parisons easy between Word and Excel, we will create similar structures in each appli-
cation, which will enable you to see the idiosyncrasies that come into play.

The techniques demonstrated are mainly used when creating add-ins, and work as
follows:

■■ The Ribbon customization for a shared tab (at a minimum) is created in the
host UI file.

■■ Groups or commands that are desired globally are added to this file.

■■ Additional contextual customizations or commands are contained in other files
or add-in formats.

■■ Other (leech) files are loaded as required, attaching their commands to the host
file’s customizations.

To create shared tabs and groups, we must begin by exploring how to create a
shared “namespace” in our XML code.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 477

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 477

Creating a Shared Namespace
Throughout this book, we have been using namespaces, without saying so explicitly.
Every UI customization requires association with a namespace, so you have been
doing exactly that every time you opened a customUI tag.

Let’s take a good look at the standard opening customUI tag, shown here:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

As you can see, the customUI element has been given an xmlns attribute, which hap-
pens to be a URL. The part between quotes is, in fact, the XML namespace that you
wish to attach to. As stated in Chapter 3, this xmlns attribute is very specific, and now
it’s time to understand why.

The URL that is provided is simply a name for the XML namespace that you wish
to work with. This particular URL is just a textual value that Microsoft decided to
use — there is no Web page at the other end. This is important, as it means that Rib-
bon customizations do not require Internet access.

Microsoft could have just as easily used the name “CustomRibbon” for their defined
namespace or any other wording they liked, but they elected to use the URL instead.
The important point for us is that if we want to work with Microsoft’s tabs, groups, and
controls, we must point to this namespace, which holds all of their built-in RibbonX
elements.

Microsoft has also given us the ability to create our own namespaces, enabling us to
share our tabs and groups in the same way that theirs are shared. To set this up, add
another xmlns attribute to the customUI tag, as shown in this example:

<customUI

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

xmlns:Q=”Custom Namespace”>

You’ll notice immediately that Microsoft’s default namespace remains in the
customUI tag. Again, this ensures that we can still access all of Microsoft’s default tabs,
groups, and other controls. In addition to the default namespace, we have also added
the xmlns:Q attribute.

C ROSS-RE FE RE NC E The xmlns:Q attribute is listed as one of the available
attributes for the customUI element in Table 3-2 of Chapter 3.

In the preceding code, Q is the local name you declare for your namespace. The name
can be anything you like, but we recommend prefixing the local name with the charac-
ters “ns” in accordance with the list of naming conventions provided in Appendix E.
As the local name is the portion that is used to refer back to the namespace, it is also
recommended that it be both identifiable and short, as it could potentially be typed
many times.

Assuming that we decided to use a local name of “Custom,” our custom xmlns:Q
would be edited to read as follows:

xmlns:nsCustom=”Custom Namespace”

478 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 478

The portion of the line between the quotes is used to refer to customizations across
files, and is purely of a textual nature. For example, if you wanted to make your cus-
tomization look very official, you could put in a URL to your own website. As this is
strictly a textual reference, it does not matter whether a page is there or not. You could
also dedicate it to your grandparents if you preferred:

xmlns:nsCustom=”This is for my Granny and Granddad”

The key point about this field is that it will be referenced at the beginning of each file
that is designed to attach to your custom namespace.

NOTE If you are developing add-ins for the Office suite using VB.NET, then the
description of the namespace needs be the ProgID of the add-in. Associating a
ProgID enables you to do things that you cannot do through a VBA solution,
such as trigger callbacks for shared buttons. As this book focuses on building
applications from within the Office suite and we cannot assign a ProgID to our
files, the field may contain any text that you choose.

Creating the xmnls:Q attribute is the fundamental piece that enables you to share
your tabs and groups across multiple files in Office. We’ll now explore these concepts
using Excel and Word examples. The example files provide a simple demonstration of
creating a “host” add-in in Excel, along with a workbook that adds to the host’s tabs.
The Word example accomplishes the same job, but also adds the complexities of load-
ing Word add-ins on-the-fly, and using callbacks to dynamically set the properties of
Ribbon controls.

Sharing Tabs and Groups in Excel
This example is divided into two parts: creation of the host Excel add-in file, and cre-
ation of the file that attaches to the host’s custom tab.

To begin this example, open Excel and save a new workbook in the Excel add-in
(xlam) file format. We will refer to this file as UIHost.xlam, storing it in the default add-
ins directory, as listed in Table 16-2, earlier in this chapter. After you have created the
new add-in, you may close Excel.

NOTE If you would prefer to just download the completed versions of these
files, they are included in the sample files for this chapter on the book’s
website. The files that you’ll need are UIHost.xlam and Leech.xlsm.

Open the UIHost.xlam file in the CustomUI Editor and insert the following code:

<customUI

xmlns="http://schemas.microsoft.com/office/2006/01/customui"

xmlns:nsHost="My Shared Ribbon">

<ribbon startFromScratch="false">

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 479

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 479

<tabs>

<tab idQ="nsHost:rxTabUI"

label="UI Test"

insertBeforeMso="TabHome">

<group idQ="nsHost:rxGrpUI"

label="UI Host">

<button id="rxHost_Btn1"

label="Host UI Button"

onAction="rxHost_Buttons"

imageMso="HappyFace"/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

In reviewing the code, notice that we have created a custom namespace called
nsHost for our shared Ribbon controls. Within our customUI container, we have also
opened the ribbon and tabs containers as we usually do.

Take a good look at the tab element though. Notice that instead of the id attribute, it
uses an idQ attribute. This ensures that the tab is created in the shared namespace, and
allows other files to place groups within it.

The idQ attribute always takes the following form:

idQ=”localname:id”

For our customization, the local name is nsHost. This is defined in the xmlns
attribute of the customUI element.

The local name is then followed by a “:” to show where the name ends, and then the
unique identifier for the control. Keep in mind that the id is unique within a specific
file, but the same name will often be used in multiple files. The id should follow all the
rules of the id attribute that we have discussed throughout this book. Based on the
naming conventions that we’re using, this tab will be referred to as rxTabUI.

NOTE Don’t assume that you can reference this control using id=rxTabUI, as
that is not the case. If it is declared as an idQ element, then you will need to
reference it using idQ=”nsHost:rxTabUI”. This may seem obvious, but it’s one
of those details that can occasionally slip past us when writing code.

In the next portion of the code, the group element is also declared using the idQ
attribute. Like the tab element, this allows the group to be shared, thereby enabling
developers to add individual controls to it.

The final portion of the code creates a button, which you will notice is not declared
using the idQ attribute but instead uses the standard id attribute. There are several rea-
sons for this:

■■ The button is stored in an add-in, so it will always be visible.

480 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 480

■■ Any desired dynamic abilities can be set through the callbacks associated with
the button element.

■■ There is no way to nest a control within the button, so it does not need to be
shared for that purpose. (However, as we’ve demonstrated in earlier chapters,
there are other reasons for sharing button controls.)

At this point, validate the code and save the file. After that, it’s time to copy the call-
back signature for rxHost_Buttons, close the CustomUI Editor, and reopen Excel.

We have not yet installed the add-in, so we must now do so in order to access the
code modules. Open the Add-ins Manager (Office Menu ➪ Excel Options ➪ Add-
ins ➪ Go), and check the box next to UIHost.

TI P If you don’t see the add-in, UIHost.xlam, in the list, follow the steps
earlier in this chapter in order to complete the installation.

After the UIHost.xlam Add-in installed, open the VBE and navigate to the
UIHost.xlam project. Add a new standard module, paste the VBA callback signature
you copied from the CustomUI Editor, and edit it to read as follows:

Private Sub rxHost_Buttons(Control As IRibbonControl)

‘Purpose : Manage the button events

Select Case Control.ID

Case Is = “rxHost_Btn1”

MsgBox “I was called from “ & ThisWorkbook.Name

Case Else

‘Placeholder for other macros

End Select

End Sub

As you can see, this procedure is actually quite simple, feeding back the name of the
workbook (or add-in) that called it. Once you have the code entered and compiled,
save the add-in by pressing the Save button in the VBE.

NOTE This procedure references the ThisWorkbook object, which means that
pressing the button will always refer to the add-in, not the active file. This is
by design, as we want to know which workbook the button code is being
called from.

Close the VBE and have a look at the UI Test tab, shown in Figure 16-9.

Figure 16-9: A button on a shared tab

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 481

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 481

Upon clicking the button, you will see that the routine has been called from the add-in.
The next step in this example is to create a new file that will attach its own custom

group to the UIHost’s shared tab. In addition, it covers both shared buttons and regu-
lar buttons, exposing some unexpected idiosyncrasies of shared controls.

To get started on this portion, create a blank workbook and save it as a macro-
enabled xlsm file. We’ve called the file Leech.xlsm and refer to it as the Leech file,
but you may call it anything you’d like. Close the Leech file in Excel, open it in the Cus-
tomUI Editor, and make sure that it contains the following XML code:

<customUI

xmlns="http://schemas.microsoft.com/office/2006/01/customui"

xmlns:nsLeech="My Shared Ribbon">

<ribbon startFromScratch="false">

<tabs>

<!-- Shared tab in UI Host file -->

<tab idQ="nsLeech:rxTabUI">

<!-- Shared group in UI Host file -->

<group idQ="nsLeech:rxGrpLeech"

label="Leech"

insertBeforeQ="nsLeech:rxGrpUI">

<!-- Controls built using a shared namespace

in current file -->

<labelControl idQ="nsLeech:rxLbl01"

label="Defined Namespace"/>

<button idQ="nsLeech:rxButton01"

label="Button 1"

onAction="rxSharedCallControl_Click"

imageMso="HappyFace"/>

<button idQ="nsLeech:rxButton02"

label="Button 2"

onAction="rxSharedCallControl_Click"

imageMso="HappyFace"/>

<!-- Controls build without using shared namespace

(also in current file) -->

<separator id="rxSeparator01"/>

<labelControl id="rxLbl_02"

label="No Namespace"/>

<button id="rxButton03"

label="Button 3"

onAction="rxSharedCallControl_Click"

imageMso="HappyFace"/>

<button id="rxButton04"

label="Button 4"

onAction="rxSharedCallControl_Click"

imageMso="HappyFace"/>

</group>

482 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 482

</tab>

</tabs>

</ribbon>

</customUI>

You should immediately notice that we have defined our shared namespace as we
did in the UIHost.xlam file. While we changed the name of the namespace from nsHost
to nsLeech, the textual identifier remains “My Shared Ribbon.”

You could have used anything for the local name, including nsHost, providing the
name was used consistently throughout the file’s XML code. The reason that we
changed the namespace portion, however, is to make it clear that we are in the Leech
file. This also helps to demonstrate that this portion may be different between the files.
The local name is just that, local, and is used as an alias for the actual custom
namespace.

Conversely, the custom namespace, “My Shared Ribbon”, on the other hand, must
remain as specified in the UIHost.xlam file. This is the vehicle that allows us to link the
files together.

As you scan down the code, note that we open the shared tab, referencing its idQ
identifier, and then create a new group within it. In addition, we have positioned our
new group immediately before the default by specifying the insertBeforeQ attribute.

TI P The insertBeforeQ attribute enables you to position shared elements in
relation to each other, just as the insertBeforeMso attribute enables you to
position elements in relation to Microsoft’s built-in elements.

The next block of XML populates the new group with some custom controls that
were created using an idQ attribute. The intention here is to have controls in a standard
Excel workbook that remains available when opening a different workbook, much like
the functionality provided by an add-in.

Finally, we added another block of XML to create more custom controls, but this
time using the id attribute, rather than the idQ attribute. As you would expect, these
controls are document specific, and are hidden when the workbook is deactivated.

One final point to note about the buttons is that they all use the same shared call-
back. This is simply a matter of convenience for this example; it is not a necessary
restriction of shared controls.

Once you finish typing and validating the code, generate and copy the callback sig-
nature before closing the CustomUI Editor. Reopen the Leech file in Excel, open the
VBE, and paste the callback signature into a new standard module. You should then
modify it to read as follows:

Sub rxSharedCallControl_Click(control As IRibbonControl)

‘Purpose : React to the button click and inform the user where

‘ it was called from

MsgBox “You clicked “ & control.ID & “ from “ & ThisWorkbook.Name

End Sub

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 483

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 483

As you saw with the UIHost file, this is a very simple procedure that simply lists the
workbook that reacted to the button click. Now close the VBE, save the file, and have a
look at your customization, shown in Figure 16-10.

Figure 16-10: The Leech group and controls, added to a shared tab

The Leech group has been added to the UI Test tab, and all of the controls that we
created, whether declared with idQ or id attributes, have been created.

Next, create a new workbook. The UI will update to appear as shown in Figure 16-11.

Figure 16-11: The Leech group when a different file is activated

The controls that were declared with the id attribute disappear, leaving only the
controls that were declared with the idQ attribute. This is consistent with the behavior
of controls that we are used to creating with the id attribute: They are hidden when
their parent file goes out of focus. So far, so good . . . but now click Button 1.

Strangely, nothing happens. There is no message box, no error, simply nothing. You
may be asking yourself whether you elected to enable macros at this point.

Toss away the workbook you just created and return to the Leech file. The UI will
resume the view shown in Figure 16-10, with Buttons 3 and 4 showing. Try clicking one
of them; you will receive a message similar to what is shown in Figure 16-12.

Figure 16-12: Output from
Button 3’s macro

Since this is working in the Leech file, macros must be enabled. Try clicking Button 1
(or Button 2) again; still nothing! So what is going on here?

484 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 484

A control declared using an idQ attribute, be it a button, checkBox, or whatever, will
not trigger any callbacks. The reason behind this is related to the differences between
inhabited and uninhabited namespaces, a topic that is beyond the scope of this book.
Suffice it to say that there is no way in Microsoft Office to create an inhabited name-
space to allow triggering callbacks for controls created with the idQ attribute.

Sadly, the lack of callback availability with idQ declared controls limits the use of the
attribute to sharing tabs and groups when building solutions purely within Microsoft
Office. While there is more flexibility when designing managed COM add-ins using C#
or VB.NET with VSTO, it is questionable whether the added complexity actually
affords us any worthwhile benefits.

NOTE To share a button, checkBox, or similar control across multiple
workbooks or documents, the controls must be deployed using an Excel add-in
or using Word’s global or add-in templates.

TI P Remember that while it is very tempting to create a shared container in
your PERSONAL.XLSB workbook, which would allow you to attach customizations
to it on-the-fly, PERSONAL.XLSB remains invisible to the end user.

Sharing Tabs and Groups in Word
As with the Excel example in the last section, this example creates a UIHost file with
shared tabs and groups, as well as a Leech file, which adds to it. It also includes the
nonfunctional shared buttons to demonstrate the difference between how Word and
Excel deal with them.

We also show you how to load a Word add-in template on-the-fly. This is similar func-
tionality to the default behavior of Excel’s Add-in manager, which provides the capabil-
ity to set a file so that it can be loaded at startup when desired. Naturally, this also
employs some callback signatures to record the necessary setting. Again, the example is
broken down into two logical parts: the UIHost.dotm file and the Leech.dotm file.

NOTE These files are also included in the sample downloads for this chapter.

To begin, either open the downloaded example or create a macro-enabled template
(dotm) file called UIHost.dotm. Open it in the CustomUI Editor and make sure that it
contains the following XML:

<customUI

xmlns="http://schemas.microsoft.com/office/2006/01/customui"

xmlns:nsHost="My Shared Ribbon"

onLoad="rxIRibbonUI_onLoad">

<ribbon startFromScratch="false">

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 485

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 485

<tabs>

<tab idQ="nsHost:rxTabUI"

label="UI Test"

insertBeforeMso="TabHome">

<group idQ="nsHost:rxGrpUI"

label="UI Host">

<button id="rxBtnLoadLeech"

getLabel="rxBtnLoadLeech_getLabel"

onAction="rxBtnLoadLeech_click"

imageMso="HappyFace"/>

<checkBox id="rxChkLeechStartup"

label="Load Leech at Startup?"

getPressed="rxChkLeechStartup_getPressed"

onAction="rxCheckLeechStatup_click"/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

Looking at this code, you can again see that we created a custom namespace and
declared an onAction attribute. The attribute loads the callback signature to capture the
Ribbon object required to invalidate the Ribbon, as discussed in Chapter 5. Next, we
created the shared Tab and Group elements, which are declared using an idQ attribute,
just as we did in the Excel example.

Within this group, however, things start to look a little different. We have a button to
load our Leech file, as well as a checkBox to give users the option to load the file auto-
matically at startup. Notice again that the clickable controls are declared with the id
attribute, and not the idQ attribute. The reason for this is quite simple: We want to actu-
ally trigger a callback when we click them!

Now, validate the code and copy the callback signatures before closing the file in the
CustomUI Editor. Open the file in Word, create a new standard module, and paste in
all the callbacks. Before we get into creating the individual procedures, add the fol-
lowing three lines at the top of the module, immediately under any Option lines (such
as Option Explicit):

Private rxIRibbonUI As IRibbonUI

Private bPressed As Boolean

Private sLabel As String

While the first variable, intended to capture the Ribbon object, is most likely quite
familiar to you, the last two are specific to this application. The bPressed variable will
hold the state of the checkBox, and the sLabel variable will hold the label that will be
provided to the button. Let’s look at each of the procedures in the order in which they
will be called.

If an onLoad procedure has been declared, it will be the first procedure to fire in any
Ribbon customization. This procedure is identical to the ones used throughout this
book, and looks as follows:

Private Sub rxIRibbonUI_onLoad(ribbon As IRibbonUI)

486 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 486

‘Callback for onLoad to capture RibbonUI

Set rxIRibbonUI = ribbon

End Sub

The next two procedures that are called are the procedures to get the dynamic attrib-
utes for the Ribbon items: our button and checkBox. These procedures are also quite
simple, asking only for the values to be returned from the variables that we establish
for them:

‘Callback for rxBtnLoadLeech getLabel

Private Sub rxBtnLoadLeech_getLabel(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = sLabel

End Sub

‘Callback for rxChkLeechStartup getPressed

Sub rxChkLeechStartup_getPressed(control As IRibbonControl, _

ByRef returnedVal)

returnedVal = bPressed

End Sub

You may be wondering why we set these to a variable, when the variables are empty
at this stage. The callbacks will be triggered, but the button label will be blank, and the
checkBox value will always be false. There is a good reason for this.

These callbacks will be used each time the button or checkBox is clicked. It is best to
keep them clean, and take care of setting the default values when the “startup” routine
actually runs. Remember that we’ve already captured the RibbonUI object to a variable,
so we can invalidate the Ribbon to force a rebuild. In fact, this is exactly what we will do.

After all the dynamic properties have been set by callbacks, the next routines that
will fire are the “startup” routines: Document_Open for documents, and AutoExec for
global templates and add-ins. Because we will be converting this file to a global tem-
plate, we will use the following AutoExec routine, placing it in the standard module
with the RibbonX code. This routine contains the bulk of the settings:

Sub AutoExec()

‘Retrieve the stored “Load at startup" behaviour

bPressed = GetSetting(“RibbonX Book", “Host/Leach Example", _

“LoadAtStartup",

Select Case bPressed

Case True

‘Load the addin and store the button label

Application.AddIns.Add Left(AddIns(“UIHost”).Path, _

Len(AddIns(“UIHost”).Path) - 12) & “AddIns\Leech.dotm”

sLabel = “Unload Leech”

Case False

‘Store the button label

sLabel = “Load Leech”

End Select

‘Invalidate the Ribbon, updating the label and checkbox values

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 487

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 487

rxIRibbonUI.Invalidate

End Sub

In reviewing the code, you will see that the very first thing it does is record the
appropriate state of the checkBox, which has been (or will be) stored in the Registry. It
then evaluates this setting and takes the appropriate action. If the setting is True, then
it loads the Leech.dotm file (which we will create) from the default Add-ins directory,
and sets the sLabel variable to read “Unload Leech”. If the setting is False (or missing),
then it simply stores the text string “Load Leech” in the sLabel variable.

C ROSS-RE FE RE NC E A full discussion of using the Registry to store data
can be found in Chapter 12.

The final step is to invalidate the Ribbon. This forces the rxBtnLoadLeech_getLabel
and rxChkLeechStartup_getPressed routines to be executed a second time, returning
the values to the Ribbon controls we just set.

NOTE The line that actually loads the add-in template is set to load the file
from the default AddIns directory listed in Table 16-2. This is accomplished by
evaluating the full path to the UIHost.dotm document in the Word\STARTUP
directory, stripping the last 12 characters and appending “AddIns.” If you
examine this, you will see that this converts the following file path
C:\Users\username\AppData\Roaming\Microsoft\Word\STARTUP

to
C:\Users\username\AppData\Roaming\Microsoft\AddIns

In addition, because the Office subfolders follow the same format in Windows
Vista and Windows XP, this code for determining the folder is operating-system
agnostic!

Next, we need to create the routines that will actually fire when the controls are
clicked. We start with the callback triggered when the checkBox is clicked to request
that the Leech file opens at startup. That is accomplished with the following routine:

‘Callback for rxChkLeechStartup onAction

Private Sub rxCheckLeechStatup_click(control As IRibbonControl, _

pressed As Boolean)

bPressed = pressed

SaveSetting “RibbonX Book", “Host/Leach Example", _

“LoadAtStartup", pressed

End Sub

This procedure sets the bPressed variable equal to the current state of the checkBox,
and then it saves the state in the Registry.

488 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 488

Finally, we need to examine the callback for the button used to load the Leech tem-
plate. The code for this is shown here:

‘Callback for rxBtnLoadLeech onAction

Private Sub rxBtnLoadLeech_click(control As IRibbonControl)

Select Case sLabel

Case Is = “Load Leech”

Application.AddIns.Add Left(AddIns(“UIHost”).Path, _

Len(AddIns(“UIHost”).Path) - 12) & “AddIns\Leech.dotm”

sLabel = “Unload Leech”

Case Is = “Unload Leech”

Application.AddIns(Left(AddIns(“UIHost”).Path, _

Len(AddIns(“UIHost”).Path) - 12) & _

“AddIns\Leech.dotm”).Delete

sLabel = “Load Leech”

End Select

‘Invalidate the button, forcing the label to be updated

rxIRibbonUI.InvalidateControl (“rxBtnLoadLeech”)

End Sub

This callback has been structured to take the action listed on the button. The label is
evaluated to determine whether the file should be loaded or unloaded, and then the
appropriate steps are taken, including changing the value of the sLabel variable. Once
this is accomplished, the button is invalidated, which triggers an update of the label.

NOTE The method to remove an add-in from Word is to “delete” it. This
action actually only closes the file, which removes it from memory. It does not
delete the source file itself.

It’s again time to compile the code and save the file. Then, close Word and place a
copy of the template in Word’s STARTUP folder. Restart Word, and you will now see the
button and checkBox showing on the UI Test tab, as displayed in Figure 16-13.

Figure 16-13: The front end loader for the Leech file

While the checkBox code is fully functional at this point, the Leech button obviously
won’t work because we have not created the file.

The Leech.dotm file is identical to the Leech.xlsm file created for the previous
example, except that this file is saved in a macro-enabled template (dotm) format,

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 489

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 489

rather than as a standard document. To convert the file from Excel to Word, you could
do the following:

■■ Create a new word document and save it as a macro-enabled template (dotm) file.

■■ Copy the XML code from the Excel file and paste it in the Word file via the Cus-
tomUI Editor.

■■ Copy the VBA code from the Excel file and paste it in a new standard module
in the Word file’s VBA project.

Alternately, you could make it really easy on yourself and just download
Leech.dotm from the example files for this chapter.

The secret to making this example work is to copy the Leech file into Office’s
Add-ins directory, which is where we saved the Excel add-ins. Once you have done
this, press the Load Leech button. You will see the controls coded into the Leech file’s
XML, as shown in Figure 16-14.

Figure 16-14: The Leech file’s customizations added to the Host file

Again, clicking Button 1 or Button 2 will yield nothing, but clicking Button 3 or
Button 4 will indicate that they were called from the Leech file.

NOTE No matter what document you open, Button 3 and Button 4 still show
up. This is because the Leech file was opened as an add-in template, which
means that any buttons declared with an id attribute will show at all times.

Now, experiment with unloading the Leech file. Upon doing so, your UI will revert
to what is shown in Figure 16-13, as you would expect. Next, click the checkBox and
restart Word. After the reboot, you should be greeted with the Leech customizations
already loaded, as shown in Figure 16-15. At this point, we have confirmed that our
load at startup code performs properly.

Figure 16-15: The Leech file loaded from startup

490 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 490

One other point worth mentioning is the difference in the way that Word and Excel
treat document-level idQ customizations. Whereas navigating to another workbook in
Excel left the idQ associated buttons showing and hid the buttons defined with an id
attribute, this is not always true with Word.

If you were to save the Leech.dotm file as a macro-enabled document (docm) instead,
and then open it while the host was open, you would still see the view shown in Fig-
ure 16-14, as you’d expect. (A .docm version of the Leech file is also included in the
Chapter 6 downloads.) However, navigating to another document does not hide only
the buttons created with the id attribute — it hides all of the controls, including the
group in the Leech file. The results are illustrated in Figure 16-13, even though you
would expect it to look like the Excel version shown in Figure 16-11.

There is no functional impact, because you cannot use the idQ attribute to declare
buttons or other clickable controls. However, it illustrates how applications will some-
times deal with items in different ways, even in situations where you would expect
them to be consistent.

Deploying Word and Excel Solutions Where
Multiple Versions of Office are in Use

Unless you are working in a controlled environment where everyone has Office 2007,
it would be helpful to know how to deploy an add-in file in environments that also still
use legacy Office versions. Given that Office 97 is still used by many companies, this
transition could take much longer than Microsoft originally anticipated.

This section does not go into the details of how to create the old CommandBar UI
customizations as it is targeted at users who already know how, and who are now
looking for tips on how to deploy solutions that will work seamlessly between the dif-
ferent Office platforms.

Do Legacy CommandBar Customizations Still Work?
One of the biggest questions facing an Office developer who considers installing Office
2007 is “Will my customizations still work, given that the Ribbon is totally different?”
The answer is yes, the customizations will work, but they are sort of stuffed away in a
corner.

Figure 16-16 shows what happens to an add-in, (or any other customization) that
uses the legacy CommandBar code to create the menu structure. (If you’re puzzling
over the occasional British spelling, you can appreciate that we have a multilingual
team of authors. So, in addition to English, you may see French, Portuguese, and
maybe even German.)

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 491

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 491

Figure 16-16: The legacy XLG Favourites add-in (from Excelguru.ca) in Excel 2007

Customizations created using the legacy CommandBar object model, whether
deployed in an add-in, workbook, or template, are placed in the Add-Ins tab. This is an
automatic conversion so it does not require any effort or coding on your part.

Unfortunately, with the exception of adding the entire Add-Ins tab to the QAT, there
is nothing that we can do about the placement of the Add-Ins tab. Ergo, we have
another incentive to migrate the files into the 2007 formats and write the XML to create
a custom RibbonUI interface.

NOTE The Add-Ins tab only appears if it is required due to automatic
conversions from legacy files or because it is used in a customization.

CAUTION Although the CommandBar modifications appear to be converted
seamlessly, this does not guarantee that the associated code will still run. VBA’s
FileSearch method was removed in Office 2007, for example, as was Excel’s
support for opening old Lotus wks files.

There are several ways to approach deploying in mixed environments. Basically,
you can segregate, which we cover next, or you can integrate. The examples in method
2, which follows, will walk you through the process of incorporating legacy cus-
tomizations into Excel and Word 2007.

Method 1: Creating Separate Versions
The first method of deploying solutions in an environment with multiple versions of
Office is the most obvious: create a version of the application in each file format. This
is by far the most straightforward method, because it leaves the earlier customizations
in their native file format and enables you to take full advantage of the new features for
the 2007 files.

Creating your applications in separate file formats allows for a clear separation and
focus between application versions without making compromises for other versions.
This can be beneficial in that applications can be as efficient as possible in each version.
Deployment can also be easier, as you simply match the version of the application to
the user’s needs.

492 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 492

The biggest drawback to this method is that it involves creating and maintaining
multiple versions of the file. This is seldom desirable, as it means that every code
adjustment needs to be repeated in each file format. You also run the risk of sending
users the wrong file format, which may or may not work on their system.

In addition, if you are running multiple versions of Office, and you place each ver-
sion of your file in a STARTUP directory, Office 2007 may end up loading both versions
of the file. In addition to instantiating both user interfaces, this consumes more mem-
ory than just running one version.

Method 2: Calling a Previous Version from a New Add-in
The other method for working in an environment with multiple versions of Office is to
create a legacy add-in or global template to contain the RibbonX interface for 2007 files.
Using the Application.Run VBA method in the 2007 file, you can then call procedures
stored in the legacy file. This way, the legacy file actually holds all of the functional
code, and the 2007 file simply acts as a launcher.

To demonstrate this technique, we will modify a 2003 add-in file with a Command-
Bar modification to act as the back end for a 2007 add-in. This example originally cre-
ated a “Forums” menu on the 2003 help menu, as shown in Figure 16-17, with two Web
forums listed therein: Patrick Schmid’s RibbonX Forum and VBA Express.

Figure 16-17: The 2003 add-in to be used as a front-end loader

While this example applies to both Excel and Word, there are differences in the way
Excel add-ins and Word’s global templates are loaded. The example will therefore be
explored in both applications, allowing you to learn both and compare the two.

The example files are provided in the chapter downloads, and are listed along with
their purpose in Table 16-5.

Table 16-5: Example Files for Front-End Loader Demonstrations

EXAMPLE FILENAME PURPOSE

ForumLauncher_v2003_Original.xla Starting point for following Excel example

ForumLauncher_v2003.xla Completed Excel 2003 loader file

Continued

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 493

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 493

Table 16-5 (continued)

EXAMPLE FILENAME PURPOSE

ForumLauncher_v2007.xlam Completed Excel 2007 custom UI file

ForumLauncher_v2003_Original.dot Starting point for following Word example

ForumLauncher_v2003.dot Completed Word 2003 loader file

ForumLauncher_v2007.dotm Completed Word 2007 custom UI file

Using a 2003 Excel Add-in as a Front-End Loader for a 2007 Add-in

The process of migrating a 2003 file to both handle the 2003 environment as well as act
as a back end for a 2007 file is best done in three steps:

1. Create the base 2007 Ribbon customization add-in.

2. Make the required modifications to the 2003 add-in.

3. Link the 2007 file to ensure that the 2003 file is opened first.

This order of events is important so that things won’t fall apart as you go along. The
final point is a matter of housekeeping, to ensure that a user can never load the 2007
version of the file without the 2003 version, as the 2003 version holds all of the macro
code required for the 2007 version to run.

We start by building the basic 2007 portion of the add-in, which will act as the new
face of the add-in in Excel 2007. Create a new file in Excel and save it with the name
ForumLauncher_v2007.xlam in the default AddIns folder. When you are done, close
Excel and open the file in the CustomUI Editor.

At this point, you need to create your Ribbon customizations, which you do using
the following XML code:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

<ribbon startFromScratch="false">

<tabs>

<tab idMso=”TabDeveloper”>

<group id=”rxgrpForums”

label=”Forums”>

<button id=”rxbtnRibbonX”

label=”Patrick Schmid’s RibbonX Forum”

onAction=”rxsharedLinks_click”

imageMso=”HyperlinkInsert”

tag=”RibbonX”/>

<button id=”rxbtnVBAX”

label=”VBA Express”

onAction=”rxsharedLinks_click”

imageMso=”HyperlinkInsert”

tag=”VBAX”/>

494 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 494

</group>

</tab>

</tabs>

</ribbon>

</customUI>

This code should seem relatively straightforward by now. It simply adds two but-
tons to a custom group at the end of the Developer tab. Notice that the buttons use a
shared callback, rxsharedLinks_click, which will use the tag attribute, as you’ll see
shortly.

As usual, the code should be validated and saved, and the callback signatures
copied before the file is closed in the CustomUI Editor.

Open Excel and install the add-in if your customizations are not showing (Office
Button ➪ Excel Options ➪ Go and check the box beside ForumLauncher_v2007.xlam).
Next, go into the VBE, navigate to the ForumLauncher project, insert a new module,
and paste the callback signature. Modify the callback to read as follows:

‘Callback for rxbtnRibbonX onAction

Sub rxsharedLinks_click(control As IRibbonControl)

Application.Run “LaunchFrom2007”, control.Tag

End Sub

This short procedure uses the Application.Run method to launch a macro from
another open file. It specifies the name of the macro to launch, LaunchFrom2007, which
we will build shortly, as well as a parameter: the tag for the control.

With that modification, you have completed the first phase of the migration. Save
the VBProject and uninstall the add-in.

The next major step is to make the required modifications to the 2003 add-in. Rather
than retype all the code, download the sample files from the book’s website. Rename
the ForumLauncher_v2003_Original.xla to ForumLauncher_v2003.xla, and save it in
the AddIns directory as well. Open Excel and install the new add-in. At this point, you
now have a new menu on your Add-ins tab (see Figure 16-18).

Figure 16-18: The 2003 add-in showing on the Add-ins tab

This is great, but since you’ve already built a Ribbon for your project, you really
don’t need this. Therefore, your first job is to modify the startup code to ensure that the
menu is not created on the Add-Ins tab. But how do you do this? After all, you didn’t
write XML code for this in 2003, but Excel 2007 forces it on us.

As it turns out, you can avoid the Add-Ins manifestation simply by not creating the
menu based on the CommandBar object model. Of course, you do still want the menus

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 495

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 495

when you open 2003, so you need a way of ensuring that it only creates the menus if
Excel 2003 or earlier is loaded. Fortunately, you can do this by testing the application
version. You can also use this test to set up the event to load the 2007 file if it is
required.

Use the following steps to test for versions and load the correct menus. First, open
the VBE and browse to the ForumLauncher_v2003.xla project. Expand the ThisWork-

book class module and modify the Workbook_Open procedure to read as follows:

Private Sub Workbook_Open()

Dim wbAddin As AddIn

Dim bInstalled As Boolean

Dim s2007FileName As String

s2007FileName = _

Application.WorksheetFunction.Substitute(ThisWorkbook.Name, _

“2003", “2007") & “m"

If Val(Application.Version) < 12 Then

Call CreateMenu

Else

‘Check if addin installed

For Each wbAddin In Application.AddIns

If wbAddin.Name = s2007FileName Then

‘Addin is installed, so open it

Workbooks.Open ThisWorkbook.Path & _

Application.PathSeparator & s2007FileName

bInstalled = True

Exit For

End If

Next wbAddin

‘Install addin if required

If Not bInstalled Then Application.AddIns.Add _

ThisWorkbook.Path & Application.PathSeparator & s2007FileName

End If

End Sub

The Workbook_Open event will now do the following:
■■ It captures the name of the 2007 add-in to a variable by substituting 2007 for

2003 in the 2003 Add-ins filename and then appending an “m” to the resulting
string. (The Add-in format in Excel 2007 is an xlam file, not an xla file, as in the
past.)

■■ The application’s version is checked. If it is less than 12 (Office 2007 is version
12), it creates the menu.

■■ If the version is not less than 12, it checks whether the 2007 add-in is already
installed.

■■ If the 2007 version of the add-in is installed, it loads the file and records that the
2007 version is installed.

■■ The bInstalled property is evaluated. If it is false, then the add-in is installed.

496 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 496

TI P When evaluating an application version, it is a good idea to nest it within
the Val() function. Using this function to evaluate the version strips any text
characters from the value and ensures that it’s actually a number. In the past,
some versions were alpha-numeric, such as 9.1b, which caused numerical
comparisons to fail. Using the Val() function deals with this issue.

Because we have installed and opened the 2007 file when the 2003 file is launched,
it also makes sense to explicitly unload the 2007 file when we are finished. To accom-
plish this, we need to modify the Workbook_BeforeClose procedure to check the ver-
sion and unload the 2007 add-in when appropriate:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

If Val(Application.Version) < 12 Then

Call DeleteMenu

Else

Workbooks(Application.WorksheetFunction.Substitute(_

ThisWorkbook.Name, “2003", “2007") & “m").Close

End If

End Sub

Again, the version of the application is tested. If the file version is less than 12, then
the standard process will have loaded the 2003 menu modifications; therefore, the
DeleteMenu routine needs to be fired. Given that this scenario only occurs when load-
ing the 2003 version of the file, we can assume that the 2007 version was never loaded,
so we don’t need to explicitly close it.

As you can imagine, different code is needed if the application is version 12 or
higher, as we can then assume that the 2007 version of the add-in will be loaded as
well. Note that the 2007 add-in file includes code to ensure that the 2003 workbook file
is already loaded. Therefore, given that both the 2003 and the 2007 add-in files will be
loaded, we need to include code to close the 2007 add-in file.

The last thing that we need to do to our 2003 add-in is give it an entry point so that
the 2007 version can call its procedures. Start by opening the standard module. Note
that this module holds a fair volume of code, part of which is required to create and
delete the menu structure as required. In addition, it also has the following two rou-
tines, which are fired when the menu buttons are clicked in Excel 2003 or earlier:

Private Sub Launch_VBAX()

‘Launch the VBAX website

ActiveWorkbook.FollowHyperlink (sVBAXURL)

End Sub

Private Sub Launch_RibbonX()

‘Launch the RibbonX forum

ActiveWorkbook.FollowHyperlink (sRibbonXURL)

End Sub

Although we could easily declare these as Public and evaluate the id of the clicked
control to call the appropriate routine, this would also allow our users to run the

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 497

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 497

macros by pressing Alt+F8. You may have a good reason to not allow this to happen,
so to avoid the issue we are using a private routine and will create a central entry point.

One issue with running a macro from the standard interface is that the macro cannot
be passed a parameter. You can use this to your benefit, as it is the perfect way to stop
users from running your macros by hand, and it also happens to be the easiest way to
deal with this scenario.

Now we’re ready to create the central entry point. Add the following code to the end
of the standard module, after all of the existing procedures:

Public Sub LaunchFrom2007(sSiteToLaunch)

‘Act as a loader from the 2007 add-in

Select Case UCase(sSiteToLaunch)

Case Is = “VBAX”

Call Launch_VBAX

Case Is = “RIBBONX”

Call Launch_RibbonX

End Select

End Sub

If you recall, we set up a callback routine in the 2007 version, using the Application
.Run method to call the LaunchFrom2007 macro. The callback was constructed to pass
the tag attribute of the control that was clicked. If you go back and review the XML
code used for the 2007 UI, you’ll see that the Select Case structure (above) is looking
for these tag values. The case statement evaluates which control was clicked and
launches the appropriate macro from the 2003 file!

TI P Note that the case statement is looking for uppercase versions of the text
we supplied for the tag properties. This is a technique to avoid case-sensitivity
issues. You convert the string to uppercase by using the UCase() function in the
Select Case statement, and then make sure that all of the variants you check
against are also listed in uppercase. Even if a lowercase tag is provided, this
routine will convert it to uppercase and attempt to find a match.

Now save the 2003 xla add-in and uninstall it, as we have finished with the conver-
sions that we need to make. Our final step in this process is to go back to the 2007 add-
in and force the user to have the 2003 version open first.

Install the 2007 version of the add-in again. Here, in a nutshell, is the problem: We
now have the 2007 file open but the 2003 file, which holds all of our required code, is
not loaded. Since we are relying on a human hand to select the correct add-in, it is
likely a mistake could be made here. It is probably a fair guess that if an uninformed
user were in the 2007 interface and was given the option between a 2003 file and a 2007
file, they would choose the latter.

We can fix this problem by modifying the Workbook_Open event of the 2007 add-in,
including a check to test whether the 2003 file is open. If not, we’ll notify the user and
shut down the 2007 version of the add-in.

498 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 498

Open the VBE and browse the projects until you are at the ThisWorkbook module for
the ForumLauncher_v2007.xla project. Once there, insert the following code:

Private Const sReqdAddin = “Forum_Launcher_v2003.xla”

Private Sub Workbook_Open()

Dim wbTest As Workbook

On Error Resume Next

Set wbTest = Workbooks(sReqdAddin)

If Err.Number = 0 Then

‘Addin open

On Error GoTo 0

Exit Sub

End If

‘Addin must not be open

On Error GoTo 0

MsgBox “You must load “ & sReqdAddin & “ to use “ & _

ThisWorkbook.Name

ThisWorkbook.Close savechanges:=False

End Sub

Because all add-ins are shown in the Workbooks collection, the code begins by check-
ing each open workbook to see whether it is the required add-in. If the name of the
workbook being checked matches what is stored in the private constant, then the 2003
file must be loaded, and the routine is exited. However, if there is not a match, then the
user is advised of the issue and the 2007 add-in file is closed.

Voilà, the conversion is complete. You can now save the file in the VBE and uninstall
the add-in again.

Now, let’s give it a test. Open the Add-ins Manager and install the 2003 version of
the add-in. You should now see the fully functional group on the right side of the
Developer tab, as shown in Figure 16-19.

Figure 16-19: A 2007 face on a 2003 add-in

NOTE If you haven’t done so already, you may want to check out both links
by clicking the buttons. They will open your Web browser and take you straight
to two free forums that offer help with Ribbon and VBA programming.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 499

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 499

Go back into the Add-ins Manager, uninstall the 2003 version, and install the 2007
version. Upon clicking OK, you will be returned to the user interface, which displays
the error message shown in Figure 16-20.

Figure 16-20: User notification to install the 2003 version in 2007

If you go into the VBE, you can confirm that neither the 2003 nor the 2007 add-in
files are loaded. At this point, the only way to load the 2007 xlam add-in is to load
2003’s xla file version first. Congratulations, you have indeed protected your users
from inadvertently selecting the wrong add-in.

TI P Don’t change the name of the 2003 add-in or you won’t be able to open
the 2007 add-in. If you wish to change the names of both add-ins, open the
2003 add-in in Excel 2007 first; this will load the 2007 add-in for you. At this
point, commenting out the Workbook_Open routine in the 2007 add-in will allow
you to save and reopen the file without the dependency on the 2003 version.

Using a Word 2007 Global Template as a
Front-End for a 2003 Template

This example adds the same functionality to Word that we just added for Excel. It gives
you the added benefit of noting the similarities and differences between the two pro-
grams. One key difference to remember is that whereas Excel allows add-ins to be
installed or uninstalled and will retain this setting between sessions, Word does not
have comparable functionality. That means you must create this functionality if it is
important to you.

The default options in Word are to either load a global template from the STARTUP
directory each time Word is loaded, or use an add-in template, which must be manu-
ally or programmatically opened each time the application is launched. Here, we will
assume that our custom Forum menu is so useful that it should be loaded every time
the application is opened.

While we could elect to go the route of loading the 2003 dot file as a global template
at startup, installing the 2007 dotm file on-the-fly as an add-in template (similar to the
previous Word example), that seems unnecessary in this case because anytime Word is
opened, both the 2003 .dot file and the 2007 .dotm file will be launched; and when Word
2003 is opened, it simply ignores the 2007 template file formats. Given this behavior,
there is no need to be concerned about memory issues, as the dotm file will only load in

500 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 500

Word 2007, and the 2003 dot file will be required in order for the 2007 dotm file to work
properly. The easiest method, therefore, is to leave both the 2003 dot and the 2007 dotm
files in the default Word STARTUP folder.

NOTE Microsoft offers a free “Compatibility Pack” which provides Office
2002(XP) and Office 2003 the ability to open files saved in the Office 2007
formats. While this enables users to use the main 2007 file formats, it does not
extend to templates or add-in file formats.

Because we can keep both files in the STARTUP folder, and they will always, and only,
be launched when needed, the modifications required to use a 2003 Word global tem-
plate as a front end for a 2007 Word global template are actually a fair bit easier than
the modification required for Excel add-ins. While you still need to handle the menus,
you can let the application deal with loading the files. The steps to make this deploy-
ment happen in Word are as follows:

1. Make the required modifications to the 2003 add-in.

2. Create the base 2007 Ribbon customization add-in.

If you recall, with Excel we also had to ensure that the Excel 2003 file was always
loaded first. Because Word templates seem to load in alphabetical order, you should
not have to worry about this issue, but you still need to implement a check to ensure
that the 2003 dot template does, in fact, exist in the STARTUP directory.

In addition, you may notice that we actually flipped the order of the steps from the
order used to convert an Excel add-in. With Excel, we created the 2007 add-in first, so
that it would be there when we made our modifications and loaded the 2003 version of
the file. This isn’t necessary with a Word template — both files are loaded automati-
cally, so you don’t need to add code to launch these files.

We start this example by adjusting the 2003 version of the global template contained
in the chapter’s download files under the name ForumLauncher_v2003_Original.dot.
Begin the process by renaming the file to ForumLauncher_v2003.dot.

CAUTION Make sure that you do not save these files in Word’s STARTUP
folder yet, as there is no way to edit the code after you do, as discussed in the
section “Editing Global Templates,” earlier in this chapter.

The next step is to open the file in Word and locate the standard module in the
ForumLauncher_v2003.dot Visual Basic project. Compared to the extensive editing
required for Excel, you’ll be surprised at just how easy this one is. Edit the AutoExec
macro to read as follows:

Public Sub AutoExec()

‘Create the menus if opened in Office 2003 or prior

If Val(Application.Version) < 12 Then

Call CreateMenu

End If

End Sub

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 501

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 501

Beyond this minor edit, which suppresses menu creation if the file is opened in
Excel 2007 or later, you only need to add the routine that the 2007 version will use as an
entry point to the procedures contained in the 2003 template. This routine takes the
exact form used in the Excel file:

Public Sub LaunchFrom2007(sSiteToLaunch)

‘Act as a loader from the 2007 add-in

Select Case UCase(sSiteToLaunch)

Case Is = “VBAX”

Call Launch_VBAX

Case Is = “RIBBONX”

Call Launch_RibbonX

End Select

End Sub

That’s it! You have now set up the 2003 global template for use with the 2007 global
template. You are ready to save and close this file.

Next, we need to create the 2007 face for our 2003 global template. Start by saving a
new file in the macro-enabled template (dotm) format.

The file then needs to have the XML code associated with it. As you might antici-
pate, the XML code is identical to the code for Excel, so you can grab it from the section
“Using a 2003 Excel Add-in as a Front-End Loader for a 2007 Add-in” earlier in this
chapter. Once you have the XML code associated with the file (follow the Excel steps in
the previous example if needed), return to Word. You should now see the Forums
group on the right-hand side of the Developer tab, as shown in Figure 16-21.

Figure 16-21: A Word 2007 skin for a 2003 global template

Next, open the VBE and ensure that the callback signature is written as shown in the
following code. You’ll recognize this as being identical to the Excel version:

‘Callback for rxbtnRibbonX onAction

Private Sub rxsharedLinks_click(control As IRibbonControl)

Application.Run “LaunchFrom2007”, control.Tag

End Sub

At this point, things begin to get a little more complicated. As mentioned at the
beginning of this section, you should test to see whether the 2003 template file exists,
as it holds all the code required for the 2007 global template to function. While we
expect the 2003 and 2007 versions of the template files to be shipped together, it seems
prudent to warn the user if the 2003 file is missing. The following code will test for the
files and generate appropriate message to warn users if something is amiss. This code

502 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 502

should be placed at the top of the module, just below any lines beginning with the
Option keyword (if any):

Private Const sReqdTemplate = “Forum_Launcher_v2003.dot”

Public Sub AutoExec()

Dim docTest As AddIn

On Error Resume Next

Set docTest = AddIns(sReqdTemplate)

If Err.Number = 0 Then

‘Template installed

On Error GoTo 0

Exit Sub

End If

‘Template must not be installed

On Error GoTo 0

MsgBox “You must load “ & sReqdTemplate & “ to use “ & _

ThisDocument.Name

Application.AddIns(ThisDocument.Name).Delete

End Sub

The code checks to ensure that the 2003 file is installed as an “Addin.” (All global
templates are part of Word’s Addins collection.) If it is, then the routine exits early and
all is well. However, if the 2003 template is not found, then the user is notified and the
2007 global template is disabled.

NOTE This routine is triggered each time Word is started. If a user were to
end up with only the Forum_Launcher_v2007.dotm file in their Word STARTUP
directory, they would be greeted with the preceding error message each time
they opened Word. The only ways to fix this are to remove the 2007 template
file or to place the 2003 dot file in the same directory.

Now that these changes have been made, we are ready to deploy the files as global tem-
plates. Save the current file, close Word, and copy both the Forum_Launcher_v2003.dot
and Forum_Launcher_v2007.dotm files into Word’s STARTUP directory. Upon reloading
Word, you will see that the Forum group again exists on the Developer tab, as shown in
Figure 16-21, and the file is now functional!

The last thing to check with this example is that it reacts as expected if the 2003 tem-
plate is not available. Therefore, close Word and locate the Forum_Launcher_v2003.dot
file. Either remove it from Word’s STARTUP directory or rename the file. Upon launch-
ing Word 2007 again, you should receive the error message shown in Figure 16-22.

As you can see, the process for converting a Word 2003 template to function as the
back end for a Word 2007 global template is much less work than converting the Excel
version.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 503

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 503

Figure 16-22: Error message regarding the
missing 2003 template

Access Deployment Techniques

Having completed our detailed coverage of deploying Excel and Word customizations,
we now shift our focus to Access. Deployment techniques for Access applications can
vary depending on the environment, primarily due to the version and the type of
installations of both Microsoft Access and Office. This section looks at deployment pro-
cedures geared toward two specific environments: those with the full version of Access
and those using the Access Runtime edition.

In previous chapters we focused strictly on customizing the Ribbon. If you went
through all the examples, then you’ve done everything from simply modifying built-
in controls to literally starting from scratch. Those exercises focused on creating the
customizations, so they didn’t delve into many of the issues associated with efficiently
deploying in multi-user environments or using Access Runtime installations.

Before we get into the details of specific scenarios, however, we need to cover sev-
eral fundamental issues that are common to most deployments.

General Information Concerning Database Deployment
A major consideration when deploying Access applications is preventing general users
from breaking into the design mode of the database and messing with your object
designs and supporting code. Ribbon customization is one of many steps that you can
take to protect your intellectual property and the application’s integrity. This is not the
place to discuss actual object or user-level security, but we will look at some common
practices to lock down the design mode of the database file.

Preparing the Files for Multi-User Environments

One of the most important things to remember is that a multi-user environment
demands special deployment and set-up techniques. It is not enough to just move an
ACCDB file to a shared drive or server directory and have multiple users work with
the single file, as this would eventually lead to performance issues and corruption
problems.

To organize large amounts of data effectively, and avoid running into problems with
the 2GB file size limit, you can split an Access database into two separate files. Indeed,

504 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 504

some might argue that splitting an Access database is critical to a successful multi-user
implementation.

NOTE An added bonus of implementing a split application is the ease of
deploying future updates. Separating the frontend objects from the data
components enables us to simply deploy new and updated front ends to users
by overwriting their existing ones and relinking to the backend data file.

Splitting the application will result in a frontend file housing Form, Query, and
Report objects as well as VBA code; and a backend file holding all the data tables. The
frontend file uses table links to communicate with one or more backend files, which
can be located on a shared drive. During deployment, each user will receive a copy of
the frontend file, and restore the links to the backend file(s). This is demonstrated in an
example a little later.

The built-in Database Splitter can establish the whole setup within seconds, and it
makes the splitting process a fairly simple affair. In Access 2007, the Database Splitter
can be found as an Access Back-End button under the Move Data group on the Data-
base Tools tab, as shown in Figure 16-23.

Figure 16-23: Use the built-in Database
Splitter to divide an application

Another method of splitting an application would be the manual process of dupli-
cating the Access file, deleting the tables from what will become the front-end file and
all but the tables from the other file, and then creating table links in the front-end file.
The External Data tab on the Ribbon provides tools for creating links to Access data-
bases and other file types.

When working with external data files, the Linked Table Manager can be a very help-
ful tool for organizing and changing table links. It can also be found on the Database
Tools tab. Open it by right-clicking on an existing linked table in the Navigation Pane.

NOTE Linked tables can be identified by the blue arrow in front of the
object name.

In addition to creating new links, the Linked Table Manager can be used to refresh
links to existing tables. This is necessary if the path to the data tables has changed. For
example, when you deploy a customization, you will likely need to incorporate a

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 505

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 505

process to refresh the links to the data files unless your development environment
reflects the directory configuration of the user environment.

Since it is a good practice to avoid exposing the user to this complete process, we
prefer to programmatically execute a procedure that will take care of relinking the
tables. This is especially important when deploying the application to remote locations
to which you do not have personal access. There are several ways to refresh table links
using VBA.

For example, when deploying a replacement frontend, you would want the links to
be refreshed at startup, so you could use a function to update links in the RunCode
action of an AutoExec macro or behind the OnLoad event of a startup form.

Rather than have you type all the code for this by hand, we have included a split
database in the chapter downloads. It illustrates not only using code to refresh the
table links, but also further automates the process by implementing a browse utility.
This extra touch allows the user to browse to the back-end location and dynamically
pass the path of the selected file to the function used to refresh the links, thus relieving
users of the need to type the folder paths.

To follow along, download the Frontend.accdb and Backend.accdb files from the
chapter downloads. Open Frontend.accdb and confirm that the tables are linked by
trying to launch one of the linked tables from the Navigation Pane. If the backend file
is not in the right location anymore (which it won’t be, as you have saved it somewhere
we couldn’t anticipate), Access should complain that it can’t find the file.

Close the error message and click the Refresh Table Links button on the
frmRefreshTableLinks form. Browse to the location where you stored the Backend.accdb
file and select it. Your tables will now be relinked, as you can see if you try to open one.

Now let’s add some security measures to the two component parts. Since every user
of the back-end data requires full read, write, and delete permissions for the directory
in which the file is housed on the server, it is common practice to prevent direct access
to the backend.

To encrypt a database application with a password, it needs to be open in exclusive
mode. Use the Open command of the main Office button drop-down menu. This will
bring up the default Open dialog. Browse to the Backend.accdb file and select it. Now,
instead of just pressing the Open button, use the little drop-down arrow next to it to
specifically open the application in exclusive mode, as shown in Figure 16-24.

Figure 16-24: Opening the
database in exclusive mode

Now that the database is open, go to Database Tools ➪ Encrypt with Password.
Make sure you remember the database password you specify, as it is needed to indi-
vidually open the back-end file by itself or to link to it.

506 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 506

NOTE The main result of the work done in regard to security in Access 2007
was the database password feature. Access 2007 combines the old encryption
feature of earlier versions with top-of-the-line encryption algorithms and the
database password feature to make it much harder to get to your data and/or
objects.

After setting the database password for the back-end file, you need to open the
front-end application and delete all established table link connections to the back-end;
as the file now has a password, the previous links will no longer work. You then re-cre-
ate the links using the Import Access Database button on the Import group of the
External Data tab, shown in Figure 16-25.

Figure 16-25: Relink Access front-end file to tables
in the back-end file

The Get External Data wizard enables you to create linked tables by selecting “Link
to the data source by creating a linked table.” Next, you are prompted for the password
for the backend file, and finally for the tables you wish to link. Behind the scenes, the
password is stored internally with the link, eliminating the need for any further user
interaction. To take this one step further, the encrypted data file can be used in con-
junction with an ACCDE front-end file, discussed earlier.

Managing Access Startup Options

The majority of startup property settings can be accessed through the Current Data-
base page of the Access Options dialog, which we explore in more detail shortly.
Another approach in utilizing startup procedures at application opening is the
AutoExec macro. Giving a macro the name “AutoExec” ensures that whatever actions
it houses will execute every time your database launches. For example, you could uti-
lize a RunCode action within the macro to call a public function that executes specific
startup code. We will point out possible uses of an AutoExec macro throughout this
section.

Leveraging the startFromScratch Attribute

Setting the startFromScratch attribute within your XML markup to True will com-
pletely hide the Ribbon and remove certain commands from the Office drop-down, as
well as the QAT, if you do not specify any further actions.

C ROSS-RE FE RE NC E The startFromScratch attribute is covered in Chapter
13, in the discussion of how to override and even repurpose built-in controls.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 507

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 507

Adjusting Access Options for Your Users

Additional limitations that you might want to set for your user’s environment can be
adjusted through the Current Database page of the Access Options dialog. Some of
these settings include, but are not limited to, the ability to hide the Navigation Pane
(Display Navigation Pane), hide the status bar (Display Status Bar), and disable Access
special keys (Use Access Special Keys).

NOTE Unless you have customized the Navigation Pane for user access, it is
rarely a good idea to leave it visible to users.

Although there is a manual setting to hide the Navigation Pane, many prefer to use
code and hide it at run-time. One approach to do this is to put the selected code into a
function and then call a RunCode action from the AutoExec macro. Just be aware that if
you do hide the Navigation Pane, you may want to give users a way to show it again.

The following example demonstrates using a toggleButton to hide or show the
Navigation Pane. As you’ll see, coupling this ability with the startFromScratch
attribute can quickly lock down the environment for your users. To follow along,
download the NavPane-Base.accdb file from the chapter examples, which already con-
tains the XML code for the toggleButton to show or hide the Navigation Pane. Open
the database (ignoring the error about the missing callback), launch the VBA editor
(Alt+F11), create a new code module through the Insert menu command, and paste in
the following two callbacks:

Sub rxtglNavPane_getPressed(control As IRibbonControl, _

ByRef returnedVal)

DoCmd.RunCommand acCmdWindowHide

End Sub

Sub rxtglNavPane_click(control As IRibbonControl, pressed As Boolean)

If pressed = True Then

‘show the Navigation Pane

DoCmd.SelectObject acTable, “USysRibbons”, True

Else

‘hide the Navigation Pane

DoCmd.SelectObject acTable, “USysRibbons”, True

DoCmd.RunCommand acCmdWindowHide

End If

End Sub

TI P Don’t forget to set the reference to the Microsoft Office 12.0 Object
Library, as discussed in Chapter 5, or your callbacks won’t compile or run. You
should also remember to follow the best practice of setting Option Explicit.

Once you have compiled the code and saved the module, test the results by restart-
ing the database. When it opens, you’ll notice that the user has limited methods to get
into design mode. Using the getPressed routine, which is called when the XML is eval-
uated, we hid the Navigation Pane. To display it again, just press the toggle button (see
Figure 16-26).

508 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 508

Figure 16-26: Limited user interface
with hidden Navigation Pane

This is great, but keep in mind that holding down the Shift key during application
startup will bypass all interface customizations. This means that the Ribbon cus-
tomizations will not be deployed, so it seems prudent to implement code to prevent
such actions. You can do that using the CreateProperty method, which is supported by
the DAO object library. Use the following function to set the AllowBypassKey property
to eliminate the Shift bypass feature:

CAUTION If this is relatively new to you or you are working with an actual
deployment file, then it is wise to create a backup before making changes that
might lock you out of the Navigation Pane, the code, or even the ability to get
into Design View. We highly encourage you to do this now!

TI P The DAO object library is set by default as the “Microsoft Office 2007
Access database engine Object Library” in the new ACCDB file format. Knowing
this, you can count on being able to reference DAO objects and having them
universally available with Access 2007 installations.

To add this functionality, open the module in which you stored the Navigation Pane
code and add the following VBA code:

Public Function SetAllowBypassKeyFalse(onOff As Boolean)

‘Setup Error Handler

On Error GoTo Err_SetAllowBypassKeyFalse

‘Dimension (Variable Declaration)

Dim db As DAO.Database, prp As DAO.Property

‘Set AllowBypassKey property if it exists

Set db = CurrentDb

db.Properties(“AllowBypassKey”) = onOff

Set db = Nothing

‘Exit Label

Exit_SetAllowBypassKeyFalse:

Exit Function

‘Error Handler

Err_SetAllowBypassKeyFalse:

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 509

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 509

‘Property not found error

‘Create property if it does not yet exist

If Err = 3270 Then

Set prp = db.CreateProperty(“AllowBypassKey”, dbBoolean, onOff)

db.Properties.Append prp

Resume Next

Else

‘some unspecified error occurred

MsgBox “SetAllowBypassKeyFalse”, Err.Number, Err.Description

Resume Exit_SetAllowBypassKeyFalse

End If

End Function

You merely need to run the code one time for the property change to take effect and
for it to be saved in the database. Activate the Immediate window by pressing Ctrl+G,
type the following inside, and press Enter:

SetAllowBypassKeyFalse(False)

Since you don’t want to lock yourself out of the application for future development,
implement a reverse call to the function — before closing the database. One way to
implement a hidden method of enabling and disabling the AllowBypassKey property
would be to utilize two small command buttons on a form. Just set their on_click
properties to call the function and pass in the appropriate Boolean value (True or
False). You can set their Transparent property to yes to conceal your implementation
from the user, as shown in Figure 16-27.

Figure 16-27: Transparent command button calling function

Creating an ACCDE File

Note that all of the preceding “security” precautions can typically be broken by expe-
rienced Access users. One very effective alternative method of quickly securing your
database file, locking down the forms, reports, and code, is to convert it from an
ACCDB format to the ACCDE format. Deploying an ACCDE file is a simple method-
ology that is popular with Access developers.

510 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 510

Before you actually trigger the process, it is advisable to manually compile your VBA
code first by selecting the Compile command from the VBE’s Debug menu, as this can
help prevent errors in the conversion process. After you have done that, the Make
ACCDE option button can be found on the Database Tools tab, as shown in Figure 16-28.

Figure 16-28: Make ACCDE command

CAUTION Always be sure to keep a backup of the original ACCDB file in a
secure location. The ACCDE file is locked down and not modifiable, so you need
the ACCDB file in order to make any changes.

TI P For practice purposes you can use any of the database files provided for
this book and just apply the “Make ACCDE” action. After successful compilation,
you can open the new ACCDE file and try to access your code or try to make
design changes to forms and reports. In addition, because developers tend to be
a bit skeptical, it’s a good time to review the host file folder and confirm that the
original file is still there (with the .accdb file extension).

Since we are discussing different file extension names, we can also quickly mention
the ACCDR extension. When preparing an application for deployment with the pack-
aging wizard that is part of the Access Developer Extensions (ADE) and specifying
specific options, the ACCDB file format is automatically renamed to an ACCDR. If you
are familiar with earlier Access versions, you might remember the /runtime com-
mand-line switch, which simulated the behavior of running your database in the
Access Runtime environment.

Renaming the database file with an ACCDR extension has a similar effect on the
application by enabling 2007 Runtime support. You do not need to utilize the packag-
ing wizard to achieve that outcome. You can just rename the extension of the file itself.
The result is a locked version of your application, which affects the user interface as
well. We provide a little more detail about this when discussing the deployment of
databases for a Runtime environment.

Loading the customUI from an External Source
In all the examples that we have shown so far, the XML code is stored within the appli-
cation, and therefore already included when the files are deployed to users. There is

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 511

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 511

another approach to deploying Ribbon customizations, however, which is to utilize the
built-in VBA LoadCustomUI method of the Access application object. This enables you
to store the actual XML markup code outside of the database application in a separate
file, which can be beneficial in several situations. Following are just some of the rea-
sons why you may wish to consider this approach:

■■ You need to deploy several application files with common navigation
customization.

■■ You are utilizing a large number of customizations. These might be hard to
operate within a Ribbon table field and would unnecessarily consume applica-
tion space.

■■ You want use a single database to hold the XML code for multiple UIs, allow-
ing several specialized databases to contact one local store for the correct UI.

Now that you have learned about possible implementation scenarios for the
LoadCustomUI method, we’ll look at the syntax, which is as follows:

LoadCustomUI(CustomUIName As String, CustomUIXML As String)

As you can see, the method is fairly straightforward and only takes two string para-
meters, which represent the name and XML of your customization. All you have to do
to call it is retrieve the XML from an external file and pass it along as a string.

Let’s walk through a sample implementation of this feature. If you want to see the
final result, you can download the completed LoadCustomUI.accdb with the accompa-
nying LoadCustomUI.XML file, or you can follow along and create the files on-the-fly.

Before starting Microsoft Access, create an external XML file to store the XML
markup that will be loaded into the database at run-time. Open any regular text editor
(such as Notepad) and paste the following XML into a new file:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”true”>

</ribbon>

</customUI>

Save the file as LoadCustomUI.XML. Now you are ready to start Access and create a
blank new database named LoadCustomUI.accdb. Save it in the same folder as your
LoadCustomUI.XML file.

To use the LoadCustomUI method, you need to append the XML saved in the external
file to a string variable. In order to retrieve the XML, you have the choice of using the
FileSystemObject’s OpenTextFile method or sequential file access. Our example uses
the FileSystemObject to demonstrate a small function that utilizes the LoadCustomUI
method. Although sequential file access could be used just as easily, we chose the
FileSystemObject to highlight its flexibility for use in other scenarios. Place the follow-
ing code into a new standard module within your LoadCustomUI.accdb file:

Public Function LoadUIFromFile()

Dim oFilesys, oTxtStream As Object

Dim txtCustomUIPath, txtXML As String

512 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 512

‘assume file exists in same directory as application

txtCustomUIPath = CurrentProject.Path & “\LoadCustomUI.XML”

Set oFilesys = CreateObject(“Scripting.FileSystemObject”)

‘check if file exists

If oFilesys.FileExists(txtCustomUIPath) = True Then

‘open file ForReading (constant = 1) and ReadAll

Set oTxtStream = oFilesys.OpenTextFile(txtCustomUIPath, 1)

txtXML = oTxtStream.ReadAll

oTxtStream.Close

Set oTxtStream = Nothing

‘load custom UI passing XML string

Application.LoadCustomUI “YourCustomRibbon”, txtXML

End If

Set oFilesys = Nothing

End Function

Because you stored the LoadCustomUI.XML file in the same directory as the data-
base application file, you can dynamically construct the full path to it utilizing the
CurrentProject.Path property. Then the code creates a FileSystemObject and
ensures that the file actually does exist in the path specified. If the file exists, the
function will continue and open a TextStream object, which allows you to retrieve all
content within the file and append it to a string variable. Once the variable holds the
complete contents of the LoadCustomUI.XML file, you can call the LoadCustomUI
method and pass it along as the second parameter. You can manually add the first
parameter to identify the custom markup that is being loaded.

NOTE Checking for the existence of the file is a good practice, as it helps to
prevent errors that would be caused by attempting to access an external file
that does not exist.

To call this function, set the onLoad property of a form to an event procedure that exe-
cutes the following on load event. Open the form in Layout or Design View and open
the property sheet. From the Event Tab, select On Load, select Event Procedure, and
click the ellipses to open the VBE to that procedure. Modify the code to read as follows:

Private Sub Form_Load()

Call LoadUIFromFile

Me.RibbonName = “YourCustomRibbon”

End Sub

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 513

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 513

When you launch this form, you will notice that the default Access Ribbon is gone.
This is the effect of only setting the aforementioned startFromScratch attribute within
your external XML markup. Closing the form will return the regular Ribbon setup. If
you specify this form to be the application’s startup form in Access Options ➪ Current
Database ➪ Display Form, you can ensure that your Ribbon customization will be
launched when your database opens.

Another approach to loading the Ribbon customization into the application would
be to use a RunCode macro action that calls the function within an AutoExec macro.
This also ensures that the XML markup will be loaded at application startup. You can
refer to it again at run-time when opening specific Form or Report objects.

Clearly, the LoadCustomUI method allows for great flexibility when working with
run-time customizations and application deployment. The XML markup can be loaded
from an internal table, straight from within code, or, as illustrated, from an external file.

Deploying Solutions to Users with
Full-Access Installations
There are several different approaches you can take when deploying your application
to users who have the full version of Microsoft Access installed. Ultimately, deciding
which deployment implementation to use is up to you. As the developer, you can meld
your preferences with the conditions of the target environment.

Deploying Customizations with Full Versions of Access

We can now look at the actual deployment of the application. Depending on your
clients and their environment, there are several approaches to choose from.

One way to deploy application files is to compress them using your favorite com-
pression utility and then send them to users via snail mail on read-only memory or
through e-mail or Web downloads. Keep in mind that the zip file must include all
external files (if there are any) in the appropriate hierarchy. For example, if you utilized
the LoadCustomUI method, you would need to include the external XML file. If you
have computer-savvy users and provide them with good installation instructions and
documentations, this is a relatively trivial method of deployment.

A step up from this is to use a self-extracting zip file that literally places the files in
pre-designated folders. In addition, if the required folders do not already exist, then
they will be created during the process. One popular tool for this purpose is the
WinZip Self Extractor.

TI P The self-extracting zip file can be placed in an online file folder, and a
link e-mailed to the intended recipients. Then, when the recipients click on the
link in the e-mail, they are given the option to save or run the file. If they click
Run, the contents of the zip file are extracted and saved in the specified
locations. If they choose Save, they can run the extraction process another time
from their computer.

514 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 514

Another approach is to utilize the Access Developer Extensions (ADE)
add-in mentioned earlier. This utility is provided free of charge by Microsoft for
Access 2007 and can be downloaded from the Microsoft download page at
www.microsoft.com/downloads/details.aspx?familyid=d96a8358-ece4-4bee-a844-

f81856dceb67&displaylang=en.
After you download and install the add-in, restart Access. The new options will be

available from the Developer menu, as shown in Figure 16-29.

Figure 16-29: The Access Developer Extensions
add-in installed

NOTE If you have multiple versions of Microsoft Access installed and switch
between them, the ADE COM Add-in will become inactive. After relaunching
Access 2007, you need to manually enable it through the Add-ins page of
the Access Options dialog.

The Access Developer Extensions add-in enables us to package our applications for
easier installation. The packaging wizard options are somewhat self-explanatory, but
we’ll highlight some key features.

The first page of the Package Solution Wizard explains its purpose and allows you
to indicate an output location for the installation package, including all files that the
wizard will be creating. Click the Browse button and specify the location where you
want the wizard to output the files. This directory has no effect on the target user’s

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 515

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 515

environment, and only reflects the installation files generated by the wizard, which
you can then burn to a CD-ROM.

We can now proceed with the installation package. Press Next to be presented with
details about installation, as well as shortcut options. Select the file to be packaged,
which is your database file. In a split application environment this would be the front-
end file. Afterward, you can pick the root installation folder for the application. The
wizard gives you several options; it is up to you which one to pick. Because this will be
handled as a separate software installation, you might want to utilize the Program
Files directory. You can then denote the subfolder in which your application will be
installed. For confirmation purposes, the wizard shows you the full installation path
after settings these options.

NOTE Do not use illegal file/folder name characters when denoting the
subfolder directory. If you do, then Access will display an error when trying to
create the package at the end.

Because we are currently working under the premise that users have the full version
of Access 2007 installed, you can leave this as the default setting for the pre-installation
requirements.

In the Shortcut Options section of this wizard page, you can allocate a shortcut to the
actual application file and specify whether it should be listed under the Windows Start
menu, on the desktop, or both. Additional settings are optional, such as a custom short-
cut icon or utilizing a startup macro, which uses the /x macro command-line switch in
combination with the shortcut, if you are familiar with this feature.

Proceeding to the next wizard screen, you can work with external files and Registry
entries. In the Additional Files section of the wizard, you can include additional exter-
nal files to be incorporated into the installation package. This could be the back-end file
if you are implementing a split application, an external XML file if you are loading
your Ribbon customization markup from exterior sources, as well as other files and
folders required for the particular project.

CAUTION Always use caution when editing the Windows Registry manually
or programmatically. In addition, before appending the trusted location to the
Registry, you might want to use the RegRead method of the WshShell object to
determine whether the folder is already listed as a trusted location. Although it
won’t generate an error if you try to add a location that exists, it is cleaner to
not attempt to add a location if it isn’t necessary.

Since you do not want to expose users to disabled applications and security warn-
ings, you can also work with the Additional Registry Keys section of the packaging
wizard. This section enables you to implement a new trusted location on the target
machine. You can pass along the following values for the Registry key:

Root: Current User

Key: Software\Microsoft\Office\12.0\Access\Security\Trusted↵
Locations\Value

Name: path

Value: c:\DirectoryOfYourApplication

516 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 516

NOTE A trailing backslash is not required for the path in the Value field.

The result might look as shown in Figure 16-30.

Figure 16-30: New trusted location for the target machine

C ROSS-RE FE RE NC E We’ve mentioned trusted locations and enabling files
throughout the book, and you can find a more detailed explanation in Chapter 17.

An alternative method of adding a new trusted location is to implement code in the
startup procedure of the application itself. You can utilize the RegWrite method of the
WshShell object to add the Registry value at run-time and enable the application for
future usage. The following function demonstrates such a procedure:

Public Function addTrustedLocation()

Dim oWshShell As Object

Dim txtPath As String

Set oWshShell = CreateObject(“WScript.Shell")

oWshShell.RegWrite “HKEY_CURRENT_USER\Software\Microsoft\" & _

“Office\12.0\Access\Security\Trusted Locations\" & _

“YourLocation\Path", CurrentProject.Path

End Function

The preceding code will be particularly beneficial if you do not want to deploy your
application with an installation package created by the packaging wizard. You should
execute the code before trying to launch any other code within the application, and
your users will need to follow instructions to enable the application the first time it is
launched. After the trusted location is established through the function call, the data-
base can be opened without any further security notices or additional user interaction.
After including additional files and Registry keys, you can move on to the final page of
the Package Solution Wizard. This page deals with information the user will see dur-
ing installation, and program information displayed in the Windows Add/Remove
Programs dialog. The required information to be specified includes Product Name,
Feature Title, and Description, as well as a title for the installer package. You can
include further personal information if you want to include legal and support infor-
mation for the end user’s benefit.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 517

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 517

After you have finished any other options in the Package Solution Wizard, press OK
to complete the packaging process. Before the package is created, the wizard will ask
you if you want to save the changes made. Make your selection and wait for the
process to complete. After the wizard has finished the package creation, it should open
the setup files in the root directory specified in the first page of the wizard, under the
output option’s destination folder argument. You might see something similar to what
is shown in Figure 16-31.

Figure 16-31: Result of the Package Solution
Wizard

Deploying the solution can be as simple as burning the files created by the wizard to
a blank CD-ROM and then handing the CD over to your users.

TI P Before handing over the application to your client or users, it is always
advisable to test the installation to ensure that everything functions as expected.

Deploying Solutions to Users with the Access Runtime
Version
The Access Runtime edition is a stripped-down version of the full Access installation.
It allows users who do not have a full version of Access installed to use your database.
As an added bonus — from a developer’s perspective — it allows people to work with
the user interface that is provided, but precludes any possibility of editing the design
or code. Keep in mind that once the run-time is installed on a machine, it can also be
used to open other Access files, not just those provided in your deployment package.

After you have downloaded the AccessRuntime.exe executable file, you can freely
redistribute it with your application. Developers and clients will both appreciate this
cost-effective approach, particularly because the 2007 Access Runtime edition, like the
Access Developer Extensions, is a free download from the Microsoft download site.
The Runtime can be obtained from the following page:

www.microsoft.com/downloads/details.aspx?familyid=

d9ae78d9-9dc6-4b38-9fa6-2c745a175aed&displaylang=en

This section describes how to include the Access Runtime files in the deployment
package that was created with the Access Developer Extensions add-in. If you haven’t
already downloaded AccessRuntime.exe, we recommend that you do so now.

This scenario is based on the premise that Access 2007 is not installed on the user’s
computer, and so we will use the pre-installation requirements to include installing
Access 2007 Runtime as part of the application deployment CD.

518 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 518

Again, you need to launch the Package Solution Wizard. Because you’ll be following
essentially the same steps described earlier, we won’t repeat the entire process here.
However, this time, we will use the pre-installation requirements to include the instal-
lation of the Access Runtime executable files. Therefore, click on the pre-installation
requirements and browse to the downloaded Runtime executable file. After that, the
remaining options of the wizard are comparable to those described in the previous sec-
tion, so you can refer to that for guidance on other files that should be included in order
for your database to function correctly, such as other external files or Registry keys.

NOTE Installing the Runtime edition requires administrative privileges, so be
sure to collaborate with your users about this.

Furthermore, with Runtime installations, it is imperative that your application
implements good error handling. The limited environment provided by the Runtime
does not allow code debugging, and the program will literally quit when it encounters
an unhandled error.

As briefly mentioned before, the packaging wizard automatically renames the data-
base file extension to an ACCDR file. You should take advantage of that and check how
your application will act with the Runtime support enabled. Specific components
might not function within an individual Runtime edition installation (e.g., the spell
checker or the FileDialog object), so testing the installation package in the Runtime
environment to ensure optimal functionality is an important aspect of the deployment
preparations.

CAUTION The ACCDR extension will disable certain design capabilities, but
if your users have a full retail version of Microsoft Access installed and rename
the file back to an ACCDB format, they can view and/or modify any components
of the database. If you want to avoid this behavior, then implement one of the
aforementioned methods of locking down the application file, e.g., converting
to an ACCDE.

NOTE Unlike prior versions, the Access 2007 and 2003 Runtime editions are
automatically updated through Microsoft Updates, so even if they are the only
Office component in the target environment, the Runtime should stay current
when Microsoft releases program updates.

Conclusion

Throughout this book, the customizations were contained in a workbook, a database,
or a document. These structures work well for keeping custom tools with the appro-
priate files, as they are unloaded as soon as the user switches to another file — even

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 519

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 519

within the same application. This is an improvement over the common effect in pre-
vious UIs, as many of us have encountered rather disastrous results when a devel-
oper failed to properly clean up the customizations and then those customizations
inadvertently overwrote the default UI. However, as important as it is to contain
your customizations, there are also many times when you need them to be available
across all files in the program.

This chapter looked at several ways to share customizations. In addition to demon-
strating how to implement and share customizations across different versions of Office,
we also discussed the pros and cons and even the similarities between applications.

Whereas workbook and document-level deployments work well for creating a fully
packaged solution, they also break the best practice rule about separating data from
code. This can cause issues if you ever need to update the code, and it puts the data at
risk if you make an error in the process. In addition, code deployed within a file could
be a nightmare to update in full, as there is a tendency to end up with multiple versions
of a file.

Templates centralize code a little more, and they resolve some of the maintenance
issues. To change the code, you simply update the template, and all new workbooks or
documents created from the templates are automatically based on the new standard.
One thing that you need to be very aware of, however, is that any XML customizations
in the templates are included with files based on the templates. While this could be a
good thing, it can also cause issues, as any required macros may not be included when
the file is updated. This is because the default setting is for all new files to be saved in
a macro-free format. Therefore, if users don’t change the file format to accept macros
before they save the file, they may end up with a customization but lack any callbacks
required to use it.

The final techniques introduced in the deployment section started by focusing on
creating and deploying add-ins for Excel, and then covered global templates in Word.
These files allow Ribbon customizations to be shared across all files open in the pro-
grams, yet they do not attach their customizations to any of the files created while they
are loaded. This is an ideal situation if you are trying to add global toolsets.

After examining the individual deployment techniques, we explored our final Rib-
bonX attribute: idQ. This attribute is specifically geared toward sharing tab and group
elements across files, enabling a developer to load and unload Ribbon customizations
from a central source. Again, you saw both Excel and Word examples.

Next we looked at issues that concern users who work in an environment where
versions of Office prior to 2007 may also still be in play. We showed how legacy
CommandBar code is placed within the Ribbon, and discussed different ways to work
in a mixed environment. From creating add-ins and global templates specific to each
application version, to using 2003 files as the back end for a RibbonX face, we looked
at the techniques that allow users to share common functionality among the applica-
tion versions.

We then turned our attention to the techniques required to deploy Ribbon cus-
tomizations in Microsoft Access, and how they work. First we went through general
deployment preparations that ensure the integrity of your database application in the
target environment. This included practices to lock down the design environment with

520 Part II ■ Advanced Concepts in Ribbon Customization

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 520

XML markup, use of ACCDE file types, execute code with the AutoExec macro, and
use VBA callbacks and VBA code to create and adjust the AllowBypassKey property.

Afterward, we looked at a method of loading XML markup from an external source
file, which can be very beneficial in application deployment. We then moved on to
actual deployment techniques, such as regular file sharing of the application files or
creating installation packages. We explained how to use the Package Solution Wizard
of the free Access Developer Extensions add-in to create specific installation settings,
such as incorporating additional Registry keys to avoid security warnings. We also
covered a methodology utilizing VBA code to attain a similar goal.

Packaging an application can be valuable for target environments that have the full
version of Access installed, as well for those that do not include an Access installation.
Last but not least, we wrapped up this chapter with deployment scenarios for inclu-
sion of the Access Runtime edition.

In the final Chapter of the book, we explore security in Office, and how it affects the
development and deployment of your customizations.

Chapter 16 ■ Sharing and Deploying Ribbon Customizations 521

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 521

91118c16.qxd:WileyRedTight 12/3/07 10:03 AM Page 522

523

Reality dictates that while most programmers use their power and knowledge for
good, there are also those who work with a far darker intent. Because of this, security
has always been a big concern to educated Office users. Many safeguards have there-
fore been implemented to both complement and protect against the great amount of
power that has been put at the fingertips of developers in the form of VBA.

The benefits of VBA are incredible, as it provides us with tremendous flexibility when
working with a user’s system, but VBA also affords the same capability to those with
nefarious intent. While we can craft routines that automate entire business intelligence
applications and span thousands of lines of code, it only takes a single line of correctly
crafted code to render a system unusable. Not wanting to completely remove the func-
tionality and benefits of automation, Microsoft has been left the difficult task of balanc-
ing the two sides of this coin: giving developers the access they need while protecting
users from those with ill intentions. It is a difficult balance to strike, to be sure.

Fortunately, Office 2007 provides several enhancements to the security model that
are targeted at both protecting the end user and making the life of the developer eas-
ier. Since every dynamic customization that we create requires using a VBA callback,
it is imperative that we understand and master the concepts of security in the Office
environment. This chapter discusses each of the concepts behind Office security, both
old and new. Our goal is that by the end of this chapter, not only will you understand
the concepts, you’ll also feel comfortable and confident with the protections that they
provide.

Security In Microsoft Office

C H A P T E R

17

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 523

Security Prior to Office 2007

Since Office 97, Microsoft has constantly been working on and incorporating ways to
improve security in the Office document field. When Office 97 was released, users were
given the option to enable macros or not, and that was pretty much the extent of the
choices. Because many users wanted macros for legitimate functionality, they would
turn off the Macro Security flag, thereby leaving their computers vulnerable to a prolif-
eration of macro viruses that made their way around the world on the backs of e-mails.

In Office 2000, we saw the introduction of digital certificates, which enable users to
actually sign their code. As this tool is still valid for security today, it is discussed in
much more detail later in the chapter; but the basic premise of the digital certificate is
that if the code is modified on another machine, then the signature is discarded. If a
specific signature is trusted on the user’s machine, then the code will run without noti-
fication as long as the digital signature is intact.

Along with the digital certificate were three complementary settings of great impor-
tance. While these settings have been slightly modified in Office 2007, from Office 2000
through 2003, the user was able to set three security modes:

■■ High would grant execution rights only to code signed with a trusted certifi-
cate, and disable all others.

■■ Medium would grant execution rights to code signed by a trusted certificate
and prompt the user for acceptance of any unsigned documents.

■■ Low would enable all macros, signed or not, to run without any notification.

Office XP (also known as Office 2002) added yet another wrinkle to the security
model, which is still present in Office 2007. By default, each Office installation disables
access to programmatically manipulate the Visual Basic Editor itself, as well as modules
and userforms that may hold VBA code. While this can cause frustration for program-
mers who need to set options related to these components, it does add a level of protec-
tion by locking down some key areas of the computer system so that malicious code will
not have the ability to run amok.

Office 2003 added one additional element to the security model, which was the abil-
ity to “Trust all installed add-ins and templates” as if they were digitally signed. This
may seem like a minor enhancement, but was an important one for developers, as it
allowed them to push out add-ins and global templates without the need to walk the
user through installing a self-created or commercially purchased digital certificate.
This setting was modified in Office 2007, as you’ll see later in this chapter.

Macro-Enabled and Macro-Free File Formats

The first of Office 2007’s security enhancements was specifically targeted to help the
end user. Since Microsoft revamped the file formats for Word and Excel documents to
use the openXML format, they were also able to split files into two distinct subformats:
macro-enabled (xlsm, docm) files and macro-free (xlsx, docx) files. These two main file
formats also have distinct differences in their icons, as shown in Figure 17-1. There are
additional file types for each application, but those are not discussed in this chapter.

524 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 524

Figure 17-1: Word and Excel
file icons

Notice that both of the macro-enabled file formats now bear an exclamation mark,
signifying that they (most likely) hold macro code. This distinction provides a very
obvious cue to the user that there may be more to the macro-enabled files than meets the
eye. A user can take solace in the fact that if the file is saved in a docx or xlsx file format,
it cannot contain any macros, as all VBA code will be stripped from the file when it
is saved.

NOTE When working with Word and Excel, keep in mind that macros and VBA
are synonymous. Unlike Access macros, all Word and Excel macros are written
in VBA.

NOTE Remember that files stored in a binary format, despite the fact that
they don’t have separate file formats for a macro-enabled and macro-free
distinction, can still hold VBA code. The binary file format is used by Office
97–2003 and all Access files.

While it’s nice that there is a visual cue to differentiate between files that may hold
code and those that don’t, we all know that many users will either be ignorant of the
symbol and its meaning, or will become so conditioned to cautions that they ignore this
warning. This is why the file format should be considered only the first line of defense.

The Trust Center

In addition to the file structure split, there are also other enhancements to the Office 2007
core that affect both end users and developers alike.

Microsoft regrouped all of the security settings and put them into a central place
called the “Trust Center.” This new collection provides us with a central location for
accessing and managing all the security settings related to how Office reacts to files
that use potentially dangerous controls. This is important for developers; it is both a

Chapter 17 ■ Security In Microsoft Office 525

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 525

“one-stop shop” to configure the end users machine, and it enables developers to con-
figure a specific setting in order to make their own development life a bit easier.

Throughout this section are many references to digital certificates and digital signa-
tures, as many of the security settings reference this particular tool. The full discussion
of digital certificates, including their creation, is covered later in this chapter.

The Trust Center can be accessed by clicking the Office button, selecting the appli-
cation’s Options button, and choosing Trust Center from the list on the left. Upon
doing so, you are greeted by a screen containing some hyperlinks for learning more
about security and privacy. The part that is of most interest to us is the Trust Center
Settings. Go ahead and click that button, and you’ll be taken to the interface shown in
Figure 17-2.

Figure 17-2: The Trust Center in Word

It appears that there are a lot of options here, so let’s take a brief look at each one.

NOTE Excel actually has one additional item in the Trust Center: External
Content. As this is a setting specific to Excel functionality, it is not covered in
this book.

Trusted Publishers
The Trusted Publishers tab, highlighted in Figure 17-2, gives you a list of all of the
digital certificates that you have trusted on your system. It is quite common for this
list to be empty, but you may see items here if you have ever installed an add-in.
Adobe’s PDF Writer is a commonly used add-in that will install a digital certificate.
Later in this chapter you will learn how certificates are added to this list (see the sec-
tion “Trusting Digital Certificates”).

Trusted Locations
Many of the options that are accessible in the Trust Center were available in prior ver-
sions of Office, albeit with some minor changes. There are also a few new features, and
from a developer’s perspective, the biggest enhancement is most likely the ability to

526 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 526

trust locations. Both developers and users will have an instant affinity for the conve-
nience that this setting affords. The interface for establishing Trusted Locations is
shown in Figure 17-3.

Figure 17-3: The default Trusted Locations tab in Word

To put it simply, the Trusted Locations tab is an interface that enables you to desig-
nate certain folders as “safe.” This is a fantastic concept and one of the best enhance-
ments to the Office security model for developers.

Trusting your development folders means that you can avoid all security mes-
sages as you load and unload files, without having to go through the extra steps of
adding a digital certificate to each project. For those of us who create test files on a
regular basis, this can truly save some time. It also means that we only actually need
to worry about handling the files that we will distribute to others at the end of the
development process.

The basic theory behind the Trusted Locations model is, of course, that you will only
store in these trusted folders files that you are absolutely certain contain safe code. The
instant that you violate that idea, you expose your system to any malicious code that
resides in the file, and may as well be running without macro security.

CAUTION Any file in a trusted folder has full rights to run on the user’s
system, including VBA macros, data connections, and ActiveX controls. Make
sure that you only trust folders that you have control over and know are safe!
It is strongly recommended that you not trust a location that would be a target
of automatic downloads, such as your Documents folder or desktop.

NOTE As a means of protecting users from themselves and from malicious
script, Microsoft has prevented certain locations from becoming a Trusted
Location. The folders include the root of the C:\ drive, as well as the Temporary
Internet Files folder.

Chapter 17 ■ Security In Microsoft Office 527

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 527

Adding, Modifying, or Removing Trusted Locations

To add, modify, or remove folders from the Trusted Locations tab, simply click the
appropriate button and follow the prompts. Be aware that when you add or modify a
folder, you will see a checkbox asking if you’d like to trust the subfolders as well, as
shown in Figure 17-4.

Figure 17-4: Trusting a new location, including
its subfolders

Why not try giving it a test? Create a new folder on your C:\ drive (or use an exist-
ing folder if you prefer), and add it to your trusted folders. Create a new Word or Excel
file with the following code in a standard module:

Sub Test()

MsgBox “Hello World”

End Sub

Save the file (in the macro-enabled format) on your desktop. Close and reopen it;
note that you are given the warning about macros in the file.

NOTE If you do not get a macro warning, check the Macro Settings tab of the
Trust Center and make sure that you have selected “Disable all macros with
notification.” You’ll learn more about the Macro Settings tab momentarily.

Now close the file and move it into the folder that you trusted. Upon reopening the
file, no macro warnings will be present!

NOTE Trusted locations are application specific. What you set for Excel
needs to be set again in Word or Access if you wish to trust the location in
all applications.

528 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 528

Trusting Network Locations

There are two other settings on the Trusted Locations tab, the first of which is Allow
Trusted Locations on my network (not recommended). As you’d expect, checking this
option allows the user to set trusted locations on a network drive.

CAUTION Chances are fairly good that you do not have control over what
is or is not placed in folders elsewhere on the network, so trusting network
locations can present a serious security risk!

NOTE You can trust locations on a USB thumb drive, but not at the root level.
Instead, you must trust a folder on the USB drive. While this can be very handy
if you like to carry code from one location to another, it also exposes you to the
risk that someone else will have the same folder hierarchy that you have trusted.
If that happens, their folder will also be trusted and they will be able to run code
unguarded on your system.

Disabling Trusted Locations

If you are a systems administrator or a user who is concerned about malicious code,
then this setting is for you. You can check the box to “Disable all Trusted Locations.
Only files signed by Trusted Publishers will be trusted” and stop any project dead in
its tracks unless it has a digital signature. (Experiences will vary depending on the set-
tings on the Macro Settings and ActiveX tabs.)

Add-ins
The security settings on the Add-ins tab are specifically designed for treatment of the
Add-in file formats that you learned to build in Chapter 16 (including Word’s global
templates). Unlike the Office 2003 model, which required you to check a box in the
security settings in order to trust all installed add-ins and templates, in Office 2007
these files are trusted by default. After all, it typically takes an intentional act to incor-
porate an add-in. However, there are a few options that allow you to override this set-
ting, as shown in Figure 17-5.

In looking at this pane, it appears that you only have three options: all add-ins will
run (the default), only add-ins signed by a trusted publisher will run, or no add-ins
will run. However, as you’ll soon learn, there are additional settings that provide more
flexibility, particularly with the first option.

Chapter 17 ■ Security In Microsoft Office 529

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 529

Figure 17-5: The Add-ins tab of the Trust Center

Requiring Add-ins to Be Signed

The first checkbox on this tab will prevent any add-in from executing code unless it is
signed with a trusted digital certificate. If you select this option, then each add-in
is checked for a trusted signature at load time. If a trusted signature is not present, then
the add-in is not loaded, and a notification is displayed to the user.

NOTE The user may still enable the unsigned add-in(s) based on your choice
for the next setting.

A word of caution should be issued here as well: Excel, in particular, gets a lot of its
additional functionality through add-ins, including the Analysis Toolpak add-in,
which is (finally) installed by default. This brings up a very important point: The term
“add-in” includes tools that you create, as well as those created by Microsoft and third
parties. Note also that even Microsoft is not a trusted publisher by default, so if this
checkbox is set, users will be prompted with the message shown in Figure 17-6 upon
restarting Excel. Of course, this add-in file is perfectly safe, but the message could be
rather disconcerting and irritating to end users!

Naturally, checking “Enable all code published by this publisher” will trust Microsoft
permanently and avoid this issue in the future.

The message for add-ins with no digital signature is quite similar. It includes the
first two options shown in Figure 17-6, but does not offer the option to enable all code
published by the publisher. The reason for this should be obvious, as no publisher is
associated with the file.

Disabling Notification for Unsigned Add-ins

The “Disable notification for unsigned add-ins” checkbox only becomes active if the
Trust Center is set to require add-ins to have signatures. By activating this checkbox,
users will not receive a notification when an unsigned add-in is stopped.

That means users will not even receive a notification to give them the option of trust-
ing an unsigned add-in. However, add-ins that are digitally signed but have not yet
been trusted on the system will still generate a security notification.

530 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 530

Figure 17-6: Security settings triggered by allowing
only signed add-ins

Disabling All Add-ins

The “Disable all Application Add-ins” setting rightfully carries a warning that you
may lose functionality. This setting should only be used in the tightest of security
environments.

NOTE As a very interesting point, note that while setting this checkbox will
disable all the VBA code in an add-in from running, the add-in still seems to
load. This is demonstrated by the fact that disabling all add-ins does not block
any RibbonX customizations that exist in those files. In other words, your add-
in will still load and create new tabs and groups, and it will still move icons
around. In addition, if all of your customizations were based on built-in
controls alone, they would still function as designed.

ActiveX Settings
This section of the Trust Center (not available in Access) is also new in Office 2007. It
establishes how ActiveX controls will be treated from a security standpoint. As ActiveX
controls are outside the scope of this book, these settings are not explored. However, it
might be reassuring to know that the settings contain similar notations and guidance
about the options and their effects.

NOTE For those who have never used ActiveX controls, these are the
controls that are added to documents and workbooks. They are found on
the Developer tab.

Chapter 17 ■ Security In Microsoft Office 531

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 531

Macro Settings
The macro security settings are slightly different from those offered in prior versions of
Office. This was to align them with the new Trusted Locations concept. The available
settings are shown in Figure 17-7.

Figure 17-7: Macro settings in Office 2007

As you will immediately notice, the settings in the first section of this window
(under the heading Macro Settings) are only applicable to files that are not in trusted
folders. For reference, trusted folders run with the effective permission of “Enable all
macros.”

You’ll also notice that the option most relevant to developers conveniently stands
out with its own heading. That’s because it is critical to trust the VBA project object
model if you plan to use VBA to manipulate VBE components or code. The following
sections explain these setting options.

Setting Macro Options

While the most secure setting is to automatically disable all macros without even noti-
fying the user, this obviously obliterates the benefits of VBA code. As a person who
would read this book, it is highly unlikely that you would want to do that.

The default setting for macro security is to disable all macros with notification. This
is probably the nicest way to strike a balance between security and functionality, as
users have the option to enable macros if they’d like.

The option to “Disable all macros except digitally signed” does exactly that, without
any notification. If this setting is chosen, users do not have the option to enable the
macro content for an unsigned macro.

NOTE If a file is in a trusted location, the preceding setting is ignored when
the file is opened. Therefore, it opens with macros enabled and without
prompting, as we would expect with any file in a trusted location.

532 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 532

Of course, “Enable all macros” is the most wide open setting, as it allows everything
and anything to run. This setting is rarely recommended. A much better approach is to
place applicable files in a trusted location, rather than effectively using a blanket
switch to turn security off.

Trusting VBA Project Access

The last setting on this pane enables you to trust access to the VBA Project object
model. In short, this setting allows you to successfully run code that can manipulate
the VBA project components and structure, instead of just targeting the layer of the file
that is seen in the user interface. This type of access allows code that can actually write,
modify, or delete code, meaning that the code itself could even add or remove entire
code modules.

Based on this simple explanation alone, you can see the power that someone would
have if you allow and trust access to the VBA project. As a general rule, you would most
likely never want to set this on a user’s workstation. This is a global setting and it affects
files both inside and outside the trusted location folders.

Message Bar
The message bar settings, shown in Figure 17-8, control how the application reacts
when macro content has been disabled.

Figure 17-8: Message bar settings

By default, the message bar is shown when content is blocked, and appears as
shown in Figure 17-9. Changing the setting to “Never show . . .” will, of course, stop
the system from prompting the user when macro content has been disabled.

Removing this message also removes the convenient option that allows the user to
enable macros associated with the file.

Figure 17-9: Message bar warning of disabled content

Chapter 17 ■ Security In Microsoft Office 533

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 533

NOTE The message bar is used to display warnings about what could
be malicious data connections, as well as code. These warnings can also be
triggered in Word when using the mail-merge feature.

Privacy Options
As we are primarily concerned with exploring security, the privacy options are not
covered in this book. This tab provides relatively clear options and guidance to help
users customize their settings.

Digital Certificates

As mentioned at the outset of this chapter, digital certificates are an integral part of
deploying a macro-enabled solution. In the past, digital certification used to be the
only real security method for trusting files, but now this process is most applicable to
files that lie outside the Trust Center’s trusted folders.

While you may be able to avoid the digital certificate process if you are developing
files only for your own use, their value quickly becomes apparent when you deploy
applications to other users. Just imagine having to tell each user to set up the appro-
priate trusted folders for your files! Not only does this expose the client to unaccept-
able risk (as someone could dump a malicious file in there as well), but it appears
unprofessional. Using a digital certificate can avoid these types of issues.

How Digital Certificates Work
To keep things simple, let’s run through a scenario. Consider a developer who wants
to secure his code. He goes to the “locksmith” and asks for two keys.

The first key, known as the private key, is a master key and is unique. The developer
knows that the locksmith will never issue the same private key to anyone else, and that
the locksmith has recorded his name next to it in a log book. Using this key will lock the
code in the file and let everyone know that he wrote and secured it.

The second key, known as the public key, is almost identical to the first, but has a few
less teeth. This key will unlock the code in the file so that the code is readable but not
editable. Unlike the private key, which the locksmith marked with a “Do Not Copy”
stamp, this key comes in sets that the developer will freely hand out to anyone who
wants to use his work.

The developer takes his private key and turns it in the lock, thereby setting the
security on the code in his application. It is this process that is known as digitally sign-
ing a file. He then sends the file out to his clients, along with a copy of the public key.

When the digitally signed file is opened by the client, the system recognizes that there
is a lock on the file, and matches it with the appropriate key. The system looks up the
developer in its list of trustworthy developers, and not finding him there, takes the actions
dictated by the Macro Security Settings tab of the Trust Center. Assuming that the settings
specify prompting the user, the system then asks the user whether they would like to run
the code, and then offers the option to trust the developer permanently.

534 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 534

Assuming that the user agrees to trust the developer, the system adds his name to the
list of trusted developers, uses the key to unlock the code, and puts the key in safekeep-
ing until the next time. Thereafter, any file that is signed with the identical signature will
be unlocked with the stored public key and the code will be allowed to execute. Keep in
mind that several things had to happen to make this possible, including the user specifi-
cally stating that they trust the developer. It also requires that the code is still digitally
signed. We’re about to discuss some nuances to that.

NOTE While the digital certificate proves who signed the code, it makes
absolutely no guarantee that the code within the file is safe. It is completely
up to users if they want to trust the issuer of the certificate on their system.

Where the digital certificate proves its worth is in the mandate that the private key
must sign the code. Any modifications made to code in a digitally signed file forces a
validation of the digital certificate. Failing to get validated, the code in the file will no
longer have a digital certificate.

Assume that in the preceding case, one of the developer’s clients decided to modify
the code. As they begin to make modifications, the lock pops open completely. Unlike
most padlocks, however, which can be relocked simply by closing the hasp, this lock
requires the private key to relock the file. Since the private key resides on the devel-
oper’s computer, and not on the client’s, the file cannot be relocked and the digital cer-
tificate evaporates. Unfortunately for the client, the developer’s locksmith will not
issue him a copy of the private key, so he is left with an unsigned file. Any attempts to
open the file in future will then be treated as unsigned code and reacted to with the
security permissions set in the Trust Center’s Macro Settings area.

As you can see, the digital certificate offers assurance to both the developer and the
client. The client can be assured that the code was delivered as intended by the devel-
oper, and the developer can be assured that the client has not changed the code in any
way (or, if the code has been changed, it no longer carries the developer’s digital cer-
tificate). This can be quite useful for the developer from a liability standpoint if any
destruction is caused and blamed on his file. If the digital certificate is gone, it indicates
someone has tampered with the code.

NOTE While the preceding anecdote explains how a digital certificate
works, a far more technical explanation can be found on Microsoft’s Technet
site at the following URL: www.microsoft.com/technet/security/guidance/
cryptographyetc/certs.mspx.

Acquiring a Digital Certificate
While digital code signing certificates can be purchased from a third-party vendor,
they can also be created without cost using a self-certification program that is installed
with Microsoft Office: SELFCERT.exe.

At first glance, you might think it is a no-brainer to simply use SELFCERT.exe to cre-
ate a free certificate, rather than pay for a commercial version. As with most things,

Chapter 17 ■ Security In Microsoft Office 535

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 535

however, each approach has both benefits and drawbacks, the biggest of which are
cost, verification, and acceptance.

As mentioned, the self-certification route carries a significant cost advantage over
purchasing a digital certificate from a third-party issuer. Commercially purchased cer-
tificates can range in cost from $200–$500 on a yearly basis, depending upon the ven-
dor that you choose.

Conversely, anyone can generate a certificate with the self-certification utility, so
what does it really tell you about the developer? The signature could be published
under any name, real or fictitious, and while it can’t necessarily be forged, it could cer-
tainly be masquerading under someone else’s name.

Part of what you pay for when you get a certificate from a commercial outfit is third-
party entity identification. The cost of the certificate helps cover the staff time and
resource costs for verifying the existence of the person or company who has requested
the certificate. As the entire point of having a certificate is to add security, it only makes
sense that we should also try to show that the developer actually exists!

A variety of third-party certificate authorities are currently doing business on the
Internet. Microsoft’s MSDN website carries a list of such businesses: http://msdn2
.microsoft.com/en-us/library/ms995347.aspx.

TI P If you are interested in purchasing a digital certificate from one of the
commercial certificate authorities, make sure that you purchase a code signing
certificate, rather than one of the other kinds.

Using SELFCERT.exe to Create a Digital Signature
Because many of you will at least want to experiment with the self-certification tool,
we will now look at the process.

To launch the self-certification program, go to the Windows Menu (or Start Menu in
Windows XP) and choose All Programs ➪ Microsoft Office ➪ Microsoft Office Tools ➪

Digital Certificate for VBA Projects. This will launch the program, displaying the dia-
log shown in Figure 17-10.

Figure 17-10: Creating a digital certificate
with SELFCERT.exe

536 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 536

NOTE Despite the warnings shown in Figure 17-10, you can actually trust the
public key of a self-signed certificate on another computer. This is of critical
importance to developers who want deploy solutions.

To create your own digital certificate, all you need to do is enter a name and press
OK. You will instantly receive notification that your certificate has been created.

Adding a Digital Certificate to a Project
After you have acquired a code signing certificate, either via self-certification or
through a commercial certificate authority, you need to assign it to your project. Fortu-
nately, this is also very easy to do.

Open your favorite macro-laden file (all applications use the same process) and
enter the VBE. From the Tools menu, choose Digital Signature. You will find yourself at
the screen shown in Figure 17-11.

Figure 17-11: Selecting a digital
signature

Notice that at this point, there is neither a signature associated with the project, nor
a default certificate showing in the Sign As field.

NOTE After you have signed your first project, the Sign As area will be pre-
filled with the name of the last certificate you applied. Clicking OK at that point
will apply the certificate in the Sign As field to your active project.

Click the Choose button to be shown a list of the existing digital certificates that are
available for signing the code (see Figure 17-12).

As you can see, the certificate that you just created, My Code Certificate, is on the
list. With that selected, click OK, and you will be returned to the digital certificate inter-
face. At this point, the project is signed and the certificate name is listed in the Sign As
area for easy application to other projects, as shown in Figure 17-13.

Upon clicking OK and saving the file, the project is signed and ready for distribution.

Chapter 17 ■ Security In Microsoft Office 537

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 537

Figure 17-12: Selecting a digital certificate

Figure 17-13: The digital certificate interface,
showing the project is signed

Trusting a Digital Certificate on Another Machine
The process of trusting a digital certificate on a client’s machine can seem cumbersome.
Remember that this is in the end user’s best interest, as it avoids unnecessary exposure
to risks; and once your signature has been trusted, users will not have to repeat the
process with future signed applications.

To begin the process, users must open a file that contains your digital signature.
When prompted that macros are disabled, they click the Options box to be taken to the
screen shown in Figure 17-14.

NOTE If no macro warning is seen, check whether the Trust Center’s Macro
Settings are set to disable macros with notification. You may also want to check
whether the file has been placed in a trusted location.

538 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 538

Figure 17-14: Macro security alert details

NOTE Figure 17-14 shows another difference between self-certified code
and code signed by a commercial certificate. In Figure 17-6, where the code was
signed by a Microsoft certificate, users had the option to trust it immediately;
however, a self-signed certificate requires additional steps.

At this point, the user must click the Show Signature Details link to be taken to the
details of the digital signature file, as shown in Figure 17-15.

Figure 17-15: Digital Signature Details

Chapter 17 ■ Security In Microsoft Office 539

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 539

Next, they need to click View Certificate, and then click Install Certificate. This will
launch the Certificate Import Wizard.

At the Certificate Import Wizard’s welcome screen, the user must click Next to be
taken to the Certificate Store page. After selecting the “Place all certificates in the follow-
ing store” radio button, the user would click Browse, and select Trusted Publishers from
the list. The Certificate Store options would then appear, as shown in Figure 17-16.

Figure 17-16: Certificate Store settings

The user then clicks Next, and then Finish, to complete the process of importing the
digital certificate, finally clicking OK when notified of success. They need to keep
clicking OK until they are returned to the original Macro Security warning message.

Finally, the user should click the “Enable this content” button and again click OK to
finish loading the file.

This may seem like a lot of work, but try closing and reopening the file. Not a single
warning in sight! Even better, if you sign another file and send it to this same PC, it will
open like a breeze; the user won’t need to repeat this lengthy process.

As a final comment on certificate installation, it is also worth noting that the trusted
certificate now shows on the Trusted Publishers tab of the Trust Center, as shown in
Figure 17-17.

Therefore, just by self-certifying, you can have your certificate listed with the likes
of Microsoft, Adobe, and other major entities.

Deleting a Digital Certificate from Your Machine
While it is fairly straightforward to remove a digital certificate from the Trusted Pub-
lishers store (highlight it and click Remove in the Trust Center) or to remove a digital
signature from a project (click Remove in the screen where you would apply it), what
would you do if you actually wanted to delete the private key for some reason, effec-
tively destroying the certificate?

540 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 540

Figure 17-17: The digital certificate listed in the Trust Center

One way to remove the certificate and its private key is to locate the certificate file on
your computer and delete it. This can be done by going into the VBE and choosing
Tools ➪ Digital Signatures ➪ Choose. Select the certificate that you wish to delete and
click View Certificate ➪ Details. Scroll down the list of items until you find Thumbprint,
as shown in Figure 17-18.

Figure 17-18: Locating a digital signature’s
thumbprint

Now, based on your version of Windows, browse your computer to locate the fol-
lowing folder:

■■ Windows Vista:

C:\Users\UserName\AppData\Roaming\Microsoft\SystemCertficates\My\

Certificates

Chapter 17 ■ Security In Microsoft Office 541

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 541

■■ Windows XP:

C:\Documents and Settings\UserName\Application

Data\Microsoft\SystemCertificates\My\Certificates

As shown in Figure 17-19, there is a file with a very similar name. In fact, the file-
name is the same as the thumbprint value except for the spaces!

Figure 17-19: The digital signature file in the Certificates folder

The similarity between the file name and the thumbprint name is obviously no coin-
cidence. This is the private key for the digital signature that you want to remove. To do
so, first close all the digital signature windows in the VBE. Then, simply delete the file
from the Windows Explorer window.

CAUTION Before you remove a private key from your machine, be absolutely
sure that you have the correct one, and that you really want to do this. Once the
key has been deleted, it can never be re-created, as the keys have randomly
generated hidden components. Creating a new key with the same name will not
create a key identical to the one you deleted!

In addition, keep in mind that other files may also rely on this key. In fact, all files that
are certified by this developer (or other entity) will likely rely on that specific private key.

TI P The ability to delete a certificate can come in handy if you need
documentation to instruct end users about how to install a certificate. Simply
create a (bogus) signature, apply it to a file, and then delete the certificate as
explained. Upon launching the file, you will be prompted to install the unknown
certificate. That way, you can go through the process and can take as many
screen shots as you need!

Conclusion

Microsoft has expended a fair amount of effort to improve the security features in
Office 2007 for the benefit of both end users and developers.

For end users, splitting the file formats between macro-free versions and macro-
enabled versions provides an obvious clue as to what kind of file they may be dealing

542 Part II ■ Advanced Concepts in Ribbon Customization

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 542

with. The Trust Center also allows more security configuration options than were offered
in prior versions, such as how to manage macro-laden files and ActiveX controls.

The major changes in Office 2007’s security model, however, truly benefit developers.
In the past, we could only avoid the nagging macro prompts by turning off our macro
security settings or by digitally signing every project we started. The creation of the
Trusted Folder in Office 2007 makes it easy to eliminate these annoying hassles. With
the ability to designate entire directories as safe havens, developers can create and test
files locally without needing to worry about the security settings.

After completing the local development and testing process, developers still have
the ability to digitally sign the code before deployment. Using digital signatures, even
self-signed certificates, is encouraged; and with the proper settings, end users can con-
figure their machines to run trusted code without taking a carte blanche approach and
disabling everything.

Chapter 17 ■ Security In Microsoft Office 543

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 543

91118c17.qxd:WileyRedTight 11/28/07 9:19 PM Page 544

545

This appendix contains the tables of all elements required to build custom Ribbon
solutions.

The appendix is divided into two main sections: RibbonX Container elements and
Ribbon Control elements. The former includes all of the elements from the CustomUI
element to the group element, and the latter includes detailed tables of the specific con-
trols with which the user would interact.

Each element’s table lists all of the static and dynamic attributes that may be
assigned to a Ribbon element, including the VBA callback signatures for the dynamic
elements. In addition, each attribute is marked with its allowed and default values.

You’ll also appreciate that the files are available in the companion files for this book.
These can be downloaded from the book’s website at www.wiley.com/go/ribbonx.

How to Use This Appendix

Each of the tables within this appendix has a column labeled REQ to indicate which of
the attributes are required when using an element. Some of the attributes are required,
some are not, and in some cases only one of several attributes can be used, so we have
devised Table A-1 to help you interpret this column in the tables.

Similar to the way in which they were covered in the chapters, the attributes are first
grouped and then ordered by required attributes, then insert attributes, then all
optional attributes.

Tables of RibbonX Tags

A P P E N D I X

A

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 545

NOTE The # symbol in the Marking column is used to indicate a numeric
value, and it should not be interpreted as part of the marking (i.e., R1, R2, etc.).

Table A-1: Legend of Attribute Markings Used in Subsequent Tables

MARKING INTERPRET AS

R A required attribute

R# One, and only one, of the required attributes with the specified
number may be included in the RibbonX tag. However, other
items denoted as required and attributes with other numbers
may also be included.

O An optional attribute

O# Only one of the optional attributes specified with this number
may be included in the RibbonX tag. However, other items
denoted as optional, as well as attributes with different numbers,
may also be included.

OR A recommended (yet still optional) attribute

* Characters followed by a * have a note about the element at the
bottom of the table.

Ribbon Container Elements

This section of the appendix contains all of the container controls that are used to con-
struct the Ribbon interface.

customUI Element
Table A-2 lists all of the static and dynamic attributes specific to the customUI element,
as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the customUI element
in Chapter 3.

546 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 546

Ta
b

le
 A

-2
:

Ta
bl

e
of

 c
us

to
m

U
I A

tt
rib

ut
es

R
EQ

xm
ln

s
(n

on
e)

R
h
t
t
p
:
/
/
s
c
h
e
m
a
s
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
o
f
f
i
c
e
/
2
0
0
6
/
0
1
/
c
u
s
t
o
m
u
i

(n
on

e)
(n

on
e)

xm
ln

s:
Q

(n
on

e)
O

1
to

 1
02

4
ch

ar
ac

te
rs

(n
on

e)
(n

on
e)

(n
on

e)
on

Lo
ad

O
*

1
to

 1
02

4
ch

ar
ac

te
rs

(n
on

e)
Su

b
on

Lo
ad

(r
ib

bo
n

as
IR

ib
bo

nU
I)

(n
on

e)
lo

ad
Im

ag
e

O
1

to
 1

02
4

ch
ar

ac
te

rs
(n

on
e)

Su
b

lo
ad

Im
ag

e
(i

m
ag

eI
D

 a
s

St
rin

g,
 B

yR
ef

re
tu

rn
ed

Va
l)

*
Th

e
o
n
L
o
a
d

at
tr

ib
ut

e
is

 r
eq

ui
re

d
in

 o
rd

er
 to

 in
va

lid
at

e
th

e
R
i
b
b
o
n
U
I

ob
je

ct
 v

ia
 a

 V
B

A
ca

llb
ac

k

ST
A

TI
C

A

TT
R

IB
U

TE
D

Y
N

A
M

IC
A

TT
R

IB
U

TE
A

LL
O

W
E

D
V

A
LU

ES
D

E
FA

U
LT

V
A

LU
E

V
B

A
 C

A
LL

B
A

C
K

S
IG

N
A

TU
R

E

Appendix A ■ Tables of RibbonX Tags 547

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 547

ribbon Element
Table A-3 lists all of the static and dynamic attributes specific to the ribbon element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the ribbon element
in Chapter 3.

Table A-3: Table of ribbon Attributes

REQ

startFromScratch (none) O false (none)

contextualTabs Element
The contextualTabs element does not have any attributes, either required or optional.

tabSet Element
Table A-4 lists all of the static and dynamic attributes specific to the tabSet element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the tabSet element
in Chapter 3.

Table A-4: Table of tabSet Attributes

REQ

idMso (none) R (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

true, false,
1, 0

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

true, false,
1, 0

Valid Mso
tabSet name

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

548 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 548

qat Element
Table A-5 lists all of the static and dynamic attributes specific to the Quick Access Tool-
bar (QAT) element, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the QAT element in
Chapter 14.

Table A-5: Table of QAT Attributes

REQ

documentControls (none) O (none) (none)

sharedControls (none) O (none) (none)

NOTE The QAT element can only be adjusted if the ribbon element’s
startFromScratch attribute is set to true.

sharedControls Element
The sharedControls element does not have any attributes, either required or optional.

documentControls Element
The documentControls element does not have any attributes, either required or
optional.

officeMenu Element
The officeMenu element does not have any attributes, either required or optional.

C ROSS-RE FE RE NC E There is a detailed discussion of the officeMenu
element in Chapter 14.

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Control
shared
across
documents

Control
specific to
document

Appendix A ■ Tables of RibbonX Tags 549

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 549

tabs Element
The tabs element does not have any attributes, either required or optional.

C ROSS-RE FE RE NC E There is a detailed discussion of the tabs element in
Chapter 3.

tab Element
Table A-6 lists all of the static and dynamic attributes specific to the tab element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the tab element in
Chapter 3.

Table A-6: Table of tab Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 Valid tab idQ (none) (none)

insertBeforeQ (none) O1 Valid tab idQ (none) (none)

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 3
characters

Valid Mso
tab name

Valid Mso
tab name

Unique tab
idQ

Valid Mso tab
name

Unique text
string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

550 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 550

Table A-6 (continued)

REQ

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

group Element
Table A-7 lists all of the static and dynamic attributes specific to the group element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the group element
in Chapter 3.

Table A-7: Table of group Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

Continued

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

Valid Mso
group name

Valid Mso
group name

Unique
group idQ

Valid Mso
tab name

Unique text
string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

1 to 1024
characters

Appendix A ■ Tables of RibbonX Tags 551

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 551

Table A-7 (continued)

REQ

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

Ribbon Control Elements

This section of the appendix contains all of the controls placed within Ribbon groups
that the users will interact with.

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Valid group
idQ

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

Valid group
idQ

552 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 552

box Element
Table A-8 lists all of the static and dynamic attributes specific to the box element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the box element in
Chapter 10.

Table A-8: Table of box Attributes

REQ

id (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

boxStyle (none) O horizontal (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

button Element
Table A-9 lists all of the static and dynamic attributes specific to the button element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the button element
in Chapter 6.

true, false,
1, 0

horizontal,
vertical

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

Unique
control idQ

Unique text
string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Appendix A ■ Tables of RibbonX Tags 553

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 553

Table A-9: Table of button Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

onAction (Standard) R2 (none) Sub OnAction
(control As
IRibbonControl)

onAction (Repurpose) R2 (none) Sub OnAction
(control As
IRibbonControl,
ByRef
returnedVal)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

description getDescription O (none) Sub
GetDescription
(control As
IRibbonControl,
ByRef
returnedVal)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 1024
characters

true, false,
1, 0

1 to 4096
characters

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

1 to 4096
characters

1 to 4096
characters

Unique
control idQ

Valid Mso
control name

Unique text
string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

554 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 554

Table A-9 (continued)

REQ

imageMso getImage O (none) Same as above

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

size getSize O normal Sub GetSize
(control As
IRibbonControl,
ByRef
returnedVal)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

getShow↵
Image

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

normal,
large

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

Appendix A ■ Tables of RibbonX Tags 555

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 555

Table A-9 (continued)

REQ

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

buttonGroup Element
Table A-10 lists all of the static and dynamic attributes specific to the buttonGroup ele-
ment, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the buttonGroup
element in Chapter 10.

Table A-10: Table of buttonGroup Attributes

REQ

id (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

true, false,
1, 0

true, false,
1, 0

Unique
control idQ

Unique
control idQ

Valid Mso
control name

Valid Mso
control name

Unique
control idQ

Unique
text string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

556 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 556

checkBox Element
Table A-11 lists all of the static and dynamic attributes specific to the checkBox element,
as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the checkBox
element in Chapter 6.

Table A-11: Table of checkBox Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

(none) onAction OR (none) Sub OnAction
(control As
IRibbonControl,
pressed as
Boolean)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

description getDescription O (none) Sub
GetDescription
(control As
IRibbonControl,
ByRef
returnedVal)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

true, false,
1, 0

1 to 4096
characters

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

1 to 4096
characters

Unique
control idQ

Valid Mso
control name

Unique
text string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Appendix A ■ Tables of RibbonX Tags 557

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 557

Table A-11 (continued)

REQ

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

(none) getPressed O false Sub GetPressed
(control As
IRibbonControl,
ByRef
returnedVal)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

comboBox Element
Table A-12 lists all of the static and dynamic attributes specific to the comboBox element,
as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the comboBox
element in Chapter 7.

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 3
characters

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

558 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 558

Table A-12: Table of comboBox Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

(none) onChange OR (none) Sub OnChange
(control As
IRibbonControl,
text As String)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

(none) getItemCount O (none) Sub
GetItemCount
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

1 to 4096
characters

Unique
control idQ

Valid Mso
control name

Unique
text string

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Appendix A ■ Tables of RibbonX Tags 559

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 559

Table A-12 (continued)

REQ

(none) getItemID O (none) Sub GetItemID
(control As
IRibbonControl,
index As Integer,
ByRef id)

(none) getItemImage O (none) Sub
GetItemImage
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) getItemLabel O (none) Sub
GetItemLabel
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) O (none) Sub
GetItemScreenTip
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) O (none) Sub
GetItemSuperTip
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 1024
characters

1 to 3
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

getItem↵
Supertip

1 to 1024
characters

getItem↵
Screentip

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

560 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 560

Table A-12 (continued)

REQ

maxLength (none) O 1024 (none)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

(none) O true (none)

(none) O true (none)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

sizeString (none) O* 12 (none)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

(none) getText O (none) Sub GetText
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

true, false,
1, 0

showItem↵
Attribute

showItem↵
Image

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

true, false,
1, 0

getShow↵
Image

true, false,
1, 0

1 to 1024
characters

Appendix A ■ Tables of RibbonX Tags 561

91118bapp01.qxd:WileyRedTight 11/28/07 9:19 PM Page 561

Table A-12 (continued)

REQ

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

* The default value for the sizeString attribute (if the attribute is not declared at all) is approximately
12, but this varies depending on the characters used and the system font.

dialogBoxLauncher Element
The dialogBoxLauncher element does not have any attributes, either required or
optional.

C ROSS-RE FE RE NC E There is a detailed discussion of the
dialogBoxLauncher element in Chapter 11.

dropDown Element
Table A-13 lists all of the static and dynamic attributes specific to the dropDown element,
as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the dropDown
element in Chapter 7.

Table A-13: Table of dropDown Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)Unique
control idQ

Valid Mso
control name

Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

562 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 562

Table A-13 (continued)

REQ

(none) onAction OR (none) Sub OnAction
(control As
IRibbonControl,
Id As String,
Index As Integer)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

(none) getItemCount O (none) Sub
GetItemCount
(control As
IRibbonControl,
ByRef
returnedVal)

(none) getItemID O (none) Sub GetItemID
(control As
IRibbonControl,
index As Integer,
ByRef id)

Continued

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

Valid Mso
control name

Valid Mso
control name

1 to 4096
characters

Valid control
idQ

Valid control
idQ

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Appendix A ■ Tables of RibbonX Tags 563

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 563

Table A-13 (continued)

REQ

(none) getItemImage O (none) Sub
GetItemImage
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) getItemLabel O (none) Sub
GetItemLabel
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) O (none) Sub
GetItemScreenTip
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) O (none) Sub
GetItemSuperTip
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 1024
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

getItem↵
Screentip

1 to 1024
characters

1 to 3
characters

getItem↵
Supertip

1 to 1024
characters

564 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 564

Table A-13 (continued)

REQ

(none) O (none) Sub
GetSelectedItem↵
ID (control As
IRibbonControl,
ByRef index)

(none) O (none) Sub
GetSelectedItem↵
Index (control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

(none) O true (none)

l (none) O true (none)

showLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

sizeString (none) O* 12 (none)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

Continued

getShow↵
Label

showItem↵
Label

showItem↵
Image

1 to 1024
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

getSelected↵
ItemID

1 to 1024
characters

true, false,
1, 0

true, false,
1, 0

getShow↵
Image

true, false,
1, 0

getSelected↵
ItemIndex

true, false,
1, 0

1 to 1024
characters

true, false,
1, 0

Appendix A ■ Tables of RibbonX Tags 565

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 565

Table A-13 (continued)

REQ

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

* The default value for the sizeString attribute (if the attribute is not declared at all) is approximately
12, but this varies depending on the characters used and the system font.

dynamicMenu Element
Table A-14 lists all of the static and dynamic attributes specific to the dynamicMenu ele-
ment, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the dynamicMenu
element in Chapter 9.

Table A-14: Table of dynamicMenu Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)Valid control
idQ

Valid control
idQ

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

Valid Mso
control name

Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Valid Mso
control name

Valid Mso
control name

Unique
control idQ

566 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 566

Table A-14 (continued)

REQ

(none) getContent R (none) Sub GetContent
(control As
IRibbonControl,
ByRef
returnedVal)

description getDescription O (none) Sub
GetDescription
(control As
IRibbonControl,
ByRef
returnedVal)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 4096
characters

1 to 4096
characters

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Appendix A ■ Tables of RibbonX Tags 567

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 567

Table A-14: (continued)

REQ

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

size getSize O normal, large normal Sub GetSize
(control As
IRibbonControl,
ByRef
returnedVal)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

editBox Element
Table A-15 lists all of the static and dynamic attributes specific to the editBox element,
as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the editBox element
in Chapter 7.

getShow↵
Image

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

568 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 568

Table A-15: Table of editBox Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

(none) onChange OR (none) Sub OnChange
(control As
IRibbonControl,
text As String)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Valid Mso
control name

Valid Mso
control name

1 to 4096
characters

Unique
control idQ

Valid Mso
control name

Unique
text string

1 to 3
characters

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

Valid control
idQ

Valid control
idQ

Appendix A ■ Tables of RibbonX Tags 569

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 569

Table A-15 (continued)

REQ

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

maxLength (none) O 1024 (none)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

sizeString (none) O* 12 (none)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

(none) getText O (none) Sub GetText
(control As
IRibbonControl,
ByRef
returnedVal)

getShow↵
Image

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

570 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 570

Table A-15 (continued)

REQ

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

* The default value for the sizeString attribute (if the attribute is not declared at all) is approximately
12, but this varies depending based on the characters used and the system font.

gallery Element
Table A-16 lists all of the static and dynamic attributes specific to the gallery element,
as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the gallery element
in Chapter 8.

Table A-16: Table of gallery Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

(none) onAction R (none) Sub OnAction
(control As
IRibbonControl,
selectedId As
String,
selectedIndex As
Integer)

insertAfterMso (none) O1 (none) (none)

Continued

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Valid Mso
control name

1 to 4096
characters

Unique
control idQ

Valid Mso
control name

Unique
text string

Appendix A ■ Tables of RibbonX Tags 571

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 571

Table A-16 (continued)

REQ

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

columns (none) O 1 (none)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

(none) getItemCount O 0 to 1000 (none) Sub
GetItemCount
(control As
IRibbonControl,
ByRef
returnedVal)

itemHeight getItemHeight O 1 to 4096 150 Sub
getItemHeight
(control As
IRibbonControl,
ByRef
returnedVal)

(none) getItemID O (none) Sub GetItemID
(control As
IRibbonControl,
index As Integer,
ByRef id)

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Valid Mso
control name

Valid control
idQ

Valid control
idQ

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

Unique
text string

572 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 572

Table A-16 (continued)

REQ

(none) getItemImage O (none) Sub
GetItemImage
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) getItemLabel O (none) Sub
GetItemLabel
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) O (none) Sub
GetItemScreenTip
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

(none) O (none) Sub
GetItemSuperTip
(control As
IRibbonControl,
index As Integer,
ByRef
returnedVal)

itemWidth getItemWidth O 1 to 4096 200 Sub getItemWidth
(control As
IRibbonControl,
ByRef
returnedVal)

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

1 to 1024
characters

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

1 to 4096
characters

getItem↵
Screentip

1 to 4096
characters

1 to 4096
characters

getItem↵
Supertip

1 to 4096
characters

1 to 3
characters

Appendix A ■ Tables of RibbonX Tags 573

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 573

Table A-16 (continued)

REQ

rows (none) O 1 (none)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

(none) O s (none) Sub GetSelected
ItemID
(control As
IRibbonControl,
ByRef index)

(none) O (none) Sub GetSelected
ItemIndex
(control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

showItemImage (none) O true (none)

showItemLabel (none) O true (none)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

sizeString (none) O* 12 (none)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 1024
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

getSelected↵
ItemID

1 to 1024
characters

getSelected↵
ItemIndex

1 to 1024
characters

true, false,
1, 0

true, false,
1, 0

true, false,
1, 0

getShow↵
Image

true, false,
1, 0

1 to 1024
characters

574 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 574

Table A-16 (continued)

REQ

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

* The default value for the sizeString attribute (if the attribute is not declared at all) is approximately
12, but this varies depending on the characters used and the system font.

item Element
Table A-17 lists all of the static and dynamic attributes specific to the item element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the item element in
Chapter 7.

Table A-17: Table of item Attributes

REQ

id (none) R (none) (none)

image (none) O (none) (none)

imageMso (none) O (none) (none)

label (none) OR (none) (none)

screentip (none) O (none) (none)

supertip (none) O (none) (none)1 to 1024
characters

1 to 1024
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

1 to 1024
characters

Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Appendix A ■ Tables of RibbonX Tags 575

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 575

labelControl Element
Table A-18 lists all of the static and dynamic attributes specific to the labelControl
element, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the labelControl
element in Chapter 10.

Table A-18: Table of labelControl Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 1024
characters

Valid Mso
control name

Unique
control idQ

Valid Mso
control name

Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

true, false,
1, 0

Valid control
idQ

Valid control
idQ

Valid Mso
control name

1 to 1024
characters

576 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 576

Table A-18 (continued)

REQ

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

menu Element
Table A-19 lists all of the static and dynamic attributes specific to the menu element, as
well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the menu element in
Chapter 9.

Table A-19: Table of menu Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

Continued

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Unique
control idQ

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

true, false,
1, 0

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Valid Mso
control name

Unique
text string

Appendix A ■ Tables of RibbonX Tags 577

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 577

Table A-19 (continued)

REQ

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

description getDescription O (none) Sub
GetDescription
(control As
IRibbonControl,
ByRef
returnedVal)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

imageMso getImage O (none) Same as above

itemSize (none) O normal, large normal (none)

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

1 to 3
characters

1 to 1024
characters

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Valid Mso
control name

true, false,
1, 0

1 to 4096
characters

Valid control
idQ

Valid control
idQ

Valid Mso
control name

1 to 1024
characters

1 to 1024
characters

578 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 578

Table A-19 (continued)

REQ

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

size getSize O normal, large normal Sub GetSize
(control As
IRibbonControl,
ByRef
returnedVal)

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

menuSeparator Element
Table A-20 lists all of the static and dynamic attributes specific to the menuSeparator
element, as well as their allowed values, defaults, and callback signatures.

getShow↵
Image

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

true, false,
1, 0

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

1 to 1024
characters

Appendix A ■ Tables of RibbonX Tags 579

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 579

C ROSS-RE FE RE NC E There is a detailed discussion of the menuSeparator
element in Chapter 10.

Table A-20: Table of menuSeparator Attributes

REQ

id (none) R1 (none) (none)

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

title getTitle O line Sub GetTitle
(control As
IRibbonControl,
ByRef
returnedVal)

separator Element
Table A-21 lists all of the static and dynamic attributes specific to the separator ele-
ment, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the separator
element in Chapter 10.

Table A-21: Table of separator Attributes

REQ

id (none) R1 (none) (none)Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

Unique
control idQ

Unique
text string

1 to 1024
characters

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

580 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 580

Table A-21 (continued)

REQ

idQ (none) R1 (none) (none)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

splitButton Element
Table A-22 lists all of the static and dynamic attributes specific to the splitButton ele-
ment, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the splitButton
element in Chapter 9.

Table A-22: Table of splitButton Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

Continued

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

Unique
control idQ

Valid Mso
control name

Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

Unique
control idQ

Appendix A ■ Tables of RibbonX Tags 581

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 581

Table A-22 (continued)

REQ

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

toggleButton Element
Table A-23 lists all of the static and dynamic attributes specific to the toggleButton ele-
ment, as well as their allowed values, defaults, and callback signatures.

C ROSS-RE FE RE NC E There is a detailed discussion of the toggleButton
element in Chapter 6.

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

Valid Mso
control name

Valid Mso
control name

1 to 3
characters

true, false,
1, 0

Valid control
idQ

Valid control
idQ

true, false,
1, 0

1 to 1024
characters

true, false,
1, 0

582 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 582

Table A-23: Table of toggleButton Attributes

REQ

id (none) R1 (none) (none)

idMso (none) R1 (none) (none)

idQ (none) R1 (none) (none)

(none) onAction OR (none) Sub OnAction
(control As
IRibbonControl,
selectedId As
String,
selectedIndex As
Integer)

insertAfterMso (none) O1 (none) (none)

insertBeforeMso (none) O1 (none) (none)

insertAfterQ (none) O1 (none) (none)

insertBeforeQ (none) O1 (none) (none)

description getDescription O (none) Sub
GetDescription
(control As
IRibbonControl,
ByRef
returnedVal)

enabled getEnabled O true Sub GetEnabled
(control As
IRibbonControl,
ByRef
returnedVal)

image getImage O (none) Sub GetImage
(control As
IRibbonControl,
ByRef
returnedVal)

Continued

1 to 1024
characters

true, false,
1, 0

1 to 4096
characters

Unique
control idQ

Valid Mso
control name

Unique
text string

STATIC
ATTRIBUTE

DYNAMIC
ATTRIBUTE

ALLOWED
VALUES

DEFAULT
VALUE

VBA CALLBACK
SIGNATURE

1 to 4096
characters

Valid control
idQ

Valid control
idQ

Valid Mso
control name

Valid Mso
control name

Appendix A ■ Tables of RibbonX Tags 583

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 583

Table A-23 (continued)

REQ

imageMso getImage O (none) Same as above

keytip getKeytip O (none) Sub GetKeytip
(control As
IRibbonControl,
ByRef
returnedVal)

label getLabel OR (none) Sub GetLabel
(control As
IRibbonControl,
ByRef
returnedVal)

(none) getPressed O false Sub GetPressed
(control As
IRibbonControl,
ByRef
returnedVal)

screentip getScreentip O (none) Sub GetScreentip
(control As
IRibbonControl,
ByRef
returnedVal)

showImage O true Sub
GetShowImage
(control As
IRibbonControl,
ByRef
returnedVal)

showLabel getShowLabel O true Sub
GetShowLabel
(control As
IRibbonControl,
ByRef
returnedVal)

size getSize O normal, large normal Sub GetSize
(control As
IRibbonControl,
ByRef
returnedVal)

getShow↵
Image

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

true, false,
1, 0

1 to 1024
characters

1 to 3
characters

1 to 1024
characters

true, false,
1, 0

true, false,
1, 0

1 to 1024
characters

584 Appendix A ■ Tables of RibbonX Tags

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 584

Table A-23 (continued)

REQ

supertip getSupertip O (none) Sub GetSupertip
(control As
IRibbonControl,
ByRef
returnedVal)

tag (none) O (none) (none)

visible getVisible O true Sub GetVisible
(control As
IRibbonControl,
ByRef
returnedVal)

VBA CALLBACK
SIGNATURE

DEFAULT
VALUE

ALLOWED
VALUES

DYNAMIC
ATTRIBUTE

STATIC
ATTRIBUTE

1 to 1024
characters

true, false,
1, 0

1 to 1024
characters

Appendix A ■ Tables of RibbonX Tags 585

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 585

91118bapp01.qxd:WileyRedTight 11/28/07 9:20 PM Page 586

587

This appendix is divided into three main sections covering tab elements, contextual
tabs, and built-in groups. The first provides a table of the idMso identifiers for the
built-in tab elements that are common across all three applications.

The second section of this appendix contains lists of the idMso identifiers for each of
the contextual tabs, and is broken down by specific application. It might be helpful to
note that the terms may differ by application.

The third and final section holds tables of the idMso identifiers for Microsoft’s built-
in groups that are available in each application. These tables contain the individual
group names and their default tab. This will be an invaluable reference, providing a
fast and easy way to locate the idMso you need.

As an added bonus, we’ve included these tables in the chapter download, so that
you can easily search, copy, and paste the names to avoid typos. This file (idMsoGuide_
TabAndGroupElements.xlsx) can be downloaded from the book’s website at www.wiley
.com/go/ribbonx.

Common Tab idMso Identifiers

Table B-1 lists all of the idMso identifiers for the built-in tabs that are present in Excel,
Access, and Word. The applications are listed in columns, making it easy to identify
whether the tab name changes between applications.

Tables of Tab and
Group idMso Names

A P P E N D I X

B

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 587

Table B-1: idMso Identifiers for Common Built-in tab Elements

TAB NAME EXCEL ACCESS WORD

Home TabHome TabHomeAccess TabHome

Insert TabInsert (none) TabInsert

Create (none) TabCreate (none)

Page Layout TabPageLayoutExcel (none) TabPageLayoutWord

Formulas TabFormulas (none) (none)

Data TabData (none) (none)

References (none) (none) TabReferences

Mailings (none) (none) TabMailings

External Data (none) TabExternalData (none)

Database Tools (none) TabDatabaseTools (none)

Review TabReview (none) TabReviewWord

View TabView (none) TabView

Developer TabDeveloper (none) TabDeveloper

AddIns TabAddIns TabAddIns TabAddIns

Contextual Tab idMso Identifiers

This section of the appendix lists the idMso identifiers for the contextual tabs specific
to each application.

Contextual Tab idMso Identifiers for Excel
The idMso identifiers for Excel’s contextual tabs are as follows:

■■ TabChartToolsDesign

■■ TabChartToolsFormat

■■ TabChartToolsLayout

■■ TabDrawingToolsFormat

■■ TabHeaderAndFooterToolsDesign

■■ TabInkToolsPens

■■ TabPictureToolsFormat

■■ TabPivotChartToolsAnalyze

588 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 588

■■ TabPivotChartToolsDesign

■■ TabPivotChartToolsFormat

■■ TabPivotChartToolsLayout

■■ TabPivotTableToolsDesign

■■ TabPivotTableToolsOptions

■■ TabPrintPreview

■■ TabSmartArtToolsDesign

■■ TabSmartArtToolsFormat

■■ TabTableToolsDesignExcel

Contextual Tab idMso Identifiers for Access
The idMso identifiers for Access’s contextual tabs are as follows:

■■ TabAdpDiagramDesign

■■ TabAdpFunctionAndViewToolsDesign

■■ TabAdpSqlStatementDesign

■■ TabAdpStoredProcedureToolsDesign

■■ TabControlLayout

■■ TabFormToolsDesign

■■ TabFormToolsFormatting

■■ TabFormToolsLayout

■■ TabMacroToolsDesign

■■ TabPivotChartDesign

■■ TabPivotTableDesign

■■ TabPrintPreviewAccess

■■ TabQueryToolsDesign

■■ TabRelationshipToolsDesign

■■ TabReportToolsAlignment

■■ TabReportToolsDesign

■■ TabReportToolsFormatting

■■ TabReportToolsLayout

■■ TabReportToolsPageSetupDesign

■■ TabReportToolsPageSetupLayout

■■ TabSourceControl

■■ TabTableToolsDatasheet

■■ TabTableToolsDesignAccess

Appendix B ■ Tables of Tab and Group idMso Names 589

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 589

Contextual Tab idMso Identifiers for Word
The idMso identifiers for Word’s contextual tabs are as follows:

■■ TabBlogInsert

■■ TabBlogPost

■■ TabChartToolsDesign

■■ TabChartToolsFormat

■■ TabChartToolsLayout

■■ TabDiagramToolsFormatClassic

■■ TabDrawingToolsFormatClassic

■■ TabEquationToolsDesign

■■ TabHeaderAndFooterToolsDesign

■■ TabInkToolsPens

■■ TabOrganizationChartToolsFormat

■■ TabOutlining

■■ TabPictureToolsFormat

■■ TabPictureToolsFormatClassic

■■ TabPrintPreview

■■ TabSmartArtToolsDesign

■■ TabSmartArtToolsFormat

■■ TabTableToolsDesign

■■ TabTableToolsLayout

■■ TabTextBoxToolsFormat

■■ TabWordArtToolsFormat

Group idMso Identifiers

Like the contextual tab identifiers, this section is broken down by application to provide
a listing for the group idMso identifiers. To make it easier to search these tables, we have
listed the groups with their tab, in the order that the tabs appear on the Ribbon. Simply
look up the tab name in the first column, and you’ll find the name of the applicable
group elements listed in the second column. Again, the items are in the order in which
they appear, rather than alphabetical. You will also see a few groups repeated, as some
groups appear on multiple tabs.

Excel’s Group idMso Identifiers
Table B-2 lists all of the group idMso identifiers for Microsoft Excel, along with the tabs
on which the group can be found.

590 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 590

Table B-2: Group idMso Identifiers for Microsoft Excel

TAB idMso GROUP idMso

TabHome GroupClipboard

TabHome GroupFont

TabHome GroupAlignmentExcel

TabHome GroupNumber

TabHome GroupStyles

TabHome GroupCells

TabHome GroupEditingExcel

TabInsert GroupInsertTablesExcel

TabInsert GroupInsertIllustrations

TabInsert GroupInsertChartsExcel

TabInsert GroupInsertLinks

TabInsert GroupInsertText

TabInsert GroupInsertBarcode

TabPageLayoutExcel GroupThemesExcel

TabPageLayoutExcel GroupPageSetup

TabPageLayoutExcel GroupPageLayoutScaleToFit

TabPageLayoutExcel GroupPageLayoutSheetOptions

TabPageLayoutExcel GroupArrange

TabFormulas GroupFunctionLibrary

TabFormulas GroupNamedCells

TabFormulas GroupFormulaAuditing

TabFormulas GroupCalculation

TabData GroupGetExternalData

TabData GroupConnections

TabData GroupSortFilter

TabData GroupDataTools

TabData GroupOutline

TabReview GroupProofing

TabReview GroupComments

Continued

Appendix B ■ Tables of Tab and Group idMso Names 591

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 591

Table B-2 (continued)

TAB idMso GROUP idMso

TabReview GroupChangesExcel

TabReview GroupInk

TabView GroupWorkbookViews

TabView GroupViewShowHide

TabView GroupZoom

TabView GroupWindow

TabView GroupMacros

TabDeveloper GroupCode

TabDeveloper GroupControls

TabDeveloper GroupXml

TabDeveloper GroupModify

TabAddIns GroupAddInsMenuCommands

TabAddIns GroupAddInsToolbarCommands

TabAddIns GroupAddInsCustomToolbars

TabPrintPreview GroupPrintPreviewPrint

TabPrintPreview GroupPrintPreviewZoom

TabPrintPreview GroupPrintPreviewPreview

TabSmartArtToolsDesign GroupSmartArtCreateGraphic

TabSmartArtToolsDesign GroupSmartArtLayouts

TabSmartArtToolsDesign GroupSmartArtQuickStyles

TabSmartArtToolsDesign GroupSmartArtReset

TabSmartArtToolsFormat GroupSmartArtShapes

TabSmartArtToolsFormat GroupShapeStyles

TabSmartArtToolsFormat GroupWordArtStyles

TabSmartArtToolsFormat GroupArrange

TabSmartArtToolsFormat GroupSmartArtSize

TabChartToolsDesign GroupChartType

TabChartToolsDesign GroupChartData

TabChartToolsDesign GroupChartLayouts

592 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 592

Table B-2 (continued)

TAB idMso GROUP idMso

TabChartToolsDesign GroupChartStyles

TabChartToolsDesign GroupChartLocation

TabChartToolsLayout GroupChartCurrentSelection

TabChartToolsLayout GroupChartShapes

TabChartToolsLayout GroupChartLabels

TabChartToolsLayout GroupChartAxes

TabChartToolsLayout GroupChartBackground

TabChartToolsLayout GroupChartAnalysis

TabChartToolsLayout GroupChartProperties

TabChartToolsFormat GroupChartCurrentSelection

TabChartToolsFormat GroupShapeStyles

TabChartToolsFormat GroupWordArtStyles

TabChartToolsFormat GroupArrange

TabChartToolsFormat GroupSize

TabDrawingToolsFormat GroupShapes

TabDrawingToolsFormat GroupShapeStyles

TabDrawingToolsFormat GroupWordArtStyles

TabDrawingToolsFormat GroupArrange

TabDrawingToolsFormat GroupSize

TabPictureToolsFormat GroupPictureTools

TabPictureToolsFormat GroupPictureStyles

TabPictureToolsFormat GroupArrange

TabPictureToolsFormat GroupPictureSize

TabPivotTableToolsOptions GroupPivotTableOptions

TabPivotTableToolsOptions GroupPivotTableActiveField

TabPivotTableToolsOptions GroupPivotTableGroup

TabPivotTableToolsOptions GroupPivotTableSort

TabPivotTableToolsOptions GroupPivotTableData

TabPivotTableToolsOptions GroupPivotActions

Continued

Appendix B ■ Tables of Tab and Group idMso Names 593

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 593

Table B-2 (continued)

TAB idMso GROUP idMso

TabPivotTableToolsOptions GroupPivotTableTools

TabPivotTableToolsOptions GroupPivotTableShowHide

TabPivotTableToolsDesign GroupPivotTableLayout

TabPivotTableToolsDesign GroupPivotTableStyleOptions

TabPivotTableToolsDesign GroupPivotTableStyles

TabHeaderAndFooterToolsDesign GroupHeaderFooter

TabHeaderAndFooterToolsDesign GroupHeaderFooterElements

TabHeaderAndFooterToolsDesign GroupHeaderFooterNavigation

TabHeaderAndFooterToolsDesign GroupHeaderFooterOptions

TabTableToolsDesignExcel GroupTableProperties

TabTableToolsDesignExcel GroupTableTools

TabTableToolsDesignExcel GroupTableExternalData

TabTableToolsDesignExcel GroupTableStyleOptions

TabTableToolsDesignExcel GroupTableStylesExcel

TabPivotChartToolsDesign GroupChartType

TabPivotChartToolsDesign GroupChartData

TabPivotChartToolsDesign GroupChartLayouts

TabPivotChartToolsDesign GroupChartStyles

TabPivotChartToolsDesign GroupChartLocation

TabPivotChartToolsLayout GroupChartCurrentSelection

TabPivotChartToolsLayout GroupChartShapes

TabPivotChartToolsLayout GroupChartLabels

TabPivotChartToolsLayout GroupChartAxes

TabPivotChartToolsLayout GroupChartBackground

TabPivotChartToolsLayout GroupChartAnalysis

TabPivotChartToolsLayout GroupChartProperties

TabPivotChartToolsFormat GroupChartCurrentSelection

TabPivotChartToolsFormat GroupShapeStyles

TabPivotChartToolsFormat GroupWordArtStyles

594 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 594

Table B-2 (continued)

TAB idMso GROUP idMso

TabPivotChartToolsFormat GroupArrange

TabPivotChartToolsFormat GroupSize

TabPivotChartToolsAnalyze GroupPivotChartActiveField

TabPivotChartToolsAnalyze GroupPivotChartData

TabPivotChartToolsAnalyze GroupPivotChartShowOrHide

TabInkToolsPens GroupInkSelect

TabInkToolsPens GroupInkPens

TabInkToolsPens GroupInkFormat

TabInkToolsPens GroupInkClose

None (Not in the Ribbon) Group3DEffects

None (Not in the Ribbon) GroupShadowEffects

None (Not in the Ribbon) GroupDrawBorders

Access’s Group idMso Identifiers
Table B-3 lists all of the group idMso identifiers for Microsoft Access, along with the tab
on which the group can be found.

Table B-3: Group idMso Identifiers for Microsoft Access

TAB idMso GROUP idMso

TabPrintPreviewAccess GroupPrintPreviewPrintAccess

TabPrintPreviewAccess GroupPageLayoutAccess

TabPrintPreviewAccess GroupZoom

TabPrintPreviewAccess GroupPrintPreviewData

TabPrintPreviewAccess GroupPrintPreviewClosePreview

TabHomeAccess GroupViews

TabHomeAccess GroupClipboard

TabHomeAccess GroupTextFormatting

TabHomeAccess GroupRichText

Continued

Appendix B ■ Tables of Tab and Group idMso Names 595

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 595

Table B-3 (continued)

TAB idMso GROUP idMso

TabHomeAccess GroupRecords

TabHomeAccess GroupSortAndFilter

TabHomeAccess GroupWindowAccess

TabHomeAccess GroupFindAccess

TabCreate GroupCreateTables

TabCreate GroupCreateForms

TabCreate GroupCreateReports

TabCreate GroupCreateOther

TabExternalData GroupImport

TabExternalData GroupExport

TabExternalData GroupCollectData

TabExternalData GroupSharepointLists

TabDatabaseTools GroupMacro

TabDatabaseTools GroupViewsShowHide

TabDatabaseTools GroupAnalyze

TabDatabaseTools GroupMoveData

TabDatabaseTools GroupDatabaseTools

TabDatabaseTools GroupAdminister

TabSourceControl GroupDatabaseSourceControl

TabSourceControl GroupSourceControlShow

TabSourceControl GroupSourceControlManage

TabAddIns GroupAddInsMenuCommands

TabAddIns GroupAddInsToolbarCommands

TabAddIns GroupAddInsCustomToolbars

TabFormToolsFormatting GroupViews

TabFormToolsFormatting GroupFontAccess

TabFormToolsFormatting GroupFormatting

TabFormToolsFormatting GroupFormattingGridlines

TabFormToolsFormatting GroupFormattingControls

596 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 596

Table B-3 (continued)

TAB idMso GROUP idMso

TabFormToolsFormatting GroupAutoFormatAccess

TabControlLayout GroupMarginsAndPaddingControlLayout

TabControlLayout GroupControlAlignmentLayout

TabControlLayout GroupControlPositionLayout

TabControlLayout GroupFieldsTools

TabFormToolsDesign GroupViews

TabFormToolsDesign GroupFontAccess

TabFormToolsDesign GroupDesignGridlines

TabFormToolsDesign GroupControlsAccess

TabFormToolsDesign GroupToolsAccess

TabFormToolsLayout GroupAutoFormatAccess

TabFormToolsLayout GroupMarginsAndPadding

TabFormToolsLayout GroupControlAlignment

TabFormToolsLayout GroupSizeAndPosition

TabFormToolsLayout GroupPosition

TabFormToolsLayout GroupLayoutShowHide

TabReportToolsFormatting GroupViews

TabReportToolsFormatting GroupFontAccess

TabReportToolsFormatting GroupFormatting

TabReportToolsFormatting GroupGroupingAndTotals

TabReportToolsFormatting GroupFormattingGridlines

TabReportToolsFormatting GroupFormattingControls

TabReportToolsFormatting GroupAutoFormatAccess

TabReportToolsLayout GroupMarginsAndPaddingControlLayout

TabReportToolsLayout GroupControlAlignmentLayout

TabReportToolsLayout GroupPositionLayout

TabReportToolsLayout GroupFieldsTools

TabReportToolsPageSetupLayout GroupPageLayoutAccess

TabReportToolsDesign GroupViews

Continued

Appendix B ■ Tables of Tab and Group idMso Names 597

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 597

Table B-3 (continued)

TAB idMso GROUP idMso

TabReportToolsDesign GroupFontAccess

TabReportToolsDesign GroupGroupingAndTotals

TabReportToolsDesign GroupDesignGridlines

TabReportToolsDesign GroupControlsAccess

TabReportToolsDesign GroupToolsAccess

TabReportToolsAlignment GroupAutoFormatAccess

TabReportToolsAlignment GroupMarginsAndPadding

TabReportToolsAlignment GroupControlAlignment

TabReportToolsAlignment GroupPosition

TabReportToolsAlignment GroupControlSize

TabReportToolsAlignment GroupLayoutShowHide

TabReportToolsPageSetupDesign GroupPageLayoutAccess

TabRelationshipToolsDesign GroupRelationshipsTools

TabRelationshipToolsDesign GroupRelationships

TabQueryToolsDesign GroupQueryResults

TabQueryToolsDesign GroupQueryType

TabQueryToolsDesign GroupQuerySetup

TabQueryToolsDesign GroupQueryShowHide

TabQueryToolsDesign GroupQueryClose

TabMacroToolsDesign GroupMacroTools

TabMacroToolsDesign GroupMacroRows

TabMacroToolsDesign GroupMacroShowHide

TabMacroToolsDesign GroupMacroClose

TabPivotTableDesign GroupViews

TabPivotTableDesign GroupPivotTableShowHideAccess

TabPivotTableDesign GroupPivotTableSelections

TabPivotTableDesign GroupPivotTableFilterAndSort

TabPivotTableDesign GroupPivotTableDataAccess

TabPivotTableDesign GroupPivotTableActiveFieldAccess

TabPivotTableDesign GroupPivotTableToolsAccess

598 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 598

Table B-3 (continued)

TAB idMso GROUP idMso

TabPivotChartDesign GroupViews

TabPivotChartDesign GroupPivotChartShowHide

TabPivotChartDesign GroupPivotChartFilterAndSort

TabPivotChartDesign GroupPivotChartDataAccess

TabPivotChartDesign GroupPivotChartActiveFieldAccess

TabPivotChartDesign GroupPivotChartType

TabPivotChartDesign GroupPivotChartTools

TabTableToolsDatasheet GroupViews

TabTableToolsDatasheet GroupFieldsAndColumns

TabTableToolsDatasheet GroupDataTypeAndFormatting

TabTableToolsDatasheet GroupDatasheetRelationships

TabTableToolsDatasheet GroupSharePointList

TabTableToolsDesignAccess GroupViews

TabTableToolsDesignAccess GroupTableDesignTools

TabTableToolsDesignAccess GroupTableDesignShowHide

TabTableToolsDesignAccess GroupSharePointList

TabAdpFunctionAndViewToolsDesign GroupViews

TabAdpFunctionAndViewToolsDesign GroupAdpQueryTools

TabAdpFunctionAndViewToolsDesign GroupAdpOutputOperations

TabAdpStoredProcedureToolsDesign GroupViews

TabAdpStoredProcedureToolsDesign GroupAdpQueryTools

TabAdpStoredProcedureToolsDesign GroupAdpOutputOperations

TabAdpStoredProcedureToolsDesign GroupAdpQueryType

TabAdpSqlStatementDesign GroupViews

TabAdpSqlStatementDesign GroupAdpSqlStatementDesignTools

TabAdpDiagramDesign GroupViews

TabAdpDiagramDesign GroupSchemaTools

TabAdpDiagramDesign GroupAdpDiagramShowHide

TabAdpDiagramDesign GroupAdpDiagramLayout

Appendix B ■ Tables of Tab and Group idMso Names 599

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 599

Word’s Group idMso Identifiers
Table B-4 lists all of the group idMso identifiers for Microsoft Word, along with the tab
on which the group can be found.

Table B-4: Group idMso Identifiers for Microsoft Word

TAB idMso GROUP idMso

TabHome GroupClipboard

TabHome GroupFont

TabHome GroupParagraph

TabHome GroupStyles

TabHome GroupEditing

TabInsert GroupInsertPages

TabInsert GroupInsertTables

TabInsert GroupInsertIllustrations

TabInsert GroupInsertLinks

TabInsert GroupHeaderFooter

TabInsert GroupInsertText

TabInsert GroupInsertSymbols

TabInsert GroupInsertBarcode

TabPageLayoutWord GroupThemesWord

TabPageLayoutWord GroupPageLayoutSetup

TabPageLayoutWord GroupPageBackground

TabPageLayoutWord GroupParagraphLayout

TabPageLayoutWord GroupArrange

TabReferences GroupTableOfContents

TabReferences GroupFootnotes

TabReferences GroupCitationsAndBibliography

TabReferences GroupCaptions

TabReferences GroupIndex

TabReferences GroupTableOfAuthorities

TabMailings GroupEnvelopeLabelCreate

600 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 600

Table B-4 (continued)

TAB idMso GROUP idMso

TabMailings GroupMailMergeStart

TabMailings GroupMailMergeWriteInsertFields

TabMailings GroupMailMergePreviewResults

TabMailings GroupMailMergeFinish

TabReviewWord GroupProofing

TabReviewWord GroupChineseTranslation

TabReviewWord GroupComments

TabReviewWord GroupChangesTracking

TabReviewWord GroupChanges

TabReviewWord GroupCompare

TabReviewWord GroupProtect

TabReviewWord GroupInk

TabView GroupDocumentViews

TabView GroupViewShowHide

TabView GroupZoom

TabView GroupWindow

TabView GroupMacros

TabDeveloper GroupCode

TabDeveloper GroupControls

TabDeveloper GroupXml

TabDeveloper GroupProtect

TabDeveloper GroupTemplates

TabAddIns GroupAddInsMenuCommands

TabAddIns GroupAddInsToolbarCommands

TabAddIns GroupAddInsCustomToolbars

TabOutlining GroupOutliningTools

TabOutlining GroupMasterDocument

TabOutlining GroupOutliningClose

TabPrintPreview GroupPrintPreviewPrint

Continued

Appendix B ■ Tables of Tab and Group idMso Names 601

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 601

Table B-4 (continued)

TAB idMso GROUP idMso

TabPrintPreview GroupPrintPreviewPageSetup

TabPrintPreview GroupZoom

TabPrintPreview GroupPrintPreviewPreview

TabBlogInsert GroupInsertTables

TabBlogInsert GroupInsertIllustrations

TabBlogInsert GroupBlogInsertLinks

TabBlogInsert GroupBlogInsertText

TabBlogInsert GroupBlogSymbols

TabBlogPost GroupBlogPublish

TabBlogPost GroupClipboard

TabBlogPost GroupBlogBasicText

TabBlogPost GroupBlogStyles

TabBlogPost GroupBlogProofing

TabSmartArtToolsDesign GroupSmartArtCreateGraphic

TabSmartArtToolsDesign GroupSmartArtLayouts

TabSmartArtToolsDesign GroupSmartArtQuickStyles

TabSmartArtToolsDesign GroupSmartArtReset

TabSmartArtToolsFormat GroupSmartArtShapes

TabSmartArtToolsFormat GroupShapeStyles

TabSmartArtToolsFormat GroupWordArtStyles

TabSmartArtToolsFormat GroupArrange

TabSmartArtToolsFormat GroupSmartArtSize

TabChartToolsDesign GroupChartType

TabChartToolsDesign GroupChartData

TabChartToolsDesign GroupChartLayouts

TabChartToolsDesign GroupChartStyles

TabChartToolsLayout GroupChartCurrentSelection

TabChartToolsLayout GroupChartShapes

TabChartToolsLayout GroupChartLabels

602 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 602

Table B-4 (continued)

TAB idMso GROUP idMso

TabChartToolsLayout GroupChartAxes

TabChartToolsLayout GroupChartBackground

TabChartToolsLayout GroupChartAnalysis

TabChartToolsFormat GroupChartCurrentSelection

TabChartToolsFormat GroupShapeStyles

TabChartToolsFormat GroupWordArtStyles

TabChartToolsFormat GroupArrange

TabChartToolsFormat GroupSize

TabPictureToolsFormat GroupPictureTools

TabPictureToolsFormat GroupPictureStyles

TabPictureToolsFormat GroupArrange

TabPictureToolsFormat GroupPictureSize

TabDrawingToolsFormatClassic GroupShapesClassic

TabDrawingToolsFormatClassic GroupShapeStylesClassic

TabDrawingToolsFormatClassic GroupShadowEffects

TabDrawingToolsFormatClassic Group3DEffects

TabDrawingToolsFormatClassic GroupArrange

TabDrawingToolsFormatClassic GroupSizeClassic

TabWordArtToolsFormat GroupWordArtText

TabWordArtToolsFormat GroupWordArtStylesClassic

TabWordArtToolsFormat GroupShadowEffects

TabWordArtToolsFormat Group3DEffects

TabWordArtToolsFormat GroupArrange

TabWordArtToolsFormat GroupSizeClassic

TabDiagramToolsFormatClassic GroupDiagramLayoutClassic

TabDiagramToolsFormatClassic GroupDiagramStylesClassic

TabDiagramToolsFormatClassic GroupShadowEffects

TabDiagramToolsFormatClassic Group3DEffects

TabDiagramToolsFormatClassic GroupDiagramArrangeClassic

Continued

Appendix B ■ Tables of Tab and Group idMso Names 603

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 603

Table B-4 (continued)

TAB idMso GROUP idMso

TabDiagramToolsFormatClassic GroupSizeClassic

TabOrganizationChartToolsFormat GroupOrganizationChartShapeInsert

TabOrganizationChartToolsFormat GroupOrganizationChartLayoutClassic

TabOrganizationChartToolsFormat GroupOrganizationChartStyleClassic

TabOrganizationChartToolsFormat GroupOrganizationChartSelect

TabOrganizationChartToolsFormat GroupShadowEffects

TabOrganizationChartToolsFormat Group3DEffects

TabOrganizationChartToolsFormat GroupDiagramArrangeClassic

TabOrganizationChartToolsFormat GroupSizeClassic

TabTextBoxToolsFormat GroupTextBoxText

TabTextBoxToolsFormat GroupTextBoxStyles

TabTextBoxToolsFormat GroupShadowEffects

TabTextBoxToolsFormat Group3DEffects

TabTextBoxToolsFormat GroupTextBoxArrange

TabTextBoxToolsFormat GroupSizeClassic

TabTableToolsDesign GroupTableLayout

TabTableToolsDesign GroupTableStylesWord

TabTableToolsDesign GroupTableDrawBorders

TabTableToolsLayout GroupTable

TabTableToolsLayout GroupTableRowsAndColumns

TabTableToolsLayout GroupTableMerge

TabTableToolsLayout GroupTableCellSize

TabTableToolsLayout GroupTableAlignment

TabTableToolsLayout GroupTableData

TabHeaderAndFooterToolsDesign GroupHeaderFooter

TabHeaderAndFooterToolsDesign GroupHeaderFooterInsert

TabHeaderAndFooterToolsDesign GroupHeaderFooterNavigation

TabHeaderAndFooterToolsDesign GroupHeaderFooterOptions

TabHeaderAndFooterToolsDesign GroupHeaderFooterPosition

604 Appendix B ■ Tables of Tab and Group idMso Names

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 604

Table B-4 (continued)

TAB idMso GROUP idMso

TabHeaderAndFooterToolsDesign GroupHeaderFooterClose

TabEquationToolsDesign GroupEquationTools

TabEquationToolsDesign GroupEquationSymbols

TabEquationToolsDesign GroupEquationStructures

TabPictureToolsFormatClassic GroupPictureToolsClassic

TabPictureToolsFormatClassic GroupShadowEffects

TabPictureToolsFormatClassic GroupBorder

TabPictureToolsFormatClassic GroupArrange

TabPictureToolsFormatClassic GroupPictureSizeClassic

TabInkToolsPens GroupInkSelect

TabInkToolsPens GroupInkPens

TabInkToolsPens GroupInkFormat

TabInkToolsPens GroupInkClose

Appendix B ■ Tables of Tab and Group idMso Names 605

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 605

91118bapp02.qxd:WileyRedTight 11/28/07 9:20 PM Page 606

This appendix contains a reference guide to imageMso and three tools (one for each
application discussed in the book) that you can use to find the imageMso reference for
the majority of controls available in the Ribbon. Keep in mind that although the lists
provided in these tools are extensive, they are by no means exhaustive, and we can
always hope that more controls are added.

We start by arming you with a method for manually obtaining the imageMso refer-
ence. It’s a good thing to know and it fortifies your understanding of how things work.
After covering those basic steps, however, we promptly move on to providing you
with three handy tools that you can use to quickly scan through the images, grab the
reference needed for a specific image, and then place the XML code for the button in
the clipboard.

You’ll also appreciate that the files are available in the companion files for this book.
These can be downloaded from the book’s website at www.wiley.com/go/ribbonx.

How to Get Your Own imageMso References

Let’s begin with a trick to find the reference for an imageMso. Start by opening the
Application Options window and clicking the Customize option. Then, from the
Choose Commands From drop-down list, you can choose one of the built-in tabs (or
show all commands) and then simply point to and hover over the icon of your choice.
After a second or two, a help tip will appear, indicating the imageMso for that icon. Fig-
ure C-1 shows how this is done.

A P P E N D I X

C

imageMso Reference Guide

91118bapp03.qxd:WileyRedTightPart 11/28/07 9:20 PM Page 607

Figure C-1: Finding your imageMso
reference

As shown in Figure C-1, by pointing to the Delete All Ink icon, you can determine
that the imageMso for it is InkDeleteAllInk.

That is really all you have to do in order to get the reference you need.
The process is the same regardless of the application that you are using. The next

section presents you with handy tools that list the imageMso references.

Your Own Reference Tool

In the previous topic, you learned how to manually look up the imageMso. Knowing
where to go is definitely the way to go (if you forgive us the pun). Not only will you
have a current and more accurate listing, but this enables you to be independent —
you will no longer be reliant on Internet searches or someone else’s tables to find out
about some obscure imageMso that you so desperately want to use in your project.

However, if you’d like a simpler approach that provides most of the references with
just a few clicks, you can use the handy tools that we’ve created and are generously
providing to you in this book! It puts the imageMsos into galleries, which are grouped
by a range of letters from A to Z, such as A–E, F–M, and so on.

Figure C-2 shows a sample of the reference for Excel. Files for Excel, Word, and
Access are available with the download for this appendix. All you need to do is open
the file (using Office 2007, of course) and it will display the icon images. Then, just click
on the image and the XML code will be generated for that button.

Figure C-2: imageMso reference workbook

608 Appendix C ■ imageMso Reference Guide

91118bapp03.qxd:WileyRedTightPart 11/28/07 9:20 PM Page 608

Upon clicking the image of the imageMso you want, a message will be shown indi-
cating that the XML code has been copied onto the clipboard, as shown in Figure C-3.

Figure C-3: Message box indicating that XML code
has been copied to the clipboard

Once you click OK, the code will be in the clipboard ready for pasting. In this par-
ticular case, our tool will generate the following XML for a button whose imageMso is
the rxHangulHanjaConversion. The code is as follows:

<button id=”1_rxHangulHanjaConversion” label=”rxHangulHanjaConversion”

imageMso=”HangulHanjaConversion”/>

The XML code for our little tools is very long, running into tens of pages, so we will
not display it here. However, the constructs are essentially the same as what we’ve
been using. In addition, you can review the code to your heart’s content after you
download the files for this appendix. In fact, for Access, the XML code for the appen-
dix tool is stored in a Word file, so you can open and inspect it directly without using
Access and the VBE.

You’ll notice and appreciate that we even added a shared callback to the buttons,
which, when clicked, generate the XML code for the specific button. We even took that
a step further, adding the code to the clipboard. Talk about going the extra mile! But
that’s what this book is all about; we want to make it as easy as possible for you to cre-
ate Ribbon customizations.

NOTE The Access tool loads the UI from the online download files this
appendix. This is necessary because the Memo field cannot store all the data
required to create the UI. Make sure this file is in the same location as the
Access file; otherwise, the UI will fail to load.

CAUTION Because all three tools provided here use VBA code, you must
place these sample files in a trusted location. If you don’t, you must explicitly
grant execution privileges to the tools so that they can perform their magic.

Appendix C ■ imageMso Reference Guide 609

91118bapp03.qxd:WileyRedTightPart 11/28/07 9:20 PM Page 609

91118bapp03.qxd:WileyRedTightPart 11/28/07 9:20 PM Page 610

611

The keyboard is probably the quickest way to perform an action in just about any
application. This is mainly because you do not need to take your hands away from the
keyboard to reach for the mouse in order to actually execute a command — you just
keep on typing and never lose the positioning of your fingers.

This appendix provides a list of common keytips and accelerator key combinations
that you can use to open some common dialog boxes, such as the Format Cells dialog
box in Excel or the Font dialog box in Word.

You call either a keytip or an accelerator by pressing the Alt key or the F10 function
key followed by the letters that make up the sequence. This is different from the short-
cut key, which must be pressed simultaneously to get the desired result. Keytips and
accelerator keys require that the keys be pressed in sequence, one after the other.

Keytips and Accelerator Keys for Excel

Using the keyboard instead of the mouse often represents a gain in terms of speed
when performing an action. If you are someone who prefers to use the keyboard
instead of the mouse, then you should be happy to learn that the Ribbon offers even
more possibilities to quickly perform tasks without ever reaching for the mouse.

The list in this appendix is not exhaustive, but it gives you a sense of what is possi-
ble with accelerator keys (a legacy from previous versions of Office).

TI P To remove the keytips or accelerator sequence displays, press either Alt,
F10, or Esc.

Keytips and Accelerator keys

A P P E N D I X

D

91118bapp04.qxd:WileyRedTight 11/28/07 9:20 PM Page 611

The Office 2007 keytips are covered in Chapter 11, and since they can easily be dis-
played, there’s no need for a list. Accelerator keys, however, don’t have a convenient
display mechanism, so Table E-1 provides a list of command actions that can be
accomplished using accelerator keys. As you review the list, you’ll notice that many
accelerator key combinations require more keystrokes than the corresponding short-
cut combination. Keep in mind that shortcuts require all keys to be pressed at the
same time, which can present a challenge for many users. Using keys in a sequence
can be a welcome alternative.

Table D-1: Accelerator Keys for Excel/Access/Word 2003 Applicable to Version 2007

ACCELERATOR KEY WHAT IT DOES APPLIES TO

Alt → E → B Excel, Word, and Access

Alt → E → C Excel, Word, and Access

Alt → E → E Excel, Word, and Access

Alt → E → F Excel, Word, and Access

Alt → E → P Excel, Word, and Access

Alt → E → R Excel and Word

Alt → E → R Access

Alt → E → T Excel, Word, and Access

Alt → E → U Excel, Word, and Access

Alt → F → C Closes the open window Excel, Word, and Access

Alt → F → A Excel, Word, and Access

Alt → F → D → M Sends to mail recipient Excel, Word, and Access

Alt → F → I Excel, Word, and AccessApplication options
(previously
workbook/document
properties)

Opens the Save As
dialog box

Undoes an action (same
effect as Ctrl+Z shortcut)

Cuts the selection (same
effect as Ctrl+X shortcut)

Deletes a record
(same effect as Del)

Repeats an action (same
effect as Ctrl+Y shortcut)

Pastes clipboard content
over the current selection
(same effect as Ctrl+V
shortcut)

Finds (same effect as
Ctrl+F shortcut)

Replaces (same effect as
Ctrl+H shortcut)

Copies the selection (same
effect as Ctrl+C shortcut)

Opens the Office
clipboard

612 Appendix D ■ Keytips and Accelerator keys

91118bapp04.qxd:WileyRedTight 11/28/07 9:20 PM Page 612

Table D-1 (continued)

ACCELERATOR KEY WHAT IT DOES APPLIES TO

Alt → F → S Saves Excel, Word, and Access

Alt → I → M Inserts a comment Excel and Word

Alt → I → N → D Excel

Alt → O → E Excel

Alt → O → F Opens the Font dialog box Word

Alt → O → P Word

Alt → T → I Opens the Add-In Manager Excel and Word

Alt → T → I → A Opens the Add-In Manager Access

Alt → T → L → T Word (use shortcut in
Excel)

Alt → T → M → V Excel, Word, and Access

Alt → T → O Excel, Word, and Access

Alt → T → S Excel, Word, and Access

Alt → V → P Word
Excel
Access (in Layout or
Design mode)

Alt →F → P Excel, Word, and Access

It is important to recognize that this list applies only to English versions of Office. If
you are using a localized version of Office, you must use the localized accelerator
sequence as well as the localized shortcut key combination. A shortcut key combina-
tion or accelerator sequence for English may perform a totally different action in
another language.

Thesaurus (same effect as
Shift+F7 shortcut)

Opens the Print dialog
box (same effect as the
Ctrl+P shortcut)

View in Print Layout
View in Page Break
View object properties

Spelling grammar
(compare with F7)

Opens the Options
dialog box

Opens the VBE
window (same
effect as Alt+F11)

Shows the Paragraph
dialog box

Opens the Format
Cells dialog box

Opens the Name
Manager dialog box

Appendix D ■ Keytips and Accelerator keys 613

91118bapp04.qxd:WileyRedTight 11/28/07 9:20 PM Page 613

91118bapp04.qxd:WileyRedTight 11/28/07 9:20 PM Page 614

615

To help you avoid confusion when writing callbacks in a VBA project, we devised an
easy-to-follow naming convention for your RibbonX objects. When naming objects, you
can, of course, follow your own whims — but when other people need to interpret your
code, following a standard style can make life a whole lot easier for everyone. Addi-
tionally, naming conventions can minimize conflicts when sharing customizations or
moving them to additional projects. Moreover, you’ll definitely appreciate having used
naming conventions when you later have to interpret and modify code that you wrote
months or years before.

We do not expect you to blindly follow the recommendations laid out here. Rather,
we are sharing our advice with the hope that it guides you to make prudent choices
that not only make it easier to create customizations, but also avoid conflicts and
make it a lot easier and less frustrating when it comes time to interpret and share your
customizations.

How Our Naming System Works

The naming convention we devised is based on the Reddick naming convention.

NOTE A description of the Reddick convention (RVBA) can be found at
www.xoc.net/standards/rvbanc.asp.

RibbonX Naming Conventions

A P P E N D I X

E

91118bapp05.qxd:WileyRedTight 11/28/07 9:20 PM Page 615

Our convention also includes parts from VBA and throws in the naming of attrib-
utes from the XML Schema for the Ribbon. Therefore, our naming convention includes
an identifier for the Ribbon, the control, and the action to be invoked.

Thus, you when you have a button control and want to use the onAction attribute to
define a callback, you would have something like this:

rxbtnDemo_click

This example consists of the following parts:

■■ Prefix: We have adopted the rx prefix to clearly identify code provided for
Ribbon customizations and to differentiate it from all other code in the project.

■■ Tag: We have adopted the RVBA tagging system to tag Ribbon controls. The
tag is very important because it tells users what the control/object really is.
For example, a checkBox control in VBA would have the chk tag. When we
translate this into our Ribbon naming convention, we add the rx so it becomes
rxchk. In doing so, the VBA code clearly indicates that this checkbox comes
from the Ribbon and not from a checkBox control within your VBA project
(such as on a form).

C ROSS-RE FE RE NC E Chapter 4 provides additional information about the
Reddick VBA naming convention, including a link to the website.

■■ BaseName: This is the description of the control itself. For example, you could
have a Ribbon button and define its prefix and tag as rxbtn, but what does this
button do? If it were a demo button you could name it rxbtnDemo, thereby con-
veying a clear meaning with the name.

■■ Event suffix: You already have a button, but what will happen when a user clicks
it? This is VBA, so an event is triggered — specifically, the click event. In order to
make life easier, we use the common VBA event suffixes to describe such actions.
For example, if you have an onAction attribute attached to the previously men-
tioned demo button, the procedure should be named rxbtnDemo_click.

■■ Shared event: In the previous example, we have a click for the demo button.
However, what if you wanted to share this event with other buttons? Or with
other controls that have the onAction attribute? In this case, you would not be
able to add the tag used for an individual event suffix; instead, you’d use a
generic tag to indicate that the onAction attribute is shared among many differ-
ent controls — for example, rxshared_click. This clearly indicates that the
click is shared by many other controls that have an onAction attribute. How-
ever, the click event can perform different actions depending on the control that
called it (as discussed in Chapter 5).

■■ Repurpose suffix: We mentioned earlier that we use event suffixes to match the
VBA events. However, when you use a built-in control, you may want to repur-
pose its action using the onAction attribute. The onAction attribute returns a

616 Appendix E ■ RibbonX Naming Conventions

91118bapp05.qxd:WileyRedTight 11/28/07 9:20 PM Page 616

Click suffix, so it would not be clear to a reader of your code (or maybe even
to yourself after some time away from the project) that this is a built-in control
being repurposed. In such cases, you use the idMso as the prefix and then the
base name, followed by an underscore and the word Repurpose to make it clear
that the built-in control is being repurposed. For example, rxFileSave_Repurpose
means that the built-in FileSave control has been repurposed to perform some
other action.

C ROSS-RE FE RE NC E For a list of idMso names, see Appendix B.

The naming convention that we adopted for the Ribbon and used in this book is cer-
tainly not an International Treaty on Naming Conventions. However, it is very appropriate
for the scope of the book, and it provides you with an excellent jump-start on imple-
menting a naming convention for the Ribbon XML code and callbacks handled in VBA
or, for that matter, whatever language you decide to use for programming the Ribbon.

Naming Samples

Now that we’ve reviewed how the naming convention works, we’ll provide a list of
the common naming conventions and terms that you will come across while creating
customizations

Table E-1 shows prefixes and tags for common RibbonX controls.

Table E-1: Prefixes and Tags for RibbonX Common Controls

PREFIX AND TAG CONTROL REFERRED TO

rxbox box

rxbtn button

rxbgrp buttonGroup

rxcbo comboBox

rxchk checkBox

rxcmd command

rxctl control

rxdd dropDown

rxdmnu dynamicMenu

rxgal gallery

rxgrp group

rxitem item

Continued

Appendix E ■ RibbonX Naming Conventions 617

91118bapp05.qxd:WileyRedTight 11/28/07 9:20 PM Page 617

Table E-1 (continued)

PREFIX AND TAG CONTROL REFERRED TO

rxlctl labelControl

rxmnu menu

rxmsep menuSeparator

rxrib RibbonX

rxsbtn splitButton

rxsep separator

rxtab tab

rxtgl toggleButton

rxtxt editBox

Table E-1 gives you the prefixes and tags for common controls. You also need to
name callbacks to be handled through the use of common attributes in the Ribbon.
Table E-2 follows our naming conventions and provides names for common callback
base signatures, and explains where they are used. We do not include the base name,
as you will determine the base name depending on what the control will actually do
(something you decide when programming the Ribbon).

As you are reviewing the table, keep in mind that most of the events are available to
multiple controls and objects. To provide familiar examples, we’ve incorporated the
base name for common controls, such as btn and tgl, into the list of signatures. As
explained in the second column, you merely replace btn with the appropriate base, so
for the onAction event of a comboBox, you would write rxcbo_Click.

Table E-2: Naming Convention for Common RibbonX Callback Attributes

CALLBACK BASE SIGNATURE RIBBONX ATTRIBUTE REFERRED TO

rxbtn_click Refers to the onAction attribute of a button.
Change “btn” for the other control prefixes to
refer to them.

rxbtn_getEnabled Refers to the getEnabled attribute of a
button. Change “btn” for the other control
prefixes to refer to them.

rxbtn_getImage Refers to the getImage attribute of a button.
Change “btn” for the other control prefixes to
refer to them.

618 Appendix E ■ RibbonX Naming Conventions

91118bapp05.qxd:WileyRedTight 11/28/07 9:20 PM Page 618

Table E-2 (continued)

CALLBACK BASE SIGNATURE RIBBONX ATTRIBUTE REFERRED TO

rxbtn_getKeytip Refers to the getKeytip attribute of a button.
Change “btn” for the other control prefixes to
refer to them.

rxbtn_getLabel Refers to the getLabel attribute of a button.
Change “btn” for the other control prefixes to
refer to them.

rxbtn_getScreentip Refers to the getScreentip attribute of a
button. Change “btn” for the other control
prefixes to refer to them.

rxbtn_getSupertip Refers to the getSupertip attribute of a
button. Change “btn” for the other control
prefixes to refer to them.

rxbtn_getVisible Refers to the getVisible attribute of a
button. Change “btn” for the other control
prefixes to refer to them.

rxFileSave_repurpose Refers to repurposing a built-in control using
the onAction attribute. In this case, we’re
repurposing the FileSave command.

rxIRibbonUI_onLoad Refers to the onLoad event for setting the
Ribbon object

rxMacroName.ObjectName Refers to the use of macros in MS Access to
add functionality to controls

rxshared_getLabel Refers to a shared callback among any
control that has a getLabel attribute. This
is expanded to other objects — for example,
rxshared_click.

rxtgl_getPressed Refers to the getPressed attribute for a
pressable toggleButton. Change “tgl” for
the other control prefixes to refer to them,
such as a checkBox.

Finally, Table E-3 shows the last set of naming conventions for the Ribbon. It lists the
names for shared namespaces.

Appendix E ■ RibbonX Naming Conventions 619

91118bapp05.qxd:WileyRedTight 11/28/07 9:20 PM Page 619

Table E-3: Naming Convention for Shared Namespaces and Shared Controls

SHARED NAMESPACES REFERS TO

nsQa Refers to the local name in a shared namespace
environment and is incremental. Thus, nsQa refers to
the first local name; nsQb refers to the second, and
so on.

nsQaShared Refers to the actual namespace being shared and is
also incremental along the nsQ prefix

rxbtnnsQaShared_Click Refers to a shared click in a shared namespace
environment. Note that the callback can be placed
within whichever AddIn shares the same namespace.

620 Appendix E ■ RibbonX Naming Conventions

91118bapp05.qxd:WileyRedTight 11/28/07 9:20 PM Page 620

One of the biggest challenges confronting anyone attempting to learn a new skill is
what to do once you have worked through all of the material in the course or book.
While we have attempted to make this text as complete as possible, we recognize that
you may want to do things which were not covered here.

This appendix is dedicated to giving you additional resources to help further your
development. The resources contained in these pages are all free, and many are hosted
by volunteers and MVPs. Keep in mind that the lists are essentially snapshots, so some
will disappear or become lost in the multitudes as new sites emerge; and although we
cannot vouch for the content of the sites, we are confident enough to recommend them
for reference material — at this time.

Websites with RibbonX Information

While websites offering help with VBA are too numerous to cover, the number of sites
with RibbonX-related information is just beginning to burgeon. Table F-1 lists a few of
the sites that are currently recognized as providing credible information.

Where to Find Help

A P P E N D I X

F

621

91118bapp06.qxd:WileyRedTight 11/28/07 9:20 PM Page 621

Ta
b

le
F-

1:
 S

el
ec

te
d

W
eb

si
te

s
w

ith
 R

ib
bo

nX
-r

el
at

ed
 In

fo
rm

at
io

n

S
IT

E
N

A
M

E
U

R
L

Al
l

M
SD

N
 R

ib
bo

n
D

ev
el

op
er

 P
or

ta
l

h
t
t
p
:
/
/
m
s
d
n
2
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
e
n
-
u
s
/
o
f
f
i
c
e
/
a
a
9
0
5
5
3
0
.
a
s
p
x

Al
l

PS
ch

m
id

.N
et

h
t
t
p
:
/
/
p
s
c
h
m
i
d
.
n
e
t
/
i
n
d
e
x
.
p
h
p

Al
l

O
ffi

ce
 U

I O
ve

rv
ie

w
h
t
t
p
:
/
/
o
f
f
i
c
e
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
e
n
-
u
s
/
h
e
l
p
/
H
A
1
0
1
6
7
9
4
1
1
0
3
3
.
a
s
p
x

Ex
ce

l
Ex

ce
l T

ea
m

 B
lo

g
h
t
t
p
:
/
/
b
l
o
g
s
.
m
s
d
n
.
c
o
m
/
j
e
n
s
e
n
h
/
d
e
f
a
u
l
t
.
a
s
p
x

Ex
ce

l
Ex

ce
lG

ur
u.

ca
w
w
w
.
e
x
c
e
l
g
u
r
u
.
c
a
/
b
l
o
g
/
2
0
0
6
/
1
2
/
0
1
/
r
i
b
b
o
n
-
e
x
a
m
p
l
e
-
t
a
b
l
e
-
o
f
-
c
o
n
t
e
n
t
s
/

Ex
ce

l
Ro

n
de

B
ru

in
 (

Ri
bb

on
)

w
w
w
.
r
o
n
d
e
b
r
u
i
n
.
n
l
/
r
i
b
b
o
n
.
h
t
m

Ex
ce

l
Ro

n
de

B
ru

in
 (

Q
AT

)
w
w
w
.
r
o
n
d
e
b
r
u
i
n
.
n
l
/
q
a
t
.
h
t
m

Ac
ce

ss
Ac

ce
ss

 R
ib

bo
n

C
us

to
m

iz
at

io
ns

h
t
t
p
:
/
/
o
f
f
i
c
e
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
e
n
-
u
s
/
a
c
c
e
s
s
/
H
A
1
0
2
1
1
4
1
5
1
0
3
3
.
a
s
p
x

Ac
ce

ss
Ac

ce
ss

 T
ea

m
 B

lo
g

h
t
t
p
:
/
/
b
l
o
g
s
.
m
s
d
n
.
c
o
m
/
a
c
c
e
s
s
/
a
r
c
h
i
v
e
/
2
0
0
6
/
0
7
/
1
3
/
6
6
4
7
5
7
.
a
s
p
x

Ac
ce

ss
Ac

ce
ss

 F
re

ak
w
w
w
.
a
c
c
e
s
s
-
f
r
e
a
k
.
c
o
m
/
t
u
t
o
r
i
a
l
s
.
h
t
m
l
#
T
u
t
o
r
i
a
l
0
5

Ac
ce

ss
Av

en
iu

s
G

un
te

r
w
w
w
.
a
c
c
e
s
s
r
i
b
b
o
n
.
c
o
m

TA
R

G
ET

A
P

P
LI

C
A

TI
O

N

622 Appendix F ■ Where to Find Help

91118bapp06.qxd:WileyRedTight 11/28/07 9:20 PM Page 622

Websites Maintained by the Authoring
and Tech Edit Team

In addition to the RibbonX sites listed in Table F-1, one or more websites are main-
tained by each of the authors and technical editors who worked on this book. Although
these sites are not necessarily RibbonX-specific, they offer a wealth of useful informa-
tion, tips, tricks, and programming techniques. The team members’ sites are listed in
Table F-2.

Table F-2: Websites of the Authoring and Tech Edit Team

TEAM MEMBER NAME SITE STYLE ADDRESS

Robert Martin Site www.msofficegurus.com

Ken Puls Site www.excelguru.ca

Ken Puls Blog www.excelguru.ca/blog

Teresa Hennig Site www.datadynamicsnw.com

Teresa Hennig Site www.SeattleAccess.org

Oliver Stohr Site www.access-freak.com

Nick Hodge Site www.nickhodge.co.uk

Nick Hodge Blog www.nickhodge.co.uk/blog

Jeff Boyce Site http://informationfutures.net

Newsgroups

Microsoft provides a user community in the form of Microsoft newsgroups. The news-
groups are heavily supported by MVPs, and are also visited from time to time by
Microsoft staff as well, so this can be a great place to get answers right from the source,
and from recognized experts. The Office-specific newsgroups can be accessed in a
number of ways:

■■ Through Microsoft’s Community website at www.microsoft.com/office/
community/en-us/default.mspx

■■ Through Google’s Groups interface, located at http://groups.google.com

■■ Using an NNTP newsreader such at Outlook Express

Appendix F ■ Where to Find Help 623

91118bapp06.qxd:WileyRedTight 11/28/07 9:20 PM Page 623

The most popular way to access Microsoft’s busy newsgroups is to use an NNTP
newsreader. Complete instructions for setting up Outlook Express to communicate
with the newsgroups can be found at the following URL:

www.microsoft.com/windows/ie/community/columns/newsgroups101.mspx

TI P Note an issue that arises when using Outlook Express as your NNTP
newsreader if you attempt to use multiple computers. Because Outlook Express
is installed locally and runs separate instances on each machine, you must sync
two copies of the program in order to have the files on more than one
computer. This issue can be avoided by using Mozilla’s Thunderbird Portable
client, which can be installed on, and run from, a USB flash drive. This
essentially enables you to have your newsgroup client (complete with all the
files) on any computer — even a public or shared system. Thunderbird Portable
can be downloaded from the following URL:
http://portableapps.com/apps/internet/thunderbird_portable.

Web Forums

Web forums are an alternative to newsgroups. They tend to have much richer format-
ting than the text-based interface of the newsgroups. Many sites also provide instant
e-mail notification when someone replies to your questions, and some sites allow
posters to upload full files to demonstrate the issue that they are trying to solve. A list
of some Web forums is contained in Table F-3.

624 Appendix F ■ Where to Find Help

91118bapp06.qxd:WileyRedTight 11/28/07 9:20 PM Page 624

Ta
b

le
F-

3:
 A

 S
el

ec
tio

n
of

 P
op

ul
ar

 W
eb

 F
or

um
s

FO
R

U
M

 F
O

C
U

S
FO

R
U

M
 N

A
M

E
U

R
L

Ri
bb

on
X

Pa
tr

ic
k

Sc
hm

id
’s

 O
ffi

ce
 U

I F
or

um
h
t
t
p
:
/
/
p
s
c
h
m
i
d
.
n
e
t
/
o
f
f
i
c
e
2
0
0
7
/
f
o
r
u
m
s
/
i
n
d
e
x
.
p
h
p

VB
A

VB
AE

xp
re

ss
.c

om
w
w
w
.
v
b
a
e
x
p
r
e
s
s
.
c
o
m

Ex
ce

l
JM

T
Q

&A
 B

oa
rd

w
w
w
.
p
u
r
e
m
i
s
.
n
e
t
/
e
x
c
e
l
/
c
g
i
-
b
i
n
/
y
a
b
b
/
Y
a
B
B
.
p
l

Ex
ce

l
M

r
Ex

ce
l.c

om
w
w
w
.
m
r
e
x
c
e
l
.
c
o
m
/
b
o
a
r
d
2
/

O
ffi

ce
O

ffi
ce

 E
xp

er
ts

w
w
w
.
t
h
e
o
f
f
i
c
e
e
x
p
e
r
t
s
.
c
o
m
/
f
o
r
u
m
/

Ac
ce

ss
U

tt
er

Ac
ce

ss
.c

om
w
w
w
.
u
t
t
e
r
a
c
c
e
s
s
.
c
o
m

Appendix F ■ Where to Find Help 625

91118bapp06.qxd:WileyRedTight 11/28/07 9:20 PM Page 625

91118bapp06.qxd:WileyRedTight 11/28/07 9:20 PM Page 626

627

Index

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 627

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 628

629

Index

A
A1 notation, 188
ACCDE file, 510-511
ACCDR extension, 511, 519
accelerator keys, 19, 611-613

F10 and, 403
keytips and, 611-613

Access, 29
application-level events, 124-125
binary file structure, 48, 525
button control example, 181-182
callback handling, 158-162

macros for, 160-162
VBA for, 158-160

checkBox control example, 194-196
comboBox control example, 239-244
Create tab, 25
custom contextual tab creation in,

442-445
database password feature, 507
deploying Ribbon customizations,

504-519
ACCDE file creation, 510-511
ADE add-in, 515-518
adjusting Access options for users,

508-510
compression, 514
file preparation for multi-user

environments, 504-507
to full versions of Access, 514-518

general information, 504
loading customUI from external source,

511-514
self-extracting zip file, 514
startup property settings, 507
to users with Access Runtime version,

518-519
dropDown control example, 258-261
editBox control example, 205-209
form/report events, 119-122
idMso identifiers

group, 595-599
tab, 73, 588

imageMso reference tool, 607, 608, 609
keytips, 18
macro recording and, 25, 88, 89
macro window, 160
macros, 88

for callback handling, 160-162
menu control example, 296-299
My Very Own Tab in, 49
project, QAT in, 21, 22
projects, pictures in, 270-273
Ribbon components, 16
splitButton control example, 306-309
table-driven approach

QAT customization, 430-433
Ribbon customizations, 48-53

tables, 9
toggleButton control example, 220-223

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 629

630 Index ■ A–B

Access Developer Extensions (ADE),
511, 515

add-in, 515-518
Access Freak website, 622
Access Ribbon Customizations

website, 622
Access Runtime edition, 518-519
Access Team Blog, 622
Activate event, 222
Activate worksheet event, 119
ActiveCell, 99
ActiveX settings, 531
adaptive menus, 5
Add method, 374
Add Watch dialog box, 135-136

elements, 136
AddIns, 10
add-ins

Excel
2003 as front-end loader for 2007

add-in, 494-500
deploying Ribbon customizations with,

463-468
installing, 465-467
unloading/removing, 467
workbook conversion to, 464-465

Add-ins tab, of Trust Center, 529-531
ADE. See Access Developer Extensions
Ambiguous Name Has Been Detected, 238
application-level events, 114, 123-125, 378,

382, 383
Access, 124-125
Excel, 124

Application.TaskPanes
(wdTaskPaneFormatting).Visible =
True, 256

arrays, 140-143
boundaries, 141
defined, 140
dimensions/values, 252
one-based, 251, 252
resizing, 142-143
zero-based, 251, 252

attributes, 59. See also specific attributes
events v., 147

authoring/tech edit team websites, 623
Boyce, 623
Hennig, 623

Hodge, 623
Martin, 623
Puls, 623
Stohr, 623

AutoKeys macro, 411, 425
Avenius Gunter website, 622

B
BaseName, 112, 616
bButtonClicked, 342, 343
BeforeClose workbook event, 116
BeforeDoubleClick worksheet event, 119
BeforeRightClick worksheet event, 119
BeforeSave workbook event, 116
binary file structure, 30, 48, 525. See also

OpenXML file structure
Access, 48, 525

bindings
early, 128-129
late, 128-129

bitmapped picture format. See BMP format
blank space, 208
BMP (bitmapped picture) format, 265
Boolean data type, 113
Borders collection, 376
BorderStyle control, 248
boundaries, array, 141
box element(s), 286, 324-333, 553

built-in, 327
buttonGroup element v., 334
children objects, 325-326
custom, 327-333
graphical attributes, 326-327
horizontal alignment, 327-328
insert attributes, 325
nesting, 326, 329-333
optional attributes, 324-325

callback signatures, 325
parent objects, 326
required attributes, 324
rxbox, 617
vertical alignment, 328-329

boxStyle attribute, 325
Boyce, Jeff, 623
Break When Value Changes element, 136
Break When Value Is True element, 136
breakpoints, 131

630

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 630

Index ■ B–C 631

bug, separator element, 345
built-in

button controls, 174-175
buttonGroup elements, 334, 336
checkBox controls, 187-188
comboBox controls, 232-234
control attributes, overwriting, 368-369
dropDown controls, 248
editBox controls, 200
gallery controls, 280
groups, 80-82

on custom tabs, 81-82
names, 80, 590-605

item elements, 228
menu controls, 290-291
menuSeparator element, 348, 350
objects, custom properties for, 389-394
separator element, 344, 346
splitButton controls, 302-303
tabs, 72-74

idMso identifiers, 73, 588
modifying, 73-74
names, 72-73, 588

toggleButton controls, 213-214
button control(s), 169-183, 553-556

built-in, 174-175
children objects, 173
custom, 176-182

Access example, 181-182
Excel example, 176-178
Word example, 179-180

graphical attributes, 173
id attributes, 170
idMso, 170
idQ attribute, 170
onAction callback, 170
optional attributes, 171-172

callback signatures, 171-172
insert, 171

parent objects, 173
required attributes, 170
rxbtn, 617

button object, 278
buttonGroup element(s), 333-338, 556

box element v., 334
built-in, 334, 336
children objects, 336
custom, 337-338

graphical attributes, 336
insert attributes, 335
optional attributes, 335

callback signatures, 335
parent objects, 336
required attributes, 334
rxbgrp, 617
with whitespace, 338

Button-Monthly Roll Forward.xlsm, 177
Byte data type, 113

C
callback(s), 27, 39, 145-167

defined, 145-146
in different workbooks, 153-155
dynamic, 72

setting up file, 146-148
flow, 146
Generate Callbacks button, 150, 164, 178,

180, 183, 193, 195
generating, 148-153

with CustomUI Editor, 150-151, 167
from scratch, 148-150

organizing, 155-162
same name/different signature, 152-153

callback handlers
in Access, 158-162
global, 157-158
individual, 155-156

callback signatures, 146
box element, 325
button control, 171-172
buttonGroup element, 335
checkBox control, 185-186
comboBox control, 230-232
comboBox control v. dropDown

control, 252
customUI element, 66
dropDown control, 245-247
dynamicMenu control, 311-312
group element, 77-78
item element, 226-227
labelControl, 339-340
menu control, 287-288
menuSeparator element, 348
naming convention, 618-619
separator element, 345
splitButton control, 300-301

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 631

632 Index ■ C

tab element, 71
toggleButton control, 211-212

CamelCase, 40, 72
canvas size, picture size v., 266
case sensitive XML, 27, 31, 40
case statement, 498
Change worksheet event, 119
character limitation problem, 51-52
Chart Tools tabSet, 446
chartsheet events, 116
checkBox control(s), 169, 183-196, 557-558

built-in, 187-188
callback for, 184
children objects, 186
custom, 188-196

Access example, 194-196
Excel example, 188-192
Word example, 192-194

graphical attributes, 186
id attributes, 184
insert attributes, 184-185
optional attributes, 184-186

callback signatures, 185-186
parent objects, 186
required attributes, 184
rxchk, 617

children objects
box element, 325-326
button control, 173
buttonGroup element, 336
checkBox control, 186
customUI element, 67
dialogBoxLauncher control, 356-357
dropDown control, 247
dynamicMenu control, 313
editBox control, 199
gallery control, 278
group element, 78-79
item element, 227
labelControl, 340
menu control, 288-289
menuSeparator element, 349
Office Menu, 414
QAT, 420
ribbon element, 68
separator element, 346
splitButton control, 301
tab element, 72

tabs element, 70
toggleButton control, 212

class modules, 11, 378-383
document-level events, 123

Click report/form events, 122
Click routine, 194, 220, 221, 238, 253
Clipboard group, hidden, 80-81
close button (VBE), 91
Close report/form events, 122
clsEvents, 11
code window, 90
code window close button, 90
code window maximize/restore button, 90
code window minimize button, 91
coding techniques, VBA, 101-110
collapsing quotes, 318
collections, 58, 373-377

built-in, 374
custom

methods, 374
determining if item belongs to, 377

columns attribute, 277
combination keys, SendKeys method and,

405
comboBox control(s), 225, 558-562. See also

dropDown control(s)
built-in, 232-234
children objects, 232
custom, 234-244

Access example, 239-244
Excel example, 235-236
Word example, 237-239

dropDown control v., 244, 249, 261
callback signature, 252

graphical attributes, 232, 233
insert attributes, 230
item element, 232
optional attributes, 229-232

callback signatures, 230-232
required attributes, 229
rxcbo, 617

comboBox-Select Sheet.xlsm, 249
CommandBars, 10
CommandBars(“Styles”).Visible = true,

256
commands, 16

accessible, 6
keyboard shortcuts/keytips, 17-18

buried/hidden, 4-5

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 632

Index ■ C 633

defined, 16
disabling, 406-408

associated with application
options/exit controls, 407-408

order of, 9
on QAT, 20-22
repurposing, 408-410

associated with generic control, 408-410
on QAT, 424-427

rxcmd, 617
comments, in XML code, 63-64
components, Ribbon, 16-17
condition-n, 108
container elements, RibbonX, 546-552
container files, customizations specific

to, 6
contextual controls, 6, 437-458
contextual menus, 81
contextual pop-up menus, 447-454
contextual tabs, 438-439

built-in
modifying in Excel, 445-447

custom
creation in Access, 442-445

contextualTabs collection, 438
contextualTabs element, 548
continuity schedule, 176-177
control elements, Ribbon, 552-585
controls. See also contextual controls;

specific controls
application-unique, 26
defined, 420
document, 17, 21
enabling/disabling, 441-442
formatting, 323-353
keytips in, 18
prefixes/tags for, 617-618
on QAT, 17
Ribbon, 169-224
rxctl, 617
shared, 17, 21
synergistic effects, 333

control-specific events, 378
CopyFace method, 10
corrupted toolbars, 6
Count method, 374
Create tab, 25
Currency (scaled integer) data type, 113

Current report/form events, 122
CurrentProject, 99
custom

box elements, 327-333
button controls, 176-182

Access example, 181-182
Excel example, 176-178
Word example, 179-180

buttonGroup elements, 337
checkBox controls, 188-196

Access example, 194-196
Excel example, 188-192
Word example, 192-194

comboBox controls, 234-244
Access example, 239-244
Excel example, 235-236
Word example, 237-239

dropDown controls, 249-261
Access example, 258-261
Excel example, 249-254
Word example, 254-257

dynamicMenu controls, 314-320
editBox controls, 200-209

Access example, 205-209
Excel example, 200-203
Word example, 203-205

groups, 83-85
on built-in tabs, 85
creating, 83
positioning, 83-84

item elements, 228
labelControl elements, 341-344
menu controls, 291-299

Access example, 296-299
Excel example, 292-294
Word example, 294-295

menuSeparator element, 350-352
pictures, 263-275
separator elements, 346-347
splitButton controls, 303-309

Access example, 306-309
Excel example, 303-305
Word example, 305-306

tabs, 72, 74-76
built-in groups on, 81-82
multiple, 75-76
positioning, 75-76

toggleButton controls, 214-223

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 633

634 Index ■ C–D

Access example, 220-223
Excel example, 214-217
Word example, 217-220

customization(s)
Excel 2003/2007 code example, 10-15, 28
issues, 8
legacy CommandBar, 491-492
programming/third party tools for, 8
QAT, 418-435
Ribbon, 24

Access, 48-53
CustomUI Editor, 35, 39-43
deploying, 459-521
example, 27
Excel, 30-35
Notepad, 30-35
preparations, 24-27
Word, 30, 39-40
XML and, 56

specific to container files, 6
Customization Old Style.xlsm, 11
Customize Quick Access Toolbar options

window, 20, 21
CustomUI Editor, 27, 35. See also XML

Notepad
callback generation with, 150-151, 167
customization templates in, 41-42
download/installation, 38-39
drawbacks, 48
limitations/notes, 42-43
Ribbon customization, 35, 39-43
XML Notepad v., 48

customUI element, 65-67, 546-547
children objects, 67
errors shown at load time, 26
folder, 30-31
optional attributes, 66-67

callback signatures, 66
required attributes, 66

customUI.xml, 31
code in, 31
error in, 35

D
data structure, XML, 56
data types, 112-114.

See also specific data types
list of fundamental, 113-114

Date data type, 113
Deactivate event, 222
deBruin, Ron

QAT website, 622
Ribbon website, 622

Debug object, 130-131
Debug.Assert, 130-131
debugging code, 129-137. See also window
Debug.Print, 130-131
Decimal data type, 113
decision statements, 143. See also

If-Then-Else-End If statement;
Select Case statement

deploying Ribbon customizations, 459-521
Access techniques, 504-519

ADE add-in, 515-518
compression, 514
self-extracting zip file, 514

Excel vehicles, 460-469
add-ins, 463-468
templates, 461-463
workbooks, 460-461

to prior Office versions environment,
491-504

call previous version from new add-in,
493-504

create separate versions, 492-493
shared across files, 477-491

shared namespaces, 478-479
tabs/groups in Excel, 479-485
tabs/groups in Word, 485-491

Word vehicles, 469-477
documents, 469-470
global templates, 472-476
templates, 470-472

description attribute
button control, 171
checkBox control, 185
dynamicMenu control, 311
menu control, 287
toggleButton control, 211

Developer tab, 24-25
dialog boxes. See specific dialog boxes
dialogBoxLauncher control, 356-362, 562

built-in, 357-358
children object, 356-357
custom, with built-in dialogs, 358-360
custom, with custom userforms, 360-361

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 634

Index ■ D–E 635

Font dialog box from, 358
implementation, 357-362
no attributes, 356
parent object, 357

digital certificates, 534-542
acquiring, 535-536
adding, to projects, 537-538
deleting, 540-542
SELFCERT.exe and, 536-537
trusting, on other machines, 538-540
workings of, 534-535

dimmed keytips, 18
disabling commands, 406-408

associated with application options/exit
controls, 407-408

docking capability, toolbar, 5, 6, 9
lack of, 8, 9

document controls, 17, 21, 419-420
document visibility, Ribbon and, 7
documentControls element, 419, 549

sharedControls v., 419-420
document-level events, 114, 122-123

class module, 123
documents

conversion to global template, 473-474
deploying Ribbon customizations with,

469-470
macro-enabled, 89-90

Double (double-precision floating-point)
data type, 113, 204

double-precision floating-point, 113
Do-Until loops, 105-106
Do-While loops, 105-106
drag-and-drop approach, 33, 34

onto Watches window, 137
dropDown control(s), 225, 244-261,

562-566. See also comboBox control(s)
built-in, 248
children objects, 247
comboBox control v., 244, 249, 261

callback signature, 252
custom, 249-261

Access example, 258-261
Excel example, 249-254
Word example, 254-257

graphical attributes, 248
insert attributes, 245
optional attributes, 244-247

callback signatures, 245-247
parent objects, 247
required attributes, 244

dynamic attributes. See specific attributes
dynamic callbacks, 72

all or nothing approach, 227, 239
setting up file for, 146-148

dynamicMenu control(s), 310-320, 566-568
built-in, 314
children objects, 313
custom, 314-320
graphical attributes, 313-314
insert attributes, 311
optional attributes, 311-312

callback signatures, 311-312
parent objects, 313
power/flexibility, 321
required attributes, 310
required callback, 311
rxdmnu, 617

E
early bindings, 128-129
editBox control(s), 169, 196-209, 568-571

built-in, 206
children objects, 199
custom, 200-209

Access example, 205-209
Excel example, 200-203
Word example, 203-205

graphical attributes, 200
insert attributes, 197-199
onChange callback, 197
optional attributes, 197-199
parent objects, 199
required attributes, 197
rxtxt, 618

elements, 59. See also components, Ribbon;
controls; specific elements

Add Watch dialog box, 136
For Each-Next loop, 103
For-Next loop, 102
If-Then-Else-End If statement, 108
Office Menu, 418
Select Case statement, 109
tags v., 59
With-End With statement, 106

Else statement, 260

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 635

636 Index ■ E–F

elseifstatements, 108
elsestatements, 108, 109
enabled attribute

button control, 171
checkBox control, 185
comboBox control, 230
dropDown control, 245
dynamicMenu control, 312
editBox control, 198
labelControl, 339
menu control, 287
splitButton control, 300
toggleButton control, 211

enabling Developer tab, 24-25
Enter Authors button, 182, 222
Err property, 236
error handling, 137-140

enabling features in, 118
On Error GoTo, 138-140
On Error Resume Next, 138

event order, as file opens, 151-152
event suffixes, 112, 616
events, 114-125. See also specific events

application-level, 114, 123-125, 378,
382, 383

Access, 124-125
Excel, 124

attributes v., 147
chartsheet, 116
control-specific, 378
defined, 378
document-level, 114, 122-123
form, 114, 119-122
methods v., 379
report, 114, 119-122
workbook, 114, 115-117
working with, 382-383
worksheet, 114, 117-119

Excel
2003/2007 customization code example,

10-15, 28
add-ins

2003 as front-end loader for 2007
add-in, 494-500

deploying Ribbon customizations with,
463-468

installing, 465-467
unloading/removing, 467

workbook conversion to, 464-465
application-level events, 124
built-in contextual tab modification in,

445-447
built-in pop-up menu, 448
button control example, 176-178
checkBox control example, 188-192
comboBox control example, 235-236
deploying Ribbon customizations,

460-469
add-ins, 463-468
templates, 461-463
workbooks, 460-461

dropDown control example, 249-254
editBox control example, 200-203
idMso identifiers

group, 590-595
tab, 73, 588

imageMso reference tool, 607, 608, 609
location of auditing tools, 81
macro recording, 91-97

Word macro recording v., 94
menu control example, 292-294
My Tools tab in, 214
My Very Own Tab in, 47
OpenXML file structure, 30, 48
projects, pictures in, 266-270

with CustomUI Editor, 267-268
on-the-fly, 268-270

Ribbon customizations, 30-35
sharing of tabs/groups in, 479-485
splitButton control example, 303-305
table-driven approach, QAT

customization, 428-430
templates, 461-463
toggleButton control example, 214-217

Excel Team Blog, 622
ExcelGuru.ca, 622
Expression element, 136
expressionlist-n, 109
Extensible Markup Language. See XML
extensions, showing, 31
external objects, 128

F
F10 function key

accelerator keys and, 403
keytips and, 19, 403

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 636

Index ■ F–G 637

Face control, 299, 301. See also splitButton
control(s)

File Locations tab, 470
file opening, event order in, 151-152
file system object (FSO), 317
FilePrepareMenu, 291
fixed-length string, 113
flag, labelControl as, 341
Font dialog box, from dialogBoxLauncher,

358
Fonts comboBox, 232-234
FontSize comboBox, 233-234
For Each-Next loops, 103-105
form events, 114, 119-122

Click, 122
Close, 122
Current, 122
Load, 122
NoData, 122
OnFormat, 122
Open, 122

Format Cells dialog box, 403
formats

BMP, 265
GIF, 265
ICO, 265
JPG/JPEG, 265
PNG, 264, 265, 266

GDI+ and, 274-275
WMF, 265

formatting controls, 323-353
For-Next loops, 102-103

elements, 102
frmAuthors display, 182
FSO. See file system object
functions, 97

UDF, 101

G
gallery controls, 276-282, 571-575

built-in, 280
child objects, 278
dynamic attributes, 277-278, 571-575
on-the-fly creation, 281-282
rxgal, 617
static attributes, 277, 571-575

examples, 278-280

GDI+(Graphics Device Interface Plus), 266,
274-275

Generate Callbacks button, 150, 164, 178,
180, 183, 193, 195

getContent
attribute, 311
callback, 315-317

getDescription
button control, 171
checkBox control, 185
dynamicMenu control, 311
menu control, 287
toggleButton control, 211

getEnabled
button control, 171
checkBox control, 185
comboBox control, 230
context-sensitive controls, 441-442
dropDown control, 245
dynamicMenu control, 312
editBox control, 198
event, 152
labelControl, 339
menu control, 287
splitButton control, 300
toggleButton control, 211

getImage attribute, 77, 146
button control, 171
comboBox control, 230
dropDown control, 245
dynamicMenu control, 312
editBox control, 198
event order, 151
menu control, 287
toggleButton control, 211

getImage routine, 219
GetImageMso method, 10
getItemCount

comboBox control, 230
dropDown control, 245
gallery control, 277

getItemID
comboBox control, 230
dropDown control, 245
gallery control, 277

getItemImage
comboBox control, 230
dropDown control, 245
gallery control, 277

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 637

638 Index ■ G

getItemLabel
callback, 252-253
comboBox control, 231
dropDown control, 246
gallery control, 278

getItemScreentip, 231
dropDown control, 246
gallery control, 278

getItemSupertip, 231
dropDown control, 246

getKeytip
checkBox control, 185
comboBox control, 231
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
event order, 152
group control, 77
splitButton control, 300
tab control, 71
toggleButton control, 211

getLabel
checkBox control, 185
comboBox control, 231
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
event order, 151
group control, 77
menu control, 288
tab control, 71
toggleButton control, 211

getPressed
checkBox control, 185
routine, 191, 194, 219, 220, 308, 508
toggleButton control, 211

getRegistry function, 398
getScreentip

button control, 172
checkBox control, 185
comboBox control, 231
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
event, 152
labelControl, 339
menu control, 288
toggleButton control, 211

getSelectedItemID
dropDown control, 246
gallery control, 278

getSelectedItemIndex
dropDown control, 246
gallery control, 278

GetSetting function, 394
getShowImage

button control, 172
comboBox control, 231
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
menu control, 288
toggleButton control, 211

getShowLabel
button control, 172
comboBox control, 231
dropDown control, 247
dynamicMenu control, 312
editBox control, 199
labelControl, 339
splitButton control, 300
toggleButton control, 211

getSize
button control, 172
dynamicMenu control, 312
menu control, 288
toggleButton control, 211

getSupertip
comboBox control, 231
dropDown control, 247
dynamicMenu control, 312
editBox control, 199
event, 152
labelControl, 339
menu control, 288
toggleButton control, 212

getText, editBox control, 199
getTitle attribute, menuSeparator

element, 348
getVisible attribute, 146

box element, 325
button control, 172
checkBox control, 186
comboBox control, 232
contextuality imitation

groups and, 439-441

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 638

Index ■ G–H 639

dropDown control, 247
dynamicMenu control, 312
editBox control, 199
event order, 151
group control, 78
labelControl, 340
menu control, 288
splitButton control, 301
tab control, 71
toggleButton control, 212

GIF (Graphic Interchange Format), 265
global callback handlers, 157-158. See also

shared callbacks
global constants, 376
Global Declarations area, 147, 163
global templates, 472-476

document conversion to, 473-474
editing, 475-476
as front-end for 2003 template, 500-504
removing, 476
template conversion to, 474-475

global variables, 147, 148
Google’s Groups interface, 623
Graphic Interchange Format. See GIF
graphical attributes

box element, 326-327
button control, 173
buttonGroup element, 336
checkBox control, 186
comboBox control, 232, 233
dropDown control, 248
dynamicMenu control, 313-314
editBox control, 200
group element, 79
item element, 227-228
labelControl, 340
menu control, 289-290
menuSeparator element, 349-350
separator element, 346
tab, 72
toggleButton control, 212-213

Graphics Device Interface Plus. See GDI+
group(s). See also specific groups

built on-the-fly, 9
built-in, 80-82

on custom tabs, 81-82
names, 80, 590-605

contextuality imitation, getVisible
and, 439-441

custom, 83-85
on built-in tabs, 85
creating, 83
positioning, 83-84

defined, 16
hiding, 80-81
idMso identifiers, 80, 590-605

Access, 595-599
Excel, 590-595
Word, 600-605

on QAT, 21-22
group controls, 76-79, 551-552

children objects, 78-79
graphical attributes, 79
id attributes, 76
idMso, 76
idQ, 76
optional attributes, 76-78

callback signatures, 77-78
required attributes, 76
rxgrp, 617

H
Help sources, 317

authoring/tech edit team websites, 623
Microsoft newsgroups, 623-624
Web forums, 624-625

JMT Q&A Board, 625
Mr Excel.com, 625
Office Experts, 625
Patrick Schmid’s Office UI Forum, 625
UtterAccess.com, 625
VBAExpress.com, 625

websites with RibbonX- related
information, 621-622

Hennig, Teresa, 623
hidden Clipboard group, 80-81
Hide Expenses toggleButton, 216, 217
hierarchical menus, 4, 27

hidden/unused features, 4-5
Word 2003, 4

high resolution, Ribbon visualization
and, 7

Hodge, Nick, 623
horizontal alignment, box element,

327-328
host files, 477

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 639

640 Index ■ I

I
ICO (icon) format, 265
icon format. See ICO format
icons, for macros, 23
id attributes, 60-61

box element, 324
button control, 170
buttonGroup element, 334
checkBox control, 184
comboBox control, 229
dropDown control, 244
dynamicMenu control, 310
editBox control, 197
group element, 76
item element, 226
labelControl, 338
menu control, 286
menuSeparator element, 347
separator element, 344
splitButton control, 299
tab element, 70
toggleButton control, 210

idMso attribute, 26
button control, 170
checkBox control, 184
comboBox control, 229
description, 60
dropDown control, 244
dynamicMenu control, 310
editBox control, 197
group element, 76
labelControl, 338
menu control, 286
splitButton control, 299
tab element, 70
toggleButton control, 210

idMso identifiers
built-in group, 80

Access, 595-599
Excel, 590-595
Word, 600-605

built-in tab
Access, 73, 588
Excel, 73, 588
Word, 73, 588

contextual tab
Access, 589
Excel, 588-589
Word, 590

idQ attribute, 60-61, 459, 480, 484, 485
box element, 324
button control, 170
buttonGroup element, 334
checkBox control, 184
comboBox control, 229
dropDown control, 244
dynamicMenu control, 310
editBox control, 197
group element, 76
labelControl, 338
menu control, 286
menuSeparator element, 347
separator element, 344
splitButton control, 299
tab element, 70
toggleButton control, 210

If-Then-Else-End If statement, 107-108
elements, 108

image attribute
button control, 171
comboBox control, 230
dropDown control, 245
dynamicMenu control, 312
editBox control, 198
group control, 77
item element, 226
menu control, 287
toggleButton control, 211

imageMso, 77
button control, 172
comboBox control, 230
dropDown control, 245
dynamicMenu control, 312
editBox control, 198
item element, 226
menu control, 287
reference workbook, 608-609

Excel/Word/Access tools, 607, 608, 609
references, finding, 607-608
toggleButton control, 211

images. See pictures
Immediate window, 91, 130, 132-134

querying property in, 133
querying variable in, 133

indexing feature, XML, 56
individual callback handlers, 155-156
insertAfterMso

box element, 325
button control, 171

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 640

Index ■ I–J 641

checkBox control, 184, 185
comboBox control, 230
dropDown control, 245
dynamicMenu control, 311
editBox control, 197
group control, 77
labelControl, 339
menu control, 287
menuSeparator element, 348
separator element, 345
splitButton control, 300
tab control, 71
toggleButton control, 210

insertAfterQ
box element, 325
button control, 171
checkBox control, 185
comboBox control, 230
dropDown control, 245
dynamicMenu control, 311
editBox control, 197
group control, 77
labelControl, 339
menu control, 287
menuSeparator element, 348
separator element, 345
splitButton control, 300
tab control, 71
toggleButton control, 210

insertBeforeMso, 483
box element, 325
button control, 171
comboBox control, 230
dropDown control, 245
dynamicMenu control, 311
editBox control, 197
group control, 77
labelControl, 339
menu control, 287
menuSeparator element, 348
separator element, 345
splitButton control, 300
tab control, 71
toggleButton control, 210

insertBeforeQ, 483
box element, 325
button control, 171
checkBox control, 185

comboBox control, 230
dropDown control, 245
dynamicMenu control, 311
editBox control, 198
group control, 77
labelControl, 339
menu control, 287
menuSeparator element, 348
separator element, 345
splitButton control, 300
tab control, 71
toggleButton control, 210

Integer data type, 113, 204
IntelliSense, 360
Invalidate(), 162
InvalidateControl(strContolID), 162
invalidation, Ribbon, 147, 162-166

individual controls, 165-166
IRibbonUI Object, 163-165

IRibbonUI object, 147-148
invalidation, 163-165
methods, 162

IsAddin property, 467-468
item elements, 225-228, 575. See also

comboBox control; dropDown control;
gallery controls

built-in, 228
children objects, 227
comboBox control, 232
custom, 228
graphical attributes, 227-228
optional attributes, 226-227

callback signatures, 226-227
parent objects, 227
required attributes, 226
rxitem, 617

Item method, 374, 377
item object, 278
itemHeight attribute, 277
itemSize, menu control, 287
itemWidth attribute, 277

J
JMT Q&A Board, 625
Joint Photographic Experts Group format.

See JPG/JPEG format
JPG/JPEG (Joint Photographic Experts

Group) format, 265

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 641

642 Index ■ K–M

K
keyboard shortcuts, 17, 611-613. See also

accelerator keys
access to commands, 17-18
keytips v., 410
overriding, 410-412

keytip attributes, 18-19, 362-365
accelerator keys and, 611-613
Access, 18
access to commands, 17-18
button control, 172
checkBox control, 185
comboBox control, 231
in controls, 18
creation, 363-364
dimmed, 18
displaying available, 362-363
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
F10 function key and, 19, 403
group control, 77
idiosyncrasies, 364-365
menu control, 287
splitButton control, 300
tab control, 71
toggleButton control, 211

keytip navigation mode, 362
keytips

keyboard shortcuts v., 410
overriding, 410-412

L
label attribute, 61

button control, 172
checkBox control, 185
comboBox control, 231
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
group control, 77
item element, 226
labelControl, 339
menu control, 288
tab control, 71
toggleButton control, 211

labelControl element(s), 18, 280, 338-344,
576-577

child objects, 340
custom, 341-344

as flag, 341
graphical attributes, 340
optional attributes, 338-340

callback signatures, 339-340
parent object, 340
required attributes, 338
rxlctl, 618

late bindings, 128-129
LCase () function, 317
leech files, 477, 485
legacy CommandBar customizations,

491-492
libraries, referenced, 104, 105, 126-129

in Object Browser, 127
line continuations, 257
Load report/form events, 122
loadImage attribute, 66
LoadImage function, 274
LoadPicture function, 265
Locals window, 134-135
location, QAT, 24
logical rules, 129
Long (long integer) data type, 113, 204
long integer, 113
looping statements, 101-106

Do-Until, 105-106
Do-While, 105-106
For Each-Next, 103-105

elements, 103
For-Next, 102-103

elements, 102
stuck in, 113

M
macro(s)

Access, 88
for callback handling, 160-162

AutoKeys, 411, 425
icons for, 23
options, editing in Word, 97
on QAT, 22-24
security settings, 532-533

Macro Designer, 88
Macro drop-down, 183
Macro list dialog box, 96
Macro Names toggleButton, 160, 161
macro recording, 25, 190, 255

Access and, 25, 88, 89
editing, 95-97

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 642

Index ■ M 643

after, 96-97
example, 94-95

code window, 95
Excel/Word, 91-97

differences, 94
macro window, Access, 160
macro-enabled

documents, 89-90
file format, 524-525

macro-free file format, 524-525
markup, 57
Martin, Robert, 623
maximize/minimize Ribbon, 8, 19-20
maximize/restore button (VBE), 91
maxLength

comboBox control, 231
editBox control, 198

menu(s). See also pop-up menus
adaptive, 5
contextual, 81
creation, 285-321
division/separation, 349-352
hierarchical, 4, 27

hidden/unused features, 4-5
Word 2003, 4

Office, 17
pop-up, 10
table-driven, 9
top-level, 4

menu bar (VBE), 91
menu control(s), 286-299, 577-579

built-in, 290-291
children options, 288-289
custom, 291-299

Access example, 296-299
Excel example, 292-294
Word example, 294-295

graphical attributes, 289-290
optional attributes, 286-288

callback signatures, 287-288
parent objects, 289
required attributes, 286
rxmnu, 618

menuSeparator element(s), 18, 347-352,
579-580

built-in, 348, 350
children objects, 349
custom, 350-352

graphical attributes, 349-350
optional attributes, 348

callback signature, 348
parent objects, 349
required attributes, 347
rxmsep, 618

menu-type controls, 285. See also
comboBox control(s); dropDown
control(s); dynamicMenu control(s);
splitButton control(s)

message bar security settings, 533-534
methods. See also specific methods

defined, 378
events v., 379
working with, 380-382

Microsoft .NET Framework 2.0, 36
installation on Windows XP, 36-38
missing dialog box, 38

Microsoft Office 12.0 Object Library, 158,
183, 508

Microsoft Office 2007. See also Access;
Excel; PowerPoint; Word

security, 26, 523-543
Microsoft Office 2007 Custom UI Editor.

See CustomUI Editor
Microsoft SOAP Type Library, 385
Microsoft Update site, 36
Microsoft’s Community website, 623
Mini toolbar, 447
minimize button (VBE), 91
minimize/maximize Ribbon, 8, 19-20
modRibbonX, 183
Module element, 136
mouse wheel, Ribbon navigation with, 19
Mozilla’s Thunderbird Portable client, 624
Mr Excel.com, 625
MSDN Ribbon Developer Portal, 622
multilingual UI, 455-458
My Tools tab

in Excel, 214
in Word, 214

My Very Own Tab
in Access, 49
in Excel, 47
in Word, 40, 47

MyFirstUIModification.xlsx, 31-32
.zip, 32-33

contents, 33

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 643

644 Index ■ N–O

N
naming conventions, 61, 111-112, 615-620

benefits, 111
prefix, 111, 616

sample, 617-618
RVBA, 111, 615, 616
samples, 617-620

callback signatures, 618-619
prefix/tag, 617-618
shared namespaces, 620

tags, 112, 616
sample, 617-618

navigation tips, Ribbon, 17-19
nesting box elements, 326, 329-333
.NET Framework 2.0. See Microsoft .NET

Framework 2.0
NewSheet workbook event, 116
NNTP newsreader, 623, 624
NoData report/form events, 122
Normal.dotm template, 476-477
notation

A1, 188
R1C1, 188

Notepad. See also XML Notepad
Ribbon customization, 30-35

nsQa, 620
nsQaShared, 620
Null value, 208

O
object(s), 58. See also children objects;

parent objects; specific objects
external, 128
naming convention, 615-620
root, 98

Object Browser, 125-126, 360
referenced library in, 127

Object data type, 113
Object Library

Office 12.0, 158, 183, 508
object model (OM), 88. See also macro

recording
defined, 98

Object Model Map, 98
ObjectName, 160
Office 12.0 Object Library, 158, 183, 508
Office 2007 security. See security, Office

2007

Office 2007 XML schema page, 43
Office Button, 17, 413
Office Experts, 625
Office Menu, 17

adding items to, 413-418
child objects, 414
customization, 413-418
elements, 418
XML markup, 414

Office UI Overview website, 622
OfficeArt, pop-up menus and, 447
officeMenu element, 549
OM. See object model
On Error GoTo error handling, 138-140
On Error Resume Next error handling, 138
onAction, 146

callback
button control, 170
checkBox control, 184
repurposing and, 170
toggleButton control, 210

dropDown control, 247
gallery control, 278

onChange
callback, editBox control and, 197
comboBox control, 230

one-based arrays, 251, 252
one-click delay, 260, 261
OnFormat report/form events, 122
OnKey method, 411, 412, 425

arguments, 411
onLoad

attribute, 66
adjusting XML for, 147

callback, 251
event, 147

setting up VBA code for, 147-148
event order, 151

Open method, 376
Open report/form events, 122
Open workbook event, 116
OpenDatabase method, 376
OpenXML file structure, 30, 48

Word/Excel, 30, 48
zipped containers, 30, 32

order, of commands, 9
Outlook Express, 623, 624

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 644

Index ■ P–Q 645

P
parent objects

box element, 326
button control, 173
checkBox control, 186
dialogBoxLauncher control, 357
dropDown control, 247
dynamicMenu control, 313
editBox control, 199
item element, 227
labelControl, 340
menu control, 289
menuSeparator element, 349
separator element, 346
splitButton control, 301
toggleButton control, 212

Patrick Schmid’s Office UI Forum, 625
PERSONAL.XLSB workbook, 468-469
Picture Tools contextual tabSet, with

Format tab, 438-439
PictureDisp, 272, 273, 274
pictures

in Access projects, 270-273
custom, 263-275
in Excel/Word projects, 266-270

with CustomUI Editor, 267-268
on-the-fly, 268-270

formats, 263-266
placeholders for, 217-220
sizing/scaling, 266

canvas size v., 266
placeholders, for pictures, 217-220
PNG (Portable Network Graphics) format,

264, 265, 266
GDI+ and, 266, 274-275

POPNAME, 431
pop-up menus, 10

built-in
adding items to, 453-455
in Excel, 448
replacing, 448-452

contextual, 447-454
new OfficeArt and, 447
replacing, 121

Portable Network Graphics format. See
PNG format

positioning
custom groups, 83-84
custom tabs, 75-76

PowerPoint, 29, 30
prefixes/tags, for controls, 617-618

naming convention, 111, 616
Prepaid Expense schedule, 176-178,

214-217
Prepare menu, 290, 291
privacy options, Trust Center, 534
Procedure element, 136
Process Accounts label, 342, 343, 344
Program FilesCustomUI EditorSamples

path, 41
programming, for customizations, 8
Project element, 136
Project Explorer window, 91, 361
properties

custom
for built-in objects, 389-394

defined, 378
working with, 379-380

Properties window, 91, 361
Property Get, 380
Property Let, 379
PSchmid.Net, 622
public variables, 221
Puls, Ken, 623

Q
QAT. See Quick Access Toolbar
QAT element, 549
Quick Access Toolbar (QAT), 17, 413

in Access project, 21, 22
adding items to, 418-435

custom/built-in commands, 420-422
custom/built-in groups, 422-424

change location, 24
child elements, 420
commands on, 20-22

repurposing, 424-427
controls on, 17
custom button/built-in control added to,

420-421
custom splitButton added to, 422
customization, 418-435

table-driven approach (Access), 430-433
table-driven approach (Excel/Word),

428-430
drawbacks, 433-435

duplication of controls, 434-435

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 645

646 Index ■ Q–R

inability to load controls, 433-434
inability to load custom images to

controls, 434
groups on, 21-22
macros on, 22-24
Ron deBruin website, 622
starting UI from scratch and, 403

quotes, collapsing, 318

R
R1C1

formula checkbox, 188
notation, 188
Reference Style checkbox, 190

Record Macro dialog box, 92-93. See also
macro recording

Reddick VBA naming convention (RVBA),
111, 615, 616. See also naming
conventions

website, 111
referencing libraries, 104, 105, 126-129

in Object Browser, 127
regedit, 395
Registry. See Windows Registry
Registry Editor window, 394, 395
.rels file, 34

contents, 34
error, 35

_rels folder, 34
Remove method, 374
RenameSheet, 201
report events, 114, 119-122

Click, 122
Close, 122
Current, 122
Load, 122
NoData, 122
OnFormat, 122
Open, 122

repurpose suffix, 112, 616-617
repurposing

commands, 408-410
associated with generic control, 408-410
on QAT, 424-427

onAction callback and, 170
resizing arrays, 142-143
Ribbon. See also user interface

components, 16-17
Access, 16

control elements, 552-585
controls, 169-224. See also controls
customizations, 24

Access, 48-53
CustomUI Editor, 35, 39-43
example, 27
Excel, 30-35
Notepad, 30-35
preparations, 24-27
sharing/deploying, 459-521
Word, 30, 39-40
XML and, 56

high resolution, 7
history/background, 3-9
invalidating, 147, 162-166

individual controls, 165-166
issues

non-visual, 8-9
visual, 7-8

minimize/maximize, 8, 19-20
navigation tips, 17-19

mouse wheel, 19
overriding built-in controls in, 401-412
programming

other languages, 88-89
VBA, 88-89

screen space, 7
document visibility, 7

ribbon element, 67-69, 548
children objects, 68
optional attribute, 68
required attributes, 67

RibbonBase template, 41-42, 73-74, 178
RibbonX

container elements, 546-552
related information websites, 621-622

Access Freak, 622
Access Ribbon Customizations, 622
Access Team Blog, 622
Avenius Gunter, 622
Excel Team Blog, 622
ExcelGuru.ca, 622
MSDN Ribbon Developer Portal, 622
Office UI Overview, 622
PSchmid.Net, 622
Ron deBruin (QAT), 622
Ron deBruin (Ribbon), 622

rxrib, 618
tags, 545-585

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 646

Index ■ R–S 647

Ron deBruin (QAT) website, 622
Ron deBruin (Ribbon) website, 622
root element, 65
root object, 98
routines. See specific routines
rows attribute, 277
RVBA. See Reddick VBA naming

convention
rxbgrp (buttonGroup control), 617
rxbox (box control), 617
rxbtn (button control), 617
rxbtn_click, 618
rxbtnCopy, 160, 161, 162
rxbtnCut, 160, 161, 162
rxbtn_getEnabled, 618
rxbtn_getImage, 618
rxbtn_getKeytip, 619
rxbtn_getLabel, 619
rxbtn_getScreentip, 619
rxbtn_getSupertip, 619
rxbtn_getVisible, 619
rxbtnnsQaShared_Click, 620
rxbtnPaste, 160, 161, 162
rxcbo (comboBox control), 617
rxcboSelectSheet_Click, 252, 253
rxchk (checkBox control), 617
rxchkR1C1_click, 189
rxchkR1C1_getPressed, 189
rxchkStyleInsp_click routine, 193, 194
rxcmd (command), 617
rxctl (control), 617
rxdd (dropDown control), 617
rxddSelectSheet_Click, 252, 253
rxdmnu (dynamicMenu control), 617
rxFileSave_repurpose, 619
rxgal (gallery control), 617
rxgrp (group control), 617
rxIRibbonUI_onLoad, 189, 388
rxitem (item), 617
rxlblResult_getLabel, 388
rxlctl (labelControl), 618
rxMacroName, 160
rxMacroName.ObjectName, 619
rxmnu (menu control), 618
rxmsep (menuSeparator control), 618
rxrib (RibbonX), 618
rxRibbonUI_onLoad, 619
rxsbtn (splitButton control), 618

rxsep (separator control), 618
rxshared_getItemCount, 388
rxshared_getItemLabel, 388
rxshared_getLabel, 619
rxshared_onChange, 388
rxtab (tab), 618
rxtgl (toggleButton control), 618
rxtgl_getPressed, 619
rxtglViewDataSheet_click routine, 221
rxtxt (editBox control), 618
rxtxtRenameFrom_change routine, 208
rxtxtRenameFrom_getText routine, 208
rxtxtRenameTo_change routine, 208-209
rxtxtRenameTo_getText callback, 208

S
SaveSetting function, 394
scaled integer, 113
scaling/sizing pictures, 266
Schmid, Patrick, 625

Office UI Forum, 625
PSchmid.Net, 622

screen space, Ribbon, 7
screentip attribute, 78, 366

button control, 172
checkBox control, 185
comboBox control, 231
creation, 366-367
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
item element, 227
labelControl, 339
menu control, 288
toggleButton control, 211

security, Office 2007, 26, 523-543
background/history, 524
digital certificates, 534-542

acquiring, 535-536
adding, to projects, 537-538
deleting, 540-542
SELFCERT.exe and, 536-537
trusting, on other machines, 538-540
workings of, 534-535

macro-enabled/macro-free file formats,
524-525

Trust Center, 525-534
ActiveX settings, 531

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 647

648 Index ■ S

add-ins, 529-531
macro settings, 532-533
message bar settings, 533-534
privacy options, 534
trusted locations, 526-529
trusted publishers, 526

Select Case statement, 109-110, 498
elements, 109

SelectionChange worksheet event, 119
SELFCERT.exe, 536-537. See also digital

certificates
SendKeys method, 405-406, 457

combination keys for, 405
special keys for, 405-406

separator element(s), 344-347, 580-581
built-in, 344, 346
children objects, 346
custom, 346-347
graphical attributes, 346
insert attributes, 345
optional attributes, 345

callback signatures, 345
parent objects, 346
required attributes, 344
rxsep, 618
serious bug, 345
whitespace, 346-347

sFormName variable, 260
shared callbacks, 150, 151, 153, 158, 167,

330, 331
shared controls, 17, 21, 419-420
shared events, 112, 616
shared namespaces

deploying Ribbon customizations with,
478-479

naming convention, 620
sharedControls element, 419, 549

documentControls v., 419-420
sharing Ribbon customizations. See

deploying Ribbon customizations
SheetActivate workbook event, 117
SheetBeforeRightClick workbook

event, 117
SheetChange workbook event, 117
Show DataSheet View toggleButton, 223
Show Picture Placeholders, 218
Show Styles dropDown, 257
Show System Objects option, 49, 195, 196

showImage
button control, 172
comboBox control, 231
dropDown control, 246
dynamicMenu control, 312
editBox control, 198
menu control, 288
toggleButton control, 211

showing extensions, 31
showItemAttribute

comboBox control, 231
showItemImage

comboBox control, 231
dropDown control, 246
gallery control, 277

showItemLabel
dropDown control, 246
gallery control, 277

showLabel
button control, 172

idiosyncrasy, 175-176
comboBox control, 231
dropDown control, 247
dynamicMenu control, 312
editBox control, 199
labelControl, 339
splitButton control, 300
toggleButton control, 211

shtRename, 201
Single (single-precision floating-point)

data type, 113
single-precision floating-point, 113
size attribute

button control, 172
dynamicMenu control, 312
menu control, 288
toggleButton control, 211

sizeString attribute, 202
comboBox control, 231
default value, 232
dropDown control, 247
editBox control, 199
gallery control, 277

sizing/scaling pictures, 266
sNewSheetName variable, 203
splitButton control(s), 299-309, 581-582

built-in, 302-303
children objects, 301

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 648

Index ■ S–T 649

custom, 303-309
Access example, 306-309
Excel example, 303-305
Word example, 305-306

graphical attributes, 301-302
optional attributes, 300-301

callback signatures, 300-301
parent, 301
required attributes, 299
rxsbtn, 618

standard modules, 378
startFromScratch attribute, 68, 419, 507

setting, 402-404
statements. See looping statements; specific

statements
statements-n, 109
static attributes. See specific attributes
static callbacks, all or nothing approach,

227, 239
Stohr, Oliver, 623
Stop statement, 131
String (fixed-length) data type, 113
String (variable-length) data type, 113
Style Inspector, 192, 193, 194

width, 203, 204, 205
Style Pane Options dialog box, 256
subprocedures, 97, 98-100

defined, 98
stub, 146. See also callback signatures

supertip attribute, 78, 366
button control, 172
checkBox control, 186
comboBox control, 231
creation, 366-367
dropDown control, 247
dynamicMenu control, 312
editBox control, 199
item element, 227
labelControl, 339
menu control, 288
toggleButton control, 212

synergistic effects, controls, 333

T
tab(s). See also specific tabs

built on-the-fly, 9
built-in, 72-74

custom groups on, 85

modifying, 73-74
names, 72-73, 588

contextual, 438-439
custom, 72, 74-76

creation, 74
multiple, 75-76
positioning, 75-76

defined, 16
idMso identifiers

Access, 73, 588
Excel, 73, 588
Word, 73, 588

items added to. See group controls
tab element, 70-71, 71, 550-551

children objects, 72
graphical attributes, 72
id attributes, 70
idMso attribute, 70
idQ attribute, 70
optional attributes, 71

callback signatures, 71
optional insert attributes, 71
required attributes, 70
rxtab, 618

TabChartToolsDesign, 446
TabChartToolsFormat, 446
TabChartToolsLayout, 446
table-driven approach, QAT customization

Access, 430-433
Excel/Word, 428-430
Word, 428-430

tables, Access, 9. See also
USysRibbons table

Ribbon customizations in, 49-53
limitations, 51-52

tabs element, 69-70, 550
children objects, 70
required attributes, 69

tabSet element, 548
renaming, 444-445

tags, 57-59. See also specific tags
elements v., 59
naming convention, 112, 616
opening/closing, 57
/prefixes for controls, 617-618
RibbonX, 545-585

tblAuthors, 181
templates

Excel, 461-463

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 649

650 Index ■ T–V

global, 472-476
Normal.dotm, 476-477
Ribbon customizations deployed with

Excel, 461-463
Word, 470-472

Word, 254, 470-472
creating, 471-472
directories for, 470-471

Test folder, 31
testexpression, 109
text wrapping, 35
third party tools, for customizations, 8
ThisDocument, 99
ThisWorkbook, 99
Thunderbird Portable client, 624
title attribute, menuSeparator element, 348
title bar, 91
toggleButton control(s), 26, 169, 209-223,

582-585
built-in, 213-214
children objects, 212
custom, 214-223

Access example, 220-223
Excel example, 214-217
Word example, 217-220

graphical attributes, 212-213
insert attributes, 210
optional attributes, 210-212

callback signatures, 211-212
parent objects, 212
required attributes, 209-210
rxtgl, 618

toolbars. See also Quick Access Toolbar
corrupted, 6
docking capability, 5, 6, 9

lack of, 8, 9
Mini, 447
UI and, 3
VBE, 91

top-level menus, 4
transparency, differing color schemes and,

265, 266
Trust Center, 525-534

ActiveX settings, 531
add-ins, 529-531
macro settings, 532-533
message bar settings, 533-534
privacy options, 534

trusted locations, 526-529
trusted publishers, 526

trusted locations, 526-529
adding/modifying/removing, 528
disabling, 529
on network, 529

trusted publishers, 526
trusting VBA Project access, 533

U
UCase () function, 498
UDFs. See user-defined functions
UI. See user interface
UIHost file, 485
Update Fields button, 180
User Access Control feature, 41
user interface (UI), 3-28. See also Ribbon

differing color schemes, 264
full transparency, 265, 266

issues, 7-9
multilingual, 455-458
old, 4-6

problems, 6
solutions for, 6

starting from scratch, 402-404
activating tab at startup, 404-406
additional QAT options, 403
controls available, 403

table-driven menus, 9
toolbars and, 3

User Templates folder, 470
user-defined data type, 114
user-defined functions (UDFs), 101,

274, 397
userforms, custom dialogBoxLauncher

and, 360-361
USysRibbons table, 49-50, 182, 194, 195,

196, 206, 220, 239, 258, 272, 291, 296,
306, 307, 368, 443, 444

caveat, 51-52
pasting XML code into, 50

UtterAccess.com, 625

V
Val () function, 497
validity check, XML, 39-40, 65
variable-length string, 113
variables. See specific variables

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 650

Index ■ V–W 651

Variant (with characters) data type, 114
Variant (with numbers) data type, 114
VBA. See Visual Basic for Applications
VBAExpress.com, 625
VBE. See Visual Basic Editor
vbnullstring constant, 208
vertical alignment, box element, 328-329
View Gridlines checkBox, 187
visible attribute

box element, 325
button control, 172
checkBox control, 186
dropDown control, 247
dynamicMenu control, 312
editBox control, 199
group control, 78
labelControl, 340
menu control, 288
splitButton control, 301
tag control, 71
toggleButton control, 212

visible Form Tools group, 223
Visual Basic Editor (VBE), 11, 90-91

close button, 91
maximize/restore button, 91
menu bar, 91
minimize button, 91
toolbars, 91
window elements, 90-91, 92

Visual Basic for Applications (VBA), 56,
87-143

for Access callback handling, 158-160
access to Windows Registry, 394-395
advanced techniques, 373-399
coding techniques, 101-110
defined, 89
programming for Ribbon, 88-89
setting up code for onLoad event,

147-148

W
Watch expression element, 136
Watches window, 135-137

drag-and-drop onto, 137
Web forums, 624-625

JMT Q&A Board, 625
Mr Excel.com, 625
Office Experts, 625

Patrick Schmid’s Office UI Forum, 625
UtterAccess.com, 625
VBAExpress.com, 625

Web services, 383-389
currency conversion UI based on, 385
references form, 384
subscription fees, 389
tools for Office, 383

Wend keyword, 106
whitespace, 328, 329

buttonGroup, 338
separator element, 346-347

window. See also specific windows
code, 90
Immediate, 91, 130, 132-134
Locals, 134-135
Project Explorer, 91, 361
Properties, 91, 361
Watches, 135-137

Windows Metafile format.
See WMF format

Windows Registry, 394-399
saving/retrieving values from,

394-399, 488
VBA access to, 394-395

Windows Script Hosting Model, 104
Windows Update site, 36
Windows XP, 36

Microsoft .NET Framework 2.0
installation, 36-38

With-End With statement, 106-107
elements, 106

WMF (Windows Metafile) format, 265
Word

2003 hierarchical menu, 4
Advanced Options window, 192
button control example, 179-180
checkBox control example, 192-194
comboBox control example, 237-239
deploying Ribbon customizations,

469-477
documents, 469-470
global templates, 472-476
templates, 470-472

dropDown control example, 254-257
editBox control example, 203-205
global templates, 472-476

document conversion to, 473-474

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 651

652 Index ■ W–Z

editing, 475-476
as front-end for 2003 template, 500-504
removing, 476
template conversion to, 474-475

idMso identifiers
group, 600-605
tab, 73, 588

imageMso reference tool, 607, 608, 609
macro options, editing, 97
macro recording, 91-97

Excel macro recording v., 94
menu control example, 294-295
My Tools tab in, 214
My Very Own Tab in, 40, 47
OpenXML file structure, 30, 48
projects, pictures in, 266-270

with CustomUI Editor, 267-268
on-the-fly, 268-270

Ribbon customizations, 30, 39-40
sharing tabs/groups in, 485-491
splitButton control example, 305-306
table-driven approach, QAT

customization, 428-430
templates, 254, 470-472

creating, 471-472
template directories, 470-471

toggleButton control example, 217-220
workbook events, 114, 115-117

BeforeClose, 116
BeforeSave, 116
NewSheet, 116
Open, 116
SheetActivate, 117
SheetBeforeRightClick, 117
SheetChange, 117

Workbook_Open event, 496
workbooks

callbacks in different, 153-155
deploying Ribbon customizations with,

460-461
PERSONAL.XLSB, 468-469

Workgroup Templates directory, 470
worksheet events, 114, 117-119

Activate, 119
BeforeDoubleClick, 119
BeforeRightClick, 119
Change, 119
SelectionChange, 119

X
xlSheetHidden, 249
xlSheetVeryHidden, 249
xlSheetVisible, 249
XML (Extensible Markup Language)

case sensitive, 27, 31, 40
comments in, 63-64
consistency, 26
core framework, 65-85
data structure, 56
defined, 56-57
indexing feature, 56
Ribbon customization and, 56
schemas, 56
structure, 57-61
tips for writing code, 61-63
validity check, 39-40, 65

XML Notepad, 43-48
attribute added to, 46
benefits, 47
CustomUI Editor v., 48
element added to, 45
installation, 43
viewing XML source code, 47
XML schema added, 43

XML schema page, Office 2007, 43
xmlns attribute, 66
xmlns:Q attribute, 66, 478

Z
zero-based arrays, 251, 252

91118bindex.qxd:WileyRedTight 12/3/07 10:20 AM Page 652

