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Suppose we are simulating a collection of continu-

ously moving bodies, rigid or deformable, whose in-

stantaneous motion follows known laws. As the sim-

ulation proceeds, we are interested in maintaining cer-

tain quantities of interest (for example, the separation

of the closest pair of objects), or detecting certain dis-

crete events (for example, collisions) which may, in

turn, alter the motion laws of the objects. In this

paper we present a general framework for addressing

such problems and the tools for designing and analyzing

relevant algorithms, which we call kinetic data struc-

tures. We discuss kinetic data structures for a va-

riety of fundamental geometric problems, such as the

maintenance of convex hulls, Voronoi and Delaunay

diagrams, closest pairs, and intersection and visibil-

ity problems. We also brie
y address the issues that

arise in implementing such structures robustly and ef-

�ciently. The resulting techniques satisfy three desir-

able properties: (1) they exploit the continuity of the

motion of the objects to gain e�ciency, (2) the num-

ber of events processed by the algorithms is close to the

minimum necessary in the worst case, and (3) any ob-

ject may change its `
ight plan' at any moment with a

low cost update to the simulation data structures. For

computer applications dealing with motion in the phys-

ical world, kinetic data structures lead to simulation

performance unattainable by other means. In addition,

they raise fundamentally new combinatorial and algo-

rithmic questions whose study may prove fruitful for

other disciplines as well.

1 Introduction

Motion is ubiquitous in the world around us. Com-

puter disciplines, such as computer graphics, robotics,

and vision, that deal with modeling the physical world

must in particular deal with the modeling of motion.

This may involve estimating motion parameters from

sensor data, local and global motion planning and con-

trol, collision checking, physics-based simulation, char-

acter animation, rendering, etc. Unlike the modeling

of shape, which has been well studied in the above dis-

ciplines over the past three decades, the analysis and

modeling of motion in a cohesive fashion is still in its

infancy. A key di�culty is that in modeling motion we

rarely have all the motion data available at once. Mo-

tion takes place over the time dimension, and the mo-

tion parameters of a system of moving objects, whether

real or virtual, can change drastically because of events

and interactions between the objects that are hard to

predict far into the future. Useful motion models must

incorporate this basic on-line character of the problem.

In the work presented here, we will be interested in

the simulation of a complex system of multiple mov-

ing objects and the e�cient maintenance of various

attributes of this system as the motion evolves. For

example, we may be interested in maintaining (the sep-

aration of) the closest pair of objects, because we want

to detect collisions between them. We may want to

maintain a binary space partition (BSP) of the space

containing the objects, in order to quickly obtain vis-

ibility information for rendering. Or we may want to

maintain a minimum spanning tree (MST) connecting

the moving objects, as a way of linking them through a

wireless communications network. Closest pairs, BSPs,

and MSTs are all concepts whose fundamental impor-

tance is well-known to Computational Geometry, and

on which extensive research has been done. The nov-

elty in our setting is that the de�ning objects are not

static but in continuous motion. We mean `continuous'

both in the sense of non-stop, as well as in the math-

ematical sense | objects do not jump from one part

of space to another. We propose to study a new class

of algorithmic techniques, which we call kinetic data

structures (or KDSs for short), that exploit this conti-
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nuity or coherence of the motion for maintaining these

geometric structures of interest more e�ciently than

any known alternatives. We will refer to the attribute

being maintained as the con�guration function of the

system (or CF for short). Note that each of the above

CFs has a combinatorial description (e.g., the graph

structure of the MST) that changes only at discrete

times, when certain events occur (but the separation

of the closest pair, or the total cost of the MST are

themselves continuous functions of time).

Now, in principle, the continuous motion of each ob-

ject can be approximated, after a discrete sampling of

time, by deleting and reinserting it in a new position at

each time step. But this incremental updating method,

which is widely used in practice, bene�ts from conti-

nuity only indirectly and can be used only when the

number of moving objects is small, because of its in-

herent ine�ciency. In particular, the trouble with any

�xed-rate sampling of the evolving system is that it

either oversamples the system (wasting resources), or

undersamples it (possibly missing critical periods) |

since the events of interest to the con�guration func-

tion typically occur in highly irregular patterns over

time. The aim of our new technique is to take advan-

tage of the coherence present in continuous motions

so as to process a minimal number of combinatorial

events, yet still maintain the CF correctly. In this

respect, the way of analyzing our data structures is

related to the dynamic computational geometry frame-

work introduced by Atallah [10] in order to study the

number of combinatorially distinct con�gurations of a

given kind (e.g., convex hull or closest pair) that arise

during known simple motions of the geometric objects.

However, unlike Atallah's setting in which motions are

predetermined, our data structures do not require us to

know the full motion of the objects in advance. Thus

they are much better suited to real-world situations in

which objects can change their motion on-line because

of interactions with each other, external impulses, etc.

Though our emphasis will be on exploiting the con-

tinuous motion of the present objects, we must also

deal with new objects entering and old objects exit-

ing the simulation. Such discrete changes can be han-

dled by using dynamic data structures which are well-

developed in Computational Geometry | these must

then be combined with our kinetic structures. The

need for handling discrete changes arises as well in

composing kinetic data structures with each other. For

example, a kinetic client of a kinetic convex hull algo-

rithm for moving points will see a combinatorial change

to the convex hull as a discrete update (a new point en-

ters the hull, or an old point leaves).

The remaining subsections of the paper are as fol-

lows. Section 2 introduces the key idea on which our

development of good KDSs is based: that of animating

proofs through time. The motion model and qualities

of good KDSs are discussed in sections 3 and 4 respec-

tively. The following four sections survey the currently

known results and discuss several ideas towards the fu-

ture development of KDSs for important con�guration

functions in geometry, including classical problems in

arrangements, intersections, visibility, etc., all not yet

studied in the kinetic setting. Section 9 returns to the

dynamic computational geometry framework and dis-

cusses new approaches for bounds on CF combinatorial

changes under various probabilistic models. Section 10

discusses the issues that arise in implementing e�cient

schedulers for the event queues that arise in kinetic

simulations and Section 11 explores various additional

topics related to the practical implementation of KDSs.

Finally Section 12 concludes by discussing the theoret-

ical and applied signi�cance of this work.

Although the work presented here is focussed primar-

ily on rigid motions in a geometric context, it is worth

remarking the the ideas of kinetic data structures ex-

tend to any context in which a continuous attribute

evolves through a sequence of discrete events. Thus

the conceptual framework we will develop is equally

applicable to problems involving deforming objects, or

even to completely non-geometric problems, such as

the maintenance of shortest paths in a graph with con-

tinuously varying edge costs.

2 Animating Proofs Through Time

We will maintain a con�guration function by perform-

ing an event-driven simulation of the motion. Such

methods are based on an event queue which stores

events, each with an associated event time. The simu-

lation always proceeds to the next event in the queue;

the event is removed from the queue and processed.

This in turn may cause additional events to be sched-

uled or old events to be descheduled. And then this

cycle is repeated all over | a situation not unlike that

of sweep algorithms in Computational Geometry.
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The critical events for us are those that change the

combinatorial description of the con�guration function.

For example, if we are maintaining the closest pair of

n moving points in the plane, the instant when the

current closest pairAB is replaced by CD as the closest

pair, constitutes an event that we must know about and

have scheduled in the priority queue. Since discovering

and scheduling these events is not easy, we will often

�nd it advantageous to consider a somewhat larger set

of events that is easier to maintain. We call the events

which change the con�guration function external, in

order to distinguish them from the remaining events we

process, which we call internal. Any correct method for

maintaining the CF must process all external events;

the internal ones are there for the convenience of the

particular kinetic data structure we are developing.

How are we to �nd a superset of the set of the exter-

nal events that is not too large and at the same time

is easy to maintain? The key insight of our approach

is that we can do so by maintaining through time an

evolving proof of correctness of the value of the con�g-

uration function of interest. Such a proof will consist of

a number of elementary conditions on the moving data,

which we call certi�cates, that altogether imply (prove)

the correctness of the current value of the CF1. Each

certi�cate has an earliest failure time, and this failure

is scheduled as an event in the event queue. Clearly, as

long as no certi�cate fails, the combinatorial descrip-

tion of the CF cannot change. When a certi�cate fails,

it is the job of the kinetic data structure to repair and

update this proof. It may be that the CF has not

changed (AB is still the closest pair), but the proof

needs to be updated (internal event). Or it may be

that both the CF and its proof need to change at such

an event (external event).

Since the motion of the objects is continuous, it will

be possible to repair a single certi�cate failure in a

well-chosen proof with a relatively modest cost. If this

failure is an external event, then the proof will guide

us on how to update the con�guration function as well.

Finding proofs (i.e., certi�cate sets) that evolve grace-

fully in time as certi�cate failures happen is exactly the

art of designing good kinetic data structures. Given a

con�guration function, we can generate a �rst cut at a

proof as follows. Conceptually speaking, we stop the

1In this paper we will often use the word `proof' to refer

to such a certi�cate set.

motion, run our favorite static algorithm for comput-

ing the value of the CF, and then collect all the tests

the algorithm performed together with their outcomes.

If this static algorithm is correct, then the outcomes

of all these tests is a set of certi�cates that proves the

correctness of the value of the CF. Most proofs gener-

ated this way will not animate well, or they will require

considerable massaging before they yield good kinetic

structures. We will present several examples of this

process in later sections of this paper.

Since certi�cates will generally correspond to tests

performed by a static algorithm for the CF, they invari-

ably involve only a small and constant number of the

moving objects. For reasons that will become clearer

in Sections 3 and 4, throughout this work we will aim

to only use certi�cates that involve a constant number

of objects each, as well as to minimize the number of

certi�cates that any one moving object is involved in.

To summarize then, a kinetic data structure main-

tains a CF by updating over time a proof of correct-

ness of the CF. We saw earlier the di�culties with any

scheme for maintaining the CF by doing a �xed-rate

sampling of the evolving system. By using the idea of

`proof animation' we are able to do a more intelligent,

uneven sampling that is better adapted to the CF, so

as to avoid wasteful computation when the CF does

not change, while doing the necessary update at the

exact times when it does.

3 Motion Models

What information about the moving objects does a ki-

netic data structure need in order to do its work? The

interface happens in the calculation of the certi�cate

failure times. In the simplest setting, each moving ob-

ject follows a publicly posted 
ight plan specifying its

short-term motion. If we look at the evolving system

over a period of time when these 
ight plans or mo-

tion laws do not change, then we can calculate for each

currently valid certi�cate its failure time. In a typi-

cal case, the 
ight plans will be polynomial or rational

trajectories, and the certi�cate itself will be a simple

algebraic inequality, so the certi�cate failure time will

be the next largest real root of some low-degree poly-

nomial.

Of course the 
ight plan of an object can change.

A 
ight plan update can occur because of interactions
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between the object and other moving objects, the en-

vironment, etc. For example, a collision between two

moving objects will in general result in updates to the


ight plans of both objects. But an object can also

change its motion law because of its own free will. In

order for the simulation to proceed correctly, whenever

a 
ight plan update happens, the KDS must be in-

formed about it. Events that change the 
ight plans

of objects (e.g., collisions) must themselves be sched-

uled in the event queue before they happen. Thus a

KDS for the MST of a set of moving and elastically

bouncing balls may need to also implement a closest

pair/collision detection KDS as a way to know all the


ight plan updates. Or, as we already remarked, when

composing KDSs, events that change the output of the

�rst structure can generate 
ight plan updates for the

other.

When a 
ight plan update for an object happens,

all the certi�cates that involve that object must have

their failure times recalculated and their positions in

the event queue updated. This makes it desirable to

keep the number of certi�cates involving any particular

object small.

Although the simple motion model presented so far

may be adequate for certain idealized virtual reality

simulations, it is clearly insu�cient when tracking mov-

ing objects in the real world. It can then be the case

that the 
ight plans only give us partial information

about the object motions, or that there are no posted


ight plans at all. Instead the KDS has to try to pre-

dict the current motion of each object by extrapolating

from its past motion. With this incomplete knowledge,

the KDS clearly cannot calculate exact failure times

for certi�cates. The best it can do is to calculate for

each certi�cate a `last time' till which the KDS can

be sure that the certi�cate is still valid, given the par-

tial 
ight plans and perhaps some a priori bounds on

the velocity and other motion parameters of each ob-

ject. Events can be scheduled for those times and the

certi�cate then be re-examined using any updated po-

sition/motion information that may have become avail-

able in the meantime.

In the real-world context, this raises the issue of hav-

ing the kinetic algorithm use sensing so as to acquire

better motion information about the objects in order

to resolve the status of certi�cates. This then becomes

akin to the model of `data in motion' introduced by Ka-

han [33]. What is the best way for a kinetic algorithm

to use sensing in order to proceed with the simulation?

This raises several research issues that have not been

adequately explored yet.

Several other motion models incorporating uncer-

tainty and limiting the ability of the KDS to examine

the evolving system are worth discussing, but in order

not to delay further the presentation of concrete prob-

lems, we will omit this topic. In the remaining sections

we will assume that we have posted 
ight plans with

full motion information and that all 
ight plan updates

are events scheduled by our KDS or others in the event

queue. We will also assume that each motion plan has

�xed complexity independent of the number of mov-

ing objects2; this implies that the cost of calculating a

certi�cate failure time is O(1).

4 Analysis of Kinetic Data Structures

So far we have concentrated on the issue of correctness

for a kinetic data structure. The challenges were how

not to miss any external events a�ecting the CF, and

how to stay informed of all the 
ight plan updates. But

how shall we evaluate kinetic structures? Storage and

time are clearly important, but the on-line nature of

the events raises some additional issues akin to those

of on-line algorithms. Criteria for measuring the per-

formance of kinetic data structures is the topic of this

Section.

Though the exact nature of the 
ight plans is not

relevant to correctness issues, it clearly a�ects per-

formance. When analyzing kinetic structures we will

generally assume that all trajectories followed by the

moving objects are pseudo-algebraic splines. By this

we mean that each trajectory consists of a discrete

set of arcs, and the transitions between the arcs cor-

respond to 
ight plan updates. The arcs themselves

must be what we call pseudo-algebraic with respect to

the KDS. By this we mean that all certi�cates used

by the KDS can switch from true to false at most

a bounded number of times, for any motions follow-

ing the given arcs. This is a condition akin to the

Davenport-Schinzel condition [41] commonly used to

2This assumption excludes certain kinds of simulations,

such as classical n-body simulations [29], from our simplest

framework.
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limit the complexity of curve interactions in Compu-

tational Geometry. In particular, algebraic arcs of

bounded degree are always pseudo-algebraic. On oc-

casion, we will make much stronger assumptions, such

as in the usual scenario of linear, constant velocity, mo-

tions.

The performance bounds we give depend on n, the

number of rigidly moving objects or object parts.

Clearly the number of 
ight plan updates also a�ects

the complexity of the simulation. Exactly how to incor-

porate that into our framework is a topic for further re-

search. For the KDS analyses in the following sections

we will assume that there are no 
ight plan updates,

except in speci�c situations where we are composing

kinetic structures. We will call a quantity `small' if it

is of the order of O(polylog(n)), or even O(n�) for some

arbitrarily small � > 0.

We propose four major criteria for evaluating these

structures.

responsiveness Most obviously, a KDS is good if the

cost of processing a certi�cate failure is small. The

responsiveness of a KDS is the worst-case amount

of time needed to update its proof after a certi�-

cate failure. This may require discovering if the

value of the CF has changed and what the new

value is, as well as updating the certi�cate set by

removing old certi�cates that are no longer part

of the proof, and adding new certi�cates that are

part of the new proof. All these certi�cate changes

need to be re
ected in the event queue as well. We

call a KDS responsive if the the worst-case amount

of time needed for such a proof update is small (in

the technical sense just de�ned).

e�ciency A second key performance measure for a

KDS is the worst-case number number of events

processed. Our aim will be to develop kinetic

data structures for which the total number of

events processed by the structure in the worst

case is asymptotically of the same order as, or

only slightly larger than, the number of external

events in the worst case (technically, we require

that the ratio of total events to external events is

small). This is reasonable, as the number of ex-

ternal events is a lower bound on the cost of any

algorithm for maintaining the desired con�gura-

tion function. A KDS meeting this condition will

be called e�cient.

Note that in this de�nition we are comparing

events over two di�erent motions: the ones max-

imizing the number of events processed by the

KDS, and the ones maximizing the number of ex-

ternal events. In a more re�ned setting, we call

this measure weak e�ciency. A weakly e�cient

KDS only guarantees that it never processes many

more events than the worst-case number of ex-

ternal events over all allowed motions. We de-

�ne strong e�ciency to mean that the worst-case

ratio of total events processed to external events

(taken over all allowed motions) is small | this

is akin to the competitive ratio of on-line algo-

rithms [21] and is perhaps a more satisfactory no-

tion of e�ciency. Unfortunately so far we have

found only few strongly e�cient KDSs, and those

under highly restrictive motion assumptions. We

need to expand our repertory of strongly e�cient

structures.

locality We already remarked a number of times that

it is important to keep low the maximum number

of certi�cates in which any one object appears, in

order to allow e�cient 
ight plan updates. The

locality of a KDS is the maximum number of cer-

ti�cates in which any one object can ever appear.

If that number is small we call the KDS local. The

existence of local KDSs is an intriguing question

for several CFs.

compactness The size of the KDS is the maximum

number of certi�cates ever present in a proof | it

also re
ects the size of the event queue that needs

to be maintained. We call a KDS compact if the

maximum number of certi�cates ever present in

a proof is of the order of n times a small (in the

technical sense) quantity (i.e., if it is nearly linear).

Note that locality implies compactness, but respon-

siveness and e�ciency are unrelated. There exist e�-

cient but unresponsive structures, as well as ine�cient

but responsive ones3.

3In our early work on KDSs we have focussed on prob-

lems for which compact and local KDSs exist, as the next

few sections show. We expect that the development of

KDSs for problems where the minimum proof size is super-

linear to be considerably more challenging and to require

revisions in our locality desiderata.
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5 An Example KDS

To make the issues above more concrete, and since we

do not have the space to present in detail kinetic solu-

tions to the more substantial problems discussed in the

sequel, let us consider the following simple 1-d situa-

tion. Given a set of points moving continuously along

the y-axis, we are interested in knowing at all times

which is the topmost point (the largest, if we think of

the points as numbers). If two points meet, we allow

them to pass each other without interaction. Suppose

further that we know that the points are moving with

constant velocities (but possibly a di�erent one each),

starting from an arbitrary initial con�guration.

If we draw the trajectories of the points in the ty-

plane (where the t axis is horizontal and denotes time),

then our problem is nothing but computing the upper

envelope of a set of straight lines in the plane (or at

least the part of it that is after the initial time t0).

This upper envelope computation can be trivially done

in O(n logn) time with a divide-and-conquer algorithm

(this bound holds even if points can appear and disap-

pear at arbitrary times, but then it is not trivial [32]).

In the worst case, the number of times during the mo-

tion that the topmost point changes is �(n). Thus we

have a method for computing the con�guration func-

tion of interest in time that is is only a logarithmic

factor higher than the maximum number of changes in

the con�guration function itself.

For our purposes, however, this solution is unsatis-

factory, because it is based on knowing in advance the

full motions of the points: a 
ight plan update will

force a recomputation from scratch of all future max-

ima. In [12] we show that various other simple solutions

also su�er from drawbacks as kinetic structures. Main-

taining a sorted list of the points is easy and yields a

structure which is responsive, local, and compact, but

unfortunately not e�cient. Maintaining a heap is only

slightly more complicated, and this yields a responsive,

e�cient, local, and compact structure. But in this case

the proof of e�ciency is not easy [13], and to have such

a simple KDS be so hard to analyze is discouraging.

Let us also consider the following fourth solution to

the kinetic maximum maintenance problem, which we

call a kinetic tournament. The idea is to use a simple

divide-and-conquer strategy. The algorithm partitions

the points into two approximately equal-sized groups

(arbitrarily), and recursively maintains the maximum

of each group. A �nal comparison at the top level

yields the global winner. This tournament structure

generates �(n) certi�cates, each asserting an inequality

between the leaders of two subtournaments. When one

of these comparisons changes, the new winner has to

be propagated up the tournament tree to its proper

level. Clearly the update cost is O(logn), and locality

is O(log n) as well.

If our points move with constant velocities, how

many events will our kinetic tournament have to pro-

cess? The key insight to answering this question is to

realize that the kinetic tournament is implementing a

divide-and-conquer algorithm for the computation of

the upper envelope of n straight lines in the ty-plane

(the point trajectories). For example, the comparisons

performed over time at the top level for declaring the �-

nal winner are exactly those needed to merge the upper

envelopes of the two subgroups of the lines. The overall

cost of the merge is easily seen to be O(n) and it fol-

lows that this upper envelope computation has a worst

case cost satisfying of C(n) = O(n logn). The num-

ber of kinetic tournament events (re-schedulings, etc.)

is proportional to the number of times the identity of

one of the contestants at a node of the tournament

tree changes. Each such identity change corresponds

to an intersection in one of the sub-envelopes com-

puted by the divide-and-conquer algorithm, and hence

is counted by the O(n logn) bound on C(n). There-

fore the kinetic tournament accomplishes our goal of

maintaining on-line the maximum of a set of moving

points, and it is a responsive, e�cient, compact, and

local KDS.

This maximum problem is one of the rare ones for

which we know of a strongly e�cient KDS, but in a

special case only. We present this as our �fth and �-

nal solution. If point yi is moving as ti(t) = �it + �i,

then let us map it to the static vector (�i; �i) in the

parameter plane with axes � and �. Clearly the maxi-

mum yi at time t is the vector among these whose dot

product with (t; 1) is maximum. Thus it is enough to

precompute the convex hull of the points in the (�; �)-

plane corresponding to the tips of these vectors, and

then simply track the extremum around the convex hull

with a rotating tangent whose slope is (�1; t). The cost

of detecting each maximum change is constant. This

structure is kinetic, because if 
ight plan update hap-

pens, it can be accommodated by updating the convex

after deleting the vector corresponding to the old mo-
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tion parameters and inserting the vector corresponding

to the new ones. Such updates to the convex hull can

be handled e�ciently, in time O(log2 n) [38].

6 Extent Problems

The �rst class of kinetic problems we will investigate

deals with the extent of a set of moving objects. By

extent we mean various representations of how spread

out the objects are in space. We include under extent

classical geometric con�guration functions such as the

convex hull, diameter, width, various types of bounding

boxes, minimum enclosing sphere, etc. In the context

of moving bodies these con�gurations are important for

knowing if the objects have entered any forbidden re-

gions (e.g., aircraft 
ying in forbidden airspace), clip-

ping (e.g, speeding up rendering by ignoring objects

outside the view port), detecting various exceptional

conditions (e.g., some object gets so far away that it is

out of communication range), etc.

Convex hulls and upper envelopes

We have developed a responsive, e�cient (in the

weak sense), local, and compact algorithm for points

moving in the plane with algebraic trajectories of

bounded degree [12]. Our algorithm works in a divide-

and-conquer fashion, like the kinetic tournament of

Section 5. It is actually easier to explain the algorithm

in the dual setting, where the problem of maintaining

the upper convex hull of n moving points in the plane

dualizes to the problem of maintaining the upper en-

velope of n moving lines. Again, we partition the lines

into two roughly equal groups which we call red and

blue, and then recursively maintain the upper envelope

of each group. The goal of the root node of the recur-

sion is to maintain the purple upper envelope of all the

lines, given the recursive maintenance of the red and

blue envelopes. A certi�cate structure for this problem

can be derived by considering how we can merge the

red and blue envelopes into the purple envelope in a

static setting. This can be done by a standard sweep-

line algorithm and requires two types of tests: x-tests

in order to decide the x-ordering of vertices of the red

and blue envelopes, and y-tests that compare whether

a red or blue vertex is above or below its blue or red

contender edge (see [12] for details). Altogether these

x- and y-certi�cates, from all levels of the recursion,

form a proof of correctness of the current convex hull.

Unfortunately this set of certi�cates is not local: as

many as 
(n) blue vertices might be above the same

red contender edge (or vice versa). If that red edge un-

dergoes a 
ight plan update, a large number of certi�-

cates will need to have their failure times recomputed.

In [12] we show how to modify this certi�cate set and

make it local by adding an additional type of test, a

slope or s-certi�cate between pairs of lines. It is then

quite straightforward to check that when one of these

x-, y-, or s-certi�cate fails at a node of the recursion

tree, it is possible to update the local upper envelope

and corresponding certi�cate set in O(1) time, and the

same holds for all higher levels of the tree to which

this change needs to be propagated. From these con-

siderations it easily follows that the structure is local,

compact, and responsive. Figure 1 shows a simple ex-

ample of this process. How about e�ciency? Even with

straight lines motions, we can show that the convex hull

can change combinatorially 
(n2) times [5]. Because of

our algebraic trajectory assumption, it is clear that the

number of events corresponding to s-certi�cate failures

is O(n2), but the corresponding counts for y- and x-

certi�cates areO(n3) andO(n4) respectively. However,

by considering the surfaces swept by the lines over time

and invoking recent theorems of Combinatorial Geom-

etry about the complexity of upper envelopes [31], as

well as the overlay of envelopes [8], we can prove a near-

quadratic bound on the number of the y- and x-events

as well. Thus the algorithm is e�cient (O(n2+�) events

in the worst-case), but the proof of this fact requires

substantial machinery.

x x x x x x

y

y

y

y
s

s
s sy

Figure 1: A set of consecutive kinetic events.

E�cient kinetic data structures for convex hulls and

lower envelopes in higher dimensions d > 2 are not

yet fully developed. We expect this to pose challenges,

even for d = 3. To apply the divide-and-conquer strat-

egy presented above to 3-d upper envelopes of mov-

ing planes we will have to maintain in the xy-plane

the overlay of subdivisions corresponding to the pro-

jections of the red and blue upper subenvelopes. In
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Section 8 we will see how to maintain a planar sub-

division induced by moving segments in the plane in

the context of binary space partitions (BSPs). How-

ever, those ideas might not work as well in the current

context, as the moving elements of the subdivision are

themselves derived moving objects (e.g., the projec-

tions of lines that are the intersections of the primary

moving planes). Also, the overlay subdivision can have

�(n2) complexity, even though each of the blue, red,

and purple subdivisions has of course linear complex-

ity. Thus we must �nd a way to maintain (the rele-

vant parts of) the overlay subdivision implicitly, unless

we are willing to consider non-compact structures with

�(n2) certi�cates. In addition, the trick we used to

ensure locality for y-certi�cates in 2-d extends in the

3-d case only in part, unfortunately. It does not work

when we assert that a convex envelope lies below a tri-

angle | in this case all the rim vertices of the envelope

seem to require independent z-certi�cates. Thus both

sublinear locality and compactness remain open issues.

We expect progress on these fundamental structures

to enable progress on other higher-dimensional kinetic

problems as well.

Diameter, width, minimum spanning circle, etc.

Once we can maintain the convex hull of moving

points in 2-d, we can also solve a number of other re-

lated extent problems. In [5] we show how to maintain

the diameter, width, and various 
avors of bounding

boxes (minimum area, minimum perimeter) with the

same overall kinetic performance as the convex hull.

These applications show the power of composing ki-

netic data structures: once we have the convex hull we

can maintain antipodal pairs of vertices of the convex

hull and compare their distances or separation using a

kinetic tournament. We also show that these kinetic

algorithms are e�cient, as each of the respective con-

�guration functions can undergo 
(n2) changes even

for points moving linearly in the plane. It will be quite

interesting to consider the same problems in higher di-

mensions, either based on convex hull techniques, or by

other more direct methods, as was done for diameter

and width in the static case [18]. The kinetic mainte-

nance of collections of bounding boxes, such as those

used in OBB-trees [28] is also very interesting.

Not all 2-d extent problems can be solved this eas-

ily. Consider the problem of maintaining the min-

imum spanning circle (MSC) of a set of n moving

points in the plane. It is possible to prove in vari-

ous ways that the maximum number of times the MSC

can change combinatorially is nearly cubic (under the

pseudo-algebraicity assumption), but we do not know

if this bound is tight. In a space-time diagram the

MSC provides a certain kind of envelope of the point

trajectories. This makes us hope that some of the ver-

tex charging schemes for lower envelopes, that were

recently so successfully used to bound the complex-

ity of lower envelopes of algebraic surfaces [40], might

be applicable to this case as well. The key will be to

�nd a way to relate vertices on the envelope (i.e., time

instances when the MSC is de�ned by four cocircu-

lar points) to vertices inside the envelope, but not too

deeply.

In terms of a kinetic data structure for the MSC,

we can use the observation that the MSC is the small-

est circumcircle of any of the triangles in the furthest

point Delaunay triangulation of the point set (which is

always a triangulation of the convex hull). If we can

maintain the convex hull and the furthest point Delau-

nay triangulation of the point set, then we can derive

an elegant kinetic structure for the MSC as follows.

X

Y

Z

A
B

C

D

Figure 2: Maintaining the MSC.

Consider the dual tree of the furthest point Delau-

nay triangulation, and root it at the triangle whose

circumcircle is the MSC. To be concrete, let this trian-

gle be XY Z, and let the three other triangles that are

the children of the root have as their third vertex the

points A, B, and C respectively. We claim that as long

as the convex hull and the Delaunay triangulation do

not change, the MSC also cannot change. The only way

for the MSC to change combinatorially is to have one of

the points A, B, or C exit the current MSC, and this is

a Delaunay event. A point such as D in the �gure can-

not escape from the MSC without �rst escaping from
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the circumcircle of the Delaunay triangle AXY | and

this will also change the Delaunay triangulation. This

observation creates a tree of InCircle Delaunay certi�-

cates of linear size, which together with the certi�cates

needed for the convex hull, proves the correctness of

the MSC. When one of the certi�cates fails, this MSC

proof tree can be updated by simple tree rotations. Un-

fortunately, we do not know if this KDS is e�cient. A

near-cubic upper bound on the number of total events

processed can be proved | the dominant term is the

number of Delaunay triangulation changes, for which

only an upper bound of the form O(n2�s(n)) is known

(see below).

Range searching

It is worth noticing that the diameter, width, MSC,

etc. are all extent measures de�ned by a small and �xed

number of the moving points. This is also the case

for the canonical pieces used in various range search-

ing geometric structures, including Willard partition

trees [24], conjugation trees [24], and many of the newer

structures for simplex range searching based on cut-

tings and shallow cuttings [36]. The e�cient mainte-

nance of range searching structures under continuous

motion of the objects de�ning them is another area

that needs to be developed.

7 Proximity and Intersection Problems

Proximity and intersection are fundamental modalities

in describing events that a�ect the evolution of a sys-

tem of objects in motion. Collisions between objects,

i.e. transitions from non-intersection to intersection, in-

variably a�ect the 
ight plans of the objects involved.

Proximity to other objects will often cause a moving

object to change its 
ight in order to get closer or fur-

ther away from one of the moving objects, and so on.

For complex objects it is often advantageous to approx-

imate them with simpler bounding volumes and then

check for intersection between these bounding volumes

�rst. Thus we may want to track which pairs of bound-

ing volumes of objects intersect, as such pairs may need

to be checked for collision by a more re�ned algorithm.

In this section we present some preliminary results and

research plans for problems in this area.

Voronoi diagrams and Delaunay triangulations

The central role of Voronoi diagrams and Delaunay

triangulations is well-established in Computational Ge-

ometry. From the kinetic point of view, there is both

good and bad news regarding these diagrams. Let us

focus on the Delaunay triangulation | these diagrams

are equivalent and the events that change one combina-

torially are exactly the events that change the other as

well. Maintaining the Delaunay triangulation of points

moving in a low-dimensional Euclidean space is sur-

prisingly straightforward. We describe the situation

for d = 2; analogous statements hold in higher dimen-

sions. The key insight that helps is an old theorem of

Delaunay himself: a triangulation which is `locally De-

launay' is globally Delaunay [22]. By locally Delaunay

we mean that every edge of the triangulation passes the

InCircle test | in other words the circumcircle of the

triangle on one side of the edge does not contain the

third vertex of the triangle on the other side. This set

of local conditions gives us a compact set of certi�cates

for the Delaunay triangulation; their failure times be-

come the events to be scheduled in the event queue.

When a failure event happens, a `
ip operation' [24]

replaces the bad edge by a good edge, and all is well.

Thus a KDS for Delaunay is immediate and is clearly

responsive, strongly e�cient, and compact structure,

though of course it is not local (a vertex can have high

degree).

That was the good news. The bad news is that de-

spite work on this problem over several decades, we

still do not know a tight bound on the number of com-

binatorial changes in the Delaunay triangulation when

the points move pseudo-algebraically, or even linearly.

Currently the best known upper bound is O(nd�s(n))

[30] for some constant s, and the best known lower

bound is 
(nd). This gap makes it hard to judge the

worst-case e�ciency of algorithms that utilize Delau-

nay or Voronoi KDSs. There is some hope that we can

apply recent techniques used to prove a subcubic bound

on the complexity of the union of n unit cylinders in

R
3 [1] to improve the upper bound for d = 2.

Closest pair problems

Tracking the closest pair among a set of moving ob-

jects gives us a way to detect collisions among them:

clearly the next colliding pair must be the closest pair

among all the objects for a small time interval before

the collision. Note also that the closest pair of n mov-

ing objects can change at most a near-quadratic num-

ber of times | we simply plot the separation of each

pair as a function of time and take the lower envelope
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of these functions. Though Voronoi and Delaunay di-

agrams contain within them closest-pair information

(for example, a kinetic tournament on the Delaunay

edges will easily maintain the closest pair), the near-

cubic bound on events for these diagrams suggests that

other approaches may be signi�cantly more e�cient.

We have been able to develop two di�erent kinetic

data structures for maintaining the closest pair among

n moving points. One structure is for d = 2 [12]

(though extensions to higher dimensions should be pos-

sible), while the other works for all dimensions [15].

Both structures are based on a common insight: to

�nd the closest pair is is su�cient to examine a lin-

ear number of point pairs de�ned by partitioning the

space around each point into a �xed number of con-

gruent cones having the point as their apex. These

cones have a central axis and each point keeps track

of some of its nearest neighbors in each cone. This of

course is an old idea going back to A. Yao [16], but

in our case the nearest neighbors are de�ned not in

terms of Euclidean distance, but in terms of distance

from the apex to the projections of the points on the

cone axis | maintaining these neighbors is a much

easier 1-d problem. A packing lemma implies that if

we have �ne enough cones and select enough nearest

neighbors in each cone, then we cannot miss the true

Euclidean closet pair. For example, in the case d = 2,

our �rst approach uses three 60� cones and one neigh-

bor per cone, while the second approach use four 90�

cones and three neighbors per cone. It turns out that

point membership in these cones, as well as the 1-d

nearest neighbors used by these algorithms, can all be

obtained from keeping track of the sorted order in the

projections of the moving points along a �xed (but of

size roughly 2d) set of directions in the space. Thus

these methods clearly process a quadratic set of events

in the worst case. Keeping track of which points lie in

which cones is accomplished by using a kinetic multi-

dimensional range search tree [15]. With some further

insights that we do have not the space to discuss here,

these ideas lead to closest pair KDSs which are respon-

sive, e�cient, local, and compact.

Several variations on the closest pair problem are

interesting and open, even for d = 2. First, we do

not have a good KDS for the bichromatic closest pair

problem [2]. Second, though our closest pair methods

extend to the problem of keeping track of the clos-

est among n moving equal radius balls, they do not

work when the radii are widely di�erent. The reason is

that the key packing lemma we use fails in that case.

Of course a Delaunay triangulation corresponding to

a weighted Voronoi diagram can still be used in this

case [17]. But the issue of whether there is a KDS with

a near-quadratic number of events for this problem re-

mains open. Furthermore, it is not clear if it is possible

to have a local structure at all. A large ball with many

small balls near its boundary suggests that sublinear

locality may not be possible | though we have been

unable to prove any hard lower bound.

Finally note that our closest pair algorithms have

the undesirable property that they process events cor-

responding to order reversals on the projections of the

points along a number of axes. Many such events

might be irrelevant, as the points involved are actu-

ally very far away in space. It seems intuitively desir-

able to develop kinetic structures where events always

correspond to interactions between points that are suf-

�ciently close. We can accomplish this by partition-

ing space into bins and processing events only among

points in each bin, but at some point the cost of trans-

ferring points from bin to bin also becomes signi�cant

[35].

Minimum spanning trees

In a number of applications the moving objects are

observers and it is important to keep communication

among them for e�ective global motion scheduling, so

as to accomplish a task (e.g., explore a building to �nd

a target). One way of doing so is to keep a set of point-

to-point wireless communication links between pairs

of observers. Among all possible such communication

networks, the minimum spanning tree (MST), i.e. the

set of links connecting all the observers together with

the minimum total Euclidean length, has many desir-

able properties. How can we e�ciently maintain the

MST of n points moving around in space?

We do not yet have a good kinetic solution for this

problem. We have structures which are responsive,

compact, and local, but not necessarily e�cient [15].

Our structures maintain either the MST under a poly-

hedral distance metric, or an approximate Euclidean

MST (guaranteed to be a 1 + � approximation of the

true Euclidean MST). These structures make use of the

kinetic multidimensional range search tree mentioned

earlier. Our algorithms exploit again the idea of main-

taining a sparse graph among the points which is guar-
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anteed to contain all the MST edges, and then keeping

track of the MST of this graph. Note that the MST

can change either because the underlying sparse graph

changes combinatorially, or because the weight rela-

tions among the edges of the graph change over time.

We have recently [7] been able to obtain a subquadratic

algorithm (O(n11=6polylog(n)) currently, but probably

better) for maintaining the MST of a (�xed) planar

graph with edge weights varying in a pseudoline fash-

ion (pseudo-algebraic of degree 1). This new algorithm

is based on recursive graph partitioning using cycle sep-

arators and leads to a responsive, local, and compact

KDS. The analysis uses tools similar to those exploited

by Dey in his recent breakthrough result on the com-

plexity of a level in an arrangement of lines (and pseu-

dolines) [23]. As in the case of Voronoi/Delaunay, we

are somewhat hampered by the lack of sharp bounds

on the combinatorial number of changes to the MST

in both the geometric and graph settings, even un-

der linear point or weight motions (for these cases the

currently best known upper bounds are O(n3) for the

Euclidean MST of n linearly moving points [34], and

O(kn1=3) for the MST of a graph with k vertices and

n edges whose weights change linearly, as follows from

the technique of [23]).

Incidences and many faces problems

Not every proximity problem deals with points or

balls. In fact mixed proximity problems between points

and lines or curves raise many interesting kinetic issues

of their own. For example, consider the following prob-

lem. In the plane we are given n moving points and

n moving lines. We wish to track the closest point-

line pair (or perhaps just report all point line inci-

dences during the motion). Clearly there can be a

near-quadratic number of combinatorial changes to the

con�guration function. But a local and compact struc-

ture may not be possible. The standard many faces

construction [25], as well as Erickson's lower bounds on

the static version of this problem [27], suggest that a

natural certi�cate set size for this problem is �(n4=3).

By using �-net techniques we can give a kinetic data

structure that processes a near-quadratic number of

events and has a proof size of O(n5=3) [4]. It would be

quite interesting to do better.

Several variations are also worth investigating.

These include maintaining the face or faces of the ar-

rangement of the lines containing one or several points,

maintaining the zone of another line, and many other

kinetic versions of classical arrangement problems. Of

course, if we are willing to maintain the full arrange-

ment of the moving lines, these problems become rather

easy. The arrangement itself can be maintained by us-

ing a vertical decomposition of it | the certi�cates

will simply assert that each trapezoid is well formed.

The proof size will be �(n2) and the worst-case local-

ity �(n) (this is optimal for this problem). An easy

counting argument can be used to show that the num-

ber of events processed by this kinetic structure will

be near-cubic (in space-time we sum the squares of the

complexities of the cells of that 3-d arrangement).

Maintaining intersecting pairs

We remarked earlier on the use of bounding volumes

for e�cient collision detection among moving objects,

a method well-established in graphics and robotics

[11]. Suppose for concreteness that we are in a 2-d

situation and that these bounding volumes are disks.

The bounding disks of two objects may intersect, even

though the objects themselves do not. One way to

approach the problem of collision detection is to main-

tain the intersecting pairs of disks. Pairs of objects

whose disks intersect have to be checked for collision

by a more sophisticated algorithm. When a new pair

of disks starts intersecting, the corresponding pair of

objects is added to the list of those to be thus checked.

Similarly, when a pair of disks stops intersecting, the

object pair is removed.

This is a more challenging problem than maintaining

the closest pair of disks, as in the latter we can assume

that all the disks are disjoint. Note that, since for

our purposes it is su�cient to just report the changes

in intersection status, we do not need to maintain an

explicit list of intersecting pairs. This is fortunate, be-

cause there can be �(n2) intersecting pairs among the

n disks. One approach for discovering the changes in

the intersecting pairs is to maintain a hitting set of

points for the intersections, i.e., a set of point such that

every intersecting pair contains one of these points.

The arguments of [42] give an upper bound of O(n5=3)

and a lower bound of O(n4=3) on the size of a minimum

hitting set. We can also assume, without loss of gener-

ality, that the hitting set points lie in what are called

maximal cells of the arrangement of the disks (these

are cells covered by more disks than any of their neigh-

bors | they are always intersections of a number of the
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circles and thus convex). A hitting set can be main-

tained by (1) tracking the evolution and eventual death

of these maximal cells and (2) discovering the creation

of new maximal cells, which always arise as a new in-

tersection between two disks. The death of a maximal

cell implies that a pair of disks stops intersecting, and

that a maximal cell has �ssioned into two. The set of

intersections that before was hit by a single point will

now require two points to be hit (unless one or both of

the new maximal cells is a single disk contained in no

other, in which case it need not be hit). The tracking

of a single maximal cell is the maintenance of the inter-

section a set of disks and this is akin to the intersection

of half-planes or the convex hull problem we have al-

ready discussed in Section 6. However, the discovery

of new maximal cells will require some new insights for

a good KDS.

A di�erent view of this problem that may be helpful

can be obtained by lifting the disks with center (x; y)

and radius r to the point in 3-d (x; y; x2+y2�r2). If we

imagine that the paraboloid of revolution z = x
2+y

2is

an opaque surface, then the condition that two disks

intersect is exactly that the corresponding 3-d points

are mutually visible, despite the paraboloid obstruc-

tion. Thus as these points 
y around, we are interested

in detecting visibility changes among the point pairs.

We also note that this intersection maintenance ques-

tion makes sense for other bounding volumes, including

axis-aligned boxes | for which it may be easier.

8 Visibility Problems

The use of visibility information is essential in render-

ing animations involving very large large models (e.g.,

architectural walkthroughs) as well as in planning mo-

tions related to visibility tasks (model or environment

acquisition by one or more mobile robots with cameras,

guarding or art gallery type problems, pursuit-evasion

algorithms, etc.). In the context of kinetic data struc-

tures, these applications pose problems such as the

maintenance of the portions of the environment cur-

rently visible from one or multiple moving observers,

the maintenance of the mutually visible pairs of ob-

servers, etc.

Binary space partitions

Binary space partitions (or BSPs) were one of the

earlier structures used in computer graphics to obtain

visibility information. The application of BSPs to vis-

ibility determination is based on the principle that an

environment can be described as a collection of clus-

ters, which can be separated from each other in such a

way that a visibility ordering can be de�ned between

the clusters. The partition of the clusters is done by

means of cutting the underlying space into two halfs-

paces by a plane. The crucial observation is that clus-

ters that lie in the same halfspace as a given viewpoint

can obscure, but never be obscured by, the clusters on

the other side | which then provides a visibility or-

der that can be used to correctly render a scene. A

recursive application of the partition operation yields

a binary space partition tree from which a visibility or-

dering can be determined by performing a depth-�rst

search in the tree. There have been a few attempts

to update BSPs when the objects de�ning them move

[37, 45, 20]. All these prior e�orts, however, reduce to

deleting moving objects from their earlier positions and

reinserting them in their current positions after some

time interval has elapsed. Such approaches su�er from

all the problems discussed in Section 1.

We have recently been able to obtain kinetic data

structures for disjoint moving segments in the plane [6],

and disjoint moving triangles in space [3]. These meth-

ods are based on de�ning a BSP by cuts along the given

objects or parallel to a particular axis; the cuts are gen-

erated according to a random ordering of the objects.

The resulting BSP has expected size O(n log n) and

depth O(logn) in 2-d, and expected size O(n log2 n+k)

and depth O(logn) in 3-d, where k denotes the number

of intersections between pairs of edges in the projec-

tions of the triangles on the xy-plane. As this latter

bound suggests, our 3-d structure is based on a kinetic

2-d structure for maintaining the BSP of set of moving

and possibly intersecting segments. These BSPs be-

have very well from the kinetic point of view: we can

detect when the current BSP structure becomes invalid

due to object motion and update the tree at a cost of

O(log n) per event for the 2-d BSP, and O(log2 n) for

the 3-d BSP. In the easier to explain 2-d algorithm the

events correspond to times when certain critical trape-

zoids, called transient trapezoids [6], collapse by having

their two parallel sides coincide. The event counts are

O(n2) and O(n2�s(n)) in the 2-d and 3-d cases respec-

tively. These structures are responsive and strongly

e�cient. Their size is bounded by the BSP size, but

they are not local.



Kinetic Data Structures

Many interesting issues remain open. To obtain the

above bounds we need to assume that there is no corre-

lation between the motions of the objects and the �xed

random ordering used by the algorithm. An adversary

could, of course, design motions aimed at eventually

making these BSPs bad, but then the algorithm could

respond by evolving over time the ordering through

random transpositions and making the corresponding

updates to the tree. An even more fundamental open

question has to do with BSP optimality, a notoriously

di�cult problem. Our BSPs above are strongly e�-

cient, but could it not be that there is some other BSP

that undergoes many fewer events for the same mo-

tions? Can we prove that all 2-d BSPs of a certain

type must undergo 
(n2) transitions for some pseudo-

algebraic motion of the n disjoint line segments in the

plane?

Visibility set

For very large environments, even the fastest hard-

ware depth-bu�ers cannot render a scene at interac-

tive frame rates. Thus techniques have been developed

for computing e�ciently a relatively small superset of

the potentially visible polygons, called the visibility set,

and then throwing only those to the depth bu�er [43].

A number of approaches have been proposed for main-

taining this visibility set as the observer moves [19, 9] in

a 2-d environment. Accomodating both observer and

environmental motion is clearly an area where further

research needs to be done.

9 Probabilistic Event Bounds

Given the rather high worst-case event counts we saw in

earlier sections, it makes sense to ask about the num-

ber of changes these con�guration functions undergo

when we consider average, or `typical' object motions.

De�ning typical object motions is of course very appli-

cation dependent. Nevertheless, we have initiated an

investigation of how con�guration functions change for

very simple random point motions in the plane.

Assume n points choose independently a random ori-

gin and destination in the unit square and then, in the

time interval [0; 1], they move with constant velocity

along a straight line segment from their origin to their

destination. This will be our model of a random mo-

tion in the plane. In [46] it is shown that the convex

hull of the points changes �(log2 n) times in expec-

tation; the corresponding bounds for closest pair and

Delaunay triangulation are �(n) and �(n3=2) respec-

tively. The methods used to obtain these results mimic

those that have been successfully applied to the same

questions in the static setting [39]. For instance, in the

case of the convex hull, we compute the conditional

probability that three points are on the convex hull

given that they are collinear along a line ` at time t.

We then compute the joint probability density on the

product space of lines and times, and use linearity of

expectation to complete the calculation. Such proba-

bilistic analyses give simple answers to questions that

are much harder to tackle in the worst case. Some pre-

liminary calculations suggest that, in d dimensions and

for a similar probabilistic model, the Delaunay trian-

gulation changes �(n1+1=d) times and that the closest

pair changes �(n2=d) times in expectation.

The expected number of events processed by a KDS

can also be computed in this model. For example, the

convex hull structure we have presented in Section 6

processes �(n) events in expectation, while our 2-d

closest point structures process �(n2) events even in

expectation, as the latter have to maintain sorted or-

derings along one or more axes. There is a simple mod-

i�cation to one of the closest pair algorithms [14] that

avoids these sorts and experimentally seems to process

roughly �(n3=2) events | but we have not been able

to prove this formally. For Delaunay, of course, there

are no internal events, so the trivial KDS for Delaunay

also processes �(n3=2) events in expectation.

The case of the minimum spanning tree seems to

be especially di�cult to analyze in this random set-

ting, and the above methods do not apply. An up-

per bound of O(n5=2) (to be contrasted with the best

known worst-case upper bound of O(n32�(n)) [34]) fol-

lows from the fact that the MST is a subgraph of the

Delaunay triangulation and some standard batching ar-

gument. A major subgoal in solving this problem is to

answer the following static question: given n points

chosen independently at random according to a pre-

scribed distribution, what is the expected size of the

(graph) diameter of their MST?

10 Kinetic Event Scheduling

In the e�cient implementation of kinetic data struc-

tures, a key problem is the e�cient scheduling and

de-scheduling of events (in our implementations this

accounts for 70% to 90% of the total cost). The twist
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that makes this di�erent from a standard priority queue

maintenance problem is that the calculation of the

event times is part of our cost. Since our proofs evolve

rapidly over time, the accurate calculation of an event

time may be wasteful if the corresponding certi�cate

gets removed from the proof before its failure time. We

cannot, of course, know the future, but this situation

suggests that we compute less accurately event times

that are far into the future, and re�ne our estimates as

they get closer and closer to the present time.

Motivated by these issues, we have been studying

the following problem. Suppose we maintain a set S

of low degree polynomials ff1(t); f2(t); : : : ; fk(t)g |

these are associated with the certi�cates currently ac-

tive in a KDS. For example, assuming we have points

with polynomial motions, if the event we worry about

is that `points A, B, and C become collinear', or equiv-

alently `the triangle ABC changes sign', then the asso-

ciated polynomial f(t) will simply be the signed area of

the triangle ABC at time t. There is the notion of the

current time t0, and we are interested in �nding quickly

time t1, the smallest real root of any of the fi which

is larger than t0. The time t1 is the time of the next

kinetic event. Then we advance time by setting t0  t1

and let our KDS update its certi�cate set and thus the

set of active polynomials. If the KDS is responsive, the

changes to S will be relatively small. We then repeat

this process all over to continue the simulation.

In order to maintain the next largest real root of this

slowly evolving set of polynomials we can of course cal-

culate all the real roots of each polynomial to the re-

quired precision for the simulation and insert all these

roots into a standard priority queue. But, as remarked

above, this may spend root-�nding cycles for events

that will never happen. We have been investigating an

approach based on Sturm sequences in which for each

active polynomial f(t) we isolate its roots into a set of

intervals whose size increases exponentially as t goes to

in�nity. This exponentially increasing set of intervals

contains all the real roots of f | of course we allow

intervals that contain many roots. The leftmost inter-

val of f represents f in a priority queue where the

polynomials compete to determine the smallest real

root. Both the process of resolving comparisons be-

tween such intervals, as well as certain large steps for-

ward in time, can cause us to re�ne these interval se-

quences to obtain tighter bounds on the roots of f .

We are still developing the theoretical basis of this ap-

proach and a preliminary implementation. Note that,

assuming polynomial or rational motions, an interval-

based approach may allow a simulation using only ra-

tional arithmetic.

11 Implementation Issues

In order to validate the use of kinetic data structures in

practice, we have implemented a number of the previ-

ously discussed structures and compared them to alter-

native methods for maintaining the same con�guration

function. This implementation has raised a number of

additional research issues that need to be addressed.

Kinetic convex hulls in practice

In addition to the kinetic method presented in Sec-

tion 6, we implemented the straightforward Delaunay

triangulation KDS of Section 7 and a `brute-force' al-

gorithm. We implemented the Delaunay KDS because

it is used in several kinetic problems, but in particular

it contains the convex hull as a substructure. For the

brute-force structure, we simply calculate the time at

which each point will hit (or leave) the convex hull, as-

suming its current motion remains unchanged. When

a point on the hull has a 
ight plan update, we must

recalculate the event times of all the other points4. Fur-

thermore, whenever a point enters or leaves the convex

hull, all events must be rescheduled.

In order to remain independent of speci�c implemen-

tation details, the cost of a KDS was taken to be a

sum over the set of polynomial equations solved, each

weighted by an amount corresponding to the di�culty

of solving equations of that degree. We ran these three

methods with n ranging up to 10000 points on random

motions like those in Section 95. We let the simulation

run until the convex hull stabilized and there was no

more events in the event queue (Figure 3). As Fig-

ure 3 shows, the kinetic structure becomes superior

to the brute force structure for n less than 100, and

it is always much superior to the Delaunay KDS as

the latter is hampered by having to solve fourth de-

gree equations (as opposed to second degree for the

convex hull KDS). Three snapshots from our imple-

mentation are shown in Figure 4. On the bottom is a

4When a non-hull point updates its 
ight plan, we need

only recalculate its own event time.
5Alternative distributions, such as the uniform unit disk

and the Gaussian, gave qualitatively similar results.
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Figure 3: Cost (weighted sum of the number of equations

solved) of the three di�erent methods that maintain the con-

vex hull, when the points have linear motions.

Figure 4: Three frames from a kinetic convex hull anima-

tion.

time window showing event times. The long bars repre-

sent external events, while the short bars show internal

events. A public demo of this software is available at

www-graphics.stanford.edu/�jbasch/demokin.

Several additional experiments are described in [14]

and in a forthcoming fuller version of that paper based

on current work. Our primary �nding is that, with a

careful implementation, kinetic data structures do not

pose major di�culties in practice and perform well on
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several natural motion distributions. For a large num-

ber of points, alternative data structures su�er from

non-locality or expensive root-�nding operations.

Open research issues

The implementation of kinetic structures raises nu-

merous questions that we intend to address.

� We have already discussed the issue of avoiding

the precise calculation of event times until they

are needed. There is also concern about processing

events out of of order, or multiple times, because

of numerical errors. With some preliminary e�orts

in this direction, we were able to run reliable simu-

lations involving 50,000 points with about 400,000

events for the convex hull KDS.

� It is not clear that processing all events in the ideal

time order is necessary for a correct simulation. If

two events happen at almost the same time, but

they involve sets of objects that are far apart from

each other and do not otherwise interact according

to the CF, it may be acceptable to process these

events in either order. Of course we do want to

guarantee that all events a�ecting any particular

object happen in the correct sequence. This then

would give us a `local clock' for each object and

we would not require global synchronization be-

tween all these clocks | an approach reminiscent

of a topological sweep [26], but now in the time

domain.

� What if too many events happen in a short time

interval and we do not have the computational re-

sources to process them all in that interval? Can

we batch the processing of nearby events for e�-

ciency? Given a description of a class of motions

for the objects (e.g., bounds on velocities, etc.),

can we prove that with a given amount of compu-

tational resources we will never get into this bot-

tleneck?

12 Conclusions and Impact of theWork

We have presented the notion of kinetic data struc-

tures, based on the idea of animating proofs through

time. Kinetic structures raise numerous new and inter-

esting combinatorial and algorithmic questions, while

at the same time o�ering the promise of signi�cant im-

pact in all areas of computer science dealing with sim-

ulating motion or continuous change in the physical

world.

KDSs implement time sweeps, and as such have a lot

in common with geometric space sweep methods (event

queues, event scheduling, etc.). The novel aspect of ki-

netic structures is that in the time dimension the future

is not known a priori | it is decided as we go along

the time axis. Such structures are based on proofs or

certi�cate sets that are maintained under continuous

motion of the participating objects. They raise ques-

tions about what kinds of proofs are possible to certify

the correctness of various geometric con�guration func-

tions | lower bounds on proof size and locality become

interesting problems. At this point in the development

of the area, we do not understand deeply which proofs

animate well in the sense that they evolve gracefully

across certi�cate failures. There is some evidence that

proofs derived from parallel algorithms (especially of

the kinds used in parametric searching [44]) animate

better than those coming from sequential algorithms.

The intuition is that proofs from parallel algorithms

are `shallower' (in the sense of smaller maximal deduc-

tion depth, not in the common mathematical sense) |

their parts are more independent and they have rel-

ative short deduction chains. These attributes help

make proof updates less costly and give good bounds

on locality.

Kinetic data structures also motivate the develop-

ment of better techniques for estimating event counts

(CF changes) in both the worst and average cases. In

addition, the current analyses of KDSs need to be re-

�ned to include the number of 
ight plan updates in

the complexity. The interaction between kinetic and

dynamic structures needs to be better developed as

well | we saw that many problems require both. Fi-

nally, more careful analyses are needed for the cases

where only some objects are moving, or large groups of

objects are moving rigidly together.
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