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Abstract

A proof of the stability of the non collinear Lagrange Points, L4 and L5. We will start
by covering the basics of stability, stating a theorem (without proof) with a few corollaries,
and then turn to the Lagrange points, proving first the stability of all Lagrange points in the
z-direction and then restricting our attention to the the points, L4 and L5.

Introduction

The three body problem is one that has been studied for many centuries. It consists of considering
3 bodies, subject to only to mutually attracting forces (determined by the inverse square force,
gravitation) and to solve for the motions of the three bodies. This task can be extremely complicated
and, following Poincaré’s example, most mathematicians and physicists have interested themselves
in the finding periodic solutions to the problem, that is, where x(t) = x(t + T ) where T is the
period [3]. Indeed not only does this offer a useful framework from within which to work, but also
describes states that are most applicable and useful to real world situations. Finding these periodic
solutions is by no means trivial. It is a problem that has been worked on for centuries and still is
in modern times, one of the latest publications dealing with it as recent as March of 2013 [9].

Among the first to interest themselves in and find solutions to the 3 body problem were Leonhard
Euler in 1765 and Joseph Lagrange in 1772 [3]. In his publication, Essai sur le problème des trois
corps (Essay on the 3-Body Problem), Lagrange proposed a method that had never been used until
then, that of considering only the distances between the three bodies rather than their absolute
positions [2]. Through this method, he found that there are exactly 5 different configurations the
three bodies can be arranged in so that their movement is both circular and periodic. Given the
initial position of two of the masses (usually the largest masses), the 5 different locations that the
third body can be in such that the solution is circular and periodic are called the 5 Lagrange or
Libration points.

Lagrange himself did not actually believe that instances of the 5 Libration points existed in the
“real world”, as he states at the beginning of his derivation [2]. Indeed, it was not until 1906 that
the first example, an asteroid sharing Jupiter’s orbit but ahead of it by close to 60◦ with respect to
the sun, was discovered by professor Max Wolf at Heidelberg [8]. Because the asteroid and those
that were subsequently discovered at the L4 and L5 points of the Jupter-sun system were named
after characters in the Illiad, asteroids in L4 and L5 of any system are generally referred to as
Trojan asteroids.
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Figure 1: Lagrange Points
The three first points, L1, L2,
L3 are all aligned with the
earth-sun vector. L4 and L5

form an equilateral triangle
with the sun and earth.
The arrows indicate potentials
and show the potential peaks,
wells and saddles.

To find these points, Lagrange needed to make some approximations (indeed, the system is
known today to be chaotic otherwise). The results nevertheless are often quite good at accurately
describing dynamics of our solar system. In our case we consider the circular restricted 3-body
problem as described below.

The circular restricted 3-body problem

The assumptions are as follows:

• Two of the masses, m1 and m2, are much heavier than the third one which we thus consider
to be negligible. The center of mass is thus on a line between m1 and m2.

• The masses follow a circular orbit around the center of mass.

We will describe our system by putting it in the form:

d

dt
X(t) = AX(t)

1 Stability and its consequences

In any dynamical system with one or more equilibrium points, it is important to know whether
the equilibrium points are stable, that is, whether a point at equilibrium can be subjected to small
perturbations and still stay close to the equilibrium point. We use the following definition:

Definition An equilibrium solution, x0, to a dynamical system is considered:

• stable if for every small ε > 0, there exists a δ > 0 such that every solution, x(t), with initial
conditions ||x(t0)− x0|| < δ is such that ||x(t)− x0|| < ε ∀t ≥ t0.

• asymptotically stable if, in addition to being stable, there exists δ0 > 0 such that every solution,
x(t), with initial conditions ||x(t0)− x0|| < δ0 is such that x(t)→ x0 as t→∞.

In words, an equilibrium point is stable if, given a small distance ε, there always exists a distance,
δ, such that any solution with initial conditions within δ of the equilibrium point will always stay
within ε of the equilibrium for any time t. As we will see, Lagrange Points do not fulfill the much
stronger condition of asymptotically stability but they are stable in some cases.
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Beyond characterizing the dynamical system in question, considering stability is extremely impor-
tant for any real-world applications. Indeed it is virtually impossible for any object to be precisely
at an actual equilibrium point. Thus it is crucial to know what an object will do when close to an
equilibrium for these are the actual dynamics that the object will necessarily follow.

Before starting, we need a theorem and a few corollaries.

Theorem 1.1 Given a system X ′(t) = AX(t) where A has distinct paired complex eigenvalues,
α1 + iβ1, α1− iβ1 . . . , αk+ iβk, αk− iβk. Let T be the matrix such that T−1AT is in canonical form:

T−1AT =

B1

. . .

Bk


where

Bi =

(
αi βi
−βi αi

)
Then the general solution of X ′(t) = AX(t) is TY (t) where

Y (t) =


a1e

α1t cosβ1t+ b1e
α1t sinβ1t

−a1eα1t sinβ1t+ b1e
α1t cosβ1t

...
ake

αkt cosβkt+ bke
αkt sinβkt

−akeαkt sinβkt+ bke
αkt cosβkt

 (1.1)

The proof of this theorem is beyond the scope of this paper, but can be found in chp. 6 of Differential
Equations, Dynamical Systems, and an Introduction to Chaos [4].

Corollary 1.2 A point in a dynamical system whose matrix of equations of motion, A, has an
eigenvalue with positive real part is unstable.

Proof Let m be the index s.t. αm > 0. To show the point is stable, it suffices to show that the
point is unstable in only one direction. To do so we let ai = bi = 0 ∀i 6= m and assume that either
am 6= 0 or bm 6= 0 (or both). This is effectively considering small perturbations of the equilibrium
point in only one direction. We denote ci,j = (T )i,j (where T is the matrix described in theorem 1.1).

We begin by noting that T is invertible so every column must have at least one non-zero entry
and no column is the multiple of another column. This means that, for every 1 ≤ j ≤ k, there
exists an i such that ci,2j−1 6= 0 or ci,2j 6= 0 and ci,2j−1 6= ±ci,2j (if this second condition were not
the case then we would have (T )2j−1 = ±(T )2j which is impossible).

Suppose the point is stable. Then we have ||TY (0)− TY (t)|| < ε for some ε and all t > 0. For
any row, n, we get:

ε >

∣∣∣∣∣am(cn,2m−1 − cn,2m)

− eαmt [cn,2m−1 (am cosβmt+ bm sinβmt) + cn,2m (−am cosβmt+ bm sinβmt)]

∣∣∣∣∣ (1.2)

There are two cases to consider:
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• Case 1: bm 6= 0.
Let n be the index s.t. cn,2m−1 6= 0 or cn,2m 6= 0 and cn,2m−1 6= −cn,2m. For simplicity we
consider only the values t = (k2π + π/2)/βi for k ∈ Z. Our equation then becomes:

ε >
∣∣eαmtbm

[
cn,2m−1 + cn,2m

]
+ am(cn,2m−1 − cn,2m)

∣∣
As t→∞, eαmtbm

[
cn,2m−1 + cn,2m

]
dominates and the value goes to ±∞ depending on the

sign of bm
[
cn,2m−1 + cn,2m

]
. Thus the solution is clearly not stable.

• Case 2: bm = 0.
Similarly to the first case, let n be the index s.t. cn,2m−1 6= 0 or cn,2m 6= 0 and cn,2m−1 6= cn,2m.
Again for simplicity, consider only the values t = (k2π)/βi for k ∈ Z. Our equation then
becomes:

ε >
∣∣eαmtam

[
cn,2m−1 − cn,2m

]
+ am(cn,2m−1 − cn,2m)

∣∣
As t→∞, eαmtam

[
cn,2m−1 − cn,2m

]
dominates and the value goes to ±∞ depending on the

sign of am
[
cn,2m−1 − cn,2m

]
. Thus the solution is clearly not stable.

Thus in either case, the point is not stable. . �

Corollary 1.3 A point in a dynamical system whose matrix of equations of motion, A, has purely
imaginary (non-zero) eigenvalues is stable.

Proof Suppose that αi = 0 ∀i in (1.1). As seen in (1.2) the components of the solution becomes:

k∑
i=1

[cn,2i−1 (ai cosβit+ bi sinβit) + cn,2i (−ai cosβit+ bi sinβit)]

Since time, t, only appears in sines and cosines, it is clear that these values are completely bounded.
Thus by choosing a1, . . . , ak and b1, . . . , bk appropriately (i.e. small enough), we can make the
solutions stay within ε of the initial state for any ε > 0 and we thus conclude that the points are
stable. . �

2 The Lagrange Points

Recall from lecture that the first step we used to finding the Lagrange Points is to consider the
bodies in a rotating reference frame such that the two heavier masses m1 and m2 do not move.
Furthermore, since the movement of the three planets is planar, we can define the plane they move
in to be the x-y plane with both heavier masses on the x-axis (with the origin at the center of
mass). Let R be the distance between m1 and m2, we then have the positions of the two heavier
masses as:

r1 =

(
− m2R

m1 +m2
, 0, 0

)
r2 =

(
m1R

m1 +m2
, 0, 0

)
(2.1)

Proposition 2.1 The angular frequency of the rotating reference frame, Ω, is given by:

Ω2R3 = G(M1 +M2) (2.2)

This only holds because we are considering the circular restricted 3-body problem as discussed
above and follows directly from Kepler’s third law (for more information see Landau & Livshits p.
23 [1]).
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Solving the results found in lecture, We find our Lagrange points, L4 and L5:

L4 =

(
R

2

(
m1 −m2

m1 +m2

)
,

√
3

2
R, 0

)
, L5 =

(
R

2

(
m1 −m2

m1 +m2

)
,−
√

3

2
R, 0

)
(2.3)

To find out the dynamical stability of motion near the equilibrium points, we need to look at the
generalized potential about the mass m3. Because we are in a rotating frame we must add both
the coriolis acceleration and the centrifugal acceleration. Let r be the position vector of m3 and Ω
the angular velocity such that Ω = (0, 0,Ω). Furthermore let d1 and d2 be the distances between
m3 and m1 and m2 respectively:

d21 =

(
x+

m2R

m1 +m2

)2

+ y2 + z2, d22 =

(
x− m1R

m1 +m2

)2

+ y2 + z2 (2.4)

Proposition 2.2 The total acceleration, r̈, and the generalized potential, U are given by

r̈ = −Gm1(r− r1)

d31
− Gm2(r− r2)

d32
− 2Ω× ṙ−Ω×Ω× r (2.5)

U = −Gm1

d1
− Gm2

d2
− 2Ω(xẏ − yẋ)− Ω2

2
(x2 + y2) (2.6)

The second to last and last elements correspond to the coriolis and centrifugal accelerations respec-
tively (for further information on these forces see Landau & Livshits p. 128 [1]).

Note that, in addition to position, the potential is dependent on velocity and, although it has no
effect on the position of the Lagrange points, it must be taken into account when looking at their
stability. To do so we separate the components dependent on velocity:

U ′ = U + 2Ω(xẏ − yẋ) = −Gm1

d1
− Gm2

d2
− Ω2

2
(x2 + y2) (2.7)

Reducing (2.5) by components we get:

ẍ =−
Gm1

(
x+ m2R

m1+m2

)
d31

−
Gm2

(
x− m1R

m1+m2

)
d32

+ 2Ωẏ + Ω2x = −∂U
′

∂x
+ 2Ωẏ (2.8)

ÿ =− Gm1y

d31
− Gm2y

d32
− 2Ωẋ+ Ω2y = −∂U

′

∂y
− 2Ωẋ (2.9)

z̈ =− Gm1z

d31
− Gm2z

d32
= −∂U

′

∂z
(2.10)

Finally, it can be useful to rewrite the generalized potential as a sum of partial derivatives. Using
the Taylor series expansion of U ′ around the Lagrange point (x0, y0, z0) we get (to second order):

U ′ = U ′0+U ′x(x− x0) + U ′y(y − y0) + U ′z(z − z0)

+
1

2

[
U ′xx(x− x0)2 + U ′yy(y − y0)2 + U ′zz(z − z0)2

]
+U ′xy(x− x0)(y − y0) + U ′xz(x− x0)(z − z0) + U ′yz(y − y0)(z − z0)
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where U ′0 = U ′
∣∣∣
(x0,y0,z0)

and U ′X = ∂U
∂X

∣∣∣
(x0,y0,z0)

for any variable X. Note, however, that Uxz =

Uyz = 0 and furthermore we have that by definition, U ′x = U ′y = U ′z = 0 for Lagrange points. We
thus get:

U ′ = U ′0 +
1

2

[
U ′xx(x− x0)2 + U ′yy(y − y0)2 + U ′zz(z − z0)2

]
+ U ′xy(x− x0)(y − y0) (2.11)

3 Linearization and stability in the z-direction

To analyze the stability about the equilibrium points in a system such as the 3-body problem, we
linearize the equations of motion and look at the small perturbations. Note that because of how we
have set up the reference frame, the Lagrange points are fixed points. We thus have the following
equations:

x = x0 + δx ẋ = δẋ (3.1)

y = y0 + δy ẏ = δẏ (3.2)

z = z0 + δz ż = δż (3.3)

Plugging in these values into (2.11) then gives us:

U ′ = U ′0 +
1

2

[
U ′xx(δx)2 + U ′yy(δy)2 + U ′zz(δz)

2
]

+ U ′xyδxδy (3.4)

Using (2.8)-(2.10) and (3.4) we get our equations:

δẍ = −U ′xxδx− U ′xyδy + 2Ωδẏ (3.5)

δÿ = −U ′yyδy − U ′xyδx− 2Ωδẋ (3.6)

δz̈ = −U ′zzδz (3.7)

We thus get the following:

d

dt


x
y
z
ẋ
ẏ
ż

 =
d

dt


δx
δy
δz
δẋ
δẏ
δż

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−U ′xx −U ′xy 0 0 2Ω 0
−U ′xy −U ′yy 0 −2Ω 0 0

0 0 −U ′zz 0 0 0




δx
δy
δz
δẋ
δẏ
δż

 (3.8)

We start by considering only the z-direction.

Theorem 3.1 All Lagrange points are stable in the z-direction.

Proof Let δx = δy = 0. By (3.5)-(3.7) we can see that δz and δż are independent of δx, δẋ, δy,
and δẏ and vice-versa so we can reduce our matrix to

d

dt

(
δz
δż

)
=

(
0 1
−U ′zz 0

)(
δz
δż

)
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By (2.10) we have that

U ′zz =
Gm1

d31
+
Gm2

d32
(3.9)

Furthermore, since d1, d2 are distances we have d1, d2 > 0 and thus U ′zz > 0.
The eigenvalues of the above matrix are:

±i
√
U ′zz (3.10)

Since these are always imaginary, we have by corollary 1.3 that the point is stable and thus conclude
that all Lagrange points are stable in the z-direction. . �

In the same way (and for the same reason) that we were able to consider only the z-direction, we
can do the opposite and consider only the x and y directions. Our equation becomes:

d

dt


δx
δy
δẋ
δẏ

 =


0 0 1 0
0 0 0 1
−U ′xx −U ′xy 0 2Ω
−U ′xy −U ′yy −2Ω 0



δx
δy
δẋ
δẏ

 (3.11)

It is this equation that we consider for the rest of the paper.

4 Stability of L4 and L5

The discovery of asteroids or other astrological bodies at the L4 and L5 points of almost every
planet-sun system seems to indicate quite strongly that these points are indeed very stable. However,
this is not always the case and requires that the heaviest mass, m1 be significantly heavier than the
second heaviest mass, m2. We have the following theorem:

Theorem 4.1 The Lagrange points, L4 and L5 are stable in all directions if and only if

m1

m2
≥ 25 + 3

√
69

2
≈ 24.9599 (4.1)

Proof We start by using (2.7) to compute the partial derivatives found in (3.11). Note that for L4

and L5, d1 = d2 = R. Evaluating our partial double derivatives at L4 and L5 gives:

U ′xx =

Gm1

d31
+
Gm2

d32
−

3Gm1

(
x+ m2R

m1+m2

)2
d51

−
3Gm2

(
x− m1R

m1+m2

)2
d52

− Ω2


∣∣∣∣∣∣∣
x=R

2

(
m1−m2
m1+m2

)

=
G(m1 +m2)

R3
−

3Gm1

(
(m1+m2)R
2(m1+m2)

)2
+m2

(
−(m1+m2)R
2(m1+m2)

)2
R5

− Ω2

=
1

4

G(m1 +m2)

R3
− Ω2
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U ′yy =

(
Gm1

d31
+
Gm2

d32
− 3Gm1y

2

d51
− 3Gm2y

2

d52
− Ω2

)∣∣∣∣∣
y=±

√
3

2 R

=
G(m1 +m2)

R3
−

3Gm1
3
4R

2 + 3Gm2
3
4R

2

R5
− Ω2

= −5

4

G(m1 +m2)

R3
− Ω2

U ′xy =

−3Gm1

(
x+ m2R

m1+m2

)
y

d51
−

3Gm2

(
x− m1R

m1+m2

)
y

d52

∣∣∣∣∣∣
x=R

2

(
m1−m2
m1+m2

)
,y=±

√
3

2 R

= ∓
3Gm1

(
R
2

) √
3
2 R+ 3Gm2

(
−R2

) √
3
2 R

R5

= ∓3
√

3G(m1 −m2)

4R3
= −3

√
3

4
κ±

G(m1 +m2)

R3

where κ± = ±(m1 −m2)/(m1 +m2). Using (2.2) we get:

U ′xx = −3

4
Ω2 U ′yy = −9

4
Ω2 U ′xy = −3

√
3

4
κ±Ω2 (4.2)

Our matrix from (3.11) thus becomes
0 0 1 0
0 0 0 1

3
4Ω2 3

√
3

4 κ±Ω2 0 2Ω
3
√
3

4 κ±Ω2 9
4Ω2 −2Ω 0

 (4.3)

The matrix has the four following eigenvalues:

λ± = ±iΩ
2

√
2−

√
27κ2± − 23 σ± = ±iΩ

2

√
2 +

√
27κ2± − 23 (4.4)

By corollary 1.2 and corollary 1.3, we have that all the eigenvalues must all be imaginary (otherwise
there will necessarily be at least one eigenvalue with Re(λ) > 0, making the point unstable) so√

2−
√

27κ2± − 23 must be completely real. Note that since |κ±| ≤ 1,
√

27κ2± − 23 ≤ 2 so the only

remaining condition is:
27κ2± − 23 ≥ 0 (4.5)

After a little algebraic manipulation this gives us

m1

m2
≥

1 +
√

23
27

1−
√

23
27

=
25 + 3

√
69

2
(4.6)

which gives us the expected condition for the stability of the Lagrange points, L4 and L5. . �
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5 Conclusion

This result would in fact be completely unexpected and surprising were it not for the discovery of
actual instances of astrological bodies at these points in our Solar system. Indeed, by looking at the
second partial derivatives in (4.2) we find that Uxx = U ′xx = − 3

4Ω2 < 0 and Uyy = U ′yy = − 9
4Ω2 < 0.

This would indicate that L4 and L5 are at peaks (local maxima) of the potential in the x-y plane
and would thus imply that that these points are extremely unstable. What gives L4 and L5 their
stability is simply the coriolis force discussed previously. Initially, a body at L4 and L5 start
moving away from the equilibrium point but, as the body pick up speed, the coriolis force takes
effect sending the body into an effective orbit around the Lagrange point.

Because of this effect, the areas around L4 and L5 that are effectively stable are in fact quite
large as is illustrated by Figure 1. Indeed, this is the reason that so many trojan asteroids exist,
some more than 5◦ off of 60◦, where the L4 and L5 are located. No satellites have been placed
at these locations (unlike L1 and L2 hosting the SOHO satellite [7] and the WMAP satellite [6]
respectively despite their inherent instability), however, they were visited in 2009 by the STEREO
satellites. As the only stable Lagrange points, L4 and L5 are unique phenomena in the solar system
and the areas around them have been and are of great interest (for example as possible places of
origin of the moon or locations from which to better observe solar storms [5]) to the astrophysics
community.
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