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Abstract

In this article, we present the Mocha wide area computing infrastructure we are cur-
rently developing. Mocha provides support for robust shared objects on heterogeneous
platforms, and utilizes advanced distributed shared memory techniques for maintain-
ing consistency of shared objects that are replicated at multiple nodes to improve
performance. In addition, our system handles failures that we feel will be common
in wide area environments. For example, to ensure that the state of an object is not
lost due to a node failure, updated state of the object can be disseminated to several
other nodes. The overhead of such state dissemination can be controlled based on the
level of availability needed for shared objects. We have used an approach that makes
use of multiple communication protocols to improve the efficiency of shared object
state transfers in Mocha. We also provide an empirical evaluation of our prototype
implementation for both local and wide area networks and present a sample home
service application written with the system.
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1 Introduction

The growth in popularity of the World Wide Web (WWW) has resulted in the de-
velopment of a new generation of tools tailored to Internet computing activities.
Prominent examples include the Java programming language and Java capable Web
browsers. These Web spinoffs are having a profound impact on the field of distributed
computing. Whereas distributed computing has traditionally focused on improving
the functionality of local clusters of computers, technology is progressing such that
wide area computing networks are now becoming a popular target environment for
research in distributed computing.

With wide area distributed computing environments, geographically distributed
resources such as workstations, personal computers, supercomputers, graphic render-
ing engines, and scientific instruments will be available for use in a seamless fashion
by parallel applications[GW96, FGKT96]. Many envision that it will be possible to
transport application code to remote sites in the wide area virtual computer where it
may be executed in the presence of needed resources. The area of research devoted to
bringing this vision to reality in the context of scientific applications is referred to as
metacomputing. A metacomputing system is the software infrastructure which orches-
trates collections of hosts and networks into functioning as a large virtual computer
for use by parallel and distributed applications.

Metacomputing environments are useful for a variety of distributed and parallel
applications, particularly those which need access to remote resources (e.g. data from
a remote microscope) or applications that are able to effectively utilize a substantial
number of computing resources that the Internet may easily provide. Moreover, other
wide area distributed computing domains such as electronic commerce applications
(e.g. service to the home), which require more advanced capabilities than those
provided by a standard web browser, could also benefit from advances made in wide
area distributed computing.

Wide area computing environments have several salient differences from tradi-
tional local area network computing environments. For example, there is less au-
tonomy and control over resources (e.g. workstations) as many of the resources are
remotely located and controlled by others. Furthermore, failures in a wide area com-
puting environment are a relatively common occurrence. Failures, when detected by
timeout mechanisms, result from network congestion and varying workloads at nodes.
Also, the autonomy of nodes can result in a remote node reboot or the owner of such
a node can choose to terminate foreign tasks.

There are many problems that need to be solved to enable wide area applica-
tions to become common. One important issue that we address here is a robust
shared object model for wide area applications. Because these applications are them-
selves distributed applications, they are dependent on some mechanism for sharing
state across workstations to allow processors to cooperatively work together. The
shared memory and shared object models are attractive for state sharing because
they are simpler to program than standard message passing. They have been ex-
plored in [KCZ92, BZ91, GLL*90, BK93]. Our focus is on providing efficient state
sharing that is integrated with failure handling support.



The following are the contributions of our work in robust state sharing for a wide
area computing environment:

e The Mocha system, which is a wide area computing infrastructure that provides
basic facilities such as remote evaluation support, security, debugging support,
and a highly scalable thread-safe network communication library.

e The design of a “multiple protocol” approach which combines the capabilities
of Mocha’s network library and the TCP protocol to support efficient transfer
of object replicas in a scalable fashion.

e Support for shared objects on heterogeneous platforms. To improve perfor-
mance and mitigate communication latencies, copies of objects can be created
and accessed locally.

e Object sharing support that utilizes advanced distributed shared memory tech-
niques for maintaining consistency of shared objects.

e Fault tolerance support that allows its overhead to be controlled based on the
level of availability needed by an application for its objects.

e Empirical evaluation of the system in both local and wide area networks.

The following section provides an overview of Mocha and includes a description
of its user interface as well as its shared object model. An overview of Mocha’s
support software, with an emphasis on basic algorithms and key implementation
features, follows. Next, failure handling refinements are presented. We also present
a performance evaluation of Mocha’s state sharing capabilities. Related work is then
discussed and the concluding section reports on ongoing and future work.

2 Mocha Overview

To motivate the need for a framework such as Mocha, we begin with a description
of a potential wide area distributed application. Consider an application in which a
consumer at home wishes to add a new formal dinner table place setting composed of
flatware, plates, and glassware. At the consumer’s home, a graphical user interface is
executing which allows various flatware, plates, and glassware to be viewed together
so that the consumer may “mix and match” these items and end up with a pleasing
coordinated table setting. Additionally, a sales associate located at the retail outlet
may also have a copy of the graphical user interface which permits the associate to see
what the customer is selecting and may suggest alternatives which are then presented
in the customer’s GUI. Furthermore, the home consumer may have requested friends
located at other homes to also participate in this decision making and therefore they
too may be running a GUI and viewing the possibilities and also making suggestions.
In this scenario, it is expected that the platforms on which the GUI executes in each
of the homes would be vastly different from the platform at the retail outlet.



For a wide area computing infrastructure to support the above scenario, there
are several features it must provide. First, it must provide support for shipping
platform independent GUI code to the remote sites and allow the code to execute in
a secure environment. Second, the infrastructure must provide support that allows
the GUI’s to share objects among each of the sites. Finally, the infrastructure must
enable applications to be written such that they are resilient to failures at some of
the remote sites.

The Mocha system is capable of supporting an application scenario such as the
one described above. It is written entirely in Java and provides the application
programmer with a framework for developing wide area distributed applications in
the Java language. In addition to providing constructs for distributed computing
such as the remote spawning of threads and state sharing between these threads, the
Mocha system provides features that enable it to serve as a wide-area computing
environment. These include security, the ability to ship and dynamically link in
application code (i.e., remote evaluation support[SG90]), and basic debugging and
event logging facilities that provide insight into execution of code at remote locations.

In order to start a distributed application, Mocha assumes that at each site that
wishes to participate in the execution of the distributed application (i.e., a workstation
or Java capable PC), someone will startup one of its Site Managers which listens on
a well known port. The Site Manager listens on this port for requests to utilize the
workstation and is responsible for controlling the number of true processes on the
workstation that are allocated for use by remote tasks. These processes are referred
to as Mocha Servers because they are able to “serve” a thread executing on behalf of
a remote task with anything it may need. For example, a Mocha Server provides a
thread with the ability to receive and link in more application code, as well as other
features such as communicating results and reporting error conditions.

Mocha’s basic constructs for distributed computing are fashioned after constructs
for popular local area distributed computing environments such as PVM[Sun90].
However, the primitives have been modified to take advantage of Java’s object ori-
ented capabilities.

In the Mocha environment, the application is composed of threads which execute
in the address spaces of Mocha Servers. These threads may be initiated (i.e., spawned)
using a method from the provided Mocha class. A typical section of code executed by
a thread to spawn another Mocha thread is shown in Figure 1. When a new instance
of the Mocha object is created, a hostfile is read which provides a list of potential
sites at which remote threads may be spawned. The Mocha system provides a tool to
generate this host file. As shown in the code fragment, a Parameter object is utilized
for organizing the parameters that will eventually be sent to a remotely spawned
thread. The actual spawn is performed by calling the spawn () method of class Mocha
with the name of the Mocha thread class that is to be spawned and the Parameter
object that is to be sent to remotely instantiated thread. Other spawn methods are
available which allow the application to specify the exact host in the host file on which
a remote thread should execute. In Figure 1, the class being spawned as a thread
is the “Myhello” class. This and other classes that are intended to be spawned are
provided by the application programmer.



import mocha.*;
public class TestMocha {

public static void main(String args[]) {
Mocha mocha;
ResultHandle rh;
Parameter p;

mocha = new Mocha();
p = new Parameter();
p.add("parami", 5); // create parameters to
// send to remotely evaluated class

rh = mocha.spawn("Myhello", p); // spawn class named Myhello
// remote site requests other
// classes as necessary

Figure 1: Mocha application code that spawns a class for remote evaluation.

In contrast to a spawn performed by a network computing environment such as
PVM, Mocha’s spawn provides remote evaluation support which allows it to transport
and dynamically link in thread code at a remote Mocha server as necessary. Mocha’s
model for remote evaluation is that of an initial “push” of application code followed
by “demand pulling” of new application code object classes as they are encountered
during execution. The Mocha system relies upon its own communication substrate
to perform this transmission.

Mocha threads may be derived from any Java class that implements the MochaTask
interface. Through this interface the Mocha runtime is able to provide the application
thread with a Mocha object that is essentially a “travel bag”. The Mocha object
currently provides a Parameter object from which the remotely evaluated task may
retrieve the initial execution parameters denoted in the spawn () method that started
this task. Also provided is a Result object in which the task may place results.
Additionally, the Mocha object provides a variety of useful objects and methods that
support remote printing, remote stack dumps, support for making replicated object
copies and accessing the replicas, and enables a thread to recursively spawn other
wide area computing threads. Figure 2 shows an example user class that utilizes
the Mocha class to acquire initial startup parameters, perform remote printing and
stack dumps, and then return its subresult. In this example, Myhello is a user class
that has been written in a fashion that permits it to be shipped and executed at a
remote site. After the class is shipped, the Mocha runtime creates a new thread that
begins executing at the mochastart() method. The Mocha runtime provides this
thread with a Mocha object from which the thread may invoke the travel bag related
activities described above.



import mocha.*;
import java.lang.*;

public class Myhello implements MochaTask {
public Myhello() {
}
public void mochastart(Mocha mocha) {
double start=0.0, sum = 0.0;
try {
start = mocha.parameter.getdouble("start");
sum = start + 1;

mocha.mochaPrintln ("Returning as a return value ' + sum);
mocha.result.add("returnvalue", sum);
mocha.returnResults();

} catch (MochaParameterException e) {
mocha.mochaPrintStackTrace(e);

} catch (Throwable t) {
mocha.mochaPrintStackTrace(t);

Figure 2: Remotely evaluated user class that illustrates the use of the Mocha object.

2.1 Mocha’s Shared Object Model

Mocha’s shared object model permits threads in separate Mocha Servers to share
state. The primary goals of the model are (i) to provide an efficient scheme for
the consistency maintenance of shared state between threads across Mocha servers
running at different nodes and (ii) support the sharing of complex objects.

2.1.1 Maintaining Shared State Consistency

Mocha’s model for maintaining shared state is motivated by weakly ordered
shared memory models such as Release Consistency[GLLT90], Lazy Release
Consistency[KCZ92], and Entry Consistency[BZ91]. These models have been shown
to provide highly efficient state sharing implementations. In these memory mod-
els, shared memory is guarded by synchronization constructs (i.e., lock acquire and
release) and is only made consistent with the most recent updates when certain syn-
chronization points in the code are reached. Thus, in these models the shared mem-
ory may only be properly accessed between lock acquire and release synchronization
points. This approach towards maintaining consistency has been shown to reach per-
formance levels that are comparable to message passing models and thus is a very
strong starting point for Mocha’s shared object model.

Mocha’s shared object model consists of Replica and ReplicaLock objects. All
objects that are desired to be shared in the Mocha system must be of type Replica or
subclass from it. Replicas are not required to represent a fixed size of data; the amount
of shared data contained in a Replica may grow and shrink as the needs of the Replica
vary during application execution. Replicas may contain both homogeneous arrays of
primitive data types as well as bona fide Java objects which are serializable[RT96]. A



thread that wishes to create a shared object might use the following section of code:

int myarray[] = new int[10];
Replica replical = new Replica ("flatwareIndex'", mocha, myarray, 5);

Here, the Replica constructor utilizes methods in the Mocha object to create a shared
object that is an array of integers, will have 5 replicas, and is identified by the string
flatwarelndex. Threads that wish to acquire replicas of this object would use a similar
constructor:

Replica replical = new Replica ("flatwareIndex", mocha);

Here it is not necessary to denote what type of shared object the replica refers to for
this information is already known by the Mocha runtime. For programming purposes,
the Replica class provides signature methods that enable the application to determine
the type and amount of data the Replica represents.

In their generic form, Replica objects enable the Mocha system to replicate or
publish shared data at either all or a subset of cooperating Mocha threads. Since
multiple nodes share Replica objects, in order for such objects to serve in a manner
that resembles a shared object, each Replica must be associated with a Replicalock
object. This association is exploited to efficiently maintain consistency guarantees be-
tween Replicas. This approach allows Mocha’s runtime to exploit the synchronization
present in an application to improve the performance of consistency maintenance, a
technique well established by advanced DSM systems[BZ91, KCZ92]. Figure 3 shows
a typical section of code in which Replicas are associated with a Replical.ock to en-
able them to serve as a form of consistent distributed shared memory. These type of
Replicas could be used in the service to the home table setting coordinator applica-
tion described earlier in this section. In this example, several shared index Replicas
are provided. These shared objects would be utilized to control which images of the
retail items are presented at the same time. A String object is also provided to allow
the users of the GUI’s to send comments to each other. As shown in Figure 3, these
Replicas are associated with a Replical.ock. Once the Replicalock’s 1ock() method
returns, the lock has been acquired and the Replicas are consistent. At this point
the Replicas may be accessed and modified as desired. The Replical.ock may then be
released via the unlock() method.

2.1.2 Supporting General Purpose Java Objects

By themselves, Mocha’s Replica objects are able to store homogeneous arrays of Java’s
primitive data types such as byte, int, or double. However, it is expected that many
applications may desire to share more complex objects that are either user defined
or those provided by Java itself. Examples of the latter include java.util.Date,
java.util .Hashtable, etc. These objects are more complicated to support as shared
objects because they must be serialized into a byte array to enable them to be trans-
ported over the network. Java provides an object serialization package that greatly
simplifies the process of serializing these objects. Typically, only a few lines of user



int intarray[] = new int[5];
String string = new String('Hello World");

Replica replical = new Replica ("flatwarelndex', mocha, intarray, 5);
Replica replica2 new Replica ("plateIndex'", mocha, intarray, 5);
Replica replica3 = new Replica (''glasswarelndex', mocha, intarray, 5);

// The following is a generated subclass of Replica used for sharing
// a Java String, a general purpose object.
StringReplica replica4 = new StringReplica ("text", mocha, string, 5);

// need to create a ReplicaLock
ReplicaLock rlockl = new Replicalock( 1, mocha);

// associate Replicas with lock
rlockl.associate(replical);
rlockl.associate(replica2);
rlockl.associate(replica3);

rlockl.lock(); // Lock must be acquired and Replicas are
// made consistent before proceeding

// Replicas may now be accessed or updated in a consistent manner
replical.intdata[0] = 1;

replica?2.intdatal[0] =
replica3.intdatal[0] = 1;

replica4.string = '"Good Choice";
rlockl.unlock(); // Lock is now released

|
-

Figure 3: Associating and locking shared object Replicas.



code are required to serialize or unserialize an object. With object serialization avail-
able, the only difficulty is to guarantee that objects are serialized before they may be
sent to another thread and then unserialized when the update of the remote replica
is performed.

Mocha supports the above functionality by allowing users to subclass from the
standard Replica object and add a user specific complex object to the derived class
as the object to be shared. Two methods are provided in Replica that may be
overloaded in the derived class with serialization and unserialization code appro-
priate for the complex object that is desired to be shared. The Mocha runtime
will automatically call these methods when it needs to marshal or unmarshal these
shared objects. While creating a derived class and inserting the appropriate serial-
ization /unserialization code into the overloaded methods is quite straightforward, it
would nonetheless require extra coding effort from the application developer. To pre-
vent this, a tool, MochaGen, is provided which generates a custom subclass of Replica
which contains the object the user desires to share as well as a new custom con-
structor and the appropriate serialization/unserialization methods. Figure 4 presents
skeleton code for StringReplica, a generated subclass of Replica used for sharing a
Java String object. Thus, complex objects may be shared in a manner very similar
to Mocha’s standard Replica object. Figure 3 illustrates how both a generic Replica
and derived Replica object might be used. Here, StringReplica, a new subclass of
Replica, which is used to share a String object that has been generated by MochaGen.
This new subclass provides the following custom constructor:

StringReplica replica4 = new StringReplica ("text", mocha, string, 5);

Note that in the application the only difference in using a derived Replica object
instead of the generic Replica is the need to call the new constructor which now uses
a String object for the initialization of the subclassed Replica. Figure 3 also illustrates
how both types of Replicas may be accessed or modified in an almost identical fashion.

It is worth noting that more experienced Java users are permitted to replace the
code that the MochaGen tool generates for serialization/unserialization with more
optimized code when apriori knowledge regarding the use of objects is available. For
example, assume a large object is being shared in which only a few number of integer
variables might change value. Because only a small amount of state changes, much
more efficient versions of the serialization routines are possible. Instead of serializing
the whole object, more advanced routines might simply serialize/unserialize only the
few integer variables that have been modified.

3 Basic Object Consistency Algorithm

The implementation of Mocha’s shared object replicas utilizes a daemon thread at
each site manager, and a single synchronization thread at the home site. The home
site in our system is simply the site at which the initial application thread executes.
All of the threads mentioned above are implemented using the standard Java threads
library. All objects that the application threads wish to share are registered with the



public class StringReplica extends Replica {

String string; // A ‘‘complex’’ object that is desired to be shared

public StringReplica (String name, Mocha mocha, String string,
int numcopies) {
// This constructor used to create a shared object

// Marshal string object into a byte array
// Use standard Mocha methods to distribute byte array to Replicas

public StringReplica (String name, Mocha mocha) {
// This constructor used to get a replica of a shared object

// call superclass’ constructor, i.e., super(name, mocha);
// unserialize received byte array and place in string object;

public void serialize() {
// Serialize string object (using standard Java object serialization)
// and store in Replica’s byte array
// This method will be called automatically by Mocha runtime
// when necessary

public void unserialize() {
// Unserialize object (using standard Java object serialization)
// from Replica’s byte array and load into string
// This method will be called automatically by Mocha runtime
// when necessary

Figure 4: Skeleton code for a generated subclass of Mocha’s Replica class to support
a String object.



Lock Method

if (another local thread currently has
this lock or waiting for it)

wait();
send synchronization thread ReplicalockId

receive GRANT Message M from

Unlock Method

send synchronization thread ReplicalLockId
and newVersionNumber of associated objects

if (another local thread currently
is waiting for this lock)

notify();

return;

synchronization thread;

newVersionNumber = unpackNewVersionNumber;
versionFlag = unpackVersionFlag;

if (versionFlag == VERSIONOK)
// We have an up-to-date version number
// and may simply return

else

// we must wait for new version to be sent
receive replicas from a remote daemon;
unpackReplicas();

return;

Figure 5: Replicallock object’s lock and unlock methods which are executed by ap-
plication threads.

local daemon thread allowing it to directly access the shared objects themselves. The
daemon threads execute at maximum priority which guarantees they may interrupt
lower priority application threads when necessary. This behavior permits the daemon
threads to perform the transfer of shared objects to remote sites as well to accept
shared object consistency updates from remote sites when necessary. The asynchrony
present in this architecture allows Mocha the flexibility to dynamically configure itself
during execution from a streamlined shared object system to one that can handle
common failures.

The synchronization thread handles lock and unlock requests from application
threads. In addition, the synchronization thread directs daemon threads to perform
operations such as transferring replicas to remote sites and is also responsible for
deducing when such activities are necessary.

As described in the previous section, the Mocha shared object model consists
of replicas which must be associated with a Replicalock object thereby supporting
a variant of entry consistency[BZ91]. When an application thread desires exclusive
access to shared replicas, it calls the Replicalock’s 1lock() method. The pseudo-
code for this method is provided in Figure 5. As shown in the pseudo-code, when
an application thread makes this method call, if any other local application threads
have called this method, it must first wait until their calls have completed. After
waiting, the thread sends the synchronization thread a lock REQUEST message which
contains the identifier of the desired lock. When the lock is free, the synchronization
thread responds with a GRANT message that contains the version number of the replicas
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while(true) {
Receive message M from anyone;

if (M.type == REGISTERREPLICA) {
// perform startup and
// initialization activities

}

else if (M.type == TRANSFERREPLICA) {
lockId = unpackLockId();

// unpack destination information
host = unpackDestinationAddress();
port = unpackDestinationPort();

replicalock = replicalockVector.find(lockId);
replicaLock.packReplicas();

send packed replicas to destination;

Figure 6: Pseudo-code for a daemon thread.

associated with this lock and a flag which denotes whether or not a new version of the
replicas need to be sent. If no new replicas need to be sent (i.e., the thread already
has the most recent copy), the method may return and the application thread is free
to access the replicas. If a new version of the replicas is coming, the application
thread must wait for the new replicas to arrive and unmarshals them into the local
copies before permitting access.

An application thread releases access to shared replicas by calling the
Replicallock’s unlock() method. This method call is responsible for sending the
synchronization thread a message that indicates that the lock is being released. The
method contains the identifier for the lock as well the updated version number asso-
ciated with the replicas. Pseudo-code for this method is provided in Figure 5. Note
that although it is possible that another local thread may be waiting for the lock, a
local transfer is not permitted to insure lock acquisition proceeds in a manner that
guarantees fairness.

The more complex aspects of Mocha’s shared object support may be found in
the operation of the daemon threads and the synchronization thread. Each daemon
thread is responsible for startup activities such as initialization, and responding to
requests regarding the transfer and acceptance of replicas. As shown in Figure 6,
when a daemon thread receives a request for its copy of replicas, the thread identifies
the replicas associated with the lock identifier it receives, marshals those replicas and
sends them to the mandated destination.

The synchronization thread at the home node is responsible for granting locks,
queuing requests, and deducing whether a new version of replicas must be sent to an
application thread. Figure 7 presents pseudo-code for the synchronization thread’s
operations. Upon receiving a request to acquire a lock, the synchronization thread
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while(true) {
Receive message M from anyone;
if (M.type == ACQUIRELOCK) {
lockId = unpackLockId();
if ('lockVector.exists(lockId)) {
create new Lock object

lockl = lockVector.find(lockId);
if ('lockl.isFree()) {
lockl.queueRequest () ;
}
else {
lockl.queueRequest () ;
packNewVersionNumber (lockl.returnVersionNumber()) ;
if (lockl.lastLockOwner() = M.source) {
packVersionFlag(VERSIONOK) ;
send GRANT message to M.source;
}
else {
packVersionFlag (NEEDNEWVERSION) ;
send GRANT message to M.source;
send TRANSFERREPLICA to lockl.lastLockOwner() .daemon;

}
}
else if (M.type == RELEASELOCK) {
lockl = lockVector.find(lockId);
lockl.updateVersionHumber();
lockl.updateDaemonId() ;
//dequeue the current owner
lockRequest = lockl.dequeueRequest();
lockl.lastLockOwner = lockRequest.requestingHost;
if ('lockl.isFree()) {
nextlockRequest = lockl.examineQueueHead();
packlNewVersionNumber(lockl.returnVersionNumber()) ;
packVersionFlag(NEEDNEWVERSIUN);
send GRANT message to nextlockRequest.source;
send TRANSFERREPLICA to lockl.lastLockOwner().daemon;

Figure 7: Pseudo-code for the synchronization thread.



determines if the lock exists and creates a Lock object if necessary. The thread then
determines if the lock is free or currently owned by another thread. If the lock is not
free the request is queued. If the lock is free, the acquire request is granted by sending
a GRANT message to the requesting thread. This message contains the new version
number for the replicas as well as a flag indicating whether or not new replicas will
also arrive. The synchronization thread relies on the method lastLockOwner() to
determine the value of the flag. If new replicas need to be sent, the synchronization
thread sends a message to the daemon associated with the last owner of the lock and
directs it to transfer a copy of its replicas to the application thread which desires
them.

When the synchronization thread receives a request to release a lock, it updates
state information such as the new version number and the identifier of the daemon
that now has the most recent copy. The synchronization thread then dequeues the
current owner of the lock and checks to see if another lock request is queued. If another
request exists, this request is granted via a GRANT message and the appropriate daemon
thread is instructed to transfer a copy of its replicas to the application thread which
desires them.

Several aspects of the basic algorithm are worth emphasizing. First, replica data
is transmitted directly from one application thread address space to another applica-
tion thread without having to be transmitted via the (central) synchronization thread.
This allows the system to exploit locality which may exist in a wide area distributed
computing environment. Second, application threads never assume that replicas will
arrive but instead examine a flag to determine this aspect. This approach provides the
flexibility needed to efficiently augment the basic algorithm with advanced features
such as a “push-based” replication scheme that is described in the section which fol-
lows. Third, the user may notice that version numbers are being maintained however
not yet used in any significant manner. Their purpose is also described in the next
section. Finally, for simplicity, we described the basic algorithm assuming exclusive
locks. It can easily be modified to support shared (i.e., read-only) locks.

4 Fault Tolerant Refinements

As previously discussed, we anticipate failures to be more common in wide area com-
puting environments than traditional local area network computing environments.
This has motivated us to modify Mocha’s basic state sharing algorithm by incorpo-
rating fault handling refinements. The failure of a remote application thread can
result in the following shortcomings in the basic algorithm. First, if an application
thread which has released the lock to a shared object fails before another thread has
pulled a copy of the shared object, this most recent version of the shared state will be
lost. Thus, the next thread that desires a copy of this shared object will not be able
to acquire this most recent version of the object. Second, if a thread which currently
has acquired a lock fails, then no other thread will be permitted access to the shared
object and this may result in a deadlock in the system.

The object sharing system can be enhanced to provide fault tolerance using a
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number of different techniques. These include transactional support, server repli-
cation and virtual synchrony, and checkpoint/restart mechanisms. Our focus is on
developing basic support that can be used to make the object sharing system robust
with minimal overhead. As a result, we focus on the following two refinements:

o We detect failures of remote Mocha servers using timeouts and take appropriate
actions to handle such failures (e.g., release lock held by a failed server).

e To ensure that a shared object’s state is not lost because of a node failure, an
application can choose to disseminate the object’s state to multiple sites. Such
dissemination is done to achieve high availability even when it is not required
by the consistency protocol.

Our refinements are based on the assumption that the home node, where the
synchronization thread executes, is less prone to failures because it is controlled by
the user initiating the application. Thus, the focus is on dealing with failures of
remote nodes.

Mocha allows objects to be replicated for state sharing. We also exploit the replicas
to increase the probability that there is an operational thread that has an up-to-date
copy of the desired objects. Support for updating multiple replicas of objects has
been added in Mocha by permitting Replical.ock objects to reconfigure themselves
to employ a “push-based” update scheme. In this approach, when a thread is ready
to release access to the replicas associated with a Replical.ock, it may disseminate a
copy of the replicas to a subset of threads that have registered to utilize these replicas.
This is supported by having Replicallocks maintain state information regarding other
application threads that have registered that they also desire access to the replicas.
Specifically, the Replical.ock keeps track of the daemon threads associated with these
application threads. Recall that these daemon threads have access to the shared
replica objects and may apply the disseminated updates directly. Assume that R is
the number of such daemon threads that share the copy of an object.

Additionally, Replical.ock objects maintain state information regarding UR, the
number of up-to-date copies of the shared object. Thus, UR represents a subset of
the object replicas that store the most up-to-date values of the objects. If no fault
tolerance is desired, UR = 1 and only the node that produced the current value
stores it. The new value will be sent to other nodes only when they acquire the lock
associated with the object. When UR = k, the value will be sent to k£ nodes even
when it is not required by the consistency protocols. The changing of R and UR
(and hence the reconfiguration of the level of availability of shared objects) may be
performed by either application threads or by the Mocha runtime which has access
to this state information through its daemon threads.

With application threads now able to dictate the amount of update dissemination,
it is necessary that the synchronization thread be cognizant of the current value of
UR. This permits it to decide whether or not a new replica value must be sent
to an application thread. For example, if an application thread has configured a
Replicallock to disseminate its version of replicas to a subset of threads and one
of these threads now desires access to these replicas, it is no longer necessary for
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the synchronization thread to direct a daemon thread to transmit the new version
because it is already there. To permit the synchronization thread to make this type of
decision, the Replicallock’s unlock () method has been modified to include in its lock
release method a set of identifiers (i.e., a bit vector) for the daemon threads to which
it has disseminated copies of the replicas. When granting the lock to next application
thread that desires it, the synchronization thread consults this set to determine if the
application thread requires a new copy of the replicas.

With replication support in place, it is now possible for failure resiliency to be in-
tegrated into the Mocha system. The following subsections present the modifications
necessary for failure detection and handling.

Failure of Non-Lock Owning Application Thread. A failure by an application
thread that does not own a lock may be detected in several ways. First, if this thread
had the most up-to-date version of the replicas then the synchronization thread will
contact the thread’s daemon thread to perform a transfer of replicas. Assuming a fault
was due either to a system crash or a local user terminating the site manager process,
the daemon thread will also no longer be executing. Thus, the synchronization thread
will detect the failure when the transfer message it sends to the daemon thread
times out. In this particular instance, the synchronization thread handles the failure
by polling other daemon threads to obtain the most recent version of the replicas
available. If the new object values are disseminated to multiple nodes then in all
probability (depending upon the number of failures) the most recent version of the
replicas will be available and the synchronization thread may forward the replicas to
requesting thread. If the values produced by the failed site were not disseminated
then the synchronization thread will only receive older versions of the replicas. It
can then examine version numbers to forward the most recently available old version
of the replicas. This weakened consistency may be appropriate for certain classes
of applications such as service to the home whereby the home user can recognize
unwanted characteristics of the old version and reapply the appropriate updates to
the replicas.

A second way the failure of an application thread may be detected is when an-
other application thread utilizes the update facilities and attempts to disseminate its
version to other daemon threads. Here, we again assume that the failure of an appli-
cation thread implies its associated daemon thread will also fail. When attempting
to disseminate the new replicas, the send message will time out. The failure has been
detected and can be handled by choosing another daemon thread at another site to
receive a copy of the new version of replicas.

In Mocha, we implemented fault detection and handling for this type of failure by
having the synchronization thread detect failures when the transfer message it sends
to a daemon thread times out. The synchronization thread then handles the failure
by polling other daemon threads to obtain the most recent version of the replicas
available.
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Failure of Lock Owning Application Thread. Failure of an application thread
that currently owns a lock is another situation that must detected and handled. This
failure may be detected by having the synchronization thread timestamp lock acqui-
sitions and having threads indicate approximately how long they need to hold a lock.
The synchronization thread can periodically peruse its list of held locks to determine
if any threads are holding locks for an extraordinary amount of time and therefore
a candidate for being a failed thread. The synchronization thread can confirm this
suspicion by sending a “heartbeat” message to the appropriate daemon thread. If
this message times out the synchronization thread can assume the application thread
has failed and thus the failure has been detected. Here, the synchronization thread
can simply break the lock and give it to the next application thread that desires it.
The most recent copy of the replicas will now be those available from daemon thread
of the previous owner of the lock or if necessary the synchronization thread may re-
sort to polling daemons for the most recent version of the replicas. Furthermore, an
application thread that fails in this manner is prevented from making future requests.

In Mocha, we implemented fault detection and handling for this type of failure by
having the user threads indicate how long they need to hold a lock. The synchroniza-
tion thread timestamps lock acquisitions and if a lock is held for longer than expected,
the synchronization thread breaks the lock and gives it to the next application thread
that desires it. The next application thread to acquire the lock receives the most
recent version of the replica available.

Failure of Synchronization Thread. In general, we assume the synchronization
thread executes at the initial home site and therefore will be less likely to fail compared
to application threads executing at remote sites. Failures that take place when a
machine reboots, a task is killed by another user, or failures due to network contention
are not expected to happen very frequently at the home site. This is due to the fact
that in the local environment there is more control over the computing resources.
Because of these reasons and to keep the overhead of failure handling low, we chose
not to implement the synchronization thread in a failure resilient manner. However,
we do have some ideas on how to mitigate failures of the synchronization thread.
Failure detection and handling of the synchronization thread could be handled by
logging its state and employing a recovery protocol whereby a new synchronization
thread is spawned which informs the daemon threads of its existence. Application
threads which time out attempting to contact the failed synchronization thread can
query the local daemon thread to obtain the location of the newly created surrogate
synchronization thread.

5 Evaluation

This section provides an evaluation of the state sharing support provided by our
prototype system. We present the overheads associated with several core activities
performed by the system to support object sharing. These include lock acquisition
latency, data marshaling overheads, and communication overheads incurred transfer-
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Figure 8: Time to marshal Replicas in milliseconds.

ring replicas in both a local and wide area network. This section also describes a
home service application which we have implemented using the facilities provided by
the system prototype.

Table 1 presents the amount of time in milliseconds to perform lock acquisition
using the methods of the ReplicaLock object. The local area network results are from
two SUN ULTRA 1 machines on Fast Ethernet. The wide area results are from a
SUN ULTRA 1 and a SUN SPARCstation 20 connected via the Internet separated by
a distance of approximately 6 miles. As shown in the Table, lock acquisition latency
in wide area networks can be significantly greater than the latency experienced in
local area networks.

Figure 8 presents the time for a SUN ULTRA 1 to marshal a replica into a byte
array to enable it to be transferred over the network. As shown in the Figure, this
activity can be somewhat expensive for large replicas. This inefficiency is a result
of the Mocha system relying on the generic data marshaling constructs provided by
Java JDK 1.1. These constructs utilize dynamic arrays and marshal a single byte at
a time. These factors result in marshaling being a relatively costly operation. In the
future, we plan on providing a custom marshaling library that is more efficient for
our needs.

For the transfer of replicas between hosts, we have developed two separate pro-
totype systems. In the first system, all communication is performed using Mocha’s
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Figure 9: Time for local area transfer of 1K replicas in milliseconds.

network object library. This library implements reliable, sequenced, delivery of mes-
sages as well as performing fragmentation and reassembly. It is scalable in the num-
ber of hosts that communicate with the library because it performs its own upward
multiplexing of packets. It is particularly well suited for sending small messages as it
avoids the heavy connection and tear-down overheads associated with other transport
protocols such as TCP. Empirically, we have found Mocha’s network communication
library to be approximately twice as fast as TCP for sending small (i.e., less than 256
byte) messages.

For the second prototype, small “control” messages used for lock acquisition and
directing data transfers are sent using Mocha’s network object library. For the actual
transfer of replica data which typically involves sending large messages, we have devel-
oped a “hybrid protocol” approach whereby Mocha’s custom network object library
is used in conjunction with TCP. Here, Mocha’s network communication is used for
establishing a TCP connection (i.e., propagating TCP port numbers) and the actual
transfer of replica data is done using TCP. Figure 9 presents the times in millisec-
onds to disseminate a 1K replica to several local area network hosts and Figure 10
illustrates the same dissemination of replicas for wide area networks. In both envi-
ronments, solely using Mocha’s network communication library is the more efficient
approach. This is attributable to the higher connection and tear-down overheads
associated with the hybrid approach.

As we increase the size of the replicas, the hybrid protocol approach provided
by the second prototype begins to perform much better than simply using Mocha’s
network communication library for both local and wide area networks. These results
are presented in Figures 11 and 12 for 4K replica transfers in local area networks and
wide area networks respectively. Furthermore, as shown in Figures 13 and 14, for
larger replicas reaching sizes of 256K the superiority of the hybrid protocol becomes
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Figure 10: Time for wide area transfer of 1K replicas in milliseconds.
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Figure 12: Time for wide area transfer of 4K replicas in milliseconds.

clear. This vast improvement is attributable to the speeds at which both protocols
perform fragmentation and reassembly. Mocha’s fragmentation and assembly exe-
cutes at user level running as interpreted byte code. The TCP fragmentation and
reassembly executes as native binary code at the kernel level. This vast disparity
of execution speeds allows TCP to easily ameliorate its connection and tear-down
overheads for large, multipacket messages.

In summary, several aspects regarding the cost of update dissemination for high
availability as well as the relative efficiency of the two approaches for transferring
replicas are apparent. As can be seen from Figure 12, when the number of moderately
sized (i.e., 4K) replicas that are maintained up-to-date in a wide area environment
is increased from 1 to 2, the overhead for consistency maintenance approximately
doubles. Furthermore, as also depicted in Figure 12, the hybrid protocol approach
can result in an improvement of approximately 30% over Mocha’s basic protocol for
transferring replicas as small as 4K to multiple (i.e., 6) sites. As shown in Figure 14,
for replicas as large as 256K, the hybrid protocol can reduce transfer costs by as much
as 70% over the basic protocol when transferring replicas to multiple sites in a wide
area environment.

5.1 Applications

We are exploring a range of applications that can run on Mocha. Here, we describe
one such application. Figure 15 presents a sample home service application written
with the Mocha system. The application is a formal dinner table setting coordinator
application similar to the one described in Section 2. In this application, the GUI
shown in Figure 15 is sent via Mocha’s remote evaluation support to execute at
several remote sites. Fach site may modify the flatware, plates, or glassware currently
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Figure 15: Mocha Table Setting Coordinator Home Service Application.

being displayed by pushing the appropriate previous or next button. These buttons
result in activating callbacks which modify shared index variables associated with
each item. A thread which executes in each remote GUI periodically polls the shared
index variables for new values and updates the local display as needed. The graphical
images are also shared as replicas but are not associated with a ReplicaLock. Thus,
they are cached at each host without any consistency maintenance being performed on
them. The shared indexes do however rely on the system’s consistency maintenance
facilities.

Empirically, we have measured the marshaling, lock acquisition, and transfer costs
of keeping these three replicas consistent in a wide area environment. Marshaling re-
quired 3 milliseconds, lock acquisition overhead was 19 milliseconds and transfer costs
were measured at 44 milliseconds. Overall, the total cost of maintaining consistency
is 66 milliseconds, a latency value that we feel is suitable for this type of application.

6 Related Work

Mocha’s goals as well as the techniques employed by it are related to several research
areas. These include metacomputing systems, DSM systems, and systems that ad-
dress fault-tolerance. We describe systems from each of these categories.

Wide area computing is closely related to metacomputing. A number of meta-
computing systems are currently being implemented. Some systems rely on message
passing instead of shared objects to allow tasks to cooperate. Examples of these sys-
tems include Chandy’s worldwide distributed system[C*96] and IceT[GS97]. For the
Mocha system, we chose to utilize shared objects instead of message passing because
they provide a model that is simpler to program than standard message passing. Fur-
thermore, we provide replicated copies for failure handling which in a message passing
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model would require group communication and virtual synchrony support[B*91] and
is not currently addressed by the above message passing systems.

Another non-shared object approach utilized by metacomputing systems to al-
low task cooperation is the use of remote procedure call (RPC) or its object-
based equivalent, remote method invocation (RMI). Atlas|BBB96], WebWork[F+95],
NetSolve[CD96], and Legion[GW96] all rely on forms of RPC/RMI for task interac-
tion. In some cases, a RPC/RMI model’s performance suffers from the clients need
to repeatedly contact a server to perform distributed computation. This of course
depends on the type of remote computing activities being performed as well as the
type of caching strategies employed by the RPC/RMI system. For a more thorough
comparison of RPC/RMI and shared memory please refer to [YC97].

Several metacomputing systems are currently providing shared memory. The TIE
design[CMRBY6] supports shared objects via object caching and entry consistency.
The developers of TIE believe that in the future, available network bandwidth will
be limited (due to growing popularity of the internet) and aggressive caching must
be performed to avoid server bottlenecks. The TIE design is in some ways similar
to Mocha but the emphasis of the two systems is quite different. the TIE system
currently focuses on mobile objects and security while Mocha focuses on high avail-
ability and advanced support for sharing general purpose Java objects. We are also
not aware of an implementation of TIE.

The ParaWeb system[BHST96] modifies the Java interpreter to provide a global
shared address space using distributed shared memory techniques pioneered by sys-
tems such as Munin and Treadmarks. In the ParaWeb implementation, the Java
interpreters have been modified to permit them to cooperate and maintain the il-
lusion of global shared memory. ParaWeb utilizes Java’s built-in synchronization
facilities to monitor when remote memory must be updated to maintain the illusion
of consistent global memory. In a similar approach, Yu and Cox[YC97] are currently
implementing a parallel Java Virtual Machine layered on top of the TreadMarks page-
based distributed shared memory system. Currently, they are addressing problems
such as data type conversion between machines of different architectures as well as
garbage collection. Mocha’s approach towards supporting shared state differs from
these two systems as it supports it at the object level while these systems support
sharing at the page level. The difference in the two approaches results in the need
to solve different types of problems. With the shared sequence of bytes approach,
these systems typically must modify the Java virtual machine, must compensate for
different byte orderings in heterogeneous environments, and mitigate false sharing.
Although Mocha’s shared object approach does not encounter these types of problems,
it must deal with issues such as how to support complex objects.

Java Shared Data API (JSDA)[Jsd97] provides shared variable support using its
own multipoint data delivery service. With JSDA, an update to a shared variable is
sent to a session server which then sends the update to other threads that are sharing
the variable. In contrast, the Mocha system attempts to exploit locality by sending
shared state changes directly to the next thread that needs access to the data. Mocha
also allows the number of updated replicas to be configured whereas JSDA updates
all copies.
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PageSpace[CT96] relies on a Linda-like coordination technology. Essentially,
PageSpace supports a global tuple space which nodes may insert or remove tuples
without any regard for where the tuples are stored.

Mocha’s consistency actions are driven by synchronization operations. In certain
systems and applications, synchronization for all operations may not be desirable.
For example, systems such as Bayou[TDP*94], Coda[KS92], and Rover[J*95] which
address mobility avoid synchronization and instead rely upon conflict detection and
resolution to maintain consistency. Our future work will explore non-synchronization
based consistency models that are suitable for supporting shared objects.

In summary, Mocha’s state sharing support distinguishes itself from the above
systems by combining advanced distributed shared object techniques with failure
handling support that allows its overheads to be controlled based upon the level of
availability needed for shared objects. Additionally, Mocha’s runtime exploits Java’s
method overriding and serialization capabilities to support the sharing of complex
objects without requiring modifications to the standard Java interpreter. Moreover,
we have a broad application focus including applications directed to the home.

7 Conclusions

In this article, we have presented a robust shared object model for wide area dis-
tributed applications that has been implemented as part of the Mocha wide area
computing infrastructure we are currently developing. Our model provides support
for shared objects on heterogeneous platforms, and utilizes advanced distributed mem-
ory techniques for maintaining consistency of shared objects. Moreover, our system
provides fault tolerance support that allows its overhead to be controlled based on
the level of availability needed by an application. We have investigated a combination
of protocols approach for improving the efficiency of shared state transfer between
hosts and performed an empirical evaluation of two versions of our prototype system
in both local and wide area networks.

Currently, we are focusing on providing support for applications which require
non-synchronization based solutions for maintaining consistency. We have also be-
gun evaluating the system in a more accurate home service environment, namely, a
Windows 95 PC connected via a cable modem to a Unix workstation. Future work will
focus on the development of a larger application base as well as visualization support
to provide greater insight into the execution of wide area distributed applications.
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